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1. Targets for sustainable mobility

An efficient and flexible transport system is 
crucial for our economy and way of life, 
and as a result we see the number of vehi-
cles sharing our roads increasing. This 
leads to a substantial and ever growing 
threat to our environment and the social 
and economic systems. To reach the 
worldwide targets of increased mileage, 
reduced pollution from the transport sec-
tor, and improved road safety, it is no lon-
ger sufficient only to look at improve-

ments regarding vehicle construction, i.e. 
engine and transmission technology, aero-
dynamics, lightweight material, and tire 
technology. Instead, also the operation of 
the vehicle has to be optimized; investiga-
tions have shown that the driver influ-
ences the fuel consumption with up to 50 
percent. The average driver needs support 
and guiding to be able to operate the vehi-
cle in an optimal way, both regarding safe-
ty and energy consumption. The above 
mentioned targets are also of prime impor-
tance for the OEMs as, aside from emission 
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The Learning Vehicle
A virtual co-driver as trip companion?

The self-learning route memory is a method for the automatic generati-

on and continuous updating of a vehicle internal database containing 

information about road characteristics of a frequently driven route. In 

the following sections the function and the idea behind the “learning 

vehicle” together with a possible application – the virtual co-driver – 

will be described.
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2. Predictive driving

If the driver knows the road he is driving, he 
can use this memorized (i.e. preview) 
information together with the current or 
assumed activities of the other traffic parti-
cipants to control the vehicle in a more 
predictive manner for improved safety and 
fuel economy. One of the greatest potenti-
als for fuel savings lies in the avoidance of 
unnecessary acceleration and brake actua-
tion and to keep the combustion engine in 
an optimal operating point. These actions 
are typical for so called “Eco Driving“, 
which is a specialized form of predictive 
driving. Generally, a predictive driving 
style is characterized through a rather 
defensive but very active way of driving.

A predictive driving style is however very 
tedious for the driver as it needs a lot of 
concentration and physical activity (main-
ly thinking and shifting!). It is therefore 
not realistic to expect this driving style 
from the driver at all times. But, by provi-
ding the driver with information about the 
upcoming road and traffic situations for a 
preview horizon extending the visual hori-
zon, the driver is allowed more time to 
react and plan his driving. This informati-
on could also be given in form of a recom-
mendation for a suitable control action via 
some adequate interface, i.e. optic, acou-
stic, or haptic.
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legislation, high fuel efficiency, low emissi-
ons, and high safety standards are impor-
tant sales arguments. Fulfilling these tar-
gets also moves the transport sector a step 
further towards a sustainable mobility.

Ever since ABS became available in the end 
of the seventies, a variety of assistance and 
vehicle control systems have been intro-
duced. Several studies show that the 
already impressive function of many of 
the existing assistance systems is further 
improved with preview information, i.e. 
information about the characteristics of 
the road ahead. Examples are predictive 
gear shifting, predictive energy manage-
ment, curve speed warning, and impro-
ved object tracking for better reliability of 
the adaptive cruise control to mention a 
few. A number of systems using predictive 
control has been proposed and developed, 
but so far not widely spread as the 
required preview information is not yet 
available.

With relevant information about the 
expected road and traffic regulatory cha-
racteristics the performance of electric 
(EV) and hybrid-electric (HEV) vehicles 
can be greatly improved. For these propul-
sion techniques the potential of preview 
information is logically even higher than 
for conventional propulsion systems. As 
the available cruising range is often point-
ed out as the main drawback and limitati-
on of electric vehicles, an optimization 
here might help to improve the acceptance 
and to introduce these vehicles as a real 
alternative to conventional vehicles.

A further important benefit of predictive 
vehicle operation is also the possibility to 
systematically improve both component 
performance and lifetime. Based on the 
knowledge about the characteristics of the 
driven route, the load of various vehicle 
components can be controlled better to 
“spare” critical components, e.g. batteries.

As a concrete example of the use of preview 
information, a contemporary issue is used 
to illustrate the benefits: The interest for 
introducing hybrid-electric busses for the 
local public transport is currently growing. 
Clearly, these busses are predestinated for 
preview information supplied by a learning 
system – the route is defined and the vehi-
cles travel the same route over and over 
again. In this way not only the fuel effici-
ency, but also the environmental impacts 
such as noise and emissions can be impro-
ved.

An efficient and flexible transport system has become crucial for our economic system and 
way of life. The current (intra-continental) transport system shows a substantial and ever 
growing threat to the enviroment and to our health. This article contributes with an alterna-
tive method for supplying various assistance and vehicle control systems with the preview 
information required for predictive driving strategies. Not only the fuel efficiency but also 
the function of comfort and safety systems can be greatly improved by information about  
the upcoming road, e.g. optimized gear shifting strategies, energy management in hybrid-
electric and electric vehicles, curve light, and curve speed warning. The approach bases 
on the fact that many vehicles are repeatedly driven the same routes, e.g. every day to and 
from work. The system automatically identifies relevant driving situations and road charac-
terics along the road, describes these with a small number of attributes, and stores them in 
a vehicle internal database. The situation identification algorithms only require informa-
tion from standard sensors fitted for the basic engine and drive train control and the vehicle 
stability system. By comparing newly identified situation descriptions with descriptions 
from earlier drives, the database is continuously extended and updated during each drive. 
The prototype implementation of the system in a driving simulator as well in a test vehicle 
realized with the special application „virtual co-driver“ has shown positive results during 
testing.

SUMMARY
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for gear selection or the control of the 
auxiliary consumers based on the actual 
and future demand. On the other hand, 
driver assistance and driver information 
systems, which indirectly lead to a reduc-
tion in energy use by supporting the driver 
to an energetically intelligent operation of 
the vehicle, are of particular interest. 

2.2 Provision of 
     preview information

The required preview information is usually 
assumed to be available either from enhan-
ced digital maps or through communica-
tion with infrastructure or other vehicles. 
However, a great amount of this informa-
tion is still lacking. The available in-vehicle 
sensors for scanning the nearest vehicle 
surrounding, e.g. cameras, radar, and laser, 
are still too expensive for use throughout 
all vehicle segments. Furthermore, the 
electronic horizon offered by the sensors’ 
coverage range is limited and for many 
applications too short. A digital map offers 
a theoretically unlimited electronic hori-
zon, but the digital maps available today 
do not contain the required information at 
all or with too little accuracy. The upda-
ting of the maps is also expensive and cur-
rently not frequent enough. Finally, the 
mentioned communication systems for 
information exchange (car-to-car, car-to-
infrastructure) are dependent on a broad 
distribution or major (governmental) 
investments in the infrastructure for a 
proper functionality.

The learning vehicle offers an alternative 
approach for the provision of the required 
preview information. The system allows 
individual vehicles to “memorize” or to 
“learn” the characteristics of a driven 
route through repeated drives – just as an 
observant driver would do. With a self-lear-
ning route memory a database containing the 
required preview information of a fre-
quently driven route can be automatically 
generated and continually updated in the 
vehicle during each drive. This approach 
bases on two facts: the travel behavior and 
the sensor infrastructure of the vehicles. It 
is a fact that most vehicles are moved on a 
very limited part of the road network, 
which is true not only for commuter, 
public transport, and commercial vehicles, 
but also for private traffic. It is also a fact 
that most vehicles are equipped with the 
necessary sensors for the required situati-

2.1 Evolving assistance systems 

As a result of the set targets for cleaner and 
safer transport, a lot of effort has been put 
into the research and development of dri-
ver assistance systems. A number of inno-
vative functions, that just a couple of years 
ago seemed pioneering and futuristic, have 
today become more or less standard 
systems in many vehicle classes. These 
functions have, due to their considerable 
benefits, moved from being systems only 
available in upper class vehicles to be 
available also in the mid- and small class 
vehicle segment. This trend is also obvious 
within the (goods) transport sector. 

Assistance systems can be divided into two 
main categories; active and passive systems. 
Active systems are directly controlling the 
vehicle operation, while passive systems 
are rather of informing, guiding or war-
ning nature, partly leaving the final decisi-
on of action to the driver. Examples of 
systems in the safety and comfort catego-
ries are adaptive cruise control (ACC), lane 
departure warning (LDW), advanced front 
lighting (AFL), electronic stability, and 
curve speed warning. For energy purposes 
systems for intelligent gear selection can 
be mentioned. Typical for these systems is 
that their functionality usually bases on 
information from additional sensors 
installed in the vehicle and dedicated for 
each particular system. These sensors typi-
cally scan the vehicle’s surrounding and 
together with information of the current 
vehicle state the systems can react appro-
priately. 

Preview information provides a further basis 
for the decision-making in the control 
algorithms. Thus the control can be opti-
mized with regard to the characteristics of 
the upcoming road, e.g. to turn the head-
lamps before curve entrance, to select an 
appropriate gear depending on the road 
gradient, or to inform the driver about 
changing speed limits well in advance. The 
benefits of the extended functionality of 
the assistance systems, especially the ones 
regarding energy management, are cur-
rently thoroughly investigated. With suita-
ble research platforms they can be analy-
zed in a qualitative as well as quantitative 
way. On the one hand, the focus is put on 
systems that influence the energy con-
sumption directly by controlling the 
power train and the onboard electrical 
system. Examples are intelligent strategies 
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specifying an identified situation is simpli-
fied and intelligently compressed to reduce 
the amount of data to be stored. The target 
is to describe each category, e.g. curves, 
with a simple set of parameters. The 
descriptions of the identified road proper-
ties are written to a vehicle individual on-
board database and are thus available as 
preview information during the next drive 
along the same route. Based on their cate-
gory and geographical position along the 
route, each recognized road property or 
situation is used to update, improve, and 
verify the description of earlier entries for 
this property already existing in the data-
base. Finally, the database manager unit 
selects plausible situation information 
from the database and provides various 
assistance, control, or information systems 
in the vehicle with up-to-date predictive 
route information.

3.2 Situation detection

Today vehicles in all model ranges are 
equipped with a number of sensors neces-
sary for the basic functionality of the vehi-
cle, mainly for engine and transmission 
control, but ever more often also for passive 
and active safety as well as vehicle stability. 
One of the goals with this project was to use 
the unutilized potential of all these sensors 
and add functionality to the vehicle with-
out adding further complexity through 
more sensors. Data analyses have shown 
that a number of situations relevant for pre-
dictive driving strategies can be identified 
using only the information already available 
in most of our vehicles – when combined in 
a proper way. This means that a number of 
already integrated sensors get a second use. 

on detection algorithms, originally fitted 
for other purposes though. The aim is to 
generate a continuous up-to-date digital 
picture of the currently driven road. 

2.3 Advantages of self-learning

The „learning vehicle”-approach for collect-
ing and managing the valuable preview 
information claims to be both cheaper and 
more flexible than other systems of this 
kind. One reason for this is that only sen-
sors counting to the standard equipment in 
most modern vehicles are needed for the 
situation detection algorithms. Thus no 
further costs arise due to costly hardware 
(e.g. camera, radar). In contrast to digital 
maps that contain fairly basic information 
for a large geographical area, the route me -
mory system will contain highly detailed 
information but for a small geographical 
area; the part of the road network where 
the vehicle is primarily moved. The propo-
sed method is not dependent on road infra-
structure or the system’s distribution in 
other vehicles, as is the case with the men-
tioned communication systems. With this 
method, the amount and type of data to be 
stored are limited to the truly relevant 
information for a particular vehicle/driver 
combination.

3. The learning vehicle

3.1 System setup

The relations between the system’s key pro-
cesses are illustrated in 01. The route 
memory system is connected to the vehicle 
via the real vehicle CAN network and has 
the ability to both receive and send data. 
During the drive data from various sen-
sors, e.g. yaw rate, acceleration, and engine 
speed provide information about the vehi-
cle’s movements and actual state. This data 
indirectly provide information about the 
characteristics of the driven road as well as 
the driver activity. The sensor data are 
analyzed online to identify relevant road 
properties, such as slopes, curves or speed 
limit changes. The identification algo-
rithms are based on pattern recognition 
methods extracting and categorizing typi-
cal features of the data stream indicating a 
certain road property. With a positioning 
system each identified situation is also 
associated with a geographical position 
along the driven route. Each set of data 

01

Schematic illustration of the system 
setup for the prototype implementation 
of the self-learning route memory.
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of the road and traffic conditions with a 
relatively high confidence.

The available sensor data are analyzed online 
in the vehicle during the drive and the fea-
tures of each situation are recognized “on-
the-fly”. Also, the filtered or derived ver-
sions of the measurement data can be used 
when the relative time delay due to filter-
ing is accounted for by the evaluation. Pre-
set limits defining each event are used as 
“flags” for starting and stopping the 
recording of the measurement data.

The curvature of the driven route can be 
determined directly with information 
from the yaw rate sensor together with the 
vehicle velocity. A curve is identified 
where the pre-defined values for mini-
mum curvature and length are fulfilled, 
see 03. These values are set to be velocity 
dependent to allow the identification of 
both long curves with large radius at high 
speed (typically freeway) and short curves 
with small radius at lower speed as often 
the case in urban areas.

The easiest way of determining the longitu-
dinal road gradient is with a high-resolu-
tion longitudinal acceleration sensor. As 
such sensors are usually not available as 
standard, methods based on e.g. estima-
tions of vehicle output torque and vehicle 
acceleration, or observers of the road gra-
dient must be used. In this case a method 
based on the vehicle output torque has 
shown functional. The selected method 
uses the engine output torque and road 
load to solve the equation of motion of the 
vehicle in the longitudinal direction, 
where the road load is the sum of the 
familiar driving resistances; rolling resis-
tance, aerodynamic drag, and acceleration 
resistance. 

The speed limit identification is a bit more 
complicated. First of all it must be decided 
if the identified speed should represent the 
valid speed limit as regulated by law or the 
speed selected by the driver based on his 
personal preferences or perhaps the traffic 
density. Without sensors identifying road 
signs, only an estimation of the speed limit 
can be made. Measurement data show 
larger velocity variations on freeways com-
pared to urban roads, caused by the indi-
vidual drivers, the traffic density as well as 
the traffic regulations. Therefore the speed 
limit identification algorithm needs to 
include both driver type (e.g. sportive, 
normal, or defensive) and road type clas-
sifications.

The only additional “sensor” not yet count-
ing as standard equipment but necessary 
for the learning system is a positioning sys-
tem for defining the geographical position 
of the identified situations. This require-
ment does not imply a critical shortcom-
ing of the system looking at the increased 
availability of portable navigation devices 
today. The used sensors, their original des-
ignation, and the possible extended use are 
listed in T01. With this minimum require-
ment and an intelligent numeric combina-
tion of the available signals, situations such 
as curves, slopes, speed limits, or stopping 
positions (i.e. traffic light or intersection) 
can be identified.

02 shows some selected 
sensor signals from a num-
ber of independent test 
drive sessions along the 
same road section. The 
measurements show a high 
degree of conformity across 
the different drives even 
though they were conduct-
ed with different drivers at 
slightly different day times. 
This conformity is partly a 
result of the limited pos-
sibility to freely select speed 
and driving style due to 
applicable traffic regula-
tions and other traffic par-
ticipants. Consequently, 
with a statistical approach 
and pattern recognition 
methods it is possible to 
identify the characteristics 

System Signal Situation identification

ABS Wheel speed Curve, Stop, Slope, Speed

ESC Yaw rate
Lateral acceleration
Steering wheel angle
Steering wheel angle velocity

Curve
Curve
Curve
Curve

Power train control Engine speed
Engine torque
Clutch activation
Brake pressure
Accelerator pedal pressure

Slope, Stop
Slope
Stop, Slope
Stop, Speed, Slope
Stop, Speed

Navigation system Geographical position All

Clock Date, Time All
T01

Minimum requirement of sensors and 
their original and potential use.

02

Selected sensor signals measured 
during four different drive sessions.
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the position informa tion. 
For example, the trace of a 
curve is specified with the 
geographical coordinates 
for the begin ning and end 
positions together with the 
measured curvature. The 
gradient of a slope is 
described similarly, only 
with road gradient as 
specific magnitude. Unless 
this data is highly 
compressed the storage of 
the data would not be 
practicable, both with 
regard to storage and communication 
capacity. To achieve this, the measurement 
values for curvature and gradient are 
approximated with a (continuous) 
mathematical model. By means of curve 
fitting methods, a series of data points and 
possible other constraints can be described 
with a finite number of parameters, i.e. the 
coefficients of the approximating function. 
Firstly, an approximating model that 
relates the response data to the predicted 
data with one or more coefficients must be 
selected. The result of the fitting process is 
then an estimation of the unknown model 
parameters. These coefficients are obtained 
by using the least square method to 
minimize the squared sum of the residuals. 
The challenge, however, is not the solu-
tion of the resulting (over determined) 
equation system but the selection of an 
appropriate function model and its degree. 

3.3 The memory concept

Each identified situation is described with a 
fixed set of parameters based on the situa-
tion category. Some of the attributes are 
common for all types of situations, others 
apply only for a specific situation type. The 
fields required for each situation category 
are illustrated in T02. The format of the 
content of the field “Magnitude” is differ-
ent depending on category. For curves and 
slopes, this field contains the specification 
of an approximation function and its coef-
ficients. For speed and traffic light infor-
mation on the other hand, a single value 
for velocity or standstill duration is suffi-
cient. Additional to the geographical posi-
tion, each identified situation is also stored 
with information about date and time. 
Especially for non-static situations, such as 
speed limits and stopping situations, this is 
important to be able to take time-depen-
dent variations into account, e.g. traffic 
density. The field ID is important for refer-
ence purposes, to be able to associate each 
identified situation with the correct route. 
The routes can for example be denoted as 
“home-workplace” or “home-supermar-
ket”. Similar fields as for the situation 
descriptions are used to specify each route, 
as shown in the last column in T02. The 
route counter holds information about the 
number of times a certain route was driven 
and is used for plausibility checks.

An identified situation is initially described 
through the extracted data features and 

03

Graphical representation of the 
identified curvature of a driven path.

T02

Matrix showing the fields required for the description of each situation category.

Situation Category

Fields Curve Slope Speed Traffic light Route

Identity number (ID) x x x x x

Geo. Coord. Beginning x x x x x

Geo. Coord. End x x x x

Date x x x x x

Time x x x x x

Length x x x x

Heading x

Magnitude Approx. Function
+ Coefficients

Approx. Function 
+ Coefficients

Velocity Duration

Counter x
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method to be able to sequentially order the 
individual situations along the route. The 
described parameters and configuration 
serve for a clear structure and improved 
search performance of the database.

3.4 The learning process

All situations that are recognized during a 
drive are used to keep the database up to 
date and to improve the accuracy of the 
route characteristics recorded during 
previous drives. This is hence denoted as 
the learning process of the route memory 
system.

For the updating, the description of each 
situation identified during a drive is 
compared with similar situations in the 
database. As soon as a situation is 
recognized and completely recorded 
during a drive, a search algorithm is 
initiated to find all comparable events in 
the memory. The selection criteria are 
geographical position and situation 
category. Similar situation descriptions are 
extracted and a comparison algorithm is 
initiated. The newly recorded situation is 
individually compared with the extracted 
data. Depending on the outcome, the 
extracted data can be changed according to 
the new information. If no corresponding 
entries are found, or if the compared 
descriptions do not match, the new 
situation is added to the memory unit as a 
new event along the current route. For 
multi-valued situation descriptions the 
correlation coefficient between the two 
sets of (approximated) data is used as a 
measure for correspondence. Otherwise, 
the data values can be directly compared. 
For time-variant situations (i.e. traffic flow 
control) also the recorded daytime and 
week- day are taken into account by the 
comparison. This is done to differentiate 
between information collected during e.g. 
rush-hour and times with lower traffic 
density. 

When the compared situation descriptions 
coincide within the tolerances, these two 
data sets must be combined into one. This 
is done with a weighted arithmetic mean 
to successively improve the description of 
the road features. Additionally, also a 
counter holding information about the 
number of times a certain situation was 
recognized is incremented. Finally the date 
and time information for the situation 
identification and database update is adju-

Based on the knowledge 
about the origin of the 
sample data and statistical 
analyses, an iterative algo-
rithm for the com pu ter i zed 
selection of an ade quate 
model and its degree has 
been developed. As a result, 
it can be shown that the 
curvature and the gra dient 
can be sufficiently approx-
imated with e.g. a linear 
model up to degree six.
According to the above, 
each identified situation is 
specified with a finite (and 
relatively small) number of 
parameters before it is 
stored in the vehicle 
internal database. The 
situation descriptions are 
classified into single- or 
multi-valued quantities 
depending on the situation 
category; curvature or road 
gradient are due to the 
approximation function de -

no ted as multi-valued quantities while 
speed limit and standing duration are 
single-valued quantities. As a consequence, 
also the memory requirement for the two 
categories is different: multi-valued situa-
tion descriptions require approximately 69 
byte compared to the 12 byte required for 
single-valued descriptions.

The implemented database structure, i.e. the 
memory of the learning vehicle, has been 
configured to contain several separate 
situation descriptions of various categories 
for one specific route, as well as a number 
of different routes; one single route can 
contain many situations of various 
categories, as well as one specific situation 
can appear in more than one of the stored 
routes (in case some sections of the routes 
coincide). In this way, each situation 
description will exist only once in the 
database, but can still be associated with 
several routes. The information about the 
connection between situations and routes 
are tracked with IDs and stored separately 
in the memory together with information 
such as situation category, driven distance 
from route begin, and validity informa tion. 
In comparison to an ordinary naviga tion 
system where the complete route trace is 
available, the parameter “driven distance 
from route begin” is necessary for this 

04

Illustration of situation description 
comparison and data update.
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other due to the successive updating are 
merged. This is important to always ensure 
free memory capacity and to improve 
query time and search algorithms. 

4. System Realization 

A prototype of the self-learning route 
memory presented here is implemented in 
C++-code featuring a direct interface for 
reading the CAN-bus of the host vehicle. 
The identified road characteristics are sto-
red in a database based on MySQL. For the 
communication between the route memo-
ry system and for example a driving strate-
gy unit, an interface for Ethernet commu-
nication has been implemented. The ambi-
tion is to develop a system capable of real-
time application and independent of plat-
form. The development of the system 
algorithms, in particular the algorithms 
for the situation detection, bases on real 
measurement data collected during test 
drives over several thousands of kilometers. 

One possible application for the learning 
system is for the display of route informa-
tion in order to inform the driver about 
special situations ahead; for example, a 
changed speed limit or a narrow curve. 
Such information can help the driver to 
decelerate appropriately, i.e. optimized 
regarding energy, safety, and comfort. 
Well-timed information about the grade of 
upcoming slopes is useful especially for 
heavy vehicles in order to select the opti-
mum gear. 

4.1 Driving simulator

As a first step towards implementation in a 
real vehicle, a virtual co-driver has been rea-

sted. For each drive along a certain route 
the route specific properties are modified if 
necessary, i.e. the counter parameter and 
date and time information.

Unlike the situation identification algo-
rithms, which must be performed in real-
time to avoid too large memory require-
ments, the comparison and update algo-
rithms are not time critical during the cur-
rent drive. This evaluation is, however, 
performed during the drive as well, but as 
a parallel process to leave the main CPU 
time for the situation detection algo-
rithms. This basically means that the data-
base is updated while waiting for the next 
situation to occur, i.e. on a straight leveled 
road section. 

3.5 Situation selection

The identified, modified, and stored route 
information is now available as preview 
information during following drives. A 
selection algorithm is responsible for select-
ing correctly identified and learnt route 
information from the on-board memory 
and for passing this information on to vari-
ous assistance, control, or information 
systems in the vehicle.  By the selection the 
plausibility of the data is verified based on 
the counter values of the selected situation 
and its corresponding route. Depending on 
the target system, i.e. the intended use of 
the preview data, the amount and format 
of the retrieved information need to be 
customized. The required amount of data 
can be divided into three levels: a simple 
situation description (level 1), a single situa-
tion description (level 2), and multiple situa-
tion descriptions (level 3). A system for 
optimized gear selection or energy mana ge-
ment in a hybrid-electric vehicle requires 
precise information about all upcoming 
slopes, speed limits, curves, stopping posi-
tions, etc. for the next 2-5 km to be able to 
make the necessary decisions, i.e. level 3. A 
curve light system only needs precise infor-
mation about the next upcoming curve, i.e. 
level 2. The situation description for a dri-
ver information system on the other hand, 
must be reduced to an absolute minimum 
to prevent a driver information overload, 
hence level 1, containing only information 
about e.g. situation type and remaining 
distance, is sufficient. 

Regularly obsolete entries are removed and 
separate situation descriptions that mutu-
ally (and coincidentally) approach each 

05

Implementation of the “virtual 
co-driver“ in a static driving simulator 
for functional testing.
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the virtual co-driver can be easily transfer-
red from the driving simulator environ-
ment into a real test vehicle.

A short-coming of the static driving simula-
tor is the lack of motion for a realistic 
reproduction of the real driver environ-
ment. This often results in motion sickness 
due to the discrepancy between the 
motions insinuated through the graphics 
and lack of motions actually perceived by 
the driver. Hence such a simulator is not 
appropriate for investigating driver activi-
ty, system acceptance issues, or the actual 
potential of developed systems. To be able 
to investigate these topics, a large dynamic 
driving simulator is currently under 
construction at the University of Stuttgart. 
This simulator is technically and systema-
tically seen as an extension of the static 
simulator. The simulation setup is similar, 
only that the calculated motions of the 
vehicle body are transmitted to a powerful 
motion system translating these signals 
into real movements exerted on a plat-
form. On the platform a real vehicle is 
installed compared to the vehicle mockup 
in the static driving simulator. The real 
vehicle increases the impression of reality 
by the test drivers and it also allows the 
evaluation of the tested system in the ori-
ginal vehicle environment, with the origi-
nal control and display interfaces.

4.2 Real vehicle

The implemented configuration and setup of 
the virtual co-driver, as a special use of the 
learning system, allows an easy transfer to 
a real vehicle. A prototype of the co-driver 
for the use in a real vehicle has been rea-
lized on a Car-PC featuring hard- and soft-
ware interfaces for a direct communication 
with the vehicle CAN. This permits an easy 
logging of the relevant sensor values for 
the situation identification algorithms. For 
the vehicle implementation also an alter-
native communication interface over 
Ethernet has been realized. In the proto-
type system this data format is preferred 
over standard CAN-communication 
because of the amount of data that needs 
to be transferred during the system verifi-
cation process. This alternative communi-
cation method is available as the complete 
control strategy of the test vehicle is rea-
lized on an advanced rapid prototyping 
system offering the most common data 
and communication interfaces. 

lized in a real-time driving simulator. This 
is a convenient step in order to functional-
ly test and optimize the software under 
realistic conditions. One major challenge 
within the development of situation detec-
tion algorithms is the variety of drivers and 
driving styles. An example is the infinite 
number of possible trajectories for driving 
through a certain curve in the road. A fur-
ther example is the continuously changing 
vehicle speed. For such a learning system it 
is important that the situation detection is 
performed in a robust and deterministic 
manner. A driving simulator is a cost-effi-
cient and time saving tool for the verifica-
tion and optimization of situation detec-
tion algorithms because it allows quick 
variations of the test tracks or vehicle para-
meters in a safe and reproducible environ-
ment. Hence it is possible to evaluate the 
identification algorithms and assistance 
systems even in driving conditions close to 
the physical limits or under other unfa-
vorable conditions. 

The static driving simulator used for this 
implementation features a stereoscopic 
surround projection of the driving scene 
on three screens. A vehicle mockup is 
installed in the center of this projection 
facility. The mockup is equipped with a 
seat, pedals, a gear shift lever, and a high-
performance force-feedback steering wheel 
drive. The steering drive enables dynamic 
feedback of the steering torque to the “dri-
ver” and hence a realistic feeling. The heart 
of the simulation is a vehicle dynamics 
model which calculates the motion of the 
vehicle body, the chassis, and the wheels 
using a multi-body system (MBS) 
approach. For realistic behavior of the 
interactive driving simulation it has to be 
ensured that the output of the vehicle 
simulation model is plausible in all imagi-
nable driving states, e.g. in high-speed cor-
nering on road surfaces with low friction 
coefficient or in reverse driving situations. 
The used model contains a fully nonlinear 
tire/surface model which covers all possible 
combinations of longitudinal slip, side slip, 
and vertical forces. The driving simulator is 
equipped with “virtual sensors”, which cal-
culate the longitudinal and lateral accelera-
tions, yaw rate, position information (GPS 
emulator) as well as other sensor signals. 
This information is transmitted to the vir-
tual co-driver via a real CAN network with 
communication parameters identical with 
an existing vehicle. This setup ensures that 
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ments in direct controlling of the vehicle 
systems and driver support for an opti-
mized vehicle operation. Consequently, 
there is an increasing demand for an alter-
native approach for the provision of the 
necessary preview information that meets 
the conditions mentioned above.                 •
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The various algorithms of the learning 
system have hence been subject to verifica-
tion and validation tests under real driving 
conditions, in real traffic situations with 
real drivers. The results of these test drives 
are highly satisfactory.

5. … and then?

To achieve the worldwide goals for reduced 
emissions from the traffic and less severe 
and fatal accidents on our roads a wide-
spread adoption of systems for predictive 
driving is necessary. This can only be 
achieved if the systems are cheap, immedi-
ately available, easy to implement, reliable, 
and highly beneficial from the first system 
on the market. The main problem for a 
wide-spread use of such systems is current-
ly the lack of the required preview infor-
mation. The system introduced in this 
article presents an alternative solution of 
this problem.

However, the preview information is rather 
useless unless the route can be predicted. A 
simple route prediction algorithm as 
implemented for the virtual co-driver 
takes parameters such as day time, day, dri-
ver, situation sequence, etc. into account 
to determine which route the vehicle is 
traveling. Only based on this prediction, 
the correct preview information can be 
supplied. However, also the smallest devia-
tion from the main route, e.g. a detour to 
the gas station or for picking someone up, 
would in this case distort the positioning 
of the situation prediction. 

Today, there exist only a few observations for 
realized route selection prediction systems 
as route prediction is a complex topic. 
Especially within the research around traf-
fic flow management route prediction is 
handled as a separate topic. Further, the 
proposed system shows a minimum requi-
rement of sensors. Of course, the more 
sensors available, the more situations can 
be detected with higher precision. As a fur-
ther improvement of the system, a data 
sharing system providing an interface for 
the exchange of collected route informati-
on would add functionality to the method. 
Hence each individual database can be 
filled and updated quicker – which is rele-
vant especially for vehicle fleets.

Thus, the current state is far from the final 
destination but the first step is made. As a 
conclusion, predictive road information is 
required to achieve the desired improve-
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