Der ERC-„Advanced Investigator Grant“ für erfahrene exzellente Forschende zählt zu den renommiertesten Forschungspreisen weltweit. Gleich zwei dieser durch den des Europäischen Forschungsrat ausgelobten und mit jeweils 2,4 Millionen Euro dotierten Grants zur Förderung der Pionierforschung gingen nun an Physiker der Universität Stuttgart: Prof. Tilman Pfau, Leiter des 5. Physikalischen Instituts, wird für seine Arbeiten zur Steuerung von Wechselwirkungen mit langer Reichweite in Quantengasen ausgezeichnet. Prof. Jörg Wrachtrup, Leiter des 3. Physikalischen Instituts der Universität Stuttgart, erhält die Auszeichnung für die Nutzung von atomaren Defekten in Diamanten für die Quantentechnologie. Beide Ansätze gelten als außerordentlich vielversprechend für die Entwicklung von Quantencomputern mit sehr hoher Rechenkapazität und äußerst sicherem Datentransfer sowie anderen Anwendungen in der Datenübertragung.
Wissenschaftsminister Professor Dr. Peter Frankenberg gratulierte. „Die Entscheidung des Europäischen Forschungsrats ist eine hohe Auszeichnung und ein großer Erfolg für die Wissenschaftler, aber auch für die Universität Stuttgart. Sie zeigt zugleich, wie gut Baden-Württemberg in der Grundlagenforschung insgesamt aufgestellt ist. Der ERC fördert in dieser Runde sechs Wissenschaftler aus dem Land“, so der Minister.
ERC Advanced Investigator Grant LIQAD „Long-range interacting quantum systems and devices” (Quantensysteme mit langreichweitigen Wechselwirkungen, Prof. Tilman Pfau)
Die prinzipiell kleinste Informationseinheit ist ein Bit und nimmt klassisch den Wert 1 oder 0 ein. Diese Werte können aber auch für wahr oder falsch, rechts oder links, oben oder unten stehen. Das Informationszeitalter basiert auf dem Austausch und der effizienten Verarbeitung solcher digitalen Informationseinheiten. Die grundlegende Kapazitätsgrenze für die Datenverarbeitung ist erreicht, wenn als Informationsträger die kleinste Einheit in der Natur, also ein einzelnes Quantum wie zum Beispiel ein einzelnes Lichtteilchen benutzt wird. Solche Quanteninformationsträger folgen den Gesetzen der Quantenmechanik, die auch Überlagerungszustände aus 0 und 1 erlauben. Neuartige Quantenbauelemente sollen diese Quanteninformationsträger senden, empfangen, speichern und verarbeiten. Dadurch ergeben sich neue Möglichkeiten für die sichere Datenübertragung sowie für die Quanteninformationsverarbeitung durch logische Operationen.
Die Zuerkennung des Grants basiert auf Forschungsergebnissen, die die Gruppe Pfau in den vergangenen Jahren in zahlreiche Publikationen in internationalen Fachzeitschriften wie etwa Nature und Nature Physics veröffentlicht hat und die auch in der Öffentlichkeit viel Beachtung fanden. Beispielhaft genannt seien die erstmalige Realisierung eines magnetischen Quantengases, einem Bose-Einstein-Kondensat aus Chrom-Atomen, die Entdeckung von Riesenmolekülen, die aus einem hochangeregten Rydbergatom und einem Atom im elektronischen Grundzustand bestehen (http://www.uni-stuttgart.de/aktuelles/presse/2009/29.html), sowie zuletzt die Untersuchung von Riesenmolekülen im Überlagerungszustand (http://www.uni-stuttgart.de/aktuelles/presse/2010/126.html

ERC Advanced Investigator Grant SQTEC „Spin Quantum Technologies” (Quantentechnologie mit Elektrospins, Prof. Jörg Wrachtrup)
Die zunehmende Miniaturisierung in Form atomar präzise strukturierter Festkörper sowie die Integration optischer, mechanischer und elektronischer Komponenten führen dazu, dass sich quantenmechanische Phänomene auf neuartige Weise beobachten und nutzen lassen. Dies soll im Projekt SQTEC dazu genutzt werden, Informationen besonders schnell zu verarbeiten beziehungsweise zu übertragen oder Sensoren mit bis dato unerreichter Empfindlichkeit zu konstruieren. Dies soll mit einem Material erreicht werden, das für seine besondere Härte und optische Transparenz bekannt ist: Diamant. Durch gezieltes Einbringen von Fremdatomen, zum Beispiel Stickstoff, lassen sich gezielt Defekte erzeugen, die den Diamant einfärben. Physikalisch gesehen verhalten sich diese Defekte wie Atome, die in das Material eingebaut werden, optisch zugänglich sind und von ihm gegenüber Umwelteinflüssen abgeschirmt werden. Diese Atome stellen eine ideale Ausgangsbasis für die Quantentechnologie dar. Benutzt man nämlich die Elektronenspins einer bestimmten Sorte von Diamantdefekten, so lassen sich mit diesen Quantenzustände präparieren, die für die Informationsverarbeitung beziehungsweise –übertragung notwendig sind. Das Besondere dabei und wichtig für die spätere praktische Nutzung: Das Diamantgitter schirmt diese Elektronenspins so gut ab, dass die Experimente unter Umgebungsbedingungen durchgeführt werden können.
Weitere Informationen:
Prof. Jörg Wrachtrup, Universität Stuttgart, 3. Physikalisches Institut Tel. 0711/685-65278, e-mail wrachtrup@physik.uni-stuttgart.de.
