11 PASSIVE COOLING
1. FUNDAMENTALS
PASSIVE COOLING

1. Fundamentals

- Heat flows from high temperature areas to low temperature areas.

- Reverse flow can only be induced by feeding additional energy into the thermal system.

- Passive cooling seeks to use natural heat flows whenever possible.

- Strategies:
  - Reduce heat gains (internal and external).
  - Open a high-to-low temperature heat flow path to divert the excess heat (heat removal into a suitable heat sink).

Figure 2.7. Cooling by avoiding heat gain.

Figure 2.8. Cooling with the ambient as a heat sink.

Figure 2.9. Cooling with a mechanical heat sink.
PASSIVE COOLING

• available natural heat sinks:
  
  - ambient air (ventilation)
  
  - evaporative cooling (adiabatic)
  
  - radiative cooling (deep night sky)

• although limited in their capacity:

• important first steps towards reducing cooling loads

• hence: passive cooling
2. SPECIFICS OF COOLING
SPECIFICS OF COOLING

• crucial to passive heating: access to solar energy during winter

• crucial to passive cooling: availability of heat sinks for heat rejection and redirection

• important limiting factor: humidity

  high humidity limits evaporative cooling to high temperatures

  haze blocks radiative cooling to the night sky
SPECIFICS OF COOLING

11 Passive Cooling

1. fundamentals
2. specifics of cooling

• crucial to passive heating: reducing heat losses by means of
  thermal insulation
  low infiltrations

• crucial to passive cooling: blocking heat gains by
  solar radiation (windows!)
  internal heat sources
  latent sources (humidity)

... AND USING HEAT SINKS

• temperature differential between indoor and outdoor air is smaller for cooling purposes
  hence: smaller impact of conduction and infiltration
3. COOLING MECHANISMS
COOLING MECHANISMS

11 Passive Cooling

1. fundamentals
2. specifics of cooling
3. cooling mechanisms

- **relative humidity**: measure of concentration of water vapour
- expressed as a percentage of the water vapour air can hold at a particular temperature

- **sensible heat**: associated with change in air temperature

- **latent heat**: associated with change in the moisture content of air

- **dewpoint temperature**: temperature at which water vapour begins to condensate (relative humidity 100%)
psychrometric chart
COOLING MECHANISMS

• average residential building:
  60 to 80% sensible heat gains
  40 to 20% latent heat gains

• cooling strategies need to deal with both types of loads
4. THERMAL COMFORT IN HOT CLIMATES
11 Passive Cooling

1. fundamentals
2. specifics of cooling
3. cooling mechanisms
4. thermal comfort in hot climates

human thermal comfort:
- when heat flows in the human thermal system are balanced
- when the internal body temperature is near 37° C

permanent internal heat production of 100 W

feeling hot: when heat is absorbed and produced faster than it is lost

in that case, bodily responses set in like:
- perspiration (evaporative cooling)
- additional blood flow to skin surface
- lethargic feeling to reduce activity
THERMAL COMFORT

• **environmental determinants** of comfort:
  - air temperature
  - relative humidity
  - air motion
  - mean radiant temperature (MRT)

• any combinations of these are liable to produce the required comfort
5. REDUCTION OF COOLING LOADS
REDUCTION OF COOLING LOADS

11 Passive Cooling

1. fundamentals
2. specifics of cooling
3. cooling mechanisms
4. thermal comfort in hot climates
5. reduction of cooling loads

• main heat flows in a building:
  conduction through the building envelope
  ventilation
  unintended infiltration
  solar heat gains through windows
  internal heat generation
REDDUCTION OF COOLING LOADS
CONDUCTION

• thermal conduction: sensible loads dependent on differential between indoor and outdoor air temperatures

• conduction cooling loads thus increased by solar gains on the outside surface of the envelope (increased temperature differential)

• influencing factors:
  - temperature difference across the envelope‘s section (delta T)
  - insulating characteristics of the section
  - thermal capacitance of internal masses

• control of conduction heat gains through:
  - adding insulation
  - reducing the surface area (A/V-ratio)
  - reducing the temperature of the exterior surface
• infiltration, ventilation cooling load are the result of the flow of **warmer** and **more humid** air into the building (both sensible and latent heat components)

• when internal heat and solar gains drive the indoor temperature above the outdoor temperature, **infiltration and ventilation** may **reduce cooling loads**

• since infiltration is **hardly controllable** it should be curtailed (infiltration barrier)

• however, ventilation (natural or forced) needs to be **controllable** to allow for minimum hygienic air exchange and for necessary cooling
SOLAR LOADS

- Solar loads affect both opaque and glazed surfaces

- However, gains through glazed surfaces **significantly exceed** those through opaque walls

- Hence, **orientation** and **size** of transparent or translucent surfaces are to be carefully designed

- Since solar gains through windows are desirable in winter, glazed surfaces should be **adaptive** (solar protection)

- **Horizontal, east** and **west oriented** glass produces the largest cooling loads, **south oriented** the least

- **External shading** is the most efficient method to reduce solar loads
REDUCTION OF COOLING LOADS
INTERNAL HEAT GAINS

- **internal heat gains** are due to:
  - presence of people
  - mechanical and electrical equipment

- **sensible** gains: e.g. light bulb

- **latent** gains: e.g. human respiration, bathing, gas combustion (water vapour)

- **excess lighting** due to solar shading increases cooling loads significantly (paradox)
6. VENTILATION FOR COOLING PURPOSES
VENTILATION FOR COOLING PURPOSES

- ventilation provides cooling by carrying away heat by means of moving air (natural or forced movement)

- may involve either the building (open system) or the human body (closed system)

- prerequisite: outdoor air temperature must be below indoor air temperature (building cooling)

- atmosphere is a heat sink with virtually unlimited capacity

- buildings can be ventilated at night when the ambient air is cool to take advantage of the storing effect of thermal masses (heat sink)
VENTILATION FOR COOLING PURPOSES

- main ventilation mechanisms available:
  - wind-driven ventilation
  - stack-effect ventilation
  - forced ventilation (electric fans)
  - solar chimneys
  - ceiling and space fans
VENTILATION FOR COOLING PURPOSES
WIND-INDUCED VENTILATION

- Air movement is induced by air pressure differential between windward and leeward sides of the building.
- Amount of wind-induced flow is proportional to window area.
- Fully-opening windows (casement, awning windows) are convenient.
- Architectural features like wind towers (e.g. malqaf, badgir) may benefit the cooling effect.
traditional type of malqaf ventilation
VENTILATION FOR COOLING PURPOSES
STACK-EFFECT VENTILATION

- warmer air is lighter and thus more buoyant than cooler air

- the temperature differential (stacking) induces a forced upward flow

- comparatively weak form of ventilation with small flow volumes

- especially adequate for large hall-like spaces
VENTILATION FOR COOLING PURPOSES
FORCED VENTILATION

• most consistently effective means of providing ventilation

• relatively small amount of energy required for operation

interiour fans provide air circulation inside:
remove heat from the occupants
without changing the indoor air temperature

• potential problems: excess air speed and noise
VENTILATION FOR COOLING PURPOSES
INTERIOR THERMAL MASS COOLING

• extensively used to:
  store excess heat during the day
  release it at night

• however: lack of large temperature differential

• driving force: day-to night variation in ambient temperature (benefits the cooling effect)

• hence: increased air circulation during nighttime required (nocturnal ventilation)

• thermal masses increase nighttime indoor temperatures (as compared to lightweight construction)

• exposed thermal mass surfaces required
VENTILATION FOR COOLING PURPOSES
SOLAR CHIMNEYS

- solar chimneys are **stack-effect ventilators**

- driving force: passive solar heat

- also called: **solar-enhanced ventilators**

- **inlet** draws air from indoors

- **outlet** discharges to the outdoors

- as indoor air evacuates, (cooler) outdoor air flows into the building
7. EVAPORATIVE COOLING
by evaporation of water the **sensible heat content** decreases

heat is absorbed by the **phase change** of water (liquid to gaseous)

hence, **moisture content** of the air rises

dry ambient air is beneficial to this process

limit of the cooling process: when relative humidity reaches the saturation point (100%)

direct evaporative cooling: **misting** of the inlet air
8. RADIATIVE COOLING
RADIATIVE COOLING

- outer space has a constant temperature near absolute zero, i.e. -273°C

- although warmer, the sky all the same provides a suitable natural heat sink for cooling

- heat is rejected through radiation heat transfer

- a temperature differential is necessary for this effect to develop

- unobstructed direct line between radiant objects is required (to see each other)

- clear, dry climates are beneficial
• Architectural applications:

  - Sleeping on terraces
  - Roof pond cooling
    - Water surface radiates heat to the night sky
    - Open water ponds or large bags of water (sprayed)
    - Movable insulation panels during daytime
closing of the umbrellas in the courtyard of the Mosque in Madinah in the evening in order to benefit from the nightly radiation to the cool deep sky
9. HEAT PUMPS
basic working principle of a heat pump for cooling or heating purposes
basic working principle of an air-source heat pump for cooling or heating purposes
basic working principle of a water-source heat pump for cooling or heating purposes
11 Passive Cooling

1. fundamentals
2. specifics of cooling
3. cooling mechanisms
4. thermal comfort in hot climates
5. reduction of cooling loads
6. ventilation for cooling purposes
   6.1 wind-induced ventilation
   6.2 stack-effect ventilation
   6.3 forced ventilation
   6.4 interior thermal mass cooling
   6.5 solar chimneys
7. evaporative cooling
8. radiative cooling
9. heat pumps
   9.1 air-source heat pumps
   9.2 water-source heat pumps
11 Passive Cooling

1. fundamentals
2. specifics of cooling
3. cooling mechanisms
4. thermal comfort in hot climates
5. reduction of cooling loads
6. ventilation for cooling purposes
   6.1 wind-induced ventilation
   6.2 stack-effect ventilation
   6.3 forced ventilation
   6.4 interior thermal mass cooling
   6.5 solar chimneys
7. evaporative cooling
8. radiative cooling
9. heat pumps
   9.1 air-source heat pumps
   9.2 water-source heat pumps
   9.3 earth-coupled heat pumps
11 Passive Cooling

1. fundamentals
2. specifics of cooling
3. cooling mechanisms
4. thermal comfort in hot climates
5. reduction of cooling loads
6. ventilation for cooling purposes
   6.1 wind-induced ventilation
   6.2 stack-effect ventilation
   6.3 forced ventilation
   6.4 interior thermal mass cooling
   6.5 solar chimneys
7. evaporative cooling
8. radiative cooling
9. heat pumps
   9.1 air-source heat pumps
   9.2 water-source heat pumps
   9.3 earth-coupled heat pumps