Datum: 26. November 2019, Nr. 105

Hirnscan-Implantat liefert Daten zur Aktivität von Neuronen

Wissenschaftler des Max-Planck-Instituts und der Universität Stuttgart entwickelten weltweit ersten implantierbaren Miniatur-Kernspintomographen
[Bild: whitehoune - stock.adobe.com, Max-Planck-Institut für biologische Kybernetik, Universität Stuttgart. Montage: Martin Vötsch, design-galaxie.de.]

Neurowissenschaftler und Elektroingenieure aus Deutschland und der Schweiz haben ein Implantat entwickelt, das Forschern erstmals hochauflösende Daten zur neuronalen Aktivität im Gehirn liefert. Die gestern in Nature Methods vorgestellte Erfindung ermöglicht die Kombination räumlicher Informationen zur Hirnphysiologie mit Erkenntnissen zu Wechselwirkungen von Nervenzellen in Echtzeit. Diese weltweit erste und einmalige Innovation integriert die Funktionalität eines Magnetresonanztomographen auf einem winzigen Chip.

Die wissenschaftliche Arbeitsgruppe um Klaus Scheffler vom Max-Planck-Institut für biologische Kybernetik und der Universität Tübingen, sowie Jens Anders von der Universität Stuttgart haben hiermit einen technologischen Brückenschlag geschafft, der die bisher eng gesetzten elektrophysikalischen Grenzen klassischer Hirnscan-Methoden sprengt. Das haarfeine Implantat besteht aus einem winzigen Magnetresonanztomographen (MRT) und kombiniert die Vielseitigkeit bekannter räumlicher MRT-Analysen mit der Genauigkeit eines implantierbaren Sensors, der an einem Punkt im Gehirn neuronale Ereignisse in Echtzeit messen kann.

"Unser neuartiges Konzept, einen Kernspinresonanzdetektor auf einem winzigen Chip unterzubringen ermöglicht es uns, die typischen elektromagnetischen Störungen von Magnetresonanzsignalen erheblich zu verringern und viel feinere und sowohl zeitlich als auch räumlich hochaufgelöste Daten zu erhalten. So können wir Neurowissenschaftler erstmals sehr präzise Informationen aus winzigen Bereichen des Gehirns generieren und mit bildgebenden Informationen zur Hirnphysiologie kombinieren", erklärten die Hauptautoren der Nature Publikation Klaus Scheffler und Jens Anders. "Mit dieser Methode können wir somit nun spezifische Aktivitäten und Funktionalitäten im Gehirn sehr viel besser verstehen und auch Unregelmäßigkeiten von Hirnfunktionen ausmachen."

 

 (c) Universität Stuttgart / IIS
Detailansicht der NMR-Nadel

Laut Scheffler und seiner Gruppe könnte ihre Erfindung die Möglichkeit eröffnen, Mechanismen oder Aktivierungsmuster neuronaler Aktivität bis hin zu spezifischen, insbesondere krankhaften, neuronalen Funktionen im Hirngewebe zu entdecken.

"Unser Implantat ist technisch auch skalierbar, d.h. es besteht die Möglichkeit, Daten aus mehr als einem einzigen Bereich des Gehirns zu erfassen. So zum Beispiel aus angrenzenden Hirnarealen – dies aber auf demselben winzigen Implantat", erklärt Scheffler weiter. „Die Skalierbarkeit der verwendeten Technologie ermöglicht darüber hinaus auch die Integration weiterer Messmodalitäten wie z.B. elektrophysiologischer oder optogenetischer Sensoren im selben Implantat“, ergänzt Anders.

Die Teams aus Stuttgart und Tübingen sind sehr zuversichtlich, dass ihr technischer Ansatz dazu beitragen kann, die komplexen physiologischen Prozesse neuronaler Netzwerke des Gehirns präzise zu erfassen und zusätzliche Merkmale zu entdecken, die noch tiefere Einblicke in die komplexe Funktionalität des Gehirns ermöglichen.

Mit dem Ziel, neue Technologien zu entwickeln, die in der Lage sind, die strukturelle und biochemische Zusammensetzung des Gehirns zu verstehen, ebnet diese neueste Innovation den Weg für zukünftige hochspezifische Kartierungstechniken, bioenergetische Prozesse in Gehirnzellen und die Aktivität und Aufgabe einzelner Neuronen zu verstehen.

Text: Max-Planck-Institut für biologische Kybernetik

Prof. Dr. Jens Anders, Universität Stuttgart, Institut für Intelligente Sensorik und Theoretische Elektrotechnik, Tel.  +49 711 685 67250, E-Mail

Prof. Dr. Klaus Scheffler, Max-Planck-Institut für biologische Kybernetik, Universität Tübingen, Tel. +49 7071 601-701, E-Mail 

 

Originalpublikation:

A CMOS NMR needle for probing brain physiology with high spatial and temporal resolution

Jonas Handwerker, Marlon Pérez-Rodas, Michael Beyerlein, Franck Vincent, Armin Beck, Nicolas Freytag, Xin Yu, Rolf Pohmann, Jens Anders & Klaus Scheffler, Nature Methods 2019 doi

 

Medienkontakt

Andrea Mayer-Grenu
 

Andrea Mayer-Grenu

Wissenschaftsreferentin, Forschungspublikationen

Zum Seitenanfang