Level of service estimation at traffic signals based on innovative traffic data services and collection techniques

Authors: Steffen Axer, Jannis Rohde, Bernhard Friedrich
Motivation

Network-wide LOS estimation at traffic lights
 - e.g. approach delays and avg. travel speeds

Initial situation:
 - Limited applicability of conventional techniques like:
 - Analytic calculations / Simulations
 - Insufficient coverage of conventional data collection techniques like:
 - Stationary detectors (loops, cameras etc.)
Innovative data sources

Traffic data service provider:

Field of activity: Collect, handle, store und distribute spatial traffic flow information

Analyzed traffic data service provider:
Innovative data sources

Traffic data service provider:

Data sources:

<table>
<thead>
<tr>
<th>Historical traffic information</th>
<th>Realtime traffic information</th>
<th>Predictive traffic information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stationary data sources</td>
<td>Mobile data sources</td>
<td>Meta data</td>
</tr>
<tr>
<td>Local detectors</td>
<td>Floating Car Data (FCD)</td>
<td>Traffic jam information</td>
</tr>
<tr>
<td></td>
<td>Floating Phone Data (FPD)</td>
<td>Events</td>
</tr>
</tbody>
</table>

Traffic information of data service providers

- Traffic data service provider:
 - Data sources:
 - Historical traffic information
 - Realtime traffic information
 - Predictive traffic information
 - Stationary data sources
 - Local detectors
 - Mobile data sources
 - Floating Car Data (FCD)
 - Floating Phone Data (FPD)
 - Meta data
 - Traffic jam information
 - Events
Innovative data sources

Traffic data service provider:

Derivable performance measures
- Average through-vehicle travel speed related to TMC locations or links
 - TMC Location \rightarrow approx. avg. approach delay (best case)
 - Link \rightarrow approx. avg. approach delay and avg. total delay

Spatial referencing:

- **Link**
 - Company specific referencing
 - Detailed spatial travel speed information

- **TMC location**
 - Controlled by national authority
 - Rough spatial travel speed information
Innovative data sources

Traffic data service provider:

Example:

Heatmap of single links

<table>
<thead>
<tr>
<th>LOS [-]</th>
<th>avg. travel speed [km/h]</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>≥ 40</td>
</tr>
<tr>
<td>B</td>
<td>≥ 30</td>
</tr>
<tr>
<td>C</td>
<td>≥ 25</td>
</tr>
<tr>
<td>D</td>
<td>≥ 20</td>
</tr>
<tr>
<td>E</td>
<td>≥ 15</td>
</tr>
<tr>
<td>F</td>
<td>< 15</td>
</tr>
</tbody>
</table>

LOS matched TMC location
Innovative data sources

Local, temporary collection techniques
- Detailed collection of different performance measures
- Individual advantages and disadvantages related to their principle of function

Automatic number plate recognition
- Average through-vehicle travel speed
- Average approach delay, total delay
- Percentage of driving without stopping

GPS-Tracking
- Average through-vehicle travel speed
- Average approach delay, total delay
- Percentage of driving without stopping
Developed two stage concept

1. Stage: Network-wide LOS estimation

Data source: (Data traffic service provider - TMC or Link referenced)

- Average through-vehicle travel speed (LOS)
- Average approach delay (LOS) (optional)
- Colored LOS related map
- Bottleneck identification and selection of traffic impaired road

![Network-wide LOS estimation](image1)

2. Stage: Local LOS estimation

Data source: (Local, temporary collection techniques - ANPR / GPS)

- Validation of traffic data service
- Positiv validation → further investigations
- Information from the validation → impaired intersections and road segments
- Complete collection of performance measures for impaired intersections
- Complete overview over performance measures

![Local LOS estimation](image2)
Developed concept

Real-World case study

1. Stage: Network-wide LOS estimation for Hannover
 - Lowest avg. travel speed during a typical weekday (e.g. typical Monday)
 - based on traffic data service provider

- LOS-A $\Rightarrow V \geq 40$ km/h
- LOS-B $\Rightarrow V \geq 30$ km/h
- LOS-C $\Rightarrow V \geq 25$ km/h
- LOS-D $\Rightarrow V \geq 20$ km/h
- LOS-E $\Rightarrow V \geq 15$ km/h
- LOS-F $\Rightarrow V < 15$ km/h

does not exist
Real-World case study

1. Stage: Selection of travel speed impaired TMC location
 - Hildesheimer Str., main arterial (LOS D)

 - 4 traffic-actuated pedestrian crossings
 - 3 traffic-actuated intersections
Real-World case study

1. Stage: Selection of travel speed impaired TMC location
 - LOS related colored map shows only the typical Monday
 - Lowest avg. travel speed on Monday between 08:00 - 09:00 a.m. (LOS D)
Developed concept

Real-World case study

1. Stage: Calculation of avg. approach delays based on traffic data service
 - Basic principle: Time difference between V_{ff} and $V_{traffic data service}$

<table>
<thead>
<tr>
<th>Intersection</th>
<th>avg. approach delay [s]</th>
<th>LOS [-]</th>
</tr>
</thead>
<tbody>
<tr>
<td>pedestrian crossing 1</td>
<td>4,7</td>
<td>A</td>
</tr>
<tr>
<td>pedestrian crossing 2</td>
<td>3,2</td>
<td>A</td>
</tr>
<tr>
<td>intersection 1 (Peiner Str.)</td>
<td>20,9</td>
<td>B</td>
</tr>
<tr>
<td>pedestrian crossing 3</td>
<td>4,3</td>
<td>A</td>
</tr>
<tr>
<td>intersection 2 (An der Wollebahn)</td>
<td>15,0</td>
<td>A</td>
</tr>
<tr>
<td>pedestrian crossing 4</td>
<td>8,7</td>
<td>A</td>
</tr>
<tr>
<td>intersection 3 (Garkenburgstraße)</td>
<td>8,2</td>
<td>A</td>
</tr>
</tbody>
</table>

Conclusion:
- Good performance of single approaches
- Most impair from Intersection 1

Assumption:
- Amount of intersections impairs the traffic flow!
Real-World case study

2. Stage: Validation of traffic data service

- Local, temporary data collection techniques
- ANPR \rightarrow average through-vehicle travel speed on selected TMC location

Valid:
- Difference not bigger than one LOS
- LOS-D confirmed
Developed concept

Real-World case study

2. Stage: Local LOS estimation
 - GPS-Tracking
 - One Car ≈ 4 cycles per hour

<table>
<thead>
<tr>
<th>Intersection</th>
<th>GPS-Tracking</th>
<th>Data traffic service provider</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>avg. approach delay [s]</td>
<td>LOS [-]</td>
</tr>
<tr>
<td>pedestrian crossing 1</td>
<td>4,2</td>
<td>A</td>
</tr>
<tr>
<td>pedestrian crossing 2</td>
<td>17,2</td>
<td>A</td>
</tr>
<tr>
<td>intersection 1 (Peiner Str.)</td>
<td>63,8</td>
<td>D</td>
</tr>
<tr>
<td>pedestrian crossing 3</td>
<td>0,0</td>
<td>A</td>
</tr>
<tr>
<td>intersection 2 (An der Wollebahn)</td>
<td>18,4</td>
<td>A</td>
</tr>
<tr>
<td>pedestrian crossing 4</td>
<td>0,0</td>
<td>A</td>
</tr>
<tr>
<td>intersection 3 (Garkenburgstraße)</td>
<td>7,7</td>
<td>A</td>
</tr>
</tbody>
</table>
Conclusion

- Developed concept could be applied successfully
- Modern and useful method for future quality management of traffic lights