

studiengang luft- und raumfahrttechnik

Prof. Dr.-Ing Tim Ricken Studiendekan tim.ricken@isd.uni-stuttgart.de

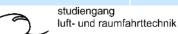
Dr. rer. nat. Michael Reyle Studiengangsmanager LRT michael.reyle@ f06.uni-stuttgart.de

Markus Vogler Masterstudent LRT FLURUS info@flurus.de

Mastereinführung SoSe 2023

- Masterübersicht
- Stundenplan und Vorlesungsverzeichnis
- Prüfungsanmeldung
- Institute der Fakultät 6
- Informationsquellen
- Angebote neben dem Studium
- FLURUS

- Masterübersicht
- Stundenplan und Vorlesungsverzeichnis
- Prüfungsanmeldung
- Institute der Fakultät 6
- Informationsquellen
- Angebote neben dem Studium
- FLURUS

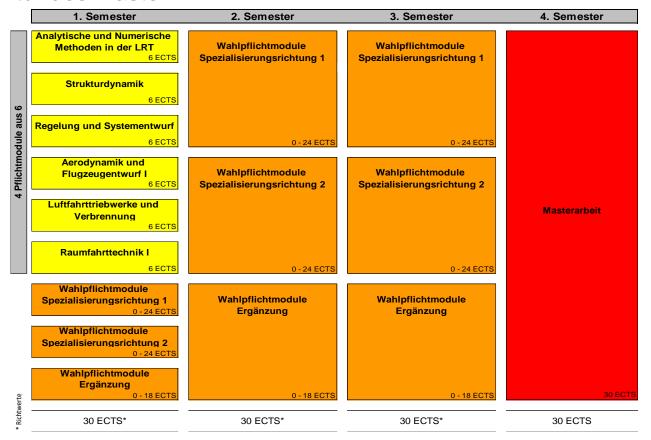

Auflagenmodule

In einigen Fällen wurde Studierenden, die keinen B.Sc.-Abschluss LRT (Univ. Stuttgart) haben, die Auflage erteilt, in Modulen aus dem B.Sc.-Studiengang LRT Prüfungsleistungen zu erbringen.

Modul- nummer	Modulname	angeboten im	ECTS Credits
12120	Grundlagen der Thermodynamik 1 für LRT	WiSe	6
12130	Strömungslehre I	SoSe	6
17220	Höhere Mathematik 3 (vertieft)	WiSe	9
21410	Luftfahrttechnik & Luftfahrtantriebe	SoSe-WiSe	6
61130	Konstruktionslehre I (LRT)	WiSe-SoSe	9
61220	Raumfahrt	WiSe	6
72760	Flugmechanik und Luftfahrtsysteme I	WiSe-SoSe	6

universität stuttgart

Der Nachweis der bestandenen Module ist Voraussetzung, um die Masterarbeit anmelden zu können.



Eckpunkte des Master LRT

- 3 Semester Vorlesung, letztes Semester Masterarbeit
- 1. Sem.: Wahlpflichtteil: 4 aus 6 Modulen sind zu wählen
- 1. 3. Sem.: Spezialisierungs- und Ergänzungsteil
 - Wahl zweier Spezialisierungsrichtungen
 - Große Auswahl an frei wählbaren Spezialisierungs- bzw. Ergänzungsmodulen
- Erwerb weiterer Schlüsselqualifikationen möglich
- Auslandsaufenthalt im Rahmen der Masterarbeit oder zum Besuch von Lehrveranstaltungen (Auslandssemester) möglich

Makrostruktur des Master LRT

Spezialisierungsrichtungen (SR)

- A: Mathematische und physikalische Modellbildung in der LRT
- B: Experimentelle und numerische Simulationsmethoden in der LRT
- C: Informationstechnik in der LRT
- D: Materialien, Werkstoffe und Fertigungsverfahren
- E: Flugführung und Systemtechnik in der LRT
- F: Entwurf, Auslegung und Bau von Luft- und Raumfahrzeugen
- G: Antriebs- und Energiesysteme in der LRT
- H: Raumfahrttechnik und Weltraumnutzung
- Aus diesen 8 Spezialisierungsrichtungen sind 2 auszuwählen.
 In den beiden Gewählten sind Spezialisierungsmodule im Umfang von jeweils 24 ECTS zu belegen.

Modulhandbuch & Zuordnung

Wichtig Verbindlich sind nur die Angaben in C@MPUS!

Spezialisierungsrichtung A "Mathematische und physikalische Modellbildung in der LRT"

					Dauer in	
Modulkürzel	Modulname und LV-Name	MV	LP	Prüfungsart	Sem	Tumus
060110111	Aeroakustik der Luft- und Raumfahrt	Keßler/IAG	3	BSL: M	1	WS
	Aeroelastizität I	Keller/ISD	3	BSL: M	1	SoSe
060600120	Aeoroelastizität I & II	Keller/ISD	6	PL: M	2	SoSe
060700301	Analytische Lösungsmethoden für Wärme- und Stoffübertragungsprobleme	Weigand/ITLR	3	BSL: S	1	WS,SS
060100010	Analytische und numerische Methoden der Luft- und Raumfahrttechnik	Munz/IAG	6	PL: S	1	WS,SS
060700300	Analytische Methoden	Weigand/ITLR	6	PL: S	1	WS,SS
060700302	Dimensionsanalyse	Weigand/ITLR	3	BSL: S	1	WS,SS
060513112	Einführung in die Finite-Elemente-Methode	Wagner/ISD	3	BSL:S	1	SS
060700304	Einführung in die Quantenmechanik und Spektroskopie	Weigand/ITLR	3	BSL: M	1	SS
060700401	Elastische/inelastische Lichtstreuung	Roth/ITLR	3	BSL: M	1	WS
060600108	Elastisch-plastische Tragwerke und Kontinua	Keller/ISD	3	BSL: M	1	SS
060600123	Finite Elemente II (Diskretisierung II)	Reck/ISD	3	BSL: M	1	WS
060600111	Finite Elemente III	Jarzabek/ISD	3	BSL: M	1	SS
060110154	Geschwindigkeitsgrenzschichten	Rist/IAG	3	BSL: M	1	SS
060110123	Grenzschichtdynamik und -kontrolle	Kloker/IAG	6	PL: M	1	SS
060700192	Grundlagen der Turbulenzmodellierung	Lamanna/ITLR	3	BSL: M	1	WS
060700201	Grundlagen der Verbrennungsprobleme der Luft- und Raumfahrt	Weigand/ITLR	3	BSL: S	1	SS
060110124	Hyperschallströmung und –flug	Kloker/IAG	6	PL: M	1	WS
060700163	Kinetische Gastheorie	v. Wolfersdorf/ITLR	3	BSL: S	1	ws
060110101	Kompressible Strömungen I + II	Gaisbauer/IAG	6	PL: M	2	WS
060110121	Laminar-turbulente Transition	Kloker/IAG	3	BSL: M	1	SS
060600125	Materialermüdung und Bruchmechanik von metallischen Werkstoffen I	Keller/ISD	3	BSL: M	1	SS
060600114	Materialermüdung und Bruchmechanik von metallischen Werkstoffen	Keller/ISD	6	PL: S	2	WS
060120114	Mathematische Methoden in der Strömungsmechanik	Munz/IAG	6	PL: M	1	SS
060500113	Modellierung von Wiedereintrittsströmungen	Fasoulas/IRS	6	PL: S	1	WS
060600124	Nichtlineare Finite Elemente	Reck/ISD	3	BSL: M	1	SS
060600110	Nichtlineare Methoden der Tragwerksberechnung	Keller/ISD	6	PL: M	2	SS

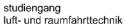
	_	Aufla	Wahlp	A: Ma	B: Exp	G: Infe	D: Ma	n	F: Ent	G: An	H: Ra	Ergän	facha	Maste
A1	Grundlagen der Thermodynamik I für LRT	Х												
A2	Luftfahrttechnik und Luftfahrtantriebe	Х												
A3	Raumfahrt II	Х												
A4	Strömungslehre I	Х												
1	Aerodynamik und Flugzeugentwurf I		Х						Х					
2	Analytische und numerische Methoden der Luft- und Raumfahrttechnik		x	x	X									
3	Luftfahrttriebwerke und Verbrennung		Х							Х				П
4	Raumfahrttechnik I		Х								X			
5	Regelung und Systementwurf		Х					Х						П
6	Strukturdynamik		Х	Х	Х		Х	Х	Х		Х			
7	Aeroakustik der Luft- und Raumfahrt			Х									\Box	П
8	Aerobotics-Seminar							Х						П
9	Aerodynamik und Flugzeugentwurf II								Х				\Box	П
10	Aeoroelastizität I			Х										
11	Aeoroelastizität I + II			х										
12	Akustik von Windenergieanlagen									Х				

Details zum Spezialisierungs- bzw. Ergänzungsteil

- Die Modulgrößen der angebotenen Module beträgt 3, 6 oder in Ausnahmefällen 9 ECTS.
 Alle Module mit ≥ 6 ECTS schließen mit einer Modulabschlussprüfung (MAP) ab.
- 3er Module dürfen nicht mit einer MAP abschließen (Vorgabe Eckpunktepapier).
 Daher wird eine benotete Studienleistung (BSL) verlangt.
 Anm.: Einziger relevanter Unterschied zwischen einer MAP und einer BSL ist, dass die BSL beliebig oft wiederholt werden kann.
- Die Studierenden k\u00f6nnen frei dar\u00fcber entscheiden, ob sie statt wenigen "Gro\u00dbmodulen" lieber mehrere kleine Module w\u00e4hlen, die durch BSL abgeschlossen werden. Hierdurch erh\u00f6ht sich die Anzahl der Pr\u00fcfungen entsprechend!

Zwischeneinschub Studiengangmanager LRT: Dr. Michael Reyle

universität stuttgart


Pfaffenwaldring 27, Erdgeschoss
 Zimmer 006

• Telefon: 0711 685 60601

Mail: michael.reyle@f06.uni-stuttgart.de

- Studien- und Prüfungsangelegenheiten
- Studienverlauf
- Prüfungsordnung
- Modulhandbücher
- Vorlesungsverzeichnis/Stundenplan

Details zum Spezialisierungs- bzw. Ergänzungsteil

- Ein Modul kann in mehreren SR vorkommen.
- Ein und dieselbe Lehrveranstaltung (LV) darf in mehreren Modulen vorkommen. Es wird sichergestellt, dass nur eines dieser Module belegt werden kann.
 Beispiel:

Modul M1 (3 ECTS) besteht aus der LV 1

Modul M2 (3 ECTS) besteht aus der LV 2

Modul M3 (6 ECTS) besteht aus LV 1 und LV2

→ Es kann **nur eines** dieser 3 Module gewählt werden!

Mod	lul 3
Modul 1	Modul 2
LV1	LV2

 Durch den Master-Übersichtsplan soll sichergestellt werden, dass unzulässige Kombinationen ausgeschlossen sind (Excel-Tool auf der Homepage des Studiengangs Link Studiengang-Homepage).

Masterübersichtsplan

https://www.student.uni-stuttgart.de/studiengang/Luft--und-Raumfahrttechnik-M.Sc./?page=studienaufbau

Universität Stuttgart	M.Sc. Luft- und Raumfahrttech	nik PO2	014
Name			
Vorname			
MatrNummer			
Tel. (optional)			
Mail			
Straße, Hausnr.			
PLZ, Ort			
Wahlpflich	htmodule	Nummer	LP

Wahlpflichtmodule	Nummer	LP
Analytische und numerische Methoden der Luft- und Raumfahrttechnik	40010	6
Luftfahrttriebwerke und Verbrennung	43980	6
Regelung und Systementwurf	57180	6
Aerodynamik und Flugzeugentwurf I	43970	6
Summe I		24

Spezialisierungsrichtung I	Suchen		
A: Mathematische und physikalische Modellbildung in			
Module	Nummer	LP	Konflikt
Aeroelastizität I & II	49590	6	19Meix10333
Finite Elemente II (Diskretisierung II) (inaktiv)	49640	3	
Analytische Methoden	44070	6	mit Zeile 41
Dimensionsanalyse	= 44260	3	mit Zeile 40
Einführung in die Finite-Elemente-Methode	57170	3	
Elastische/inelastische Lichtstreuung	44330	3	
Applied Machine Learning for Engineers	103330	3	
Datenbasierte Modellbildung und maschinelles Lernen	102680	3	
Summe II		30	
Sulline II		30	

Spezialisierungsrichtung II	Suchen		
H: Raumfahrttechnik und Weltraumnutze			
Module	Nummer	LP	Konflikt
Regelung von Windenergieanlagen und Windparks	72170	3	Falscher Container
Elektrische Raumfahrtantriebe	44340	3	
Dynamik der Erde	Extern		
Raketentreibstoffe I	68560	3	
Space Station Design Workshop	74380	3	
Space Radiation (Weltraumstrahlung)	48700	3	
Experimentalle Methoden der Infrarot-Astronomie I	67410	3	

Studiengang M.Sc. Luft- und Raumfahrttechnik

Übersichtsplan

Name, Vorname E-Mail	Matrikelnummer	
Adresse (Straße, Hausnummer, PLZ, Ort)	Telefonnummer	
Module:	Nummer	- 1
Wahlpflichtmodule		
Analytische und numerische Methoden der Luft- und Raumfahrttechnik	40010	
Luftfahrttriebwerke und Verbrennung	43980	
Regelung und Systementwurf	57180	
Aerodynamik und Flugzeugentwurf I	43970	
Summe I		
Mathematische und physikalische Modellbildung in der LRT		
roelastizität I & II	49590	
ite Elemente II (Diskretisierung II) (inaktiv)	49640	
Analytische Methoden	44070	
Finite Elemente III (inaktiv)	49650	
Einführung in die Finite-Elemente-Methode	57170	
Elastische/inelastische Lichtstreuung	44330	
Applied Machine Learning for Engineers	103330	
Datenbasierte Modellbildung und maschinelles Lernen	102680	
Summe II		
H: Raumfahrttechnik und Weltraumnutzung		
Regelung von Windenergieanlagen und Windparks	72170	
Elektrische Raumfahrtantriebe	44340	
Dynamik der Erde	Extern	
Raketentreibstoffe I	68560	
Space Station Design Workshop	74380	
Space Radiation (Weltraumstrahlung)	48700	
Experimentelle Methoden der Infrarot-Astronomie I	67410	
Kinetische Gastheorie	44600	
Raumstationen	67460	
Summe III	01400	
Ergänzung		
Einführung in die Charakterisierung und Anwendung poröser Medien in der Luft- un	c 69510	
Mathematische Methoden in der Strömungsmechanik	44820	
Elastisch-plastische Tragwerke und Kontinua	48680	
Schätzverfahren und Flugmesstechnik	45150	
Fachaffine SQ	40100	
Summe IV		
Gesamtsumme 96 ECTS		

Hiermit erkläre ich, alle Angaben nach bestem Wissen und Gewissen getätigt zu haben und die zur Erstellung des Masterübersichtsplans genutzte Software in der Funktion nicht verändert zu haben.

Die Grundlage für diesen Plan ist die Verfahrensregelung 01/2018: Verfahrensregelung zum Übersichtsplan im M.Sc.-Studium "Luft- und Raumfahrttechnik (LRT)" (PO 2014)

Datum, Unterschrift Studierender

Genehmigt durch den Prüfungsausschuss (Datum, Unterschrift)

Erstellt am 11.10.2021 mit MAPLER: Version 07.09.2020. 16:00

Die S verwe danac

Gemi Strukt Zuorc

Extern Zeiler erken

Hilfe: Zusat wie fc Modu

Hilfe: Das P werde (eme

Hilfe: Manc nicht

Excel

06.04.2020

Details zum Spezialisierungs- bzw. Ergänzungsteil

- Verfahrensregelung zum Master-Übersichtsplan
 - Auflistung aller gewählten Module inkl. Modulnummer, -name und ECTS
 - Angabe der Spezialisierungsrichtungen
 - Zuordnung der gewählten Module auf Wahlpflichtbereich, Spezialisierungsrichtungen und Ergänzungsbereich
 - Gesamtsumme der ECTS
 - Kennzeichnung extern erbrachter Module
 - Unterschrift und Kontaktdaten inkl. E-Mail für Nachfragen
 - → Beim PA Vorsitzenden zur Genehmigung vorlegen
 - → Zur Anmeldung Masterarbeit muss genehmigter Übersichtsplan vorliegen!

Weiterführende (Verfahrens-)Regelung

- Anerkennung von Studienleistungen aus dem Ausland:
 - Ablauf in Vorfeld: Kontakt zu fachlich zuständigen Dozent*innen an der Fakultät suchen und Einschätzung einholen. Letztlich ist für Anerkennung ein formeller Antrag an den Prüfungsausschussvorsitzenden notwendig.
 - Bei Modulen mit äquivalenter Lehrveranstaltung an der Fakultät prüft der jeweilige Dozent, ob "kein wesentlicher Unterschied" zum ausländischen Modul besteht und dieses angerechnet werden kann.
 - Darüber hinaus können weitere **Module ohne Entsprechung** an der Fakultät im Spezialisierungs- und Ergänzungsteil angerechnet werden, wenn diese fachlich zum Studiengang passen und Master-Niveau aufweisen. Über die Anerkennung und die Einordnung in eine Spezialisierungsrichtung entscheidet der Prüfungsausschuss.

Weiterführende (Verfahrens-)Regelung

Geheimhaltungsfristen bei externen Masterarbeiten
Grundsätzlich werden keine Geheimhaltungsvereinbarungen mit Firmen mehr
abgeschlossen. In besonders begründeten Ausnahmen ist lediglich eine Sperrfrist von
bis zu einem Jahr möglich.

Anrechnung (zusätzlicher) externer Studienarbeiten

Anrechnung lediglich im Umfang von bis zu 6 LP im Ergänzungsteil (als Modul "Projektarbeit") möglich!

- Masterübersicht
- Stundenplan und Vorlesungsverzeichnis
- Prüfungsanmeldung
- Institute der Fakultät 6
- Informationsquellen
- Angebote neben dem Studium
- FLURUS

Vorlesungsverzeichnis

- > Stundenplan wird anhand des Vorlesungsverzeichnisses erstellt
- Zwei bis drei Wochen vor Vorlesungsbeginn im Internet verfügbar:
 - → campus.uni-stuttgart.de
- Anmeldung für zulassungsbeschränkte Module sollten jeweils am 01.04. bzw. 01.10. beginnen (10:00 Uhr)

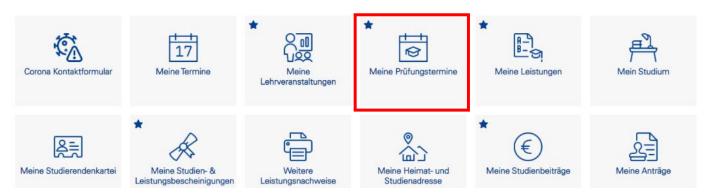
Stundenplan Angaben ohne Gewähr, Raumänderungen möglich, für den aktuellsten Stand: C@MPUS

	Montag	Dienstag	Mittwoch	Donnerstag	Freitag
Block 1: 08:00 - 09:30	Turboflugtriebwerke <i>V55.02</i>	Strukturdynamik <i>V47.04</i>	Systementwurf I V27.02	Mehrgrößenregelung <i>V27.02</i>	Übung Flugzeugaerodynamik I <i>V38.04</i>
Block 2: 09:45 – 11:15	Raumfahrttechnik I <i>V27.02</i>		Flugzeugaerodynamik I V38.04	Übung Systementwurf I <i>V7.02</i>	Strukturdynamik <i>V57.01</i>
Block 3: 11:30 – 13:00	Raumfahrttechnik I <i>V27.02</i>			Einführung in die Verbrennung <i>V57.01</i>	Übung Flugzeugentwurf I <i>V55.22</i>
Pause					
Block 4: 14:00 – 15:30		Analytische und numerische Methoden <i>V57.01</i>		Analytische und numerische Methoden <i>V27.02</i>	Mehrgrößenregelung <i>V27.02</i>
Block 5: 15:45 – 17:15		freiwillige Übung Turboflugtriebwerke <i>V31.01</i>		Flugzeugentwurf I V38.01	
Block 6: 17:30 – 19:00			Tutorübung zu Analytische und numerische Methoden <i>V7.01</i>		

- Masterübersicht
- Stundenplan und Vorlesungsverzeichnis
- Prüfungsanmeldung
- Institute der Fakultät 6
- Informationsquellen
- Angebote neben dem Studium
- FLURUS

Prüfungsanmeldung

Prüfungsanmeldung über C@MPUS

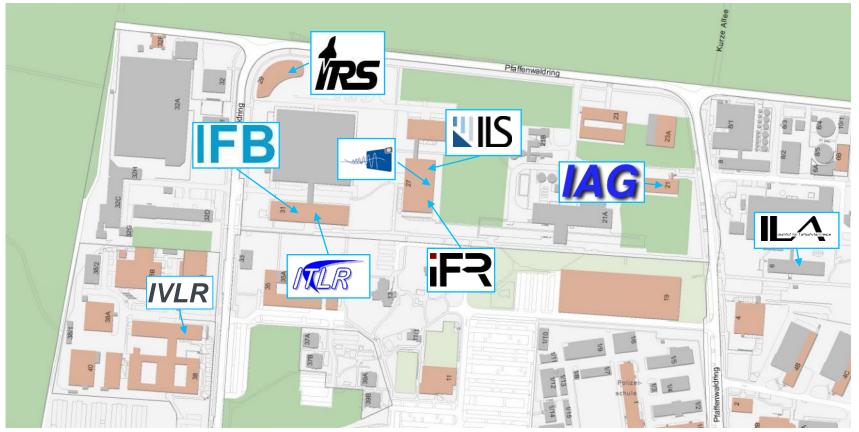

Während des Prüfungsanmeldezeitraums: 11.05.2023 bis 02.06.2023

WICHTIG: studentische E-Mailadresse (st***** @stud.uni-stuttgart.de)

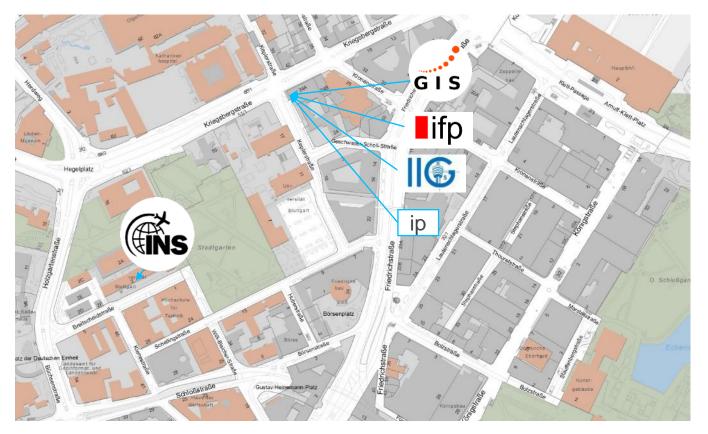
zu Infos und Änderungen prüfen

Anleitung unter:

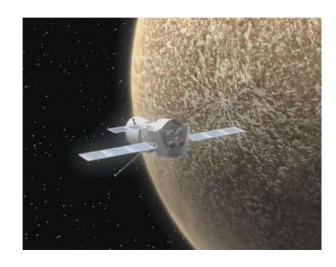
https://www.student.uni-stuttgart.de/digital-services/campus_dokumente/pruefungen/pruefungsanmeldung.pdf



- Masterübersicht
- Stundenplan und Vorlesungsverzeichnis
- Prüfungsanmeldung
- Institute der Fakultät 6
- Informationsquellen
- Angebote neben dem Studium
- FLURUS



Institute der Fakultät



Institute der Fakultät

- Masterübersicht
- Stundenplan und Vorlesungsverzeichnis
- Prüfungsanmeldung
- Institute der Fakultät 6
- Informationsquellen
- Angebote neben dem Studium
- FLURUS

Mastereinführung zum Sommersemester 2023 Informationsquellen

- Seite des Studiengangs, unter M.Sc. findet man https://www.student.uni-stuttgart.de/studiengang/Luft--und-Raumfahrttechnik-M.Sc./
 - Modulhandbuch
 - Prüfungsordnung
 - Verfahrensregelungen

Sollte man unbedingt kennen!

- Katalog fachaffiner Schlüsselqualifikationen
- Seite des Prüfungsausschusses: Über den Link auf der Studiengangseite
- ILIAS (Lernplattform): <u>ilias.uni-stuttgart.de</u>
- C@mpus: <u>campus.uni-stuttgart.de</u>
 Dokumentation: <u>https://www.student.uni-stuttgart.de/digital-services/campus/</u>

Informationsquellen

- Seite der Fachschaft: flurus.de
 - Termine des Skriptverkaufs
 - Kontaktformular f

 ür Fragen
 - Häufig gestellte Fragen
- E-Mailadresse der Mastersprecher: <u>master@flurus.de</u>
- E-Mail Verteiler: mein.flurus.de
 - Mailinglisten des Studiengangs: alle-master, alle-semester
 - Weitere Verteiler: Jobs, Veranstaltungen, Pinnwand
 - Anmeldung als Studierender mit privater Mail-Adresse (aktuelle Abonnent*innen über "Passwort vergessen") → Verifikation mit st******@

Informationsquellen

- Institutshomepages: www.(Institutskürzel).uni-stuttgart.de
- ILIAS Bereiche der Fachschaft:
 - "FLURUS Bachelor"**
 Für das Material aus dem Bachelor (Auflagenmodule)
 - "FLURUS Master"**
 - ** Zugang über mein.flurus.de
- Homepages des TIK: <u>www.tik.uni-stuttgart.de</u>
- Studentische E-Mail: mail.uni-stuttgart.de
- Software und weitere Dienste für Studierende: www.stud.uni-stuttgart.de

Ansprechpersonen bei Problemen im Studium

 Fachstudienberater Dr. Christian Koch 	christian.koch@ila.uni-stuttgart.de	(0711) 685-63524
→ Studiendekan Prof. Tim Ricken	studiendekan@isd.uni-stuttgart.de_	-63612
 Prüfungsausschussvorsitzender Prof. Andreas Strohmeyer 	strohmeyer@ifb.uni-stuttgart.de	-69569
→ Studiengangmanager Dr. Michael Reyle	michael.reyle@f06.uni-stuttgart.de	-60601
→ Fachschaft FLURUS	master@flurus.de	-62319
Zentrale StudienberatungK. Sauermann	katrin.sauermann@verwaltung.uni-stuttgart.de	-82161
→ Dez. II Internationales	auslandsstudium@ia.uni-stuttgart.de	-68599
→ Psychologische Beratungsstelle	pbs@studentenwerk-stuttgart.de	(0711) 9574-480

- Stundenplan und Vorlesungsverzeichnis
- Masterübersicht
- Prüfungsanmeldung
- Institute der Fakultät 6
- Informationsquellen
- Angebote neben dem Studium
- FLURUS

Angebote neben dem Studium

- Studium Generale
- Sprachkurse → Online-Anmeldung: www.sz.uni-stuttgart.de
 Anmeldephasen beachten!
- Hochschulsport → Online-Anmeldung: www.hochschulsport.uni-stuttgart.de
- Fachschaft, stuvus
- Studentische Gruppen (AKAFLIEG, AKAMODELL, HyEnD, KSAT, DGLR, BONDING, EUROAVIA, InVentus,...)
- Musik
 (Akademischer Chor, Orchester, BigBand, ...)

Freizeitangebote neben dem Studium

- Studentenkneipen neben dem Campus
- Bodschi (Allmandring)
- Unithekle (Allmandring, neben dem Bauhäusle)
- Goldener Trichter (Im Pfaffenhof)
- Wunderbar (Straußäcker I)
- Uni-Film: www.uni-film.de
- Fachschaftspartys
- Campus- und Wohnheimfeste

- Stundenplan und Vorlesungsverzeichnis
- Masterübersicht
- Prüfungsanmeldung
- Institute der Fakultät 6
- Informationsquellen
- Angebote neben dem Studium
- FLURUS

Fachschaft

- Wofür steht FLURUS?
 Fachschaft Luft- und Raumfahrttechnik Universität Stuttgart
- Was macht die Fachschaft
 - Studierendenvertretung
 - Vertretung der studentischen Interessen bei universitätspolitischen Angelegenheiten
- Skriptverkauf
 - Altklausuren, Skripte etc. für einen Großteil der Mastermodule
 - Termine auf der Fachschaftswebsite

Fachschaft

STUDIENBERATUNG

- → Erstsemestereinführung
- → Ansprechpartner für allg. Studienfragen
- → Tag der Wissenschaft
- → Unitag
- → Schülerberatung

STUDIERENDENVERTRETUNG

- → Semestersprecher
- → Fakultätsgremien
- → Universitätsgremien
- → stuvus

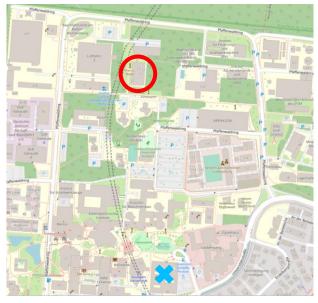
STUDIENUNTERLAGEN

- → Skripte
- → Prüfungsaufgaben
- → Formelsammlungen
- → Prüfungsordnung
- → Studienplan

ALLGEMEINE AKTIVITÄTEN

- → Exkursionen (ILA, LeBourget,...)
- → Selbstorganisation (Finanzen, IT,...)

PARTY


- → Ersti-Party
- → SPACENIGHT
- → Fachschaftssitzung: Montags, 17:30 Uhr, V27.03

Fachschaft

 Master-Erstsemester Grillen Hot-Dogs: ab ca. 12 Uhr, FLURUS (V27, -1.001)

• Campusführung (für alle die wollen): gleich im Anschluss

• Fachschaftssitzung: Montag, 17.04. 17:30 Uhr im Pfaffenwaldring 27.02

Fachschaft

- Master-Planungsworkshop: Mi, 12.04.2023 um 17.00 Uhr in PWR 27.01
 - Inhaltliche & praktische Vorschläge zum Planen des Masters
 - Wahlpflichmodule
 - Containerwahl
 - Mapler
 - Hilfreiche Tipps und Erfahrungen
 - Vorstellung von nützlichen Tools und Dokumenten
 - Offener Raum für Fragen, viele Ansprechpersonen von FLURUS anwesend
 - Vor allem hilfreich für <u>internationale Studierende</u>

Fachschaft

Treffpunkt geografischer Mittelpunkt Stuttgarts Vor "Zeit für Brot"

S-Bahn: Rotebühlplatz/Stadtmitte

Donnerstag, 13.04.2023 ab 18:45 Uhr Kommt gerne dazu ©

Kurzzusammenfassung

- Studiengangswebsite: <a href="www.student.uni-stuttgart.de/studiengang/Luft--und-"www.student.uni-stuttgart.de/studiengang/Luft--und-"www.student.uni-stuttgart.de/studiengang/Luft--und-"Raumfahrttechnik-M.Sc. (MHB, PO, etc.)
- Fachschaftswebseite: <u>www.flurus.de</u> (FAQ, Präsentation, Termine des Fachschaftsdienst)
- Mailverteiler: mein.flurus.de registrieren, um wichtige Infos zu erhalten
- Corona-Newsticker beachten! (inzwischen eher Empfehlung)
 https://www.uni-stuttgart.de/universitaet/aktuelles/meldungen/corona/

Feedback und Fragen sind jederzeit willkommen:

- → master@flurus.de
- → <u>studiendekan@isd.uni-stuttgart.de</u>

studiengang luft- und raumfahrttechnik

Prof. Dr.-Ing Tim Ricken Studiendekan tim.ricken@isd.uni-stuttgart.de

Dr. rer. nat. Michael Reyle Studiengangsmanager LRT michael.reyle@ f06.uni-stuttgart.de

Markus Vogler Masterstudent LRT FLURUS info@flurus.de

Mastereinführung WS 2022/2023

Vielen Dank und viel Erfolg!