SP–C5: Development of Novel Optical Techniques for Micro-Fluid Dynamics

Visakh Vaikuntanathan
Institute of Aerospace Thermodynamics (ITLR), University of Stuttgart

DROPIT Seminar, Bergamo, ITALY
25.05.2017
Brief self-introduction

SP-C5: Development of Novel Optical Techniques for Micro-Fluid Dynamics

Current Position (from 01.05.2017): Post-doctoral Research Associate in DROPIT at ITLR, University of Stuttgart

PhD from Indian Institute of Science (Aerospace Engineering)
MSc from Indian Institute of Science (Aerospace Engineering)

Research Background

- **Micro-textured surfaces**
 - Liquid droplet impact on micro-grooved surfaces

- **Superhydrophobic surfaces (SHS)**
 - Water droplet impact on spray-coated SHS
 (Colloids Surf A, 2016)

- **Heated surfaces**
 - Biofuel droplet impact on heated stainless steel surfaces
 (under revision in Int. J. Thermal Sci., 2017)

- **Droplet interaction with solid surfaces**
 - Biofuel droplet impact on heated stainless steel surfaces
 (under revision in Int. J. Thermal Sci., 2017)

Sources:
- www.aero.isc.ernet.in
- www.aero.isc.ernet.in
SP-C5: Development of Novel Optical Techniques for Micro-Fluid Dynamics

Role in DROPIT

Goal: Implement micro-PIV to study the flow features in the thin wall-film and crown to understand and rationalize the outcomes observed in macro-scale such as deposition–splashing transition.

Fig. Micro-PIV set-up highlighting the main components

*Source: GRK 2160/1 DROPIT presentation
SP-C5: Development of Novel Optical Techniques for Micro-Fluid Dynamics

Tentative Work Plan for SP-C5 ↔ SP-C1 Co-Operation

Phase I: Calibration experiments

1. **Velocity measurement**

 - From high speed images:
 \[U(t) = \frac{\Delta R}{\Delta t} \]

 - From \(\mu\)-PIV:
 \[t = t_1 \quad \text{and} \quad t = t_2 \]

 - Combination of:
 (i) Chromatic Confocal Imaging (CCI),
 (ii) microscopy, and
 (iii) volume conservation.

 - Challenge: Checking, adapting, and calibrating the measurement techniques for thin wall film seeded with tracer particles.

 - Fig. Schematic of the concept for velocity calibration of micro-PIV

2. **Wall film thickness measurement**

 - Fig. CCI set-up

Phase II: Preliminary experiments

- Single-component droplet–wall film interaction

Phase III: Final experiments

- Two-component droplet–wall film interaction

- Fig. Schematic of the thin wall film set-up
Thank you!
Vielen Dank! Grazie mille!

Prof. Dr.-Ing. habil. Bernhard Weigand

Dr.-Ing. Grazia Lamanna

Mr. Ronan Bernard, M. Sc.

Dr. Visakh Vaikuntanathan

SP-C5: Development of Novel Optical Techniques for Micro-Fluid Dynamics

* Photo source: http://www.uni-stuttgart.de/ith/institut/mitarbeiter/