International team of scientists confirms surprisingly small proton radius with laser spectroscopy of exotic hydrogen.

January 25, 2013, Nr. 6

Proton size puzzle reinforced!

These results have puzzled the world three years ago: the size of the proton (to be precise, its charge radius), measured in exotic hydrogen in which the electron orbiting the nucleus is replaced by a negatively charged muon, yielded a value significantly smaller than the one from previous investigations of regular hydrogen or electron-proton-scattering. A new measurement by the same team confirms the value of the electric charge radius and makes it possible for the first time to determine the magnetic radius of the proton with laser spectroscopy of muonic hydrogen (Science, January 25, 2013). The experiments were carried out at the Paul Scherrer Institut (PSI) (Villigen, Switzerland) which is the only research institute worldwide providing the necessary amount of muons. The international collaboration included the Max-Planck-Institute of Quantum Optics (MPQ) in Garching near Munich, the Eidgenössische Technische Hochschule (ETH) Zürich (Switzerland), the University of Fribourg (Switzerland), the Institut für Strahlwerkzeuge (IFSW) of the Universität Stuttgart, and the Dausinger&Giesen GmbH, Stuttgart. The new results fuel the debate whether the discrepancies observed can be explained by standard physics, for example an incomplete understanding of the systematic errors that are inherent to all measurements, or whether they are due to new physics.

The hydrogen atom has played a key role in the investigation of the fundamental laws of physics. Its nucleus consists of a single positively charged proton orbited by a negatively charged electron. The energy levels of this most simple atom can be predicted with excellent precision from the theory of quantum electrodynamics. However, the calculations have to take into account that – in contrast to the point-like electron – the proton is an extended object, made of three quarks bound by so-call ‘gluons’. Therefore the electric charge as well as the magnetism of the proton is distributed over a certain area. The extension of the proton causes a shift of the energy levels in hydrogen. Hence the electric and the magnetic charge radii can be deduced from a measurement of the level shifts.

In 2010 the first results on the spectroscopic determination of the shift of the so-called 2S energy level in muonic hydrogen were published. The exotic atoms were generated by bombarding a target of regular hydrogen with muons from an accelerator at the PSI. Muons behave a lot like electrons, except for their mass: muons are 200 times heavier than electrons. The atomic orbit of the muon is therefore much closer to the proton than the electron’s orbit in a regular hydrogen atom. This results in a much larger sensitivity of the muon’s energy level to the proton size and hence to a stronger shift of the energy levels. Measuring the level shifts is very demanding for technology: muonic hydrogen is very short-lived (muons decay after about two millionths of a second), so the light pulses for the excitation of the resonance have to be fired onto the hydrogen target only nanoseconds after the detection of a muon. The new disk laser technology developed by the Institut für Strahlwerkzeuge (IFSW) of the Universität Stuttgart was an important element to fulfil this requirement. The lasers necessary for exciting the resonance were developed by the Max-Planck-Institute of Quantum Optics in cooperation with the Laboratoire Kastler Brossel (Paris).

In the experiment described in the newly published Science article the energy shift was determined for another transition. This leads to a new measurement of the electric charge radius of the proton. Its value of 0.84087(39) femtometres (1 fm = 0.000 000 000 000 001 metre) is in good agreement with the one published in 2010, but 1.7 times as precise. The discrepancy to measurements in regular hydrogen or to electron-proton-scattering has thus been reinforced.

In addition, the new measurement allows a determination of the magnetic radius of the proton for the first time by laser spectroscopy of muonic hydrogen. This results in a value of 0.87(6) femtometres, in agreement with previous measurements. Though the precision is, at present, of the same order as in other experiments, laser spectroscopy of muonic hydrogen has the potential of achieving a much better accuracy in the determination of the magnetic proton radius in the future.

Physicists around the world are seeking a solution to the proton puzzle. Previous measurements in regular hydrogen or electron-proton-scattering are reanalyzed or even repeated. Theorists of various disciplines suggested ways to explain the discrepancy. Very interesting proposals explain the discrepancies by physics beyond the standard model. Other explanations suggest a proton structure of higher complexity than assumed today which does reveal itself at first under the influence of the heavy muon. New measurements are needed to check on these effects. Muon-proton-scattering experiments are being developed at PSI, new precision measurements at the electron accelerator in Mainz are being considered. And the PSI team plans to apply for the first time ever laser spectroscopy to muonic helium in the course of this year. The required modifications of the current laser system are being investigated in the frame of the project “ Thin-disk laser for muonic atoms spectroscopy” which is – financed by the Schweizerische Nationalfond (SNF) and the Deutsche Forschungsgemeinschaft (DFG) – carried out at the ETH Zürich (Prof. Dr. Klaus Kirch, Dr. Aldo Antognini) and at the IFSW (Prof. Dr. Thomas Graf, Dr. Andreas Voß). The Project “Muonic Helium” is also generously supported by the European Research Council (ERC) by giving an ERC Starting Grant to Dr. Randolf Pohl from the MPQ in Garching.

Original publication:
Aldo Antognini, François Nez, Karsten Schuhmann, Fernando D. Amaro, François Biraben, João M. R. Cardoso, Daniel S. Covita, Andreas Dax, Satish Dhawan, Marc Diepold, Luis M. P. Fernandes, Adolf Giesen, Andrea L. Gouvea, Thomas Graf, Theodor W. Hänsch, Paul Indelicato, Lucile Julien, Cheng-Yang Kao, Paul Knowles, Franz Kottmann, Eric-Olivier Le Bigot, Yi-Wei Liu, José A. M. Lopes, Livia Ludhova, Cristina M. B. Monteiro, Françoise Mulhauser, Tobias Nebel, Paul Rabinowitz, Joaquim M. F. dos Santos, Lukas A. Schaller, Catherine Schwob, David Taqqu, João F. C. A. Veloso, Jan Vogelsang, Randolf Pohl
Proton structure from the measurement of 2S − 2P transition frequencies of muonic hydrogen
Science. 25th January 2013

Contact:
Dr. Randolf Pohl
Max-Planck-Institute of Quantum Optics
Hans-Kopfermann-Straße 1
85748 Garching
Phone: +49 (0)89 / 32905 -281
Fax: +49 (0)89 / 32905 -200
E-mail: randolf.pohl@mpq.mpg.de
http://www.mpq.mpg.de/~rnp/

Dr. Aldo Antognini
ETH Zürich
CH-8093 Zürich
Phone: +41 (0)56 310 4614
+41 (0)44 633 2031
E-mail: aldo@phys.ethz.ch
https://muhy.web.psi.ch/wiki/

Prof. Dr. Theodor W. Hänsch
Chair of Experimental Physics,
Ludwig-Maximilians-Universität, Munich
Max-Planck-Institute of Quantum Optics
Hans-Kopfermann-Straße 1, 85748 Garching
Phone: +49 (0)89 / 32905 -702/712
Fax: +49 (0)89 / 32905 -312
E-mail: t.w.haensch@mpq.mpg.de

Prof. Dr. Thomas Graf
Universität Stuttgart
Institut für Strahlwerkzeuge
Pfaffenwaldring 43
D-70569 Stuttgart
Phone: +49 (0)711 68566840
E-mail: graf@ifsw.uni-stuttgart.de
mailto:randolf.pohl@mpq.mpg.de

Dr. Franz Kottmann
Paul Scherrer Institut
CH-5232 Villigen
Phone: +41 (0) 56 310 3502
E-mail: franz.kottmann@psi.ch

Karsten Schuhmann
ETH Zürich
CH-8093 Zürich
Phone: +41 (0)44 633 2031
E-mail: skarsten@phys.ethz.ch
and Daunsinger & Giesen GmbH
Rotebühlstrasse 87
D-70178 Stuttgart

The experiment was the collaborative success of many institutes from varies countries. Very important contributions came in particular from: the Max-Planck-Institute of Quantum Optics, Garching near Munich, Paul Scherrer Institut PSI, Villigen, Switzerland, Institut für Teilchenphysik, Eidgenössische Technische Hochschule ETH Zürich, Switzerland, Laboratoire Kastler Brossel, Paris, France, Institut für Strahlwerkzeuge der Universität Stuttgart und Dausinger & Giesen GmbH, Stuttgart, Germany, Departamento de Física, Universidade de Coimbra, Coimbra, Portugal, University of Fribourg, Switzerland

 
To the top of the page