
University of Stuttgart

Institute for Biochemical Engineering (IBVT) Allmandring 31, 70569 Stuttgart, Germany www.ibvt.uni-stuttgart.de

Industrielle Biotechnologie: Marktvolumen Ausblick 2017

Festel, G. Industrial Biotechnology (2010), 4, 88-94

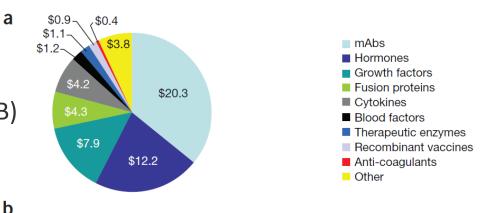
Biotech Umsätze werden 15.4% der chemischen Umsätze erreichen.

- höchste (absolute) Biotech Umsätze: Chemie
- wichtigstes Biotech Subsegment: aktive Pharmastoffe, Polymere,
 Faserstoffe

Produkte der Weißen Biotechnologie – Beispiel: Grundstoffe

Table 3. Industrial Production and Biochemical Yield Data for Formation of Some Major Commodity Chemicals from Glucose

Straathof Chem Rev 2014

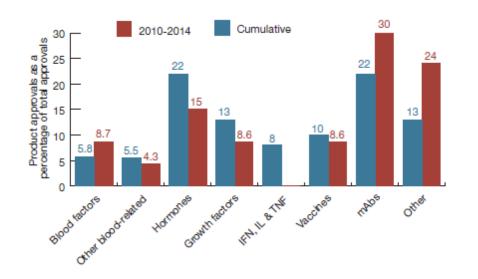

product	production (millions t/a)	biochemical production (millions t/a)	x in eq 1 (mol/mol)	y in eq 1 (mol/mol)	theoretical yield based on eq 1 (g/g)	theoretical yield of used pathway (g/g)	achieved yield (g/g)
methane	>200	>1	3	3	0.27	0.27	0.27
ethene	115	research	2	2	0.31	0.12	< 0.01
ethanol	99	99	2	2	0.51	0.51	0.50
hydrogen	48	research	6	6	0.13	0.04	0.02
ethylene glycol	18	research	2.4	1.2	0.83	0.41	0.27
acetic acid	11	0.19	3	0	1.00	1.00	0.8
isobutene	10	research	1	2	0.31	0.31	< 0.01
phenol	9	research	0.86	0.86	0.45		0.035
fatty acids	8	research	0.26	1.91	0.37		0.28
fructose	6.5	6.5	1	0	1.00	1.00	1.00
2-butanol	5	research	1	2	0.41	0.41	0.01
acrylic acid	4.5	research	2	2	0.80	0.80	< 0.03
acetone	3	0.15	1.5	1.5	0.48	0.32	0.11
1-butanol	2.8	0.5	1	2	0.41	0.41	0.36
isopropanol	2.3	research	1.33	2	0.44	0.33	0.24
L-glutamate	2.5	2.5	1.33	-0.67	1.09	0.82	0.6
citric acid	1.7	1.7	1.33	-2	1.42	1.07	0.88
L-lysine	1.4	1.4	0.86	0.86	0.70	0.60	0.44
1,2-propanediol	1.4	research	1.5	1.5	0.63	0.51	0.20
1,4-butanediol	1.3	pilot	1.09	1.64	0.55	0.5	
acetaldehyde	1.0	research	2.4	1.2	0.59	0.49	0.42
butanone	1.0	research	1.09	1.64	0.55	0.40	< 0.01
isobutyraldehyde	1	research	1.09	1.64	0.55	0.40	0.18
isoprene	0.8	pilot	0.85	1.71	0.32	0.25	0.11
isobutanol	0.5	pilot	1	2	0.41	0.41	0.35
butyric acid	0.5	pilot	1.2	1.2	0.59	0.49	0.46
lactic acid	0.37	0.37	2	0	1.00	1.00	1.00

Rote Biotechnologie

Nine Mayor Product Classes

Aggarwal, Nature Biotechnol. (2012)

- monoclonal antibodies (mAB)
- hormones
- growth factors
- fusion proteins
- cytokines
- blood factors
- therapeutic enzymes
- recombinant vaccines
- anti-coagulants


<u> </u>				
	US sales	(\$ billions)	Growt	h rate (%)
	2010	2011	2010	2011
mAbs	18.5	20.3	9.7	10.1
Hormones	11.0	12.2	13.4	14.4
Growth factors	10.2	7.9	3.0	-10.3
Fusion proteins	4.1	4.3	3.9	6.3
Cytokines	4.1	4.2	4.6	4.3
Blood factors	1.3	1.2	-2.6	-5.8
Therapeutic enzymes	1.2	1.1	4.9	-10.2
Recombinant vaccines	0.8	0.9	13.0	14.5
Anti-coagulants	0.4	0.4	7.9	11.4

Trends bei den Biopharmazeutika

Walsh, Nature Biotechnol., 2014

Table 3	The 20 top-selling biopharmaceutical products in 2013				
		Sales	Year first		
Ranking	Product	(\$ billions) ^a	approved		
1	Humira (adalimumab; anti-TNF)	11.00	2002		
2	Enbrel (etanercept; anti-TNF)	8.76	1998		
3	Remicade (infliximab; anti-TNF)	8.37	1998		
4	Lantus (insulin glargine)	7.95	2000		
5	Rituxan/MabThera (rituximab; anti CD20)	7.91	1997		
6	Avastin (bevacizumab; anti-VEGF)	6.97	2004		
7	Herceptin (anti-HER2)	6.91	1998		
8	Neulasta (pegfilgrastim)	4.39	2002		
9	Lucentis (ranibizumab; anti-VEGF)	4.27	2006		
10	Epogen/Procrit/Eprex/ESPO (epoetin alfa)	3.35	1989		
11	Novolog/Novorapid (insulin aspart)	3.13	1999		
12	Avonex (IFN-β-1a)	3.00	1996		
13	Humalog mix 50:50 (insulin lispro)	2.61	1996		
14	Rebif (IFN-β-1a)	2.59	1998		
15	Aranesp/Nesp (darbepoetin α)	2.42	2001		
16	Advate/Recombinate (Octocog α)	2.37	1992		
17	Levemir (insulin detemir)	2.15	2004		
18	Actrapid/Novolin (insulin)	2.02	1991		
19	Erbitux (cetuximab; anti-EGF)	1.92	2004		
20	Eylea (aflibercept; anti-VEGF)	1.88	2011		
^a Financial	data from LaMerie Business Intelligence. J&J, Johnson	& Johnson			

Table 2 Biopharmaceuticals approved in the United States and/or EU during the current survey period (January 2010–July 2014) by category			
Category	Products (by trade name)		
Genuinely new biopharmaceuticals	Abthrax, Adcetris, Alprolix, Benlysta, Bexsero, Cyramza, Eloctate, Elonva, Entyvio, Eperzan/Tanzeum, Eylea & Zaltrap, Flublok, Gattex/ Revestive, Gazyva/Gazyvaro, Glybera, Jetrea, Kadcyla, Krystexxal, Myalept, NovoEight, Nulojix, Provenge, Ruconest, Tresiba & Ryzodec, Sylvant, Tretten/NovoThirteen, Vimizim, Voraxaze, Xgeva/Prolia and Yervoy		
Biosimilars	Grastofil, Inflectra/Remsima, Nivestim and Ovaleap		
Reformulated, 'me-too' & related	Afrezza Elelyso, Granix, Hexacima/Hexyon, Lonquex, Lumizyme, Nuwiq, Perjeta, Plegridy, Rixubis, Simponi Aria, Somatropin Biopartners and Vpriv		
Previously approved elsewhere	Actemra/Roactemra, Arzerra, Scintium and Victoza		

Kleine Auswahl von Unternehmen mit Biotech Produktion ...

Aufbau der Vertiefungsrichtung

Modulhandbuch: Master of Science Verfahrenstechnik

203 Vertiefungsmodul Bioverfahrenstechnik

Zugeordnete Module:

24770 Biochemische Analytik
18200 Bioproduktaufarbeitung
18210 Bioreaktionstechnik
18220 Einführung in die Gentechnik
24800 Industrielle Biotechnologie und Biokatalyse
18230 Laborpraktikum Bioverfahrenstechnik
13690 Metabolic Engineering
18190 Prinzipien der Stoffwechselregulation

Modul: 24770 Biochemische Analytik - optional

Bioanalytik II (112310000, Jendrossek)

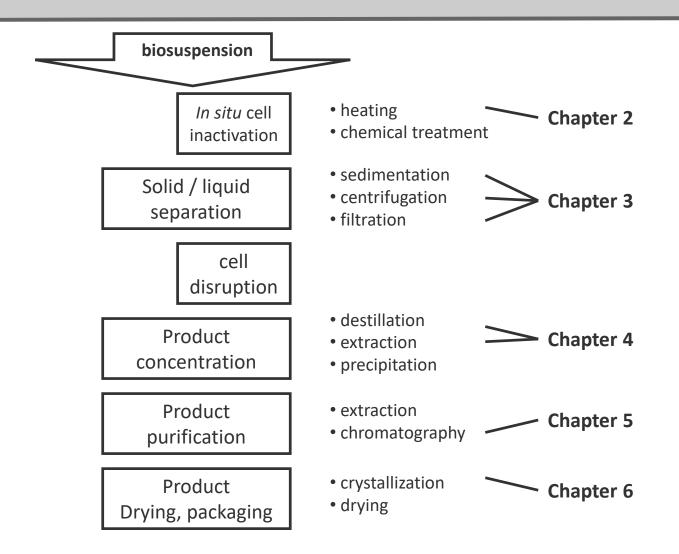
2. Modulkürzel:	030810915	5. Moduldauer:	1 Semester
3. Leistungspunkte:	3.0 LP	6. Turnus:	jedes 2. Semester, SoSe
4. SWS:	3.0	7. Sprache:	Deutsch
8. Modulverantwortlich	er:	Bernhard Hauer	
9. Dozenten:		Bernhard Hauer	
11. Empfohlene/Vorau	ssetzungen:	Biologische und biochemische Gr	rundlagen des BSc-Grundstudiums
12. Lernziele:		Die Studierenden	
		 verstehen die Grundlagen der I kennen Anwendungen von Enz der Biokatalyse verstehen die analytische Meth eingesetzt werden (Genomics, Metabolomics) 	rymen, Antikörpern und DNA-Sonden ir oden, die in der Systembiologie
13. Inhalt:		 Verwendung von Antikörpern ir 	ler Diagnostik und Lebensmittelindustri
14. Literatur:		F. Lottspeich, H. Zorbas: Bioanaly	ytik. Spektrum Verlag
15. Lehrveranstaltunge	en und -formen:	247701 Vorlesung Biochemisch247702 Übung Biochemische A	•
16. Abschätzung Arbei	itsaufwand:	Präsenzeit: Selbststudium / Nacharbeitszeit: Klausur- / Prüfungsvorbereitung: Gesamt:	31,5 h 33,5 h 25,0 h 90,0 h
17. Prüfungsnummer/n	und -name:	24771 Biochemische Analytik (P	L), schriftliche Prüfung, 60 Min.,

Modul 18200 Bioproduktaufarbeitung (Pflicht)

2. Modulkürzel:	071000003	5. Moduldauer:	1 Semester
3. Leistungspunkte:	3.0 LP	6. Turnus:	jedes 2. Semester, WiSe
4. SWS:	2.0	7. Sprache:	Deutsch

8. Modulverantwortlicher:

Ralf Takors


Inhalt und Ziel der Vorlesung

Die Vorlesung richtet sich vorrangig an Studenten/innen der Fachrichtung *Technische Biologie* oder *Verfahrenstechnik*. Sie vermittelt einen Überblick über die Methoden und Apparate, die häufig zur Aufarbeitung von Produkten aus biotechnologischen Prozessen eingesetzt werden. Es werden die jeweils zugrunde liegenden Trennmechanismen aufgezeigt und einfache Modelle für deren Beschreibung vorgestellt.

Anhand einfacher Beispielaufgaben sollen die Lerninhalte vertieft werden.

Am Ende der Vorlesung soll der/die Student/in einen Überblick über übliche Aufarbeitungsansätze besitzen und diese vereinfacht, quantitativ auslegen können. Dieses Wissen sollen ihn/sie in die Lage versetzen, den spezifischen Anwendungsfall z.B. im industriellen Umfeld mit dem dort vorhandenen speziellen Knowhow umsetzen zu können.

1 – Typical Downstream Scenario

Modul 18210 Bioreaktionstechnik (Pflicht)

2. Modulkürzel:	041000006	5. Moduldauer:	1 Semester	•	
3. Leistungspunkte:	3.0 LP	6. Turnus:	jedes 2. Semester, SoSe	•	
4. SWS:	2.0	7. Sprache:	Deutsch		
8. Modulverantwortlich	ner:	Ralf Takors			(0)
			revisiting basics of (I	oiochemical) reaction kinetics	(Chapter 1)
			Non-structured read	ction models:	
			basics o	of non-structured microbial models	(Chapter 2)
			analysis	of population dynamics	(Chapter 3)
			Structured metabol	ic models:	
			Modelling me	tabolism dynamics	(Chapter 4)
			Metabolic Cor	ntrol Analysis	(Chapter 5)
			Transcriptional mod	lels:	
			Modelli	ng gene expression	(Chapter 6)
			Signal transduction:		
			Introduction i	nto signal transduction	(Chapter 7)

Visser and Heijnen, 2003

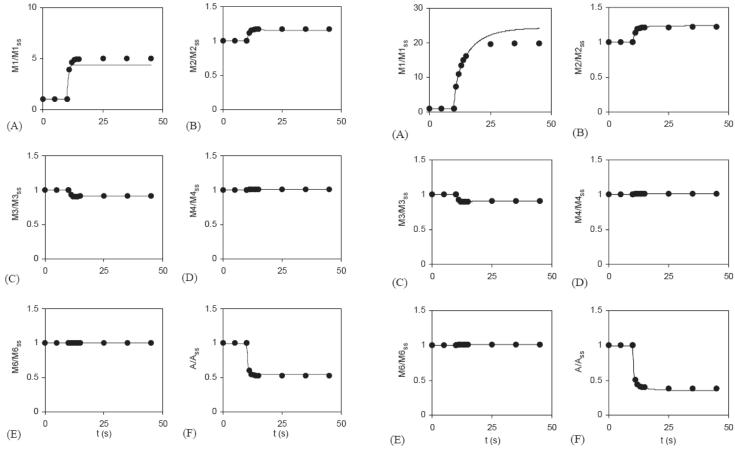


Fig. 4. Simulation results of the linlog model (—) for perturbation 1 (S: $1\rightarrow 5$). Datapoints (o) indicate the response of the detailed model (not all datapoints shown). All metabolite levels are given relative to their steady-state levels.

Fig. 5. Simulation results of the linlog model (—) for perturbation 3 (S: $1 \rightarrow 20$). Datapoints (o) indicate the response of the detailed model (not all datapoints shown). All metabolite levels are given relative to their steady-state levels.

Modul 18220 Einführung in die Gentechnik ('Pflicht')

2. Modulkürzel:	040510001	5. Moduldauer:	1 Semester
3. Leistungspunkte:	3.0 LP	6. Turnus:	jedes 2. Semester, WiSe
4. SWS:	2.0	7. Sprache:	Deutsch
8. Modulverantwortlich	er:	Ralf Mattes	
11. Empfohlene/Vorau	ssetzungen:	Biologische Grundlagen des	BSc-Grundstudiums
12. Lernziele:		Kenntnisse der wesentlichen	Werkzeuge und Methoden der Gentechn
13. Inhalt:		 Allgemeines, Mutation und Genetik und Gentechnik Restriktionsenzyme, Kartie Änderung von Schnittstelle Vektoren Phagen und Cosmide cDNA und Eukaryontensys Hybridisierung und Immun Expression Beispiele 	erungen en steme
14. Literatur:		Akademischer Verlag, 5. A	gie für Einsteiger, Elsevier, Spektrum Auflg. 2007 kulargenetik (978-3-540-26469-9; online)
15. Lehrveranstaltunge	en und -formen:	182201 Vorlesung Einführu	ıng in die Gentechnik
16. Abschätzung Arbe	itsaufwand:	Präsenzzeit:	21 h
		Selbststudiumszeit / Nacharl	beitszeit: 69 h
		Gesamt:	90h
17. Prüfungsnummer/r	n und -name:	18221 Einführung in die Ge Min., Gewichtung: 1.	ntechnik (PL), schriftliche Prüfung, 90 0

Modul 24800: Industrielle Biotechnologie und Biokatalyse

Modul: 24800 Industrielle Biotechnologie und Biokatalyse

2. Modulkürzel:	030810916	5. Moduldauer:	1 Semester		
Leistungspunkte:	3.0 LP	6. Turnus:	jedes 2. Semester, WiSe		
4. SWS:	3.0	7. Sprache:	Deutsch		
8. Modulverantwortliche	er:	Bernhard Hauer			
9. Dozenten:		Bernhard Hauer			
12. Lernziele:		Die Studierenden			
		 verstehen die Grundlagen der Biokatalyse kennen Anwendungen von Enzymen und Mikroorganismen in der Biokatalyse kennen Methoden der Herstellung und Aufarbeitung von Enzymen verstehen die Vor- und Nachteile der Biokatalyse im Vergleich zu homogener und heterogener Katalyse 			
13. Inhalt:		 Technisch relevante Umsetzungen unter Verwendung von Enzymer Optimierung von Enzymeigenschaften: rekombinante Enzyme und Protein Engineering Ganzzellsysteme mit optimierten Stoffwechselwegen (synthetische Biologie) für die Biokatalyse Fermentation und Aufreinigung unter Verwendung molekulargenetischer Methoden Leistungsvergleich ausgewählter Biokatalyse-Verfahren mit homo- uheterogener Katalyse 			
14. Literatur:		 Schmid, R.D., Taschenatlas Bommarius, Riebel: Biocata K. Faber: Biotransformations 	lysis, Wiley		
15. Lehrveranstaltunger	n und -formen:	 248001 Vorlesung Industriell 248002 Übung Industrielle B 	e Biotechnologie und Biokatalyse iotechnologie und Biokatalyse		

Modul 18190 Prinzipien der Stoffwechselregulation

2. Modulkürzel:	041000005	5. Moduldauer:	1 Semester		
3. Leistungspunkte:	3.0 LP	6. Turnus:	jedes 2. Semester, SoSe		
4. SWS:	2.0	7. Sprache:	Deutsch		
8. Modulverantwortlich	er:	Ralf Takors			
9. Dozenten:		Martin Siemann-Herzberg			
11. Empfohlene/V	oraussetzungen:	Biologische Grundlagen des BSc-G	irundstudiums		
12. Lernziele:		Operon) • Kenntnis moderner bioanalytische wissenschaftlichen Erfassung die • Strategiemanagement zur Entwic auf der Basis des vermittelten bio • Fähigkeit zur Beurteilung prozess	fung (Stimulon, Regulon, Modulon, er Verfahren (OMICS) zur eser Regulations-mechanismen eklung moderner Produktionsstämme ologischen Grundwissens		
13. Inhalt:		 Koordination der Reaktionen im Metabolismus/Enzymregulation Regulation durch Kontrolle der Genexpression: Individuelle Operone: Regulationsprinzipien der Transkription Multiple Systeme und globale Regulation Analytische Methoden der Stoffwechselphysiologie: Reaktorkultivierungen und Probenvorbereitung, Bioanalytik und Systembiologie Aspekte der globalen Regulation bei Produktions-prozessen: Globale Regulation der Stress Antwort Metabolite aus Mikroorganismen/Produktionsprozesse: Aminosäuren, organische Säuren, Vitamine, Antibiotika 			

Inhalt: Prinzipien der Stoffwechselregulation

ம் uni ⊅suche ஃ sitemap ⊠ kontakt

Home | Institut | Lehre | Forschung | Links | Aktuelles

www.ibvt.uni-stuttgart.de

Institut für Biov

Prinzipien der Stoffwechselregulation in der Bioprozesstechnik (LV 11232)

Inhalte der Vorlesung

Kapitel 1: Allgemeine Einführung / Ziele der Vorlesung

Kapitel 2: Regulationsmechanismen und Beispiele

- Koordination der Reaktionen im Metabolismus
 Die taktische Anpassung: Regelkreise und Enzymregulation
- Regulation durch Kontrolle der Genexpression

Die strategische Anpassung: Regulationsprinzipien der Transkription:
Bakterielle Promotoren; RNA Polymerase; Induktion und Repression; Attenuation; Termination und Antitermination)

- Individuelle Regulationsmodule
 - Katabilitrepression (Crp Modulon)
- Kontrolle des zentralen Kohlenstoffmetabolismus (Cra Modulon)
- Stringente Kontrolle (RelA/SpoT Modulon)
- Osmoregulation (EnvZ/OmpP; externe Stimuli)
- Stickstoffassimilierung (NtrB/NtrC; interne Stimuli)
- Regulation des anaeroben und aeroben Stoffwechsels (Fnr/Nar/Arc Kontrollen)

Kapitel 3: Aspekte der globalen Regulation

- Interaktion von globalen Regulationsnetzwerken (Crp/Cra/RelA Modulon)
- globale Regulation der Stress Antwort (Stresskaskaden Modulon/Regulon/Stimulon)
- Interaktion von globalen Regulationsnetzwerken: Stofftransport, Stress, Katabolitrepression, stringente Kontrolle und 'Bacterial Movement' und Zell/Zell Kommunikation

Kapitel 4: 'Metabolic Engineering'; Synthetische Biologie und System Biologie

Regulative Aspekte der Synthetischen Biologie und 'Metabolic Engineering'

Modul 18230 Laborpraktikum Bioverfahrenstechnik

Modulkürzel:	041000007	5. Moduldauer:	1 Semester
Leistungspunkte:	3.0 LP	6. Turnus:	jedes 2. Semester, WiSe
4. SWS:	0.0	7. Sprache:	Deutsch
8. Modulverantwortlich	ner:	Ralf Takors	
9. Dozenten:		Martin Siemann-Herzberg	
11. Empfohlene/Vorau	ıssetzungen:	Verfahrenstechnische und b Grundstudiums	iologische Grundlagen des BSc-
12. Lernziele:			e bioverfahrens- und bioreaktionstechnischer ng und Betrieb biotechnischer Prozesse. Die
		Kultivierung von Mikroorga	stechnischen Möglichkeiten zur gezielten anismen tischen Methoden zur quantitativen
13. Inhalt:		Flüsse (,Metabolic Flux Ar	nrung zur Untersuchung metabolischer
14. Literatur:		 W. Storhas, Bioverfahrens F. Lottspeich, H. Zorbas, E 	sentwicklung. Wiley-VCH Bioanalytik, Spektrum Akademischer Verlag
15. Lehrveranstaltung	en und -formen:	182301 Laborpraktikum Bio	overfahrenstechnik
16. Abschätzung Arbe	itsaufwand:	Präsenzzeit:	40h
		Selbststudiumszeit / Nachari	beitszeit: 50 h
		Gesamt:	90h
17. Prüfungsnummer/	n und -name:	18231 Laborpraktikum Biov Prüfung, 30 Min., Ge	verfahrenstechnik (PL), mündliche ewichtung: 1.0

Modul 13690 Metabolic Engineering

2. Modulkürzel:	071000004	5. Moduldauer:	1 Semester
3. Leistungspunkte:	3.0 LP	6. Turnus:	jedes 2. Semester, SoSe
4. SWS:	2.0	7. Sprache:	Deutsch
8. Modulverantwortlich	er:	Ralf Takors	
9. Dozenten:		Klaus Mauch Ralf Takors	

Wintersemester !!!

Goals of the Lecture Metabolic Engineering

You will learn

- what metabolic engineering is about (history, goals etc.)
- what data are used and needed
- what tools are applied
- how to apply software-based tools for steady-state systems analysis

After the lecture you will be able to perform (simple)

- topology analysis
- non-labelled metabolic flux analysis
- labeled metabolic flux analysis (given a short example)

Note: This lecture will be restricted to steady-state applications of metabolic engineering. Tools for dynamic analysis will be presented in the lecture ,Bioreaktionstechnik'.

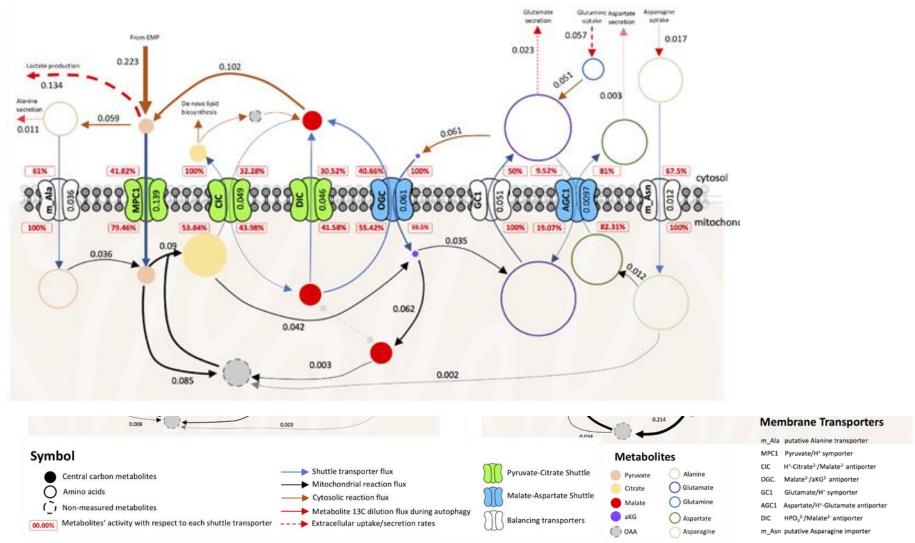
Contents of Metabolic Engineering Lecture

Introduction	(Chapter 1)
--------------	-------------

Revisiting Microbial Metabolism Basics (Chapter 2)

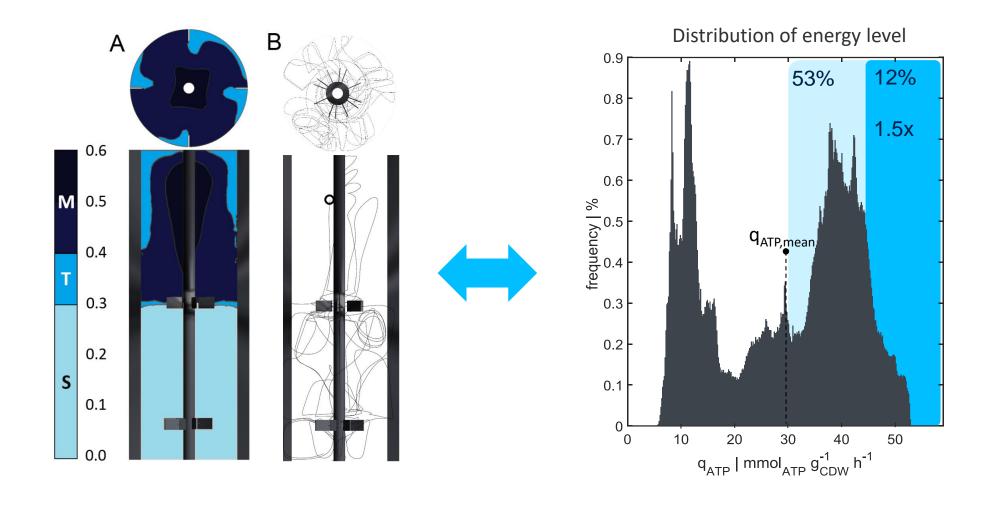
Metabolic Networks (Chapter 3)

Topology Analysis / Exercises (Chapter 4)

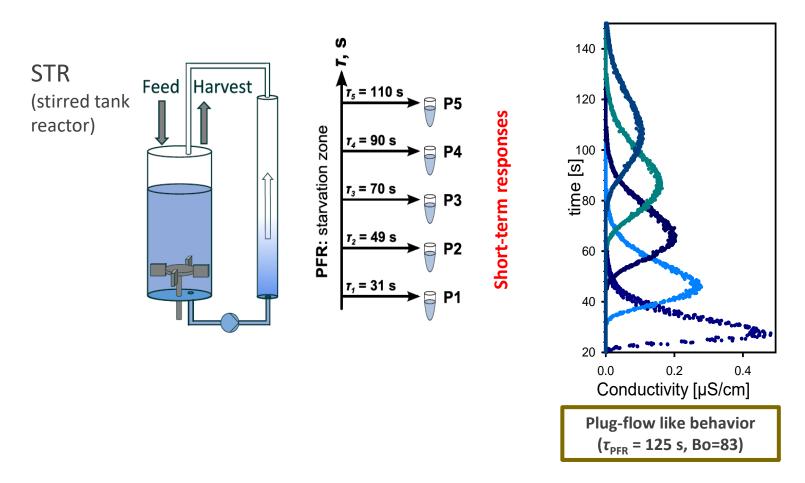

Strategies for Target Identification (Chapter 5)

Non-Labelled Metabolic Flux Analysis / Exercises (Chapter 6)

Labelled Metabolic Flux Analysis / Exercises (Chapter 7)


Tools & Outlook (Chapter 8)

Beispiele für Masterarbeiten: Intrazelluläre Stoffflussanalyse (ME, Bioreakt)


21 Takors, Vorstellung BioVT Vertiefung

Beispiele für Masterarbeiten: Auslegung von Bioreaktoren, 'Tracking' einzelner Zellen /lifelines (ME, Bioreakt, Fluidmechanik)

22 Takors, Vorstellung BioVT Vertiefung
18.10.2016

Beispiele für Masterarbeiten: Scale-up (BioVT, ME, Bioreakt, Fluidmechanik)

23 Takors, Vorstellung BioVT Vertiefung
18.10.2016

Institute of Biochemical Engineering

Research and teaching in the fields of molecular biology, computational biology as well as bioprocess engineering and modelling

Welcome at our Institute

Jump to

- > Team
- > Teaching/ Lehre
- News & Jobs
- > Contact

What is our focus?

Research at the Institute of Biochemical Engineering (IBVT) focuses on subcellular, cellular and intercellular studies to gain a quantitative understanding of underlying control and regulatory mechanisms in microbial and mammalian cells. Studies cover a broad range including RNA-RNA interactions cell free protein

www.ibvt.uni-stuttgart.de

Ihre Ansprechpartner

10 to 10 to

Aktuelles

Stellenangebote

Bilder und Veranstaltungen

Ihr Weg zu uns:

Kontakt

Anfahrt und Wegbeschreibung

Direkt zu

Stuttgart Research Center Systems Biology (SRCSB)

ST-FLOW

Era Ib - Pseudomonas 2.0

SelekomM

Mitarbeiter des IBVT

Sie sind hier: Home » Mitarbeiter »

Institutsleitung

Herr Prof. Dr.-Ing. Ralf Takors Institutsleitung/ Director of the Institute of Biochemical Engineering

Telefon: 0711 685-64535 ■ E-Mail| Profil

Herr PD Dr. rer. nat.

Martin Siemann-Herzberg stellv.

Webseitenumzug

Die Webseite wird jetzt dyna-

Institutsleitung/Akademischer Direktor

Telefon: 0711 685-65161 ■ E-Mail| Profil

Herr Jun.-Prof. Dr. Björn Voß
Professor Computational Biology

Telefon: 0049 711 685-65035 E-Mail| Profil

Herr Dr. rer. nat.

Bastian Blombach

Akademischer Rat

Telefon: 0711 685-64549 **■** E-Mail| Profil