

Universität Stuttgart

Institut für Steuerungstechnik der Werkzeugmaschinen und Fertigungseinrichtungen

Einführung

Standort des Instituts

Institut für Steuerungstechnik

der Werkzeugmaschinen und Fertigungseinrichtungen

Seidenstraße 36, 70174 Stuttgart

Leitung: Prof. Dr.-Ing. Alexander Verl

Prof. Dr.-Ing. Oliver Riedel

Telefon: +49 711 685-82410

Homepage: www.isw.uni-stuttgart.de

Ansprechpartner im Fach Steuerungstechnik

Prof. Dr.-Ing. A. Verl

Prof. Dr.-Ing. Alexander Verl

Institutsleitung

+49 711 685-82410

alexander.verl@ isw.uni-stuttgart.de

Prof. Dr.-Ing. Oliver Riedel

Institutsleitung

+49 711 685-82420

oliver.riedel@ isw.uni-stuttgart.de

Prof. Dr.rer.nat Andreas Wortmann

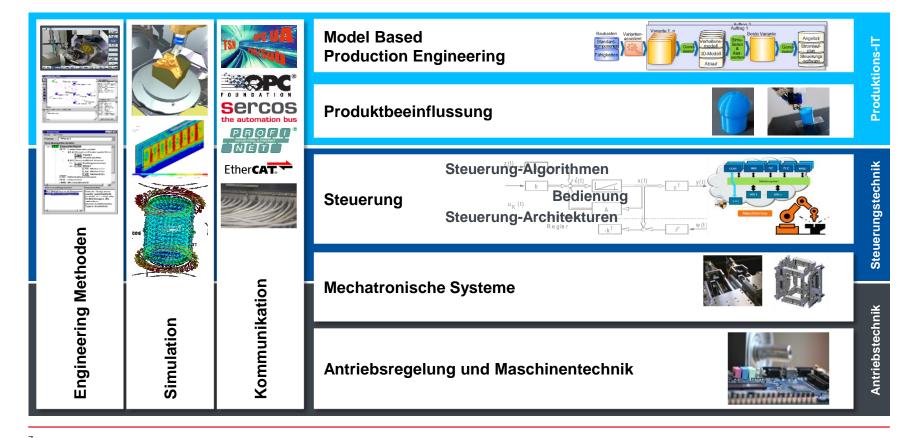
Lehre

+49 711 685-84624

andreas.wortmann@isw.uni-stuttgart.de

Dipl.-Ing. Michael Seyfarth

Lehre


+49 711 685-82403

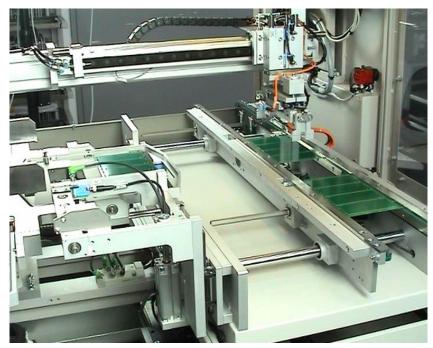
michael.seyfarth@ isw.uni-stuttgart.de

Forschungsfelder und Arbeitsgebiete des Instituts

Forschungsfelder

Anwendungsgebiet: Werkzeugmaschinen

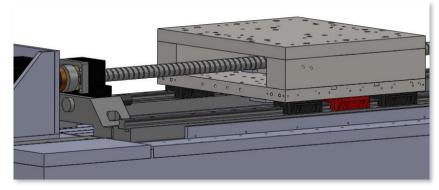
Quelle: Fa. Index

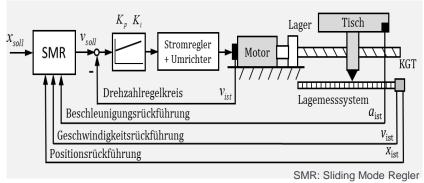

Anwendungsgebiet: Robotik

Quelle: Fraunhofer IPA

Anwendungsgebiet: Handhabungstechnik

Quelle: ASYS Automatisierungssysteme GmbH


Antriebstechnik für Werkzeugmaschinen und Roboter


Herausforderungen:

- hohe Dynamik → kurze Verfahrzeiten
- hohe Steifigkeit → Bearbeitungsgenauigkeit
- schwingfähige Mechanik und Antriebstechnik (Verkopplung)

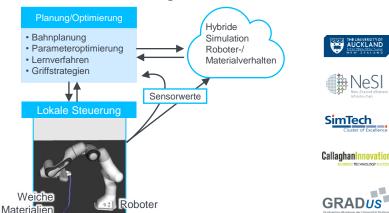
Was lernen Sie am ISW dazu:

- Prinzipien der Steuerungstechnik (Gerätetechnik und Software)
- Auslegung von Reglerstrukturen für Werkzeugmaschinen und Roboter
- Mechanische und steuerungstechnische Modellierung von Vorschubachsen

Soft Tissue Robotics

Cloud-basierte Steuerungsarchitektur zur simulationsbasierten Handhabung weicher Materialien mit Industrierobotern

Zielsetzung


 Steuerungskonzept für Roboterinteraktion mit weichen Objekten:
 Lebensmittel, Medizintechnik, Kabel, ...

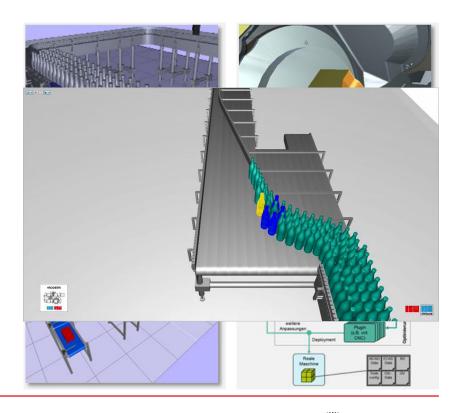
Vorgehensweise

- Entwicklung einer hybriden Architektur (echtzeitfähige Robotersteuerung vs. aufwändige Simulationen)
- Integration der Materialsimulation zur Vorhersage schwer messbarer Größen (Spannung, Kräfte, ...)

Erwartete Ergebnisse

- Grundlagen für den Umgang von Industrierobotern mit weichen Materialien
- Verbindung von Robotersteuerung und Cloudbasierten Berechnungen

Virtuelle Methoden in der Produktionstechnik

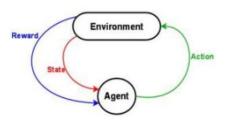

Simulationstechnik

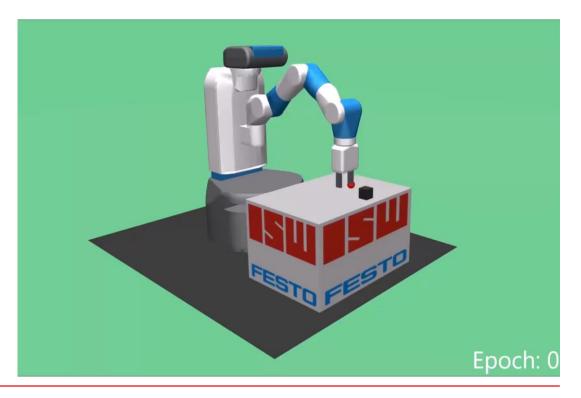
Herausforderungen:

- Verkürzung der Inbetriebnahmezeiten
- Absicherung von Engineering- und Produktionsprozessen
- Unterstützung von Planungsprozessen

Was lernen Sie am ISW dazu:

- Digitale Methoden und Werkzeuge zur Planung, Evaluation und Steuerung von Produktionsprozessen und –anlagen
- Echtzeitsimulation von Produktionsanlagen mit realen Steuerungssystemen
- Simulationsgestützte Entwicklung, Systemplanung, Test, Schulung, Service und Betrieb von Produktionsanlagen




Anwendungsgebiet Maschinelles Lernen / Künstliche Intelligenz

Erlernen von Robotermanipulationen mittels Reinforcement Learning

Reinforcement Learning:
 Ein Agent lernt durch Interaktion
 mit der Umwelt.

- Der Agent beobachtet die Umwelt (State).
- Der Agent kann durch eine Aktion die Umwelt beeinflussen.
- Der Agent erhält einen Reward.

Additivie Fertigungsverfahren

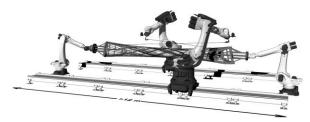
Integrative Computational Design and Construction for Architecture

Additive cyber-physische Fertigungs-Plattform für multifunktionelle, belastungsoptimierte Bauelemente
aus Faserverbundkunststoffen

Herausforderungen

- Entwicklung einer Fertigungsplattform für belastungsoptimierte Bauelemente aus Faserverbundwerkstoffen, mit Fokus auf:
 - · Geschlossene Prozessregelung.
 - · Ausnutzung kinematischer Redundanzen.
 - Online Trajektorienoptimierung zur Sicherstellung der Bauteilgualität.

Lösungsansatz


- Prozessmodellierung, -simulation und -regelung
- Online Prozessüberwachung durch Kraft-Momentensensorik
- Adaptive Bahnplanung

Erwartete Ergebnisse

 Funktionsfähiger Demonstrator zur Fertigung der im Exzellenzcluster entwickelten Bauteile

© IntCDC, University of Stuttgart

© IntCDC, University of Stuttgart

Lehrveranstaltungen im Spezialisierungsfach Steuerungstechnik

Aufbau des Spezialisierungsfaches Steuerungstechnik

Als kleines Spezialisierungsfach (12 LP) oder als großes Spezialisierungsfach (18 LP) möglich.

KERNFÄCHER (K) / ERGÄNZUNGSFÄCHER (E) (mit jeweils 6 LP)

Nr.	Dozent	Titel	sws	Dauer	Turnus
16250	Verl	(E) Steuerungstechnik	4	1	WiSe
14230	Verl	(K) Steuerungstechnik der WZM und IR	4	1	SoSe
41660	Verl	(E) Angewandte Regelungstechnik in Produktionsanlagen	4	1	SoSe
41820	Pott	(E) Modellierung, Analyse u. Entwurf neuer Roboterkinematiken	4	2	WiSe / SoSe

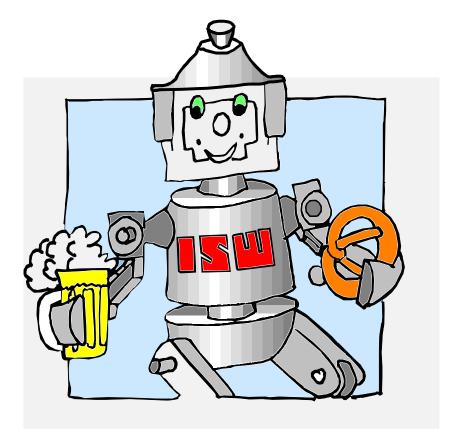
Es muss mindestens eines der Kernfächer K gewählt werden!

Aufbau des Spezialisierungsfaches Steuerungstechnik

Als kleines Spezialisierungsfach (12 LP) oder als großes Spezialisierungsfach (18 LP) möglich.

ERGÄNZUNGSFÄCHER (mit jeweils 3 LP)

Nr.	Dozent	Titel	sws	Dauer	Turnus
37320	Verl	Steuerungsarchitekturen und Kommunikationstechnik	2	1	WiSe
43940	Koeppe	Robotersysteme: Anwendungen aus der Industrie	2	1	SoSe
37280	Seyfarth	Ölhydraulik und Pneumatik i.d. Steuerungstechnik	2	1	SoSe
32470	Wolf	Automatisierung i.d. Montage und Handhabungstechnik	2	1	SoSe
67320	Kraus	Planung von Robotersystemen	2	1	WiSe
41880	Schwarz	Grundlagen der Bionik	2	1	SoSe
-	Verl	Praktikum Steuerungstechnik	2	1	WiSe /
 Es dürfe 	en maximal	2 Fächer mit 3 LP gewählt werden!			SoSe


Institutsleben

Institutsbesichtigung

- Am 17.10.2024 um 16:00 Uhr bieten wir eine Institutsbesichtigung für Studierende der Fachrichtungen
 - Maschinenbau
 - Mechatronik
 - Technische Kybernetik
 - Technologiemanagement

mit anschließendem zwanglosen Beisammensein an. Wir würden Sie hierbei auch gerne über Möglichkeiten informieren, bei uns eine Bachelor-, Studien-, Forschungs oder Masterarbeit anzufertigen.

Anmeldung bei: michael.seyfarth@isw.uni-stuttgart.de (bis spätestens 14.10.2024)

Vielen Dank!

Prof. Dr.-Ing. Alexander Verl
Institutsleiter

E-Mail alexander.verl@isw.uni-stuttgart.de

Telefon +49 (0) 711 685-82410

Fax +49 (0) 711 685-82808

Universität Stuttgart Institut für Steuerungstechnik der Werkzeugmaschinen und Fertigungseinrichtungen Seidenstraße 36 • 70174 Stuttgart