Publikationen
Publikationen 2004 bis 2013 der einzelnen Forschungsgebiete
C-C-Bindungen knüpfende Enzyme: Struktur, Funktion, Anwendungen
Pohl, M., Sprenger, G.A., & Müller, M. (2004) A new perspective on thiamine catalysis.
Current Opinion in Biotechnology 15: 335-342.
Samland AK, Sprenger GA (2006) Microbial aldolases as C-C bonding enzymes – unknown treasures and new developments.
Applied Microbiology and Biotechnology, 71: 253-264.
Castillo, J.A., Calveras, J., Casas, J., Mitjans, M., Vinardell, P., Parella, T., Inoue, T., Sprenger, G.A., Joglar, J., & Clapés, P. (2007) Fructose-6-phosphate aldolase in organic synthesis: preparation of D-fagomine, N-alkylated derivatives and preliminary biological assays.
Organic Letters, 8: 6067-6070.
Sprenger, G.A., Schürmann, Me., Schürmann, Ma., Johnen, S., Sprenger, G., Sahm, H., Inoue, T., Schörken, U. (2007) C-C-bonding microbial enzymes: thiamine diphosphate-dependent enzymes and class I aldolases. pp. 298-311. In Asymmetric Synthesis with Chemical and Biological Methods (D Enders, K-E Jaeger, Hg.) Wiley-VCH, Weinheim.
Clapés, P., Sprenger, G.A., Joglar, J. (2008) Novel Strategies in aldolase-catalyzed synthesis of iminosugars. pp. 299-311. In “Modern Biocatalysis: Stereoselective and environmentally friendly reactions” (W.D. Fessner, T. Anthonsen, eds.) Wiley-VCH Verlag, Weinheim.
Samland, A.K., Wang, M., & Sprenger, G.A. (2008) MJ0400 from Methanocaldococcus jannaschii exhibits fructose 1,6-bisphosphate aldolase activity. FEMS Microbiology Letters, 281: 36-41.
Schneider, S., Sandalova, T., Schneider, G., Sprenger, G.A., & Samland, A.K. (2008) Replacement of a phenylalanine by a tyrosine in the active site confers fructose 6-phosphate aldolase activity to the transaldolase of Escherichia coli and human origin. Journal Biological Chemistry, 283: 30064-30072.
Samland A.K., Sprenger G.A. (2009) Transaldolase: from Biochemistry to human disease. International Journal of Biochemistry & Cell Biology, 41: 1482-1494.
Johnen, S., Sprenger, G.A. (2009) Characterization of recombinant thiamine diphosphate-dependent phosphonopyruvate decarboxylase from Streptomyces viridochromogenes Tü494. Journal of Molecular Catalysis B:Enzymatic, 61: 39-46.
Kurutsch, A., Richter, M., Brecht, V., Sprenger, G.A., & Müller, M. (2009) MenD as a versatile catalyst for asymmetric synthesis. Journal of Molecular Catalysis B:Enzymatic, 283: 56-66.
Schneider, S., Gutiérrez, M., Sandalova, T., Schneider, G., Clapés, P., Sprenger, G.A., Samland, A.K. (2010) Redesigning the active site of transaldolase TalB from Escherichia coli: new variants with improved affinity towards non-phosphorylated substrates. ChemBioChem, 11: 681-690.
Clapés P., Fessner W-D., Sprenger, G.A., Samland, A.K. (2010) Recent progress in stereoselective synthesis with aldolases. Current Opinion in Chemical Biology, 14: 154-167.
Castillo, J.A., Guérard-Hélaine, C., Gutiérrez, M., Garrabou, X., Sancelme, M. Schürmann, M., Inoue, T., Hélaine, v., Charmantray, F., Gefflaut, T., Hecquet, L., Joglar, J., Clapés, P., Sprenger, G.A, Lemaire, M. (2010) A mutant D-Fructose-6-Phosphate aldolase (Ala129Ser) as a powerful improved biocatalyst for direct syntheses of nitrocyclitols and carbohydrates from dihydroxyacetone. Advanced Synthesis and Catalysis, 352: 1039-1046.
Rale, M., Schneider, S., Sprenger, G.A., Samland, A.K., Fessner, W-D. (2011) Broadening deoxysugar glycodiversity: natural and engineered transaldolases unlock a complementary substrate space. Chemistry, a European Journal, 17: 2623-2632.
Samland, A.K., Rale, M., Sprenger, G.A., Fessner, W-D. (2011) The transaldolase family: novel synthetic opportunities from an ancient enzyme scaffold. ChemBioChem, 12: 1454-1474.
Samland, A.K., Baier, S., Schürmann, M., Inoue, T., Huf, S., Schneider, G., Sprenger, G.A., Sandalova, T. (2012) Conservation of structure and mechanism within the transaldolase enzyme family. FEBS Journal, 279: 766-778.
Widmann, M., Pleiss, J., Samland, A.K. (2012) Computational tools for rational protein engineering of aldolases. Computational and Structural Biotechnology Journal, 2 (3) e201209016.
Sanchez-Moreno, I., Nauton, L., Théry, V., Pinet, A., Petit, J-L., de Berardinis, V., Samland, A.K., Guérard-Hélaine, C., Lemaire, M. (2012) FSAB: a new fructose-6-phosphate aldolase from Escherichia coli. Cloning, over-expression and comparative kinetic characterization with FSAA. Journal of Molecular Catalysis B: Enzymatic, 84:9-14.
Zum Forschungsgebiet
Stoffwechselphysiologie von Bakterien; Synthese von Feinchemikalien mit Escherichia coli
Rüffer, N., Heidersdorf, U., Kretzers, I., Sprenger, G.A., Raeven, L., & Takors, R. (2004) Fully integrated L-phenylalanine separation and concentration using reactive-extraction with liquid-liquid centrifuges in a fed-batch process with E. coli.
Bioprocess and Biosystems Engineering 26: 239-248.
Oldiges, M., Kunze, M., Degenring, D., Sprenger, G.A., & Takors, R. (2004) Stimulation, monitoring and analysis of pathway dynamics by metabolic profiling in the aromatic amino acid pathway.
Biotechnology Progress 20:1623-1633.
Sprenger, G.A., & Swings, J. (2005) Genus Zymomonas.
In Garrity, G.M. (Hg.) Bergey´s Manual of Systematic Bacteriology, Second edition,Vol. 2, pp.282-286. The Proteobacteria, Springer Verlag, New York.
Blaudeck, N., Kreutzenbeck, P., Müller, Ma., Sprenger, G.A. & Freudl, R. (2005) Isolation and characterization of bifunctional Escherichia coli TatA mutant proteins that allow efficient Tat-dependent protein translocation in the absence of TatB.
Journal of Biological Chemistry 280: 3426-3432.
Sprenger, G.A. (2006) Aromatic Amino Acids.
In Amino Acid Biosynthesis – Pathways, Regulation and Metabolic Engineering (Microbiology Monographs 5)
(Wendisch, V., Hg.) Springer Verlag, Berlin Heidelberg.
Kreutzenbeck, P., Kröger, C., Lausberg, F. Blaudeck, N., Sprenger, G.A. & Freudl, R. (2007) Escherichia coli twin-arginine (Tat) mutant translocases possessing relaxed signal peptide recognition specificities.
Journal of Biological Chemistry, 282: 7903-7911.
Sprenger GA (2007) From scratch to value: Engineering Escherichia coli wild type cells to the production of L-phenylalanine and other fine chemicals derived from chorismate.
Applied Microbiology and Biotechnology, 75:739-749.
Sprenger, G.A. (2007) Aromatic Amino Acids.
pp. 93-127. In Amino Acid Biosynthesis – Pathways, Regulation and Metabolic Engineering (Microbiology Monographs Vol.5/2007) (Wendisch, V., Hg.) Springer Verlag, Berlin Heidelberg.
Feuer, R., Ederer, M., Gilles, E.D., Sprenger, G.A., Sawodny, O., & Sauter, T. (2008) Analyse der evolutiven Adaptation am Beispiel einer pyruvat-auxotrophen Escherichia coli- Mutante. at- Automatisierungstechnik, 56:257-268.
Albermann, C., Ghanegaonkar, S., Lemuth, K., Vallon, T., Reuss, M., Armbruster, W., & Sprenger, G.A. (2008) Biosynthesis of the vitamin E compound d-tocotrienol in recombinant Escherichia coli cells. ChemBioChem, 9: 2524-2533.
Vallon, T., Ghanegaonkar, S., Vielhauer, O., Müller, A. , Albermann, C., Sprenger, G., Reuss, M., Lemuth, K. (2008) Quantitative analysis of isoprenoid diphosphate intermediates in recombinant and wild-type Escherichia coli strains. Applied Microbiology and Biotechnology, 81: 175-182.
Albermann, C., Trachtmann, N., Sprenger, G.A. (2010) A simple and reliable method to conduct and monitor expression cassettes integration into the Escherichia coli chromosome. Biotechnology Journal, 5: 32-38.
Albermann, C. (2011) High versus low level expression of the lycopene biosynthesis genes from Pantoea ananatis in Escherichia coli. Biotechnology Letters, 33, 313-319.
Albermann, C. (2011) Integration von Expressionskassetten in das Chromosom von Escherichia coli. BIOspektrum, 17, 171-173.
Lemuth, K., Steuer, K., Albermann, C. (2011) Engineering of a plasmid-free Escherichia coli strain for improved in vivo biosynthesis of astaxanthin. Microbial Cell Factories, 10: 29.
Bongaerts, J., Esser, S., Lorbach, V., Al-Momani, L., Müller, M.A., Franke, D., Grondal, C., Kurutsch, A., Bujnicki, R., Takors, R., Raeven, L., Wubbolts, M., Bovenberg, R., Nieger, M., Schürmann, M., Trachtmann, N., Kozak, S., Sprenger, G.A., Müller, M. (2011) Biosynthesis as a model: diversity-oriented production of metabolites derived from chorismate and their use in organic synthesis. Angewandte Chemie, 123: 7927-7932.
Ghanegaonkar, S., Conrad, J., Beifuss, U., Sprenger, G.A., Albermann, C.(2012) Towards the in vivo production of tocotrienol compounds: engineering of a plasmid free Escherichia coli strain for the heterologous synthesis of 2-methyl-6-geranylgeranyl benzoquinol. Journal of Biotechnology, 164: 238-247.
Feuer, R., Gottlieb, K., Viertel, G., Klotz, J., Schober, S., Bossert, M., Sawodny, O., Sprenger, G., Ederer, M. (2012) Model-based analysis of an adaptive evolution experiment with Escherichia coli in a pyruvate limited continuous culture with glycerol. Eurasip Journal on Bioinformatics and Systems Biology, 2012:14.
Laschat, S., Roduner, E., Kaim, W., Sarkar, B., Urlacher, V.B., Pleiss, J. Gläser, G., Einicke, W.-D., Sprenger, G., Beifuß, U., Klemm,E.,Liebner, C., Hieronymus, H., Hsu, S.-F., Plietker, B. (2013) Selective Catalytic Oxidation of C–H Bonds with Molecular Oxygen. ChemCatChem, 5: 82-112.
Zum Forschungsgebiet
Terpenstoffwechsel
Höschle, B., Jendrossek, D. (2005). Utilization of geraniol is dependent on molybdenum in Pseudomonas aeruginosa: Evidence for different metabolic routes for oxidation of geraniol and citronellol. Microbiology 151: 2277-2283.
Höschle, B., Gnau, V., Jendrossek, D. (2005). Methylcrotonyl-CoA carboxylase and geranyl-CoA carboxylase are involved in leucine/isovalerate utilisation (Liu) and in acyclic terpenes utilisation (Atu) and are encoded by liuA/liuC and atuC/atuF in Pseudomonas aeruginosa.
Microbiology 151: 3649-3656.
Förster-Fromme K., Höschle B., Mack C., Bott M., Armbruster W., Jendrossek D. (2006). Identification of genes and proteins necessary for catabolism of acyclic terpenes and leucine/isovalerate in Pseudomonas aeruginosa.
Appl Environ Microbiol. 72: 4819-28.
Förster-Fromme K, Jendrossek D. (2006). Identification and characterization of the acyclic terpene utilization gene cluster of Pseudomonas citronellolis.
FEMS Microbiol Lett. 264(2):220-5.
Förster-Fromme, K., Chattopadhyay, A., and Jendrossek, D. (2008). Biochemicalcharacterization of AtuD from Pseudomonas aeruginosa, the first member of a new subgroup of acyl-CoA dehydrogenases with specificity for citronellyl-CoA.
Microbiology 154: 789-796.
Förster-Fromme, K., and Jendrossek, D. (2008). Biochemical characterization of isovaleryl-CoA dehydrogenase (LiuA) of Pseudomonas aeruginosa and the importance of liu genes for a functional catabolic pathway of methyl-branched compounds.
FEMS Microbiol Lett. 286:78-84.
Fromme, K.F.-F., Jendrossek, D. (2010). AtuR is a repressorofacyclic terpene utilization (Atu) gene cluster expression and specifically binds to two 13 bp inverted repeat sequences of the atuA-atuR intergenic region.
FEMS Microbiol. Lett. 308: 166-174.
Chattopadhyay, A., Förster-Fromme, K., Jendrossek, D. (2010). PQQ-dependent alcohol dehydrogenase (QEDH) of Pseudomonas aeruginosa is involved in catabolism of acyclic terpenes.
J. Bas. Microbiol. 50: 1-6.
Fromme, K.F.-F., Jendrossek, D. (2010). Catabolism of citronellol and related acyclic terpenoids in pseudomonads.
Minireview. Appl. Microbiol. Biotechnol. 87: 859–869.
Siedenburg, G., and D. Jendrossek (2011). Squalene-hopene cyclases. Appl Environ Microbiol 77:3905–3915.
Zum Forschungsgebiet
Mineralisation von Kautschuk
Braaz, R., Fischer, P., Jendrossek, D. (2004). A novel type of heme-dependent oxygenase catalyzes oxidative cleavage of rubber (poly-cis-1,4-isoprene).
Appl. Environ. Microbiol. 70: 7388-7395.
Braaz, R., Armbruster, W., Jendrossek, D. (2005). Heme-dependent rubber oxygenase RoxA of Xanthomonas sp. cleaves the carbon backbone of polyisoprene by dioxygenase mechanism.
Appl. Environ. Microbiol. 71: 2473-2478.
Hoffmann, M., Braaz, R., Jendrossek, D., and Einsle, O. (2008). Crystallization of the extracellular rubber oxygenase RoxA from Xanthomonas sp. strain 35Y.
Acta Crystallogr Sect F Struct Biol Cryst Commun 64: 123-125.
Hambsch, N., Schmitt, G., Jendrossek, D. (2010). Development of a homologous expression system for rubber oxygenase RoxA from Xanthomonas sp.
J. Appl. Microbiol. 109: 1067–1075
Schmitt,G., Seiffert. G-. Kroneck, P.M.H., Braaz, R., Jendrossek, D. (2010). Spectroscopic properties of rubber oxygenase RoxA from Xanthomonas sp., a new type of dihaem dioxygenase.
Microbiology, 156: 2537–254
Birke J, Hambsch N, Schmitt G, Altenbuchner J, Jendrossek D. (2012). Phe317 is essential for rubber oxygenase RoxA activity. Appl Environ Microbiol 78:7876–7883.
Zum Forschungsgebiet
Polyhydroxybuttersäure (PHB)
Handrick, R., Technow, U., Reichart, T., Reinhardt, S., Sander, T., Jendrossek, D. (2004). The activator of the Rhodospirillum rubrum PHB depolymerase is a polypeptide that is extremely resistant to high temperature (121°C) and other physical or chemical stresses.
FEMS Microbiol. Lett. 230: 265-74
Handrick, R., Reinhardt, S., Schultheiss, D., Reichart, T., D. Schüler, V. Jendrossek, D., Jendrossek, D. (2004). Unraveling of the function of the Rhodospirillum rubrum activator of polyhydroxybutyrate (PHB) degradation: the activator is a PHB granule bound protein (phasin).
J. Bacteriol. 186: 2466-75
Handrick, R., Reinhardt, S., Kimmig, P., Jendrossek, D. (2004). The “intracellular” PHB depolymerase of Rhodospirillum rubrum is an periplasm-located enzyme with similarity to extracellular PHB depolymerases
J. Bacteriol. 186: 7243-7253
Elbanna, K., Lütke-Eversloh, T., Jendrossek, D., Steinbüchel, A. (2004). Studies on the biodegradability of polythioesters by polyhydroxyalkanoate (PHA) degrading bacteria and PHA depolymerases. Arch. Microbiol. 182: 212-225
Jendrossek, D. (2005). Fluorescence microscopical investigation of PHB granules formation in bacteria.
Biomacromolecules 6: 598-603
Kapetaniou EG, Braaz R, Jendrossek D., Papageorgiou AC. (2005). Crystallization and preliminary X-ray analysis of a novel thermoalkalophilic poly(3-hydroxybutyrate) depolymerase (PhaZ7) from Paucimonas lemoignei.
Acta Crystallograph Sect F Struct Biol Cryst Commun. 61: 479-81.
Gebauer, B., Jendrossek, D. (2006). Assay of PHB Depolymerase activity and product determination.
Appl. Environ. Microbiol. 72: 6094-6100
Jendrossek D., Selchow O., Hoppert M. (2007). PHB granules at the early stages of formation are localized close to the cytoplasmic membrane in Caryophanon latum.
Appl Environ Microbiol. 73:586-593.
Hermawan, S. Jendrossek, D. (2007). Microscopical investigation of PHB granules formation in Azotobacter vinelandii.
FEMS Microbiol. Lett. 266:60-64
Jendrossek. D. (2007). Peculiarities of PHB granules preparation and PHA depolymerase activity determination.
Appl. Microbiol. Biotechnol. 74:1186-1196
Wang, L., Armbruster, W., Jendrossek, D. (2007). Production of medium-chain length hydroxyalkanoic acids by pH stat.
Appl. Microbiol. Biotechnol. 74:1047-1053.
Uchino, K., Saito, B., Gebauer, B., Jendrossek, D. (2007). Isolated Poly(3-hydroxybutyrate) (PHB) granules are complex bacterial organelles catalyzing formation of PHB from acetyl-CoA and degradation of PHB to acetyl-CoA.
J. Bacteriol. 189:8250-8256.
Uchino, K., Saito, T., Jendrossek, D. (2008). Poly(3-hydroxybutyrate) (PHB) depolymerase PhaZa1 is involved in mobilization of accumulated PHB in Ralstonia eutropha H16.
Appl Environ Microbiol. 74: 1058-1063.
Papageorgiou, A.C., Hermawan, S., Singh, C.B., and Jendrossek, D. (2008). Structural basis of poly(3-hydroxybutyrate) hydrolysis by PhaZ7 depolymerase from Paucimonas lemoignei.
J Mol Biol 382: 1184-1194.
Jendrossek D. (2009). Polyhydroxyalkanoate granules are complex subcellular organelles (carbonosomes).
Minireview. J Bacteriol 191:3195-3202.
Hermawan S., Jendrossek D. (2010). Tyrosine 105 of Paucimonas lemoignei PHB depolymerase PhaZ7 is essential for polymer binding.
Polymer Degradation and Stability 95: 1429-1435
Wakadkar, S., Hermawan, S., Jendrossek, D., Papageorgiou, A.C. (2010). The structure of PhaZ7 at atomic (1.2 °A) resolution reveals details of the active site and suggests a substrate-binding mode.
Acta Cryst. F66, 648–654
Sznajder, A., Jendrossek, D. (2011). Biochemical characterization of a new type of intracellular PHB depolymerase from Rhodospirillum rubrum with high hydrolytic activity on native PHB granules.
Appl Microbiol Biotechnol 89:1487–1495.
Pfeiffer, D., and D. Jendrossek (2011). Interaction between poly(3-hydroxybutyrate) granule-associated proteins as revealed by two-hybrid analysis and identification of a new phasin in Ralstonia eutropha H16. Microbiology 157:2795–2807.
Pfeiffer, D., A. Wahl, and D. Jendrossek (2011). Identification of a multifunctional protein, PhaM, that determines number, surface to volume ratio, subcellular localization and distribution to daughter cells of poly(3-hydroxybutyrate), PHB, granules in Ralstonia eutropha H16. Mol Microbiol. DOI 10.1111/j.1365-2958.2011.07869.x
Wahl A, Schuth N, Pfeiffer D, Nussberger S, Jendrossek D. (2012). PHB granules are attached to the nucleoid via PhaM in Ralstonia eutropha. BMC Microbiol. 12:262.
Zum Forschungsgebiet
Analyse und Veränderung ringspaltender Dioxygenasen
Crystal structures of salicylate 1,2-dioxygenase-substrates adducts: A step towards the comprehension of the structural basis for substrate selection in class III ring cleaving dioxygenases.
Ferraroni, M., I. Matera, L. Steimer, S. Bürger, A. Stolz, A. Scozzafava & F. Briganti. J. Struct. Biol. 177: 431-438 (2012).
The generation of a 1-hydroxy-2-naphthoate 1,2-dioxygenase by single point mutations of salicylate 1,2-dioxygenase. Rational design of mutants and the crystal structures of the A85H and W104Y variants.
Ferraroni, M., L. Steimer, I. Matera, S. Bürger, A. Scozzafava, A. Stolz & F. Briganti. J. Struct. Biol. (2012)
http://dx.doi.org/10.1016/j.jsb.2012.08.007
Hintner, J.-P., Reemtsma. T., Stolz, A. (2004) Biochemical and molecular characterization of a ring-fission dioxygenase with the ability to oxidize (substituted) salicylate(s) from Pseudaminobacter salicylatoxidans.
J. Biol. Chem. 279: 37250-37260
Stolz, A., S. Bürger, A.E. Kuhm, P. Kämpfer & H.J. Busse (2005) Pusillimonas noertemanni, gen. nov. sp. nov., a new member of the family Alcaligenaceae which degrades substituted salicylates.
Int. J. Syst. Evol. Microbiol. 55: 1077-1081
Matera, I., M. Ferraroni, S. Bürger, A. Stolz & F. Briganti (2006) Preliminary crystallographic analysis salicylate 1,2-dioxygenase from Pseudaminobacter salicylatoxidans.
Acta Cryst. F 62: 553-555.
Salicylate 1,2-dioxygenase from Pseudaminobacter salicylatoxidans: Crystal structure of a peculiar ring cleaving dioxygenase.
Matera, I, M. Ferraroni, S. Bürger, A. Stolz. & F. Briganti.
J. Mol. Biol. 380: 856-868 (2008).
Zum Forschungsgebiet
Biodegradation von Azofarbstoffen und sulfonierten Aromaten
Halak, S., T. Basta, S. Bürger, M. Contzen, V. Wray, D.H. Pieper & A. Stolz.(2007) 4-Sulfomuconolactone hydrolases from Hydrogenophaga intermedia S1 and Agrobacterium radiobacter S2. J. Bacteriol. 189:6998-7006.
Halak, S., L. Lehtiö, T. Basta, S. Bürger, M. Contzen, A. Stolz. & A. Goldman (2006) Structure and function of the 3-carboxy-cis,cis-muconate lactonizing enzyme from the protocatechuate degradative pathway of Agrobacterium radiobacter S2.
FEBS Journal 273: 5169-5182.
Halak, S., T. Basta, S. Bürger, M. Contzen & A. Stolz (2006) Characterization of the genes encoding three 3-carboxy-cis,cis-muconate lactonizing enzymes from the 4-sulfocatechol degradative pathways of Hydrogenophaga intermedia S1 and Agrobacterium radiobacter S2.
Microbiology 152: 3207-3216.
Basta,T., Keck, A., Klein, J., Stolz, A. (2004) Detection and characterization of conjugative degradative plasmids in xenobiotics degrading Sphingomonas strains.
J. Bacteriol. 186: 3862-3872
Basta, T., S. Bürger & Stolz, A. (2005) Structural and replicative diversity of large plasmids from polycyclic aromatic compounds and xenobiotics degrading Shingomonas strains.
Microbiology 151: 2025-2037
Keck, A., D. Conradt, A. Mahler, A. Stolz, R. Mattes & J. Klein. (2006) Identification and functional analysis of the genes for the naphthalenesulfonate catabolism by Sphingomonas xenophaga BN6.
Microbiology 152: 1929-1940.
Characterisation of the flavin-free oxygen-tolerant azoreductase from Xenophilus azovorans KF46F in comparison to flavin-containing azoreductases.
Bürger, S. & A. Stolz.
Appl. Microb. Biotechnol. 87:2067-2076 (2010).
Zum Forschungsgebiet
Biotransformation von Nitrilen und Amiden
Application of a recombinant Escherichia coli whole cell catalyst synthesizing hydroxynitrile lyase and nitrilase activities in ionic liquids for the production of (S)-mandelic acid and (S)-mandeloamide.
Baum, S, F. van Rantwijk & A. Stolz. Adv. Synth. Catal. 354: 113-122 (2012)
Conversion of sterically demanding alpha-alpha-disubstituted phenylacetonitriles by the arylacetonitrilase from Pseudomonas fluorescens EBC191.
Baum, S., D.S. Williamson, T. Sewell & A. Stolz. Appl. Environ. Microbiol. 78: 48-57 (2012).
Influence of point mutations near the active site on catalytic properties of fungal arylacetonitrilases from Aspergillus niger and Neurospora crassa.
Petříčková, A., O. Sosedov, S. Baum, A. Stolz & L. Martínková. J. Mol. Catal. B Enzym. 77: 74-80 (2012).
Construction and application of variants of the arylacetonitrilase from Pseudomonas fluorescens EBC191 which form increased amounts of acids or amides.
Sosedov, O., S. Baum, S. Bürger, K. Matzer, C. Kiziak & A. Stolz.
Appl. Environ. Microbiol. 76:3668-3674 (2010).
Identification of amino acid residues which are responsible for the enatioselectivity and amide formation capacity of the arylacetonitrilase from Pseudomonas fluorescens EBC 191.
Kiziak, C. & A. Stolz.
Appl. Environ. Microbiol. 75:5592-5599 (2009).
Construction of recombinant Escherichia coli catalysts which simultaneously express an (S)-oxynitrilase and different nitrilase variants for the synthesis of (S)-mandelic acid and (S)-mandeloamide from benzaldehyde and cyanide.
Sosedov, O., K. Matzer, S. Bürger, C. Kiziak, S. Baum, J. Altenbuchner, A. Chmura, F. van Randwijk & A. Stolz.
Adv. Synth. Catal. 351:1531-1538 (2009).
Characterization of the substrate specificity of the nitrile hydrolysing system of the acidotolerant black yeast Exophiala oligosperma R1.
Rustler, S., A. Chmura, R.A. Sheldon & A. Stolz.
Stud. Mycol. 61: 165-174 (2008).
Simultaneous expression of an arylacetonitrilase from Pseudomonas fluorescens and a (S)-oxynitrilase from Manihot esculenta in Pichia pastoris for the synthesis of (S)-mandelic acid.
Rustler, S., H. Motejadded, J. Altenbuchner & A. Stolz.
Appl. Microbiol. Biotechnol. 80:87-97 (2008).
Cross-linked amorphous nitrilase aggregates for enantioselective nitrile hydrolysis.
Kaul, P., A. Stolz & U.C. Banerjee.
Adv. Synth. Catal. 349:2167-2176 (2007).
Rustler, S., A. Müller, V. Windeisen, A. Chmura, B. Fernandes, C. Kiziak, & A. Stolz. (2007) Conversion of mandelonitrile and phenylglycinenitrile by recombinant E. coli cells synthesizing a nitrilase from Pseudomonas fluorescens EBC191.
Enzyme Microb. Technol. 40:598-606.
Rustler, S. & A. Stolz (2007) Isolation and characterization of a nitrile hydrolysing acidotolerant black yeast- Exophiala oligosperma R1
Appl. Microb. Biotechnol. 75:899-908.
Kaul, P., A. Stolz, U.C. Banerjee. (2007) Cross-linked amorphous nitrilase aggregates for enantioselective nitrile hydrolysis.
Adv. Synth. Catal. 349:2167-2176.
Kiziak, C., J. Klein & A. Stolz. (2007) Influence of different carboxyterminal mutations on the substrate-, reaction-, and enantiospecifity of the arylacetonitrilase from Pseudomonas fluorescens EBC191.
PEDS-Protein Engineering, Design and Selection 20:385-396.
Fernandes, B C. M.,C. Mateo,C. Kiziak, J. Wacker, A. Chmura, F. van Rantwijk, A. Stolz, & R. A. Sheldon (2006) Nitrile hydratase activity of a recombinant nitrilase.
Adv. Synth. Catal. 348:2597-2603.
Kiziak, C., D. Conradt, A. Stolz, R. Mattes & J. Klein (2005) Nitrilase from Pseudomonas fluorescens EBC 191: Cloning and heterologous expression of the gene and biochemical characterization of the recombinant enzyme.
Microbiology 151: 3639-3648.
Mateo, C., B. Fernandes, F. van Rantwijk, A. Stolz & R.A. Sheldon (2006) Stabilization of oxygen-labile nitrilases via co-aggregation with polyethyleneimine.
J. Mol. Catal. B 38: 154-157.
Mateo, C., A. Chmura, S. Rustler, F. van Rantwijk, A. Stolz, R.A. Sheldon (2006) Synthesis of enantiomerically pure (S)-mandelic acid using an oxynitrilase-nitrilase bienzymatic cascade. A nitrilase surprsisingly shows nitrile hydratase activity.
Tetrahedron Asymmetry 17: 320-323.
Zum Forschungsgebiet