Precursor Keramik

Fig. 1: Schematic drawing of precursor ceramic.
Fig. 2: SiC/SiC Composit

Beside powder technological routes for the fabrication of ceramics, there is the possibility to synthesize such materials from polymeric precursors (precursor). Especially, in the case of covalent ceramics, such as silicon carbide and silicon nitride, sintering aids can be waived during the process to obtain better mechanical properties at high temperatures.

One advantage of this synthesis process is to optimize the ceramic properties already at the stage of the polymeric precursor, resulting in good homogeneity of the properties. Another important parameter is the shape forming. The precursor can be processed by established methods of polymer technology. Therefore, it is possible to obtain shapes that can be not or only with great effort accessed by other methods of ceramic processing. The generations of ceramic fiber composite materials and coatings are good examples for the advantages of this technology.

 

Projects:

 

 

Literature:

Tavakoli, A.H., Golczewski, J.A., Bill, J., Navrotsky, A., 2012. Effect of boron on the thermodynamic stability of amorphous polymer-derived Si-(B-)C-N ceramics. Acta Materialia 60, 4514-4522.

Tavakoli, A.H., Gerstel, P., Golczewski, J.A., Bill, J., 2011. Kinetic effect of boron on the crystallization of Si3N4 in Si-B-C-N polymer-derived ceramics. Journal of Materials Research 26, 600-608.

Tavakoli, A.H., Gerstel, P., Golczewski, J.A., Bill, J., 2010. Crystallization kinetics of Si3N4 in Si-B-C-N polymer-derived ceramics. Journal of Materials Research 25, 2150-2158.

Tavakoli, A.H., Gerstel, P., Golczewski, J.A., Bill, J., 2010. Kinetic effect of boron on the thermal stability of Si-(B-)C-N polymer-derived ceramics. Acta Materialia 58, 6002-6011.

Tavakoli, A.H., Gerstel, P., Golczewski, J.A., Bill, J., 2010. Quantitative X-ray Diffraction Analysis and Modeling of the Crystallization Process in Amorphous Si-B-C-N Polymer-Derived Ceramics. Journal of the American Ceramic Society 93, 1470-1478.

Tavakoli, A.H., Gerstel, P., Golczewski, J.A., Bill, J., 2009. Effect of boron on the crystallization of amorphous Si-(B-)C-N polymer-derived ceramics. Journal of Non-Crystalline Solids 355, 2381-2389.

Li, Y., Fernandez-Recio, L., Gerstel, P., Srot, V., van Aken, P.A., Kaiser, G., Burghard, M., Bill, J., 2008. Chemical modification of single-walled carbon nanotubes for the reinforcement of precursor-derived ceramics. Chemistry of Materials 20, 5593-5599.

Burghard, Z., Schon, D., Bill, J., Aldinger, F., 2006. Polymer-derived Si-C-N ceramics reinforced by single-wall carbon nanotubes. International Journal of Materials Research 97, 1667-1672.

Ishihara, S., Bill, J., Aldinger, F., Shinoda, Y., Wakai, F., Nishimura, T., Tanaka, H., 2006. High-temperature deformation of Si-C-N monoliths containing residual amorphous phase derived from polyvinylsilazane. Journal of the Ceramic Society of Japan 114, 575-579.

Katsuda, Y., Gerstel, P., Janakiraman, N., Bill, J., Aldinger, F., 2006. Reinforcement of precursor-derived Si-C-N ceramics with carbon nanotubes. Journal of the European Ceramic Society 26, 3399-3405.

Bill, J., Kamphowe, T.W., Muller, A., Wichmann, T., Zern, A., Jalowieki, A., Mayer, J., Weinmann, M., Schuhmacher, J., Muller, K., Peng, J.Q., Seifert, H.J., Aldinger, F., 2001. Precursor-derived Si-(B-)C-N ceramics: thermolysis, amorphous state and crystallization. Applied Organometallic Chemistry 15, 777-793.