

Optische Systeme

Spezialisierung im Master Technische Kybernetik

Prof. Stephan Reichelt 2024

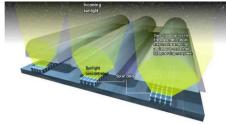
Optische Systeme

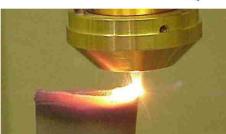
Warum...

- (1) Warum braucht die Kybernetik die Optik?
- (2) Warum braucht die Optik die Kybernetik?
- (3) Warum werden Sie mit Optik glücklich?

(3)

Warum werden Sie mit Optik glücklich?




Optik und Photonik als Enabling Technology

Beispiel – Mobile Devices

- Display
- Kamera zur Bildübertragung
- Laserreinigung Kontakte/Drähte
- Laserschneiden Displayglas
- Beleuchtung Display / Taschenlampe
- Photolithographische Fertigung der ICs
- PCB Kopieren durch UV Licht
- Kunststoffschweißen
- Optische Infrarotschnittstelle
- Nutzung Glasfasernetz

(2)

Wozu braucht die Optik Kybernetiker?

Optische Systeme
Heute hochgradig vernetzt mit anderen Systemen

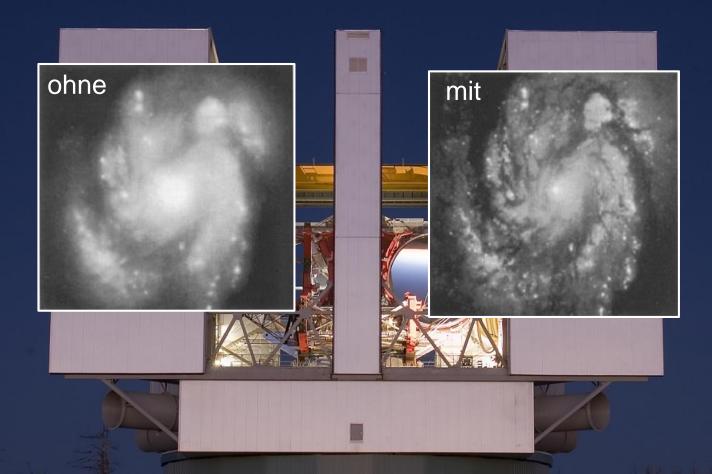
Beispiel: Optische Lithographie

Abbildung kleinster Strukturen – Halbleiterherstellungsprozesse

- Logik/Memory-Chips: leistungsfähige Elektronik auf kleinstem Raum
- Optische Lithographie mit immer kürzeren
 Wellenlängen zur Strukturierung von Halbleiterchips

EUV Lithography / TWINSCAN EXE:5000

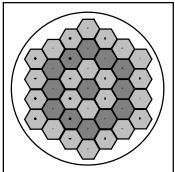
- ASML's latest-generation lithography system
- EUV volume production at the 5 and 3 nm nodes



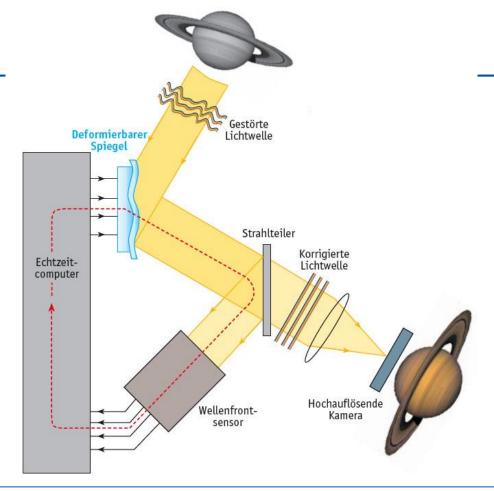
TWINSCAN NXE:3400

Quelle: ASML

Beispiel: Adaptive Teleskope


Beispiel: Adaptive Teleskope

Funktionsweise



15 mm, 37 Kanäle Auslenkung: 9 µm

Hexagonale Elektrodenstruktur

(1)

Wozu braucht der Kybernetiker die Optik?

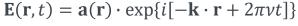
Optische Sensorik

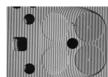
... für Regelungstechnik enorm wichtig

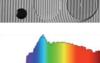
Licht dient als Nachrichtenübermittler / Informationsträger

Schnell + Parallel

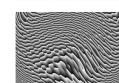
Hohe Auflösung


 Unendliche Reichweite + Lebensdauer



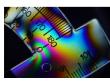


Intensität
 |a|²

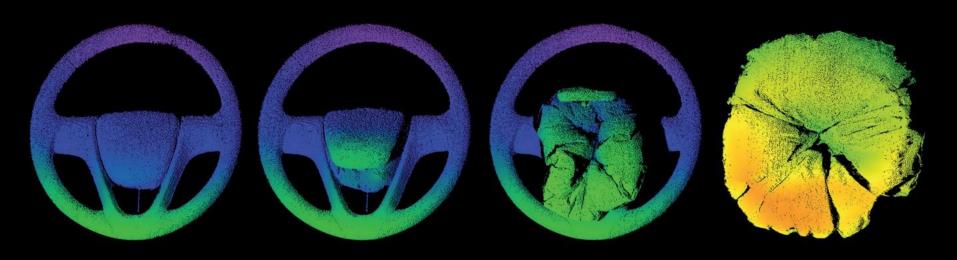

Frequenz
(Frequenzspektrum)

• Phase $\varphi(\mathbf{r}) = \mathbf{k} \cdot \mathbf{r}$

Informations-

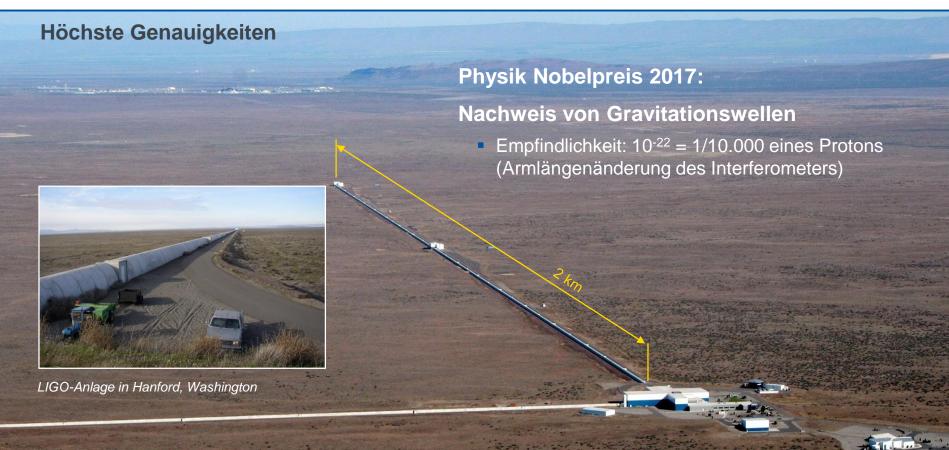

Kanäle

Richtung (Winkelspektrum)k


PolarisationE

Optische Sensorik ... für Regelungstechnik enorm wichtig

Hohe Geschwindigkeit

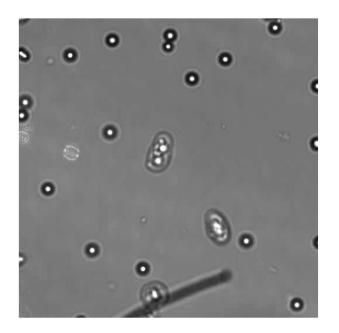

© IOF Jena

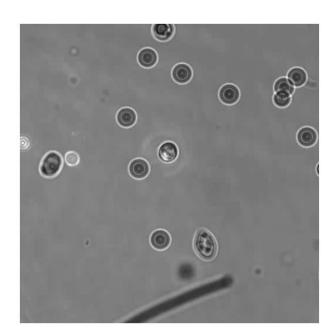
10.000 3D-Bilder pro Sekunde a 1 Million Punkte

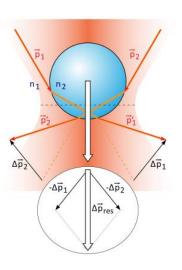
Optische Sensorik

<u> ¿ito</u>

... für Regelungstechnik enorm wichtig




Optische Sensorik



... für Regelungstechnik enorm wichtig

Hochgradig skalierbar

Physik Nobelpreis 2018: Optische Pinzette

Lehrangebot "Optische Systeme"

Spezialisierung Kybernetik

 Optische Informationsverarbeitung, Reichelt, SS, 4 SWS (Fourier-Optik)

Ergänzungsfächer

- Optik dünner Schichten, Frenner, SS, 2 SWS
- Grundlagen der Laserstrahlquellen, Graf, WS, 4 SWS
- Bildverarbeitungssysteme in der industriellen Anwendung, Haist, WS, 2 SWS
- Einführung in das Optik-Design, Herkommer / Toulouse, WS, 2 SWS
- Grundlagen der Technischen Optik, Reichelt, WS, 4 SWS
- Optische Messtechnik und Messverfahren, Reichelt, SS, 4 SWS

Zeit	Montag	Dienstag	Mitt	woch	Donnerstag	Freitag
8.00 - 9.30		St. /Doth: (Mod.14060) Übungen zu Grundlagen der Technischen Optik in V 9.12 (36 05 302) !!!erst ab 22.10.2024				
9.45 - 11.15		Haist: (Mod. 33400) Optische Phänomene in Natur und Alltag in V 9.12 (64 07 211)	Haist: (Mod. 31870) Bildverarbeitungs- systeme in der industr. Anwendung in V 9.12 (64 07 281)	Herk. (Mod. 46380) ÜB Optische Systeme in der Medizintechnik- in U 32.139 (49 21 227)	Reichelt: (Mod. 14060) VL Grundlagen der Techn. Optik - in V 9.12 (36 05 301)	
11.30 - 13.00						
14.00 - 15.30		Herk. (Mod. 46380) VL Optische Systeme in der Medizintechnik- in V 57.04 (49 21 227)	Reichelt / Toulouse: Seminar Technische Op in V 9.12 (64 07 274) Raumreserv. ab 13.30			

zusätzlich in Blockform - in der VL-freien Zeit:

Menke / Herkommer:	Advanced Optical Design (LV-Nr.: 46 94 001)	vom 17.03. bis 21.03.2025	in V 9.11	
Herkommer / Toulouse:	Einführung in das Optik-Design (LV-Nr.:64 07 081)	vom 17.02. bis 21.02.2025	in V 7.01	
Herkommer:	Illumination Systems (V and II) (I V-Nr · 46 98 020)	vom 17 03 bis 22 03 2025	in V 9 11	

Zusatzinfos

 https://www.ito.uni-stuttgart.de/lehre/vorlesungen/optik-inden-studiengaengen/

Kontakt Lehre

- Hr. E. Steinbeißer, Tel.: 685-66068, steinbeisser@ito.uni-stuttgart.de
- PWR 9, 1. Stock, Raum 1.226

Zusammenfassung

Warum Optische Systeme vertiefen...?

- 1. Optische Sensorik für Regelungstechnik wichtig!
- 2. Vielseitig und spannend
- 3. Sehr gute Jobaussichten
- 4. Starke theoretische Überschneidung

Institute of Applied Optics / Institut für Technische Optik (ITO) Structure and Team

Teaching Chair Optical Design Deputy

E. Steinbeißer Prof. S. Reichelt Prof. A. Herkommer Dr. T. Haist

3D-Surface Metrology

Dr. T. Haist

Metrology and Simulation

Dr. C. Frenner

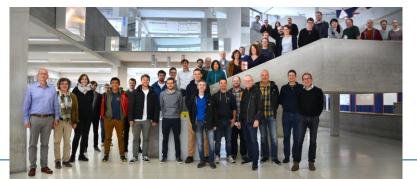
Interferometry and Diffractive Optics

Dr. C. Pruß

Coherent Metrology

Dr. G. Pedrini

3D-printed Micro-Optics & Simulation


Dr. A. Toulouse

Prof. A. Herkommer Professur für Optikdesign und Simulation

Prof. S. Reichelt Institutsleiter

Secretary / Financing
M. Öhler
H. Samhat

Mechanical Workshop A. Lorenz.

> Electronics Lab R. Knoll

Cleanroom Facilities
T. Schoder

Software & IT H. Bieger