Abschlussbericht

zu IGF-Vorhaben Nr. 18833 N/1

Thema
Tragschichten für Arbeitsplattformen von mobilen Baumaschinen und für Kranstellflächen

Berichtszeitraum
01.11.2015 - 30.04.2018

Forschungsvereinigung
Forschungskuratorium Maschinenbau e.V

Forschungsstelle(n)
Universität Stuttgart
Institut für Geotechnik (IGS)
Pfaffenwaldring 35
70569 Stuttgart

Stuttgart, den 10.12.2018

Univ.-Prof. Dr.-Ing. habil. Christian Moormann

Name und Unterschrift aller Projektleiter der Forschungsstelle(n)
Tragschichten für Arbeitsplattformen

Vorhaben Nr. 18833 N/1

Tragschichten für Arbeitsplattformen von mobilen Baumaschinen und für Kranstellflächen

Abschlussbericht

Kurzfassung:

Im Rahmen des durchgeführten Forschungsvorhabens wurden das Trag- und Verformungsverhalten von unbewehrten und bewehrten Arbeitsplattformen in Modell- und Feldversuchen sowie mit numerischen Verfahren untersucht und quantifiziert. Ein weiterer Bestandteil war die Untersuchung analytischer Bemessungsverfahren für Tragschichtsysteme aus der Literatur auf ihre Eignung für die Anwendung auf Tragschichten von Arbeitsplattformen mit der Zielrichtung potentielle Bemessungsansätze identifizieren. Ferner wurde das Interaktionsverhalten zwischen Baumaschine und Arbeitsplattform, welches im Wesentlichen die tatsächliche Größe der Einwirkungen auf Arbeitsplattformen bestimmt, in Feldversuchen untersucht.

Das Ziel des Forschungsvorhabens ist erreicht / ist nicht erreicht worden.
Das IGF-Vorhaben 18833 N/1 der Forschungsvereinigung Forschungskuratorium Maschinenbau e.V. wurde über die AiF im Rahmen des Programms zur Förderung der Industriellen Gemeinschaftsforschung und -entwicklung (IGF) vom Bundesministerium für Wirtschaft und Technologie aufgrund eines Beschlusses des Deutschen Bundestages gefördert.

Beginn der Arbeiten: 01.11.2015
Ende der Arbeiten: 30.04.2018
Zuschussgeber: BMWi / IGF-Nr. 18833 N/1
Forschungsstelle: Universität Stuttgart
Institut für Geotechnik (IGS)
Pfaffenwaldring 35
70569 Stuttgart

Leiter: Univ.-Prof- habil. Dr.-Ing. Christian Moorman
Bearbeiter und Verfasser: Rainer Worbes M.Eng.
Vorsitzender des Projekt-begleitenden Ausschusses: Dipl.-Ing. IWE Thomas Lerner
Inhalt
Einleitung ... 7
1. Problemstellung und Ziel ... 9
2. Geotechnische Grundlagen zum Tragverhalten von bewehrten und unbewehrten Tragschichtsystemen (AP 1) ... 11
 2.1 Versagensformen bei homogenem Untergrund (Ein-Schicht-Systeme) 11
 2.1.1 Grundbruchnachweis nach DIN 4017:2006-03 .. 12
 2.1.2 Versagensformen .. 14
 2.2 Tragmechanismen von unbewehrten Tragschichtsystemen (Zwei-Schicht-Systeme) .. 15
 2.3 Tragmechanismen von bewehrten Tragschichtsystemen (Drei-Schicht-systeme) 16
 2.4 Analytische Bemessungsansätze unbewehrter Tragschichtsysteme 18
 2.4.1 DIN 4017:2006-03 ... 18
 2.4.2 DIN 4017:2006-03 – Anhang B ... 19
 2.5 Zwei- und mehrlagig bewehrte Systeme .. 41
 2.6 Vergleich der Bemessungsansätze .. 43
3. Modellversuche zum Tragverhalten von unbewehrten und bewehrten Tragschichtsystemen (AP 2) .. 44
 3.1 Modellgesetze ... 44
 3.2 Versuchskonzeption .. 45
 3.2.1 Versuchsaufbau .. 46
 3.2.2 Messkonzept ... 47
 3.2.3 Verwendete Belastungskonzepte .. 47
 3.2.4 Versuchsmatrix ... 50
 3.2.5 Eigenschaften der verwendeten Versuchsböden ... 53
 3.2.6 Eigenschaften der verschiedenen Geogitterbewehrungen 55
 3.3 Ergebnisse der Modellversuche .. 56
 3.3.1 Last-Setzungs-Kurven ... 56
 3.3.2 1. Zyklische Laststufe (Belastungsphase II) .. 59
 3.3.3 2. Zyklische Laststufe (Belastungsphase IV) ... 61
4. Feldmessung an bewehrter Tragschicht in Rethwisch bei Hamburg (AP 3) 65
 4.1 Versuchskonzeption .. 65
 4.1.1 Messkonzept ... 66
 4.1.2 Belastungskonzept ... 67
 4.1.3 Eigenschaften der verwendeten Versuchsböden ... 67
 4.2 Ergebnisse des Feldversuchs ... 69
 4.2.1 Vertikalspannungen .. 69
4.2.2 Dehnungen im Geogitter ... 70
4.2.3 Setzungen ... 71
4.3 Resümee Feldversuch Rethwisch ... 72

5. Feldmessung zur Sohldruckverteilung unter kettengerietriebenen Baumaschinen (AP 3) 74
5.1 Sohldruckverteilung unter Raupenfahrwerken 74
5.2 Versuchsaufbau ... 77
5.2.1 Messkonzept .. 77
5.2.2 Versuchskräne .. 78
5.2.3 Lastkonzept ... 81
5.2.4 Versuchsfeld ... 82
5.3 Ergebnisse des Feldversuchs ... 83
5.3.1 Ergebnisse - Liebherr LRT 11000 ... 84
5.3.2 LRT 1220 ... 88

6. Numerische Untersuchungen ... 90
6.1 Eingesetzte numerische Berechnungsverfahren 90
6.1.1 Finite Element Methode (FEM) ... 90
6.1.2 Kinematische Elemente Methode mit Layout-Optimierung
 (Distinct Layout Optimization) ... 93
6.2 Verwendete Stoffmodelle ... 95
6.2.1 Mohr-Coulomb (MC-Model) ... 95
6.2.2 Soft-Soil Modell (SS-Modell) ... 96
6.2.3 Hardening-Soil Modell (HS-Model) .. 97
6.3 Back-Analysis der Modellversuche .. 98
6.4 Back-Analysis FV-Rethwisch ... 100
6.4.1 Modellierung .. 100
6.5 Back-analysis Feldversuch Raupenfahrwerke – Liebherr-Krane 102
6.6 Parameterstudie .. 104
6.6.1 Ergebnisse der 2D Parameterstudie ... 107

7. Konzeption Empfehlung für die Dimensionierung, Bau, Überprüfung und Unterhalt von
 Tragschichten (EBAP) ... 113

8. Zusammenfassung und Ausblick .. 115

9. Wirtschaftliche Bedeutung für kleine und mittlere Unternehmen 116

10. Transfer der Ergebnisse in die Praxis .. 117

11. Literaturverzeichnis .. 120

Anlagen .. 124
A. Bemessungsansätze - Übersicht ... 124
B. Modellversuche .. 127
 B.1 Modellversuch V1M .. 127
 B.2 Modellversuch V2M .. 128
 B.3 Modellversuch V3M .. 129
 B.4 Modellversuch V4M .. 130
 B.5 Modellversuch V5M .. 131
 B.6 Modellversuch V6M .. 132
 B.7 Modellversuch V7M .. 133
 B.8 Modellversuch V8M .. 135
 B.9 Modellversuch V9M .. 137
 B.10 Modellversuch V10M ... 139
 B.11 Modellversuch V11M ... 140
 B.12 Modellversuch V12M ... 142
 B.13 Modellversuch V13M ... 144
 B.14 Modellversuch V14M ... 146
C. Feldversuch - Rethwisch ... 148
D. Entwurf Inhaltsverzeichnis - EBAP ... 150
Einleitung

Motivation für den Forschungsantrag ist die Behebung dieses Missstandes und die Schaffung einer Grundlage für die sichere Aufstellung von Baumaschinen unter Baustellenbedingungen.
gewährleistet wird, wobei für die Arbeitsplattformen zugleich technisch und ökonomisch optimierte Standardbauweisen, u.a. auch unter Einsatz von Geokunststoffen entwickelt werden sollen.
1. Problemstellung und Ziel

- ein Drittel aller Unfälle mit kettengetriebenen Baumaschinen durch nicht ausreichend dimensionierte Arbeitsplattformen verursacht wird [BRE/FPS 2004/2007];
- meist keine ausreichende Abstimmung an der Schnittstelle zwischen der die Arbeitsplattform herstellenden Baustelle (Erdbauunternehmer) einerseits und den die Baumaschinen aufstellenden Firmen (Geräteführer) stattfindet, so dass
- häufig die maschinenspezifischen Anforderungen nicht mit den vorbereiteten Arbeitsplattformen korrelieren.
- Zudem sind für die Bemessung von temporären Arbeitsplattformen, insbesondere von bewehrten Tragschichten, keine allgemein anerkannten Bemessungsansätze vorhanden.

Die Bearbeitung des Forschungsvorhabens erfolgt in insgesamt fünf Arbeitspaketen gemäß Abbildung 1.1. Dabei werden experimentelle Untersuchungen im Modellmaßstab und unter realen Bedingungen mit numerischen Simulationen gekoppelt, da nur unter Kombination dieser konzeptionell unterschiedlichen Ansätze, die jede für sich ihre verfahrensinmanenten Möglichkeiten,
aber auch Einschränkungen haben, abgesicherte Forschungsergebnisse zu den komplexen Wechselwirkungen zwischen Baumaschinen und Arbeitsplattformen erzielt werden können.

Abbildung 1.1: Konzeptioneller Aufbau des Forschungsvorhabens
2. Geotechnische Grundlagen zum Tragverhalten von bewehrten und unbewehrten Tragschichtsystemen (AP 1)

2.1 Versagensformen bei homogenem Untergrund (Ein-Schicht-Systeme)

Um ein grundlegendes Verständnis vom Thema zu erhalten, wird zunächst ein einschichtiger Baugrund betrachtet. Eine Tragschicht ist bei dieser Betrachtung zunächst nicht vorhanden. Es wird hierbei von einem Untergrund ausgegangen, welcher aus einer, bezogen auf die mechanischen Kennwerte isotropen Bodenschicht unterhalb der Geländeoberkante besteht, die als optimal homogen angesehen wird und eine ausreichende Mächtigkeit aufweist, sodass die Tragfähigkeit des gesamten Untergrunds nur von dieser Schicht bestimmt wird. Mit bodenmechanischen Nachweisen ist zu prüfen, dass der Bemessungswert der Einwirkung nicht größer ist als der Bemessungswert des Widerstandes, i.e. die Tragfähigkeit des vorhandenen Bodens, welche der Belastung entgegenwirkt. Sollte dies nicht der Fall sein und die mobile Baumaschine oder der Kran werden trotz fehlender Standsicherheit aufgestellt, so kann es häufig zu einem Grundbruchversagen kommen. Grundsätzlich tritt ein Grundbruch auf, wenn:

- die Scherfestigkeit des Bodens \(\tau \) in einer Gleitfuge überschritten wird,
- der Scherwiderstand bei gleichbleibender Last abnimmt, z.B. infolge einer Akkumulation von Porenwasserüberdrücken,
- eine seitliche Auflast entfernt wird,
- der Grundwasserspiegel ansteigt

Es werden folgend nur Untersuchungen betrachtet, die sich auf die Belastung des Bodens durch Flachgründungen wie z.B. Lastverteilungsplatten für das Aufstellen eines Mobilkrans mit Stützbeinen oder durch die Kettenplatten eines Raupenfahrwerks, beziehen. Bei den Betrachtungen des Bodens unter einer mobilen Baumaschine oder einer Kranstellfläche wirkt die Last, zumindest an der Geländeoberfläche auf den Untergrund ein, d.h. ist keine Einbindung vorhanden. Die rechnerische Einbindung \(d \) des Fundaments in den Baugrund ist somit in allen Berechnungen mit \(d = 0 \) anzusetzen.
2.1.1 Grundbruchnachweis nach DIN 4017:2006-03

DIN 4017 regelt das allgemein gültige Vorgehen in Deutschland für einen Nachweis der Grundbruchsicherheit bei einem Ein-Schicht-System. Den Widerstand des Baugrunds gegenüber der aufgebrachten Last bei Eintreten eines Grundbruchs, sprich dessen Tragfähigkeit, wird als Grundbruchwiderstand \(R_n \) bezeichnet. Nach DIN 4017:2006-03 gilt folgende Gleichung, wenn \(\frac{d}{b} \leq 2h \) ist:

\[
R_n = a' \cdot b' \cdot (y_2 \cdot b' \cdot N_b + y_1 \cdot d \cdot N_d + c \cdot N_c)
\]

mit den entsprechenden Beiwerten, die den Reibungswinkel des anstehenden Bodens \(N_b \), die Form des Fundaments \((\nu) \), die Lastneigung \((i) \), die Geländeneigung \((\lambda) \) und die Sohlneigung des Fundaments \((\xi) \) berücksichtigen.

\[
N_b = N_{b0} \cdot \nu_b \cdot i_b \cdot \lambda_b \cdot \xi_b \quad (2.2)
\]

\[
N_d = N_{d0} \cdot \nu_d \cdot i_d \cdot \lambda_d \cdot \xi_d \quad (2.3)
\]

\[
N_c = N_{c0} \cdot \nu_c \cdot i_c \cdot \lambda_c \cdot \xi_c \quad (2.4)
\]

Die Grundwerte der Tragfähigkeitsbeiwerte \(N_{0,b}, N_{0,d} \) und \(N_{0,c} \), die den anstehenden Boden durch den Parameter des inneren Reibungswinkel \(\varphi' \) berücksichtigen, lassen sich mit Hilfe der Gleichungen 2.5 bis 2.7 berechnen.

\[
N_{b0} = (N_{d0} - 1) \cdot \tan(\varphi) \quad (2.5)
\]

\[
N_{d0} = \tan^2\left(\frac{45^\circ + \varphi}{2}\right) \cdot e^{\pi \tan(\varphi)} \quad (2.6)
\]

\[
N_{c0} = (N_{d0} - 1)/ \tan(\varphi) \quad (2.7)
\]

Tabelle 2.1: Formfaktoren \(\nu_b, \nu_d \) und \(\nu_c \) nach DIN 4017 für Streifen-, Rechteck sowie Quadrat- und Kreisfundamente

<table>
<thead>
<tr>
<th>Grundrissform</th>
<th>(\nu_b)</th>
<th>(\nu_d)</th>
<th>(\nu_c (\varphi = 0))</th>
<th>(\nu_c (\varphi = 0))</th>
</tr>
</thead>
<tbody>
<tr>
<td>Streifen</td>
<td>1,0</td>
<td>1,0</td>
<td>1,0</td>
<td>1,0</td>
</tr>
<tr>
<td>Rechteck</td>
<td>1 - 0,3 \cdot \frac{b'}{a'}</td>
<td>1 \cdot \frac{b'}{a'} \cdot \sin \varphi</td>
<td>\frac{(\nu_d \cdot N_{d0} - 1)}{N_{d0} - 1}</td>
<td>1 + 0,2 \cdot \frac{b'}{a'}</td>
</tr>
<tr>
<td>Quadrat/Kreis</td>
<td>0,7</td>
<td>1 \cdot \sin \varphi</td>
<td>\frac{(\nu_d \cdot N_{d0} - 1)}{N_{d0} - 1}</td>
<td>1,2</td>
</tr>
</tbody>
</table>

Nimmt man für die Betrachtungen an, dass keine Lastneigung \((i) \), keine Geländeneigung \((\lambda) \) und keine Sohlneigung \((\xi) \) vorhanden sind, so gehen nur noch die Geometrie des Fundaments definiert über die Formfaktoren \((\nu) \) aus Tabelle 2.1 und die Bodenkennwerte in die Berechnung ein. In der Gleitfläche bzw. für die RANKINE-Bereiche des Grundbruchkörpers wird ein Grenzzustand, i.e. ein ideal-plastischer Zustand vorausgesetzt. Die Kinematik sieht vor, dass sich der aktive Bruchkörper unter der Lasteinleitungsfläche setzt, während sich der passive Bruchkörper seitlich davon anhebt. Der Übergangsbereich wird durch den PRANDTL-Körper definiert, welcher über
Eine logarithmische Spirale definiert wird. Im Bereich des passiven Bruchkörpers sind i.d.R. deutliche Risse an der Geländeoberfläche zu erkennen.

\[\theta_a = 45^\circ + \frac{\phi}{2} \]
(2.8)

\[\theta_a = 45^\circ - \frac{\phi}{2} \]
(2.9)

Mittelbereich (PRANDTL-Körper).

\[r(\omega) = r_0 \cdot e^{\left(\frac{\pi}{180}\right)\omega \tan \phi} \]
(2.10)

Abbildung 2.1: Grundbruch unter einem lotrecht und mittig belasteten Fundament bei einheitlicher Schichtung des Bodens im Bereich des Grundbruchkörpers (in Anlehnung an DIN 4017)

Abbildung 2.2 Lage der Gleitfläche und Größe des Grundbruchkörpers bei verschiedenen Reibungswinkeln in homogenem, gewichtslosem Boden nach DIN 4017
Die Abmessungen des Grundbruchkörpers bei einem lotrecht und mittig belasteten Fundament lassen sich mithilfe folgender Gleichungen berechnen:

- Tiefe \(d_b \) der Bruchfigur:
 \[d_b = b \cdot \sin(\alpha) \cdot e^{a\tan(\varphi)} \] (2.11)

- Länge \(l_s \) der Versagensfigur:
 \[l_s = \frac{b}{2} + \tan(\alpha) \cdot e^{1.571\tan \varphi} \] (2.12)

Dieser Bemessungsansatz ist nicht unmittelbar auf Tragschichten für Arbeitsplattformen, d.h. Zweischichtsysteme anwendbar. Da vor jeder Dimensionierung einer Tragschicht erst einmal zu prüfen ist, ob die Einwirkungen aus den Baumaschinen ohne Tragschicht abgetragen werden können, ist dieser Ansatz in den Voruntersuchungen immer anzuwenden. Zudem ist der Grundbruchnachweis nach DIN 4017 Bestandteil vieler weiterer Bemessungsansätze für bewehrte und unbewehrte Tragschichtsysteme. Der Nachweis gilt für nicht-bindige Böden mit einer Lagerungsdichte von \(D > 0,2 \) (bei einer Ungleichförmigkeitszahl \(U \leq 3 \)), für \(D > 0,3 \) (\(U > 3 \)) und für bindige Böden mit einer Konsistenzzahl \(I_c > 0,5 \).

2.1.2 Versagensformen

Infolge von Lasteinwirkungen auf den Untergrund können verschiedene Versagensmechanismen des Grundbruchs auftreten. Diese Mechanismen sind einerseits abhängig von den geometrischen Randbedingungen und anderseits von dem Aufbau und Beschaffenheit des Untergrunds. In Abhängigkeit von den bodenmechanischen Eigenschaften, wie Lagerungsdichte \(D \) bei nicht-

<table>
<thead>
<tr>
<th>Type of bearing capacity failure</th>
<th>Cohesionless soil (e.g., sands)</th>
<th>Cohesive soil (e.g., clays)</th>
<th>Undrained shear strength ((s_u))</th>
</tr>
</thead>
<tbody>
<tr>
<td>General shear failure (Fig. 6.1)</td>
<td>Density condition: very dense</td>
<td>Relative density ((D_r)): 65–100%</td>
<td>Consistency: very stiff to hard</td>
</tr>
<tr>
<td>Local shear failure (Fig. 6.3)</td>
<td>Medium</td>
<td>35–65%</td>
<td>to hard</td>
</tr>
<tr>
<td>Punching shear failure (Fig. 6.3)</td>
<td>Loose to very loose</td>
<td>0–35%</td>
<td>to soft to very soft</td>
</tr>
</tbody>
</table>

\[s_u > 2000 \text{ psf} \]
\[> 100 \text{ kPa} \]
\[25–100 \text{ kPa} \]
\[< 25 \text{ kPa} \]

2.2 Tragmechanismen von unbewehrten Tragschichtsystemen (Zwei-Schicht-Systeme)

Die auf den vorhandenen Baugrund aufgebrachte Tragschicht weist in dem betrachteten Fall eine deutlich höhere Scherfestigkeit und Steifigkeit als der Boden auf und führt so zu einer Lastverteilung. Die untere Bodenschicht, die nur eine geringe Scherfestigkeit aufweist, wird als unendlich tief betrachtet. Der Wert der Grenztragfähigkeit des Zwei-Schicht-Systems q_{max} liegt zwischen

Abbildung 2.4: Grundbruch in einem Zwei-Schicht-System
den beiden Einzeltragfähigkeiten bzw. Grundbruchwiderständen \(q_T \) der oberen und \(q_B \) der unteren Schicht, wobei zwei Fälle unterschieden werden (siehe Abbildung 2.4):

1. die untere Schicht hat einen Einfluss auf die Tragfähigkeit mit \(d_s \geq H_T \) (Abbildung 2.4-a)
2. die untere Schicht hat keinen Einfluss auf die Tragfähigkeit mit \(d_s < H_T \) (Abbildung 2.4-b)

Für den Fall einer Arbeitsplattform für mobile Baumaschinen ist i.d.R. nur Fall 1 relevant, da in Fall 2 die Tragschicht mit einer so großen Mächtigkeit aufgebracht werden müsste, dass es oftmals nicht wirtschaftlich oder umsetzbar wäre. Der kritische Wert der Tragschichthöhe im Verhältnis zur anzusetzenden Fundamentbreite \(H_T / b' \), bei maximaler Tragfähigkeit \(q_{max} \) hängt im Allgemeinen vom Verhältnis der beiden Einzeltragfähigkeiten \(q_T / q_B \), vom inneren Reibungswinkel der Tragschicht \(\phi_T \), von der undrainierten Scherfestigkeit des Untergrundes \(c_u \) sowie von der Form (Kreis/Rechteck) und den Abmessungen des Fundaments und vom Verhältnis \(d / b \) ab.

2.3 Tragmechanismen von bewehrten Tragschichtsystemen (Drei-Schicht-systeme)

- Seitliche Stützung:

Die Lastverteilung infolge vertikaler Belastung induziert zusätzliche Spreizspannungen in der Tragschicht direkt unter der Radlast bzw. der Lastplatte. Eine unbewehrte Tragschicht hat keine Zugfestigkeit und neigt deshalb dazu sich lateral zu verformen, sofern sie nicht durch die darunterliegende Weichschicht zurückgehalten wird. In unbewehrten Systemen verschlechtern diese horizontalen Verschiebungen die Tragfähigkeit, indem sie den Hohlräumanteil der Tragschicht erhöhen. Die Verwendung von Tragschichtbewehrungen aus Vliesstoffen oder Geogittern, die innerhalb der Schotterschicht oder an der Grenzfläche zwischen beiden Schichten angedeutet sind, kann die laterale Beanspruchung durch Reibung und Verzahnung des Kieses (Interlocking) innerhalb der Geogitteröffnungen aufheben. Diese zusätzliche seitliche Rückhaltung erhöht die mittlere und kleinere Hauptspannung \(\sigma_1 \) und \(\sigma_3 \).

- Erhöhung der Tragfähigkeit

Ein weiterer Effekt ist der Einfluss der Geokunststoffbewehrung auf die Form der Scherfugen im Baugrund. Ohne Geokunststoffbewehrung würde sich die potentiellen Gleitflächen des Bruchkörpers, welcher sich aus einem Grundbruchversagen kombiniert mit dem Durchstanzen der Tragschicht zusammensetzt, teilweise in der Weichschicht ausbilden, was zu einer geringeren Gesamttragfähigkeit führt. Durch die Geokunststoffbewehrung wird die Ausbildung einer durchgehenden Scherfuge verhindert und ein Grundbruchversagen ausschließlich in der Tragschicht, welche wesentlich höhere Scherfestigkeiten als die Weichschicht aufweist, erzwungen. Hierdurch wird die Versagensform verändert und es stellt sich aufgrund der Steifigkeitsverhältnisse zwischen beiden Schichten ein Verformungsbruch in der Weichschicht mit einem Durchstanzen der Tragschicht ein, wodurch die Tragfähigkeit des Gesamtsystems erhöht wird.
• Zugmembraneffekt

• Trennwirkung

Neben den o.g. Tragmechanismen spielt gerade bei zyklischen Belastungen die Trennwirkungen zwischen Trag- und Weichschicht eine wichtige Rolle. Die Trennwirkung wird i.d.R. durch die Verwendung von Geokunststoffen mit sehr geringen Öffnungsweiten, wie z.B. Geotextilien und Geovliesen erreicht. Diese Geokunststoffe verhindern eine Vermengung beider Bodenarten, bei denen entweder Weichschichtmaterial in die Tragschicht eingeschlämmt wird oder einzelne Tragschichtkörner in die Weichschicht einwandern. Gerade bei weichen Böden mit geringer Scherfestigkeit treten bei wiederholten Belastungen Pumpeffekte auf, bei denen Feinanteile in die Tragschicht gepresst werden, was zu einer Reduzierung der Scherparametern und der Steifigkeit der Tragschicht führt. Hierdurch werden zudem die rechnerische Tragschichtthöhe und damit die Gesamttragfähigkeit verringert.

2.4 Analytische Bemessungsansätze unbewehrter Tragschichtsysteme

Folgende Annahmen und Anmerkungen gelten für alle in diesem Unterkapitel erläuterten Verfahren und Bemessungsansätze zur Bestimmung der Tragfähigkeit bzw. der Tragschichtdicke von Zwei-Schicht-Systemen:

• Es wird ein zentratisch belastetes Fundament betrachtet und es gibt weder eine Lastneigung (i), eine Geländeneigung (λ), eine Sohlneigung (ξ) noch eine Einbindetiefe d.

• Die Tragschicht wird unter drainierten Bedingungen betrachtet, weshalb die effektiven Spannungen angesetzt werden.

• Die untere Schicht wird hingegen unter undrainierten Bedingungen betrachtet weshalb die totalen Spannungen angesetzt werden. Hierbei gilt das Bruchkriterium nach TRESCA. Bei einem undrainierten Versagen sind $N_{c0} = 2 + \pi = 5,14$, $N_d = 1$ und $N_p = 0$.

• Die Grenztragfähigkeit wird nach KENNY & ANDRAWES (1997) erreicht, wenn sich das Fundament bereits leicht gesetzt hat und der maßgebende kinematische Versagensmechanismus eintritt.

• Der Lastausbreitungswinkel α, falls angesetzt, steigt bei Zunahme des Reibungswinkels der Tragschicht und nimmt bei geringeren undrainierten Scherfestigkeiten der Weichschicht ab und ist weitgehend unbeeinflusst von der Schichtdicke der Tragschicht, während die Fundamentbreite kaum einen Einfluss hat, was BURD & FRYDMAN (1997) in ihren Untersuchungen erforscht haben.

2.4.1 DIN 4017:2006-03

Unter der Bedingung, dass die Werte der Reibungswinkel der einzelnen Schichten um nicht mehr als 5° vom gemeinsamen arithmetischen Mittelwert abweichen und keine Bewehrung eingebracht ist, kann eine Berechnung unter Ansatz eines homogenen Baugrunds mit gemittelten Bodenkennwerten nach DIN 4017 erfolgen. Die Eingangskennwerte ergeben sich dabei folgend:

• entsprechend dem Anteil der Teilfläche der Einzelschichten an der Gesamtfläche des Grundbruchkörpers:
Seite 19 des Schlussberichts zu IGF-Vorhaben 18833 N/1

\[cal \; \gamma = \frac{\sum y_i \cdot l_i}{\sum A_i} \tag{2.13} \]

- entsprechend den Teilabschnitten der Gleitfläche in den Einzelschichten:

\[cal \; \tan(\varphi_i) = \frac{\sum \tan(\varphi_i) \cdot l_i}{\sum l_i} \tag{2.14} \]

\[cal \; c = \frac{\sum c_i \cdot l_i}{\sum l_i} \tag{2.15} \]

Aufgrund der Tatsache, dass eine Tragschicht im Normalfall dann aufgebracht wird, wenn der Untergrund bindig und keine ausreichende Tragfähigkeit aufweist, haben Tragschichten deutlich höhere Reibungswinkel als der vorhandene Untergrund bzw. die Differenz der Reibungswinkel ist wesentlich größer als 5°. Somit ist DIN 4017 auf Tragschichten für Arbeitsplattformen nicht anwendbar und dieses Vorgehen eher für einen natürlich anstehenden, mehrschichtigen Bau- grund geeignet. Außerdem kann dabei der maßgebende Versagensmechanismus und damit die Form der Gleitfuge nicht genau berücksichtigt werden.

2.4.2 DIN 4017:2006-03 – Anhang B

Hat der Boden einen zweischichtigen Aufbau ohne Bewehrungslage wie in Abbildung 2.4 und besitzen die Bodenschichten nachfolgende Eigenschaften, so ist ein Durchstanzen des Fundaments zu prüfen, wobei zwischen biegesteifen und biegeschlaffen Fundamenten unterschieden wird.

- weicher, wassergesättigter, bindiger Boden als Untergrund (Tragverhalten bestimmt durch undrainierte Scherfestigkeit \(c_u\))
- festere Tragschicht mit \(\varphi_T > 25°\) und \(H_T < 2 \cdot b\)

Der Grundbruchwiderstand \(R_n\) berechnet sich hierbei analog zu DIN 4017 wie folgt:

\[R_n = a' \cdot b' \cdot \frac{2 \cdot \left(1 + \frac{b'}{a'}\right) \cdot N_C \cdot c_u + \left(3 + 2 \cdot \frac{b'}{a'}\right) \cdot A' \cdot \lambda \cdot H_T^2 \cdot \gamma_T}{\left(3 + 2 \cdot \frac{b'}{a'}\right) \xi^{-b' \cdot \lambda} - 1} \tag{2.16} \]

Mit:

\[\lambda = \frac{H_T}{a'} + \frac{H_T}{b'} \tag{2.17} \]

Und:

\[A_{biegsteif}^* = 1,11 \cdot 10^{-6} \cdot \varphi_T^3 - 2,01 \cdot 10^{-4} \cdot \varphi_T^2 + 9,17 \cdot 10^{-3} \cdot \varphi_T \tag{2.18-a} \]

\[B_{biegsteif}^* = 1,66 \cdot 10^{-6} \cdot \varphi_T^3 - 3,02 \cdot 10^{-4} \cdot \varphi_T^2 + 1,38 \cdot 10^{-2} \cdot \varphi_T \tag{2.18-b} \]
Der Durchstanznachweis setzt sich aus der Kombination einer Silo-Theorie mit der Grundbruchberechnung nach DIN 4017 zusammen. Im Gegensatz zu vielen anderen Ansätzen und Verfahren aus der Literatur, welche in diesem Kapitel noch vorgestellt werden, werden keine Lastausbreitung in der Tragschicht und kein mobilisierter Erdwiderstand in der gedachten Bruchfuge angesetzt.

Im H_T-c_u-Diagramm in Abbildung 2.28 stellt sich ein linearer Verlauf ein. Da die Berechnung also eher konservativ ist und aufgrund der linearen Abhängigkeit von der undrainierten Scherfestigkeit wird bereits bei relativ hohen Scherfestigkeiten der Weichschicht die maximal zulässige Tragfähigkeit $\tau < \gamma \cdot c_u$ erreicht. Für ein Zwei-Schicht-System, wie es in diesem Zusammenhang betrachtet wird, ist dieses Verfahren jedoch der aktuell einzig normativ geregelt Bemessungsansatz in Deutschland.

2.4.3 Projektionsflächenmethode

Das Projektionsflächenverfahren stellt den einfachsten Ansatz zur Bestimmung der Tragfähigkeit eines zweischichtigen Bodens dar, bei dem die obere festere Schicht eine so geringe Mächtigkeit aufweist, dass die untere weichere Schicht einen Einfluss auf die Versagensform hat. Dieser Ansatz bezieht sich ursprünglich auf die Forschungen von TERZAGHI & PECK (1948), wurde aber von etlichen weiteren Autoren aufgenommen und untersucht und ist auch unter anderen Bezeichnungen bekannt.

Unter der Annahme, dass sich die Last in der oberen Schicht unter einem Winkel α verteilt, bildet sich auf der Oberfläche der unteren Schicht eine größere projizierte Fläche aus, auf welche die Last wirkt (Abb. 2.6):

\[R_b \]

Abbildung 2.6: Fundament auf geschichtetem Untergrund
- Durchstanzen nach DIN 4017- Anhang B

Abbildung 2.7: Grundbruch nach dem Projektionsflächenverfahren
\[AG = a_G \cdot b_G = (a' + 2 \cdot H_T \cdot \tan(\alpha)) \cdot (b' + 2 \cdot H_T \tan(\alpha)) \] (2.19)

Der Grundbruchwiderstand berechnet sich zu:

\[R_n = a_G \cdot b_G \cdot (\gamma_T \cdot d + c_u \cdot N_c) \] (2.20)

Die Genauigkeit dieser Methode ist jedoch stark abhängig von der Annahme des Lastausbreitungswinkels \(\alpha \). In der Literatur sind verschiedene Ansätze hierfür angegeben:

- **TERZAGHI & PECK (1948)** gehen von einem festgelegten Wert \(\tan(\alpha) = 0.5 \) aus.
- **GIROUD & NIORAY (1981)** geben einen Wert von \(\alpha = 30^\circ \) (\(\tan(\alpha) = 0.6 \)) an.
- Unter Berücksichtigung des Reibungswinkels der Tragschicht kann \(\alpha = 45^\circ - \frac{\phi_T}{2} \) angesetzt werden.
- Ein in der Praxis weit verbreiteter Ansatz ist die 2:1-Methode, bei welcher eine Neigung der Scherfuge zur Vertikalen mit den Verhältnis 2:1 angenommen wird, was einen Winkel \(\alpha = 26.6^\circ \) ergibt.

Auf der Grundlage von 27 Versuchen haben JACOBSEN et. al. (1977) eine empirische Formel aufgestellt, um \(\alpha \) zu berechnen, welche die beiden Einzeltragfähigkeiten \(q_T \) und \(q_B \) in Relation mit einbezieht.

\[\tan(\alpha) = \frac{1}{2} \left(0.1125 + 0.0344 \cdot \left(\frac{q_T}{q_B} \right) \right) \] (2.21)

2.4.4 MEYERHOF

Eine weitere Möglichkeit zeigt der Bemessungsansatz nach MEYERHOF (1974) auf, bei welchem die Tragschicht über den Ansatz eine Reibungskraft in der gedachten vertikalen Bruchfuge berücksichtigt wird. Die Reibungskraft ergibt sich dabei aus dem, um den Wandreibungswinkel \(\delta \) geneigten passiven Erddruck \(E_p \), welcher eine Reduktion der Auflast in der Weichschicht unterhalb der Lastfläche bewirkt. Der Wandreibungswinkel \(\delta \) wird vereinfachend mit \(2/3 \cdot \phi_T \) angesetzt.

Zur Berücksichtigung des Einflusses der Weichschicht auf die Tragfähigkeit wird anstelle des passiven Erddruckbeiwertes \(K_p \) der Durchstanzbeiwert \(K_d \) aus Abbildung 2.9 eingeführt, welcher in Abhängigkeit der Einzeltragfähigkeiten der Trag- und der Weichschicht, sowie des Reibungswinkels der Weichschicht angegeben wird.

Grenztragfähigkeit des Bodens unter Streifenfundamenten:

\[q_{max} = \nu_c \cdot c_u \cdot N_{c0} + \frac{2 \cdot E_p \cdot \sin(\delta)}{b'} + \gamma_T \cdot d \] (2.22)
mit:

\[E_p = \frac{0.5 \cdot \gamma_T \cdot \frac{H_T^2}{b'} \cdot \left(1 + \frac{2d}{H_T}\right) \cdot K_p}{\cos(\delta)} \]
(2.23)

\[K_s \cdot \tan(\varphi_T) \text{ bzw. vereinfachend } K_p \cdot \tan(\delta) \]
(2.24)

mit: \(K_s \) = Durchstanzbeiwert (punching shear coefficient)

fasst man diese drei Gleichungen zusammen, ergibt sich:

\[q_{\text{max}} = v_c \cdot c_u \cdot N_{c0} + \frac{\gamma_T \cdot \frac{H_T^2}{b'} \cdot \left(1 + \frac{2d}{H_T}\right) \cdot K_s \cdot \tan(\varphi_T)}{b'} + \gamma_T \cdot d \]
(2.25)

mit einem Maximalwert (\(H_T = \infty \)):

\[q_{\text{max}} = q_T = \frac{\gamma_T \cdot b' \cdot N_b}{2} + \gamma_T \cdot d \cdot N_d \]
(2.26)

(wobei \(v_c = 1.0 \) für Streifenfundamente)

Der Durchstanzbeiwert \(K_s \) kann über den entsprechenden passiven Erddruck nach Gleichung 2.23 und 2.24 oder über die Einzeltragfähigkeiten beider Schichten ermittelt werden. Die Grenztragfähigkeit des Bodens unter Kreisfundamenten wird durch einen Formfaktor \(\nu \) (Steuergröße) - für den passiven Erddruck auf eine zylinderförmige Wand erweitert:

\[q_{\text{max}} = v_c \cdot c_u \cdot N_{c0} + \frac{2 \cdot \gamma_T \cdot \frac{H_T^2}{d_m'} \cdot \left(1 + \frac{2d}{H_T}\right) \cdot \nu_5 \cdot K_s \cdot \tan(\varphi_T)}{d_m} + \gamma_T \cdot d \]
(2.27)

mit einem Maximalwert (\(H = \infty \)).
Für eine konservative Berechnung wird ein Formfaktor von $\nu = 1,0$ angenommen. Die Grenztragfähigkeit des Bodens unter Rechteckfundamenten kann zwischen den Werten aus Streifen- und Kreisfundamenten interpoliert werden. Alternativ kann ein anderer Formbeiwert $\nu_c = 1 + 0,2 \cdot \frac{a'}{b'}$ (vgl. Tabelle 2.1) angesetzt werden. Bei Abnahme des Reibungswinkels der unteren Schicht sinkt der Wert des Durchstanzbeiwertes K_s, da die vertikale Setzung zunimmt, wodurch die laterale Verformung abnimmt. Wenn der Wert des Verhältnisses H_T / b' zunimmt, so erhöht sich die Grenztragfähigkeit unter einem Streifen- bzw. Kreisfundament deutlich. Für festere Tragschichten (höherer Reibungswinkel) steigt der Durchstanzbeiwert K_s (vgl. Tabelle 2.1), was auch durch Modellversuche bestätigt wird, wobei die gewählte Berechnungsansatz dabei für hohe Reibungswinkel recht konservativ ist. Der Berechnungsansatz ist für Flachgründungen nur gültig bis zu einem Verhältnis $H_T / b' = 4$ bei Streifenfundamenten und $H_T / d_{mn} = 2$ bei Kreisfundamenten. In zahlreichen Veröffentlichungen der beiden Autoren (MEYERHOF 1974; HANNA 1981; HANNA & MEYERHOF 1980) werden Ergebnisse von Untersuchungen zu diesem Ansatz dargelegt.

2.4.5 YAMAGUCHI

Der Bemessungsansatz nach YAMAGUCHI (1963) stellt eine Erweiterung des Projektionsflächenverfahrens dar, welches um eine zusätzliche Reibungskraft Q_S im Bereich des passiven Bruchkörpers ergänzt wird. Dieser Reibungswiderstand Q_S wirkt in einer vertikal gedachten Bruchfuge in der oberen Schicht im Abstand $1,5 \cdot (b' + H_T)$ von der Mitte des Fundaments und berücksichtigt den passiven Erdwiderstand K_p der aufliegenden Tragschicht (Abb. 2.9).

\begin{equation}
q_{\text{max}} = q_T = 0,3 \cdot \gamma_T \cdot d_{mn} \cdot N_p + \gamma_T \cdot d \cdot N_d
\end{equation}

(wobei $\nu_c = 1,2$ für Kreis-/Quadratfundamente)

Für eine konservative Berechnung wird ein Formfaktor von $\nu = 1,0$ angenommen. Die Grenztragfähigkeit des Bodens unter Rechteckfundamenten kann zwischen den Werten aus Streifen- und Kreisfundamenten interpoliert werden. Alternativ kann ein anderer Formbeiwert $\nu_c = 1 + 0,2 \cdot \frac{a'}{b'}$ (vgl. Tabelle 2.1) angesetzt werden. Bei Abnahme des Reibungswinkels der unteren Schicht sinkt der Wert des Durchstanzbeiwertes K_s, da die vertikale Setzung zunimmt, wodurch die laterale Verformung abnimmt. Wenn der Wert des Verhältnisses H_T / b' zunimmt, so erhöht sich die Grenztragfähigkeit unter einem Streifen- bzw. Kreisfundament deutlich. Für festere Tragschichten (höherer Reibungswinkel) steigt der Durchstanzbeiwert K_s (vgl. Tabelle 2.1), was auch durch Modellversuche bestätigt wird, wobei der gewählte Berechnungsansatz dabei für hohe Reibungswinkel recht konservativ ist. Der Berechnungsansatz ist für Flachgründungen nur gültig bis zu einem Verhältnis $H_T / b' = 4$ bei Streifenfundamenten und $H_T / d_{mn} = 2$ bei Kreisfundamenten. In zahlreichen Veröffentlichungen der beiden Autoren (MEYERHOF 1974; HANNA 1981; HANNA & MEYERHOF 1980) werden Ergebnisse von Untersuchungen zu diesem Ansatz dargelegt.

2.4.5 YAMAGUCHI

Der Bemessungsansatz nach YAMAGUCHI (1963) stellt eine Erweiterung des Projektionsflächenverfahrens dar, welches um eine zusätzliche Reibungskraft Q_S im Bereich des passiven Bruchkörpers ergänzt wird. Dieser Reibungswiderstand Q_S wirkt in einer vertikal gedachten Bruchfuge in der oberen Schicht im Abstand $1,5 \cdot (b' + H_T)$ von der Mitte des Fundaments und berücksichtigt den passiven Erdwiderstand K_p der aufliegenden Tragschicht (Abb. 2.9).

\begin{equation}
Q_S = \frac{1}{2} \cdot \gamma_T \cdot H_T^2 \cdot K_p \cdot \tan \varphi_T
\end{equation}

Für $\tan(\varphi_T)$ wird ein Wert von 0,5 und für K_p wird ein Wert von 3 angenommen. Folglich kann der Grundbruchwiderstand R_n nach folgender Gleichung berechnet werden.
\[R_n = a_G \cdot b_G \cdot \left(\gamma_T \cdot d + c_u \cdot N_{c0} + \frac{Q_s}{1.5 \cdot (b' + H_T)} \right) \] (2.30)

mit \(N_{c0} = 5.3 \).

2.4.6 OKAMURA

Die Grenztragfähigkeit \(q_{\text{max}} \) des Tragschichtsystems für Streifenfundamente lässt sich nach Gleichung 2.31 berechnen:

\[
q_{\text{max}} = \left(1 + 2 \cdot \frac{H_T}{b'} \cdot \tan(\alpha) \right) \cdot \left(v_c \cdot c_u \cdot N_{c0} + q_0 + \gamma_T \cdot H_T \right) + \frac{K_p \cdot \sin(\varphi_T - \alpha)}{\cos(\varphi_T) \cdot (\alpha)} \cdot \frac{H_T}{b'} \\
\cdot \left(q_0 + \gamma_T \cdot H_T - \gamma_T \cdot H_T \left(1 + \frac{H_T}{b'} \cdot \tan(\alpha) \right) \right)
\] (2.31)

Die Grenztragfähigkeit \(q_{\text{max}} \) des Tragschichtsystems für Kreisfundamente lässt sich nach Gleichung 2.32 berechnen:

\[
q_{\text{max}} = \left(1 + 2 \cdot \frac{H_T}{d_m'} \cdot \tan(\alpha) \right)^2 \cdot \left(v_c \cdot c_u \cdot N_{c0} + q_0 + \gamma_T \cdot H_T \right) + \frac{4 \cdot K_p \cdot \sin(\varphi_T - \alpha)}{\cos(\varphi_T) \cdot \cos(\alpha)} \\
\cdot \left(q_0 + \frac{\gamma_T \cdot H_T}{2} \right) + q_0 \tan(\alpha) \cdot \left(\frac{H_T}{d_m'} \right)^2 + \frac{2}{3} \cdot \gamma_T \cdot H_T \cdot \tan(\alpha) \cdot \left(\frac{H_T}{d_m'} \right)^2 \\
- \frac{\gamma_T \cdot H_T}{3} \cdot \left(4 \cdot \left(\frac{H_T}{d_m'} \right)^2 \cdot \tan^2(\alpha) + 6 \cdot \frac{H_T}{d_m'} \cdot \tan(\alpha) + 3 \right)
\] (2.32)

(wobei \(q_0 = \gamma_T \cdot d \cdot N_d \) falls eine Einbindetiefe vorhanden ist; sonst bildet \(q_0 \) eine seitliche Auflast ab)

Für die Berechnung werden konstante Werte \(N_{c0} = 5.1 \) (undrainierte Weichschicht) und \(v_c = 1.0 \) bei Steifen- bzw. \(v_c = 1.2 \) bei Kreisfundamenten gewählt. Es wird angenommen, dass sich die beiden Elemente A und B in Abb. 2.10, über- und unterhalb der Trennfläche von Tragschicht und Weichschicht liegend, in einem Grenzzustand befinden, sodass der Winkel \(\alpha \) mit Hilfe des MOHR’schen Spannungskreises (Abb. 2.10) in Abhängigkeit von \(\varphi_T \) und \(c_u \) über folgende Gleichungen bestimmt werden kann:

\[
\alpha = \tan^{-1} \left(\frac{\sigma_{mb}}{\sigma_{mt}} \cdot \frac{\sigma_{mt}}{c_u} \cdot \frac{1 + \sin^2(\varphi_T)}{\cos(\varphi_T) \cdot \sin(\varphi_T) \cdot \frac{\sigma_{mt}}{c_u} + 1} \right)
\] (2.33-a)

\[
\frac{\sigma_{mB}}{c_u} = N_c \cdot v_c \cdot \left(1 + \frac{1}{\lambda_c} \cdot \frac{H_T}{b'} + \frac{\lambda_p}{\lambda_c}\right) \quad (2.33-b)
\]

\[
\frac{\sigma_{mT}}{c_u} = \frac{\sigma_{mB}}{c_u} - \sqrt{\left(\frac{\sigma_{mB}}{c_u}\right)^2 - \cos^2(\varphi_T) \cdot \left(\left(\frac{\sigma_{mB}}{c_u}\right)^2 + 1\right)} \quad (2.33-c)
\]

\[\lambda_p = \frac{q_0}{\gamma_T b'}\] als normalisierter Druck der überlagerten Schicht und \[\lambda_c = \frac{c_u N_c}{\gamma_T b'}\] als normalisierte Tragfähigkeit der Weichschicht gehen mit in die Berechnungen ein. Wieder ist \(b\) für die Breite eines Streifenfundaments und \(d_m\) für den Durchmesser eines Kreisfundaments einzusetzen.

Allgemein gilt:

- Der Winkel \(\alpha\) wird größer, wenn die Werte von \(\lambda_p\) und \(H_T/b'\) bzw. \(H_T/d_m\) steigen und wird kleiner, wenn die Werte von \(\lambda_c\) und \(\varphi_T\) steigen.

- Diese Methode ist allgemein nur innerhalb der Grenzen \(\lambda_p \leq 4,8\) und \(\lambda_c \leq 26\) anwendbar.
2.4.7 Kinematische Näherungsverfahren

Die Grenzbelastung bei diesem Verfahren erhält man über das Gleichgewicht der äußeren Arbeitskräfte und der inneren Energieverteilung. Abb.2.12 zeigt zwei Versagensmechanismen, um die Tragfähigkeit eines geschichteten Bodens mit Sand über Ton unter einem Streifenfundament bestimmen zu können (MICHALOWSKI & SHI - 1995). Mit Hilfe dieser wurden umfangreiche Parameterstudien durchgeführt und daraus abgeleitet gibt es einige Bemessungsdiagramme für unterschiedliche Fälle, wobei die Eingangswerte auf $30^\circ \leq \varphi_T \leq 45^\circ$; $0 \leq \frac{c_T}{\gamma_T b} \leq 5$; $0 \leq \frac{H_T}{b} \leq 5$ und $0 \leq \frac{a_T}{\gamma_T b} \leq 1$ beschränkt sind. Die Schwierigkeit bei der Anwendung ist die richtige Konstruktion des Versagensmechanismus für einen geschichteten Boden. Diese Methode kann auch auf nicht

Abbildung 2.12: Tragfähigkeit unter einem Streifenfundament nach OKAMURA et. al. (1998) (links) und Tragfähigkeit unter einem Kreisfundament nach OKAMURA et. al. (1998)

2.5 Analytische Bemessungsansätze bewehrter Tragschichtsysteme

Im Speziellen gelten für die Verfahren und Bemessungsansätze, in denen ein Geokunststoff als Bewehrungslage eingebracht wird, ergänzend zu Kapitel 2.4 weiterführende Annahmen:

Die Tragfähigkeit der ungebundenen Tragschicht wird anhand der Spurrillentiefe R bestimmt, die sich unter der Normbelastung einer LKW-Achse (80 kN) bildet, wobei davon abweichende Belastungen über eine allgemeingültige Formel eingehen, ausgedrückt in der Anzahl von Normbelastungen $N_{80,\text{maßgebend}}$.

\[
N_{80,\text{maßgebend}} = N_{\text{vorhanden}} \cdot \left(\frac{P_{\text{vorhanden},k}}{80 \text{kN}}\right)^{3,95} \tag{2.35}
\]

Wird nur eine Bewehrungslage eingebaut, so ist davon auszugehen, dass diese stets genau zwischen Tragschicht und Untergrund eingebracht ist, obwohl dies bei Geogittern aufgrund der geringeren Reibung auf der Weichschicht eher unüblich ist, wohingegen eine solche Anordnung bei Vliesstoffen und Kombiprodukten aufgrund der zusätzlichen Funktionen nur hier sinnvoll ist.

2.5.1 GIROUD & NIORAY

\[
P = 2 \cdot a' \cdot b' \cdot p_{ec} \tag{2.36}
\]

Abbildung 2.14: Bemessungsansatz nach GIROUD & NIORAY (1981)

Abbildung 2.15: a) Geometrie einer Achse mit Doppelreifen; b) Kontaktbereich eines Reifens mit der Straße; c) äquivalenter Kontaktbereich welche in dieser Analyse genutzt wird (GIROUD et. al. 1985)
Mit dem Kontaktbereich eines Doppelreifens \(a' \cdot b' = 2 \cdot A_R \cdot \sqrt{2} \) (\(A_R \) entspricht der Auflagefläche eines Reifens) und dem äquivalenten Kontaktdruck eines Doppelreifens \(p_{ec} = \frac{p_c}{\sqrt{2}} \) (\(p_c \) entspricht dem Reifendruck eines Reifens) folgt:

\[
P = 4 \cdot A_R \cdot p_c \tag{2.37}
\]

Die Tragschicht verteilt die Last analog zum Projektionsflächenverfahren in Form eines Pyramidenstumpfs auf den Untergrund und folglich ist an der Schichtgrenze die Belastung geringer.

\[
\begin{align*}
\text{ohne Geokunststoff} \\
\text{mit Geokunststoff}
\end{align*}
\]

Ohne Geokunststoff kann die Auflastspannung \(p_o \) ermittelt werden zu

\[
p_0 = \frac{P}{2 \left(b' + 2 \cdot H_{T,0} \cdot \tan(\alpha_0) \right) \left(a' + 2 \cdot H_{T,0} \cdot \tan(\alpha_0) \right) + \gamma_T \cdot H_{T,0}} \tag{2.38}
\]

mit Geokunststoff ergibt sich:

\[
p_m = \frac{P}{2 \left(b' + 2 \cdot H_{T,m} \cdot \tan(\alpha_m) \right) \left(a' + 2 \cdot H_{T,m} \cdot \tan(\alpha_m) \right) + \gamma_T \cdot H_{T,m}} \tag{2.39}
\]

Auf Grundlage von verschiedenen Versuchen und Berechnungen kann für den Winkel der Lastverteilung \(\tan(\alpha) = 0,6 \) angenommen werden, da die Tragschichtdicke nicht stark von \(\alpha \) beeinflusst ist, solange \(\alpha \) zwischen 0,5 und 0,7 liegt. Alternativ kann der Winkel \(\alpha_0 \) in Abhängigkeit von der Anzahl an Lastübergängen aus Tabellenwerken ermittelt werden.

Vorgehensweise bei der Bemessung:

\[
\begin{align*}
\text{Abbildung 2.16: Lastverteilung durch die Tragschicht - a) Fall ohne Geo-} \\
\text{kunststoff; b) Fall mit Geokunststoff in Anlehnung an GIROUD & NOIRAY (1981)}
\end{align*}
\]

\[
\begin{align*}
\text{Abbildung 2.17: Kinematik einer ungebundenen Straße mit Geokunststoff (GIROUD & NOIRAY, 1981) und} \\
\text{Form des deformierten Geotextils (GIROUD & NOIRAY 1981)}
\end{align*}
\]
1. Ermittlung der erforderlichen Tragschichthöhe für den Fall ohne Geokunststoff:

- unter quasi-statischen Bedingungen

\[
H_{T,0} = -\frac{P}{\sqrt{p_c}} + \frac{P}{\sqrt{2 \cdot p_c}} \cdot \frac{1}{4 \cdot \tan(\alpha_0)} + P \left(\frac{1}{8 \cdot \pi \cdot c_u \cdot \tan^2(\alpha_0)} - \frac{\sqrt{2} \cdot p_c \cdot \tan^2(\alpha_0)}{4} \right)
\]
(2.40)

2. Ermittlung der erforderlichen Tragschichthöhe für den Fall mit Geokunststoff (nur unter quasi-statischen Bedingungen):

- Unter der Annahme, dass das Geotextil rau genug ist, um einen Bruch in der oberen Schicht zu verhindern, beurteilt diese Analyse nur das Versagen in der Grundschicht und des Geokunststoffes selbst.

Da Setzungen unter den Doppelreifen zu Hebungen seitlich davonführen, bildet der Geokunststoff eine Wellenform aus und dehnt sich. Es verstärkt den Druck auf den Untergrund bei konkaver Ausprägung (zwischen und neben den Rädern) und dämpft den Druck bei konvexer Ausprägung unter den Rädern (Abb. 2.16).

\[
p^* = p_m - p_g
\]
(2.41)

\(p_g\) entspricht hierbei einer Reduzierung des Drucks, bei Verwendung eines Geokunststoffes, dessen Dehnung über die Strecke \(AB\) als konstant betrachtet wird. \(p^*\) entspricht dem Spanungsanteil der allein vom Untergrund abgetragenen Druck.

\[
p^* = (\pi + 2) \cdot c_u + y_T \cdot H_{T,m}
\]
(2.42)

Daraus ermittelt man den maßgebenden Druck für den Fall mit Geokunststoff.

\[
p_m - p_g = (\pi + 2) \cdot c_u + y_T \cdot H_{T,m}
\]
(2.43)

- Aufgrund der Wellenform muss das aufwärts gedrückte gleich dem abwärts gesetzten Volumen sein und die Punkte A und B bleiben im Ausgangszustand (Abb. 2.16).

\[
2 \cdot b_g = b'_m + 2 \cdot H_{T,m} \cdot \tan(\alpha_m)
\]
(2.44-a)

\[
2 \cdot b'_g = s_m - b'_m - 2 \cdot H_{T,m} \cdot \tan(\alpha_m)
\]
(2.44-b)

- Es gibt somit zwei verschiedene Fälle, um die Form des Geokunststoffes zu berücksichtigen:
1. \(b'_G > b_G \): Setzung \(s \) unter den Rädern:
\[
\frac{R \cdot b'_G}{b_G + b'_G}
\]

→ Dehnung und Spannung in \(P_G \) sind größer als in \(P'_G \) und der Geokunststoff bewegt sich, bei gleichmäßiger angenommener Dehnung über die gesamte Länge, von \(P'_G \) nach \(P_G \), da nicht genügend Reibung erzeugt werden kann.

2. \(b_G > b'_G \): Setzung \(s \) unter den Rädern:
\[
\frac{2 \cdot R \cdot b'_G}{2 \cdot b_G \cdot b'_G - b_G^2}
\]

→ Dehnung und Spannung in \(P'_G \) sind größer als in \(P_G \) und der Geokunststoff bleibt in Ruhe, bei nun unterschiedlich angenommenen Dehnungen, da in diesem Fall eine entscheidende Reibung generiert werden kann.

- Daraus ergibt sich ein reduzierter Druck:

\[
p_g = \frac{K \cdot \varepsilon}{b_G \cdot \sqrt{1 + \left(\frac{b_G}{2 \cdot b'_G}\right)^2}}
\]

mit \(K = \) Geotextilmodul (entspricht der Zugfestigkeit bei der angesetzten Dehnung)

- Und darüber wiederum lässt sich dann die erforderliche Dicke der Tragschicht \(H_{T,M} \) bestimmen:

\[
(\pi + 2) \cdot c_u = \frac{P}{2 \cdot (b' + 2 \cdot H_{T,m} \cdot \tan(\alpha_m)) \cdot \left(\alpha' + 2 \cdot H_{T,m} \cdot \tan(\alpha_m)\right)} + \frac{(K \cdot \varepsilon)}{b_G \cdot \sqrt{1 + \left(\frac{b_G}{2 \cdot b'_G}\right)^2}} \quad (2.46)
\]

3. Ermittlung der Reduktion der Tragschichtdicke:

\[
\Delta H_T = H_{T,0} - H_{T_m} \Rightarrow H_{T,m} = H_{T,0} - H_{T,m} \Rightarrow H_{T,m} = H_{T,0} - H_{T,0} + H_{T,m}
\]

Das obere Diagramm (Abb. 2.17), welches die Dicke der Tragschicht für den Fall mit Geokunststoff \(H_{T,m} \) in Abhängigkeit von der undrainierten Kohäsion, dem Verkehrsaufkommen und der Steifigkeit des Geokunststoffes angibt, sollte nur bei sehr schwachem Verkehrsaufkommen genutzt werden. Daher wird im Normalfall das untere Diagramm (Abb. 2.17), welches zum einen die Reduktion der Tragschicht bei Verwendung eines Geokunststoffs, \(\Delta H_T \) und zum anderen die Dicke der Tragschicht für den Fall ohne Geokunststoff unter dynamischen Verhältnissen, \(H_{T,0} \) jeweils in Abhängigkeit von der undrainierten Kohäsion \(c_u \), dem Verkehrsaufkommen und der Steifigkeit des Geokunststoffes angibt, zur direkten Bestimmung der Tragschichtdicke genutzt. Untersuchungen zeigen gute Übereinstimmung der Ergebnisse mit dem theoretischen Ansatz bei
leichtem bis mittlerem Verkehrsaufkommen, jedoch bezieht sich dieses Verfahren nur auf den Einfluss des Geokunststoffs auf die Tragfähigkeit, nicht etwa auf andere Effekte wie Trennung, Filtern oder Drainage.

2.5.2 GIROUDE & HAN

$$r = \sqrt{\frac{P}{\pi \cdot p}}$$ (2.48)
Ebenfalls notwendig zur Generierung einer Bemessungsformel ist das beschränkte Verhältnis der beiden Verformungsmoduln der Schichten \(E_B \) und \(E_T \), welches sich auch in CBR-Werten ausdrücken lässt.

\[
E_{V,erh.} = \min\left(\frac{E_B}{E_T}; 5,0\right) = \min\left(\frac{3,48 \cdot CBR_B^{0,3}}{CBR_T}; 5,0\right)
\]

(2.49)

Wenn sich die Last unter einem Winkel \(\alpha \) in der Tragschicht verteilt und der Druck \(p \), welcher auf den Untergrund wirkt, nicht größer sein darf als die Tragfähigkeit dessen \((p \leq m \cdot N_c \cdot c_u) \), dann muss für die Tragschichtdicke \(H_T \) folgende Bedingung gelten.

\[
H_T \geq \frac{r}{\tan(\alpha)} \cdot \left(\frac{p}{\pi \cdot r^2 \cdot m \cdot N_c \cdot c_u} - 1\right)
\]

(2.50)

Diese Formel beinhaltet nun noch drei Unbekannte:

- Der Tragfähigkeitsbeiwert \(N_c \) ist:
 - 3,14 für unbewehrte Straßen und lokalen Grundbruch
 - 5,14 für mit einem Geotextil bewehrte Straßen bei allg. Grundbruch
 - 5,71 für mit einem Geogitter bewehrte Straßen bei allg. Grundbruch

- Der Tragfähigkeitsmobilisierungskoeffizient \(m \) berechnet sich in Abhängigkeit vom Verhältnis der festgelegten zulässigen Spurrillentiefe \(\frac{R}{I_R} \). Für diese Bemessung zulässige Spurrillentiefe von 7,5 cm angesetzt.

\[
m = \left(\frac{R}{I_R}\right) \cdot \left(1 - \xi \cdot \exp\left[-\omega \cdot \left(\frac{r}{H_T}\right)^n\right]\right)
\]

(2.51)

Die dritte Unbekannte, der Lastausbreitungswinkel \(\alpha \), kann man wiederum unter Bezug auf drei verschiedene Einflüsse korrelieren:

1. Zuerst bestimmt man den Lastausbreitungswinkel für ein Tragschichtmaterial auf weichem Untergrund \(\alpha_1 \) unter Einfluss der Schichteigenschaften im Verhältnis \(E_{V,erh.} \) und mit Zuhilfenahme eines Lastausbreitungswinkels \(\alpha_h \) für ein homogenes Material

\[
\tan(\alpha_1) = \tan(\alpha_h) \cdot [1 + 0,204 \cdot (E_{V,erhättns} - 1)]
\]

(2.52)

2. der Verkehr (Anzahl von Lastübergängen \(N \)) hat ebenfalls einen Einfluss auf den Lastausbreitungswinkel \(\alpha \)

\[
\frac{1}{\tan(\alpha)} = \frac{1 + k \cdot \log(N)}{\tan(\alpha_1)}
\]

(2.53)

wobei \(\alpha_1 \) für \(N = 1 \) bestimmt ist und \(k \) eine empirisch bestimmte Konstante ist, welche die dritte Einflussgröße darstellt
3. und eben diese ist der Einfluss des Geokunststoffes, eingehend mit dessen Öffnungsweiten-Festigkeitsmodul $J \left(\frac{m_N}{o} \right)$ mit $J = 0$ für den unbewehrten Fall und für den mit Geotextil bewehrten Fall und $J > 0$ für den mit Geogitter bewehrten Fall.

$$\lambda = \frac{k}{\tan(\alpha)} = (B + C \cdot J + D \cdot J^2) \cdot \left(\frac{r}{H_T} \right)^x$$

(2.54)

Die restlichen, noch nicht definierten Variablen ξ, ω, n, B, C, und D wurden über verschiedene Ansätze und Versuche empirisch ermittelt und angepasst, sodass sich die Tragschichtdicke H_T zusammenfassend mit einer Formel iterativ berechnen lässt.

$$H_T = \frac{0.868 + (0.661 - 1.006 \cdot J^2) \cdot \left(\frac{r}{H_T} \right)^{1.5} \cdot \log(N)}{1 + 0.204 \cdot (E_{\text{Verhältnis}} - 1) \cdot \left(\frac{P}{\pi \cdot r^2} \cdot \left(1 - 0.9 \cdot \exp \left[- \left(\frac{r}{H_T} \right)^2 \right] \right) \cdot N_c \cdot c_u \right)}$$

(2.55)

Über Gleichung 2.55 wurden für verschiedene Eingangsparameter Bemessungsdiagramme generiert (Abb. 2.18). Ist die Tragschichtdicke bereits festgelegt, so kann man mit der Formel auch umgekehrt die maximale Achslast P bestimmen.
2.5.3 BRE 470 (MEYERHOF mit zusätzlicher Geokunstoffbewehrung)

Im Folgenden werden die einzelnen Berechnungsschritte von der Bewertung der Belastung bis hin zur nötigen Wahl der Tragschichtdicke aufgezeigt.

1. Feststellung der Bodenkennwerte des Untergrunds (c_u) und der Tragschicht (φ_T und γ_T)

2. Berechnung der Belastung des Bodens durch die Baumaschine:

Belastungsfall 1 (Abb. 2.21):

Der Geräte-/ Kranführer kann einen bevorstehenden Grundbruch in diesem Fall nicht durch evtl. Lastverteilung oder entgegenwirkende Widerstände verhindern z.B. beim Stehen und Fahren.

$$q_{d1} = \gamma_q \cdot q_{1k}$$ \hspace{1cm} (2.56)

Belastungsfall 2 (Abb. 2.21):

Der Geräte-/ Kranführer kann einen bevorstehenden Grundbruch in diesem Fall durch evtl. Lastverteilung oder entgegenwirkende Widerstände verhindern z.B. beim Ein-/ Ausbau einer Verrohrung.

$$q_{d2} = \gamma_q \cdot q_{2k}$$ \hspace{1cm} (2.57)
3. Herleitung der Tragfähigkeit mit Hilfe von Abb. 2.20 und mit den jeweiligen Formfaktoren:

\[q_{\text{max}} = c_u \cdot N_c \cdot v_c + \frac{\gamma_T \cdot H_p^2}{b'} \cdot K_p \cdot \tan(\alpha) \cdot v_p \]

(2.58)
mit:
\[v_c = 1 + 0.2 \cdot \frac{b'}{a} \quad \text{und} \quad v_p = 1 + \frac{b'}{a} \]

4. Nachweis der Tragfähigkeit des Untergrunds:

\[q_U = c_u \cdot N_c \cdot v_c \]

(2.59)
- mit \(q_{1d} = 2,0 \cdot q_{1k} \) und \(q_{2d} = 1,5 \cdot q_{2k} \)
- falls \(q_{1d} < q_U \) und \(q_{2d} < q_U \) ist keine Tragschicht notwendig

5. Nachweis der Tragfähigkeit des Tragschichtmaterials:

\[q_T = 0,5 \cdot \gamma_T \cdot b' \cdot N_b \cdot v_b \]

(2.60)
- mit \(v_b = 1 - 0,3 \cdot \frac{b'}{a} \)
- mit \(q_{1d} = 1,6 \cdot q_{1k} \) und \(q_{2d} = 1,2 \cdot q_{2k} \)
- falls \(q_{1d} < q_T \) und \(q_{2d} < q_T \) ist die Tragschicht ausreichend steif

6. Berechnung der Tragschichtdicke ohne Geokunststoff:

\[H_{T,0,1} = \left(\frac{b' \cdot (q_{1d} - c_u \cdot N_c \cdot v_c)}{\gamma_T \cdot K_p \cdot \tan(\alpha) \cdot v_p} \right)^{0,5} \]

(2.61)
mit \(q_{1d} = 1,6 \cdot q_{1k} \)

\[H_{T,0,2} = \left(\frac{b' \cdot (q_{2d} - c_u \cdot N_c \cdot v_c)}{\gamma_T \cdot K_p \cdot \tan(\alpha) \cdot v_p} \right)^{0,5} \]

(2.62)
mit \(q_{2d} = 1,2 \cdot q_{2k} \)

- Der größere Wert ist maßgebend.
- Bei großen Tragschichthöhen (HT > 0,8 m) sollte man ein anderes Tragschichtmaterial verwenden oder ein Geotextil zwischen die Schichten einbauen.

7. Berechnung der Tragschichtdicke mit Geokunststoff:

- Die Tragfähigkeit wird um einen Faktor \(2 \cdot F_d \cdot \frac{b'}{a} \) vergrößert, wobei \(F_d = \frac{F_{\text{max}}}{2} \) die Dehnsteifigkeit des Geokunststoffs darstellt.
- Wieder ist der größere der beiden Werte \(H_{T,m,1} \) und \(H_{T,m,2} \) maßgebend.
Die Dicke der Tragschicht über dem Geokunststoff darf nicht größer sein als \(b' \) ansonsten, sprich bei deutlich stärkeren, erforderlichen Tragschichten, müssen mehrere Lagen des Geokunststoffes eingebaut werden.

\[
q_{\text{max}} = c_u \cdot N_c \cdot v_c + \frac{\gamma_T \cdot H_{T,m}^2 \cdot K_p \cdot \tan(\alpha) \cdot v_p + 2 \cdot F}{b'}
\]

mit \(q_{1d} = 1,6 \cdot q_{1k} \)

\[
H_{T,m,1} = \left(b' \cdot \left(q_{1d} - c_u \cdot N_c \cdot v_c - 2 \cdot \frac{F}{b'} \right) \right)^{0,5}
\]

mit \(q_{2d} = 1,2 \cdot q_{2k} \)

\[
H_{T,m,2} = \left(\frac{\gamma_T \cdot K_p \cdot \tan(\alpha) \cdot v_p}{b'} \right)^{0,5}
\]

Die Methode ist nur anwendbar für einen Bereich von \(20 \, kPa < c_u < 80 \, kPa \). Die minimale Tragschichtdicke, falls eine Tragschicht erforderlich ist, sollte mindestens \(0,3 \, m \) bzw. \(b/2 \) sein. Der geringere Wert ist maßgebend. Es wird betont, dass selbst wenn die Tragfähigkeit des Untergrund alleine ausreicht, um die Belastung abzutragen, eine Schicht aus einem Obermaterial aufgetragen werden sollte, damit es bei starken Witterungseinflüssen zu keinen großen Verformungen des Untergrunds kommt und dieser auch dann standfest gegenüber den aufgebrachten Lasten ist.

2.5.4 HOULSBY & JEWELL (1990)

Da man bei diesem Verfahren geringe Spurtiefen annimmt, hat der Membraneffekt des Geokunststoffes nur eine untergeordnete Bedeutung und Scherspannungen, welche hauptsächlich in der Geokunststofflage wirken, nehmen einen entscheidenden Einfluss auf die Bemessung. Die Lastfläche unter einem Kreisfundament wird axialsymmetrisch betrachtet und nicht nur im ebenen Spannungszustand. Die Bemessung stützt sich auf die Kombination zweier Eigenschaften: zum

Abbildung 2.23: Bemessungsansatz nach HOULSBY & JEWELL (1990)

Der passive Erdruddruck an der gedachten Gleitlinie der Bruchfigur berechnet sich zu:

\[E_{pgh} = 0.5 \cdot K_p \cdot \gamma_T \cdot H_T^2 \]

(2.66)

Die Vertikalspannungen in der Tragschicht ergeben sich in Abhängigkeit von der Tiefe \(z \) zu:

\[\sigma_v = \frac{\gamma_T \cdot z + q \cdot b'}{b' + z \cdot \tan(\alpha)} \]

(2.67)

\[\sigma_h = K_\alpha \cdot \sigma_v \]

(2.68)

Abbildung 2.24: benötigte und mögliche Kombinationen von Scher- und Normalspannung an der Grenze der beiden Schichten (Houlsby & Jewell 1990)

Das Geokunstoff wirkt deutlich lastverteilend und die Scherspannungen im Untergrund nehmen dadurch deutlich ab, wodurch der Untergrund folglich nur vertikal belastet wird. Nimmt man nun den axialsymmetrischen Fall an, so lassen sie die Scherspannung und die vertikale Normalspannung an der Grenze zwischen Tragschicht und Boden wie folgt ausdrücken:

\[\tau = \left(K_\alpha - K_p \right) \cdot \frac{d'_m + 2 \cdot dm_{m,G}}{3 \cdot d'_{m,G}} \cdot \gamma_T \cdot H_T^2 + \frac{2 \cdot K_\alpha \cdot q}{\tan(\alpha)} \cdot \left(\frac{d'_{m,G}}{d_{m,G}} \right)^2 \cdot \ln \left(\frac{d_{m,G}}{d_m} \right) - q \]

(2.69)

\[\sigma_v = \gamma_T \cdot H_T + q \cdot \left(\frac{d'_{m,G}}{d_{m,G}} \right)^2 \]

(2.70)
Mit \(q = 5,69 \cdot c_u \cdot \frac{d_m \cdot G}{d_m} \) erhält man die maximale Zugkraft:

\[
F = \tau \cdot d_{m,G}
\]
(2.71)

Mit Hilfe von Bemessungsdiagrammen ist es nun möglich, zuerst die Tragschichtdicke bei einer bestimmten Last festzulegen, wobei die Zugfestigkeit der Geokunststoffbewehrung so zu wählen ist, dass die entstehenden Schubspannungen vollständig aufgenommen werden. Die Bemessungsdiagramme sind abhängig von den Eingangsparametern \(\Phi_T \), \(c_u \) und \(\alpha \) sowie der Belastung \(q \).

2.5.5 EBGEO – Verkehrswege (Kapitel 6)

Diese Bemessungs- und Berechnungsempfehlung basiert im Wesentlichen auf dem Bemessungsansatz von GIROU& NOIRAY (1981). Die Ermittlung der erforderlichen Tragschichthöhe erfolgt in folgenden Schritten:

- Ermittlung der Dicke der unbewehrten Tragschicht, welche von der Tragfähigkeit des Untergrunds und der Anzahl der Überfahrten mit einer rechnerischen Achslast von 100 kN abhängig ist.
- Ermittlung der zulässigen Abminderung der Schichtdicke infolge der Geokunststoffbewehrung, wobei dies stark vom verwendeten Geokunststoff abhängt.

Es werden, auf der sicheren Seite liegend, mögliche, günstig wirkende Effekte des Geokunststoffs vernachlässigt, die zu einer höheren Zugfestigkeit des Geokunststoffes und damit zu einer Reduzierung der Tragschichtdicke führen würden. Der typische Anwendungsbereich liegt bei 30 kN/m² ≤ \(c_u \) ≤ 90 kN/m². Für beide Bemessungsdiagramme wurden Spurrillentiefen von 7,5 cm bis 10,0 cm und eine maximale Dehnung \(\varepsilon \) des Geokunststoffes von 2 % angenommen - bei einem Zugwiderstand des Geokunststoffes von \(R_{g,\varepsilon=2\%} = 8 \) kN/m. Bei erforderlichen Tragschichtdicken von mehr als 50 cm kann es aus wirtschaftlichen Gründen sinnvoll sein, eine zweite Geokunststofflage anzuordnen bzw. das Geokunststoff im Randbereich umzuschlagen. Bei der Erstellung der Bemessungsdiagramme in den Abbildungen 2.25 und 2.26 wurde ein Sicherheitsfaktor von 1,2 für die Einwirkungsseite angenommen. Allgemein ist diese Empfehlung gültig für die Berechnung von ungebundenen Tragschichten mit großen zulässigen Verformungen (Spurrillentiefe) für relativ kleine Lasten (Achslast eines LKWs mit 100 kN) und einer Vielzahl von Lastübergängen. Da es sich nur um eine Empfehlung handelt, ist die Anwendung auf Tragschichten für
Arbeitsplattformen zwar nicht direkt ausgeschlossen, jedoch wirken hierbei deutlich größere Lasten auf den Baugrund und die Aufstandsflächen von Stützfüßen und Raupenfahrwerken weisen teilweise von denen der Doppelachse ab. Die Bemessungsdigramme können nicht für bindige Böden mit geringer Scherfestigkeit ($c_u < 30 \text{kN/m}^2$) angewendet werden.

2.6 Zwei- und mehrlagig bewehrte Systeme

Für zwei und mehrlagig bewehrte Systeme finden sich neben dem Bemessungsverfahren für bewehrte Gründungspolster in der Literatur kaum Verfahren, die in der Praxis Anwendung finden. Überlegungen von

2.6.1 EBGEO – bewehrte Gründungspolster

\[
R_n \mid b \\
\Delta h \\
T_d.1 \\
\Delta h \\
T_d.2 \\
\Delta h \\
T_d.3 \\
\Delta h/2 \\
I_p \\
\text{Gründungspolster } (\gamma, \varphi^*) \\
\text{Weichschicht } (\gamma, c_u)
\]

Abbildung 2.27: Bemessungsansatz für geokunststoffbewehrte Gründungspolster nach EBGEO

\[
H_p = (n_g + 0,5) \cdot \Delta h p \\
\text{min } H_p = 2,5 \cdot \Delta h p \\
\text{max } H_p = (b' / 2) \cdot \tan (45^\circ + \varphi_p / 2)
\]

und

\[
(b' + 4 \cdot \Delta h_p) < L_p \leq 2 \cdot b'
\]

(2.72-a)

(2.72-b)

(2.72-c)

(2.73)
Wobei die Abstände zwischen den einzelnen Lagen ebenfalls beschränkt sind.

\[0,15m \leq \Delta h_p \leq 0,40 \, m \] (2.74-a)
\[\text{bzw.} \Delta h_p \leq 0,5 \cdot b \] (2.74-b)

\[k_b = C \cdot k_{b,\delta} + 1 \] (2.75-a)
\[k_d = C \cdot k_{d,\delta} + 1 \] (2.75-b)
\[k_c = C \cdot k_{c,\delta} + 1 \] (2.75-c)

mit dem Beiwert C

\[C = \left[\frac{2}{\varphi_B} \cdot \sqrt{40^\circ - \varphi_p} \cdot \left(\frac{\varphi_B}{\varphi_p} \right)^{0.7} + 1 \right]^{-1} \] (2.76)

Für \(\varphi_p \geq 40^\circ \) des Füllbodens ist \(C = 1,0 \) zu setzen.

Darüber lässt sich wiederum der Grundbruchwiderstand \(R'_n \) berechnen, wobei für den mit Geogitter bewehrten Fall noch die Widerstände der Geogitter \(\Delta R_n \) mit zu berücksichtigen sind.

\[R'_n = a' \cdot b' \cdot (y_p \cdot b' \cdot N_b \cdot k_b + y_B \cdot d \cdot N_d \cdot k_d + c_u \cdot N_c \cdot k_c) \] (2.77)

\[\Delta R_n = \frac{\cos(\varphi_p) \cdot \cos(\alpha)}{\cos(\varphi_p - \alpha)} \cdot \sum R_l \] (2.78)

\(R_l \) kann entweder durch den charakteristischen Widerstand \(R_{kl} \) oder durch den charakteristischen Wert des Herausziehwiderstands \(R_{kl} \) beschrieben werden.

\[R_n = R'_n + \Delta R_n \] (2.79)

Da diese Richtlinie auf DIN 4017:2006-03 aufbaut, wird auch hier, im Gegensatz zu vielen anderen Ansätzen und Verfahren, keine Lastausbreitung in der Polsterschicht und kein mobilisierter Erdwiderstand in der gedachten Bruchfuge angesetzt. Eine Anwendung auf Tragschichten für Arbeitsstellflächen scheint aus verschiedenen Gründen schwierig. Zum einen beschränken sich die Abmessungen sowohl in der Höhe des Grundungspolsters als auch in der Breite \(b_p \leq 2 \cdot b \) bzw. Länge \((a_p \leq a + b) \) auf einen sehr kleinen Bereich (siehe Gleichungen 2.72 bis 2.74). Zum anderen sind mindestens zwei Geokunststofflagen anzuordnen.
2.7 Vergleich der Bemessungsansätze

Im Folgenden werden die oben aufgeführten Bemessungsverfahren für bewehrte Tragschichten in einer Beispielrechnung miteinander verglichen. Als Belastung wird, wie bei der Untersuchung für unbewehrte Tragschichten von KLEIH et. al. (2008), ein Großdrehbohrgerät BG 28 mit einer zusätzlich angehängten Last von 25 t und einer Kettenbreite von 0,80 m betrachtet. Außerdem wird der Mast um 5° nach vorn geneigt und die ungünstigste Verdrehung des Oberwagens um 12,5° angesetzt. Für die Tragschicht wird ein grober Schotter mit einem Reibungswinkel von \(\varphi' = 40° \) angenommen. Die erforderlichen Tragschichthöhen in Abbildung 2.28 wurden abhängig von der undrainierten Scherfestigkeit \(c_u \) für bewehrte und unbewehrte Arbeitsplattformen berechnet. Obwohl bei allen Bemessungsverfahren die bewehrten Tragschichten eine erhebliche Reduktion der Tragschichtendicke ergeben, zeigen sich in Abhängigkeit von den Bemessungsansätzen signifikante Unterschiede in der erforderlichen Tragschichthöhe für verschiedene Untergrundverhältnisse. Hierbei ist anzumerken, dass das Bemessungsverfahren nach BRE 470 für undrainierte Scherfestigkeiten kleiner \(c_u = 20 \text{kN/m}^2 \) nicht zulässig ist. Zudem ist zu erkennen, dass die Ergebnisse für größere Scherfestigkeiten im Vergleich zur EBGEO und dem Bemessungsansatz nach GIROUD & NIORAY (1981) eher konservativ sind.

![Abbildung 2.28: Vergleich der Bemessungsverfahren für bewehrte und unbewehrte Tragschichten am Beispiel eines Großdrehbohrgerätes BG 28](image-url)
3. Modellversuche zum Tragverhalten von unbewehrten und bewehrten Tragschichtsystemen (AP 2)

3.1 Modellgesetze

Tabelle 3.1: Grundgrößen der verschiedenen Einflussgrößen im Modellversuch als Grundlage für die Dimensionsanalyse in einem \([L,T,K]\)-System in Anlehnung an RAITHEL (1999)

<table>
<thead>
<tr>
<th>Größe</th>
<th>Einheit</th>
<th>L</th>
<th>T</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>Abmessungen</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Lastplatte (Breite, Durchmesser)</td>
<td>(b)</td>
<td>([m])</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Abstand der Wegaufnehmer</td>
<td>(D)</td>
<td>([m])</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>Zeitdimension</td>
<td>Zeit</td>
<td>(T)</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Tragschicht</td>
<td>Höhe</td>
<td>(H_T)</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Wichte</td>
<td>(\gamma_T)</td>
<td>([\frac{KN}{m^3}])</td>
<td>-3</td>
</tr>
<tr>
<td>Weichschicht</td>
<td>Kohäsion</td>
<td>(c_u)</td>
<td>([\frac{KN}{m^3}])</td>
<td>-2</td>
</tr>
<tr>
<td></td>
<td>Wassergehalt</td>
<td>(w_B)</td>
<td>([%])</td>
<td>-0</td>
</tr>
<tr>
<td></td>
<td>Wichte</td>
<td>(\gamma_B)</td>
<td>([\frac{KN}{m^3}])</td>
<td>-3</td>
</tr>
<tr>
<td>Geokunststoff</td>
<td>Zugkraft</td>
<td>(F_g)</td>
<td>([kN])</td>
<td>-1</td>
</tr>
<tr>
<td></td>
<td>Bruchdehnung</td>
<td>(\varepsilon_g)</td>
<td>([%])</td>
<td>-0</td>
</tr>
<tr>
<td></td>
<td>Öffnungsweite</td>
<td>(\bar{\Omega}_W)</td>
<td>([mm])</td>
<td>1</td>
</tr>
<tr>
<td>Belastung</td>
<td>Kraft</td>
<td>(F)</td>
<td>([kN])</td>
<td>0</td>
</tr>
<tr>
<td></td>
<td>Geschwindigkeit</td>
<td>(v)</td>
<td>([\frac{m}{s}])</td>
<td>-1</td>
</tr>
<tr>
<td></td>
<td>Frequenz</td>
<td>(f)</td>
<td>([Hz])</td>
<td>0</td>
</tr>
<tr>
<td>Versuch</td>
<td>Spannung</td>
<td>(\sigma)</td>
<td>([\frac{KN}{m^2}])</td>
<td>-2</td>
</tr>
<tr>
<td></td>
<td>Setzung</td>
<td>(s)</td>
<td>([cm])</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>Dehnung</td>
<td>(\varepsilon)</td>
<td>([%])</td>
<td>-0</td>
</tr>
</tbody>
</table>

Die dimensionsmäßig homogene Funktionsgleichung lautet wie folgt:

\[
f (b, D, T, H_T, \gamma_T, c_u, \omega_B, \gamma_B, F_g, \varepsilon_g, W, F, \sigma, v, f, s, \varepsilon) = 0 \quad (3.1)
\]

Die Anzahl \(n\) beschreibt die Anzahl der Einflussgrößen (hier 16). Daraus lässt sich die Dimensionsmatrix \(A\) bestimmen:

\[
A = \begin{pmatrix}
b & 1 & 0 & 1 & -3 & -2 & 0 & -3 & -1 & 0 & 1 & 0 & -2 & 0 & 0 & 1 & 0 \\
D & 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & -1 & -1 & 0 & 0 \\
T & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
H_T & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\
\gamma_T & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 & 0 \\
c_u & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 1 & 0 & 0 \\
\omega_B & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 & 0 \\
\gamma_B & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 & 0 \\
F_g & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 & 0 \\
\varepsilon_g & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 & 0 \\
W & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 & 1 \\
F & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 & 1 \\
\sigma & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 & 0 \\
v & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 & 1 \\
f & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
s & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\varepsilon & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\end{pmatrix} \quad (3.2)
\]

Den Rang \(r\) der Matrix kann man durch zahlreiche Umformungen und Substitutionen bestimmen (hier 3). Folglich gibt es \((n - r)\) dimensionslose Größen (hier 13). Nach Wahl eines geeigneten Fundamentalsystems, sprich nach Auswahl von 3 Größen, mit denen sich alle anderen Größen...
darstellen lassen, ergibt sich eine neue reduzierte Funktionsgleichung, wobei b, c_u und T als abhängige Größen gewählt werden, die dann direkt im vorgegeben Maßstab 1/\lambda im Modell zu skalieren sind.

\[
F \left(\frac{D}{b}, H_T, \gamma_T \cdot b, \omega_B, \gamma_B \cdot b, \frac{F_g}{b}, \frac{W}{c_u \cdot b^2}, \frac{F}{c_u \cdot b}, \frac{v \cdot T}{b}, \frac{s}{b}, \varepsilon \right) = 0
\]

(3.3)

Nun lassen sich alle darin enthaltenen Einflussgrößen dimensionslos skalieren. Für die Setzung beispielsweise erhält man:

\[
\left(\frac{S}{b} \right)_M = \left(\frac{S}{b} \right)_N
\]

(3.4)

und das Modellgesetz lautet schließlich:

\[
s_M = \frac{1}{\lambda} \cdot s_N
\]

(3.5)

Der Maßstab aller geplanten Versuche ist mit 1:3, also \(\lambda = 3 \), vom Prototyp zum Modell gewählt. Wie schon bei den Versuchen FE-Nr. 05.105 G951 (2000) und denen nach BEUTINGER (2005), welche in der gleichen Versuchsgrube durchgeführt wurden, handelt es sich um ein rechteckiges Versuchsfeld mit den Abmessungen 4,82 m x 2,72 m und einer Gesamttiefe von 1,4 m. Entsprechend den vorhergehenden Berechnungen zu den Modellgesetzen, werden die Einflussgrößen gemäß Tab. 3.2 skaliert.

Tabelle 3.2: Skalierung der Einflussgrößen im Maßstab 1:3 (\(\lambda = 3 \))

<table>
<thead>
<tr>
<th>Größe</th>
<th>Modellgesetz</th>
<th>Realität</th>
<th>Modell</th>
</tr>
</thead>
<tbody>
<tr>
<td>(H_T) [m]</td>
<td>(\frac{1}{\lambda})</td>
<td>0,0 – 0,9</td>
<td>0,0 – 0,3</td>
</tr>
<tr>
<td>(c_u) [kN/m²]</td>
<td>(\frac{1}{\lambda})</td>
<td>10 – 90</td>
<td>3 – 30</td>
</tr>
<tr>
<td>(F_g) [kN/m]</td>
<td>(\frac{1}{\lambda^2})</td>
<td>30 – 300</td>
<td>3,33 – 33,33</td>
</tr>
<tr>
<td>(F) [kN]</td>
<td>(\frac{1}{\lambda^2})</td>
<td>100 – 600</td>
<td>4 – 22,22</td>
</tr>
</tbody>
</table>

3.2 Versuchskonzeption

3.2.1 Versuchsaufbau

Die geotechnischen Modellversuche werden als 1-g Versuche im Maßstab 1:3 durchgeführt. Abbildung 3.1 zeigt die Geometrie und das Messkonzept der Modellversuche. Die Grundfläche der Versuchsgrube beträgt 4,82 m x 2,72 m, wobei pro Herstellung der Weichschicht jeweils zwei Versuche durchgeführt werden können. Die Abmessung der Lastplatte beträgt 35 cm x 25 cm, die vertikale Versuchslast greift mit einer Ausmitte von \(e = 0,04 \times B \) (1 cm) bezogen auf die kürzere Fundamentseite an, um die Richtung des Grundbruchversagens vorzugeben. Die Oberflächenverformungen werden mittels Wegaufnehmern an neun Punkten gemessen. In den Versuchen mit Geogitterbewehrung werden mit Hilfe von Dehnmessstreifen zusätzlich je Lage an sieben Stellen die Dehnungen in dem Geogitter bestimmt. Die Standarthöhe der Tragschicht beträgt \(d = 0,20 \) m. Das Schotter-Splitt-Gemisch wird mithilfe einer Vibrationsplatte mit einer bezogenen Dichte von \(D_{pr} = 100 \% \) eingebaut. Die undrainierte Scherfestigkeit \(c_u \) der Weichschicht beträgt standardmäßig 20 kN/m². Die Höhe des Lösslehms beträgt 0,80 m. Der Lösslehm wird in den Modellversuchen lagenweise (Lagenstärke mit etwa 16 cm) aufbereitet und verdichtet. In unbe- wehrten Versuchen wird als trennendes Element ein Vliesstoff zwischen Trag- und Weichschicht eingebaut, welcher quasi keine Bewehrungsfunktion aufweist. Für die Geogitterbewehrung werden gelegte biaxiale Geogitter aus Polypropylen (PP) mit verschweißten Knoten verwendet. Für

Abbildung 3.1: Versuchskonzept mit Abmessungen der Versuchsgrube (links), Anordnung der Messsensoren um die Lastplatte (oben) und Aufbau des Versuchs während der Durchführung
die Geogitterbewehrung der unteren Bewehrungslage zwischen Trag- und Weichschicht wird ein Kombiprodukt eingesetzt, bei dem das Geogitter ohne Bewehrungsfunktion kombiniert ist und damit die Funktionen „Bewehren und Trennen“ erfüllt. Die Lastaufbringung erfolgt mit einer lastabhängig gesteuerten Hydraulikpresse. Der maximale Pressenhub beträgt 18 cm, kann allerdings mit zusätzlichen Zwischenstücken mit Höhen von 1 cm bis 10 cm, erweitert werden. Zwischen Lastplatte und Kraftmessdose ist ein zusätzliches Kugelgelenk in Form eine Kalotte angebracht, um die ungewollte Einleitung von Momenten zu verhindern. Als Pressenwiederlager wird ein Doppel-T-Träger (Hauptträger) verwendet, der über Querträger (Konterträger) und Gewindestangen im Hallenboden verankert ist (siehe hierzu Abb. 3.1).

3.2.2 Messkonzept

Das Messkonzept sieht vor, während der Versuchsdurchführung folgende Größen zu messen:

- die aufgebrachte Last,
- die Verformung (Setzung) dieser Lastplatte,
- die Vertikalverschiebungen (Setzung) der Oberfläche und
- die Dehnungen in der Geokunststoffbewehrung.

3.2.3 Verwendete Belastungskonzepte

Für die Durchführung der Modellversuche wurden insgesamt drei verschiedene Belastungskonzepte verwendet, welche sich in bis zu fünf Belastungsphasen unterteilen lassen:

- Belastungsphase I: 1. monotone Erstbelastung (bei Belastungsschema 1 einstufig, sonst 3-stufig),
- Belastungsphase II: 1. Zyklische Belastung,
• Belastungsphase III: 2. monotone Erstbelastung (3-stufig),
• Belastungsphase IV: 2. Zyklische Belastung,
• Belastungsphase V: Grundbruchbelastung.

Die unterschiedlichen Belastungsphasen resultieren aus einer Anpassung an die unterschiedlichen Versuchskonstellationen und der Ergänzung um eine zweite zyklische Laststufe mit einer höheren mittleren Belastung. Die verwendeten Belastungskonzepte sind in Tabelle 3.3 aufgeführt. In der Belastungsphase I wird die Belastung in drei Stufen auf 1,5 kN, 3,0 kN und 4,5 kN gesteigert, wobei nach jeder Belastung eine Entlastung erfolgt. Um dynamische Effekte auszuschließen, wurde eine Belastungsgeschwindigkeit von 0,1 kN/s gewählt. Bei jeder Laststufe wird die Last für 15 Minuten konstant gehalten bevor entlastet wird. Die Belastungsphase I verursacht plastische Verformungen vor der zyklischen Belastung und gibt Aufschluss über die Anfangssteifigkeit des Tragschichtsystems. Danach folgt Belastungsphase II mit der ersten zyklischen Laststufe mit 1000 Lastzyklen, welche die Belastungseffekte unter Betriebsbedingungen simuliert. Die Lastzyklen werden mit einer Frequenz von 0,1 Hz und einer Amplitude von 3,5 kN zwischen dem
Lastniveau 1 kN und 8 kN aufgebracht. Nach Abschluss der zyklischen Laststufe wird die Lastplatte entlastet. Belastungsphase III ist analog zu Belastungstufe I, wobei hier die einzelnen Laststufen jeweils um 3,5 kN auf 8,0 kN, 11,5 kN und 15,0 kN gesteigert werden. Die Belastung wird auch hier jeweils 15 Minuten lang konstant gehalten. Die anschließend folgende Belastungsphase IV ist analog zu Belastungsphase II wieder eine zyklische Belastung, wobei die mittlere zyklische Laststufe auf 15,0 kN erhöht wird. Während Frequenz, Amplitude und Anzahl der Lastzyklen wie in Belastungsphase II gewählt wurden. In der letzten Belastungsphase V wird die Belastung bis zu einem Eintreten eines definierten Bruchzustandes gesteigert, um die maximale Tragfähigkeit des Systems zu ermitteln. Als Bruchzustand wird entweder das Erreichen einer maximalen Setzung von etwa 30 cm oder das vollständige Durchstanzen der Lastplatte nach Versagen der Geokunststoffbewehrung definiert.

Tabelle 3.3: Übersicht über die verwendeten Belastungskonzepte in den Modellversuchen

<table>
<thead>
<tr>
<th>Versuchs Nr.</th>
<th>Belastungskonzept</th>
<th>Belastungsphasen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>I</td>
</tr>
<tr>
<td>V1</td>
<td>0</td>
<td>x</td>
</tr>
<tr>
<td>V2</td>
<td>1</td>
<td>x**</td>
</tr>
<tr>
<td>V3</td>
<td>1</td>
<td>x*</td>
</tr>
<tr>
<td>V4</td>
<td>1</td>
<td>x*</td>
</tr>
<tr>
<td>V5</td>
<td>2</td>
<td>x</td>
</tr>
<tr>
<td>V6</td>
<td>2</td>
<td>x</td>
</tr>
<tr>
<td>V7</td>
<td>1</td>
<td>x*</td>
</tr>
<tr>
<td>V8</td>
<td>2</td>
<td>x</td>
</tr>
<tr>
<td>V9</td>
<td>2</td>
<td>x</td>
</tr>
<tr>
<td>V10</td>
<td>2</td>
<td>x</td>
</tr>
<tr>
<td>V11</td>
<td>2</td>
<td>x</td>
</tr>
<tr>
<td>V12</td>
<td>2</td>
<td>x</td>
</tr>
<tr>
<td>V13</td>
<td>2</td>
<td>x</td>
</tr>
<tr>
<td>V14</td>
<td>2</td>
<td>x</td>
</tr>
</tbody>
</table>

* Bei Belastungskonzept 1 wird in Belastungsphase II direkt bis zur mittleren zyklischen Laststufe belastet

** abweichende monotone Belastung mit mehreren Be- und Entlastungszyklen vor Beginn der 1. Zyklischen Laststufe

Das für Versuch Nr. 1 verwendete Belastungskonzept 0 enthält nur die Belastungsphase V. Dabei wird die Weichschicht ohne Vorbelastung bis zum Erreichen einer Setzung von etwa 30 cm belastet. Eine monotone Vorbelastung, sowie eine zyklische Belastungsstufe werden nicht ange- setzt, da gerade bei der zyklischen Belastung eine große Verformungsakkumulation erwartet wird. Die Versuche Nr. 2, 3, 4 und 7 werden mit Belastungskonzept 1 nach Abbildung 3.3 beauf- schlagt. Hierbei werden die Belastungsphasen I, II und V durchgeführt, wobei die Belastungs- phase I hier auf eine Laststufe mit 4,5 kN reduziert ist. Dieses Belastungskonzept wurde in der Anfangsphase der Versuchsreihe, bei Tragschichtsystemen mit geringerer Tragfähigkeit ange- wendet. Da bewehrte Tragschichtsysteme zu wesentlich geringeren Verformungsakkumulationen neigen und die gewählte 1. Zyklische Laststufe im Realmaßstab eher der Belastung durch kleine Baumaschinen entspricht (Stützfußlast von 121,5 kN), wurde das Belastungskonzept für die folgenden Versuche im eine zweite zyklische Laststufe mit höheren Laststufen (Stützfußlast von 405 kN), welche das Tragverhalten unter der Einwirkung größerer Baumaschinen wiederspiegelt, ergänzt. Das Belastungskonzept 2 ist dabei um die Belastungsphasen III und IV ergänzt, sodass
in jedem dieser Versuch alle Belastungsphasen durchgeführt werden. In Tabelle 3.3 sind die für die jeweiligen Versuche verwendeten Belastungskonzepte angegeben.

3.2.4 Versuchsmatrix

Tabelle 3.4: Versuchsmatrix der geotechnischen Modellversuche im Maßstab 1:3

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Höhe der Tragschicht [m]</th>
<th>c_u Weichschicht [kN/m²]</th>
<th>Geokunststoff</th>
<th>Lage Geokunststoff über OK Weichschicht [cm]</th>
<th>Summe Dehnsteifigkeiten J_{0-2} [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>11</td>
<td>-</td>
<td>20</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>2</td>
<td>0,1</td>
<td>20</td>
<td>Vliesstoff</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>3</td>
<td>0,2</td>
<td>20</td>
<td>Vliesstoff</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>4</td>
<td>0,3</td>
<td>20</td>
<td>Vliesstoff</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>5</td>
<td>0,2</td>
<td>10</td>
<td>Vliesstoff</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>62</td>
<td>0,2</td>
<td>30</td>
<td>Vliesstoff</td>
<td>0</td>
<td>-</td>
</tr>
<tr>
<td>7</td>
<td>0,2</td>
<td>20</td>
<td>Kombiprodukt (30/30)</td>
<td>0</td>
<td>600</td>
</tr>
<tr>
<td>82</td>
<td>0,2</td>
<td>20</td>
<td>Kombiprodukt (40/40)</td>
<td>0</td>
<td>800</td>
</tr>
<tr>
<td>92</td>
<td>0,2</td>
<td>20</td>
<td>Kombiprodukt (60/60)</td>
<td>0</td>
<td>1350</td>
</tr>
<tr>
<td>102,3</td>
<td>0,2</td>
<td>20</td>
<td>Kombiprodukt (60/60)</td>
<td>0</td>
<td>1350</td>
</tr>
<tr>
<td>112</td>
<td>0,2</td>
<td>20</td>
<td>Kombiprodukt (30/30) + Gitter (30/30)</td>
<td>0 / 7</td>
<td>1200</td>
</tr>
<tr>
<td>122</td>
<td>0,2</td>
<td>20</td>
<td>Kombiprodukt (60/60) + Gitter (30/30)</td>
<td>0 / 7</td>
<td>1950</td>
</tr>
<tr>
<td>132</td>
<td>0,2</td>
<td>10</td>
<td>Kombiprodukt (30/30) + Gitter (30/30)</td>
<td>0 / 7</td>
<td>600</td>
</tr>
<tr>
<td>142</td>
<td>0,2</td>
<td>30</td>
<td>Kombiprodukt (30/30) + Gitter (30/30)</td>
<td>0 / 7</td>
<td>600</td>
</tr>
</tbody>
</table>

1 Versuch auf Teilfläche der Grube
2 Verwendung von Belastungskonzept 2
3 Versuch auf ganzer Grube

Versuch 1: Vergleichsversuch ohne Tragschichtsystem mit Belastung der bindigen Weichschicht bis zum Erreichen des maximalen Pressenhubs. Hierbei wurde eine monotone Belastung mit einer Laststeigerung von 0,1 kN/s ohne vorausgehende zyklische Belastung angesetzt. Die undrainierte Scherfestigkeit der Weichschicht liegt bei $c_u = 20$ kN/m². Bei diesem Versuch ist eindeutiges Versagen durch einen Grundbruch zu erwarten.
Versuch 2: Versuch mit Variation der Tragschichthöhe beim unbewehrten Tragschichtsystem. Es wurde gegenüber Versuch 3 eine Reduktion der Tragschichthöhe auf $d = 0,10$ m vorgenommen. Für die Belastung wurde Belastungskonzept 1 mit einer zyklischen Laststufe verwendet. Die undrainierte Scherfestigkeit der Weichschicht wurde nicht verändert. Der Versuch wurde quasi unbewehrt durchgeführt, lediglich zur Trennung vom Trag- und Weichschicht wurde ein Geovlies mit geringer Zugfestigkeit eingelegt.

Versuch 3: Versuch mit einer unbewehrten Tragschicht mit einer Gesamthöhe von $d = 0,20$ m und einer undrainierten Scherfestigkeit der Weichschicht von $c_{u} = 20$ kN/m². Dieser Versuch wurde mit Belastungskonzept 1 mit nur einer zyklischen Laststufe durchgeführt. Der Versuch wurde quasi unbewehrt durchgeführt, lediglich zur Trennung vom Trag- und Weichschicht wurde ein Geovlies mit geringer Zugfestigkeit eingelegt.

Versuch 4: Versuch mit Variation der Tragschichthöhe beim unbewehrten Tragschichtsystem. Es wurde gegenüber Versuch 3 eine Erhöhung der Tragschichthöhe auf $d = 0,30$ m vorgenommen. Für die Belastung wurde Belastungskonzept 1 mit einer zyklischen Laststufe und stufenweiser Laststeigerung verwendet. Der Versuch wurde quasi unbewehrt durchgeführt, lediglich zur Trennung vom Trag- und Weichschicht wurde ein Geovlies mit geringer Zugfestigkeit eingelegt.

Versuch 5: Versuch mit Variation der Scherfestigkeit der Weichschicht. Es wurde eine Reduktion der undrainierten Scherfestigkeit auf $c_{u} = 10$ kN/m² bei einer Tragschichthöhe von $d = 0,20$ m untersucht. Für die Belastung wurde Belastungskonzept 2 mit zwei zyklischen Laststufen und stufenweiser Laststeigerung verwendet. Der Versuch wurde quasi unbewehrt durchgeführt, lediglich zur Trennung vom Trag- und Weichschicht wurde ein Geovlies mit geringer Zugfestigkeit eingelegt.

Versuch 6: Versuch mit Variation der Scherfestigkeit der Weichschicht. Es wurde eine Erhöhung der undrainierten Scherfestigkeit um 10 kN/m² auf $c_{u} = 30$ kN/m² bei einer Tragschichthöhe von $d = 0,20$ m untersucht. Für die Belastung wurde Belastungskonzept 2 mit zwei zyklischen Laststufen und stufenweiser Laststeigerung verwendet. Der Versuch wurde quasi unbewehrt durchgeführt, lediglich zur Trennung vom Trag- und Weichschicht wurde ein Geovlies mit geringer Zugfestigkeit eingelegt.

Versuch 7: Versuch mit einlagiger Geogitterbewehrung zwischen Trag- und Weichschicht. Hierbei wurde eine biaxiale Geogitterbewehrung mit einer Kurzzeitzugfestigkeit von 30 kN/m und einer Dehnsteifigkeit von 600 kN/m verwendet. Hierfür wurde Kombiprodukt 1 bestehend aus einem gelegten und an den Knotenpunkten verschweißten Geogitter mit zusätzlichem Geovlies (Combigrind 30/30) verwendet. Für die Belastung wurde Belastungskonzept 2 mit zwei zyklischen Laststufen und stufenweiser Laststeigerung verwendet.

Versuch 8: Versuch mit Variation der Dehnsteifigkeit der Geogitterbewehrung. Hierbei wurde eine biaxiale Geogitterbewehrung zwischen Trag- und Weichschicht eingebaut, deren Dehnsteifigkeit im Vergleich zu Versuch 7 um 33 % auf 800 kN/m erhöht wurde. Hierfür wurde Kombiprodukt 1 bestehend aus einem gelegten und an den Knotenpunkten verschweißten Geogitter mit zusätzlichen Geovlies (Combigrind 40/40) verwendet. Die Kurzzeitzugfestigkeit wurde um 50 % erhöht. Für die Belastung wurde Belastungskonzept 2 mit zwei zyklischen Laststufen und stufenweiser Laststeigerung verwendet.
Versuch 9: Versuch mit Variation der Dehnsteifigkeit der Geogitterbewehrung, wobei analog zu Versuch 8 wieder eine biaxiale Geogitterbewehrung zwischen Trag- und Weichschicht eingebaut wurde. Die Dehnsteifigkeit $J_{0-2\%}$ wurde im Vergleich zu Versuch 7 auf 1350 kN/m erhöht und somit mehr als verdoppelt. Hierfür wurde Kombiprodukt 1 bestehend aus einem gelegten und an den Knotenpunkten verschweißten Geogitter und zusätzlichem Geovlies (Combigrad 60/60) verwendet. Die Kurzzeitzugfestigkeit wurde ebenfalls verdoppelt. Für die Belastung wurde Belastungskonzept 2 mit zwei zyklischen Laststufen und stufenweiser Laststeigerung verwendet.

Versuch 11: Versuch mit zweilagiger Geogitterbewehrung. Hierbei wird die Geokunststoffbewehrung in der unteren Lage zwischen Trag- und Weichschicht um ein zusätzliches Geogitter mit gleicher Dehnsteifigkeit ergänzt. Der Abstand zur unteren Geogitterlage beträgt 7 cm und entspricht dabei etwa einem Drittel der Tragschichthöhe. Für die untere Geogitterlage wurde Kombiprodukt 1 mit einer Dehnsteifigkeit von 600 kN/m² (Combigrad 30/30) und für die obere Lage ein Geogitter ohne zusätzliches Vlies (Secugrid 30/30) verwendet. Die Weichschicht wurde mit einer undrainierten Scherfestigkeit von $c_u = 20$ kN/m² hergestellt. Die Dehnsteifigkeit und die Kurzzeitzugfestigkeit beider Geogitterlagen sind identisch. Für die Belastung wurde Belastungskonzept 2 mit zwei zyklischen Laststufen und stufenweiser Laststeigerung verwendet.

Versuch 12: Versuch mit Variation der Dehnsteifigkeiten bei zweilagiger Geogitterbewehrung. Bei diesem Versuchsauflauf wurde das Verhältnis zwischen oberer und unterer Geogitterlage, welches bei Versuch 11 mit $E_{A_{oben}}/E_{A_{unten}} = 1,0$ angesetzt wurde, durch näherungsweise Verdopplung der Dehnsteifigkeit in der unteren Geogitterlage von 600 kN/m² auf 1350 kN/m³ auf etwa 1:2 verändert. Dies entspricht auch in etwa dem Verhältnis der gemessenen Dehnungen aus dem vorherigen Versuch und stellt eine Optimierung der Zugauslastung beider Geogitterlagen dar. Die obere Geogitterlage wurde analog zu Versuch 11 angeordnet (Secugrid 30/30), während in der unteren Lage Kombiprodukt 1 mit erhöhter Steifigkeit (Combigrad 60/60) verwendet wurde. Das Steifigkeitsverhältnis von $E_{A_{oben}}/E_{A_{unten}}$ ergibt sich zu 0,44. Die Kurzzeitzugfestigkeit der unteren Lage wurde verdoppelt. Für die Belastung wurde Belastungskonzept 2 mit zwei zyklischen Laststufen und stufenweiser Laststeigerung verwendet.

Versuch 13: Versuch mit Variation der undrainierten Scherfestigkeit der Weichschicht durch eine Reduktion auf 10 kN/m². Der Versuch wurde mit einer zweilagigen Geogitterbewehrung mit gleicher Dehnsteifigkeit durchgeführt. Für die untere Geogitterlage zwischen Trag- und Weichschicht wurde Kombiprodukt 1 mit einer Steifigkeit von 600 kN/m² verwendet (Combigrad 30/30). Im Abstand von 7 cm über der Weichschicht wurde die obere Bewehrungslage, bestehend aus einem Geogitter mit gleicher Dehnsteifigkeit wie in der unteren Lage (Secugrid 30/30) angeordnet. Die Tragschichthöhe betrug in diesem Versuch 0,20 m. Die Kurzzeitzugfestigkeit und die Dehnsteifigkeit beider Geogitterlagen sind identisch. Für die Belastung wurde Belastungskonzept 2 mit zwei zyklischen Laststufen und stufenweiser Laststeigerung verwendet.
Versuch 14: Versuch mit Variation der undrainierten Scherfestigkeit der Weichschicht durch Erhöhung auf 30 kN/m². Der Versuch wurde mit einer zweilagigen Geogitterbewehrung mit gleicher Dehnsteifigkeit durchgeführt. Für die untere Geogitterlage zwischen Trag- und Weichschicht wurde Kombiproduct 1 mit einer Steifigkeit von 600 kN/m² verwendet (Combigrid 30/30). Im Abstand von 7 cm über der Weichschicht wurde die obere Bewehrungslage, bestehend aus einem Geogitter mit gleicher Dehnsteifigkeit wie in der unteren Lage (Secugrid 30/30) angeordnet. Die Tragschichtthöhe betrug in diesem Versuch 0,20 m. Die Kurzzeitzugfestigkeit und die Dehnsteifigkeit beider Geogitterlagen sind identisch. Für die Belastung wurde Belastungskonzept 2 mit zwei zyklischen Laststufen und stufenweiser Laststeigerung verwendet.

3.2.5 Eigenschaften der verwendeten Versuchsböden

Tragschicht

Als Tragschichtmaterial wird entsprechend dem Modellgesetz ein weitgestuftes Brechsand-Splitt-Gemisch mit der Körnung 0/16 mm verwendet, dessen bodenmechanische Kennwerte in Tabelle 3.5 zusammengefasst sind. Die zugehörige Siebennlinie ist in Abb. 3.5 dargestellt. Die Ungleichförmigkeitszahl beträgt U = 13,8, womit das Material als weitgestuft einzuordnen ist und eine gute Verdichtungsfähigkeit besitzt. Die Proctordichte ρ_{pr} des Tragschichtmaterials beträgt 2,015 g/cm³ bei einem Wassergehalt w_{pr} von 4,1 %.

![Abbildung 3.5: Kornverteilungsdiagramm des verwendeten Tragschichtmaterials](image)

Die Tragschicht wird in Schichten zu je 10 cm hergestellt. Das Material wird zunächst gleichmäßig in der Versuchsgrube verteilt und mit einer elektrischen Rüttelplatte (100 kg, 3,6 kW) mit automatischem Vorschub verdichtet. Dabei erfolgen pro Schicht vier Überfahrten, um eine gleichmäßige Verdichtung zu erzielen. Zur Bestimmung der Dichte wird das eingebaute Tragschichtmaterial gewogen und die Schichthöhen nach der Verdichtung gemessen. Stichprobenartig werden die In-Situ-Dichten mit dem Bodenaustauschverfahren bestimmt und mit den berechneten Werten abgeglichen.
Tabelle 3.5: Bodenmechanische Kennwerte der Tragschicht

<table>
<thead>
<tr>
<th>Bodenmechanischer Kennwert</th>
<th>eigene Werte</th>
</tr>
</thead>
<tbody>
<tr>
<td>Reibungswinkel φ [°]</td>
<td>42,5</td>
</tr>
<tr>
<td>Korndichte ρs [g/cm²]</td>
<td>2,650</td>
</tr>
<tr>
<td>Ungleichförmigkeitszahl U [%]</td>
<td>13,8</td>
</tr>
<tr>
<td>zul. Größtkorn d [mm]</td>
<td>16,0</td>
</tr>
<tr>
<td>Proctordichte ρp [%]</td>
<td>2,015</td>
</tr>
<tr>
<td>opt. Wassergehalt w [%]</td>
<td>4,1</td>
</tr>
</tbody>
</table>

Weichschicht

Als bindige Weichschicht wird, anlehnd an BEUTINGER (2005), ein Heilbronner Lösslehm verwendet, der bereits in vielen Modellversuchen erfolgreich zum Einsatz kam und für den somit neben den eigenen durchgeführten Laborversuchen zusätzlich ausreichend Kennwerte aus der Literatur zur Verfügung stehen (siehe Tab. 3.6). Der verwendete Lösslehm wurde als Abraum aus einem Steinbruch gewonnen.
Die Weichschicht wird in fünf Schichten zu je 16 cm eingebaut und dabei mit einer Motorhacke (90 kg, 4,7 kW) mit einstellbarem Vorschub homogenisiert und verdichtet. Die maximale Schichthöhe wird hierbei durch die maximale Arbeitstiefe der Motorhacke zur Aufbereitung des Bodens beschränkt. Um eine gleichmäßige Homogenisierung zu erreichen, wird der Boden in jeweils vier Durchgängen mit schlüssig nebeneinanderliegenden Bahnen mit der Motofräse befahren.

Die Einstellung der gewünschten undrainierten Scherfestigkeit c_u erfolgt über den Wassergehalt, welcher parallel zum Einbau an jeweils 9 Stellen pro Schicht kontrolliert wird, bis der Zielwassergehalt erreicht wird. Die erforderliche Wassergehalte für die jeweiligen Scherfestigkeiten wurden vorab in Laborversuchen ermittelt und ergeben sich zu $w_{c_u=10 \text{kN/m}^2} = 23,0\%$, $w_{c_u=20 \text{kN/m}^2} = 20,5\%$ und $w_{c_u=30 \text{kN/m}^2} = 19\%$. Zur Einbaukontrolle werden zudem die undrainierte Scherfestigkeit direkt mit einer Flügelsonde mit einem verdichteten Messraster mit 15 bis 30 Messstellen ermittelt. Zur Bestimmung der Laborkennwerte des Bodens und zur Qualitätskontrolle werden pro Schicht zwei Stechzylinder entnommen. Die Proben werden hinsichtlich Wassergehalt, Rohdichte, Scherfestigkeit (UU-Triaxialversuche) und Steifigkeit (Oedometerversuche) untersucht. Ist der Soll-Wert für den Wassergehalt erreicht, so wird das Material mit einer Handrollenwalze, welche mit Sand gefüllt 120 kg wiegt und 50 cm breit ist, statisch verdichtet. Danach kann die Schichthöhe über die Messskalen am Grubenrand gemessen und die Rohdichte über die eingebaute Bodenmasse und die zugegebene Wassermenge berechnet bzw. überprüft werden.

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Fließgrenze w_L (%)</td>
<td>33,1</td>
<td>33,0</td>
<td>34,9</td>
</tr>
<tr>
<td>Ausrollgrenze w_p (%)</td>
<td>12,9</td>
<td>15,0</td>
<td>14,8</td>
</tr>
<tr>
<td>Plastizitätsszahl I_p (%)</td>
<td>20,2</td>
<td>18,9</td>
<td>20,0</td>
</tr>
<tr>
<td>Tongehalt V_{Ton} (%)</td>
<td>20</td>
<td>23</td>
<td>23</td>
</tr>
<tr>
<td>Kalkgehalt V_{ca} (%)</td>
<td>3,8</td>
<td>2,4</td>
<td>1,9</td>
</tr>
<tr>
<td>Schrumpfgrenze w_s (%)</td>
<td>n.A.</td>
<td>11,8</td>
<td>13,8</td>
</tr>
<tr>
<td>Aktivitätszahl A_A [-]</td>
<td>0,91</td>
<td>0,84</td>
<td>0,9</td>
</tr>
<tr>
<td>Glühverlust A_{gl} (%)</td>
<td>n.A.</td>
<td>4,1</td>
<td>3,3</td>
</tr>
<tr>
<td>Korndichte ρ_s [g/cm3]</td>
<td>2,68</td>
<td>2,68</td>
<td>2,67</td>
</tr>
<tr>
<td>Proctordichte ρ_{pr} [g/cm3]</td>
<td>1,79</td>
<td>1,75</td>
<td>1,76</td>
</tr>
<tr>
<td>opt. Wassergehalt w_{pr} (%)</td>
<td>15,8</td>
<td>16,6</td>
<td>16,6</td>
</tr>
</tbody>
</table>

3.2.6 Eigenschaften der verschiedenen Geogitterbewehrungen

Im Rahmen des Forschungsprojektes wurden ausschließlich gelegte und an den Knotenpunkten verschweißte Geogitter aus Polypropylen (PP) der NAUE GmbH & Co. KG eingesetzt, um die Variation in den einzelnen Modellversuchen zu beschränken. Nach dem Modellgesetz müssten die Steifigkeit und Kurzzeitzugfestigkeit der Geogitter um den Faktor 9 skaliert werden, während die Öffnungsweite sich nur um den Faktor 3 verkleinert. Da die am Markt verfügbaren Geogitter beginnen i.d.R. mit einer Kurzzeitzugfestigkeit von etwa 20 kN/m, was im Prototyp bereits einer Bewehrung mit 180 kN/m Kurzzeitzugfestigkeit entspricht und was die in der Praxis verwendeten
Bewehrungsgrade von 60 bis 80 kN/m deutlich übersteigt. Ebenso ist die Verwendung von spezial angefertigten Modellgeogittern mit angepasster Steifigkeit für die benötigte Fläche nur schwer realisierbar, weshalb auf eine Skalierung der Geogitterbewehrung aus praktischen Gründen verzichtet wurde. Zudem eignet sich dieser Typ von Geokunststoffen sehr gut für die Applikation von Folien-Dehnungsmesstreifen, da das Geokunststoff eine konstante Querschnittsfläche der einzelnen Tragglieder aufweist und den DMS-Klebstoff nicht aufsaugt, der eine Versteifung der Messstelle bewirken würde.

3.3 Ergebnisse der Modellversuche

3.3.1 Last-Setzungs-Kurven

In einem ersten Schritt werden die Last-Setzung-Kurven der Modellversuche für unterschiedliche Variationen miteinander verglichen.

Der Vergleich der Versuche V2 bis V6 mit unbewehrten Tragschichtsystemen in Abbildung 3.9-b, bei denen die Tragschichthöhe d und die undrainierte Scherfestigkeit c_u der Weichschicht variert wurden, zeigt wie erwartet einen deutlichen Einfluss dieser Parameter auf das Trag- und Verformungsverhalten. Hierbei ist ein maßgebender Einfluss der undrainierten Scherfestigkeit auf das Trag und Verformungsverhalten zu erkennen. Vor allem bei Versuch V5 ist die zyklische Akkumulation der Setzungen mit etwa 50 mm Zuwachs allein aus der zweiten zyklischen Belastungsphase groß.

Vergleicht man die einlagig bewehrten Versuche V7, V8 und V9 in Abbildung 3.9-c miteinander, erkennt man einen Zuwachs der Steifigkeit und der Tragfähigkeit der Tragschicht mit zunehmender Dehnsteifigkeit und Kurzzeitzugfestigkeit. Die Erhöhung des Bewehrungsgrades um bis zu 50% bewirkt bei identischer Bewehrungsanordnung eine Reduktion der Setzungen und eine Traglaststeigerung um etwa 35 %. Versuch V7, welcher die geringste Steifigkeit und Kurzzeitzugfestigkeit der Geogitterbewehrung aufweist, bei dem aber nur eine zyklische Belastungsphase (Belastungskonzept 1) aufgebracht wurde, verhält sich, im Vergleich zu den Versuchen V8 und
V9, die nach Belastungskonzept 2 mit zwei zyklischen Belastungsphasen beaufschlagt wurden, viel steifer und erreicht in etwa die Tragfähigkeit von Versuch V9, obwohl dieser in etwa den doppelten Bewehrungsgrad aufweist, was einen deutlichen Einfluss der zweiten zyklischen Belastungsstufe auf das Trag- und Verformungsverhalten auch von einfach bewehrten Systemen aufzeigt.

Bei den zweilagig bewehrten Tragschichtsystemen mit Variation der undrainierten Scherfestigkeit (Abb. 3.9-d) korreliert die Systemsteifigkeit mit der undrainierten Scherfestigkeit. Versuch V14 mit der höchsten undrainierten Scherfestigkeit $c_u = 30 \text{kN/m}^2$ erzielt eine maximale Tragfähigkeit von 85 kN, während die Versuche V11 ($c_u = 20 \text{kN/m}^2$) nur rd. 68 kN und V13 ($c_u = 10 \text{kN/m}^2$) rd. 53 kN erzielen. Die etwas geringere Tragfähigkeit von Versuch V11 gegenüber Versuch V9 bei gleichem Bewehrungsgrad resultiert aus einem Versagen der unteren Geogitterlage bei einer Setzung von 155 mm.

Eine Betrachtung des Last-Verformungsverhaltens in Abhängigkeit vom Bewehrungsgrad der unterschiedlichen Tragschichtsysteme in Abbildung 3.8-e zeigt eine Zunahme der Steifigkeit und der maximalen Tragfähigkeit mit steigendem Bewehrungsgrad. Eine Erhöhung des Bewehrungsgrades zeigte bei zweilagig bewehrten Systemen die größte Steigerung. Die Anordnung einer zusätzlichen Bewehrungslänge auf etwa einem Drittel der Höhe der Tragschicht in Versuch V11 brachte für die Verdopplung des Bewehrungsgrades nur eine geringfügige Erhöhung der Systemsteifigkeit. Bei gleichem Bewehrungsgrad (60 kN/m und 2 x 30 kN/m) zeigen die Tragschichtsysteme ein ähnliches Tragverhalten, wobei das zweilagig bewehrte System eine leicht höhere Tragfähigkeit und Steifigkeit aufweist. Bei den zweilagig bewehrten Systemen bewirkt die Verdopplung der Zugfestigkeit und Steifigkeit in der unteren Bewehrungslage eine deutliche Steigerung der Traglast (40 %) und eine Reduktion der Setzungen um 50%. Darüber hinaus ist die Last-Verformungsbeziehung auf dem Erstbelastungsast für Versuch V12 ab etwa 30 kN näherungsweise proportional (linear). Das sehr frühe Versagen der Geokunststoffbewehrung in Versuch V11 ist zurückzuführen auf die größeren Dehnungen in der unteren Bewehrungslage, während die obere Bewehrungslage noch nicht vollständig beansprucht wird und somit ihre Tragfähigkeitsreserven nicht mobilisieren kann.

Zusammenfassend ist festzustellen, dass:

- Unbewehrte Systeme zeigen eine starke Akkumulation zyklischer Verformungen, die mit zunehmendem Bewehrungsgrad deutlich geringer wird.
- Der Einfluss der undrainierten Scherfestigkeit c_u auf die Tragfähigkeit nimmt mit zunehmendem Bewehrungsgrad deutlich ab.
- Bei gleicher Gesamtzugfestigkeit und -steifigkeit ist bei ein- und zweilagig bewehrten Systemen ein ähnliches Last-Verformungsverhalten zu beobachten, wobei bei zweilagig bewehrten Systemen ein früheres Versagen durch Reißen der unteren Lage eintritt.
- Zweilagig bewehrte Systeme mit Verdopplung von Zugfestigkeit und Steifigkeit der unteren Bewehrungslage weisen die größten Verbesserungen des Trag- und Verformungsverhaltens auf.
- Bewehrte Systeme zeigen während der Grundbruchphase (Belastungsphase V) eine näherungsweise linear verlaufende Last-Setzungskurve.
Abbildung 3.9: Vergleich der Last-Setzungs-Kurven für die Modellversuche V1 bis V14: a) Vergleich Belastungskonzept I, b) Vergleich unbewehrte Versuche, c) Vergleich einlagig bewehrte Versuche, d) Vergleich zweilagig bewehrte Versuche und e) Variation der Bewehrung
3.3.2 1. Zyklische Laststufe (Belastungsphase II)

Die einlagig bewehrten Systeme zeigen eine größere Zunahme der zyklischen Setzungssakkumulation mit Zunahme der Steifigkeit und Kurzzeitzugfestigkeit der Geogitterbewehrung. Im Gegenzug dazu lässt sich bei den Versuchen V7 bis V9 mit zunehmender Steifigkeit der Bewehrung auch eine deutliche Zunahme der Setzungsamplitude und damit des elastischen Verformungsanteils erkennen. Die zweilagig bewehrten Versuche V11, V13 und V14 zeigen eine höhere Setzungssakkumulation zwischen 7,5 und 14,0 mm, wobei Versuch V14 trotz höherer Scherfestigkeit mit \(c_u = 30 \, \text{kN/m}^2 \) der Weichschicht höhere Setzungen als V11 mit 20 kN/m². Versuch V11, der in Summe die gleiche Kurzzeitzugfestigkeit und eine ähnliche Dehnsteifigkeit wie Versuch V9 aufweist, verhält sich deutlich steifer und zeigt eine geringere zyklische Akkumulation der Setzungen. Die höchste Systemsteifigkeit hat Versuch V12, bei dem die Kurzzeitzugfestigkeit und die Dehnsteifigkeit der unteren Bewehrungslage um 50 % erhöht wurde, sodass sich ein Steifkeitsverhältnis von \(\frac{E_{\text{oben}}}{E_{\text{unten}}} = 0,44 \) ergibt. Diese Staffelung der Bewehrung führt dazu, dass die Tragschicht sich sowohl unter der zyklischen Belastung, als auch im Last-Setzungs-Diagramm besonders verformungsarm verhält.

Im Allgemeinen weisen alle Versuche nur eine relativ geringe Setzungssakkumulation auf. Dies ist mit dem verhältnismäßig geringen Belastungsniveau und der dadurch teilweise geringen Aktivierung der Geogitterbewehrung zu begründen, was vor allem bei einlagig bewehrten Systemen zu deutlich höheren Setzungssakkumulationen im Vergleich zu unbewehrten Tragschichtsystemen führt. Dies ist damit zu erklären, dass durch den Einbau von steifen Geogittern an der Grenze
zwischen Trag- und Weichschicht bis zur vollständigen Verzahnung der Bewehrung mit dem Boden durch Reibung und Interlocking ein gewisser Schlupf auftritt.

Abbildung 3.10: Vergleich Setzungszuwachs während der zyklischen Belastungsphase II a) Übersicht, b) unbeh. Systeme und c) Bewehrungsgrad in linearer und logarithmischer Skalierung

3.3.3 2. Zyklische Laststufe (Belastungsphase IV)

In Abbildung 3.13 ist die Setzungsakkumulation der Versuche V5, V6 und V8 bis V14 für die zweite zyklische Belastungsphase in linearer und logarithmischer Darstellung abgebildet; dies sind alles Versuche, bei welchen Belastungskonzept 2 angewendet wurde. Die in Abbildung 3.13 dargestellten Ergebnisse bestätigen überwiegend die Ergebnisse aus der ersten zyklischen Laststufe aus Abbildung 3.10 und 3.11. Die höchste zyklische Setzungsakkumulation weist Versuch V5 auf, der unbewehrt und mit einer undrainierten Scherfestigkeit von \(c_u = 10 \text{kN/m}^2 \) durchgeführt wurde, während sich Versuch V12 mit den geringsten Setzungen und einer relativ geringen zyklischen Setzungsakkumulation am steifsten verhält.

Ein detaillierter Vergleich der unbewehrten und zweifach bewehrten Versuche in Abbildung 3.13-b, zeigt für beide Tragschichtsysteme deutlich geringere Setzungen mit zunehmender undrainierter Scherfestigkeit, wobei die Setzungs differenz zwischen den unbewehrten Versuchen V5 und V6 mit etwa 32,5 mm wesentlich größer ist als bei den zweifach bewehrten Versuchen mit nur etwa 7,5 mm, was ein Hinweis darauf ist, dass der Einfluss der höherem undrainierten}

Abbildung 3.11: Vergleich Setzungszuwachs während der zyklischen Belastungsphase Phase II für zweilagig bewehrte Systeme mit Variation der undrainierten Scherfestigkeit in linearer und logarithmischer Skalierung
Scherfestigkeit der Weichschicht auf die zyklische Setzungsakkumulation mit Bewehrungsgrad geringer wird.

Vergleicht man nun den Einfluss des Bewehrungsgrades bei gleicher undrainierter Scherfestigkeit von $c_u = 20 \text{kN/m}^2$, zeigt sich ein ähnliches Bild wie in Abbildung 3.12-c. Bei den einlagig bewehrten Systemen steigt die zyklische Setzungsakkumulation mit zunehmendem Bewehrungsgrad (Steifigkeit und Kurzzeitzugfestigkeit) deutlich an, was durch die hohe Setzungsakkumulation von Versuch V9 bestätigt wird. Im Gegensatz dazu verhalten sich die zweilagig bewehrten Versuche V11 bis V14 wesentlich steifer und zeigen bei einer Erhöhung des Bewehrungsgrades eine geringere zyklische Setzungsakkumulation als die einlagig bewehrten Systeme. Auffällig sind zudem die Setzungen des unbewehrten Versuchs V6, der mit einer undrainierten Scherfestigkeit von 30 kN/m² durchgeführt wurde und nur etwa 33 mm Setzung erreicht, welche somit deutlich geringer als die meisten bewehrten Versuche mit einer Scherfestigkeit von 20 kN/m² ist. Betrachtet man die Detailansicht der Normaldehnungen der zweiten zyklischen Laststufe exemplarisch für Versuch V11 in der unteren und oberen Bewehrungslage, so ist eine überproportionale Zunahme der Dehnungen im Vergleich zur 1. zyklischen Laststufe zu erkennen, welche wieder eine Konzentration der Dehnungen in der unteren Bewehrungslage zeigt. Die zyklische

Abbildung 3.12: Zyklische Akkumulation der Normaldehnungen in der Geogitterbewehrung von Versuch V11 während der ersten zyklischen Belastungsphase a) erste 50 Belastungszyklen obere Lage b) letzte 50 Belastungszyklen obere Lage c) erste 50 Lastzyklen untere Lage d) letzte 50 Belastungszyklen untere Lage
Setzungsakkumulation beschränkt sich hierbei aber nicht nur auf die ersten 50 Lastzyklen, sondern erfolgt auch zu einem großen Teil im Bereich zwischen 50 und 500 Lastzyklen und klingt damit auch in beiden Bewehrungslagen deutlich später ab. In der unteren Bewehrungslage ist die Staffelung der Messwerte der einzelnen Dehnungsmesstreifen von DMS1 bis DMS6 entlang der

Abbildung 3.13: Vergleich Setzungszuwachs während der zyklischen Belastungsphase - Phase IV a) Übersicht, b) Variation der Scherfestigkeit und c) Variation des Bewehrungsgrade in linearer und logarithmischer Skalierung
Hauptmessachse deutlich zu erkennen, die zunehmend durch die Aktivierung der peripheren DMS mit steigendem Belastungsniveau und Setzungsakkumulation verursacht wird. Bei der zyklischen Laststufe resultiert die Steigerung der Dehnungen vor allem aus dem größer werdenden Beitrag des Zugmembraneffektes am Lastabtrag infolge der steigenden Setzungen. Die peripheren DMS, i.e. DMS1 bis DMS3, erfahren mit steigender Zyklenzahl zunehmende Dehnungen. Eine Stauchung der DMS im Vergleich zum Ausgangszustand nach Einbau der Tragschicht (Reduktion der beim Einbau der Tragschicht aufgebrachten Vorspannung) - wie bei der ersten zyklischen Belastungsphase in Abbildung 3.12 - werden aufgrund des höheren Lastniveaus nicht mehr gemessen. In der oberen Bewehrungslage liegen die Messwerte der DMS bis auf DMS1, wie schon in Abbildung 3.12 sehr nah beieinander.

Abbildung 3.14: Zyklische Akkumulation der Normaldehnungen in der Geogitterbewehrung von Versuch Nr. 11 während der zweiten zyklischen Belastungsphase a) erste 50 Belastungzyklen obere Lage b) letzte 50 Belastungzyklen obere Lage c) erste 50 Lastzyklen untere Lage und d) letzte 50 Lastzyklen untere Lage
4. Feldmessung an bewehrter Tragschicht in Rethwisch bei Hamburg (AP 3)

Im Rahmen des Forschungsvorhabens wurde in einem Windpark bei Rethwisch, nahe Hamburg ein Versuchsfeld erstellt, um das Tragverhalten einer bewehrten Tragschicht über Weichschichten unter realen Bedingungen zu untersuchen. Die instrumentierte Tragschicht (2-lagig bewehrt) wurde schrittweise mit 40 t bis zu einer Gesamtlast von 280 t belastet. Die Messergebnisse zeigen einen deutlichen Einfluss der Geokunststoffbewehrung auf die Lastausbreitung, wodurch die am Rand der Kranmatte auftretenden Spannungsspitzen in der Weichschicht reduziert werden.

4.1 Versuchskonzeption

Für die Errichtung des Windparks war der Einsatz eines schweren Mobilkrans mit hohen Pratzenkräften geplant, welcher auf einer schwimmend gegründeten und bewehrten Tragschicht aufgestellt werden sollte. Für die Versuchsdurchführung wurde neben der bestehenden Arbeitsplattform ein ca. 20 m x 20 m großes Testfeld erstellt. Der Feldversuch wurde mit Unterstützung der Fa. NAUE GmbH & Co. KG, der BBG Bauberatung Geokunststoffe GmbH & Co. KG und der Vestas Deutschland GmbH durchgeführt. Der Untergrund besteht aus einer ca. 2,5 m mächtigen organischen Weichschicht, welche von etwa 4,0 m lockerem Sand unterlagert wird.

Für die Tragschicht aus gebrochenem Schottermaterial (0/63 mm) wurden eine Höhe von 0,90 m und eine zweilagige Bewehrung mit Geokunststoffen vorgesehen. Die untere Bewehrungslage wurde zwischen dem anstehenden Gelände und der Tragschicht angeordnet und mit einem Kombinationsprodukt, bestehend aus einem Vlies und einem Geogitter mit einer biaxialen Kurzzeitzugfestigkeit von 60 kN/m, bewehrt. Die Grasnarbe blieb während der Herstellung der Tragschicht erhalten, sodass die Bewehrungslage direkt auf dieser aufliegt. Der Schichtaufbau des

Abbildung 4.1: Aufbau der Arbeitsplattform des Testfelds im Windpark Rethwisch
Versuchsfeldes ist schematisch in Abbildung 4.1 dargestellt. Die obere Bewehrungslage wird etwa 0,50 m über Unterkante Tragschicht angeordnet, wobei hier ein Geogitter mit einer geringeren Kurzzeitzugfestigkeit von 40 kN/m verwendet wurde. Der Einbau der werksseitig mit Messsensoren instrumentierten Bewehrungslagen erfolgte zeitgleich mit dem Einbau der regulären Bewehrung. Hierfür wurden Aussparungen vorgesehen, in welche die vorbereitete Bewehrung unter Einhaltung der statisch erforderlichen Überlappungslängen eingebaut werden konnte. Die Schottertragschicht wurde mit einem Hydraulikbagger eingebaut und mit Hilfe einer Vibrationswalze auf zwei Lagen verdichtet. Zum Schluss wurde eine Kranmatte bestehend aus zwei, jeweils 20 cm hohen und orthogonal zueinander geschichteten Lagen Bongossiholz mit einer Länge von rd. 6,0 m und einer Breite von rd. 5,0 m hergestellt. Die einzelnen Balken waren zur besseren Handhabung bereits in Querrichtung jeweils paarweise im Abstand von ca. 1,0 m mit Gewindestangen verscharbt. Durch die orthogonale Schichtung, kann von einem näherungsweise gleichmäßigem Lastabtrag in beide Achsen ausgegangen werden.

4.1.1 Messkonzept

4.1.2 Belastungskonzept

Die Belastung der Kranmatte auf der Versuchsfläche erfolgte durch das schrittweise Auf stapeln von Kranballastgewichten mit je 10 t. Diese wurden, wie in Abbildung 4.2 dargestellt, lagenweise auf vier Stapeln mit bis zu sieben Lagen auf der Kranmatte verteilt. Um Einflüsse aus der asymmetrischen Belastung möglichst zu vermeiden, wurden die Lastschritte im Abstand von 40 t gewählt, was einer vollständigen Lage an Ballastgewichten entspricht (4 x 10 t = 40 t/Lage). Die Laststeigerung erfolgte in sieben Schritten bis zu einer maximalen Gesamtlast von 280 t, was einer gemittelten Sohldruckspannung von ungefähr 100 kN/m² entspricht. Die Kranstellfläche wurde lediglich auf eine mittlere Flächenpressung von 62 kN/m² dimensioniert, was einer Belastung der Kranmatte von 220 t entspricht, sodass eine rechnerische Überbelastung erzielt wurde. Für die Berücksichtigung des zeitlichen Einflusses auf die Setzungen aus der Konsolidation, wurde die Maximallast für eine Zeit von rund 80 Minuten gehalten bevor mit der Entlastung begonnen wurde.

4.1.3 Eigenschaften der verwendeten Versuchsböden

Weichschicht:

Die natürlich anstehende Weichschicht aus Torf weist in dem Bereich des Versuchsfeldes im direkten Umfeld der Windkraftanlage WEA-R05 eine Mächtigkeit von etwa 2,4 m auf und ist bis zu einer Tiefe von 6,5 m mit locker gelagertem Sand und bis zu einer Tiefe von 13,5 m mit mitteldicht bis dicht gelagertem Sand unterlagert. Bis etwa 25,0 m folgt dicht gelagerter Sand. Die organische Weichschicht besteht überwiegend aus

<table>
<thead>
<tr>
<th>Tabelle 4.1: Baugrundaufbau im Bereich der windkraftanlage WEA R05-W aus dem Baugrundgutachten nach Schleicher</th>
</tr>
</thead>
<tbody>
<tr>
<td>WEA R05-W</td>
</tr>
<tr>
<td>Von – bis [m Tiefe]</td>
</tr>
<tr>
<td>0,0 - 2,4</td>
</tr>
<tr>
<td>2,4 - 6,5</td>
</tr>
<tr>
<td>6,5 - 13,5</td>
</tr>
<tr>
<td>13,5 - 25,0</td>
</tr>
</tbody>
</table>
schluffigem Torf, mit einem mittleren natürlichen Wassergehalt von etwa \(w_0 = 230 \% \) und einem Glühverlust von \(V_{Gl} = 24-74\% \). Nominell weist der Torf damit eine weiche bis breiige Konsistenz mit Spitzenwiderständen der Drucksondierung \(q_c \ll 1 \text{ MN/m}^2 \) auf. Der Grundwasserpegel liegt laut Baugrundgutachten in einer Tiefe von 1,08 m, stieg aber aufgrund von vorhergehenden Niederschlägen bis nahe der Geländeoberkante an, sodass schon bei geringen Belastungen bereits Wasseraustritte an der Oberfläche beobachtet werden konnten. An der Oberseite der Torfschicht befand sich eine Grasnarbe mit teilweise dichten Gras- und Schilfbewuchs, der die Trag- schicht lediglich aufgeschüttet wurde. Die teils starke Durchwurzelung ermöglicht die Aufnahme von zusätzlichen Zug- und Scherkräften an der Grenzfläche und wirkt sich im Allgemeinen günstig auf die Tragfähigkeit des Gesamtsystems aus.

Tabelle 4.2: Bodenkennwerte aus dem Baugrundgutachten nach Schleicher

<table>
<thead>
<tr>
<th>Bodenart</th>
<th>Wichte erdfeucht (\gamma_k) / unter Auftrieb (\gamma'_k) [kN/m³]</th>
<th>Reibungs- winkel (\varphi'_k) [°]</th>
<th>Kohäsion (c'_k) [kN/m²]</th>
<th>Poisonzahl (\nu) [-]</th>
<th>Steifemodul statisch (E_{s,k}) [MN/m²]</th>
<th>Steifemodul dynamisch (E_{s,dyn,k}) [MN/m²]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mutterboden</td>
<td>16/6</td>
<td>20,0</td>
<td>3,0</td>
<td>0,4</td>
<td>2,0</td>
<td>20,0</td>
</tr>
<tr>
<td>Torf</td>
<td>11/1</td>
<td>15,0</td>
<td>2,0</td>
<td>0,4</td>
<td>0,5</td>
<td>3,0</td>
</tr>
<tr>
<td>Anmoorboden</td>
<td>14/4</td>
<td>20,0</td>
<td>1,0</td>
<td>0,4</td>
<td>3,0</td>
<td>30,0</td>
</tr>
<tr>
<td>Sand, locker</td>
<td>17/9</td>
<td>30,0</td>
<td>0</td>
<td>0,3</td>
<td>15,0</td>
<td>80</td>
</tr>
<tr>
<td>Sand, mitteldicht</td>
<td>18/10</td>
<td>32,5</td>
<td>0</td>
<td>0,3</td>
<td>50,0</td>
<td>180</td>
</tr>
<tr>
<td>Sand, dicht</td>
<td>19/11</td>
<td>35,0</td>
<td>0</td>
<td>0,3</td>
<td>80,0</td>
<td>250</td>
</tr>
</tbody>
</table>
Schottertragschicht:

Als Tragschichtmaterial wurde ein weitgestuftes Sand-Schotter-Gemisch (s’G) mit der Korngröße 0/63 mm verwendet. Bei dem Schotter handelt es sich um maschinell gebrochenen Granitkies, welcher aufgrund der mangelnden Verfügbarkeit von Schottermaterialien in der Gegend aus Norwegen importiert wurde. In Abbildung 4.5 ist die Korngrößenverteilung des Tragschichtmaterials dargestellt. Aufgrund des maschinellen Brechverfahrens weist das Tragschichtmaterial einen großen Anteil an Korngrößen über 32 mm und einen überdurchschnittlich hohen Sandanteil < 2 mm auf, sodass der für das Verdichtungsergebnis wichtige fein- und mittelgrobe Kieskornanteil von 2 bis 16 mm nur etwa 28 % beträgt.

4.2 Ergebnisse des Feldversuchs

4.2.1 Vertikalspannungen

Sohldruckspannungen unter der Kranmatte und sind um etwa 50 % höher als die gemessenen Spannungen in der unteren Lage, was auf eine deutliche Lastausbreitung infolge der Tragschicht schließen lässt.

4.2.2 Dehnungen im Geogitter

Neben der Spannungsverteilung im umliegenden Boden sind vor allem die Dehnungen des Geogitters wichtige Indikatoren für den Tragmechanismus der Arbeitsplattform. In der Abbildung 4.9 sind die Ergebnisse der mittleren Achse in den Messstellen 3, 5, 7 und 9 sowohl für die obere, als auch die untere Lage dargestellt. Hierbei ist deutlich zu erkennen, dass die Dehnungen in beiden Lagen bis zur Maximalbelastung von 280 t überproportional ansteigen und am Rand der

4.2.3 Setzungen

In Abbildung 4.10 sind die Messergebnisse der digitalen Inklinometerkette dargestellt. Aufgetragen ist die Setzung der Weichschicht in der mittleren Achse der Kranmatte für die einzelnen Belastungsschritte. Zur Visualisierung ist die Kranmatte als grauer Balken dargestellt. Von Beginn an wurden ungleiche Setzungen der Kranmatte beobachtet. Mit zunehmender Belastung verkippt die Kranmatte stärker und die Setzungszunahme pro Lastschritt vergrößert sich, was eine
deutliche Nichtlinearität im Tragverhalten erkennen lässt. Zudem sind deutlich die Hebungen neben der Kranmatte infolge der Verdrängung der Weichschicht zu erkennen. Die gestrichelten Kurven zeigen die Verformungen nach Erreichen der Maximallast von 280 t. Hierbei ist eine starke zeitabhängige Verformungszunahme zu beobachten, welche an- nähernd zu einer Verdoppelung der Setzungen auf etwa 20,0 cm führt. Maßgebend hierfür ist die Konsolidation der nahezu wassergesättigten Weichschicht, was zu starken Wasseraustritten an der Oberfläche führte. Nach der Entlastung der Kranmatte stellten sich in der Mitte der Kranmatte Hebungen von ungefähr 4,5 cm ein. Dabei reduzieren sich die Hebungen neben der Kranmatte nach der Entlastung wieder näherungsweise auf die Werte direkt nach der Aufbringung der Maximallast, was zeigt, dass es sich bei den Verformungen überwiegend um volumenkonstante Gestaltänderungen handelt. Des Weiteren wurde vor dem Ausbau der Tragschicht ein Flächennivellelement durchgeführt, bei dem die Verformungen an der Geländeoberkante gemessen wurden. In Abbildung 4.9 ist deutlich das Einstanzen der Kranmatte in die Tragschicht zu erkennen, welches im Punkt (-2|3) einen Maximalwert von etwa 20 cm erreicht.

Abbildung 4.10: Gemessene Setzungen der Inclinometerkette entlang der y-Achse auf Höhe OK Weichschicht

Abbildung 4.11: Vertikale Verformungen der Tragschicht an der Geländeoberkante nach Entlastung und Entfernen der Kranmatte (links) und Versatz von ca. 10 cm des Geogitters in der oberen Lage im Randbereich der Kranmatte (rechts)

4.3 Resümee Feldversuch Rethwisch

Der durchgeführte Feldversuch in Rethwisch ist ein Fallbeispiel für den erfolgreichen Einsatz einer mehrlagig bewehrten Tragschicht mit hohen Einwirkungen auf einer nur sehr gering tragfähigen organischen Weichschicht. Die Bewehrung mit Geokunststoffen verbessert die Ausbreitung der Last und ermöglicht somit eine gleichmäßige Verteilung auf die Weichschicht. Es ist ein deutscher Einfluss der Geogitterlagen auf die Spannungsverteilung im Randbereich der Kranmatte zu
beobachten, wobei hier die Geogitterbewehrung in der unteren Lage als maßgebend betrachtet wird. Diese wird durchweg stärker beansprucht als die obere Lage und weist dadurch wesentlich größere Dehnungen auf. Zudem zeigt dieser Feldversuch auch sehr deutlich den starken zeitlichen Einfluss auf die Verformungen der Tragschicht infolge der Konsolidation bei wassergesättigten organischen Böden.

Abbildung 4.12: Zeitliche Entwicklung der Setzungen der Kranmatte während der Konsolidationsphase mit deutlichem Austreten von Porenwasser
5. Feldmessung zur Sohldruckverteilung unter kettengetriebenen Baumaschinen (AP 3)

5.1 Sohldruckverteilung unter Raupenfahrwerken

Abbildung 5.1: schematische Darstellung der analytisch berechneten Sohldruckverteilung unter einer Baumaschine mit Raupenfahrwerk für verschiedene Lastfälle (a) ohne Hakenlast, (b) mit Hakenlast, (c) Drehung der Oberwagens um \(\delta_{krit} \) (d) und um 90°
nachzuweisen. Beim Nachweis nach DIN 15019 wird unter Berücksichtigung der angegeben Teil-
sicherheitsbeiwerte das Gleichgewicht der stabilisierenden und destabilisierenden Kippmomente
für die Kippkante mit dem geringsten Abstand zum Gesamtschwerpunkt des Fahrzeugkranes inkl.
Hakenlast verglichen. Der Nachweis nach DIN EN 16228 wird über die Definition des Kippwinkels
und des Standsicherheitsschwenkels geführt. Der Kippwinkel bestimmt sich nach Abbildung 5.2 aus
dem Abstand des Gesamtschwerpunktes für die betrachteten Lastfälle zur Kippkante und zur
Lotrechten der Kippkante und. Der vorhandene Kippwinkel muss dabei kleiner sein als der zuläs-
sige Standsicherheitsschwenkelt \(\alpha_{krit} \). Der Kippwinkel ist stark abhängig von der Neigung der Auf-
standsfläche der Baumaschine, was in Abbildung 5.2 deutlich zu erkennen ist. Hierbei ist zu be-
achten, dass sich bei Raupenfahrwerken die Definition der Kippkanten längs zur Fahrtrichtung
für den Nachweis der Standsicherheit und der Berechnung der Sohldruckverteilung unterschei-
den.

Die Sohldruckspannungen unter Raupenfahrwerken werden nach dem Spannungs-Trapez-Ver-
fahren ohne die Berücksichtigung von auftretenden Zugspannungen in der Sohlfuge berechnet.
Hierzu werden die resultierenden Vertikalkräfte und Kippmomente aus dem Ober- und Unterwa-
gen auf die Aufstandsfläche angesetzt. Alternativ kann eine Berechnung über die Position des
Schwerpunktes und dessen Ausmitte \(r \) bezogen auf den Mittelpunkt der Aufstandsfläche verwend-

\[
P_{1,2} = \frac{V_{ges}}{s} \left(\frac{s}{2} \pm e_y \right)
\]

mit: \(e_x = r \cdot \cos(\delta) \) und \(e_y = r \cdot \sin(\delta) \)

Die Berechnung der Sohldruckverteilung erfolgt dann nach Gleichung 5.1 getrennt für die einzel-

\[
Abbildung 5.2: Veränderung des Standsicherheitsschwenkels infolge einer Verkipfung des Bohrgerätes und Einfluss

\[
der Drehung des Oberwagens auf die maximale Sohldruckspannung nach Bock, Kleih & Schwarz (2008)
\]
größeren und P_2 der kleineren Kettenkraft entspricht. Hierbei ist zu beachten, dass zwischen dem Fall eines überdrückten Sohldruckspannungsverlaufs (Gleichung 5.1) bei dem keine Zugspannungen auftreten und dem Fall des Klaffens der Sohlfuge mit Zugspannungen (Gleichung 5.2) unterschieden werden muss.

$$\sigma_{1,2,3,4} = \frac{P_{1,2} \cdot \left(1 \pm \frac{6 \cdot e_x}{d}\right)}{b \cdot d}$$

(5.2)

$$\sigma_{1,2,3,4} = \frac{2 \cdot P_{1,2}}{3 \cdot \left(\frac{d}{2} \pm e_x \cdot (-1)\right) \cdot b}$$

(5.3)

Mit Gleichung 5.2 und 5.3 können unter Permutation der Kettenkraft und der Ausmitte e_x alle vier Randwerte der Sohldruckspannungsverläufe berechnet werden, wobei $\sigma_1 = \sigma_{\text{max}}$ und $\sigma_4 = \sigma_{\text{min}}$ gilt.

Tabelle 5.1: Berechnungsschema für die Permutation der Exzentrizität e_x und der Kettenkraft P_i zur Berechnung der Randspannung

<table>
<thead>
<tr>
<th>Spannungspunkt</th>
<th>Richtung der Ausmitte e_x</th>
<th>Richtung der Ausmitte e_y</th>
<th>Kettenkraft</th>
</tr>
</thead>
<tbody>
<tr>
<td>σ_1</td>
<td>$e_x \leq \frac{d}{6}$</td>
<td>+</td>
<td>P_1</td>
</tr>
<tr>
<td>σ_2</td>
<td>$\frac{d}{6} \leq e_x \leq \frac{d}{3}$</td>
<td>+</td>
<td>P_2</td>
</tr>
<tr>
<td>σ_3</td>
<td>$-$</td>
<td>$+$</td>
<td>P_1</td>
</tr>
<tr>
<td>σ_4</td>
<td>$-$</td>
<td>$-$</td>
<td>P_2</td>
</tr>
</tbody>
</table>

Stellt man nun die berechnete maximale Sohldruckspannung σ_{max} in Abhängigkeit des Drehbühnenwinkels δ in einem polaren Koordinaten-System dar, erhält man die in Abbildung 5.2 dargestellte Schmetterlingskurve. Dies entspricht einer konstanten Exzentrizität, z.B. bei konstanter Hakenlast und Ausladung des Krans und einer Drehung des Oberwagens um 360°. Dabei ist deutlich zu erkennen, dass für die Stellung des Oberwagens parallel zu den Achsen die geringsten Sohldruckspannungen auftreten. Vor allem bei der Drehung quer zur Fahrtrichtung weisen die Sohldruckspannungen aufgrund des sehr hohen Flächenträgheitsmomentes der Aufstandsfläche sehr niedrige Werte auf, während eine Drehung über die Eckpunkte des Raupenfahrwerkes wesentlich höhere Sohldruckspannungen auftreten. In das Beispiel in Abbildung 5.2 für ein Bohrgerät (Bauer BG 28) mit einem Gesamtgewicht von 100 t verdoppeln sich die
Sohldruckspannungen. Der Drehwinkel unter dem die höchsten Sohldruckspannungen auftreten wird als kritische Drehwinkel δ_{krit} bezeichnet und kann nach Gleichung 5.4 berechnet werden.

$$\delta_{krit} = \arctan\left(\frac{d}{s}\right) - \arcsin\left(\frac{2r}{d^2 + s^2}\right)$$ \hspace{1cm} (5.4)

5.2 Versuchsaufbau

Der Feldversuch zur Messung der Sohldruckverteilung unter einem Raupenkran wurde auf dem Werksgelände der Fa. Liebherr in Ehingen (Donau) durchgeführt. Gemessen wurden die Sohldruckspannungsverteilung unter einem Raupenkran LR 11000 und LTR 1220 für unterschiedliche Lastfälle und in unterschiedlichen Fahrpositionen. Ferner wurden die Setzungen des Unterwagens und damit die Verkipfung des Fahrzeuges und die Setzungen im Boden unter den Kränen und die Borddaten aufgezeichnet.

5.2.1 Messkonzept

Zur Messung der Sohldruckspannung wurden 13 piezoelektrische Erddruckgeber, die über die gesamte Länge der Aufstandsfläche verteilt in einer Tiefe von 0,35 m unter GOK angeordnet wurden verwendet. Im vorderen Bereich wurde das Messraster auf einen Sensorabstand von 80 cm verdichtet, während im hinteren Bereich ein Messraster von 1,20 m gewählt wurde. Der erste Druckgeber wurde mittig unter dem Turasrad in einem Abstand von 0,68 m zur ersten Laufrolle angeordnet. Da das Turasrad leicht angehoben ist werden hier unter zentrischer Belastung keine

Abbildung 5.3: Mess- und Versuchskonzept mit Anordnung der Erddruckgeber, Wegenaufnehmer und der Inklinometerkette (links), Raupenkran während Lastfall LF 4b (oben), Seitenansicht des Raupenfahrwerks (unten)
Kräfte in den Baugrund eingeleitet. Der Erddruckgeber D1 wurde zentrisch unter der ersten Laufrolle angeordnet, da ab hier die Einleitung der Last erfolgt. Durch die zusätzliche Anordnung des Erddruckgebers D0 ist es möglich die Sohldruckspannungen auch noch nach dem Verfahren des Krans um 0,30 m in Position 2 lückenlos zu messen. Zur Abschätzung der Lastausbreitung in Querrichtung wird im vorderen Bereich des Raupenfahrwerks bei Erddruckgeber D3 in einem Abstand von 0,60 m zur Messachse der etwas kleinere Erddruckgeber D3a angeordnet. Dies entspricht in etwa dem Bereich mit den maximal gemessenen Sohldruckspannungen. Um negative Einflüsse aus der Korngröße und des Steifigkeitsverhältnisses zwischen Druckkissen und dem umliegenden Boden zu minimieren wurden alle Erddruckgeber in Feinsand mit der Korngröße 0,1/0,4 mm gebettet.

5.2.2 Versuchskräne

Liebherr LR 11000:
Für den Feldversuch wurde ein Gittermastkran vom Typ Liebherr LR 11000 mit einer maximalen Traglast von 1000 t bei 11,0 m Ausladung verwendet. Der Liebherr LR 11000 kommt hauptsächlich im Kraftwerks- und Industriebau, beim Bau von Windkraftanlagen, beim Einheben von
Brücken und auf Pontons im Offshore-Bereich zum Einsatz. Als Auslegersystem wurde ein Schwerlastausleger (S) 78 m mit einem Gegenausleger (D) 42 m und einer Ballastpalette für den zusätzlichen Schwebeballast von bis zu 200 t. Das Raupenfahrwerk besitzt eine Gesamtlänge von 12,44 m und eine Spurweite von 9,20 m, bei einer Kettenbreite von jeweils 2,00 m. Die für die Aufstandsfläche wirksame effektive Fahrwerkslänge beträgt aufgrund des Kettenanzugs 9,60 m, während die effektive Kettenbreite aufgrund der gevouteten Kettenplatten auf 1,80 m reduziert ist. Das Raupenfahrwerk besteht aus einem starren Raupenträger (Hohlkastenquerschnitt) mit zur Spitze hin verjüngendem Querschnitt, an dessen Ende sich jeweils ein hydraulisch angetriebenes Turasrad befindet. Die kleineren Laufrollen im mittleren Bereich sind über gelagerte Bolzen starr am Raupenträger befestigt, während die Turasräder so angeordnet sind, dass hier die Kettenplatten einige Zentimeter höher liegen und diese somit frei stehen. Die eigentliche Kranlast wird dabei von den Laufrollen getragen. Lediglich das Fahren über Unebenheiten oder größere Verformungen des Untergrundes können zu einer Belastung der Turasräder führen.

Betrachtet man den Querschnitt des Raupenfahrwerks, sind die mittleren Laufrollen nur auf einer Breite von ca. 40 bis 50 cm auf den einzelnen Kettengliedern aufgelagert. Dadurch entsteht das kinematische System eines Wägebalkens, der eine zusätzliche Verdrehung des Kettengliedes in Längsachse ermöglicht. In Kombination mit den im Verhältnis zum Laufrollenabstand kurzen Kettengliedern, dass in der Kette nicht nur Zug- sondern auch Druckspannungen auftreten.

Liebherr LTR 1220:

Tabelle 5.2: Übersicht Fahrposition 1 und Position 2 für den Kran Liebherr LR 11000

<table>
<thead>
<tr>
<th>Position 1</th>
<th>Position 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

- Erddrucksensor D1 (mit Meterstab markiert) befindet sich direkt unter der ersten Laufrolle.
- Die erste Laufrolle (1) befindet sich in Nähe eines Scharniers und belastet damit das Kettenlied exzentrisch (in Längsrichtung).
- Die erste Laufrolle (1) liegt bei Position 2 mittig auf der weiter vorne liegenden Kettenplatte.
- Erddrucksensor D1 befindet sich 0,30 m hinter der ersten Laufrolle (Kran wurde um 0,20 m nach vorne gefahren).
5.2.3 Lastkonzept

Das in Tabelle 5.3 aufgeführte Lastkonzept für den Kran LR 11000 beinhaltet insgesamt zehn Lastfälle mit Variation der Hakenlast, der Ausladung, des Drehbühnenwinkels und des Schwebeballastes. Bei den Lastfällen 1 bis 4a wird die Hakenlast konstant gehalten, während die Ausladung und damit die Ausmitte des Schwerpunktes schrittweise erhöht werden. Bei den Lastfällen 4b und 4c erfolgt eine Drehung des Oberwagens zunächst um den kritischen Drehbühnenwinkel $\delta_{\text{krit}} = 18^\circ$ und danach eine Drehung auf 90°. Ab Lastfall 6 erfolgt eine Verdoppelung der Hakenlast, bei Aufballastierung des Schwebeballastes um 200 t. Bei Lastfall 7a wird die Ausladung der Hakenlast auf das Maximum von 26,0 m erhöht, was unter der aktuellen Konfiguration des Raupenkrans der maximalen Tragfähigkeit entspricht. Für die Lastfälle 7b und 7c erfolgt die Drehung des Oberwagens analog zu den Lastfällen 4b und 4c, wobei aufgrund der Ausladung des Schwebeballastes nur bis 78° gedreht werden konnte. Die Lastfälle LF 4a bis LF 4c werden sowohl für Position 1 als auch Position 2 durchgeführt, während die Lastfälle 6 bis 7c nur für Position 2 durchgeführt werden. Bei Position 1 befindet sich die erste Laufrolle zentrisc über dem Erddruckgeber D1 und steht dabei im hinteren Teil der Kettenplatte auf. Bei Vorfahren des Krans um 0,30 m bleiben die Kettenplatten an ihrer Position und die Laufrollen verschieben sich nach vorn, sodass die erste Laufrolle nun näherungsweise mittig auf der nächsten Kettenplatte steht. Da die Abstände der Kettenplatten und der Laufrollen nicht gleich sind, treten an anderen Stellen Konsellationen auf, bei denen die Laufrollen von der Mitte einer Kettenplatte in den Bereich eines Scharniers verschoben werden. Durch die Variation der relativen Anordnung der Laufrollen zu den Kettenplatten treten lokale Be- und Entlastungen der Kettenplatten mit möglichem punktuellen Lasteintrag durch Verkippen auf. Mit dem beschriebenen Belastungskonzept soll dieser Einfluss erfasst und quantifiziert werden.

Tabelle 5.3: Belastungsschema der Lastfälle LF 1 bis LF 7c für den LR 11000

<table>
<thead>
<tr>
<th>Lastfall</th>
<th>Hakenlast</th>
<th>Ausladung</th>
<th>Drehbühnenwinkel 5</th>
<th>Schwebeballast</th>
<th>Ballastradius</th>
</tr>
</thead>
<tbody>
<tr>
<td>LF 1</td>
<td>150 t</td>
<td>14,7 m</td>
<td>0° (180°)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LF 2</td>
<td>150 t</td>
<td>19,3 m</td>
<td>0° (180°)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LF 3</td>
<td>150 t</td>
<td>22,1 m</td>
<td>0° (180°)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LF 4a</td>
<td>150 t</td>
<td>25,3 m</td>
<td>0° (180°)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LF 4b</td>
<td>150 t</td>
<td>25,3 m</td>
<td>18° (162°)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LF 4c</td>
<td>150 t</td>
<td>25,3 m</td>
<td>90° (90°)</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>LF 6</td>
<td>300 t</td>
<td>19,3 m</td>
<td>0° (180°)</td>
<td>200 t</td>
<td>20 m</td>
</tr>
<tr>
<td>LF 7a</td>
<td>300 t</td>
<td>26,0 m</td>
<td>0° (180°)</td>
<td>200 t</td>
<td>20 m</td>
</tr>
<tr>
<td>LF 7b</td>
<td>300 t</td>
<td>26,0 m</td>
<td>18° (162°)</td>
<td>200 t</td>
<td>20 m</td>
</tr>
<tr>
<td>LF 7c</td>
<td>300 t</td>
<td>26,0 m</td>
<td>78° (102°)*</td>
<td>200 t</td>
<td>20 m</td>
</tr>
</tbody>
</table>

* aufgrund der Ausladung des Schwebeballastes keine vollständige Drehung um 90° möglich.

Für den Teleskopraupenkran LTR 1220 wurden entsprechend Tabelle 5.4 insgesamt 4 Lastfälle vorgesehen, bei denen analog zum LR 11000 mit einer zentrischen Belastung bei LF 1 begonnen wird und zunächst die Ausladung bis zum Erreichen der maximalen Tragfähigkeit erhöht wird (Lastfall LF 2). Danach erfolgt bei Lastfall LF 3 eine Drehung der Oberwagens bei gleichbleibender Ausladung bis zum kritischen Drehbühnenwinkels $\delta_{\text{krit}} = 14^\circ$. Für Lastfall LF 4 wird der Oberwagen weiter bis auf 90° gedreht.
Tabelle 5.4: Belastungsschema der Lastfälle LF 1 bis LF 4 für den LRT 1220

<table>
<thead>
<tr>
<th>Lastfall</th>
<th>Hakenlast</th>
<th>Ausladung</th>
<th>Drehbühnen -winkel δ</th>
<th>Heckeballast + Zentralballast</th>
</tr>
</thead>
<tbody>
<tr>
<td>LF 1</td>
<td>32 t</td>
<td>7,4 m</td>
<td>0°</td>
<td>70 t + 20 t</td>
</tr>
<tr>
<td>LF 2</td>
<td>32 t</td>
<td>18,2 m</td>
<td>0°</td>
<td>70 t + 20 t</td>
</tr>
<tr>
<td>LF 3</td>
<td>32 t</td>
<td>18,2 m</td>
<td>14°</td>
<td>70 t + 20 t</td>
</tr>
<tr>
<td>LF 4</td>
<td>32 t</td>
<td>18,2 m</td>
<td>90°</td>
<td>70 t + 20 t</td>
</tr>
</tbody>
</table>

5.2.4 Versuchsfeld

Die für den Versuch vorgesehene Fläche befindet sich auf dem Werksgelände der Fa. Liebherr in Ehingen (Donau) und wird teilweise als Ablagefläche und für die Kranmontage verwendet. Die Versuchsfläche wurde im Zuge einer früheren Erweiterung künstlich auf das bestehende Gelände aufgeschüttet. Es ist anzunehmen, dass das ursprüngliche Gelände, ähnlich wie das umgebende Gelände eine Neigung von 20 bis 25° aufweist. Laut Angaben von Seiten der Fa. Liebherr wurde das Gelände mit Erdauhub aus der Region, welcher überwiegend aus Kalkstein und Lehm verfüllt. Die Auffüllung weist eine Mächtigkeit von mindestens 4,0 m auf, die bis zur heutigen Böschungskante auf ca. 7,0 m zunimmt. Das Verfüllungsmaterial kann als näherungsweise homogen angesehen werden und enthält nur vereinzelt Steine mit einer Kantenlänge von bis zu 30 cm. Auf das Planum der Auffüllung wurde eine mindestens 0,80 m dicke Schottertragschicht (Körnung vermutlich 0/45 mm) aufgebracht. Da die Versuchsfläche in den letzten Jahren durch Kranbetrieb beansprucht wurde, ist zusätzlich von einer guten Verdichtung auszugehen. Bei der Besichtigung wurde festgestellt, dass die Versuchsfläche eine Neigung von ca. 2 % in Richtung Osten aufweist. Für den Einbau der Messtechnik (Erddruckgeber und Inklinometerkette) wird das Versuchsgebäude unter beiden Laufflächen des Raupenfahrwerkes wie folgt vorbereitet:

- 50 cm Aushub der bestehenden Tragschicht
- 15 cm Sand zur Bettung der Messinstrumente (motormanuelle Verdichtung)
- Einbau der Erddruckgeber und der Inklinometerkette (Bettung der Erddruckgeber mit Feinsand)
- 15 cm Sand zur Überdeckung der Messinstrumente (motormanuelle Verdichtung Rüttelplatte)

![Abbildung 5.4: Korngrößenverteilung des Tragschichtmaterials](image-url)
• 20 cm des ursprünglichen Tragschichtmaterials (Einbau und Verdichtung mit Rüttelplatte)

Tabelle 5.5: Bodenmechanische Kennwerte des Versuchsfeldes

<table>
<thead>
<tr>
<th>Bodenart</th>
<th>Körnung d</th>
<th>Ungleichförmigkeitszahl U</th>
<th>Reibungswinkel φ'</th>
<th>Kohäsion c'</th>
<th>Steifemodul E5,100-200 [MN/m²]</th>
<th>In-situ dichte ρ [g/cm³]</th>
<th>Proc- tor dichte δpr [g/cm³]</th>
<th>Wassergehalt wpr [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tragschichtmaterial (GU)</td>
<td>0/45</td>
<td>4,0</td>
<td>42,5</td>
<td>0</td>
<td>180</td>
<td>2,073-2,095</td>
<td>2,12</td>
<td>7,6</td>
</tr>
<tr>
<td>Rheinsand (SI)</td>
<td>0/4</td>
<td>8,4</td>
<td>32,5</td>
<td>0</td>
<td>75</td>
<td>1,842-1,969</td>
<td>1,868</td>
<td>10,2</td>
</tr>
<tr>
<td>Quarzsand, Feinsand (SE)</td>
<td>0,1/0,4</td>
<td>2,2</td>
<td>32,5</td>
<td>0</td>
<td>70</td>
<td>n.A.</td>
<td>n.A</td>
<td>n.A</td>
</tr>
</tbody>
</table>

5.3 Ergebnisse des Feldversuchs

Um einen Vergleich mit den analytisch berechneten Sohldruckspannungen führen zu können, müssen diese jedoch zuerst auf die Tiefenlage der Erddruckgeber angepasst werden, da die Sohldruckspannungswerte für die Erdoberfläche angegeben werden. Diese Werte müssen abgemindert und mit ihrer Ausbreitung in Querrichtung verrechnet werden, da die Erddruckgeber Messwerte in einer Tiefe von -0,35 m GOK angeben. Ausgehend vom Lastausbreitungswinkel von einem Lastausbreitungswinkel von 45° und einer Tiefe von 0,35 m ergibt sich eine Vergrößerung der Lasteinwirkungsfläche von 0,35 m je Seite. Die vergrößerte Lasteinwirkungsfläche ergibt sich so zu:

\[A_{new} = (l + 0,7 \, m) \times (d + 0,7 \, m) \]

Anschließend wurde die durchschnittliche Sohldruckspannung neu über die erhaltene Lasteinwirkungsfläche berechnet:

\[\delta_{m,new} = \frac{\delta_m \times A}{A_{new}} \]

Diese wurde daraufhin wiederum mit Hilfe der Verhältnisse der Anfangsspannungen zur Durchschnittsspannung zu den finalen Spannungen in 0,35 m Tiefe verrechnet.

Bei Erddruckgeber D2 ist eine systematische Messanomalie über alle Lastfälle zu beobachten. Ein eventueller Defekt sowie eine fehlerhafte Kalibrierung des Erddruckgebers konnte jedoch im

5.3.1 Ergebnisse - Liebherr LRT 11000

Sohldruckspannungen bei der Auffahrt des Krans

Die in Abbildung 5.7 dargestellte Entwicklung der Sohldruckspannung während der Auffahrt des Krans zeigt die mit D11 beginnende Reaktion der Erdruckgeber auf die Erhöhung der Auflast durch den Kran. Hierbei ist deutlich zu sehen, dass die Sohldruckspannungen während der Überfahrt sprunghaft ansteigen und sich in der Folge wieder reduzieren, was durch die Überfahrt der einzelnen Laufrollen gekennzeichnet ist. Je nach Stellung der Laufrollen auf der Kettenplatte ergibt sich ein Lastabtrag über die volle Auflagerfläche des Kettengliedes (zentrale Stellung der Laufrolle) oder es kommt zu Lastkonzentrationen, infolge von Verkippen, wenn die Laufrolle seitlich verschoben über dem Kettenglied steht.

Das in Abbildung 5.8 dargestellte Schema zeigt den Spannungsanstieg und die Spannungsabnahme, während der Überfahrt. Man erkennt, dass je nach Lage der Laufrollen die Lasten verschieden in den Boden eingeleitet werden und es dadurch zu Bildung lokaler Maxima kommt. Die
Kettenplatten sind über die Verbolzungen (Scharniere) gelenkig miteinander verbunden und können bei exzentrischer Belastung gegeneinander je nach Stellung der Laufrolle gegeneinander verkippen. Überfährt nun eine Laufrolle dieses Scharnier, verkippen die Kettenplatten, was vor Erreichen der Verbolzung aufgrund der entstehenden Kantenpressung zunächst höhere Spannungen auslöst. Befindet sich die Laufrolle direkt auf dem Scharnier, weichen die Kettenplatten aufgrund des weiteren Verkippens der Belastung aus und es entsteht das lokale Minimum zwischen den beobachteten Doppelmaxima aus Abbildung 5.7. Es sind maximale Ausschläge von bis zu 1100 kN/m² zu erkennen, was weit über den analytisch berechneten Werten für den Lastfall der Befahrung ohne Hakenlast liegt. Folglich ist mit diesen Maximalwerten die Überfahrt solch großer Raupenfahrzeuge gerade bei Hohlräumen, wie z.B. Schächten, Kanälen und Leitungen noch kritischer zu betrachten, um eine Zerstörung solcher Elemente und ein mögliches Grundbruchversagen als Folge dessen auszuschließen. Bezüglich des Einflusses der Stellung der Laufrollen gelten folgende Aussagen:

- Peaks setzen sich aufgrund der Verkipnung der Kettenplatten immer aus zwei Hochpunkten zusammen (linker und rechter Peakwert entsprechen der Position der Laufrolle am Rand der Kettenglieder).
- Tiefpunkt in der Mitte ist die Position der Laufrolle auf einem Scharnier, da hier lokal entlastet wird.
- Niedrigere Spannungswerte bei mittiger Position der Laufrolle auf der Kettenplatte.

Ergebnisse der Lastfälle LF 1 bis LF 7c:

Die gemessenen Sohldruckspannungen weisen einen ausgeprägt nichtlinearen Verlauf mit einer Spannungskonzentration im vorderen und hinteren Drittel des Raupenfahrwerkes auf. Für die Belastung im Schwerpunkt der Aufstandsfläche (Lastfall LF 1) erhält man einen symmetrischen Spannungsverlauf. Mit Vergrößerung der Ausladung erhöht sich das auf den Unterwagen und das Raupenfahrwerk wirkende Kippmoment, was einen Anstieg der Sohldruckspannungen im vorderen Bereich des Fahrwerkes bewirkt. Bis zum Lastfall LF 3 ist die Ausmitte des Schwerpunktes innerhalb der 1. Kernweite, sodass die gesamte Aufstandsfläche des Fahrwerkes überdrückt ist und keine Zugspannungen auftreten. Für den Lastfall LF 4a wird das Kippmoment nochmal erhöht, was ein Klaffen der Sohlfuge im hinteren Viertel des Fahrwerks bewirkt. Bei den Lastfällen LF 4a bis LF 4c erfolgt eine Drehung des Oberwagens, bei gleichbleibender Ausladung um 90°. Dadurch wird die bisher auf beide Raupenträger gleichmäßig Last stärker auf den mit Erdrückgebern instrumentieren Raupenträger umgelagert, sodass sich die Sohldruckspannungen bis zum Erreichen des kritischen Drehbührenwinkels $\delta_{krit} = 18°$ (Lastfall LF 4b) zunächst auf der gesamten Raupenlänge erhöhen und ihren Maximalwert im Frontbereich erreichen. Mit weiterer Drehung des Oberwagens wird das Kippmoment in Längsrichtung des Raupenfahrwerks verringert und gleichzeitig in Querrichtung erhöht, was eine Reduktion der Sohldruckspannungen im vorderen Bereich und eine Zunahme im hinteren Bereich des Raupenfahrwerkes bewirkt. Bei Lastfall LF 4c mit $\delta = 90°$ ist das Kippmoment in Längsrichtung in etwa Null, sodass man wieder ein symmetrischen Sohldruckspannungsverlauf erhält, wobei dieser aufgrund des Kippmoments
in Querrichtung ein höheres Spannungsniveau als bei Lastfall LF 1 aufweist. Die inkrementellen Änderungen der gemessenen Sohldruckspannungen zeigen hierbei ein qualitativ ähnliches Verhalten wie die analytisch berechneten Sohldruckspannungsverläufe. Es ist aber deutlich zu erkennen, dass sich die Sohldruckspannungen für die gemessenen Lastfälle jeweils im vorderen und hinteren Fahrwerksdrittel konzentrieren und der Mittelbereich nur geringe Sohldruckspannung aufweist. Bei Entlastung des hinteren Raupenbereichs von Lastfall LF 1 bis LF 4a ist eine deutliche Dominanz der plastischen Verformungsanteile bei der Setzung erkennbar.

Bei den Lastfällen LF 6 bis LF 7c wird ein Schwebeballast mit 200 t ergänzt, welcher bei gleicher Ausladung eine Steigerung der Hakenlast auf 300 t ermöglicht. Hierdurch erhöht sich das Eigengewicht des Fahrzeugs inkl. Hakenlast um insgesamt 350 t, was zu insgesamt höheren Sohldruckpressungen führt. Die Lastfälle LF 6 und LF 7a bis LF 7c werden dabei analog zu den Lastfällen LF 1 und LF 4a bis LF 4c durchgeführt. Die zentrische Belastung durch LF 6 zeigt hier ebenfalls zwei lokale Maxima im Front- und Heckbereich des Raupenfahrwerks, die deutlich über den analytisch berechneten Werten liegen. Für den Lastfall LF 7a erhöht sich die Sohldruckspannung im Frontbereich auf etwa 900 kN/m² und fällt im hinteren Bereich auf einen Wert von 100 kN/m² ab. Aufgrund des höheren Fahrzeuggewichtes und den dadurch höheren Normalkräften ist hier im Gegensatz zu LF 4a ein Klaffen der Sohlfuge erst ab X = 10,0 m erkennbar. Die Setzungen des Unterwagens und des Bodens verhalten sich ähnlich wie bei den Lastfällen LF 1 und LF 4a, wobei insgesamt höhere Werte gemessen wurden. Bei Drehung des Oberwagens um den kritischen Drehbühnenwinkel $\delta_{\text{krit}} = 18^\circ$ in Lastfall LF 7b erhöht sich die Sohldruckspannung im Front- Heckbereich des Raupenfahrwerks leicht. Beim Drehbühnenwinkel von 90° reduzieren sich Sohldruckpressungen im Frontbereich, bei gleichzeitiger Erhöhung im Heckbereich. Der
sohldruckverlauf in Lastfall LF 7c ist dabei wieder affin zu LF 6 bzw. LF 4c, wobei das Spannungsniveau mit 600 bis 750 kN/m² deutlich höher liegt. Die Abweichung von den analytisch berechneten Sohldruckpressungen bleibt relativ betrachtet in der gleichen Größenordnung wie bei den Lastfällen LF 1 bis LF 4c.

Momente durch den gestrichelten Kurvenverlauf zwischen D0 und D4 an die reale Verteilung angenähert.

5.3.2 LRT 1220

Die in Abbildung 5.12 dargestellten Sohldruckspannungsverläufe zeigen im Vergleich zum LR 11000 für den Lastfall LF 2 größere Schwankungen der einzelnen Messwerte. Verglichen mit den analytisch ermittelten Werten sind die gemessenen Sohldruckspannungen im Mittel etwas höher, wobei diese im Frontbereich am stärksten ausgeprägt sind. Für den Lastfall LF 2 nimmt der Sohldruckspannungsverlauf, ähnlich zum analytischen Modell, eine näherungsweise dreieckige Form an. Die maximale Sohldruckspannung im Frontbereich ist mit etwa 850 kN/m² aber deutlich höher als die im analytischen Modell berechneten Werte mit 330 kN/m². Auffällig ist hierbei das bereits beginnende Klaffen der Sohlfuge in Fahrwerksmitte ab X = 4,0 m. Bei Lastfall LF 3 verhalten sich die gemessenen Sohldruckspannungen entgegen der Erwartungen, indem eine Abnahme des Sohldrucks im Frontbereich und eine Steigerung im Heckbereich erfolgen. Für den Lastfall LF 4 wurde wie erwartet eine zu Lastfall LF 1 affiner Sohldruckverteilung gemessen, welche vom Betrag her aber etwas geringer ausfällt.

Die gemessenen Sohldruckspannungen für den Teleskopraupenkran LTR 1220 zeigen bis auf Lastfall LF 3 qualitativ das vom analytischen Modell vorhergesagte Verhalten wobei die Sohldruckspannungen partiell deutlich höher waren als in der Berechnung vorausgesagt wurde. Vor allem die Schwankungen der Messwerte der Erddruckgeber für die Lastfälle LF 1 und LF 4 deuten auf Spannungskonzentrationen infolge der Interaktion zwischen Laufrolle, Kettenplatte und Bau grund hin. Ein Grund hierfür sind die im Verhältnis zum Laufrollenabstand kürzeren Kettenriemen, was im mittleren Fahrwerksbereich einen Abstand zwischen den Laufrollen von exakt zwei

Abbildung 5.11: Teleskopraupenkran Liebherr LTR 1220 auf dem Versuchsfeld (links) und während der Durchführung von Lastfall LF 3 (rechts)
Kettengliedern bewirkt, wodurch sich die Last aus den Laufrollen je nach Anordnung dieser auf weniger Kettenglieder verteilt. Die Last wird dann nur durch einzelne Kettenglieder abgetragen, wobei die benachbarten Kettenglieder nahezu lastfrei sind. Hierdurch wird die Last im Gegensatz zum analytischen Berechnungsmodell auf einer kleineren Fläche konzentriert in den Baugrund eingeleitet.

Abbildung 5.12: Vergleich der gemessene Sohldruckspannungen unter dem Teleskopraupenkran LTR 1220 mit den analytisch berechneten Werten für die Lastfälle LF 1 bis LF 4
6. Numerische Untersuchungen

6.1 Eingesetzte numerische Berechnungsverfahren

6.1.1 Finite Element Methode (FEM)

\[\sigma = D \varepsilon \quad \text{bzw.} \quad \dot{\sigma} = D \varepsilon \]

(6.1)

Im Fall von linear-elastischem Materialverhalten entspricht Gleichung 6.1 dem HOOKEschen Gesetz und \(D \) ist die elastische Materialmatrix \(D_e \). Sie beinhaltet unter homogenen und isotropen Bedingungen zwei unabhängige, elastische Parameter – den Elastizitätsmodul \(E \) und die Querdehnzahl \(\nu \). Im zweidimensionalen Fall ergibt sich für \(D^e \):

\[
\begin{bmatrix}
\nu & \frac{1}{2} - \nu \\
\frac{1}{2} & 1 - \nu
\end{bmatrix}
\begin{bmatrix}
1 - \nu & \nu & 0 \\
\nu & 1 - \nu & 0 \\
0 & 0 & \frac{1}{2} - \nu
\end{bmatrix}
\]

\[D^e = \frac{E}{(1+\nu)(1-2\nu)} \]

(6.2)

$$u = N \vartheta$$
mit
$$N = \begin{bmatrix} N_1 & 0 & N_2 & 0 & \cdots & N_6 & 0 \\ 0 & N_1 & 0 & N_2 & \cdots & 0 & N_6 \end{bmatrix}$$ \hspace{1cm} (6.3)$$

$$N_1 = (1 - \xi - \eta)(1 - 2\xi - 2\eta)$$ \hspace{1cm} (6.4)
$$N_2 = 4\xi (1 - \xi - \eta)$$
$$N_3 = \xi (2\xi - 1)$$
$$N_4 = 4\xi \eta$$
$$N_5 = \eta (2\eta - 1)$$
$$N_6 = 4\eta (1 - \xi - \eta)$$

Setzt man Gleichung 6.4 in Gleichung 6.3 ein, erhält man:

$$\varepsilon = LN \vartheta = B \vartheta$$
mit
$$B = \begin{bmatrix} \frac{\partial N_1}{\partial x} & 0 & \frac{\partial N_2}{\partial x} & 0 & \cdots & \frac{\partial N_6}{\partial x} & 0 \\ 0 & \frac{\partial N_1}{\partial y} & 0 & \frac{\partial N_2}{\partial y} & \cdots & 0 & \frac{\partial N_6}{\partial y} \end{bmatrix}$$ \hspace{1cm} (6.5)$$

Wobei die Operatormatrix B die Ableitungen der Ansatzfunktionen N_i nach den globalen Koordinaten x und y enthält. Im Element werden die Ableitungen hingegen nach den lokalen Koordinaten ξ und η berechnet. Die Umrechnung der lokalen auf die globalen Ableitungen erfolgt unter Berücksichtigung der Kettenregel mit Hilfe der Jacobi-Matrix J:

$$\begin{bmatrix} \frac{\partial N_1}{\partial \xi} \\ \frac{\partial N_1}{\partial \eta} \end{bmatrix} = \begin{bmatrix} \frac{\partial x}{\partial \xi} & \frac{\partial y}{\partial \xi} \\ \frac{\partial x}{\partial \eta} & \frac{\partial y}{\partial \eta} \end{bmatrix}$$
mit
$$|J| = \begin{vmatrix} \frac{\partial x}{\partial \eta} & -\frac{\partial x}{\partial \xi} \\ -\frac{\partial y}{\partial \eta} & \frac{\partial y}{\partial \xi} \end{vmatrix}$$ \hspace{1cm} (6.6)$$

Die inverse Beziehung lautet dann:

$$\begin{bmatrix} \frac{\partial N_1}{\partial x} \\ \frac{\partial N_1}{\partial y} \end{bmatrix} = J^{-1} \begin{bmatrix} \frac{\partial N_1}{\partial \xi} \\ \frac{\partial N_1}{\partial \eta} \end{bmatrix}$$
mit
$$J^{-1} = \frac{1}{|J|} \begin{bmatrix} \frac{\partial y}{\partial \eta} & \frac{\partial x}{\partial \eta} \\ \frac{\partial y}{\partial \xi} & \frac{\partial x}{\partial \xi} \end{bmatrix}$$ \hspace{1cm} (6.7)$$
Wobei \(|J| \) die Determinante der Jakobi-Matrix ist.

\[
|J| = \text{det } J = \frac{\partial x \partial y}{\partial \xi \partial \eta} = \frac{\partial x}{\partial \eta} \frac{\partial y}{\partial \xi}
\]
(6.8)

Letztlich werden die drei Gleichungen mit Hilfe des Prinzips der virtuellen Verrückungen gelöst. Dabei muss die Summe aus innerer und äußerer Arbeit null sein.

\[
\partial W_{\text{int}} + \partial W_{\text{ext}} = 0 \quad \text{oder} \quad \partial W_{\text{int}} = -\partial W_{\text{ext}}
\]
(6.9)

Die innere Arbeit ergibt sich aus dem Produkt der virtuellen Verzerrungen \(\partial \varepsilon \) und den Spannungen \(\sigma \). Dementsprechend ergibt sich die äußere Arbeit aus dem Produkt der virtuellen Verschiebungen \(\delta u \) und der verteilten Belastung \(p \) sowie der Randbelastung \(t \).

\[
\int_A \partial u^T \sigma \, dA = \int_A \partial u^T p \, dA + \int_S \partial u^T t \, dS
\]
(6.10)

Mit den Beziehungen nach Gleichung 6.2, 6.5, 6.6 und 6.10 ergibt sich schließlich:

\[
\partial \theta^T \int_A B^T D B \, dA \, \theta = \partial \theta^T \left(\int_A N^T p \, dA + \int_S t N^T \, dS \right)
\]
(6.11)

Das erste Integral in Gleichung 6.11 wird als Elementsteifigkeitsmatrix \(K_{el} \) und der Ausdruck zwischen den Klammern als Elementlastvektor \(f_{el} \) bezeichnet. Aus diesen Elementmatrizen werden dann die Systemmatrizen \(K \) und \(f \) des Gesamtsystems zusammengefasst. Um die Flächen- beziehungsweise Linienintegrale zu lösen, werden sie mit Hilfe der lokalen Elementkoordinaten dargestellt und schließlich numerisch angenähert. Das gebräuchlichste numerische Integrationsverfahren ist das sogenannte GAUSS-Integrationsverfahren, welches ein exaktes Integrationsverfahren ist und auch im verwendeten Programm zur Anwendung kommt. Dabei erfolgt die numerische Integration in den Integrations- oder GAUSS-Punkten mit den Wichtungsfaktoren \(w_i \). Das Vorgehen wird nachfolgend für die Elementsteifigkeitsmatrix \(K_{el} \) verdeutlicht.

\[
K_{el} = \int_A B^T D B \, dA = \int_{-1}^{+1} B^T D B \, d\xi \, d\eta = \sum_{i=1}^{n} B_i^T D_i B_i \, \text{det} J_i \, \omega_i
\]
(6.12)

Die Anzahl der Integrationspunkte ist abhängig vom Elementtyp. Für ein sechsknotiges Dreieckselement werden für eine exakte Integration drei GAUSS-Punkte benötigt, also \(n=3 \). Die Lage dieser Punkte im Elementkoordinatensystem ist Abbildung 6.1 zu entnehmen. Die Wichtungsfaktoren \(w_i \) haben im Fall von drei Integrationspunkten alle einen Wert von \(w_i = \frac{1}{3} \). Weitere Details zum verwendeten FE-Code sind BRINKGREVE (2002) zu entnehmen.

Bei der Anwendung der FE-Methode sind folgende Einschränkungen zu berücksichtigen:

Die klassische Lagrange Formulierung eignet sich nur für die Berechnung sehr kleiner Verformungen, da die Formulierung immer auf das unverformte Ausgangssystem bezogen ist. Die durch die Membrantragwirkung von Geokunststoffbewehrungen entstehenden Zugkräfte sind abhängig von der vertikalen Verformung der Bewehrungslage. Bei einer Simulation dieses Verhaltens mit der klassischen Lagrange-Formulierung werden aber sämtliche Berechnungsschritte auf die Koordinaten der unverformten Elemente, sodass die mit der Verformung zunehmende
Membranwirkung unberücksichtigt bleibt. Man würde infolge dessen keine Schnittkräfte in der Geokunststoffbewehrung erhalten. Somit ist die klassische Lagrange-Formulierung für die Abbildung des geometrisch nicht-linearen Tragverhaltens von Geokunststoffen ungeeignet.

Die Updated-Lagrange Formulierung (UL) ist für die Abbildung geometrisch nicht-linearen Tragverhaltens von Geokunststoffen geeignet, reagiert aber sensibel auf große lokale Verformungen, weshalb das Tragverhalten nur für kleine bis mittlere Verformungen realitätsnah abgebildet werden kann, da bei großen Verformungen der Einfluss numerischer Unschärfen steigt. Da es sich bei dem Versagensmechanismus von bewehrten und unbewehrten Tragschichtsystemen um einen Verformungsbruch in der Weichschicht mit Durchstanzen der Tragschicht handelt und bis zum Bruch des Systems teilweise große Verformungen auftreten kann das Bruchverhalten selbst nicht vollständig simuliert werden.

6.1.2 Kinematische Elemente Methode mit Layout-Optimierung (Distinct Layout Optimization)

\[\text{Abbildung 6.2: Ablauf der Distinct Layout Optimization (DLO): a) Ausgangszustand mit aufgebrachten Kräften, b) Diskretisierung des Bodenkontinuums mit einem Knotenraster, c) Verbindung der Knoten mit potentiellen Gleichflächen und d) Identifizierung des maßgebenden Bruchmechanismus durch optimierte Variation}\]

Der Bruchmechanismus selbst besteht dabei aus einer bestimmten Anzahl in sich starrer Bruchkörper mit geradlinigen Grenzflächen, welche zueinander kinematisch verschieblich sind. Die Kinematische Element Methode basiert auf zwei physikalischen Bedingungen:

- Alle Elemente erleiden – wegen geradliniger Begrenzungen nur translatorische Verschiebungen, also keine Rotationen und keine Verformungen.
- Alle Normalkomponenten der Relativverschiebungen, also eine mögliche Spaltbildung zwischen den einzelnen Elementen bzw. zwischen den Elementen und dem unbeeinflussten Bodenkörper, müssen Null sein.

Ein großer Vorteil dieses Verfahren ist die sehr einfache Anwendung und die geringe Berechnungszeit. Nachteilig ist aber die Vernachlässigung des Einflusses der Materialsteifigkeiten und geometrisch nicht-linearer Effekte nach Theorie II. Ordnung, wie z.B. des Zugmembraneffekts und die Beschränkung auf 2D-Modelle (ebener Verzerrungszustand).
6.2 Verwendete Stoffmodelle

6.2.1 Mohr-Coulomb (MC-Model)

\[
\tau_f = c' + \sigma'_f \tan \varphi' \quad (6.13)
\]

\[
f = (\sigma'_1 - \sigma'_3) - (\sigma'_1 + \sigma'_3) \sin \varphi' - 2 c' \cos \varphi' \quad (6.14)
\]

Da das Mohr-Coulomb Modell in PLAXIS mit einer nicht-assoziierten Fließregel formuliert ist, wird zusätzlich zur Fließfläche f eine plastische Potentialfunktion g erforderlich, welche über den Dilatanzwinkel \(\psi \) definiert wird.

\[
g = (\sigma'_1 - \sigma'_3) - (\sigma'_1 + \sigma'_3) \sin \psi' \quad (6.15)
\]
6.2.2 Soft-Soil Modell (SS-Modell)

Für die Modellierung der Weichschicht wird das Soft-Soil Modell – kurz SS-Modell verwendet, welches im Vergleich zum Mohr-Coulomb Modell auch die Abbildung von plastischen Volumendehnungen infolge Kompression und somit eine nicht-lineare Spannungs-Dehnungs-Beziehung ermöglicht. Zudem wird zwischen Erst-, Ent- und Wiederbelastung unterschieden. Das Stoffmodell basiert auf dem Modified Cam-Clay Modell. Hierbei wird eine logarithmische Beziehung zwischen der hydrostatischen Spannung \(p \) und der Volumendehnung angenommen. Anstelle der Porenzahl wir die Volumendehnung als State-Parameter verwendet, wobei \(\lambda^* \) der modifizierte Kompressions- und \(\kappa^* \) der modifizierte Schwellbeiwert ist. Es wird darauf hingewiesen, dass \(\lambda^* \) und \(\kappa^* \) nicht mit den original Cam-Clay Parametern \(\lambda \) und \(\kappa \) übereinstimmen. Die Umrechnung zwischen den original und den modifizierten Beiwerten erfolgt über das spezifische Volumen \(\varepsilon^s = 1 + e \).

\[
\begin{align*}
\varepsilon_{\theta} - \varepsilon_{\theta}^0 &= -\lambda^* \ln \left(\frac{P}{P_0} \right) \quad \text{(Erstbelastung)} \\
\varepsilon_{\theta}^e - \varepsilon_{\theta}^e^0 &= -\kappa^* \ln \left(\frac{P}{P_0} \right) \quad \text{(Ent- bzw. Wiederbelastung)}
\end{align*}
\]

(6.16) (6.17)

Der elastische und der plastische Teil der volumetrischen Dehnungen berechnet sich im Fall des Soft-Soil Modells zu:

\[
\varepsilon_{\theta} = \varepsilon_{\theta}^e + \varepsilon_{\theta}^p = \kappa^* \ln \left(\frac{P}{P_0} \right) + (\lambda^* - \kappa^*) \ln \left(\frac{P_p}{P_{pw}} \right)
\]

(6.18)

Das elastische Verhalten wird mit Hilfe des Hooke'schen Gesetzes beschrieben. Als Eingangsparameter werden modifizierte Schwellbeiwert \(\kappa^* \) und die Querdehnzahl für Ent- beziehungsweise Wiederbelastung \(\phi_{ur} \) benötigt. Hieraus lässt sich der Kompressionsmodul bestimmen, der linear von der effektiven Spannung abhängt. Da elastisches Verhalten nur im Fall einer Ent- beziehungsweise Wiederbelastung auftritt, wird der Index \(ur \) eingeführt. Die elastische Region wird im Soft-Soil Modell im Bereich des Konus durch das Bruchkriterium nach Mohr-Coulomb und auf der anderen Seite durch die elliptische Fließfläche (Kappe) begrenzt. Die Größe der Ellipse wird durch eine Gerade mit der Steigung \(M^* \) und die isotrope Vorkonsolidationsspannung \(P_p \) bestimmt. Die Fließfläche der Kappe für triaxiale Spannungszustände lautet wie folgt:
Die Kombination aus Grenzbedingung nach MOHR-COULOMB und Kappenfließfläche des Soft-Soil Modells ist für dreidimensionale Spannungszustände und einen kohäsionslosen Boden in Abbildung 6.5 im Hauptspannungsraum dargestellt.

6.2.3 Hardening-Soil Modell (HS-Model)

\[
E_{50} = E_{50}^{\text{ref}} \left(\frac{c' \cos \varphi' + c'' \sin \varphi'}{c' \cos \varphi' + p^{\text{ref}} \sin \varphi'} \right)^m \tag{6.21}
\]

\[
E_{ur} = E_{ur}^{\text{ref}} \left(\frac{c' \cos \varphi' + c'' \sin \varphi'}{c' \cos \varphi' + p^{\text{ref}} \sin \varphi'} \right)^m \tag{6.22}
\]

Die deviatorische Fließfläche, welche aus als Konus bezeichnet wird, ist in Gleichung 6.23 dargestellt. Als Verfestigungsparameter wird die plastische Scherdehnung γ_p verwendet. Die volumetrische Fließfläche, bzw. die Kappenfließfläche ist in Gleichung 6.24 dargestellt, wobei hier die Vorkonsolidationsspannung p_0, welche den Schnittpunkt der Kappe mit der p-Achse angibt verwendet wird.

\[
f^s = \frac{1}{E_{50}} \frac{q}{1-q_a} - \frac{2q}{E_{ur}} - \gamma_p^p \quad \text{mit} \quad \gamma_p^p = -(\varepsilon_1^p - \varepsilon_2^p - \varepsilon_3^p) \tag{6.23}
\]

\[
f^c = \frac{q^2}{G^2} - p^2 - p_0^2 \tag{6.24}
\]

6.3 Back-Analysis der Modellversuche

Seite 99 des Schlussberichts zu IGF-Vorhaben 18833 N/1

erfolgt aus Gründen der numerischen Stabilität weggesteuert, sodass die Systemantwort (Summe der Knotenkräfte) für eine aufgebrachte Verformung berechnet wird.

Der in Abbildung 6.8 dargestellte Vergleich der gemessenen und numerisch berechneten Last-Setzungskurven für die Versuche V1 ohne Tragschicht, V3 mit unbewehrter Tragschicht, V9 mit einfach bewehrter Tragschicht und V12 mit zweifach bewehrter Tragschicht. Für die Numerische Simulation wurde im Rahmen der Back-Analysis nur die Erstbelastungskurve betrachtet, da hysteretisches mit den verwendeten Stoffmodellen im aktuellen Modell nicht abgebildet wird. Dies bedeutet, dass im Fall von aufgebrachten Ent- und Wiederbelastung wieder die Erstbelastungskurve erreicht wird, ohne Setzungen zu akkumulieren. Bei Versuch V1 entspricht die numerische Simulation somit bis zu einer Setzung von -0,12 m auch exakt dem aufgefahrenen Lastprogramm im Modellversuch. Die numerische berechnete Last-Setzungskurve zeigt eine gute Näherung an das gemessene Systemverhalten, wobei das numerische Modell ein leicht steiferes Verhalten zeigt, was zu einer stärker gestreckten Last-Setzungskurve im Bereich von -0,02 m bis -0,08 m

6.4 Back-Analysis FV-Rethwisch

6.4.1 Modellierung

Bei der Modellierung wurde aufgrund der asymmetrischen Geometrie infolge der Lastaufbringung ein vollständiges 3D-Modell mit Abbildung der gesamten Kranmatte gewählt.

Abbildung 6.9: FE-Modell der des Feldversuchs in Rethwisch (links) und Detailausschnitt der zweilagigen Geogitterbewehrung (rechts)

Abbildung 6.10: Feldversuchs in Rethwisch - Totale Verschiebungen $|u|$ der unteren Bewehrungslage für die Belastung von 280 t + 80 Min.

Abbildung 6.11: Feldversuchs in Rethwisch - Berechnete und gemessene Setzungen für die Lastfälle 40 bis 280 t + 80 Min.
6.5 Back-analysis Feldversuch Raupenfahrwerke – Liebherr-Krane

Abbildung 6.11: Feldversuch Raupenfahrwerke – Liebherr-Krane - Numerisches Modell des Raupenfahrwerks und des Unterwagens mit abgebildetem Bodenhalbraum mit Detailschnitt und Netzgeometrie der Laufrollen und Kettenplatten

Ein Vergleich zwischen den Messergebnissen, den analytisch ermittelten Werten und der numerischen Berechnung in Abbildung 6.12 zeigt bereichsweise eine gute Übereinstimmung der Messwerte. Das Integral der numerisch berechneten Kurve entspricht bei beiden Lastfällen in etwa dem Integral der analytischen ermittelten Kurve. Betrachtet man das Integral der gemessenen Kurve fällt auf, dass dieses wesentlich größer ist als das der beiden anderen Kurven. Dies ist mit der Muldenlage von Erddruckgeber D2 bei X = 2,4 m zu begründen. Die Muldenlage bewirkt eine Umlagerung der Last auf die benachbarten Erddruckgeber D1 und D3, welche dadurch wesentlich höhere Sohldruckspannungen erhalten. Das gesamte Integral der Sohldruckpressungen des Raupenfahrwerks entspricht dem Fahrzeuggewicht inklusive Hakenlast und Ballastierung. Bei der numerischen Berechnung fällt auf, dass die Maximalwerte der Sohldruckpressungen im Gegensatz zur analytischen Berechnungsmethode bei beiden Lastfällen nicht am Rand der Aufstandsfläche, sondern etwa 0,75 m davon entfernt liegen. Bei den numerischen Ergebnissen von Lastfall LF 1 stellen sich die maximalen Sohldruckspannungen direkt neben den Aussparungen für die Querträger und des hier auftretenden Einstanzens in den Untergrund ein. Für Lastfall LF 4a erhält man die Maximalwerte analog zu den gemessenen Werten im vorderen Fahrwerksdrittel, wobei sich zwischen der Vorderkante der Aufstandsfläche bei X = 1,0 m und der ersten Aussparung bei
X = 4,75 m ein näherungsweise konstanter Sohldruckspannungsverlauf einstellt mit lokalen Maxima an den Kanten, was in etwa der Lösung für starre Fundamente entspricht. Zudem bestätigt die numerische Berechnung die gemessenen lokalen Minima der Sohldruckspannung bei X = 4,75 m und X = 8,0 m, welche aus den für die Querträger ausgesparten Laufrollen an dieser Stelle resultieren. Die in Abbildung 6.13 dargestellten Sohlpessungen an der Geländeoberkante zeigen diesen Effekt besonders deutlich durch die rot dargestellten Bereiche mit geringen oder nahezu keinen Sohldruckpressungen. Vor allem bei Lastfall LF 4a zeigt das numerische Berechnungsmodell eine Verdrehung des Raupenträgers zur Mitte des Unterwagens hin, was aus der Querschiebung der beiden Querträger unterhalb des Drehkranzes resultiert, welche diese in Form von

Abbildung 6.12: Feldversuch Raupenzüge – Liebherr-Krane: Vergleich zwischen gemessenen, sowie analytisch und numerisch berechneten Sohldruckspannungsverteilungen für die Lastfälle LF 1

Abbildung 6.13: Feldversuch Raupenzüge – Liebherr-Krane: Sohlpessungen in der Aufstandsfläche unter dem Raupenzug (links) und Vertikalspannungsverteilung im Untergrund in Fahrwerksmitte (rechts) für die Lastfälle LF 1 und LF 4a
Torsion an den Raupenträger weitergeben. Dadurch wird ein Drehmoment in Querrichtung auf die Kettenplatten übertragen, das erhöhte Sohldruckpressungen auf der Innenseite des Raupenfahrwerks bewirkt, was in Abbildung 6.13 deutlich zu erkennen ist.

Das verwendete MOHR-COULOMB Materialmodell zeigt vor allem bei Lastfall LF 4a aufgrund der Spannungskonzentration eine lokale Plastifizierung des Baugrunds und damit eine Spannungsumlagerung. Die Position der Maximalwerte im vorderen Fahrwerksdrittel kann durch die Numerik bestätigt werden, wobei die Messwerte aufgrund der Muldenlage alternierend die berechneten Werte über- und unterschreiten.

6.6 Parameterstudie

Zur besseren Konvergenz des Modells wurde die maximale Tragfähigkeit bzw. der Versagenszustand verschiebungsge steuert berechnet. Hierbei wird anstelle einer Kraft oder Flächenlast eine vorgegebene Verschiebung auf die Lastplatte aufgebracht und die Systemantwort, also die Summe aller Knotenkräfte

Bei der Parameterstudie wurden folgende geometrischen und geotechnischen Parameter variiert:

- Tragschichthöhe \(d = 0,4 - 0,8\) m
- undrainierte Scherfestigkeit der Weichschicht (20 bis 40 kN/m²)
- Dehnsteifigkeit der Geogitterbewehrung (800 - 1250 kN/m)
- Zugfestigkeit der Geogitterbewehrung (40 - 80 kN/m)
- Anzahl der Bewehrungslagen
- Steifigkeitsverhältnis der Bewehrungslagen

Zum Vergleich der Tragfähigkeiten und des Last-Setzungsverhaltens wurde zusätzlich ein einschichtiges System ohne Tragschicht berechnet.
Tabelle 6.1: Modellmatrix der 2D-Parameterstudie

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Tragschichthöhe [m]</th>
<th>undrainierte Scherfestigkeit c_u [kN/m²]</th>
<th>Geokunststoff</th>
<th>Lage des GG ab OK</th>
<th>Summe der Dehnsteifigkeit $J_{0-2%}$ [kN/m]</th>
<th>Kinetische Elementmethode (KEM/DLO)</th>
<th>Finite-Element-Methode (FEM)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>obere Lage (oL)</td>
<td>mittlere Lage (mL)</td>
<td>untere Lage (uL)</td>
<td>Bruchlast [kN/m²]</td>
<td>FOS (bezogen auf 277,5 kN/m²) [-]</td>
<td>Bruchlast [kN/m²]</td>
</tr>
<tr>
<td>1</td>
<td>keine</td>
<td>30</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>163,73</td>
<td>0,59</td>
</tr>
<tr>
<td>2</td>
<td>0,40</td>
<td>30</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>277,55</td>
<td>0,82</td>
</tr>
<tr>
<td>3</td>
<td>0,60</td>
<td>30</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>269,18</td>
<td>0,97</td>
</tr>
<tr>
<td>4</td>
<td>0,80</td>
<td>30</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>327,45</td>
<td>1,18</td>
</tr>
<tr>
<td>5</td>
<td>0,60</td>
<td>20</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>197,03</td>
<td>0,71</td>
</tr>
<tr>
<td>6</td>
<td>0,60</td>
<td>40</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>338,55</td>
<td>1,22</td>
</tr>
<tr>
<td>7</td>
<td>0,60</td>
<td>30</td>
<td>-</td>
<td>-</td>
<td>40</td>
<td>0</td>
<td>800</td>
</tr>
<tr>
<td>8</td>
<td>0,60</td>
<td>30</td>
<td>-</td>
<td>-</td>
<td>60</td>
<td>0</td>
<td>1100</td>
</tr>
<tr>
<td>9</td>
<td>0,60</td>
<td>30</td>
<td>-</td>
<td>-</td>
<td>80</td>
<td>0</td>
<td>1250</td>
</tr>
<tr>
<td>10</td>
<td>0,60</td>
<td>20</td>
<td>-</td>
<td>-</td>
<td>40</td>
<td>0</td>
<td>800</td>
</tr>
<tr>
<td>11</td>
<td>0,60</td>
<td>40</td>
<td>-</td>
<td>-</td>
<td>40</td>
<td>0</td>
<td>800</td>
</tr>
<tr>
<td>12</td>
<td>0,60</td>
<td>30</td>
<td>40</td>
<td>-</td>
<td>40</td>
<td>0/20</td>
<td>1600</td>
</tr>
<tr>
<td>13</td>
<td>0,60</td>
<td>30</td>
<td>40</td>
<td>-</td>
<td>80</td>
<td>0/20</td>
<td>2050</td>
</tr>
<tr>
<td>14</td>
<td>0,60</td>
<td>30</td>
<td>40</td>
<td>40</td>
<td>40</td>
<td>0/20/40</td>
<td>2400</td>
</tr>
<tr>
<td>15</td>
<td>0,60</td>
<td>30</td>
<td>40</td>
<td>60</td>
<td>80</td>
<td>0/20/40</td>
<td>3150</td>
</tr>
</tbody>
</table>
6.6.1 Ergebnisse der 2D Parameterstudie

Tabelle 6.2: Ergebnisse der 2D-Parameterstudie mit Darstellung der Bruchkörper

<table>
<thead>
<tr>
<th>Kinematische Element Methode (KEM/DLO)</th>
<th>Finite Element Methode (FEM)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Nr. 1 – ohne Tragschicht ($c_u = 30 \text{kN/m}^2$)</td>
<td></td>
</tr>
<tr>
<td>FOS = 0,59</td>
<td>FOS = 0,55</td>
</tr>
<tr>
<td>Klassisches Grundbruchversagen nach TERZAGI</td>
<td></td>
</tr>
<tr>
<td>Nr. 2 – unbewehrte Tragschicht ($c_u = 30 \text{kN/m}^2$, $d = 40 \text{cm}$)</td>
<td></td>
</tr>
<tr>
<td>FOS = 0,82</td>
<td>FOS = 0,66</td>
</tr>
<tr>
<td>Lastausbreitung in der Tragschicht mit flacherer Neigung des passiven Bruchkörpers in der Tragschicht</td>
<td>Tieferer und größerer Grundbruchmechanismus in der Weichschicht</td>
</tr>
<tr>
<td>Nr. 3 – unbewehrte Tragschicht ($c_u = 30 \text{kN/m}^2$, $d = 60 \text{cm}$)</td>
<td></td>
</tr>
<tr>
<td>FOS = 0,97</td>
<td>FOS = 0,78</td>
</tr>
<tr>
<td>Grundbruchmechanismus sowohl in Tragschicht als auch Weichschicht</td>
<td></td>
</tr>
<tr>
<td>Nr. 4 – unbewehrte Tragschicht (c_u = 30 \text{ kN/m}^2, d = 80 \text{ cm})</td>
<td>FOS = 1,18</td>
</tr>
<tr>
<td>---</td>
<td>---------------</td>
</tr>
<tr>
<td>Grundbruchmechanismus bildet sich zum großen Teil in der Tragschicht aus</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nr. 5 – unbewehrte Tragschicht (c_u = 20 \text{ kN/m}^2, d = 60 \text{ cm})</th>
<th>FOS = 0,71</th>
<th>FOS = 0,64</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grundbruchversagen bildet sich deutlich in der Weichschicht aus.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Durchstanzen der Tragschicht mit keilförmigem Bruchkörper</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nr. 6 – unbewehrte Tragschicht (c_u = 40 \text{ kN/m}^2, d = 60 \text{ cm})</th>
<th>FOS = 1,22</th>
<th>FOS = 0,92</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grundbruchmechanismus bildet sich hauptsächlich im Übergangsbereich zwischen Trag- und Weichschicht aus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Nr. 7 – einfach bewehrte Tragschicht ($c_u = 30 \text{kN/m}^2$, $d = 60 \text{cm}$, $T_{d,uL} = 40 \text{kN/m}$)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOS = 1,19</td>
<td></td>
<td></td>
</tr>
<tr>
<td>FOS = 1,14</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Durchstanzen der Tragschicht mit trapezförmiger Lastausbreitung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Grundbruchmechanismus bildet sich deutlich und wesentlich tiefer als bei den unbewehrten Systemen aus</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nr. 8 – einfach bewehrte Tragschicht ($c_u = 30 \text{kN/m}^2$, $d = 60 \text{cm}$, $T_{d,uL} = 60 \text{kN/m}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>FOS = 1,26</td>
</tr>
<tr>
<td>FOS = 1,18</td>
</tr>
<tr>
<td>Deutliches Durchstanzen der Tragschicht mit gesteigertem Lastausbreitungswinkel im Vergleich zu Nr. 7</td>
</tr>
<tr>
<td>Der Bruchmechanismus vergrößert sich in der Breite und vor allem auch in der Tiefe</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Nr. 9 – einfach bewehrte Tragschicht ($c_u = 30 \text{kN/m}^2$, $d = 60 \text{cm}$, $T_{d,uL} = 80 \text{kN/m}$)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
<tr>
<td>FOS = 1,31</td>
</tr>
<tr>
<td>FOS = 1,17</td>
</tr>
<tr>
<td>Ähnliches Verhalten wie in Nr. 8</td>
</tr>
</tbody>
</table>
Nr. 10 – einfach bewehrte Tragschicht ($c_u = 20 \text{ kN/m}^2$, $d = 60 \text{ cm}$, $T_{d,uL} = 40 \text{ kN/m}$)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FOS = 0,90

Geringere Lastausbreitung als in Nr. 7 mit $c_u = 30 \text{ kN/m}^2$

Nr. 11 – einfach bewehrte Tragschicht ($c_u = 40 \text{ kN/m}^2$, $d = 60 \text{ cm}$, $T_{d,uL} = 40 \text{ kN/m}$)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FOS = 1,45

Der Grundbruchmechanismus bildet sich mit einer etwas geringeren Tiefe als bei Nr. 7 aus.

Nr. 12 – zweifach bewehrte Tragschicht ($c_u = 40 \text{ kN/m}^2$, $d = 60 \text{ cm}$, $T_{d,uL} = 40 \text{ kN/m}$, $T_{d,oL} = 40 \text{ kN/m}$)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
</tr>
</tbody>
</table>

FOS = 1,40

Weitere Vergrößerung des Grundbruchmechanismus in der Breite und Tiefe im Vergleich zu einfach bewehrten Systemen.
Nr. 13 – zweifach bewehrte Tragschicht ($c_u = 40$ kN/m², $d = 60$ cm, $T_{d,uL} = 40$ kN/m, $T_{d,oL} = 80$ kN/m)

<table>
<thead>
<tr>
<th>FOS</th>
<th>1,46</th>
</tr>
</thead>
</table>

Grundbruchfigur mit nahezu senkrechter Gleitfuge auf Höhe der unteren Bewehrungslage.

Nr. 14 – dreifach bewehrte Tragschicht ($c_u = 40$ kN/m², $d = 60$ cm, $T_{d,uL} = 40$ kN/m, $T_{d,mL} = 40$ kN/m, $T_{d,oL} = 40$ kN/m)

<table>
<thead>
<tr>
<th>FOS</th>
<th>1,62</th>
</tr>
</thead>
</table>

Weitere Tiefenverlagerung des Grundbruchmechanismus und deutlicher Steigerung der Lastausbreitung im FEM-Modell.

Nr. 15 – dreifach bewehrte Tragschicht ($c_u = 40$ kN/m², $d = 60$ cm, $T_{d,uL} = 40$ kN/m, $T_{d,mL} = 60$ kN/m, $T_{d,oL} = 80$ kN/m)

<table>
<thead>
<tr>
<th>FOS</th>
<th>1,71</th>
</tr>
</thead>
</table>

Gesteigerte Lastausbreitung

Gleitfuge in der Tragschicht auf Seite des passiven Bruchkörpers verläuft nahezu senkrecht.
Die Ergebnisse der Parameterstudie zeigen für beide Berechnungsverfahren eine signifikante Zunahme der Tragfähigkeit mit zunehmender Tragschichtdicke, mit zunehmender Scherfestigkeit der Weichschicht und dem Grad der Bewehrung (Anzahl der Geogitterlagen und zunehmende Zugfestigkeit), wobei die größten Steigerungen bei einer Erhöhung der undrainierten Scherfestigkeit der Weichschicht zu beobachten sind, was sich mit den Ergebnissen aus den Modellversuchen deckt.

Tabelle 6.3: genereller Systemverhalten von unterschiedlichen Tragschichtsystemen

<table>
<thead>
<tr>
<th>keine Tragschicht</th>
<th>unbewehrte Tragschichtsysteme</th>
<th>einfach bewehrte Tragschichtsysteme</th>
<th>mehrfach bewehrte Tragschichtsysteme</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bruchlast:</td>
<td>Bruchlast:</td>
<td>Bruchlast:</td>
<td>Bruchlast:</td>
</tr>
<tr>
<td>KEM: 163,73</td>
<td>KEM: 197,03</td>
<td>KEM: 330,23</td>
<td>KEM: 388,50</td>
</tr>
<tr>
<td>FEM: 153,35</td>
<td>FEM: 177,35</td>
<td>FEM: 315,15</td>
<td>FEM: 364,60</td>
</tr>
<tr>
<td></td>
<td>(zweifache Bewehrung)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Größe bzw. Tiefe des Bruchkörpers</td>
<td>Tragfähigkeit und Systemsteifigkeit</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
7. Konzeption Empfehlung für die Dimensionierung, Bau, Überprüfung und Unterhalt von Tragschichten (EBAP)

- „Working platforms for tracked plant: good practice guide to the design, installation, maintenance and repair of ground-supported working platforms“ – (Hrsg. BRE - Building Research Establishment, S. 47)
- „CICA Guidance Note – Crane Stability and Ground Pressure“ (Hrsg. The Crane Industry Council of Australia; 18 S.)

Abbildung 7.1: Vorgehensschema bei der Dimensionierung von Tragschichtsystemen

Auf Basis der bestehenden Inhalte wurde eine inhaltliche Struktur für die geplante Anwendungs-empfehlung „Empfehlung zur Bemessung und Ausführung von Arbeitsplattformen für mobile Bau- maschinen und Kranstellflächen“ kurz „EBAP“ konzipiert. Für den Entwurf wurden im Rahmen des Forschungsvorhabens folgende Schwerpunktthemen behandelt:
Einsatzbereiche von Arbeitsplattformen und Anforderungen,
Tragschichten für Arbeitsplattformen (Standardbauweisen),
Einwirkungen und Lastansätze aus mobilen Baumaschinen,
Bemessung von Tragschichtsystemen:
- Grenzzustand der Tragfähigkeit (ULS)
- Grenzzustand der Gebrauchstauglichkeit (SLS)
8. Zusammenfassung und Ausblick

9. Wirtschaftliche Bedeutung für kleine und mittlere Unternehmen

10. Transfer der Ergebnisse in die Praxis

Es wurden folgende Maßnahmen zum Transfer der Ergebnisse in die Praxis im Rahmen des Forschungsvorhabens umgesetzt:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Maßnahme</th>
<th>Ziel</th>
<th>Rahmen</th>
<th>Datum</th>
<th>Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Auftaktsitzung des projektbegleitenden Ausschusses</td>
<td>Information der beteiligten Firmen und Teilnehmer über das Projekt</td>
<td>Firmen, sonstige Mitglieder und Projektpartner</td>
<td>11.12.15</td>
<td>Abgeschlossen</td>
</tr>
<tr>
<td>2</td>
<td>2. Sitzung des projektbegleitenden Ausschusses</td>
<td>Information der beteiligten Firmen und Teilnehmer über den Projektstand</td>
<td>Firmen, sonstige Mitglieder und Projektpartner</td>
<td>14.06.16</td>
<td>Abgeschlossen</td>
</tr>
<tr>
<td>3</td>
<td>3. Sitzung des projektbegleitenden Ausschusses</td>
<td>Information der beteiligten Firmen und sonstigen Teilnehmer über den Projektstand</td>
<td>Firmen, sonstige Mitglieder und Projektpartner</td>
<td>24.11.16</td>
<td>Abgeschlossen</td>
</tr>
<tr>
<td>4</td>
<td>1. Zwischenbericht 2017 über den Projektstand</td>
<td>Statusbericht zum Projekt</td>
<td>Der Zwischenbericht wurde den teilnehmenden Firmen zur Verfügung gestellt</td>
<td>31.01.17</td>
<td>Abgeschlossen</td>
</tr>
<tr>
<td>5</td>
<td>Beitrag beim 10. Geokunststoff-Kolloquium in Bad Gögging</td>
<td>Vorstellung des Projekts und Präsentation der bisherigen Ergebnisse</td>
<td>Vorstellung des Projektes einem Fachpublikum aus Wirtschaft und Wissenschaft (Fachrichtung Geokunststoffe)</td>
<td>17.02.17</td>
<td>Abgeschlossen</td>
</tr>
<tr>
<td>7</td>
<td>Tagungsbeitrag bei den DGGT Fachsektionstagen in Würzburg</td>
<td>Präsentation und Veröffentlichung der Ergebnisse des Feldversuchs bei Rethwisch</td>
<td>Vortrag auf großer Fachtagung mit breitem Fachpublikum</td>
<td>07.09.17</td>
<td>Abgeschlossen</td>
</tr>
<tr>
<td>8</td>
<td>5. Sitzung des projektbegleitenden Ausschusses</td>
<td>Information der beteiligten Firmen und sonstigen Teilnehmer über den Projektstand</td>
<td>Firmen, sonstige Mitglieder und Projektpartner</td>
<td>23.11.17</td>
<td>Abgeschlossen</td>
</tr>
<tr>
<td>9</td>
<td>Präsentation der Ergebnisse beim 11. Kolloquium „Bauen in Boden und Feld“ in Ostfildern-Nellingen</td>
<td>Ergebnistransfer in die Wissenschaft</td>
<td>Vortrag auf großer Fachtagung mit breitem Fachpublikum. (Behörden, Baufirmen, Ingenieurbüros), Veröffentlichung</td>
<td>16.01.18</td>
<td>Abgeschlossen</td>
</tr>
<tr>
<td>10</td>
<td>2. Zwischenbericht 2018 über den Projektstand</td>
<td>Information der beteiligten Firmen und sonstigen Teilnehmern über den Projektstand</td>
<td>Der Zwischenbericht wird den teilnehmenden Firmen zur Verfügung gestellt</td>
<td>31.01.18</td>
<td>Abgeschlossen</td>
</tr>
<tr>
<td>Nr.</td>
<td>Maßnahme</td>
<td>Ziel</td>
<td>Rahmen</td>
<td>Datum</td>
<td>Status</td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td>---</td>
<td>--</td>
<td>--------</td>
<td>--------------</td>
</tr>
<tr>
<td>11</td>
<td>Präsentation der Ergebnisse beim HUESKER GeoForum 2018 in Neuss</td>
<td>Ergebnistransfer in die Wissenschaft</td>
<td>Vorstellung des Projektes eines Fachpublikums aus Wirtschaft und Wissenschaft (Fachrichtung Geokunststoffe)</td>
<td>02/2018</td>
<td>Abgeschlossen</td>
</tr>
<tr>
<td>12</td>
<td>Abschlusssitzung des projektbegleitenden Ausschusses</td>
<td>Information der beteiligten Firmen und sonstigen Teilnehmer über die Projektergebnisse</td>
<td>Firmen, sonstige Mitglieder und Projektpartner</td>
<td>04/2018</td>
<td>Abgeschlossen</td>
</tr>
<tr>
<td>13</td>
<td>Kurzfassung Abschlussbericht</td>
<td>Ergebnistransfer in die Wissenschaft</td>
<td>Eine Kurzfassung wird in den Schriften der FVB und der Technischen Informationsbibliothek (TIB) der TU Hannover eingestellt</td>
<td>06/2018</td>
<td>Abgeschlossen</td>
</tr>
<tr>
<td>14</td>
<td>Abschlussbericht zum Projekt</td>
<td>Abschlussbericht zum Projekt</td>
<td>Der Abschlussbericht wird den teilnehmenden Firmen zur Verfügung gestellt</td>
<td>06/2018</td>
<td>Abgeschlossen</td>
</tr>
<tr>
<td>16</td>
<td>Veröffentlichung in Zeitschrift „BauPortal“</td>
<td>Ergebnistransfer in die Bauwirtschaft</td>
<td>Fachbeitrag in der Organzeitschrift der Berufsgenossenschaft</td>
<td>07/2018</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>Tagungsbeitrag bei der International Conference on physical Modelling in Geotechnics in London</td>
<td>Ergebnistransfer der Modellversuche in die internationale Wissenschaft</td>
<td>Tagungsbeitrag auf großer internationaler Fachtagung mit wissenschaftlichem Fachpublikum (Fachbereich Modellversuche)</td>
<td>07/2018</td>
<td>Abgeschlossen</td>
</tr>
<tr>
<td>18</td>
<td>Veröffentlichung in Zeitschrift „BauTechnik“</td>
<td>Ergebnistransfer in Planungsbüros, Verwaltung und Bauwirtschaft</td>
<td>Fachbeitrag in führender Fachzeitschrift für Bautechnik / Bauingenieurwesen</td>
<td>08/2018</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>Tagungsbeitrag bei der 35. Baugrundtagung in Stuttgart</td>
<td>Ergebnistransfer in Wirtschaft und Wissenschaft</td>
<td>Vortrag auf großer Fachtagung mit breitem Fachpublikum, (Behörden, Baufirmen, Ingenieurbüros), Veröffentlichung</td>
<td>09/2018</td>
<td>Abgeschlossen</td>
</tr>
<tr>
<td>Nr.</td>
<td>Maßnahme</td>
<td>Ziel</td>
<td>Rahmen</td>
<td>Datum</td>
<td>Status</td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td>--</td>
<td>--</td>
<td>--------</td>
<td>-----------</td>
</tr>
<tr>
<td>20</td>
<td>Tagungsbeiträge bei der International Conference on Geosynthetics in Seoul</td>
<td>Ergebnistransfer in die internationale Wissenschaft</td>
<td>Tagungsbeitrag auf großer internationaler Fachtagung mit wissenschaftlichem Fachpublikum (Fachbereich Geokunststoffe)</td>
<td>09/2018</td>
<td>Abgeschlossen</td>
</tr>
</tbody>
</table>
11. Literaturverzeichnis

DIN 15019-2:1979-06 (1979): „Krane; Standsicherheit für gleislose Fahrzeugkrane, Prüfbelastung und Berechnung“.

A. Bemessungsansätze - Übersicht

|--|--|---|
| Reibungswinkel der einzelnen Schichten mit einer Differenz von weniger als 5° vom arithmetischen Mittelwert der Reibungswinkel. Keine Berücksichtigung der Bewehrung Wichte, Reibungswinkel, Kohäsion ergibt sich jeweils als gewichteter Mittelwert Sehr konservative Bemessung Einzig in der Norm zugelassenes Verfahren | Es ist Durchstanzen des Fundaments zu Prüfen sofern:
- Weicher, wassergesättigter, bindiger Boden als Untergrund
- Festere Tragschicht mit Reibungswinkel >25° und einer Höhe<2*Fundamentbreite
Kombination einer Silo-Theorie mit einer Grundbruchberechnung, folglich kein klassischer Grundbruchnachweis. | Gleitfläche schneidet das Gründungspolster (lageweise eingebauter Füllboden plus min. 2 Geokunststofflagen) sowie den daran anstehenden Baugrund mit geringeren Festigkeitswerten.
Berechnung des Grundbruchwiderstands wird analog zur DIN 4017:2006-03 berechnet. Es werden jedoch Korrekturfaktoren in die Tragfähigkeitsbeiwerte (Berücksichtigung der Inhomogenität des Bodens) eingeführt.
Unflexibles Bemessungsverfahren, erlaubt nur einen sehr kleinen Bereich auf dem die Baumaschine sich bewegen darf. |
<table>
<thead>
<tr>
<th>EBEGO (2010) - Kapitel 6: Verkehrswege</th>
<th>Projektionsflächenverfahren</th>
<th>Methode nach Yamaguchi (1963)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tragschichtdickenermittlung:</td>
<td></td>
<td>$Q_s = \frac{1}{2} \cdot \gamma_r \cdot H_f^m \cdot K_p \cdot \tan \varphi_T$</td>
</tr>
<tr>
<td>2) Ermittlung der zulässigen Abminderung der Schichtdicke infolge Geokunststoffbewehrung (stark von Geokunststoff abhängig)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3) Ermittlung der daraus erforderlichen Bewehrten Schichtdicke</td>
<td>Annahme des Winkels α:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Therzaghi:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\tan(\alpha) = \frac{1}{2}$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>- Jacobsen:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$\tan(\alpha) = \frac{1}{2} \cdot (0,1125 + 0,0344 \cdot \left(\frac{q_T}{q_u} \right))$</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Semiempirische Berechnungsmethode
Grundlage sind Modell- und Feldversuche mit Kreis- und Streifenfundamenten
Kann als umgekehrtes Auftriebsproblem betrachtet werden.
Reibungskraft die in der Bruchfuge wirkt, kann durch die passive Erddruckkraft E_p ersetzt werden.
Die Grenztragfähigkeit wird nach Streifen und Kreisfundament unterschieden.
Für hohe Reibungswinkel = konservatives Verfahren
Berechnungsansatz nur gültig für Höhe der Tragschicht / Fundamentbreite ≤ 4 (Streifenfundamente), ≤ 2 Kreisfundamente.

Okamura (1998)
Kombination der Ansätze „Projektionsflächenverfahren“ und „Methode nach Hanna und Meyerhoff“.
Last breitet sich unter bestimmten Winkel α in der oberen Tragschicht aus. Trotzdem wird eine Kraft angesetzt, die der Kraft des passiven Erdrucks entspricht
Die Werte $N_{c0} = 5,1$ und $v_c = 1,0$ (Streifen und =1,2 Kreisfundament) sind konstante Werte.
Je größer das Verhältnis Tragschichthöhe zu Fundamentbreite desto größer α
Unter Streifenfundament entstehen starke horizontale Verschiebungen, während unter Kreisfundament kaum.
Verfahren neigt tendenziell dazu die Tragfähigkeit des Bodens zu überschätzen.
B. Modellversuche

Legende:

B.1 Modellversuch V1M

Last-Setzungs-Diagramm:
B.2 Modellversuch V2M

Last-Setzungs-Diagramme:

Setzung – 1. zyklische Lastphase:
B.3 Modellversuch V3M

Last-Setzungs-Diagramme:

Setzung – 1. zyklische Lastphase:
B.4 Modellversuch V4M

Last-Setzungs-Diagramme:

Setzung – 1. zyklische Lastphase:
B.5 Modellversuch V5M

Last-Setzungs-Diagramme:

Setzung – 1. zyklische Lastphase:
B.6 Modellversuch V6M

Last-Setzungs-Diagramme:

Setzung – 1. zyklische Lastphase:
B.7 Modellversuch V7M

Last-Setzungs-Diagramme:

Setzung – 1. zyklische Lastphase:
Last-Dehnungs Diagramm:

Dehnung - 1. Zyklische Lastphase:
B.8 Modellversuch V8M

Last-Setzungs-Diagramme:

Setzung – zyklische Lastphasen:
Last-Dehnungs-Diagramm:

Dehnung obere Geogitterlage (uL) – zyklische Lastphasen:
B.9 Modellversuch V9M

Last-Setzungs-Diagramme:

Setzung - zyklische Lastphasen:
Last-Dehnungs-Diagramm:

Dehnung obere Geogitterlage (uL) – zyklische Lastphasen:
B.10 Modellversuch V10M

Last-Setzungs-Diagramme:

![Last-Setzungskurve OK Tragschicht](image1)

Setzung - zyklische Lastphasen:

![Setzung zyklische Akkumulation - Phase IV](image2)
B.11 Modellversuch V11M

Last-Setzungs-Diagramme:

Setzung - zyklische Lastphasen:
Last-Dehnungs-Diagramme:

Dehnung obere Geogitterlage (oL) – zyklische Lastphasen:

Dehnung untere Geogitterlage (uL) – zyklische Lastphasen:
B.12 Modellversuch V12M

Last-Setzungs-Diagramme:

Setzung - zyklische Lastphasen:
Last-Dehnungs-Diagramme:

Dehnung obere Geogitterlage (oL) – zyklische Lastphasen:

Dehnung untere Geogitterlage (uL) – zyklische Lastphasen:
B.13 Modellversuch V13M

Last-Setzungs-Diagramme:

Setzung - zyklische Lastphasen:
Last-Dehnungs-Diagramme:

Dehnung obere Geogitterlage (uL) – zyklische Lastphasen:

Dehnung untere Geogitterlage (uL) – zyklische Lastphasen:
B.14 Modellversuch V14M

Last-Setzungs-Diagramme:

Setzung - zyklische Lastphasen:
Last-Dehnungs-Diagramme:

Dehnung obere Geogitterlage (oL) – zyklische Lastphasen:

Dehnung untere Geogitterlage (uL) – zyklische Lastphasen:
C. Feldversuch - Rethwisch

Vertikalspannungen Erddruckgeber D1 bis D7:
Dehnungen in der Geogitterbewehrung:

Legende:
- oben
- unten
D. Entwurf Inhaltsverzeichnis - EBAP

Vorwort

I. Allgemeiner Teil
 a. Problemstellung
 b. Definitionen
 c. Gültigkeitsbereich der Empfehlung
 d. Aktuelle Rechtslage und bestehende technische Regelwerke
 e. Zuständigkeiten und Verantwortungsbereiche
 f. Arbeitsschutzgesetze und Unfallverhütungsvorschriften

II. Einsatzbereiche von Arbeitsplattformen und Anforderungen
 a. Einsatzbereiche
 i. Arbeitsplattformen
 ii. Kranstellflächen
 iii. Montageflächen
 iv. Bastraßen
 b. Anforderungen an Arbeitsplattformen
 i. Tragfähigkeit (ULS)
 ii. Gebrauchstauglichkeit (SLS)
 iii. Dauerhaftigkeit
 c. Ökonomische Faktoren

III. Tragschichten für Arbeitsplattformen
 a. Aufbau von Tragschichten
 i. Tragschichtmaterial
 ii. Geokunststoffe
 1. Geogitter
 2. Geozellen
 b. Herstellungsverfahren
 c. Tragmechanismen
 i. Tragschicht
 1. Lastausbreitung
 ii. Geokunststoffe
 1. Bewehrungsfunktion
 2. Membrantragwirkung
 3. Trennwirkung

IV. Gerätespezifikationen
 a. Klassifikation der Baugeräte
 i. Bohrgeräte
 ii. Spezialtiefbaugeräte
 iii. Bagger
 iv. Mobilkräne
 v. Rad- und Montagekräne
 vi. Raupenkräne
 vii. Turmdrehkräne
 viii. Hebebühnen und Hubsteiger
ix. Lastkraftwagen und Transportfahrzeuge
 b. Auswahl geeigneter Geräte

V. Einwirkungen und Lastansätze
 a. Einwirkungen aus Baugeräten
 i. Eigenlasten
 ii. Lasten aus Konfiguration der Geräte
 iii. Windlasten
 iv. Nutzlasten
 b. Art der Belastung
 i. Statische Belastung
 ii. Zyklische Belastung
 iii. Dynamische Belastungen
 c. Besondere Lastfälle
 d. Berechnung der Sohldruckspannungen
 i. Stützelfüße
 ii. Raupenfahrwerke
 e. Berechnungstools der Gerätehersteller
 f. Einfluss der Interaktion zwischen Boden und Baumaschine
 g. Berechnungen nach Theorie II. Ordnung

VI. Verwendung von Kranmatten und Lastverteilungsplatten
 a. Lastverteilung durch Kranmatten

 b. Aufbau und Verlegung von Kranmatten

VII. Untersuchung des Baufeldes
 a. Baugrund
 i. In-Situ Untersuchung
 ii. Erforderliche Kennwerte
 iii. Grundwasserstand
 b. Leitungen und Hohlräume im Untergrund
 c. Platzbedarf für Rampen und Wendemöglichkeiten
 a. Vorbereitung des Baufeldes

VIII. Bemessung
 a. Grundlagen der Bemessung
 b. Teilsicherheitsbeiwerte
 c. Einwirkungen
 d. Bemessung im Grenzzustand der Tragfähigkeit (ULS)
 a. Nachweis der Standsicherheit (ULS) des Planums ohne Tragschichten
 b. Nachweis für unbewehrte Tragschichten
 c. Nachweis für bewehrte Tragschichten
 e. Bemessung im Grenzzustand der Gebrauchstauglichkeit (SLS)
 a. Berechnung der Verformungen
 ▪ In-Situ Untersuchung
 ▪ Erforderliche Kennwerte
 f. Bemessung im Grenzzustand der Gebrauchstauglichkeit (SLS)

IX. Betrieb und Unterhaltung
 a. Kontrolle der Arbeitsplattform
 b. Unterhalt von Arbeitsplattformen
 c. Schäden und Reparatur
 d. Schutzmaßnahmen
X. Anhänge

a. Geräteklassifikation und Einwirkungen
b. Berechnungsbeispiel Einwirkungen
c. Tabelle Bodencharakteristik
d. Tabelle Vorbemessung
e. Bemessungstabellen und Nomogramme
f. Bemessungsbeispiele
g. Schadenskatalog

Die im Rahmen des Forschungsvorhabens fokussierten Themenpunkte sind rot markiert.