
## **Organisatorisches**

Aktuelle Informationen:

www.isys.uni-stuttgart.de

Institut für Systemdynamik Universität Stuttgart Waldburgstr. 17/19 (1. OG) 70563 Stuttgart An der Haltestelle "Vaihingen" aussteigen, die Unterführung Richtung U-Bahnhof verlassen. Der Straße zwischen U-Bahnhof und S-Bahnhof an den Parkplätzen vorbei folgen in die Waldburgstraße. Das Backstein-Gebäude Waldburgstr. 19 über den Innenhof betreten. Das Institut befindet sich im ersten Obergeschoss.

Wir wünschen Ihnen eine gute Anreise!



## Module des Spezialisierungsfachs ......

- Im Bachelor
  - Systemdynamische Grundlagen der Medizintechnik
  - Elektrische Signalverarbeitung
- Im Master: Kompetenzfeld Informationsverarbeitung
  - Systemdynamik
  - Automatisierung und Kommunikation
  - Regelungstechnik

## Module des Spezialisierungsfachs Systemdynamik

- Elektrische Signalverarbeitung
- Systemdynamische Grundlagen der Medizintechnik
- Dynamik ereignisdiskreter Systeme
- Dynamische Filterverfahren
- Echtzeitdatenverarbeitung
- Messtechnik in der Automatisierungstechnik
- Praktikum Systemdynamik/Automatisierungstechnik
- Modellierung und Identifikation dynamischer Systeme
- Flache Systeme
- Dynamik verteiltparametrischer Systeme
- Numerische Methoden der Optimierung und optimalen Steuerung
- Introduction to Systems Biology
- Modellierung und Simulation in der Systembiologie
- Systems Theory in Systems Biology
- Objektorientierte Modellierung und Simulation
- Prozessführung und Production IT in der Verfahrenstechnik

## Basiskompetenzen aus dem Grundstudium

- Höhere Mathematik 1 und 2
  - Lineare Algebra
  - Differential- und Integralrechnung für Funktionen einer Veränderlichen
  - Differentialrechnung für Funktionen von mehreren Veränderlichen
  - Kurvenintegrale
- Einführung in die Elektrotechnik 1 und 2
  - Elektrischer Gleichstrom und elektrische und magnetische Felder
  - Wechselstrom
  - Halbleiterelektronik und Digitalelektronik
  - Elektronik für Sensorik und Aktorik
  - Elektrische Maschinen
- Systemdynamische Grundlagen der Regelungstechnik
  - Modellierung
  - Laplace-Transformation
  - Testsignale und Blockdiagramme
  - Zustandsraumdarstellung

### Lehrinhalte der Module

- Systemdynamische Grundlagen der Medizintechnik (WS, 6 LP)
  - Techniken der Modellierung und Simulation
  - Grundlagen der Regelungstechnik
  - Methoden im Zustandsraum
  - Methoden im Bildbereich
  - · Ersatzschaltbilder für physiologische Abläufe
  - Fallbeispiele
- Elektrische Signalverarbeitung (SS, 6 LP)
  - Gleichstrom und Wechselstrom, Halbleiter-Bauelemente
  - Signale und Systeme, LTI-Systeme
  - Zeitdiskrete Transformationen
  - Frequenzselektive Filter
  - Analoge Modulationen

## **Zielrichtung Forschung ISYS**

### **METHODEN**

Modellbildung

Verteiltparametrische Systeme

Identifikation

Numerische Optimierungsverfahren

Simulation

Analyse und Synthese

Differentialgeometrische Ansätze

Trajektoriengenerierung



Physikalisch motivierte modellbasierte Zugänge

#### **ANWENDUNG**

Automatisierung mechatronischer Systeme

Großraumrobotik

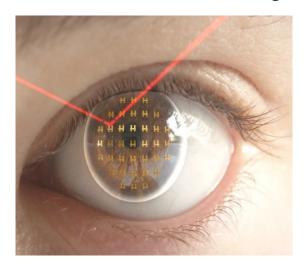
**Automotive** 

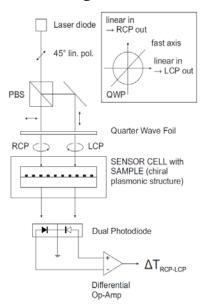
Antriebssysteme / Fluidtechnik

Optomechatronik

Bausystemtechnik

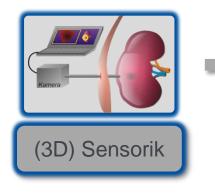
Prozessindustrie

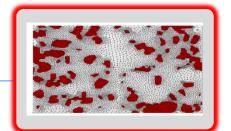

Medizintechnik



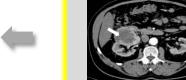

Automatisierungstechnische Implementierung

### **MODELLIERUNG UND SIMULATION**


- Modelle zur Erklärung von physiologischen Vorgängen und Krankheiten
- Krankheitsverläufe, Stoffwechsel, Alterung, Verletzung, Heilung...
- Simulationssysteme zur Planung und Training von Therapien
- "Virtueller Patient" zur Schulung und Therapieoptimierung







# Anwendungsfelder Präoperative **Absolut-Positionierung CHIRURGISCHE NAVIGATION** Telemanipulation Robotergestützte Behandlung Positions-Inertial-Sensor- Fusion Navigation unter Einsatz von Positions-Laparoskopische Bilddaten

### **SENSORIK**









Präoperative Daten



Mobile Systeme, körpernah und drahtlos vernetzt.

Kommunikation der Sensoren untereinander.

- Haptisches Feedback
- $\sigma$ ,  $\Delta I$  //,  $E = \frac{\sigma}{\Delta I/I}$





- 1. Klassifikation
- 2. Segmentierung



Gerätenavigation



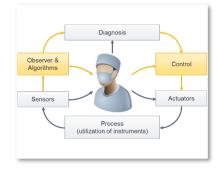
### INTRAOPERATIVE GEWEBEDIFFERENZIERUNG

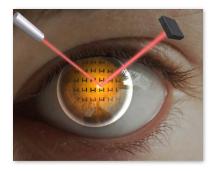
- Graduiertenkolleg (für Doktoranden): Intraoperative multisensorische Gewebedifferenzierung in der Onkologie
- Präzise Tumorentfernung: Bösartiges von gesundem Gewebe einfacher und schneller unterscheiden können
- Forschungsschwerpunkte: Sensorentwicklung, Modellierung und Klassifikation und Chirurgie und Pathologie.



#### **MEDIZINTECHNIK**

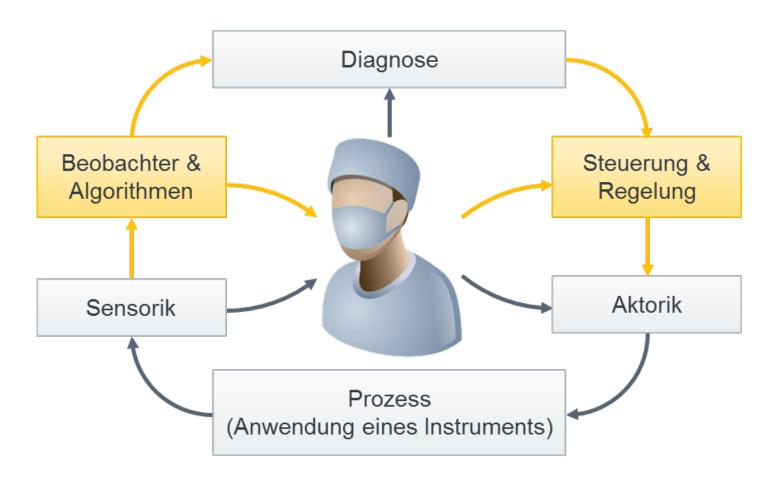
- Modellbasierte Optimierung der Thermofusion von biologischem Gewebe
- Interaktionsbasierte manipulatorgestützte Assistenz
- Chirurgische Navigation mit Bilddatenfusionierung und Stützung in Absolutkoordinaten
- Gewebedifferenzierung durch multimodale Ansätze
- Modellbasierte Auswertung der Sphinkter-Kräfte Urethradruckprofilometrie
- Nichtinvasive Glucosemessung














## Kompetenzfeld Systemdynamik





## Vielen Dank!

Prof. Dr.-Ing. Cristina Tarín

E-Mail tarin@isys.uni-Stuttgart.de
Telefon +49 (0) 711 685-66302, -65636
www.isys.uni-stuttgart.de

Universität Stuttgart Institut für Systemdynamik Waldburgstr. 17/19 (1. OG)

D-70563 Stuttgart

# Spezialisierungsfach Systemdynamik

Prof. Dr.-Ing. Dr. h.c. Oliver Sawodny Prof. Dr.-Ing. Cristina Tarín

