Inhaltsverzeichnis

Qualifikationsziele ... 3

111 Areas of Specialization .. 4

<table>
<thead>
<tr>
<th>Area</th>
<th>Modules</th>
</tr>
</thead>
<tbody>
<tr>
<td>1110</td>
<td>Fabrikbetrieb</td>
</tr>
<tr>
<td>1111</td>
<td>Core Modules</td>
</tr>
<tr>
<td>1111</td>
<td>13560 Technologien der Nano- und Mikrosystemtechnik I</td>
</tr>
<tr>
<td>1111</td>
<td>13580 Wissens- und Informationsmanagement in der Produktion</td>
</tr>
<tr>
<td>1111</td>
<td>32400 Strategien in Entwicklung und Produktion</td>
</tr>
<tr>
<td>1111</td>
<td>32410 Oberflächentechnik: Galvanotechnik und PVD /CVD</td>
</tr>
<tr>
<td>1111</td>
<td>36340 Fabrikplanung und Anlagenwirtschaft</td>
</tr>
<tr>
<td>1111</td>
<td>36360 Qualitätsmanagement</td>
</tr>
<tr>
<td>1112</td>
<td>Practical Work</td>
</tr>
<tr>
<td>1112</td>
<td>32490 Praktikum Fabrikbetrieb</td>
</tr>
<tr>
<td>1120</td>
<td>Werkzeugmaschinen</td>
</tr>
<tr>
<td>1121</td>
<td>Core Modules</td>
</tr>
<tr>
<td>1121</td>
<td>13570 Werkzeugmaschinen und Produktionssysteme</td>
</tr>
<tr>
<td>1121</td>
<td>32870 Grundlagen spanender Werkzeugmaschinen</td>
</tr>
<tr>
<td>1121</td>
<td>33520 Grundlagen der Holzbearbeitungstechnologie</td>
</tr>
<tr>
<td>1122</td>
<td>Practical Work</td>
</tr>
<tr>
<td>1122</td>
<td>33910 Praktikum Werkzeugmaschinen</td>
</tr>
<tr>
<td>1130</td>
<td>Steuerungstechnik</td>
</tr>
<tr>
<td>1131</td>
<td>Core Modules</td>
</tr>
<tr>
<td>1131</td>
<td>14230 Steuerungstechnik der Werkzeugmaschinen und Industrieroboter</td>
</tr>
<tr>
<td>1131</td>
<td>16250 Steuerungstechnik</td>
</tr>
<tr>
<td>1131</td>
<td>33430 Anwendungen von Robotersystemen</td>
</tr>
<tr>
<td>1131</td>
<td>41660 Angewandte Regelungstechnik in Produktionsanlagen</td>
</tr>
<tr>
<td>1131</td>
<td>71870 IT-Architekturen in der Produktion</td>
</tr>
<tr>
<td>1131</td>
<td>71880 Produktions- technische Informationstechnologien</td>
</tr>
<tr>
<td>1132</td>
<td>Practical Work</td>
</tr>
<tr>
<td>1132</td>
<td>33890 Praktikum Steuerungstechnik</td>
</tr>
<tr>
<td>1140</td>
<td>Systemdynamik</td>
</tr>
<tr>
<td>1141</td>
<td>Core Modules</td>
</tr>
<tr>
<td>1141</td>
<td>12330 Elektrische Signalverarbeitung</td>
</tr>
<tr>
<td>1141</td>
<td>12350 Echtzeitdatenverarbeitung</td>
</tr>
<tr>
<td>1141</td>
<td>29900 Dynamik verteiltparametrischer Systeme</td>
</tr>
<tr>
<td>1141</td>
<td>33100 Modellierung und Identifikation dynamischer Systeme</td>
</tr>
<tr>
<td>1141</td>
<td>33190 Numerische Methoden der Optimierung und Optimalen Steuerung</td>
</tr>
<tr>
<td>1141</td>
<td>33820 Flat Systems</td>
</tr>
<tr>
<td>1141</td>
<td>33830 Dynamik ereignisdiskreter Systeme</td>
</tr>
<tr>
<td>1141</td>
<td>33840 Dynamische Filterverfahren</td>
</tr>
<tr>
<td>1142</td>
<td>Practical Work</td>
</tr>
<tr>
<td>1142</td>
<td>33880 Praktikum Systemdynamik</td>
</tr>
</tbody>
</table>

72060 Module Tongji University .. 80

80210 Masterarbeit Maschinenbau ... 81

80480 Studienarbeit Maschinenbau ... 82
Qualifikationsziele
Das Qualifikationsprofil von Absolventen, die den Masterabschluss Maschinenbau erworben haben, zeichnet sich durch die folgenden zusätzlichen, über die mit dem Bachelor-Abschluss verbundenen hinausgehenden Attribute aus:

1) Die Absolventen haben die Ausbildungsziele des Bachelor-Studiums in einem längeren fachlichen Reifeprozess weiter verarbeitet und haben eine größere Sicherheit in der Anwendung und Umsetzung der fachlichen und außerfachlichen Kompetenzen erworben.

2) Die Absolventen haben tiefgehende Fachkenntnisse in zwei ausgewählten Technologiefeldern oder ingenieurwissenschaftlichen Querschnittsthemen erworben.

3) Die Absolventen sind fähig, die erworbenen naturwissenschaftlichen, mathematischen und ingenieurwissenschaftlichen Methoden zur Abstraktion, Formulierung und Lösung komplexer Aufgabenstellungen in Forschung und Entwicklung in der Industrie oder in Forschungseinrichtungen erfolgreich einzusetzen, sie kritisch zu hinterfragen und sie bei Bedarf auch weiterzuentwickeln.

5) Die Absolventen sind insbesondere fähig, benötigte Informationen zu identifizieren, zu finden und zu beschaffen. Sie können analytische, modellhafte und experimentelle Untersuchungen planen und durchführen. Dabei bewerten sie Daten kritisch und ziehen daraus die notwendigen Schlussfolgerungen.

6) Die Absolventen verfügen über Tiefe und Breite, um sich sowohl in zukünftige Technologien im eigenen Fachgebiet wie auch in Randgebiete einzuarbeiten und neue aufkommende Technologien zu untersuchen und zu bewerten.

7) Die Absolventen haben verschiedene technische und soziale Kompetenzen (Abstraktionsvermögen, systemanalytisches Denken, Team- und Kommunikationsfähigkeit, internationale und interkulturelle Erfahrung usw.) erworben, die gut auf Führungsaufgaben vorbereiten.

Masterabsolventen/innen erwerben die wissenschaftliche Qualifikation für eine Promotion.
111 Areas of Specialization

Zugeordnete Module:

- 1110 Fabrikbetrieb
- 1120 Werkzeugmaschinen
- 1130 Steuerungstechnik
- 1140 Systemdynamik
1110 Fabrikbetrieb

Zugeordnete Module:

1111 Core Modules
1112 Practical Work
1111 Core Modules

Zugeordnete Module:
- 13560 Technologien der Nano- und Mikrosystemtechnik I
- 13580 Wissens- und Informationsmanagement in der Produktion
- 32400 Strategien in Entwicklung und Produktion
- 32410 Oberflächentechnik: Galvanotechnik und PVD /CVD
- 36340 Fabrikplanung und Anlagenwirtschaft
- 36360 Qualitätsmanagement
Modul: 13560 Technologien der Nano- und Mikrosystemtechnik I

2. Modulkürzel: 072420001
5. Moduldaurer: Einsemestrig

3. Leistungspunkte: 6 LP
6. Turnus: Wintersemester/Sommersemester

4. SWS: 4
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Hermann Sandmaier
9. Dozenten: Hermann Sandmaier

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Maschinenbau Toyohashi Incoming Double Degree, PO 104TyI2011,
→ Kernfächer mit 6 LP --> Mikrosystemtechnik --> Areas of Specialization
M.Sc. Maschinenbau Toyohashi Incoming Double Degree, PO 104TyI2011,
→ Kern-/Ergänzungsfächer mit 6 LP --> Elektronikfertigung --> Areas of Specialization
M.Sc. Maschinenbau Toyohashi Outgoing Double Degree, PO 104TyO2011,
→ Kern-/Ergänzungsfächer mit 6 LP --> Elektronikfertigung --> Gruppe: Mikrotechnik, Gerätetechnik und Technische Optik --> Spezialisierungsmodule
M.Sc. Maschinenbau, PO 104-2011,
→ Kern-/Ergänzungsfächer mit 6 LP --> Mikrosystemtechnik --> Gruppe: Mikrotechnik, Gerätetechnik und Technische Optik --> Areas of Specialization
M.Sc. Maschinenbau Toyohashi Incoming Double Degree, PO 104TyI2011,
→ Kern-/Ergänzungsfächer mit 6 LP --> Mikrosystemtechnik --> Areas of Specialization
M.Sc. Maschinenbau Toyohashi Outgoing Double Degree, PO 104TyO2011,
→ Kern-/Ergänzungsfächer mit 6 LP --> Feinwerktechnik --> Gruppe: Mikrotechnik, Gerätetechnik und Technische Optik --> Spezialisierungsmodule
M.Sc. Maschinenbau Tongji Outgoing Double Degree, PO 104TgO2011,
→ Kern-/Ergänzungsfächer mit 6 LP --> Elektronikfertigung --> Gruppe: Mikrotechnik, Gerätetechnik und Technische Optik --> Areas of Specialization
M.Sc. Maschinenbau, PO 104-2011,
→ Kern-/Ergänzungsfächer mit 6 LP --> Elektronikfertigung --> Gruppe: Mikrotechnik, Gerätetechnik und Technische Optik --> Spezialisierungsmodule
M.Sc. Maschinenbau Tongji Outgoing Double Degree, PO 104TgO2011,
→ Kern-/Ergänzungsfächer mit 6 LP --> Fabrikbetrieb --> Gruppe: Werkstoff- und Produktionstechnik --> Areas of Specialization
M.Sc. Maschinenbau Tongji Outgoing Double Degree, PO 104TgO2011,
11. Empfohlene Voraussetzungen:

keine

12. Lernziele:

Im Modul Technologien der Nano- und Mikrosystemtechnik I
• haben die Studierenden die wichtigsten Technologien und Verfahren zur Herstellung von Bauelementen der Mikroelektronik als auch der Nano- und Mikrosystemtechnik kennen gelernt,
• können die Studierenden einzelne technologische Prozesse bewerten und sind in der Lage Prozessabläufe selbstständig zu entwerfen.

Erworbene Kompetenzen:
Die Studierenden
• können die wichtigsten Materialien der Nano- und Mikrosystemtechnik benennen und beschreiben,
• können die wichtigsten Verfahren der Mikroelektronik sowie der Nano- und Mikrosystemtechnik benennen und mit Hilfe physikalischer Grundlagenkenntnisse erläutern,
• beherrschen die wesentlichen Grundlagen des methodischen Vorgehens zur Herstellung von mikrotechnischen Bauelementen,
• haben ein Gefühl für den Aufwand einzelner Verfahren entwickeln können,
• sind mit den technologischen Grenzen der Verfahren vertraut und können diese bewerten,
• sind in der Lage, auf der Basis gegebener technologischer und wirtschaftlicher Randbedingungen, die optimalen Prozessverfahren auszuwählen und einen kompletten Prozessablauf für die Herstellung von mikrotechnischen Bauelementen zu entwerfen.

13. Inhalt:

14. Literatur:

• Menz, W., Mohr, J., Paul, O., Mikrosystemtechnik für Ingenieure, Weinheim: Wiley-VCH, 2005
• Schwesinger N., Dehne C., Adler F., Lehrbuch Mikrosystemtechnik, Oldenburg Verlag, 2009

Online-Vorlesungen:
• http://www.sensedu.com
• http://www.ett.bme.hu/memsedu

Lernmaterialien:
• Vorlesungsserien auf ILIAS

15. Lehrveranstaltungen und -formen:

• 135601 Vorlesung Technologien der Nano- und Mikrosystemtechnik I

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 42 h
Selbststudiumszeit / Nacharbeitszeit: 138 h
Gesamt: 180 h
<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>13561 Technologien der Nano- und Mikrosystemtechnik I (PL), Schriftlich, 120 Min., Gewichtung: 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Präsentation mit Animationen und Filmen, Beamer, Tafel, Anschauungsmaterial</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Mikrosystemtechnik</td>
</tr>
</tbody>
</table>
Modul: 13580 Wissens- und Informationsmanagement in der Produktion

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>6</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Thomas Bauernhansl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Thomas Bauernhansl</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- **M.Sc. Maschinenbau Tongji Incoming Double Degree, PO 104Tgl2011, Zusatzmodule**
- **M.Sc. Maschinenbau, PO 104-2011, Kern-/Ergänzungsfächer mit 6 LP --> Mikrosystemtechnik --> Gruppe: Mikroelektronik, Gerätetechnik und Technische Optik --> Spezialisierungsmodule**
- **M.Sc. Maschinenbau Tongji Outgoing Double Degree, PO 104TgO2011, Kern-/Ergänzungsfächer mit 6 LP --> Mikrosystemtechnik --> Gruppe: Mikrotechnik, Gerätetechnik und Technische Optik --> Areas of Specialization**
- **M.Sc. Maschinenbau Toyohashi Incoming Double Degree, PO 104Tyl2011, Kernfach mit 6 LP --> Fabrikbetrieb --> Areas of Specialization**
- **M.Sc. Maschinenbau, PO 104-2011, Kern-/Ergänzungsfächer mit 6 LP --> Fabrikbetrieb --> Gruppe: Werkstoff- und Produktionstechnik --> Spezialisierungsmodulle**
- **M.Sc. Maschinenbau Tongji Outgoing Double Degree, PO 104TgO2011, Kern-/Ergänzungsfächer mit 6 LP --> Fabrikbetrieb --> Gruppe: Werkstoff- und Produktionstechnik --> Areas of Specialization**
- **M.Sc. Maschinenbau Toyohashi Incoming Double Degree, PO 104Tyl2011, Kernfach mit 6 LP --> Fabrikbetrieb --> Areas of Specialization**
- **M.Sc. Maschinenbau Toyohashi Outgoing Double Degree, PO 104Tyl2011, Kern-/Ergänzungsfächer mit 6 LP --> Mikrosystemtechnik --> Gruppe: Mikrotechnik, Gerätetechnik und Technische Optik --> Spezialisierungsmodulle**
- **M.Sc. Maschinenbau Tongji Outgoing Double Degree, PO 104TgO2011, Kernfach mit 6 LP --> Fabrikbetrieb --> Gruppe: Werkstoff- und Produktionstechnik --> Areas of Specialization**
- **M.Sc. Maschinenbau Tongji Incoming Double Degree, PO 104Tgl2011, Core Modules --> Fabrikbetrieb --> Areas of Specialization**
- **M.Sc. Maschinenbau Toyohashi Incoming Double Degree, PO 104Tyl2011, Kern-/Ergänzungsfächer mit 6 LP --> Mikrosystemtechnik --> Areas of Specialization**

→ Kernfächer mit 6 LP --> Fabrikbetrieb --> Gruppe: Werkstoff- und Produktionstechnik --> Spezialisierungsmodul

M.Sc. Maschinenbau, PO 104-2011, 1. Semester

→ Zusatzmodule

M.Sc. Maschinenbau Toyohashi Outgoing Double Degree, PO 104TyO2011, 1. Semester

→ Kern-/Ergänzungsfächer mit 6 LP --> Fabrikbetrieb --> Gruppe: Werkstoff- und Produktionstechnik --> Spezialisierungsmodul

11. Empfohlene Voraussetzungen:
Fertigungslehre mit Einführung in die Fabrikorganisation. Es wird empfohlen die Vorlesung Fabrikbetriebslehre ergänzend zu belegen

12. Lernziele:

13. Inhalt:

14. Literatur:
Skript zur Vorlesung

15. Lehrveranstaltungen und -formen:
• 135801 Vorlesung Wissens- und Informationsmanagement in der Produktion I
• 135802 Übung Wissens- und Informationsmanagement in der Produktion I
• 135803 Vorlesung Wissens- und Informationsmanagement in der Produktion II
• 135804 Übung Wissens- und Informationsmanagement in der Produktion II

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 63 Stunden
Selbststudium: 117 Stunden
<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>13581 Wissens- und Informationsmanagement in der Produktion (PL), Schriftlich, 120 Min., Gewichtung: 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Power-Point Präsentationen, Simulationen, Animationen und Filme</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Industrielle Fertigung und Fabrikbetrieb</td>
</tr>
</tbody>
</table>
Modul: 32400 Strategien in Entwicklung und Produktion

2. Modulkürzel: 072410004
5. Moduldaeuer: Zweisemestrig

3. Leistungspunkte: 6 LP
6. Turnus: Wintersemester/ Sommersemester

4. SWS: 6
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Thomas Bauernhansl
9. Dozenten: Thomas Bauernhansl
Thomas Weber

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Maschinenbau Tongji Incoming Double Degree, PO 104Tgl2011,
→ Core Modules --> Fabrikbetrieb --> Areas of Specialization
M.Sc. Maschinenbau Tongji Outgoing Double Degree, PO 104TgO2011,
→ Kern-/Ergänzungsfächer mit 6 LP --> Fabrikbetrieb --> Gruppe: Werkstoff- und Produktionstechnik --> Areas of Specialization
M.Sc. Maschinenbau, PO 104-2011,
→ Zusatzmodule
M.Sc. Maschinenbau Toyohashi Outgoing Double Degree, PO 104TyO2011,
→ Kern-/Ergänzungsfächer mit 6 LP --> Fabrikbetrieb --> Gruppe: Werkstoff- und Produktionstechnik --> Spezialisierungsmodul
M.Sc. Maschinenbau, PO 104-2011,
→ Kernfach mit 6 LP --> Fabrikbetrieb --> Gruppe: Werkstoff- und Produktionstechnik --> Spezialisierungsmodul
M.Sc. Maschinenbau Toyohashi Incoming Double Degree, PO 104Tyl2011,
→ Kern-/Ergänzungsfächer mit 6 LP --> Fabrikbetrieb --> Areas of Specialization
M.Sc. Maschinenbau, PO 104-2011,
→ Kern-/Ergänzungsfächer mit 6 LP --> Fabrikbetrieb --> Gruppe: Werkstoff- und Produktionstechnik --> Spezialisierungsmodul

11. Empfohlene Voraussetzungen:

12. Lernziele:
Vorlesung I: Strategien der Produktion:

Vorlesung II: Technologien in den Prozessketten des Automobilbaus: Die Studierenden kennen die Anforderungen und Herausforderungen im Produktlebenslauf sowie die Systematik des Produktenstehungsprozesses im Automobilbereich. Die Studierenden können einen Transfer aus der Theorie in die Praxis bilden und Sachverhalte im realen Umfeld erfassen und analysieren. Die Methoden

13. Inhalt:

14. Literatur:

15. Lehrveranstaltungen und -formen:
 • 324001 Vorlesung Strategien der Produktion
 • 324002 Vorlesung Technologien in den Prozessketten des Automobilbaus
 • 324003 Übung Technologien in den Prozessketten des Automobilbaus

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 63 Stunden
 Selbststudium: 117 Stunden

17. Prüfungsnummer/n und -name:
 32401 Strategien in Entwicklung und Produktion (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ...

19. Medienform:

20. Angeboten von: Industrielle Fertigung und Fabrikbetrieb
Modul: 32410 Oberflächentechnik: Galvanotechnik und PVD /CVD

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>5</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Thomas Bauernhansl
9. Dozenten: Martin Metzner

10. Zuordnung zum Curriculum in diesem Studiengang:

M.Sc. Maschinenbau Tongji Incoming Double Degree, PO 104Tgl2011,
- Core Modules --> Fabrikbetrieb --> Areas of Specialization
M.Sc. Maschinenbau Toyohashi Incoming Double Degree, PO 104Tyl2011,
- Kern-/Ergänzungsfächer mit 6 LP --> Fabrikbetrieb --> Areas of Specialization
M.Sc. Maschinenbau, PO 104-2011,
- Kern-/Ergänzungsfächer mit 6 LP --> Fabrikbetrieb --> Gruppe: Werkstoff- und Produktionstechnik --> Spezialisierungsmodul
M.Sc. Maschinenbau Toyohashi Outgoing Double Degree, PO 104TyO2011,
- Kern-/Ergänzungsfächer mit 6 LP --> Fabrikbetrieb --> Gruppe: Werkstoff- und Produktionstechnik --> Spezialisierungsmodul
M.Sc. Maschinenbau Tongji Outgoing Double Degree, PO 104TgO2011,
- Kern-/Ergänzungsfächer mit 6 LP --> Fabrikbetrieb --> Gruppe: Werkstoff- und Produktionstechnik --> Areas of Specialization

11. Empfohlene Voraussetzungen:

Der Student beherrscht Grundlagen in Bezug auf Verfahrenstechnik, Werkstofftechnik, Anlagentechnik und Schichteigenschaften von galvanisch erzeugten Schichten.

12. Lernziele:

Galvanotechnik: - Grundlagen der elektrochemischen Metallabscheidung - Aufbau galvanischer Elektrolyte - Anlagentechnik - Prozessketten (Vorbehandlung, Spülen...) - Schichtaufbau - Schichteigenschaften - Schadensfälle und Schichtmesstechnik. Besichtigung von Technikumsanlagen am Fraunhofer IPA, Kurzpraktika

14. Literatur:

Vorlesungsfolien,
Praktische Galvanotechnik, Leuze Verlag
Einführung in die Galvanotechnik, Leuze Verlag

15. Lehrveranstaltungen und -formen:

- 324102 Übung Oberflächentechnik
- 324101 Vorlesung Oberflächentechnik

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 43 Stunden
Selbststudium: 137 Stunden

17. Prüfungsnummer/n und -name:

32411 Oberflächentechnik: Galvanotechnik und PVD /CVD (PL), Schriftlich oder Mündlich, 120 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform:
20. Angeboten von: Industrielle Fertigung und Fabrikbetrieb
Modul: 36340 Fabrikplanung und Anlagenwirtschaft

2. Modulkürzel: 072410016
5. Modulduauer: Zweisemestrig
3. Leistungspunkte: 6 LP
6. Turnus: Wintersemester
4. SWS: 4
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Thomas Bauernhansl
9. Dozenten: Michael Lickefett
10. Zuordnung zum Curriculum in diesem Studiengang:
 M.Sc. Maschinenbau, PO 104-2011, → Kern-/Ergänzungsfächer mit 6 LP --> Fabrikbetrieb
 → Gruppe: Werkstoff- und Produktionstechnik --> Spezialisierungsmodule
 M.Sc. Maschinenbau Tongji Outgoing Double Degree, PO 104TgO2011,
 → Kern-/Ergänzungsfächer mit 6 LP --> Fabrikbetrieb --> Gruppe: Werkstoff- und Produktionstechnik --> Areas of Specialization
 M.Sc. Maschinenbau Toyohashi Incoming Double Degree, PO 104TyI2011,
 → Kern-/Ergänzungsfächer mit 6 LP --> Fabrikbetrieb --> Areas of Specialization
 M.Sc. Maschinenbau, PO 104-2011,
 → Zusatzmodule
 M.Sc. Maschinenbau, PO 104-2011,
 → Kernfächer mit 6 LP --> Fabrikbetrieb --> Gruppe: Werkstoff- und Produktionstechnik --> Spezialisierungsmodul
 M.Sc. Maschinenbau Tongji Incoming Double Degree, PO 104TgI2011,
 → Kern-/Ergänzungsfächer mit 6 LP --> Fabrikbetrieb --> Areas of Specialization
 M.Sc. Maschinenbau Toyohashi Outgoing Double Degree, PO 104TyO2011,
 → Kern-/Ergänzungsfächer mit 6 LP --> Fabrikbetrieb --> Gruppe: Werkstoff- und Produktionstechnik --> Spezialisierungsmodul

11. Empfohlene Voraussetzungen: --
12. Lernziele:
 Fabrikplanung und Anlagenwirtschaft I: Die Studierenden kennen die Vorgehensweise und Planungsphasen der Fabrikplanung und beherrschen die gängigsten Methoden in der interdisziplinären Zusammenarbeit.

 Fabrikplanung und Anlagenwirtschaft II: Die Studierenden haben ein tiefgreifendes Verständnis der fabrikplanungsrelevanten Zusammenhänge und der daran anknüpfenden Themen auf unterschiedlichen Ebenen (fachlich, organisatorisch, emotional)

13. Inhalt:

14. Literatur:
Literaturempfehlung ist lediglich zur persönlichen Ergänzung bzw. Vertiefung anzusehen!
Pawellek, G.: Ganzheitliche Fabrikplanung: Grundlagen, Vorgehensweise, EDV-Unterstützung Berlin [u.a.]: Springer Verl., 2008

15. Lehrveranstaltungen und -formen:
• 363402 Vorlesung Fabrikplanung und Anlagenwirtschaft II
• 363401 Vorlesung Fabrikplanung und Anlagenwirtschaft I

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 Stunden
Selbststudium: 138 Stunden
Gesamt: 180 Stunden

17. Prüfungsnummer/n und -name:
36341 Fabrikplanung und Anlagenwirtschaft (PL), Schriftlich, 120 Min., Gewichtung: 1
18. Grundlage für ... :
19. Medienform:
20. Angeboten von: Industrielle Fertigung und Fabrikbetrieb
Modul: 36360 Qualitätsmanagement

2. Modulkürzel: 072410009
5. Modulduauer: Einsemestrig

3. Leistungspunkte: 6 LP
6. Turnus: Wintersemester/Sommersemester

4. SWS: 4
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Thomas Bauernhansl
9. Dozenten: Alexander Schloske

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Maschinenbau, PO 104-2011,
→ Zusatzmodule
M.Sc. Maschinenbau, PO 104-2011,
→ Kernfächer mit 6 LP --> Fabrikbetrieb --> Gruppe: Werkstoff- und Produktionstechnik --> Spezialisierungsmodule
M.Sc. Maschinenbau Tongji Outgoing Double Degree, PO 104TgO2011,
→ Kern-/Ergänzungsfächer mit 6 LP --> Fabrikbetrieb --> Gruppe: Werkstoff- und Produktionstechnik --> Areas of Specialization
M.Sc. Maschinenbau Toyohashi Outgoing Double Degree, PO 104TyO2011,
→ Kern-/Ergänzungsfächer mit 6 LP --> Fabrikbetrieb --> Gruppe: Werkstoff- und Produktionstechnik --> Spezialisierungsmodul
M.Sc. Maschinenbau Tongji Incoming Double Degree, PO 104TgI2011,
→ Core Modules --> Fabrikbetrieb --> Areas of Specialization
M.Sc. Maschinenbau, PO 104-2011,
→ Kern-/Ergänzungsfächer mit 6 LP --> Fabrikbetrieb --> Gruppe: Werkstoff- und Produktionstechnik --> Spezialisierungsmodul
M.Sc. Maschinenbau Toyohashi Incoming Double Degree, PO 104TyI2011,
→ Kern-/Ergänzungsfächer mit 6 LP --> Fabrikbetrieb --> Areas of Specialization

11. Empfohlene Voraussetzungen:

12. Lernziele: Die Studierenden kennen die modernen Qualitätsmanagement-Systeme und Qualitätsmanagement-Methoden und können diese beurteilen sowie deren Anwendungsbereiche entlang des Produktlebenslaufes aufzeigen.

Übung: 7 Qualitätsmanagement-Tools, 7 Management-Tools, Quality Function Deployment (QFD), Fehlermöglichkeiten- und Einflussanalyse (FMEA), Stichprobenprüfung, Statistische Prozessregelung (SPC)

14. Literatur:
- Folien und Skriptum der Vorlesung
- Standardliteratur zum Thema Qualitätsmanagement:

15. Lehrveranstaltungen und -formen:
- 363601 Vorlesung Qualitätsmanagement
- 363602 Übung Qualitätsmanagement

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 42 Stunden
- Selbststudium: 138 Stunden
- Summe: 180 Stunden

17. Prüfungsnummer/n und -name:
- 36361 Qualitätsmanagement (PL), Schriftlich, 120 Min., Gewichtung: 1

Die Teilnahme an den Übungen ist verpflichtend

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Industrielle Fertigung und Fabrikbetrieb
1112 Practical Work

Zugeordnete Module: 32490 Praktikum Fabrikbetrieb
Modul: 32490 Praktikum Fabrikbetrieb

2. Modulkürzel: 072410014
5. Moduldaauer: Einsemestrig

3. Leistungspunkte: 3 LP
6. Turnus: Wintersemester/Sommersemester

4. SWS: 2
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Thomas Bauernhansl

9. Dozenten: Thomas Bauernhansl

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Maschinenbau Toyohashi Outgoing Double Degree, PO 104TyO2011,
 → Fabrikbetrieb --> Gruppe: Werkstoff- und Produktionstechnik
 --> Spezialisierungsmodule
M.Sc. Maschinenbau Tongji Outgoing Double Degree, PO 104TgO2011,
 → Fabrikbetrieb --> Gruppe: Werkstoff- und Produktionstechnik
 --> Areas of Specialization
M.Sc. Maschinenbau, PO 104-2011,
 → Fabrikbetrieb --> Gruppe: Werkstoff- und Produktionstechnik
 --> Spezialisierungs­module
M.Sc. Maschinenbau Tongji Incoming Double Degree, PO 104TgI2011,
 → Practical Work --> Fabrikbetrieb --> Areas of Specialization
M.Sc. Maschinenbau Toyohashi Incoming Double Degree, PO 104TyI2011,
 → Fabrikbetrieb --> Areas of Specialization

11. Empfohlene Voraussetzungen:
Die Studierenden können theoretische Vorlesungsinhalte anwenden und in die Praxis umsetzen.

12. Lernziele:
Die Studierenden können theoretische Vorlesungsinhalte anwenden und in die Praxis umsetzen.

13. Inhalt:
Nähere Informationen zu den Praktischen Übungen: APMB erhalten Sie zudem unter http://www.uni-stuttgart.de/mabau/msc/msc_mach/linksunddownloads.html

Beispiele:

Fabrikbetrieb Planspiel: Im Rahmen des Praktikums wird ein haptisches Planspiel durchgeführt, anhand dessen aktuelle Tendenzen des Produktionsmanagements (z.B. Lean Production) simuliert werden können. Während des Praktikums werden mehrere Simulations- und Optimierungsrunden gespielt, in denen die Teilnehmer die Prinzipien der Push-/Pull-Steuerung gemeinsam erarbeiten, umsetzen, spielen und reflektieren.

14. Literatur:
Praktikumsunterlagen
15. Lehrveranstaltungen und -formen:

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 324902 Spezialisierungsfachversuch 2</td>
</tr>
<tr>
<td>• 324903 Allgemeines Praktikum Maschinenbau 1</td>
</tr>
<tr>
<td>• 324901 Spezialisierungsfachversuch 1</td>
</tr>
<tr>
<td>• 324904 Allgemeines Praktikum Maschinenbau 2</td>
</tr>
</tbody>
</table>

16. Abschätzung Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Arbeitsaufwand</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzzeit: 30 Stunden</td>
</tr>
<tr>
<td>Selbststudium: 60 Stunden</td>
</tr>
<tr>
<td>Summe: 90 Stunden</td>
</tr>
</tbody>
</table>

17. Prüfungsnummer/n und -name:

<table>
<thead>
<tr>
<th>Prüfungsnummer/n und -name</th>
</tr>
</thead>
<tbody>
<tr>
<td>32491 Praktikum Fabrikbetrieb (USL), Schriftlich oder Mündlich, Gewichtung: 1</td>
</tr>
</tbody>
</table>

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:

<table>
<thead>
<tr>
<th>Angeboten von</th>
</tr>
</thead>
<tbody>
<tr>
<td>Industrielle Fertigung und Fabrikbetrieb</td>
</tr>
</tbody>
</table>
1120 Werkzeugmaschinen

Zugeordnete Module:
1121 Core Modules
1122 Practical Work
1121 Core Modules

Zugeordnete Module:
13570 Werkzeugmaschinen und Produktionssysteme
32870 Grundlagen spanender Werkzeugmaschinen
33520 Grundlagen der Holzbearbeitungstechnologie
Modul: 13570 Werkzeugmaschinen und Produktionssysteme

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Uwe Heisel</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zuordnung zum Curriculum in diesem Studiengang:

M.Sc. Maschinenbau, PO 104-2011,
- Kernfächer mit 6 LP --> Werkzeugmaschinen --> Gruppe: Werkstoff- und Produktionstechnik --> Spezialisierungsmodul
M.Sc. Maschinenbau Toyohashi Outgoing Double Degree, PO 104TyO2011,
- Kernfächer mit 6 LP --> Werkzeugmaschinen --> Gruppe: Werkstoff- und Produktionstechnik --> Spezialisierungsmodul
M.Sc. Maschinenbau, PO 104-2011,
- Kern-/Ergänzungsfächer mit 6 LP --> Werkzeugmaschinen --> Gruppe: Werkstoff- und Produktionstechnik --> Spezialisierungsmodul
M.Sc. Maschinenbau Tongji Outgoing Double Degree, PO 104TgO2011,
- Kern-/Ergänzungsfächer mit 6 LP --> Werkzeugmaschinen --> Gruppe: Werkstoff- und Produktionstechnik --> Areas of Specialization
M.Sc. Maschinenbau Toyohashi Outgoing Double Degree, PO 104TyO2011,
- Wahlmöglichkeit Gruppe 3: Produktion --> Vertiefungsmodul
M.Sc. Maschinenbau Tongji Outgoing Double Degree, PO 104TgO2011,
- Kern-/Ergänzungsfächer mit 6 LP --> Werkzeugmaschinen --> Gruppe: Werkstoff- und Produktionstechnik --> Spezialisierungsmodul
M.Sc. Maschinenbau, PO 104-2011,
- Zusatzmodule
M.Sc. Maschinenbau Tongji Outgoing Double Degree, PO 104TgO2011,
- Kernfächer mit 6 LP --> Werkzeugmaschinen --> Gruppe: Werkstoff- und Produktionstechnik --> Areas of Specialization
M.Sc. Maschinenbau, PO 104-2011, 1. Semester
- Wahlmöglichkeit Gruppe 3: Produktion --> Vertiefungsmodul
M.Sc. Maschinenbau Tongji Incoming Double Degree, PO 104TgI2011, 1. Semester
- Core Modules --> Werkzeugmaschinen --> Areas of Specialization
M.Sc. Maschinenbau Toyohashi Incoming Double Degree, PO 104TyI2011, 1. Semester
- Kernfächer mit 6 LP --> Werkzeugmaschinen --> Areas of Specialization
M.Sc. Maschinenbau, PO 104-2011, 1. Semester
- Kern-/Ergänzungsfächer mit 6 LP --> Fertigungstechnik keramischer Bauteile, Verbundwerkstoffe und Oberflächentechnik --> Gruppe: Werkstoff- und Produktionstechnik --> Spezialisierungsmodul
M.Sc. Maschinenbau Tongji Outgoing Double Degree, PO 104TgO2011, 1. Semester
- Kern-/Ergänzungsfächer mit 6 LP --> Fertigungstechnik keramischer Bauteile, Verbundwerkstoffe und

12. Lernziele:
Die Studierenden kennen den konstruktiven Aufbau und die Funktionseinheiten von spanenden Werkzeugmaschinen und Produktionssystemen sowie die Formeln zu deren Berechnung, sie wissen, wie Werkzeugmaschinen und deren Funktionseinheiten funktionieren, sie können deren Aufbau und Funktionsweise erklären und die Formeln zur Berechnung von Werkzeugmaschinen anwenden.

13. Inhalt:

14. Literatur:
Skript, Vorlesungsunterlagen im Internet, alte Prüfungsaufgaben

16. Abschätzung Arbeitsaufwand: Präsenzzeit: 42 h
Selbststudiumszeit / Nacharbeitszeit: 138 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name: 13571 Werkzeugmaschinen und Produktionssysteme (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform: Medienmix: Präsentation, Tafelanschrieb, Videoclips

20. Angeboten von: Werkzeugmaschinen
Modul: 32870 Grundlagen spanender Werkzeugmaschinen

2. Modulkürzel: 073310022
5. Modulduauer: Zweisemestrig
3. Leistungspunkte: 6 LP
6. Turnus: Wintersemester/Sommersemester
4. SWS: 4
7. Sprache: Deutsch
9. Dozenten: Uwe Heisel, Johannes Rothmund
10. Zuordnung zum Curriculum in diesem Studiengang:
 M.Sc. Maschinenbau, PO 104-2011,
 → Kern-/Ergänzungsfächer mit 6 LP --> Werkzeugmaschinen
 --> Gruppe: Werkstoff- und Produktionstechnik --> Spezialisierungsmodule
 M.Sc. Maschinenbau Toyohashi Outgoing Double Degree, PO 104TyO2011,
 → Kern-/Ergänzungsfächer mit 6 LP --> Werkzeugmaschinen
 --> Gruppe: Werkstoff- und Produktionstechnik --> Spezialisierungsmodule
 M.Sc. Maschinenbau, PO 104-2011,
 → Zusatzmodule
 M.Sc. Maschinenbau ToyohashiIncoming Double Degree, PO 104TyI2011,
 → Kern-/Ergänzungsfächer mit 6 LP --> Werkzeugmaschinen --> Areas of Specialization
 M.Sc. Maschinenbau, PO 104-2011,
 → Kernfächer mit 6 LP --> Werkzeugmaschinen --> Gruppe: Werkstoff- und Produktionstechnik --> Spezialisierungsmodul
 M.Sc. Maschinenbau, PO 104-2011,
 → Kern-/Ergänzungsfächer mit 6 LP --> Werkzeugmaschinen --> Core Modules --> Werkzeugmaschinen --> Areas of Specialization
 M.Sc. Maschinenbau Tongji Incoming Double Degree, PO 104TgI2011,
 → Core Modules --> Werkzeugmaschinen --> Areas of Specialization
 M.Sc. Maschinenbau, PO 104-2011,
 → Kern-/Ergänzungsfächer mit 6 LP --> Werkzeugmaschinen
 --> Gruppe: Werkstoff- und Produktionstechnik --> Areas of Specialization

11. Empfohlene Voraussetzungen: Werkzeugmaschinen und Produktionssysteme

12. Lernziele:

Teil 1:

Die Studierenden kennen die begrifflichen Definitionen und Rechenformeln der Metalzerspanung, sie kennen die Vorgänge bei der Spanbildung und beim Werkzeugverschleiß, sie kennen die wichtigsten Werkzeuge und Schnittstellen, sie kennen die wichtigsten Schneidstoffe und Beschichtungen, sie kennen die Grundlagen der Kühlschmierstoffe, sie wissen, welche Einflüsse auf die Vorgänge bei der Zerspanung wirken, sie können einfache Zerspanungsprozesse auslegen und Kräfte und Leistungen berechnen.

Teil 2:

Die Studierenden kennen die Grundlagen, Prinzipien und Hilfsmittel der Werkzeugmaschinenkonstruktion, sie kennen
die wesentlichen Normen und Richtlinien, sie kennen die
Merkmale von Gestellen, Führungen, Hauptspindeln und
Vorschubantrieben von Werkzeugmaschinen, sie wissen, welche
Konstruktionshilfsmittel für welche Aufgaben eingesetzt werden
müssen, sie können einfache Berechnungen und Auslegungen von
Baugruppen von Werkzeugmaschinen vornehmen.

Es kann auch erst Teil 2 und dann Teil 1 gehört werden.

13. Inhalt:

Teil 1:
Grundlagen der Zerspanungstechnologie: Einführung,
Problemstellungen der Zerspanotechnik - Definitionen, Spanbildung,
Verschleiß und Standzeit - Tribologie - Kühlschmierstoffe,
stoflicher Aufbau und Anwendungen - Hartstoffe, verschleißfeste
Oberflächen - Schneidstoffe und Schneidplatten - Werkzeuge
und Aufnahmen, Kraft- und Leistungsberechnung -
Prozessauslegung und Werkzeugauswahl - mit Praxisübungen und
Betriebsbesichtigungen

Teil 2:
Einführung in die Konstruktion und Berechnung von
Werkzeugmaschinen: Grundlagen, Prinzipien und
Konstruktionshilfsmittel - Normung, Standardisierung, mech.
Schnittstellen, Baukastensysteme - Instandhaltungsgerechte
Werkzeugmaschinenkonstruktion - Werkzeugmaschinengestelle,
Berechnung von Werkzeugmaschinenkomponenten mit FEM -
Führungen, Bauformen, Eigenschaften, Auswahl und Auslegung
- Hauptspindeln, Grundlagen, Bauformen, Auslegung und
Berechnung - Vorschubantriebe, Merkmale, Eigenschaften,
Berechnung - Geräuscharmre Werkzeugmaschinenkonstruktion -
Analyse ausgewählter Konstruktionen von Werkzeugmaschinen
Es kann auch erst Teil 2 und dann Teil 1 gehört werden.

14. Literatur:

1. Degner, W., Lutze, H., Smajkal, E.: Spanende Formung, mit CD-
2. König, W., Klocke, F.: Fertigungsverfahren Band 1 bis 5. Berlin:
Springer-Verlag Bd.1 (2008), Bd.2 (2005), Bd.3 (2007), Bd.4
(2006), Bd.5 (2010)
+Teubner.
Vieweg+Teubner.
5. Tönshoff, H. K., Denkena, B.: Spanen. 2004 Berlin: Springer-
Verlag.
Berechnung. Berlin: Springer-Verlag.
Esslingen: Expert-Verlag.
8. Perovic, B.: Handbuch Werkzeugmaschinen. 2006 München:
Hanser-Fachbuchverlag.

15. Lehrveranstaltungen und -formen:

328701 Vorlesung Grundlagen spanender Werkzeugmaschinen

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 42 Stunden
Selbststudium: 138 Stunden
Summe: 180 Stunden

17. Prüfungsnummer/n und -name:

32871 Grundlagen spanender Werkzeugmaschinen (PL), Schriftlich
oder Mündlich, Gewichtung: 1
18. Grundlage für ...

<table>
<thead>
<tr>
<th>19. Medienform:</th>
<th>Medienmix: Präsentation, Tafelanschrieb, Videoclips</th>
</tr>
</thead>
<tbody>
<tr>
<td>20. Angeboten von:</td>
<td>Werkzeugmaschinen</td>
</tr>
</tbody>
</table>
Modul: 33520 Grundlagen der Holzbearbeitungstechnologie

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Marco Schneider, Hans Dietz</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- **M.Sc. Maschinenbau Toyohashi Incoming Double Degree, PO 104TyI2011,**
 - Kern-/Ergänzungsfächer mit 6 LP --> Werkzeugmaschinen --> Areas of Specialization

- **M.Sc. Maschinenbau Tongji Incoming Double Degree, PO 104TgI2011,**
 - Core Modules --> Werkzeugmaschinen --> Areas of Specialization

- **M.Sc. Maschinenbau Toyohashi Outgoing Double Degree, PO 104TyO2011,**
 - Kern-/Ergänzungsfächer mit 6 LP --> Werkzeugmaschinen --> Gruppe: Werkstoff- und Produktionstechnik --> Spezialisierungsmodule

- **M.Sc. Maschinenbau Tongji Outgoing Double Degree, PO 104TgO2011,**
 - Kern-/Ergänzungsfächer mit 6 LP --> Werkzeugmaschinen --> Gruppe: Werkstoff- und Produktionstechnik --> Areas of Specialization

- **M.Sc. Maschinenbau, PO 104-2011,**
 - Kern-/Ergänzungsfächer mit 6 LP --> Werkzeugmaschinen --> Gruppe: Werkstoff- und Produktionstechnik --> Spezialisierungsmodul

- **M.Sc. Maschinenbau, PO 104-2011,**
 - Kernfach mit 6 LP --> Werkzeugmaschinen --> Gruppe: Werkstoff- und Produktionstechnik --> Spezialisierungsmodul

12. Lernziele:

Teil 1:

Teil 2:

Wissen-Verstehen:

13. Inhalt:

Teil 1:
Grundlagen und Verfahren der Holzbearbeitung: Die Vorlesung beinhaltet die Grundzüge der Holzverarbeitung, insbesondere die Eigenschaften des Werkstoffes Holz, die Grundbegriffe und Definitionen, die Besonderheiten des Werkstoffs und seiner Bearbeitung. Kernbestandteile sind die Basisverfahren der spanenden Holzbearbeitung, die Werkzeuge und Maschinen, die auftretenden Kräfte, der Verschleiß und die Qualitätsbildung und -beurteilung.

Teil 2:

14. Literatur:
Skript, alte Prüfungsaufgaben

15. Lehrveranstaltungen und -formen:

• 335201 Vorlesung Grundlagen der Holzbearbeitungstechnologie

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 46 Stunden
Selbststudium: 134 Stunden
Summe: 180 Stunden

17. Prüfungsnummer/n und -name:
33521 Grundlagen der Holzbearbeitungstechnologie (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform:
Medienmix, Präsentation, Tafelanschrieb, Videoclips

20. Angeboten von:
Werkzeugmaschinen
1122 Practical Work

Zugeordnete Module: 33910 Praktikum Werkzeugmaschinen
Modul: 33910 Praktikum Werkzeugmaschinen

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>073310011</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester/Sommersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Uwe Heisel</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

M.Sc. Maschinenbau Tongji Incoming Double Degree, PO 104Tgl2011, → Practical Work --> Werkzeugmaschinen --> Areas of Specialization
M.Sc. Maschinenbau Toyohashi Outgoing Double Degree, PO 104TyO2011, → Werkzeugmaschinen --> Gruppe: Werkstoff- und Produktionstechnik --> Spezialisierungsmodule
M.Sc. Maschinenbau, PO 104-2011, → Werkzeugmaschinen --> Gruppe: Werkstoff- und Produktionstechnik --> Spezialisierungsmodule
M.Sc. Maschinenbau Toyohashi Incoming Double Degree, PO 104TyI2011, → Werkzeugmaschinen --> Areas of Specialization
M.Sc. Maschinenbau Toyohashi Outgoing Double Degree, PO 104TgO2011, → Werkzeugmaschinen --> Gruppe: Werkstoff- und Produktionstechnik --> Areas of Specialization

11. Empfohlene Voraussetzungen: Werkzeugmaschinen und Produktionssysteme

12. Lernziele:

Die Studierenden kennen wesentliche Messverfahren aus dem Bereich der Werkzeugmaschinen und deren Anwendung, sie wissen, welche Messmethoden für welchen Zweck eingesetzt werden und sie können die wesentlichen Kenngrößen messtechnisch bestimmen.

13. Inhalt:

Nähere Informationen zu den Praktischen Übungen: APMB erhalten Sie zudem unter http://www.uni-stuttgart.de/mabau/msc/msc_mach/linksunddownloads.html

4 Versuche, z.B.:
- Zerspankraftmessung Messung der Schnitt-, Vorschub- und Passivkräfte bei der Zerspanung mittels 3-Komponenten-Messplattform
- Modalanalyse Bestimmung der Eigenschwingungsformen einer Maschinenbaugruppe mittels Modalanalyse

14. Literatur: Praktikums Unterlagen/Skript

15. Lehrveranstaltungen und -formen:

- 339106 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 2
- 339101 Spezialisierungsfachversuch 1
- 339107 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 3
- 339108 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 4
- 339104 Spezialisierungsfachversuch 4
- 339102 Spezialisierungsfachversuch 2
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 30 Stunden
Selbststudium: 60 Stunden
Summe: 90 Stunden |
|---------------------------------|-----------------
| 17. Prüfungsnummer/n und -name: | 33911 Praktikum Werkzeugmaschinen (USL), Schriftlich oder Mündlich, Gewichtung: 1 |
| 18. Grundlage für ... : | |
| 19. Medienform: | Medienmix: Präsentation, Tafelanschrieb, praktische Einweisung |
| 20. Angeboten von: | Werkzeugmaschinen |
1130 Steuerungstechnik

<table>
<thead>
<tr>
<th>Zugeordnete Module</th>
<th>Code</th>
<th>Bezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1131</td>
<td>Core Modules</td>
</tr>
<tr>
<td></td>
<td>1132</td>
<td>Practical Work</td>
</tr>
</tbody>
</table>
1131 Core Modules

<table>
<thead>
<tr>
<th>Zugeordnete Module</th>
<th>Content</th>
</tr>
</thead>
<tbody>
<tr>
<td>14230</td>
<td>Steuerungstechnik der Werkzeugmaschinen und Industrieroboter</td>
</tr>
<tr>
<td>16250</td>
<td>Steuerungstechnik</td>
</tr>
<tr>
<td>33430</td>
<td>Anwendungen von Robotersystemen</td>
</tr>
<tr>
<td>41660</td>
<td>Angewandte Regelungstechnik in Produktionsanlagen</td>
</tr>
<tr>
<td>71870</td>
<td>IT-Architekturen in der Produktion</td>
</tr>
<tr>
<td>71880</td>
<td>Produktionstechnische Informationstechnologien</td>
</tr>
</tbody>
</table>
Modul: 14230 Steuerungstechnik der Werkzeugmaschinen und Industrieroboter

2. Modulkürzel: 072910003
3. Leistungspunkte: 6 LP
4. SWS: 4
5. Moduldauer: Einsemestrig
6. Turnus: Sommersemester
7. Sprache: Deutsch
8. Modulverantwortlicher: Michael Seyfarth
9. Dozenten: Alexander Verl

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Maschinenbau, PO 104-2011, 1. Semester
 ➞ Wahlmöglichkeit Gruppe 3: Produktion --> Vertiefungsmodulle
M.Sc. Maschinenbau Toyohashi Incoming Double Degree, PO 104TyI2011, 1. Semester
 ➞ Kern-/Ergänzungsfächer mit 6 LP --> Fertigungstechnik
 keramischer Bauteile, Verbundwerkstoffe und
 Oberflächentechnik --> Areas of Specialization
M.Sc. Maschinenbau Toyohashi Incoming Double Degree, PO 104TyI2011, 1. Semester
 ➞ Kernfächer mit 6 LP --> Steuerungstechnik --> Areas of
 Specialization
M.Sc. Maschinenbau Toyohashi Outgoing Double Degree, PO 104TyO2011, 1. Semester
 ➞ Kern-/Ergänzungsfächer mit 6 LP --> Steuerungstechnik
 ---> Gruppe: Mechatronik und Technische Kybernetik -->
 Spezialisierungsmodulle
M.Sc. Maschinenbau, PO 104-2011, 1. Semester
 ➞ Kern-/Ergänzungsfächer mit 6 LP --> Fertigungstechnik
 keramischer Bauteile, Verbundwerkstoffe und
 Oberflächentechnik --> Gruppe: Werkstoff- und
 Produktionstechnik --> Spezialisierungsmodulle
M.Sc. Maschinenbau Toyohashi Outgoing Double Degree, PO 104TyO2011, 1. Semester
 ➞ Kern-/Ergänzungsfächer mit 6 LP --> Elektronikfertigung
 ---> Gruppe: Mikrotechnik, Gerätetechnik und Technische Optik --
 > Spezialisierungsmodulle
M.Sc. Maschinenbau Toyohashi Outgoing Double Degree, PO 104TyO2011, 1. Semester
 ➞ Kern-/Ergänzungsfächer mit 6 LP --> Steuerungstechnik
 ---> Gruppe: Mechatronik und Technische Kybernetik
 ---> Spezialisierungsmodulle
M.Sc. Maschinenbau, PO 104-2011, 1. Semester
 ➞ Kernfächer mit 6 LP --> Steuerungstechnik
 ---> Gruppe: Mechatronik und Technische Kybernetik
 ---> Spezialisierungsmodulle
M.Sc. Maschinenbau Toyohashi Outgoing Double Degree, PO 104TyO2011, 1. Semester
 ➞ Kern-/Ergänzungsfächer mit 6 LP --> Fertigungstechnik
 keramischer Bauteile, Verbundwerkstoffe und
 Oberflächentechnik --> Gruppe: Werkstoff- und
 Produktionstechnik --> Spezialisierungsmodulle
M.Sc. Maschinenbau, PO 104-2011, 1. Semester

Stand: 19. Oktober 2017
11. Empfohlene Voraussetzungen:

Vorlesung "Steuerungstechnik mit Antriebstechnik" (Modul Regelungs- und Steuerungstechnik)

12. Lernziele:

13. Inhalt:

- Steuerungsarten (mechanisch, fluidisch, Numerische Steuerung, Robotersteuerung): Aufbau, Architektur, Funktionsweise.
- Mess-, Antriebs-, Regelungstechnik für Werkzeugmaschinen und Industrieroboter
- Kinematische und Dynamische Modellierung von Robotern und Parallelkinematiken.
- Praktikum zur Inbetriebnahme von Antriebssystemen und regelungstechnischer Einstellung.

15. Lehrveranstaltungen und -formen: 142301 Vorlesung mit Übung Steuerungstechnik der Werkzeugmaschinen und Industrieroboter

17. Prüfungsnummer/n und -name: 14231 Steuerungstechnik der Werkzeugmaschinen und Industrieroboter (PL), Schriftlich oder Mündlich, 120 Min., Gewichtung: 1

18. Grundlage für ...:

19. Medienform: Beamer, Overhead, Tafel

20. Angeboten von: Application of Simulation Technology in Manufacturing Engineering
Modul: 16250 Steuerungstechnik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072910002</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>5</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Michael Seyfarth</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- **M.Sc. Maschinenbau, PO 104-2011,**
 → Kernfächer mit 6 LP --> Steuerungstechnik --> Gruppe: Mechatronik und Technische Kybernetik --> Spezialisierungsmodule
- **M.Sc. Maschinenbau Tongji Incoming Double Degree, PO 104Tgli2011,**
 → Core Modules --> Steuerungstechnik --> Areas of Specialization
- **M.Sc. Maschinenbau Tongji Outgoing Double Degree, PO 104TgO2011,**
 → Kernfächer mit 6 LP --> Steuerungstechnik --> Gruppe: Mechatronik und Technische Kybernetik --> Areas of Specialization
- **M.Sc. Maschinenbau Toyohashi Incoming Double Degree, PO 104Tyl2011,**
 → Kern-/Ergänzungsfächer mit 6 LP --> Steuerungstechnik --> Areas of Specialization
- **M.Sc. Maschinenbau Toyohashi Outgoing Double Degree, PO 104TgO2011,**
 → Kern-/Ergänzungsfächer mit 6 LP --> Steuerungstechnik --> Gruppe: Mechatronik und Technische Kybernetik --> Areas of Specialization
- **M.Sc. Maschinenbau Toyohashi Outgoing Double Degree, PO 104TyO2011,**
 → Kernfächer mit 6 LP --> Steuerungstechnik --> Gruppe: Mechatronik und Technische Kybernetik --> Spezialisierungsmodule
- **M.Sc. Maschinenbau, PO 104-2011,**
 → Kern-/Ergänzungsfächer mit 6 LP --> Steuerungstechnik --> Gruppe: Mechatronik und Technische Kybernetik --> Spezialisierungsmodule
- **M.Sc. Maschinenbau Tongji Incoming Double Degree, PO 104Tgli2011,**
 → Kernfächer mit 6 LP --> Steuerungstechnik --> Areas of Specialization
- **M.Sc. Maschinenbau Toyohashi Outgoing Double Degree, PO 104TgO2011,**
 → Kern-/Ergänzungsfächer mit 6 LP --> Steuerungstechnik --> Gruppe: Mechatronik und Technische Kybernetik --> Spezialisierungsmodule

11. Empfohlene Voraussetzungen:

Keine besonderen Vorkenntnisse

12. Lernziele:

Die Studierenden kennen und verstehen den Aufbau, die Architekturen und die Funktionsweisen unterschiedlicher Steuerungssarten, wie mechanische Steuerungen, fluidische Steuerungen, Kontaktsteuerungen, Speicherprogrammierbare Steuerungen und bewegungserzeugende Steuerungen. Sie können beurteilen welche Steuerungart welche Aufgabenbereiche
abdeckt und wann welche Steuerungsart eingesetzt werden kann. Sie kennen die Programmierweisen und Programmiersprachen für die unterschiedlichen Steuerungsarten und können steuerungstechnische Problemstellungen methodisch lösen. Weiter beherrschen die Studierenden die Grundlagen der in der Automatisierungstechnik vorwiegend verwendeten Antriebssysteme (elektrisch, fluidisch) und können deren Einsatzbereiche und Einsatzgrenzen bestimmen.

13. Inhalt:
- Steuerungsarten (mechanisch, fluidisch, Kontaktsteuerung, SPS, Motion Control, Numerische Steuerung, Robotsteuerung, Leitsteuerung): Aufbau, Architektur, Funktionsweise, Programmierung.
- Darstellung und Lösung steuerungstechnischer Problemstellungen.
- Grundlagen der in der Automatisierungstechnik verwendeten Antriebssysteme (Elektromotoren, fluidische Antriebe).
- Typische praxisrelevante Anwendungsbeispiele.
- Praktikumsversuche zur Programmierung der verschiedenen Steuerungsarten.

14. Literatur:
- Pritschow, G.: Einführung in die Steuerungstechnik, Carl Hanser Verlag, München, 2006

15. Lehrveranstaltungen und -formen:
- 162502 Übung Steuerungstechnik
- 162503 Praktikum Steuerungstechnik
- 162501 Vorlesung Steuerungstechnik mit Antriebstechnik

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 48 h
- Selbststudiumszeit / Nacharbeitszeit: 132 h
- Gesamt: 180 h

17. Prüfungsnummer/n und -name:
- 16251 Steuerungstechnik (PL), Schriftlich, 120 Min., Gewichtung: 1
- 16252 Steuerungstechnik Praktikum (USL), Schriftlich oder Mündlich, 0 Min., Gewichtung: 1

18. Grundlage für ...:
- Steuerungstechnik der Werkzeugmaschinen und Industrieroboter

19. Medienform:
- Beamer, Overhead, Tafelanschrieb

20. Angeboten von:
- Steuerungstechnik der Werkzeugmaschinen und Fertigungseinrichtungen
Modul: 33430 Anwendungen von Robotersystemen

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Alexander Verl
9. Dozenten: Ralf Koepp
Martin Hägele

10. Zuordnung zum Curriculum in diesem Studiengang:
- M.Sc. Maschinenbau Tongji Incoming Double Degree, PO 104Tgl2011,
 → Core Modules -- Steuerungstechnik -- Areas of Specialization
- M.Sc. Maschinenbau Tongji Outgoing Double Degree, PO 104TgO2011,
 → Kern-/Ergänzungsfächer mit 6 LP -- Steuerungstechnik --
 Gruppe: Mechatronik und Technische Kybernetik -- Areas of Specialization
- M.Sc. Maschinenbau, PO 104-2011,
 → Zusatzmodule
- M.Sc. Maschinenbau, PO 104-2011,
 → Kern-/Ergänzungsfächer mit 6 LP -- Steuerungstechnik
 -- Gruppe: Mechatronik und Technische Kybernetik --
 Spezialisierungsmodul
- M.Sc. Maschinenbau Toyohashi Incoming Double Degree, PO 104Tyl2011,
 → Kern-/Ergänzungsfächer mit 6 LP -- Steuerungstechnik
 -- Areas of Specialization
- M.Sc. Maschinenbau Toyohashi Outgoing Double Degree, PO 104TyO2011,
 → Kern-/Ergänzungsfächer mit 6 LP -- Steuerungstechnik
 -- Gruppe: Mechatronik und Technische Kybernetik --
 Spezialisierungsmodul

11. Empfohlene Voraussetzungen:

12. Lernziele:

13. Inhalt:
- Robotersysteme - Anwendungen aus der Industrie:
 - Anwendungen von Robotersystemen in der Automobil- und allgemeinen Industrie
 - Roboterbasiertes thermisches Fügen, Fräsen, Biegen, Montieren
 - Roboter in der Logistik, Medizin und Weltraumtechnik
 - Sensorbasierte Regelung
 - Programmieren durch Vormachen
 - Steuerung kooperierender und nachgiebig geregelter Robotersysteme
 - Robotersysteme - Anwendungen aus der Servicerobotik
 - Anhand zahlreicher Produktbeispiele, aktueller Prototypen und Technologieträger erfolgt ein umfassender Überblick über die Schlüsseltechnologien der Servicerobotik.
• Die vermittelten Grundlagen ermöglichen, ein Servicerobotersystem zu konzipieren und zu entwickeln.
• Schlüsseltechnologien: Steuerungsarchitekturen, Sensoren, mobile Navigation, Handhaben und Greifen, Planung und maschinelles Lernen, Mensch-Maschine-Interaktion.
• Realisierungsbeispiele ("Case-Studies")

<table>
<thead>
<tr>
<th>14. Literatur:</th>
<th>Lernmaterialien werden verteilt</th>
</tr>
</thead>
</table>
| 15. Lehrveranstaltungen und -formen: | 334301 Vorlesung Robotersysteme - Anwendungen aus der Industrie
| | 334302 Vorlesung Robotersysteme - Anwendungen aus der Servicerobotik |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 42 Stunden
| | Selbststudium: 138 Stunden
| | Summe: 180 Stunden |
| 17. Prüfungsnummer/n und -name: | 33431 Robotersysteme - Anwendungen aus der Industrie (PL), Mündlich, 20 Min., Gewichtung: 1
| | 33432 Robotersysteme - Anwendungen aus der Servicerobotik (PL), Mündlich, 20 Min., Gewichtung: 1 |
| 18. Grundlage für ... : | |
| 19. Medienform: | |
| 20. Angeboten von: | Steuerungstechnik der Werkzeugmaschinen und Fertigungseinrichtungen |
Modul: 41660 Angewandte Regelungstechnik in Produktionsanlagen

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Alexander Verl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Alexander Verl</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 10. Zuordnung zum Curriculum in diesem Studiengang: | M.Sc. Maschinenbau Tongji Outgoing Double Degree, PO 104TgO2011,
 → Kern-/Ergänzungsfächer mit 6 LP --> Steuerungstechnik --> Gruppe: Mechatronik und Technische Kybernetik --> Areas of Specialization
M.Sc. Maschinenbau Toyohashi Outgoing Double Degree, PO 104TyO2011,
 → Kern-/Ergänzungsfächer mit 6 LP --> Steuerungstechnik --> Gruppe: Mechatronik und Technische Kybernetik --> Spezialisierungsmodul
M.Sc. Maschinenbau Toyohashi Incoming Double Degree, PO 104TylO2011,
 → Kern-/Ergänzungsfächer mit 6 LP --> Steuerungstechnik --> Areas of Specialization
M.Sc. Maschinenbau, PO 104-2011,
 → Kern-/Ergänzungsfächer mit 6 LP --> Steuerungstechnik --> Gruppe: Mechatronik und Technische Kybernetik --> Spezialisierungsmodul
M.Sc. Maschinenbau, PO 104-2011,
 → Zusatzmodule
M.Sc. Maschinenbau Tongji Incoming Double Degree, PO 104Tgl2011,
 → Core Modules --> Steuerungstechnik --> Areas of Specialization |
| 11. Empfohlene Voraussetzungen: | Grundlagen in Regelungstechnik und Systemtheorie, beispielsweise:
 - Übertragungsfunktionen aus einfachen Differentialgleichungen aufstellen können. (→ Laplacetransformation)
 - Übertragungsfunktionen einfacher Übertragungsglieder im Bode-Diagramm generieren und interpretieren können.
 - Blockschaltbilder aus einfachen Systemgleichungen oder Übertragungsfunktionen erstellen können.
 - Systeme/ Systemgleichungen hinsichtlich Stabilität interpretieren können.
 - Grundlegende Bestandteile eines Regelkreises benennen und einfache Regelkreise aufstellen können.
 - Funktionsweise einfacher Regler (bspw. PID-Regler) erläutern können.
 - Unterschied zwischen Regelung und Steuerung benennen können. |
 - Elektromechanische Vorschubachsen als Kombination aus PT1- und n PT2-Gliedern modellieren und identifizieren können. |
Sowie den Einfluss der einzelnen realen Komponenten auf die Systemstruktur und -parameter erläutern und abschätzen können.

- Industriell eingesetzte Reglerstrukturen für eine elektromechanische Vorschubachse entwerfen und implementieren können.

- Das Zusammenspiel zwischen Stell- und Regelgrößen sowie elektrischem Antrieb und mechanischem Maschinenaufbau erkennen und gegenseitige Beeinflussungen abschätzen können.

13. Inhalt:

- Modellbildung und Identifikation einer elektromechanischen Vorschubachse einer Werkzeugmaschine.
- Regelung der Vorschubachse mit aktuell in der Produktion eingesetzten Regelungsverfahren. Aufbau und Parametrierung der Regler.

ACHTUNG: die Teilnehmerzahl ist auf 20 Studierende beschränkt. Die Modalität zur Anmeldung ist der Institutshomepage zu entnehmen (http://www.isw.uni-stuttgart.de/lehre/lehrveranstaltungen/angewandte-regelungstechnik-in-produktionsanlagen/?L=0Spin-offs)

14. Literatur:

Lernmaterialien und Literaturlisten für Sekundärliteratur werden verteilt.

15. Lehrveranstaltungen und -formen:

- 416601 Vorlesung mit integriertem Seminar Angewandte Regelungstechnik in Produktionsanlagen

16. Abschätzung Arbeitsaufwand:

| Präsenzzeit: 42 Stunden | Selbststudium: 138 Stunden | Summe: 180 Stunden |

17. Prüfungsnr/n und -name:

41661 Angewandte Regelungstechnik in Produktionsanlagen (PL), Mündlich, 30 Min., Gewichtung: 1

18. Grundlage für ...

19. Medienform:

20. Angeboten von:

Steuerungstechnik und Mechatronik für Produktionssysteme
Modul: 71870 IT-Architekturen in der Produktion

2. Modulkürzel: 072920002
5. Moduldauser: Einsemestrig
3. Leistungspunkte: 6 LP
6. Turnus: Wintersemester
4. SWS: 4
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Oliver Riedel
9. Dozenten: Oliver Riedel

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>Modulverantwortlicher</th>
<th>Modulverantwortlicher</th>
<th>Modulverantwortlicher</th>
<th>Modulverantwortlicher</th>
</tr>
</thead>
</table>

11. Empfohlene Voraussetzungen: Grundkenntnisse der Informatik, Steuerungsaufbau- und Kommunikationstechnik (Steuerungstechnik II)

12. Lernziele:

- Die Studierenden
 - kennen die Grundlagen moderner IT-Architekturen für die Produktion und können diese eigenständig für die Entwicklung und Auslegung kleinerer IT-Architekturen in der Produktion verwenden,
 - beherrschen die Grundlagen und Methoden der Projektierung von IT-Architekturen in der Produktion,
 - kennen verschiedene Hardware-Architekturen und können diese in den Kontext der produktionstechnischen Informationstechnologien einordnen,
 - kennen verschiedene Methoden zum Entwurf von softwarebasierten Systemen und Software-Entwicklungsmethoden,
können auf Basis der erlernten Grundlagen und Methoden kleinere Software-Projekte für die Produktion projektieren und durchführen.

13. Inhalt:
• Einführung in IT-Architekturen mit Bezug zu produktionstechnischen Fragestellungen
• Übersicht prinzipieller IT-Architekturen von der Cloud bis zum Mikrocontroller
• Grundlagen der IT-Architekturen in der Produktion für cloudbasierte Systeme, Cluster, Industrierechner, Automatisierungstechnik, Embedded Systems, Mikrocontroller, FPGA
• Grundlagen von Kommunikations- und Netzwerktechnik in der Produktion
• Methoden der Software-Entwicklung für Produktionssysteme inkl. Anforderungsmanagement, Versionsmanagement, Dokumentation, Testing und Deployment
• Methoden der Software-Entwicklung im Team
• Übersicht über Programmiersprachen und integrierte Entwicklungsumgebungen für produktionsorientierte IT-Architekturen
• Alle Vorlesungsinhalte werden anhand praktischer Beispiele aus der industriellen Anwendung in Übungen vertieft

14. Literatur:
Manuskript und Übungsaufgaben in digitaler Form

15. Lehrveranstaltungen und -formen:
• 718701 Vorlesung IT-Architekturen in der Produktion
• 718702 Übung IT-Architekturen in der Produktion

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 34 Stunden
Übungen: 16 Stunden
Selbststudium: 130 Stunden
Summe: 180 Stunden

17. Prüfungsnummer/n und -name:
71871 IT-Architekturen in der Produktion (PL), Gewichtung: 1

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Produktionstechnische Informationstechnologien
Modul: 71880 Produktionstechnische Informationstechnologien

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072920002</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Oliver Riedel</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Oliver Riedel</td>
</tr>
</tbody>
</table>
| 10. Zuordnung zum Curriculum in diesem Studiengang: | M.Sc. Maschinenbau TongjiIncoming Double Degree, PO 104Tgl2011,
→ Core Modules --> Steuerungstechnik --> Areas of Specialization
M.Sc. Maschinenbau Tongji Outgoing Double Degree, PO 104TgO2011,
→ Kern-/Ergänzungsfächer mit 6 LP --> Steuerungstechnik --> Gruppe: Mechatronik und Technische Kybernetik --> Areas of Specialization
M.Sc. Maschinenbau Tongji Outgoing Double Degree, PO 104TgO2011,
→ Kernfächer mit 6 LP --> Steuerungstechnik --> Gruppe: Mechatronik und Technische Kybernetik --> Areas of Specialization
M.Sc. Maschinenbau, PO 104-2011,
→ Kern-/Ergänzungsfächer mit 6 LP --> Steuerungstechnik --> Gruppe: Mechatronik und Technische Kybernetik --> Spezialisierungsmodul
M.Sc. Maschinenbau Toyohashi Outgoing Double Degree, PO 104TyO2011,
→ Kernfächer mit 6 LP --> Steuerungstechnik --> Gruppe: Mechatronik und Technische Kybernetik --> Spezialisierungsmodul
M.Sc. Maschinenbau, PO 104-2011,
→ Kernfächer mit 6 LP --> Steuerungstechnik --> Gruppe: Mechatronik und Technische Kybernetik --> Spezialisierungsmodul
M.Sc. Maschinenbau Toyohashi Outgoing Double Degree, PO 104TyO2011,
→ Kern-/Ergänzungsfächer mit 6 LP --> Steuerungstechnik --> Gruppe: Mechatronik und Technische Kybernetik --> Spezialisierungsmodul |
| 11. Empfohlene Voraussetzungen: | |
• können auf Basis eines modularen Ansatzes für das Informationsmanagement in der Produktion neue Informationsprozesse planen,
• Kennen den projektbezogenen Planungs- und Steuerungsprozess für die Einführung und Umsetzung von IT-Projekten in der Produktion,
• Erkennen die Auswirkungen von "Industrie 4.0" auf die productionstechnischen Informationstechnologien.

13. Inhalt:
• Einführung in die Informations-Prozesse und die Informations-Technik in der Produktion sowie deren Einordnung in das Unternehmensmodell
• Grundlagen des Wertstroms und der Prozessmodellierung sowie Einführung in die Prozessmodellierung (BPM)
• Grundlagen der Modularisierung von Informations-Prozessen und Informations-Techniken in der Produktion
• Einführung in digitale Methoden der Fertigungsplanung, Einführung von AutomationML und deren Auswirkungen
• Einführung in die Shopfloor-IT und in OPC UA
• Kopplung von AutomationML und OPC UA zur Virtuellen Inbetriebnahme
• Management-Grundlagen der Planungs- und Steuerungsprozesse für IT-Projekte in der Produktion
• Alle Inhalte werden anhand praktischer Beispiele aus der industriellen Anwendung vertieft

14. Literatur:
Manuskript und Übungsaufgaben in digitaler Form

15. Lehrveranstaltungen und -formen:
• 718801 Vorlesung Produktionstechnische Informationstechnologien
• 718802 Übung Produktionstechnische Informationstechnologien

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 Stunden, davon ca. 8 Stunden Übungen
Selbststudium: 138 Stunden
Summe: 180 Stunden

17. Prüfungsnummer/n und -name:
71881 Produktionstechnische Informationstechnologien (PL), Gewichtung: 1

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
Produktionstechnische Informationstechnologien
1132 Practical Work

Zugeordnete Module: 33890 Praktikum Steuerungstechnik
Modul: 33890 Praktikum Steuerungstechnik

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3 LP</td>
<td>6. Turnus:</td>
<td>Wintersemester/ Sommersemester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Alexander Verl

9. Dozenten: Peter Klemm

10. Zuordnung zum Curriculum in diesem Studiengang:

- M.Sc. Maschinenbau Toyohashi Incoming Double Degree, PO 104TyI2011, ➔ Steuerungstechnik --> Areas of Specialization
- M.Sc. Maschinenbau TongjiIncoming Double Degree, PO 104Tgl2011, ➔ Practical Work --> Steuerungstechnik --> Areas of Specialization
- M.Sc. Maschinenbau Tongji Outgoing Double Degree, PO 104TgO2011, ➔ Steuerungstechnik --> Gruppe: Mechatronik und Technische Kybernetik --> Areas of Specialization
- M.Sc. Maschinenbau, PO 104-2011, ➔ Steuerungstechnik --> Gruppe: Mechatronik und Technische Kybernetik --> Spezialisierungsmodule
- M.Sc. Maschinenbau Toyohashi Outgoing Double Degree, PO 104TyO2011, ➔ Steuerungstechnik --> Gruppe: Mechatronik und Technische Kybernetik --> Spezialisierungsmodule

11. Empfohlene Voraussetzungen:

12. Lernziele: Die Studierenden sind in der Lage theoretische Vorlesungsinhalte der Steuerungstechnik anzuwenden und in der Praxis umzusetzen.

13. Inhalt:

 - Konfigurierung einer Motion Control: das Praktikum vermittelt den Einsatz einer Motion Control anhand der Beispielapplikation "Fliegende Säge."
 - Simulation mit MATLAB: Im Rahmen dieses Versuchs wird ein Einblick in die Leistungsfähigkeit moderner Simulationssysteme am Beispiel der MATLAB-Programmtools gegeben. Die Aufgabe ist es, mit MATLAB einen Lageregel für eine Werkzeugmaschine zu entwerfen und seine Parameter zu optimieren.
 - Hardware-in-the-Loop Simulation einer Werkzeugmaschine (Kinematik): im Praktikum wird die Vorgehensweise zur Erstellung von kinematischen Modellen am Beispiel einer
Werkzeugmaschine erläutert. Das entstandene Modell wird am Ende mit einem realen Steuerungssystem angesteuert.

- Programmierung eines Industrieroboters: In diesem Versuch werden die allgemeinen Konzepte der Roboterprogrammierung vorgestellt und am Beispiel eines realen Roboters gezeigt.
- Programmierung einer Werkzeugmaschine: Der Praktikumsversuch soll die Vorgehensweise bei der manuellen NC-Programmierung nach DIN 66025 aufzeigen und derjenigen bei der rechnerunterstützten mittels EXAPTplus Interaktiv gegenüberstellen. Die Vorgehensweise der manuellen wie der rechnerunterstützten NCProgrammierung wird anhand eines Beispielwerkstücks zur 2.5-achsigen Fräsbearbeitung auf einer fünfachsigen Werkzeugmaschine dargestellt.

14. Literatur: Lernmaterialien werden verteilt

15. Lehrveranstaltungen und -formen:
- 338905 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 1
- 338908 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 4
- 338907 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 3
- 338906 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 2
- 338904 Spezialisierungsfachversuch 4
- 338903 Spezialisierungsfachversuch 3
- 338901 Spezialisierungsfachversuch 1
- 338902 Spezialisierungsfachversuch 2

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 30 Stunden
Selbststudium/Nacharbeitszeit: 60 Stunden
Summe: 90 Stunden

17. Prüfungsnummer/n und -name: 33891 Praktikum Steuerungstechnik (USL), Schriftlich oder Mündlich, Gewichtung: 1

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Steuerungstechnik der Werkzeugmaschinen und Fertigungseinrichtungen
1140 Systemdynamik

Zugeordnete Module:

1141 Core Modules
1142 Practical Work
1141 Core Modules

Zugeordnete Module:

- 12330 Elektrische Signalverarbeitung
- 12350 Echtzeitdatenverarbeitung
- 29900 Dynamik verteiltparametrischer Systeme
- 33100 Modellierung und Identifikation dynamischer Systeme
- 33190 Numerische Methoden der Optimierung und Optimalen Steuerung
- 33820 Flat Systems
- 33830 Dynamik ereignisdiskreter Systeme
- 33840 Dynamische Filterverfahren
Modul: 12330 Elektrische Signalverarbeitung

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>074711010</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Cristina Tarin Sauer</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Cristina Tarin Sauer</td>
</tr>
</tbody>
</table>

Zuordnung zum Curriculum in diesem Studiengang:

- **M.Sc. Maschinenbau Tongji Incoming Double Degree, PO 104TgI2011,**
 - Core Modules --> Systemdynamik --> Areas of Specialization
 - Kern-/Ergänzungsfächer mit 6 LP --> Systemdynamik --> Gruppe: Mechatronik und Technische Kybernetik --> Areas of Specialization
- **M.Sc. Maschinenbau Tongji Outgoing Double Degree, PO 104TgO2011,**
 - Kern-/Ergänzungsfächer mit 6 LP --> Kraftfahrzeugmechatronik --> Gruppe: Fahrzeug- und Motorentechnik --> Spezialisierungsmodule
- **M.Sc. Maschinenbau Toyohashi Outgoing Double Degree, PO 104TyO2011,**
 - Kern-/Ergänzungsfächer mit 6 LP --> Kraftfahrzeugmechatronik --> Areas of Specialization
- **M.Sc. Maschinenbau Toyohashi Incoming Double Degree, PO 104TyI2011,**
 - Kern-/Ergänzungsfächer mit 6 LP --> Systemdynamik --> Gruppe: Mechatronik und Technische Kybernetik --> Spezialisierungsmodul
- **M.Sc. Maschinenbau, PO 104-2011,**
 - Kern-/Ergänzungsfächer mit 6 LP --> Kraftfahrzeugmechatronik --> Gruppe: Fahrzeug- und Motorentechnik --> Spezialisierungsmodul
- **M.Sc. Maschinenbau Toyohashi Outgoing Double Degree, PO 104TyO2011,**
 - Kern-/Ergänzungsfächer mit 6 LP --> Systemdynamik --> Gruppe: Mechatronik und Technische Kybernetik --> Spezialisierungsmodul
- **M.Sc. Maschinenbau Toyohashi Outgoing Double Degree, PO 104TyO2011,**
 - Kern-/Ergänzungsfächer mit 6 LP --> Systemdynamik --> Gruppe: Fahrzeug- und Motorentechnik --> Areas of Specialization
- **M.Sc. Maschinenbau Tongji Outgoing Double Degree, PO 104TgO2011,**
 - Kern-/Ergänzungsfächer mit 6 LP --> Systemdynamik --> Gruppe: Fahrzeug- und Motorentechnik --> Areas of Specialization
- **M.Sc. Maschinenbau Toyohashi Outgoing Double Degree, PO 104TyO2011,**
 - Kern-/Ergänzungsfächer mit 6 LP --> Systemdynamik --> Areas of Specialization
- **M.Sc. Maschinenbau, PO 104-2011,**
 - Kern-/Ergänzungsfächer mit 6 LP --> Systemdynamik --> Areas of Specialization
- **M.Sc. Maschinenbau Toyohashi Outgoing Double Degree, PO 104TyO2011,**
 - Kern-/Ergänzungsfächer mit 6 LP --> Systemdynamik --> Areas of Specialization
- **M.Sc. Maschinenbau, PO 104-2011,**
 - Kern-/Ergänzungsfächer mit 6 LP --> Systemdynamik --> Areas of Specialization

11. Empfohlene Voraussetzungen:
Das Modul Einführung in die Elektrotechnik I und II ist von Vorteil.

12. Lernziele:
Die Studierenden kennen die passiven und aktiven Bauelemente der Elektronik und können Schaltungen mit diesen Bauteilen.

13. Inhalt:
- Grundlagen
 - Gleichstrom
 - Wechselstrom
- Halbleiter-Bauelemente
 - Diode
 - Transistor
 - Operationsverstärker
- Signale und Systeme
 - Transformation der unabhängigen Variablen
 - Grundsignale
 - LTI-Systeme
- Zeitkontinuierliche Transformationen
 - Fourier-Analyse zeitkontinuierlicher Signale und Systeme
 - Laplace-Transformation
- Zeitdiskrete Transformationen
 - Zeitdiskrete Fourier-Transformation
 - Z-Transformation
- Abtastung
 - Zeitdiskrete Verarbeitung zeitkontinuierlicher Signale
- Analoge Filter
 - Ideale und nichtideale frequenzselektive Filter
 - Zeitkontinuierliche frequenzselektive Filter
 - Filterentwurf
- Analoge Modulationen
 - Amplitudenmodulation
 - Winkelmodulation

14. Literatur:
- Vorlesungsumdruck (Vorlesungsfolien)
- Übungsblätter
- Aus der Bibliothek:
 - Tietze und Schenk: Halbleiter-Schaltungstechnik
 - Oppenheim and Willsky: Signals and Systems
 - Oppenheim and Schafer: Digital Signal Processing
- Weitere Literatur wird in der Vorlesung bekannt gegeben.

15. Lehrveranstaltungen und -formen:
- 123301 Vorlesung Elektrische Signalverarbeitung: Vorlesung mit integrierten Vortragsübungen

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 42h
- Nachbereitungszeit: 138h
- Gesamt: 180h
4 SWS gegliedert in 2 VL und 2 Ü

17. Prüfungsnummer/n und -name:
- 12331 Elektrische Signalverarbeitung (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ...
- Echtzeitsignalverarbeitung Dynamische Filterverfahren

19. Medienform:
- Beamer-Präsentation, Tafelnschrieb, Vortragsübungen

20. Angeboten von:
- Prozessleitechnik im Maschinenbau
Modul: 12350 Echtzeitdatenverarbeitung

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>074711020</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>5</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>Zweisemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Cristina Tarin Sauer</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Cristina Tarin Sauer</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

M.Sc. Maschinenbau Toyohashi Incoming Double Degree, PO 104Tyl2011,
- Kern-/Ergänzungsfächer mit 6 LP -->
 - Kraftfahrzeugmechatronik --> Areas of Specialization

M.Sc. Maschinenbau, PO 104-2011,
- Kern-/Ergänzungsfächer mit 6 LP --> Systemdynamik
 - Gruppe: Mechatronik und Technische Kybernetik --> Spezialisierungsmodulle

M.Sc. Maschinenbau Toyohashi Incoming Double Degree, PO 104TyO2011,
- Kern-/Ergänzungsfächer mit 6 LP --> Systemdynamik --> Core Modules
 - Gruppe: Fahrzeug- und Motorentechnik --> Spezialisierungsmodule

M.Sc. Maschinenbau Tongji Incoming Double Degree, PO 104TgI2011,
- Kern-/Ergänzungsfächer mit 6 LP --> Systemdynamik --> Core Modules
 - Gruppe: Mechatronik und Technische Kybernetik --> Areas of Specialization

M.Sc. Maschinenbau Tongji Outgoing Double Degree, PO 104TgO2011,
- Kern-/Ergänzungsfächer mit 6 LP --> Systemdynamik --> Core Modules
 - Gruppe: Fahrzeug- und Motorentechnik --> Areas of Specialization

M.Sc. Maschinenbau, PO 104-2011,
- Kern-/Ergänzungsfächer mit 6 LP --> Systemdynamik
 - Gruppe: Fahrzeug- und Motorentechnik --> Spezialisierungsmodule

M.Sc. Maschinenbau Toyohashi Outgoing Double Degree, PO 104TyO2011,
- Kern-/Ergänzungsfächer mit 6 LP --> Systemdynamik
 - Gruppe: Fahrzeug- und Motorentechnik --> Areas of Specialization

M.Sc. Maschinenbau Toyohashi Outgoing Double Degree, PO 104TgO2011,
- Kern-/Ergänzungsfächer mit 6 LP --> Systemdynamik
 - Gruppe: Fahrzeug- und Motorentechnik --> Areas of Specialization

11. Empfohlene Voraussetzungen:

Modul Elektrische Signalverarbeitung

12. Lernziele:

Die Studierenden kennen Systeme zur Echtzeit-Daten- und Signalverarbeitung sowie verschiedene Strukturen für zeitdiskrete Systeme und können deren Vor- und Nachteile bei der Implementierung bewerten. Die Studierenden beherrschen die verschiedenen Techniken des digitalen Filterentwurfs für IIR wie auch für FIR Filter. Mittels der diskreten Fourier-Transformation und effizienter Algorithmen (Fast Fourier Transformation) können die Studierenden eine Frequenzanalyse durchführen und
unterschiedliche Aspekte der Ergebnisse bewerten. Die Studierenden verstehen, wie digitale Modulationen und Echtzeit-Kommunikationssysteme zu bewerten sind.

Im Praktikum lernen die Studierenden die Programmierung von Echtzeit-Anwendungen mittels digitalen Signal-Prozessoren (DSPs) und Mikrocontrollern. Digitale Regelungen werden in das Konzept integriert. Auch werden die Kenntnisse des digitalen Filterentwurfs durch reale Anwendungen vertieft.

Überblick:

- Einführung in die Echtzeitdatenverarbeitung
- Strukturen für zeitdiskrete Systeme
- Filterentwurf
- Frequenzanalyse und Fast Fourier Transformation
- Modulationen

13. Inhalt:

- Einführung in die Echtzeit-Datenverarbeitung
 - Systeme zur Echtzeit-Datenverarbeitung
 - Analoge Schnittstellen
 - Digitale Signalprozessoren DSP
 - DSP-Systementwicklung
- Strukturen zeitdiskreter Systeme
 - LTI-Systeme und ihre Darstellung im Blockdiagramm
 - Strukturen von IIR- und FIR-Filtern
 - Auswirkung der endlichen Rechengenauigkeit
- Filterentwurf
 - Entwurf von zeitdiskreten FIR-Filtern: Fenstermethode, Eigenschaften der Fenster, Kaiser-Fenster
- Frequenzanalyse und Fast Fourier Transformation
 - Fourier-Reihenentwicklung und Fourier-Transformation
 - Die Diskrete Fourier-Transformation DFT
 - Fast Fourier Transformation FFT
 - Anwendungen
- Modulationen
 - Einführung in die digitalen Modulationen: Signalraum
 - Digitale Übertragung über den verrauschte Kanäle

14. Literatur:

- Vorlesungsumdruck bzw. Folien
- Übungsblätter
- Merkblätter
- Aus der Bibliothek:
 - S. M. Kuo, W. S. Gan: Digital Signal Processors, Prentice Hall
 - A. V. Oppenheim, R. W. Schafer: Zeitdiskrete Signalverarbeitung, Oldenbourg
 - weitere Literatur wird in der Vorlesung bekannt gegeben
- Praktikums-Versuchsanleitungen

15. Lehrveranstaltungen und -formen:

- 123501 Vorlesung Echtzeitdatenverarbeitung mit integrierten Vortragsübungen
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 52 h (incl. Übung)
Selbststudiumszeit / Nacharbeitszeit: 128 h
Gesamt: 180 h
4 SWS gegliedert in 2 VL und 2 Ü |
|---|---|
| 17. Prüfungsnummer/n und -name: | • 12351 Echtzeidatenverarbeitung (PL), Schriftlich, 120 Min., Gewichtung: 1
• 12352 Echtzeitdatenverarbeitung USL (USL), Sonstige, Gewichtung: 1
Studienleistung: Teilnahme am Praktikum |
| 18. Grundlage für ... : | Dynamische Filterverfahren |
| 19. Medienform: | Beamer-Präsentation, Tafelanschrieb, Overhead-Projektor, Rechnerdemos |
| 20. Angeboten von: | Prozessleittechnik im Maschinenbau |
Modul: 29900 Dynamik verteiltparametrischer Systeme

2. Modulkürzel: 074710011
5. Moduldauer: Einsemestrig

3. Leistungspunkte: 6 LP
6. Turnus: Sommersemester

4. SWS: 4
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Oliver Sawodny

9. Dozenten: Oliver Sawodny

10. Zuordnung zum Curriculum in diesem Studiengang:

 M.Sc. Maschinenbau, PO 104-2011,
 → Kernfächer mit 6 LP --> Systemdynamik --> Gruppe: Mechatronik und Technische Kybernetik --> Spezialisierungsmodule
 M.Sc. Maschinenbau Tongji Incoming Double Degree, PO 104Tgl2011,
 → Core Modules --> Systemdynamik --> Areas of Specialization
 M.Sc. Maschinenbau Tongji Outgoing Double Degree, PO 104TgO2011,
 → Kernfächer mit 6 LP --> Systemdynamik --> Gruppe: Mechatronik und Technische Kybernetik --> Areas of Specialization
 M.Sc. Maschinenbau Tongji Outgoing Double Degree, PO 104TgO2011,
 → Kern-/Ergänzungsfächer mit 6 LP --> Systemdynamik --> Gruppe: Mechatronik und Technische Kybernetik --> Areas of Specialization
 M.Sc. Maschinenbau Toyohashi Outgoing Double Degree, PO 104TyO2011,
 → Kernfächer mit 6 LP --> Systemdynamik --> Gruppe: Mechatronik und Technische Kybernetik --> Spezialisierungsmodule
 M.Sc. Maschinenbau, PO 104-2011,
 → Kern-/Ergänzungsfächer mit 6 LP --> Systemdynamik --> Gruppe: Mechatronik und Technische Kybernetik --> Spezialisierungsmodule
 M.Sc. Maschinenbau Toyohashi Incoming Double Degree, PO 104TylI2011,
 → Kern-/Ergänzungsfächer mit 6 LP --> Systemdynamik --> Areas of Specialization
 M.Sc. Maschinenbau Toyohashi Incoming Double Degree, PO 104TylI2011,
 → Kern-/Ergänzungsfächer mit 6 LP --> Systemdynamik --> Areas of Specialization
 M.Sc. Maschinenbau Toyohashi Outgoing Double Degree, PO 104TyO2011,
 → Kern-/Ergänzungsfächer mit 6 LP --> Systemdynamik --> Gruppe: Mechatronik und Technische Kybernetik --> Spezialisierungsmodule

11. Empfohlene Voraussetzungen:

 Vorlesung "Systemdynamik bzw. Systemdynamische Grundlagen der Regelungstechnik"

12. Lernziele:

 Die Studierenden können für verteiltparametrische Systeme geeignete Modellgleichungen formulieren und das System basierend auf dem verteiltparametrischen Ansatz analysieren und dessen allgemeine Lösung herleiten.

13. Inhalt:

 Die Vorlesung behandelt grundlegende Verfahren
zur Behandlung von Systemen mit verteilten Parametern. Es werden die gängigen Modellansätze eingeführt, analysiert und mittels geeigneter Ansätze gelöst. Im Mittelpunkt stehen Methoden zur Lösung von partiellen Differentialgleichungen mit
Modal-Transformation Methode der Greenschen Funktion Produktansatz Charakteristikenverfahren
Die in der Vorlesung vermittelten Methoden werden in den Übungen anhand konkreter Beispiele u. a. Wärmeleiter, Balkengleichung, Transportsystem und Wellengleichung erläutert.

14. Literatur:

15. Lehrveranstaltungen und -formen:
• 299001 Vorlesung Dynamik verteiltparametrischer Systeme
• 299002 Übung Dynamik verteiltparametrischer Systeme

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 Stunden Selbststudium: 138 Stunden Summe: 180 Stunden

17. Prüfungsnummer/n und -name:
29901 Dynamik verteiltparametrischer Systeme (PL), Schriftlich, 120 Min., Gewichtung: 1
Hilfsmittel: Alle nicht-elektronischen Hilfsmittel

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Systemdynamik
Modul: 33100 Modellierung und Identifikation dynamischer Systeme

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Oliver Sawodny</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Oliver Sawodny</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Zuordnung zum Curriculum in diesem Studiengang:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M.Sc. Maschinenbau Toyohashi Incoming Double Degree, PO 104TyI2011,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>→ Kernfächer mit 6 LP --> Systemdynamik --> Areas of Specialization</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M.Sc. Maschinenbau, PO 104-2011,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>→ Kernfächer mit 6 LP --> Systemdynamik --> Gruppe: Mechatronik und Technische Kybernetik --> Spezialisierungsmodule</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M.Sc. Maschinenbau Toyohashi Outgoing Double Degree, PO 104TyO2011,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>→ Kernfächer mit 6 LP --> Systemdynamik --> Gruppe: Mechatronik und Technische Kybernetik --> Spezialisierungsmodule</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M.Sc. Maschinenbau Tongji Incoming Double Degree, PO 104TgI2011,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>→ Kern-/Ergänzungsfächer mit 6 LP --> Systemdynamik --> Areas of Specialization</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M.Sc. Maschinenbau Tongji Outgoing Double Degree, PO 104TgO2011,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>→ Kern-/Ergänzungsfächer mit 6 LP --> Systemdynamik --> Gruppe: Mechatronik und Technische Kybernetik --> Areas of Specialization</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M.Sc. Maschinenbau Toyohashi Incoming Double Degree, PO 104TyI2011,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>→ Kern-/Ergänzungsfächer mit 6 LP --> Systemdynamik --> Areas of Specialization</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M.Sc. Maschinenbau Toyohashi Outgoing Double Degree, PO 104TyO2011,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>→ Kern-/Ergänzungsfächer mit 6 LP --> Systemdynamik --> Gruppe: Mechatronik und Technische Kybernetik --> Spezialisierungsmodule</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M.Sc. Maschinenbau, PO 104-2011,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>→ Kern-/Ergänzungsfächer mit 6 LP --> Systemdynamik --> Gruppe: Mechatronik und Technische Kybernetik --> Spezialisierungsmodule</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>M.Sc. Maschinenbau Tongji Outgoing Double Degree, PO 104TgO2011,</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>→ Kern-/Ergänzungsfächer mit 6 LP --> Systemdynamik --> Gruppe: Mechatronik und Technische Kybernetik --> Areas of Specialization</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen: Einführung in die Regelungstechnik

13. Inhalt: In der Vorlesung "Modellierung und Identifikation dynamischer Systeme" werden im ersten Abschnitt der Vorlesung die grundlegenden Verfahren der theoretischen Modellbildung eingeführt und wichtige Methoden zur Vereinfachung dynamischer Modelle erläutert. Nach dieser Einführung wird der überwiegende...

14. Literatur:
• Vorlesungsumdrucke
• Nelles: Nonlinear system identification: from classical approaches to neural networks and fuzzy models, Springer-Verlag, 2001
• Pentelon/Schoukens: System identification: a frequency domain approach, IEEE, 2001

15. Lehrveranstaltungen und -formen:
• 331001 Vorlesung Modellierung und Identifikation dynamischer Systeme
• 331002 Übung mit integriertem Rechnerpraktikum Modellierung und Identifikation dynamischer Systeme

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 Stunden
Selbststudium: 138 Stunden
Summe: 180 Stunden

17. Prüfungsnummer/n und -name:
33101 Modellierung und Identifikation dynamischer Systeme (PL), Schriftlich, 120 Min., Gewichtung: 1
Hilfsmittel der zweiteiligen Prüfung:
1. Teil: keine Hilfsmittel
2. Teil: Taschenrechner (nicht vernetzt, nicht programmierbar, nicht grafikfähig) gemäß Positivliste sowie alle nicht-elektronischen Hilfsmittel

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Systemdynamik
Modul: 33190 Numerische Methoden der Optimierung und Optimalen Steuerung

2. Modulkürzel: 074730001
5. Moduldauer: Einsemestrig

3. Leistungspunkte: 6 LP
6. Turnus: Sommersemester

4. SWS: 4
7. Sprache: Deutsch

8. Modulverantwortlicher: Dr.-Ing. Eckhard Arnold
9. Dozenten: Eckhard Arnold

10. Zuordnung zum Curriculum in diesem Studiengang:

M.Sc. Maschinenbau, PO 104-2011,
→ Kern-/Ergänzungsfächer mit 6 LP --> Systemdynamik -->
> Gruppe: Mechatronik und Technische Kybernetik --> Spezialisierungsmodule

M.Sc. Maschinenbau Tongji Outgoing Double Degree, PO 104TgO2011,
→ Kern-/Ergänzungsfächer mit 6 LP --> Systemdynamik -->
Gruppe: Mechatronik und Technische Kybernetik --> Areas of Specialization

M.Sc. Maschinenbau Toyohashi Outgoing Double Degree, PO 104TyO2011,
→ Kern-/Ergänzungsfächer mit 6 LP --> Systemdynamik -->
Gruppe: Mechatronik und Technische Kybernetik --> Spezialisierungsmodule

M.Sc. Maschinenbau Tongji Incoming Double Degree, PO 104TgI2011,
→ Kern-/Ergänzungsfächer mit 6 LP --> Systemdynamik -->
Gruppe: Mechatronik und Technische Kybernetik --> Areas of Specialization

M.Sc. Maschinenbau Toyohashi Incoming Double Degree, PO 104TyI2011,
→ Kern-/Ergänzungsfächer mit 6 LP --> Systemdynamik -->
Areas of Specialization

11. Empfohlene Voraussetzungen:
Einführung in die Regelungstechnik, Systemdynamik,
Grundkenntnisse Matlab/Simulink (z.B. Simulationstechnik)

12. Lernziele:
Die Studierenden sind in der Lage, Problemstellungen der Analyse und der Steuerung dynamischer Systeme als Optimierungsproblem zu formulieren und die Optimierungsaufgabe zu klassifizieren. Geeignete numerische Verfahren können ausgewählt und eingesetzt werden. Der praktische Umgang mit entsprechenden Softwarewerkzeugen wird anhand von Übungsaufgaben vermittelt.

13. Inhalt:

14. Literatur:
- Vorlesungsumdrucke
15. Lehrveranstaltungen und -formen:
- 331901 Vorlesung Numerische Methoden der Optimierung und Optimalen Steuerung
- 331902 Übung Numerische Methoden der Optimierung und Optimalen Steuerung

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 Stunden
Selbststudium: 138 Stunden
Summe: 180 Stunden

17. Prüfungsnummer/n und -name:
33191 Numerische Methoden der Optimierung und Optimalen Steuerung (PL), Mündlich, 30 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Systemdynamik
Modul: 33820 Flat Systems

4. SWS: 4 7. Sprache: Englisch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Oliver Sawodny
9. Dozenten: Oliver Sawodny

10. Zuordnung zum Curriculum in diesem Studiengang:

M.Sc. Maschinenbau, PO 104-2011,
 → Kernfächer mit 6 LP --> Systemdynamik --> Gruppe: Mechatronik und Technische Kybernetik --> Spezialisierungsmodul

M.Sc. Maschinenbau Toyohashi Incoming Double Degree, PO 104Tyl2011,
 → Kern-/Ergänzungsfächer mit 6 LP --> Systemdynamik --> Areas of Specialization

M.Sc. Maschinenbau Toyohashi Outgoing Double Degree, PO 104TyO2011,
 → Kern-/Ergänzungsfächer mit 6 LP --> Systemdynamik --> Gruppe: Mechatronik und Technische Kybernetik --> Spezialisierungsmodul

M.Sc. Maschinenbau Tongji Incoming Double Degree, PO 104Tgl2011,
 → Core Modules --> Systemdynamik --> Areas of Specialization

M.Sc. Maschinenbau, PO 104-2011,
 → Kern-/Ergänzungsfächer mit 6 LP --> Systemdynamik --> Gruppe: Mechatronik und Technische Kybernetik --> Spezialisierungsmodul

M.Sc. Maschinenbau, PO 104-2011,
 → Zusatzmodule

M.Sc. Maschinenbau Toyohashi Outgoing Double Degree, PO 104TyO2011,
 → Kernfächer mit 6 LP --> Systemdynamik --> Gruppe: Mechatronik und Technische Kybernetik --> Spezialisierungsmodul

M.Sc. Maschinenbau Tongji Outgoing Double Degree, PO 104Tgl2011,
 → Kernfächer mit 6 LP --> Systemdynamik --> Gruppe: Mechatronik und Technische Kybernetik --> Areas of Specialization

M.Sc. Maschinenbau Tongji Outgoing Double Degree, PO 104TgO2011,
 → Kern-/Ergänzungsfächer mit 6 LP --> Systemdynamik --> Gruppe: Mechatronik und Technische Kybernetik --> Areas of Specialization

M.Sc. Maschinenbau Toyohashi Incoming Double Degree, PO 104Tyl2011,
 → Kernfächer mit 6 LP --> Systemdynamik --> Areas of Specialization

11. Empfohlene Voraussetzungen:

Lectures "Einführung in die Regelungstechnik" and "Konzepte der Regelungstechnik"
Basic knowledge in state space techniques

12. Lernziele:

The students know methods for model-based design of tracking control for linear and nonlinear SISO (single-input-single-output) and MIMO (multiple-input-multiple-output) systems. By solving the
assigned exercises the students gain experience in the usage of computer algebra systems.

13. Inhalt:

Flatness based methods are used to plan reference trajectories. Moreover, model-based design of feedforward controllers and stabilizing feedback controllers for the tracking of the reference trajectory are realized. The corresponding 2-Degree-of-Freedom control structure consisting of feedforward and feedback controller is used to control linear time invariant systems, linear time varying systems and nonlinear SISO and MIMO systems. The methods are explained on various examples. For realizing the flatness based controller an introduction in the design of linear and nonlinear observer is given.

14. Literatur:

Exercises, Handouts

15. Lehrveranstaltungen und -formen:

- 338201 Vorlesung incl. Übungspräsentationen durch die Studierenden Flache Systeme

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 42 Stunden
Selbststudium: 138 Stunden
Summe: 180 Stunden

17. Prüfungsnummer/n und -name:

33821 Flat Systems (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ...

19. Medienform:

20. Angeboten von:

Systemdynamik
Modul: 33830 Dynamik ereignisdiskreter Systeme

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Cristina Tarin Sauer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Cristina Tarin Sauer</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 10. Zuordnung zum Curriculum in diesem Studiengang: | M.Sc. Maschinenbau Tongji Incoming Double Degree, PO 104TgI2011,
Core Modules --> Systemdynamik --> Areas of Specialization
M.Sc. Maschinenbau Toyohashi Incoming Double Degree, PO 104TyI2011,
Kern-/Ergänzungsfächer mit 6 LP --> Systemdynamik --> Areas of Specialization
M.Sc. Maschinenbau Tongji Outgoing Double Degree, PO 104TgO2011,
Kern-/Ergänzungsfächer mit 6 LP --> Systemdynamik --> Gruppe: Mechatronik und Technische Kybernetik --> Areas of Specialization
M.Sc. Maschinenbau Toyohashi Outgoing Double Degree, PO 104TyO2011,
Kern-/Ergänzungsfächer mit 6 LP --> Systemdynamik --> Gruppe: Mechatronik und Technische Kybernetik --> Spezialisierungsmodul
M.Sc. Maschinenbau, PO 104-2011,
Kern-/Ergänzungsfächer mit 6 LP --> Systemdynamik --> Gruppe: Mechatronik und Technische Kybernetik --> Spezialisierungsmodul |

11. Empfohlene Voraussetzungen:
- Informatik I
- Systemdynamik

12. Lernziele:
Die Studierenden kennen verschiedene Modellierungsansätze für die mathematische Modellierung dynamischer ereignisdiskreter Systeme, sie beherrschen insbesondere die Modellierung mit Automaten, mit Formalen Sprachen und mit Petri-Netzen, außerdem die optimale Regelung von endlichen Automaten.

13. Inhalt:
In dieser Vorlesung wird zunächst die ereignisdiskrete Denkweise eingeführt und die grundlegenden Eigenschaften diskreter Signale und Systeme diskutiert. Die Automatentheorie (deterministischer und nicht deterministischer Automaten) schafft die Basis für das Verständnis ereignisdiskreter Systeme. Schließlich führen kopplungsorientierte Darstellungsformen auf Petrinetze und Automatennetze.

Überblick:
- Einführung in die Modellierung and Analyse ereignisdiskreter Systeme
- Deterministische Automaten
- Nondeterministische Automaten
- Petrinetze
- Automatennetze

14. Literatur:
- Vorlesungsumdruck
- Übungsblätter
- Weitere Literatur wird in der Vorlesung bekannt gegeben.

15. Lehrveranstaltungen und -formen: 338301 Vorlesung und Übung Dynamik ereignisdiskreter Systeme

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 42 Stunden
- Selbststudium und Nacharbeit: 138 Stunden
- Gesamt: 180 Stunden

17. Prüfungsnummer/n und -name:
- 33831 Dynamik ereignisdiskreter Systeme (PL), Schriftlich, 90 Min., Gewichtung: 1

18. Grundlage für ...

19. Medienform:
- Vorlesungsfolien
- Tafelanschrieb
- Übungen
- Rechnerübungen und Rechnerdemos

20. Angeboten von: Prozessleittechnik im Maschinenbau
Modul: 33840 Dynamische Filterverfahren

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Cristina Tarin Sauer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Cristina Tarin Sauer</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:
- M.Sc. Maschinenbau, PO 104-2011,
 - Kern-/Ergänzungsfächer mit 6 LP --> Systemdynamik --> Gruppe: Mechatronik und Technische Kybernetik --> Spezialisierungsmodul
- M.Sc. Maschinenbau Toyohashi Outgoing Double Degree, PO 104TgO2011,
 - Kern-/Ergänzungsfächer mit 6 LP --> Systemdynamik --> Gruppe: Mechatronik und Technische Kybernetik --> Areas of Specialization
- M.Sc. Maschinenbau Toyohashi Outgoing Double Degree, PO 104TyO2011,
 - Kern-/Ergänzungsfächer mit 6 LP --> Systemdynamik --> Gruppe: Mechatronik und Technische Kybernetik --> Spezialisierungsmodul
- M.Sc. Maschinenbau Toyohashi Incoming Double Degree, PO 104Tyl2011,
 - Kern-/Ergänzungsfächer mit 6 LP --> Systemdynamik --> Areas of Specialization
- M.Sc. Maschinenbau Tongji Incoming Double Degree, PO 104TgI2011,
 - Kern-/Ergänzungsfächer mit 6 LP --> Systemdynamik --> Areas of Specialization

11. Empfohlene Voraussetzungen:
- Modul Einführung in die Elektrotechnik, Elektrische Signalverarbeitung, Echtzeitanalyse und Signalverarbeitung

12. Lernziele:

13. Inhalt:
- Einführung zur adaptiven Filterung
- Stochastische Prozesse und Modell
- Fourier-Analyse von stationären Zufallssignalen
- Wiener Filter
- Lineare Prädiktion
- Least-Mean-Square adaptive Filterung
- Kalman Filter

14. Literatur:
- Vorlesungsumdruck (Vorlesungsfolien)
- Übungsblätter
• Aus der Bibliothek:
 - Oppenheim and Schafer: Discrete-Time Signal Processing
 - Haykin: Adaptive Filter Theory
• Weitere Literatur wird in der Vorlesung bekannt gegeben

15. Lehrveranstaltungen und -formen:
• 338401 Vorlesung (inkl. Übungen) Dynamische Filterverfahren

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 Stunden
Selbststudium: 138 Stunden.
Summe: 180 Stunden
4 SWS gegliedert in 2 VL und 2 Ü

17. Prüfungsnummer/n und -name:
33841 Dynamische Filterverfahren (PL), Schriftlich, 90 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform:
Beamer-Präsentation, Tafelanschrieb

20. Angeboten von:
Prozessleittechnik im Maschinenbau
1142 Practical Work

Zugeordnete Module: 33880 Praktikum Systemdynamik
Modul: 33880 Praktikum Systemdynamik

2. Modulkürzel: 074711004
3. Leistungspunkte: 3 LP
4. SWS: 2
5. Moduldaurer: Einsemestrig
6. Turnus: Sommersemester
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Cristina Tarin Sauer
9. Dozenten: Cristina Tarin Sauer
10. Zuordnung zum Curriculum in diesem Studiengang:

 M.Sc. Maschinenbau Toyohashi Outgoing Double Degree, PO 104TyO2011,
 → Systemdynamik --> Gruppe: Mechatronik und Technische Kybernetik --> Spezialisierungsmodule

 M.Sc. Maschinenbau Toyohashi Incoming Double Degree, PO 104Tyl2011,
 → Systemdynamik --> Areas of Specialization

 M.Sc. Maschinenbau, PO 104-2011,
 → Systemdynamik --> Gruppe: Mechatronik und Technische Kybernetik --> Spezialisierungsmodule

 M.Sc. Maschinenbau Tongji Outgoing Double Degree, PO 104TgO2011,
 → Systemdynamik --> Gruppe: Mechatronik und Technische Kybernetik --> Areas of Specialization

 M.Sc. Maschinenbau Tongji Incoming Double Degree, PO 104Tgl2011,
 → Practical Work --> Systemdynamik --> Areas of Specialization

11. Empfohlene Voraussetzungen:

 • Einführung in die Regelungstechnik
 • Messtechnik in der Automatisierungstechnik
 • Systemdynamik

12. Lernziele:

13. Inhalt:

 Nähere Informationen zu den Praktischen Übungen: APMB erhalten Sie zudem unter
 http://www.uni-stuttgart.de/mabau/msc/msc_mach/linksunddownloads.html
 In verschiedenen Versuchen werden beispielhafte Regelungsaufgaben automatisierungstechnisch von der Verwendung von geeigneten Sensoren und Aktoren bis hin zur Implementierung der Regelalgorithmen in einer geeigneten Hard- und Softwareumgebung gezeigt:
 • Filter- und Kommunikationstechnik
 • Der bionische Handabgungsassistent (BHA)
 • Ball auf Platte
 • Modellierung und Regelung in der Leistungselektronik

14. Literatur:

 • Ausführliche Praktikumsskripte mit vorbereitenden Aufgaben
 • Datenblätter

15. Lehrveranstaltungen und -formen:

 • 338801 Praktikum Automatisierungstechnik

16. Abschätzung Arbeitsaufwand:

 Präsenzzeit: 30 h
Selbststudiums-/Nacharbeitszeit: 60 h
Gesamt: 90 h

<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>33881 Praktikum Systemdynamik (USL), Schriftlich oder Mündlich, Gewichtung: 1</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>18. Grundlage für ... :</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>19. Medienform:</th>
<th>Praktikumsskripte und Versuchsaufbauten</th>
</tr>
</thead>
</table>

| 20. Angeboten von: | Prozessleittechnik im Maschinenbau |
Modul: 72060 Module Tongji University

2. Modulkürzel:	-
3. Leistungspunkte:	60 LP
4. SWS:	-
5. Modul dauer:	-
6. Turnus:	-
7. Sprache:	-

8. Modulverantwortlicher:

9. Dozenten:

10. Zuordnung zum Curriculum in diesem Studiengang: M.Sc. Maschinenbau Tongji Outgoing Double Degree, PO 104TgO2011,
 M.Sc. Maschinenbau Tongji Incoming Double Degree, PO 104TgI2011,

11. Empfohlene Voraussetzungen:

12. Lernziele:

13. Inhalt:

14. Literatur:

15. Lehrveranstaltungen und -formen:

16. Abschätzung Arbeitsaufwand:

17. Prüfungsnummer/n und -name: 72061 Module Tongji University (PL), Gewichtung: 1

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 80210 Masterarbeit Maschinenbau

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>077271097</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>30 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>0</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Hansgeorg Binz</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Mindestens 72 erworbene Leistungspunkte</td>
</tr>
<tr>
<td>14. Literatur:</td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td></td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>900 h</td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td></td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Maschinenkonstruktionen und Getriebebau</td>
</tr>
</tbody>
</table>
Modul: 80480 Studienarbeit Maschinenbau

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>077271095</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>12 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>0</td>
</tr>
<tr>
<td>5. Modulstarter:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester/Sommersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Hansgeorg Binz</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td></td>
</tr>
</tbody>
</table>
M.Sc. Maschinenbau Tongji Incoming Double Degree, PO 104TgI2011, 2. Semester
M.Sc. Maschinenbau, PO 104-2011, 2. Semester
M.Sc. Maschinenbau Toyohashi Incoming Double Degree, PO 104Tyl2011, 3. Semester
M.Sc. Maschinenbau Tongji Outgoing Double Degree, PO 104TgO2011, 2. Semester |
| 11. Empfohlene Voraussetzungen: | |
| 13. Inhalt: | Inhalt: Individuelle Absprache
Innerhalb der Bearbeitungsfrist (6 Monate) ist die fertige Studienarbeit in schriftlicher Form bei der bzw. dem der Prüfer(in) abzugeben. Zusätzlich muss ein Exemplar in elektronischer Form eingereicht werden. Bestandteil der Studienarbeit ist der Besuch von mindestens 9 Seminarvorträgen (Teilnahmebestätigung auf Formblatt des Instituts) und ein eigener Vortrag von 20-30 Minuten Dauer über deren Inhalt. |
| 14. Literatur: | |
| 15. Lehrveranstaltungen und -formen: | • 804801 Studienarbeit, Seminar des Spezialisierungsfaches |
| 16. Abschätzung Arbeitsaufwand: | 360 Stunden |
| 17. Prüfungsnr. und -name: | |
| 18. Grundlage für ...: | |
| 19. Medienform: | |
| 20. Angeboten von: | Maschinenkonstruktionen und Getriebebau |