Members

Open Positions

Curriculum Vitae

 


 

Carbon fibers (PAN-, Cellulose-, Polyolefin-based)

Carbon fibers are made of anisotropic carbon with at least 92 wt.-% and up to 100 wt.-% carbon. Carbon fibers have high tensile strengths up to 7 GPa with very good creep resistance, low densities (ρ=1.75-2.00 g/cm3) and high moduli up to E ≤ 950 GPa. They lack resistance to oxidizing agents as hot air and flames, but they are resistant to all other chemical species. The good mechanical properties make carbon fiber attractive for use in composites in the form of woven textiles as well as of continuous or chopped fibers. The composite parts can be produced through filament winding, tape winding, pultrusion, compression molding, vacuum bagging, liquid molding, and injection molding. For the automotive industry, carbon fiber-reinforced polymeric composites allow for a significant reduction in weight, which is a prerequisite for battery-driven cars. More recently, carbon fibers moved into the center of interest for carbon-fiber-reinforced concrete for houses, bridges, etc. as well as for carbon-fiber reinforced compounds for, there increasingly replacing steel.
The most important precursor in the market is poly(acrylonitrile) (PAN) for HT (high strength) and IMS (intermediate modulus) type carbon fibers for high strength CFRP applications, while pitch is used for most other carbon fiber types as HM (high modulus) or UHM (ultra high modulus) for CFRP parts with high stiffness requirements. However, in search of renewable and energy-efficient precursors and processes have moved into the center of interest. Current projects focus on all these precursors, where new precursors systems and processes are developed for PAN, cellulose, lignin, polyethylene and others. Targets are better and more efficient processes for carbon fibers as well as improved fiber properties. Research is carried out in close collaboration with the ITCF Denkendorf, where these activities are allocated in the established High-Performance Fiber Center (HPFC), where pilot lines for fiber preparation and processing can prepare precursor and carbon fibers in kg amounts.
 
Carbon-jpg

References:
[1] Carbon Fibers E. Frank, M. R. Buchmeiser in "Fiber, films, resins and plastics", Enzyclopedia in Polymeric Nanomaterials (S. Kobayashi, K. Müllen, Eds.), Vol.1, 2015, 306-310, ISBN: 978-642-29647-5.
[2] E. Frank, D. Ingildeev, L. M. Steudle, J. M. Spörl, M. R. Buchmeiser, Angew. Chem. 126, 2014, 5364-5403; Angew. Chem. Int. Ed. 53, 2014, 5262-5298.
[3] E. Frank, F. Hermanutz, M. R. Buchmeiser, Macromol. Mater. Eng., 297, 2012, 493-501.
[4] E. Frank, E. Giebel, M. R. Buchmeiser, Techn. Text., 2, 2015, E53-55; Chem. Fibers, Int., 4, 2015, 216-218.
[5] High-Performance Poly(acrylonitrile) (PAN)-Based Carbon Fibers. In: Structure and Properties of High-Performance Fibers (G. Bhat, Ed.), 1stEd. E. Frank, D. Ingildeev, M. R. Buchmeiser, Woodhead Publishing Ltd., Elsevier, 187, 2016, 7-30,  ISBN 978-0-08-100550-7.
[6] J. M. Spörl, A. Ota, R. Beyer, T. Lehr, A. Müller, F. Hermanutz, M. R. Buchmeiser, J. Polym. Sci. A: Polym. Chem., 52, 2014, 1322-1333.
[7] J. M. Spörl, A. Ota, S. Sun, K. Massonne, F. Hermanutz, M. R. Buchmeiser, Mater. Today Commun. 7, 2016, 1-10
[8]  Method for production of carbon fibers from cellulose fibers, S. Son, K. Massonne, F. Hermanutz, J. Spoerl, M. R. Buchmeiser, R. Beyer (BASF E), PCT Int. Appl. (2015), WO 2015173243 A1 20151119
[9] L. Steudle, E. Frank, A. Ota, U. Hageroth, S. Henzler, W. Schuler, R. Neupert, M. R.Buchmeiser, Macromol. Mater. Eng., 2017, published online.
[10] Precursor-Fasern von Lignin-basierten Carbonfasern, deren Herstellung und Verwendung, M. R. Buchmeiser, L. Steudle, E. Frank, patents pending (2013).
[11] Verfahren zur Herstellung einer Lignin-basierten Zusammensetzung, E. Frank, M. Clauss, M. R. Buchmeiser (DITF Denkendorf), patents pending (2015), 10 2015 120.377.4.
[12] Website of BBI-EU-H2020-project ‘LIBRE’: http://libre2020.eu.
[13] Verfahren zur Herstellung modifizierter Formkörper sowie deren Verwendung zur Herstellung von Carbonformkörpern, E. Frank, E. Muks, M. R. Buchmeiser (ITCF Denkendorf), DE 10 2015 106 348 A1 (2016.10.27).[14] Website of EU-FP7-project ‘NEWSPEC’: http://www.newspec.eu
[15] J. W. Krumpfer,E. Giebel, A. Müller, L. Ackermann, C. Nardi-Tironi, J. Unold,  M. Klapper, M. R. Buchmeiser, K. Müllen, Chem. Mater., 29, 2017, 780-788.
[16] M. Speiser, S. Henzler, U. Hageroth, A. Renfftlen, A. Müller D. Schawaller, B. Sandig, M. R. Buchmeiser, Carbon, 63, 2013, 554-561.
[17] M. R. Buchmeiser, J. Unold, K. Schneider, E. B. Anderson, F. Hermanutz, E. Frank, A. Müller, S. Zinn, J. Mater. Chem. A, 1, 2013, 13154-13163.