

Fertigungstechnologie

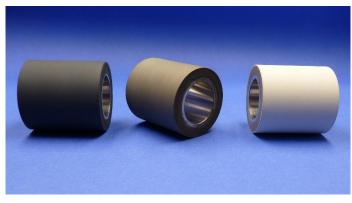
- omit keramischen Werkstoffen
- omit metallischen Werkstoffen
- omit Verbundwerkstoffen

Arbeitsgruppe Hochleistungskeramik

Herstellung keramischer Komponenten

Arbeitsgruppe Oberflächentechnik

Beschichtungsverfahren mit metallischen und keramischen Werkstoffen


Arbeitsgruppe Verbundwerkstoffe

Herstellung von faser- oder partikelverstärkten Komponenten

PMC, MMC, CMC

© pritidenta

© IFKB

Keramik

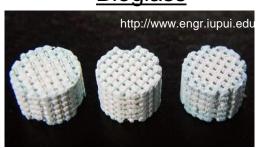
(Kernfach Fert.technik Keramik I+II)

Hochleistungskeramik: Anwendungen in der Medizintechnik

http://www.moje.de

Handgelenk

Zirkonoxid


Hydroxylapatit (HA)

Mittelohrimplantat

Aufbau Hüftgelenk

Bioglass

scaffolds

Hüftpfanne, -köpfe, Kniegelenk, usw.

<u>Aluminiumoxid</u>

Keramikköpfe mit den dazugehörigen Keramikpfannen

Zweiteiliges Dentalimplantat

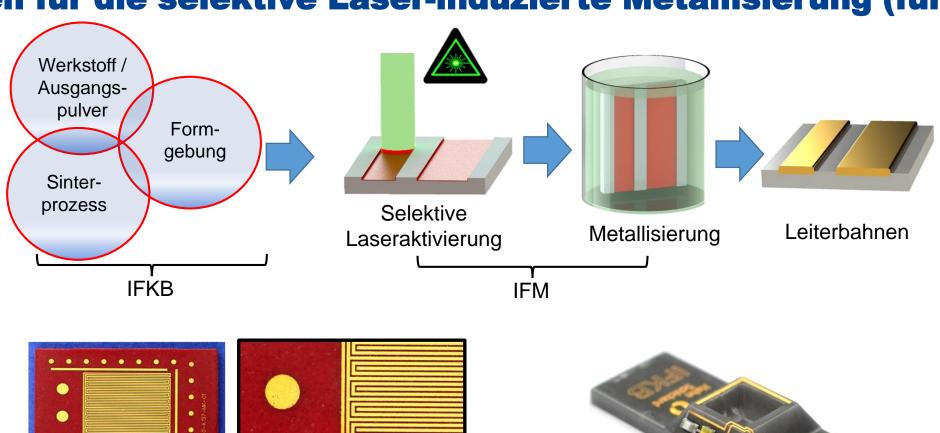
BVMed-Bilderpoo

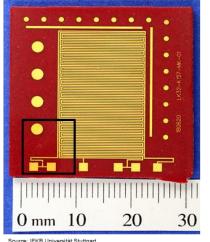
Hochleistungskeramik: Weitere Anwendungen in der Medizintechnik

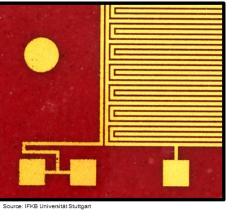
Endkonturnahe hochpräzise Formgebung durch keramischen Spritzguß

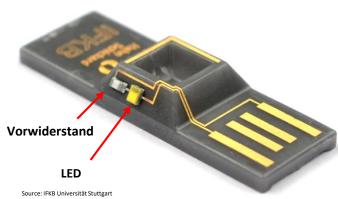
Anwendung: Transluzente Orthodentalbrackets für die Kieferorthopädie

Transluzentes Aluminiumoxidbracket

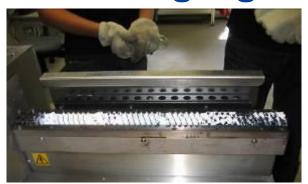

Entwicklungskooperation des IFKB mit Forestadent


Entwicklungszeit 3 Jahre


Produkt seit 11/2008 am Markt: In 2009 bereits ca. 250000 Stck. gefertigt und im IFKB gesintert


Hochleistungskeramik:

Keramiken für die selektive Laser-induzierte Metallisierung (für MID)



Herstellung dreidimensionaler Schaltungsträger

Hochleistungskeramik:

Endkonturnahe Fertigung durch keramischen Spritzguss

Masseaufbereitung

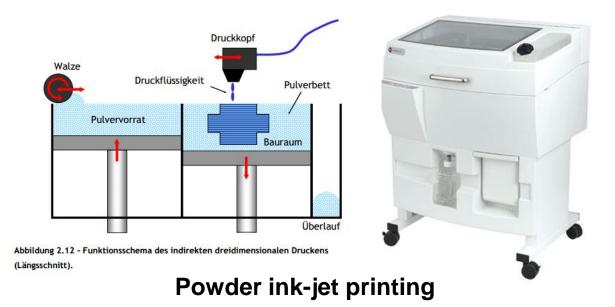
Formgebung CIM

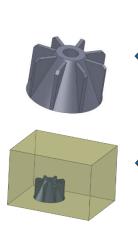
Grünteile

Entbindern

Sintern

keramische Präzisionsbauteile



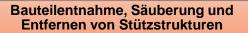

Additive Fertigung

(Ergänzungsfach)

Additive Fertigung mit Keramik: Verfahrensablauf (Ergänzungsfach...)

Erstellen eines Volumenmodells in CAD-Programmen oder aus 3D-Scans

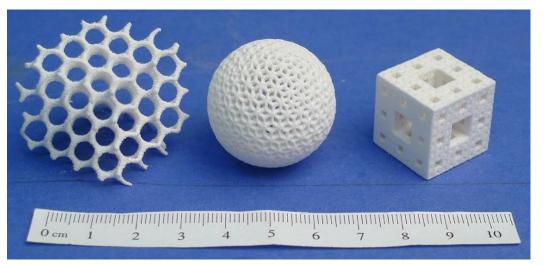
Konvertierung der Daten in das STL-Format

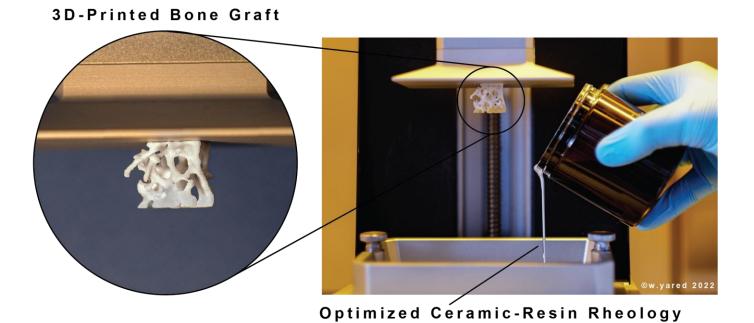


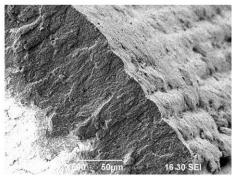
Bauteilorientierung festlegen, Prozessparameter einstellen

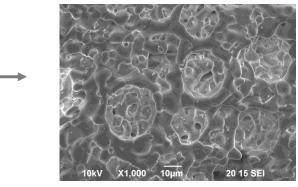
Slicen d.h. unterteilen des CAD-Modells in horizontale Querschnitte

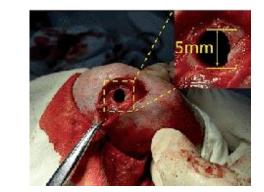
Generative Fertigung: Schichtweiser Auftrag von Material


Entbindern und Sintern


Nachbearbeitung: Schleifen, Polieren, Standard Triangulation Language Trowalisieren, Glasieren, Infiltrieren Standard Tesselation Language






Additive Fertigung mit Keramik: Stereolithographisches Verfahren

Optimized slurry and printing parameters

Controlled porosity

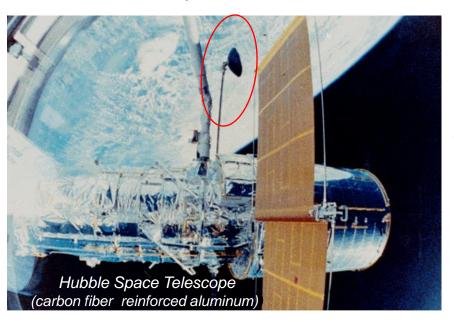
Grafting with higher success rate

Verbundwerkstoffe

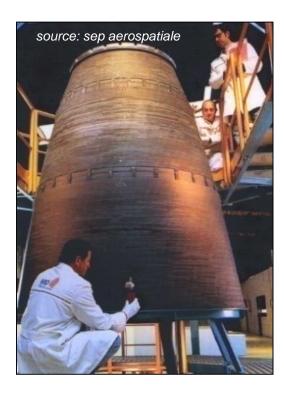
(Kernfach VB I)

Verbundwerkstoffe

Polymer Matrix Composites (PMC)


Einlagerung von Partikeln zur Erhöhung der Funktionalität (thermo-/elektro-physikalisch, chemische Beständigkeit) aber auch aus fertigungstechnischen Gründen (Verarbeitbarkeit);

Faserverstärkung zur Erhöhung der Festigkeit und des E-Moduls


Metall Matrix Composites (MMC)

Einlagerung von Partikeln und Fasern vor allem in Leichtmetallmatrices zur Erhöhung der Festigkeit und des E-Moduls besonders bei erhöhten Temperaturen

Ceramic Matrix Composites (CMC)

Einlagerung von Partikeln und Fasern zur Erhöhung der Schadenstoleranz (,Quasiduktiles Bruchverhalten')

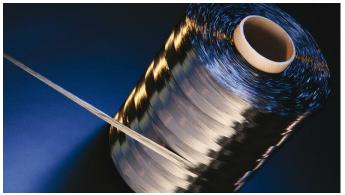
IFKB

Verstärkungsfasern: aus Polymer, Glas, Keramik ...

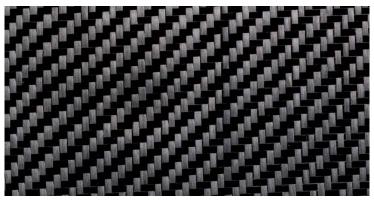
Aramidfaser

Quelle: R-G

Glasfasern


Quelle: Saint-Gobain

Oxidkeramische Fasern



Quelle: 3M Nextel

Kohlenstofffasern

Quelle: Handelsblatt

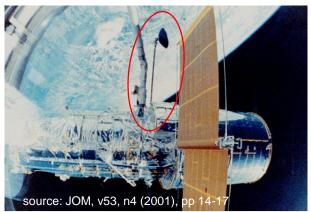
Quelle: HEXCEL

Motivation Verbundwerkstoffe: PMC – Polymer Matrix Composites

Vorteile:

- ✓ Ausgezeichnetes Festigkeit/Dichte-Verhältnis
- ✓ Komplett entwickelte Herstellungstechnologien
- ✓ Relativ kostengünstig
- √ Für Klein- und Serienproduktion

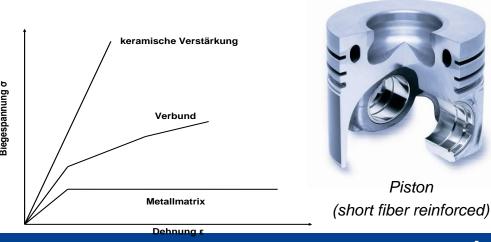
Nachteile:


- Tribologische Eigenschaften
- Begrenzte Temperaturbeständigkeit (<<250 °C)
- 350 °C (PEEK, PI)

source: araihelmets-europe.com

Motivation Verbundwerkstoffe: MMC – Metal Matrix Composites

Boom of the Hubble Space Telescope (C-fiber reinforced aluminum)



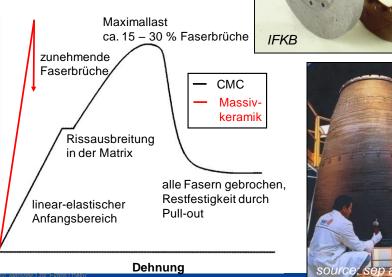
Vorteile:

- ✓ Sehr gutes Festigkeit/Dichte-Verhältnis (**Endlosfaser**)
- ✓ Sehr gute tribologische Eigenschaften / verbesserte Verschleißbeständigkeit (**Partikel**)
- ✓ Optimierte Kriechbeständigkeit (bis 500/800 °C)
- ✓ Relativ kostengünstig (Partikel / Kurzfasern)

Nachteile:

- Komplexer Herstellungsprozess (Endlosfasern)
- Teures Rohmaterial (keramische Fasern)

Motivation Verbundwerkstoffe: CMC – Ceramic Matrix Composites



Vorteile:

- ✓ Gute mechanische Eigenschaften
- ✓ Einsatztemperaturen bis über 2000 °C
- ✓ Quasi-elastisches Bruchverhalten
- ✓ Ausgezeichnete Verschleißeigenschaften

Nachteile:

- Sehr komplexer Herstellungsprozess
- Sehr teures Rohmaterial (keramische Fasern)
- Anpassung der Faser-Matrix-Grenzfläche wichtig

Fertigungstechnik keramischer Bauteile I + II (4SWS)

Inhalt der Vorlesung: Materialien, Fertigungstechnologien, Anwendungen

Wintersemester WS

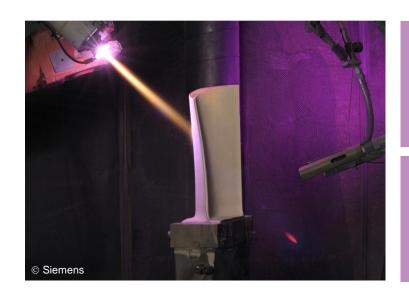
- 0. Orga und Informationen zur Vorlesung
- 1. Institut und Einführung
 - 1. Institut
 - 2. Einführung
- 2. Grundlagen Keramik
 - 1. Einführung keramische Werkstoffe
 - 1. Eigenschaften keramischer Werkstoffe
 - Fertigungskette
 - Theorie des Sinterns
 - 2. Oxidkeramiken
 - 1. Aluminiumoxid
 - 2. Zirkonoxid
 - 3. Nichtoxidkeramiken
 - Siliziumkarbid
 - 2. Siliziumnitrid
 - Bruchmechanik
 - 5. Verfahren zur Materialcharakterisierung
 - 6. Konstruieren mit keramischen Werkstoffen

Sommersemester SS

- Orga und Informationen zur Vorlesung
- 3. Fertigungstechnik
 - 1. Rohstoffe und Masseaufbereitung
 - 1. Rohstoffe und Syntheseverfahren
 - 2. Mahltechnik
 - 3. Masseaufbereitung / Granulatherstellung
 - 4. Pulvercharakterisierung
 - 2. Formgebung
 - 1. Gießverfahren
 - 2. Pressverfahren
 - 3. Plastische Formgebung
 - 3. Grün- und Weißbearbeitung
 - 4. Wärmebehandlungen
 - 1. Entbindern
 - 2. Sintertechnik
 - 5. Hartbearbeitung
- Anwendungsbeispiele

Oberflächentechnik

(Kernfach VB II)



Oberflächentechnik: In allen Bereichen des modernen Lebens unverzichtbar

Verfahren in der Oberflächentechnik: Thermokinetisches Beschichten

Typische Anwendungsfelder:

Allgemeiner Maschinenbau, Automobiltechnik, Aerospace, Energietechnik, Korrosions- und Verschleißschutz, elektrische Funktionsschichten, Medizintechnik u. v. m.

Typische Stoffsysteme:

Metalle (Fe, Ni, Co –Basis, Al, Zn, Cu ...), Oxidkeramiken, einige Karbide (z. B. B₄C), Cermets (z. B. WC-Co, CrC-NiCr), Thermoplasten, CaP-Keramiken, Gläser

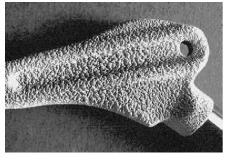
Spritzzusätze in Form von Pulvern, Draht, Stab oder als Suspension, im Spritzprozess Überführung in schmelzflüssige Phase.

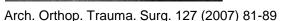
Besonderheiten: Einziges (einstufiges) Verfahren, welches oxidkeramische Dickschichten aufbringen kann. Thermisch induzierte Eigenspannungen möglich!

Spritzen von Calciumphosphatkeramiken für Gelenkimplantate

Oberflächentecthnik: Beschichtung von Gelenkimplantaten

HIP PROSTHESES - ACETABULAR CUPS





Arch. Orthop. Trauma. Surg. 126 (2006) 503-508

J. Arthroplasty 21(4) (2006) 93-96 Eur. J. Orthop .Surg. Traumatol. 17 (2007) 573-578

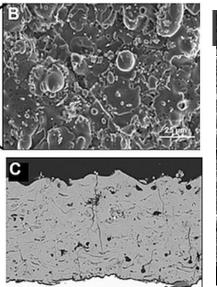
HIP PROSTHESES – FEMORAL STEMS

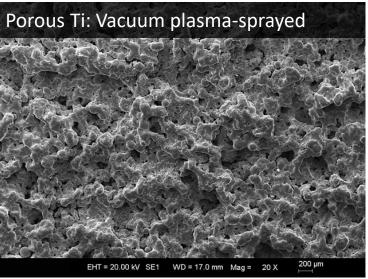
J. Arthroplasty 20(7) (2005) 57-62

J. Arthroplasty 26(4) (2011) 626-632

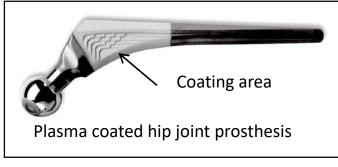
DENTAL IMPLANTS

KNEE PROSTHESES – TIBIAL TRAY

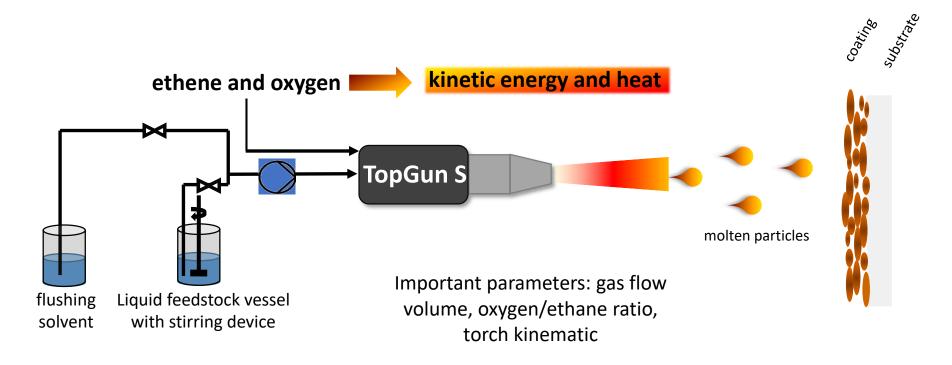

J. Arthroplasty 26(1) (2011) 41-44


Verfahren in der Oberflächentechnik: Plasmaspritzen

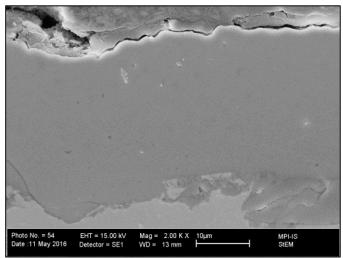
Robert B. Heimann, Plasma-Sprayed Hydroxylapatite-Based Coatings: Chemical, Mechanical, Microstructural, and Biomedical Properties,


Journal of Thermal Spray Technology, Volume 25(5) June 2016 - 827

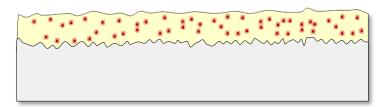
Courtesy of MEDICOAT AG 2013 Switzerland

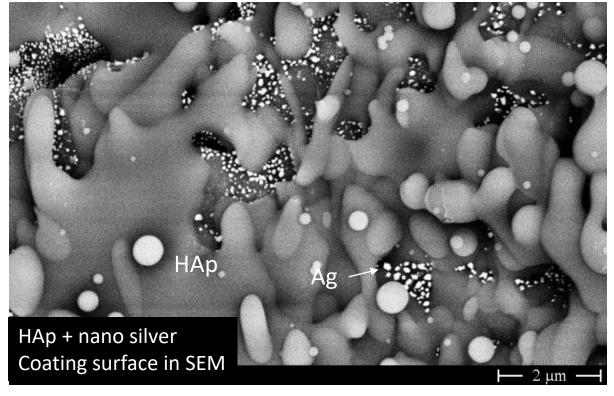


Atmospheric Plasma Spraying of knee joint


- HAp and TCP coatings
- Bioactive behaviour
- APS or VPS sprayed
- Porous titanium VPS sprayed
- Bio-glasses and glass ceramic under development

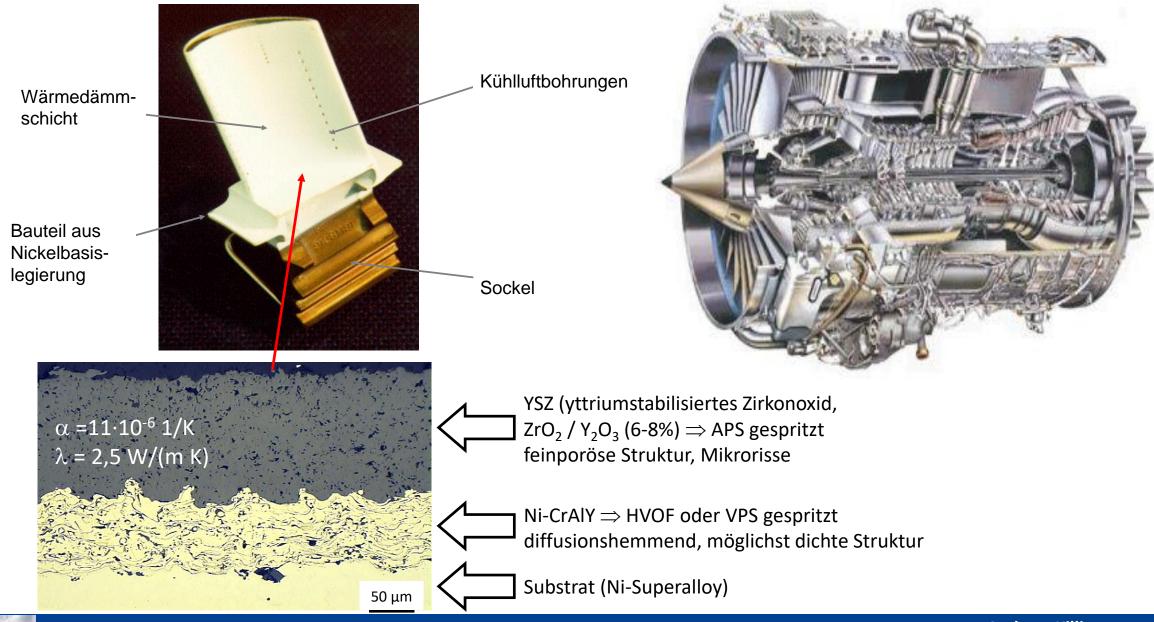
Verfahren in der Oberflächentechnik: Suspensionsflammspritzen

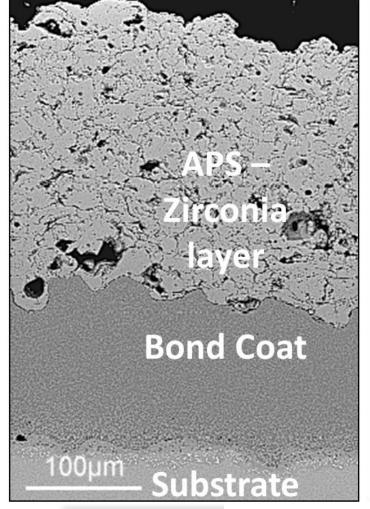


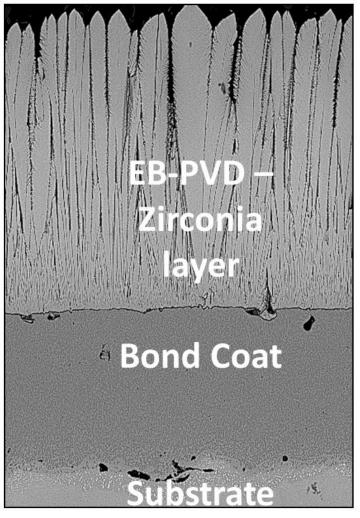

Entwicklung metalldotierter Beschichtungen mit antibakteriellen Eigenschaften für Gelenkimplantate

SEM cross section of HAp coating on Ti

Konzept: Bioaktive Beschichtung rsetzt Nanosilber in der Resorptionsplhase Nanosilber frei




Suspension contains Hap particle + metal precursor HVSFS process creates a HAp coating that contains metal dopants with antibacterial effects.



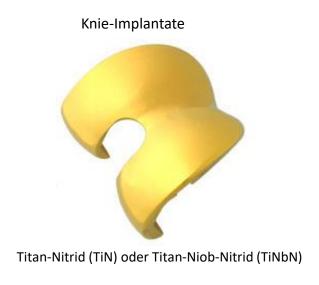
Oberflächentecthnik: Beschichtung von Turbinenschaufelbeschichtung

Aus der Vorlesung....Vergleich der TBC-Schichtstruktur: APS vs. EB-PVD

C. Galetz in:
Materials Science » Metals and Nonmetals » "Superalloys", editor:
Mahmood Aliofkhazraei, ISBN 978-953-51-2212-8,2015

Beschichtungsverfahren: Physikalische Gasphasenabscheidung (PVD)

Typische Anwendungsfelder:

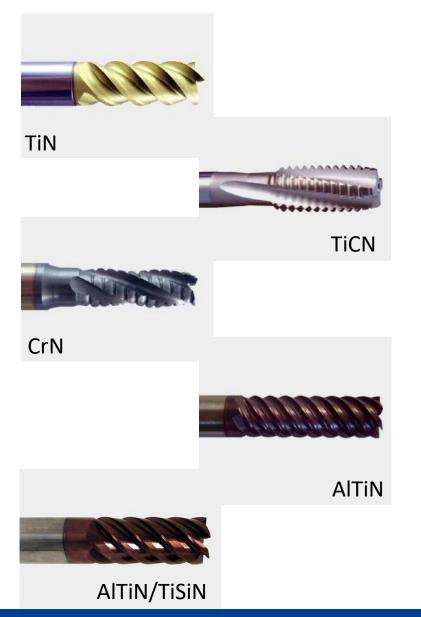

Elektrotechnik, Optik, Korrosionsschutz, Photovoltaik, Halbleitertechnik, allgemeiner Maschinenbau, Medizintechnik, Automobiltechnik u. v. m.

Typische Stoffsysteme:

Metalle, Nichtoxidkeramiken, Oxidkeramiken, organische Polymere, Halbleiter, amorphe Kohlenstoffe und viele weitere Sonderwerkstoffe

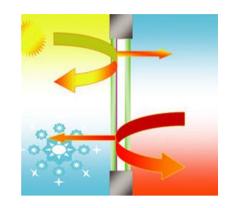
Verfahren zur Herstellung von Dünnschichten (100 nm – einige μm) Benötigt eine Vakuumkammer (Fein- Hochvakuum) Industrieller Standard für Schichten hoher Reinheit

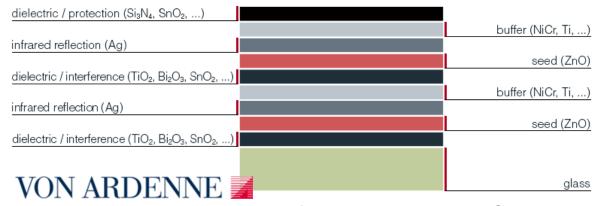
Dünnschichtverfahren: Anwendungen in der Medizintechnik

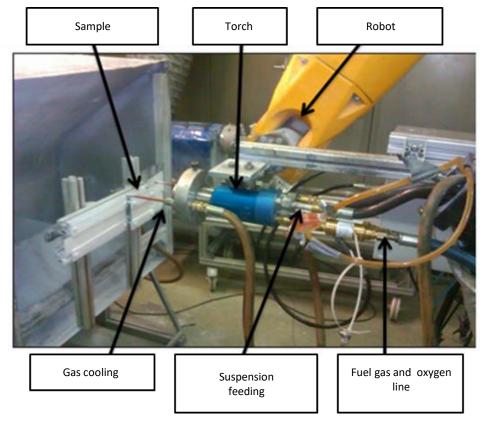


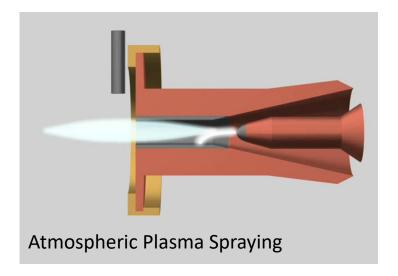
Farbgebung zur Kennzeichnung

- Implantat-Beschichtung: korrosionsbeständig, biokompatibel, tribofunktional z. B. TiN, TiNbN, ZrN-CrN-CrCN
- DLC-Beschichtung für Stents
- TiN auf Operationsbestecken etc.
- Verfahrensvarianten: ARC, MS, PA-CVD




Anwendungsbeispiele PVD: Zerspanungswerkzeuge und Architekturglas


Wärmedämmung / Lichtschutz auf Architekturglas: low ε-glass



Anagentechnik am Institut: Verfahren zum Thermischen Spritzen

High Velocity Flame Spraying with

- Powder
- Suspensions
- Filaments

Verbundwerkstoffe I (VB I): Anorganische Faserverbundwerkstoffe Verbundwerkstoffe II (VB II): Oberflächentechnik und Schichtverbunde

Wintersemester WS:

Faserverbundwerkstoffe

- 0. Orga und Informationen zur Vorlesung
- 1. Motivation und Einführung
- 2. Verstärkungsphasen für

Verbundwerkstoffe

Partikel

Fasern

Fasertypen

- 3. Polymer Matrix Composites (PMC)
- 4. Metal Matrix Composites (MMC)
- 5. Ceramic Matrix Composites (CMC)
- 6. Anwendungsbeispiele

Sommersemester SS: Oberflächentechnik

- 0. Orga und Informationen zur Vorlesung
- 1. Einführung Oberflächentechnik
- 2. Abtragende Verfahren
- 3. Umwandelnde Verfahren
- 4. Einführung Vakuumtechnik
- 5. Beschichtungsverfahren

Abscheidung aus der Gasphase: PVD CVD

Abscheidung aus der flüssigen Phase PDC

Sol-Gel, Lacke

Thermisches Spritzen

Galvanik

6. Zusammenfassung

	Dozent	Benennung	LP	Anz. Semester	Turnus
Kernfächer					
IFKB	Kern / Killinger	Fertigungsverfahren Faser- und Schichtverbundwerkstoffe	6	2	WS/SS, SS/WS
	Kern	Grundlagen der Keramik und Verbundwerkstoffe	6	2	WS/SS
	Kern / Killinger	Neue Werkstoffe und Verfahren in der Fertigungstechnik	6	1 2	WS+SS
Kern-/Ergänzungsfächer					
IFKB	Kern / Killinger	Fertigungsverfahren Faser- und Schichtverbundwerkstoffe	6	2	WS/SS, SS/WS
IKFF	Gundelsweiler	Gerätekonstruktion und –fertigung in der Feinwerktechnik	6	2	WS/SS
IFSW	Graf	Materialbearbeitung mit Lasern	6	2	WS/SS
IMWF	Weihe	Festigkeitslehre I	6	2	WS/SS
IFKB	Kern	Grundlagen der Keramik und Verbundwerkstoffe	6	2	WS/SS
	Kern / Killinger	Neue Werkstoffe und Verfahren in der Fertigungstechnik	6	1 oder 2	WS+SS
IFKB / IFF	Killinger / Tiedje	Oberflächen- und Beschichtungstechnik	6	2	WS/SS
Ergänzungsfächer					
IFKB	Killinger	Thermokinetische Beschichtungsverfahren	3	1	WS
	Kern	Werkstoffe und Fertigungstechnik technischer Kohlenstoffe	3	1	WS+SS
	Ninz	Total Quality Management (TQM) und unternehmerisches Handeln	3	1	WS+SS
IFW	Rothmund	Grundlagen der Zerspanungstechnologie	3	1	WS+SS
IFKB		Additive Fertigung	3	1	WS
Praktikum					
IFKB	Killinger / Kern	Praktikum Fertigungstechnik keramischer Bauteile, Verbundwerkstoffe u. Oberflächentechnik	3	1	WS+SS

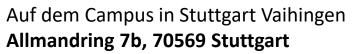
...aus jedem Feld eines

Das Spezialisierungsfach setzt sich aus einem Kernfach mit 6 LP

einem weiteren Kern- oder Ergänzungsfach mit 6 LP

einem Ergänzungsfach mit 3 LP zusammen.

Hinzu kommt das Praktikumsmodul.



Kommissarischer Institutsleiter Abteilungsleiter Oberflächentechnik und Schichtverbunde

Abteilungsleiter Hochleistungskeramiken

ifkb@ifkb.uni-stuttgart.de,

Tel.: 0711 / 685-68301

www.ifkb.uni-stuttgart.de

Fertigungstechnik keramischer Bauteile, Verbundwerkstoffe u. Oberflächentechnik

Vielen Dank für ihre Aufmerksamkeit

apl. Prof. Dr. rer. nat. Andreas Killinger andreas.killinger@ifkb.uni-stuttgart.de

