

Spezialisierungsfach Medizingerätekonstruktion

Prof. Dr. rer. nat. habil. Peter P. Pott

Grundlegende Infos

Was? Wer? Wie? Wo?

Name

- Medizingerätekonstruktion
- Medical Device Technology

Verantwortliche

- Prof. Peter P. Pott
- Flake Bajraktari, M.Sc.
- Jan Liu, M.Sc.

Informationen

www.imt.uni-stuttgart.de

SF Medizingerätekonstruktion

Modulcontainer Kernfächer / Ergänzungsfächer mit 6 LP

Benennung	Dozent	SWS	Dauer	Turnus
Kernfächer				
Medizingerätetechnik	Pott	4	2	WiSe
Praktische Entwicklung von Medizinprodukten	Pott	4	1	SoSe
Technisches Design	Maier	4	1	WiSe
Ergänzungsfächer				
Medizinische Messmethoden	Pott	4	1	WiSe
Aktorik in der Gerätetechnik	Gundelsweiler	4	2	WiSe+SoSe
Gerätekonstruktion und -fertigung in der Feinwerktechnik	Gundelsweiler	4	1	WiSe
Interface-Design	Maier	4	1	SoSe
Praxis des Spritzgießens in der Gerätetechnik	Gundelsweiler/ Burkard	4	1	SoSe
Zuverlässigkeitstechnik	Bertsche	4	2	WiSe

SF Medizingerätekonstruktion

Modulcontainer Ergänzungsfächer mit 3 LP

Benennung	Dozent	SWS	Dauer	Turnus
Medizintechnik-Regularien (<i>nicht</i> wählbar mit Medizingerätetechnik)	Pott	2	1	SoSe
Praktische FEM Simulation mit ANSYS und MAXWELL	Gundelsweiler	2	1	SoSe
Dynamiksimulation in der Produktentwicklung	Alxneit	2	1	WiSe
Elektrische Bauelemente in der Feinwerktechnik	Effenberger	2	1	SoSe
Elektronik für Feinwerktechniker Kunststoffe in der Medizintechnik	Effenberger Bonten	2 2	1 1	WiSe SoSe

Institut für Medizingerätetechnik

Lehrveranstaltungen am IMT: Medizingeräte-technik 1&2

Ausgewählte Veranstaltungen aus dem SF Medizingerätetechnik für Medizingerätetechnik

Institut für etechnik

...aus dem IMT

KMT 1&2

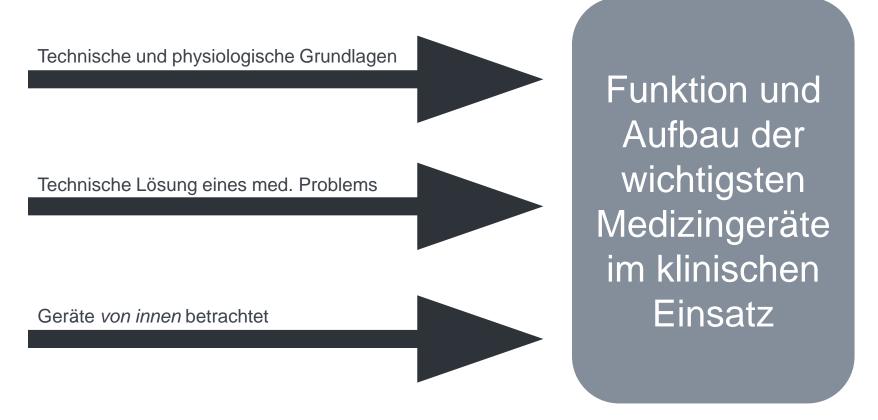
MGT 1&2

MTR

EMT

PEMP

SF-Versuche


MMM

Exkursionen

Medizingerätetechnik I

Institut für Medizingerätetechnik

Struktur

Medizingerätetechnik I

Institut für Medizingerätetechnik

Inhalte

Biomedizinische Technik Medizinisches Problem

Messtechnik

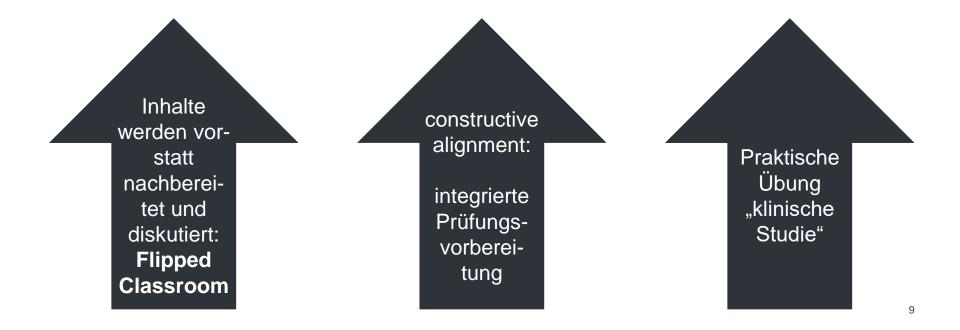
Bildgebung

Technische Randbedingungen Medizinische Randbedingungen VICOSICOIIIIIK

Dialyse

Blutzuckerregelung Herz-Lungen-Maschine Gewebetrennung

Künstliche Beatmung und Anästhesie


Regelung des Herzkreislauf-Systems Einsatz von Licht in der Medizintechnik

Medizingerätetechnik II (und MTR)

Struktur

Regularien für Medizinprodukte in Europa: MDR Internationale Regelungen: USA, Canada, China, Indien, Russland

Medizingerätetechnik II

Institut für Medizingerätetechnik

Inhalte

Zweckbestimmung, Risikoklassen

Qualitäts- und Risikomanagement system Technische und klinische Dokumentation

Registrierung von MP, EUDAMED, CE-Kennzeichnung

Verordnungsfähigkeit, Markteinführung, Anwenderschulung

Langzeitbeobachtungen, Datenschutz

Ablauf und Regeln von Audits

Regelungen für Gebrauchs- anweisungen

Vorgehen bei Risikomeldungen Marktzugang in Europa und international

SF Medizingerätetechnik

Institut für Medizingerätetechnik

Prüfung

MGT II kann auch vor I gehört werden Schriftlich/mündliche Prüfung Vergabe des exakten Prüfungstermins durch IMT Prüfung Schriftlich formulierte MGT/MTR Aufgabe Orientiert an praktischer Anmelden in C@MPUS Aufgabenstellung aus der Industrie •60' Bearbeitungszeit Mündliche Präsentation der Flexible Regelung für Lösung (10') Nachprüfungen möglich Fragen und Diskussion (10')

Informationen: www.IMT.uni-stuttgart.de

Fragen: mgt@imt.uni-stuttgart.de

Institut für Medizingerätetechnik

Weitere Master-Lehrveranstaltungen am IMT

Praktische Entwicklung von Medizinprodukten (PEMP) Konzept

Vorlesung

- 2 SWS
- 6 LP

Übung

- 2 SWS
- Projektmanagement
- Projektarbeit

Kontakt

- Jan Liu, M.Sc.
- jan.liu@imt.unistuttgart.de

Konzept: Forschendes Lernen und Lehren

[www.etit.tu-darmstadt.de, www.lange-nacht-des-wissens.de]

Praktische Entwicklung von Medizinprodukten Inhalte der Vorlesung

Definition "Gerät"	Begriffsdefinitionen
_	Allgemeine Hinweise
Umformen und Wandeln von Information	Messtechnische Grundlagen, Sensorik
	Signalverarbeitung, Steuerung
Umformen und Wandeln von Energie	DC-, BLDC-, Schritt-Motoren
	Getriebe und Lager
Materialien	Metalle
_	Kunststoffe
Urformen von Stoff,	Spritzgießen, Reaktionsspritzgießen
Fertigung	Extrudieren, Blasformen
Umformen von Stoff,	Blechbearbeitung
Fertigung	Fräsen / Drehen, Laserschneiden / Erodieren
Fertigungsgerechtes Konstruieren	Fräsen / Drehen / Gießen
	3D Drucken
Oberflächenbehandlung	Beschichten / Lackieren
	Eloxieren, Verzinken, Sputtern
Beleuchtung	Lichttechnische Größen
	Physiologie
Klimatisierung	Lüftungstechnische Größen und Grundlagen
	Heizen, Kühlen, Befeuchten
Normen und Vorschriften	MPG, MDR
	ISO 13485 et al.
-	

Praktische Entwicklung von Medizinprodukten Inhalte Übung 1/3

Einführung in das methodische Entwickeln	Einführung in das Projektmanagement	Grundlagen der Ideenfindung
Phasen des Entwicklungsprozesses	Ablaufplan und kritischer Pfad	Kreativmethoden
V-Modell	Projektbeteiligte und Ressourcen	Konstruktionskataloge
Kreativitätstechniken	Visuelle Methoden (z.B. daily standup)	
CAD-Einführung		

Praktische Entwicklung von Medizinprodukten Inhalte Übung 2/3

Bearbeitung in Kleingruppen

- Projektmanagement
- Regelmäßige Treffen
- Eigener PEMP-Raum

Elektromechanische Themen

- Schwerpunkt Mechanik (z.B. Motor mit Getriebe)
- Schwerpunkt Elektronik (z.B. eine Größe messen, auswerten und anzeigen)
- Entwicklung from the scratch

Beispiele

- Bedrucken einer Verpackung
- Dosieren eines Mediums
- Regeln eines Füllstands
 - Erfassen einer Frequenz

Praktische Entwicklung von Medizinprodukten Inhalte Übung 3/3

Herstellung mittels	Vorhanden sind	Organisation
3D-Druck	Motoren	Arbeitsplatz am IMT
Kunststoff- oder Holz- Laserschneiden	Sensoren	Zwischenpräsentationen (3')
Konstruktionsprofile	Normteile	Abschlusspräsentation (7')
Normteile	Konstruktionsmaterial	Gerät und seine Entwicklung sind Teil der Prüfungsleistung
Budget 50 € je Gruppe zusätzlich		

Praktische Entwicklung von Medizinprodukten Prüfung

Klausur (besser 4,0: 75 %)

Aufgabe

- Berechnung einzelner Größen in einem Gerät, z.B.:
 - Drehmoment
 - Temperatur
 - Beleuchtung
- · Konstruktion von Details eines Gerätes
 - Fertigungsgerecht
 - Montierbar
 - Ressourcensparend (Kosten, Platz, Zeit)

Wissensfragen

- Vorlesung
- Vorlesungsskript
- Übung

Ergebnis der Übung (besser 4,0: 25 %)

Qualität des Gerätes

- Messbare Kriterien (Einhaltung der Anforderungen)
- Kreativität der Lösung

Präsentationen

- · Qualität des Vortrags
- Inhalte

Medical Measurement Methods(MMM)

für Medizingerätetechnik

titut für

Konzept

In English Live of the Control of th

Vorlesung

- 2 SWS
- 6 LP

Übung

- 2 SWS
- Direkte
 Umsetzung der
 Theorie

Kontakt

- Jan Liu, M.Sc.
- jan.liu@imt.unistuttgart.de

Konzept: Integrierte Vorlesung und Übung

[www.etit.tu-darmstadt.de, www.lange-nacht-des-wissens.de]

Medizinische Messmethoden Struktur und Inhalt

Vorlesung (90') Theorie für die folgende Übung

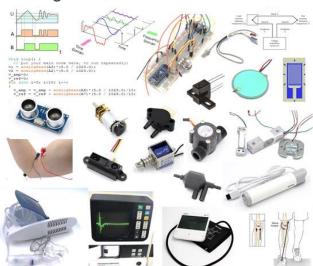
Jede Vorlesung betrachtet die Messung eines bestimmten physiologischen Wertes:

- Was wird gemessen und warum?
- Physikalisches Äquivalent des physiologische Werts
- Wie kann dieser Wert gemessen werden?
- Aktuelle Geräte und deren Methoden
- Limitationen der einzelnen Methoden

Praktische Übungen (90') direkt im Anschluss

Konstruktion und Entwicklung von Messgeräten für physikalische und biologische Phänomene im Bereich medizinischer Anwendungen

Grundlagen der Messtheorie und praktische Erfahrungen bei der Entwicklung von Sensoren für medizinische Anwendungen


Medizinische Messmethoden

Methodik und Vorbereitung

Übung

- Wenn möglich bringen Sie einen Laptop mit
- Laborgeräte, die Sie benutzen werden:

Vorlesung

- Vorbereitung durch eine Recherche
- Sensor, der den Wert misst, der in der Vorlesung behandelt wird, z.B. einen Abstandssensor
- Lesen des Datenblatts
- Zu Beginn einer jeden Vorlesung präsentiert einE TeilnehmerIn den Sensor in einem 3-Minuten Referat
 - Funktionsprinzip
 - Messbereich
 - Genauigkeit der Messung
 - Spannungsversorgung, Ausgabe des Messwerts (analog/digital, Protokoll, etc.)

Ethik in der Medizintechnik Konzept

Vorlesung (SQ)

- 2 SWS
- 3 LP

Aktivierungskonzepte

- verschiedene Lehrpersonen
- Gruppendiskussionen
- Prakt. Einheiten

Kontakt

- Juliane Mayer M.Sc.
- juliane.mayer@ imt.unistuttgart.de

Konzept: Lehren & Lernen

Ethik in der Medizintechnik Inhalte der Vorlesung

Einführung	Start und Einführung, Überblick über das Thema, Organisation
Theoretische Grundlagen	Was ist Ethik?
	Einführung in ethische Prinzipien. Unterschied zwischen Ethik und Moral"
Gestaltung einer klinischen	Studiendesign (RCT etc.)
Studie	Auswahl von Proband*innen
Praxisinhalt "klinische Studie"	Design einer klinischen Studie: Fragestellung, Methode, Erstellung der Unterlagen für die Proband*innen
Anwendungsfälle aus	Welche ethischen Fragestellungen kommen bei einem ausgewählten Medizinprodukt auf?
Unternehmen	Was sind ethische Kernpunkte, die in der Medizintechnik erfüllt sein müssen?
Ethische Dilemmata	Gewinn vs. Patientenwohl Wirtschaftlichkeit des Gesundheitssystems
	Notwendigkeit des Einsatzes von Medizinprodukten
Ethikkommission	Wie schreibt man einen Ethikantrag?
	Worauf wird bei der Prüfung des Antrags geachtet? Wie prüft die Ethikkommission die Anträge?
Praxiseinheit "Ethikantrag"	Definition einer Forschungsfrage und daraus abgeleiteten Studie (z.B. konkrete Frage aus einer Masterarbeit)
	Schreiben eines Antrags an die Ethikkommission
KI in der Medizintechnik	Algorithmenbasierte (ethische) Entscheidungen in Diagnose und Therapie
	Erklärbarkeit und Transparenz des Maschinellen Lernens und der Künstlichen Intelligenz
Internationales	Was ist in Deutschland verboten und anderswo erlaubt?
Compliance	Compliance-Systeme in Unternehmen
	Wie wird von Unternehmensseite sichergestellt, dass Regeln eingehalten werden?
Ethische Produktion	Ethische Produktionskette
	Verfügbarkeit von Medizinprodukten in Ländern mit schwachem Gesundheitssystem"
Finale	Reflektion der gesamten Veranstaltung. Wurden die Erwartungen erfüllt?
	Welche Inhalte haben gefehlt? Welche waren überrepräsentiert?
·	

Praktische Übungen am IMT

Inhalte und Themen

Laparoskopische Chirurgie (in TÜ)

- Manuelle Fähigkeiten
- Kameraführung

Technische Grundlagen der Laparoskopie

- Optik, Beleuchtung, Insufflation
- · Parameter verstehen und einstellen

Technik der flexiblen Endoskopie

- · Licht- und Bildleiter
- Mechanik, Konstruktion

Ultraschall-Bildgebung

- Systemkomponenten und Funktionen
- Artefakte

Technik der Gewebetrennung

- HF-Schneiden und Koagulieren
- Wasserstrahlschneiden

Wiederaufbereitung von Medizinprodukten

- Prozess und Parameter
- Normen und Qualitätssicherung

Dialyse

- Komponenten und Funktion von Dialysegeräten
- Pumpen und Sensoren

APMB

- Freie Wahl aus Versuchen aller beteiligten Dozenten und des Institutes für Biomedizinische Technik.
- Praktikumsliste wird von Prof. Peter P. Pott unterschrieben.

Team

Institut Medizingerätetechnik

It's all about peoples' heads:

Dagmar Lünsmann Dipl.-Agrarbiol.

> Institute secretary

Juliane Mayer, M.Sc.

CTR and ETR systems Coordination B.Sc. Medical Technology

EMT

Lars Finke, Mechatroniker

Workshop & Labs

MGT I&II

Bajraktari,

Artificial Intelligence Methods

Flakë

M.Sc.

Max Schäfer, M.Sc.

Robotics Mechatronics

KMT I&II

Jan Liu, M.Sc.

Electronics Micro fluidics

> PEMP MMM

Giuliano Giacoppo, M.Sc.

Medical Robotics

KMT I&II

Peyman Shah Nazar M.Sc.

Rehabilitation Robotics

Peter P. Pott

Prof. Dr. rer. nat. habil.

> Head of institute

Research & teaching

Vielen Dank!

Prof. Peter P. Pott

E-Mail peter.pott@imt.uni-stuttgart.de Telefon +49 (0) 711 685-68390 www.lmt.uni-stuttgart.de

Universität Stuttgart Institut für Medizingerätetechnik Pfaffenwaldring 9 70569 Stuttgart

mgt@imt.uni-stuttgart.de