Modulhandbuch
Studiengang Bachelor of Science
Maschinelle Sprachverarbeitung
Prüfungsordnung: 2009

Wintersemester 2016/17
Stand: 10. Oktober 2016

Universität Stuttgart
Keplerstr. 7
70174 Stuttgart
Kontaktpersonen:

<table>
<thead>
<tr>
<th>Rolle</th>
<th>Person</th>
<th>Telefonnummer</th>
<th>E-Mail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studiendekan/in:</td>
<td>Univ.-Prof. Sebastian Pado</td>
<td></td>
<td>sebastian.pado@ims.uni-stuttgart.de</td>
</tr>
<tr>
<td></td>
<td>Institut für Maschinelle Sprachverarbeitung</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tel.:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Studiengangsmanager/in:</td>
<td>Stefanie Anstein</td>
<td>6858-1387</td>
<td>stefanie.anstein@ims.uni-stuttgart.de</td>
</tr>
<tr>
<td></td>
<td>Institut für Maschinelle Sprachverarbeitung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prüfungsausschussvorsitzende/r:</td>
<td>Apl. Prof. Uwe Reyle</td>
<td>6858-1361</td>
<td>uwe.reyle@ims.uni-stuttgart.de</td>
</tr>
<tr>
<td></td>
<td>Institut für Maschinelle Sprachverarbeitung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fachstudienberater/in:</td>
<td>Stefanie Anstein</td>
<td>6858-1387</td>
<td>stefanie.anstein@ims.uni-stuttgart.de</td>
</tr>
<tr>
<td></td>
<td>Institut für Maschinelle Sprachverarbeitung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stundenplanverantwortliche/r:</td>
<td>Roman Klinger</td>
<td></td>
<td>roman.klinger@ims.uni-stuttgart.de</td>
</tr>
<tr>
<td></td>
<td>Institut für Maschinelle Sprachverarbeitung</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Tel.:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>E-Mail:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Inhaltsverzeichnis

Präambel

Präambel ... 5

Qualifikationsziele

Qualifikationsziele .. 6

100 Basismodule

- 12060 Datenstrukturen und Algorithmen ... 8
- 15260 Einführung in die Maschinelle Sprachverarbeitung ... 10
- 13160 Grundlagen der Maschinellen Sprachverarbeitung .. 11
- 13170 Grundlagen der Syntax ... 13
- 10260 Programmierkurs ... 15
- 10280 Programmierung und Software-Entwicklung .. 17
- 10940 Theoretische Grundlagen der Informatik .. 19

200 Kernmodule

- 13960 Algorithmisches Sprachverstehen ... 22
- 10180 Information Retrieval und Text Mining .. 23
- 13270 Parsing .. 24
- 14000 Phonetik und Phonologie ... 25
- 13870 Semantik .. 26
- 14040 Sprachsynthese und Spracherkennung ... 27
- 40660 Statistische Sprachverarbeitung ... 28

300 Ergänzungsmodule

- 14270 Projekt Maschinelle Sprachverarbeitung ... 30
- 14290 Seminar Maschinelle Sprachverarbeitung .. 31

400 Schlüsselqualifikationen fachaffin

- 14300 Mathematik für die Maschinelle Sprachverarbeitung .. 33

610 Wahlbereich E/I

- 10020 Algorithmik ... 35
- 10060 Computergraphik .. 37
- 11640 Digitale Signalverarbeitung ... 39
- 56230 Empirische Methoden für Medieninformatik .. 41
- 17130 Entwurf digitaler Filter .. 42
- 10110 Grundlagen der Künstlichen Intelligenz ... 44
- 25610 Grundlagen des Software Engineerings ... 45
- 11670 Grundlagen integrierter Schaltungen .. 47
- 11680 Kommunikationsnetze I .. 48
- 29470 Machine Learning ... 50
- 31600 Machine learning for NLP ... 52
- 56210 Medieninformatik .. 53
- 10210 Mensch-Computer-Interaktion ... 54
- 10220 Modellierung .. 56
- 11490 Nachrichtentechnik .. 58
- 10240 Numerische und Stochastische Grundlagen .. 60
- 39040 Rechnernetze .. 62
- 46340 Signale und Systeme ... 64
- 10330 Systemkonzepte und -programmierung ... 65
- 40090 Systemkonzepte und -programmierung ... 67
620 Wahlbereich F ... 69
 68460 Bedeutung im Kontext ... 70
 29620 Fortgeschrittene Aspekte der Sprachperzeption und Sprachproduktion ... 71
 41070 Fortgeschrittene Methoden in der Maschinellen Sprachverarbeitung ... 72
 14220 Fortgeschrittene Sprachsynthese ... 73
 14260 Grundlagen der Signalverarbeitung in der Lautsprachverarbeitung ... 74
 68430 Grundlagentechnologien für die Sprachverarbeitung .. 75
 14170 Komputationelle Morphologie ... 76
 55960 Korpus-orientierte Ansätze in der Computerlinguistik .. 77
 41060 Lexikalische Semantik und Komputationelle Lexikographie .. 78
 60180 Sprache, Gehirn und Kognition .. 79
 56100 Tree Automata .. 81

630 Wahlbereich W ... 82
 21570 Einführung in die Praktische Philosophie - Nebenfach ... 83
 20050 Einführung in die Theoretische Philosophie - Nebenfach .. 84
 14340 Grundlagen der Praktischen Philosophie ... 85
 14350 Mensch und Technik .. 87
 14330 Sprache und Geist (Vertiefung Theoretische Philosophie) .. 89
 17240 Sprachwandel ... 91
 16700 Typologie .. 92
 46580 Varietäten des Deutschen .. 93

81380 Bachelorarbeit Maschinelle Sprachverarbeitung .. 94
Präambel

Der Studiengang MSV unterscheidet sich von rein computerlinguistischen Studiengängen dadurch, dass die sprachlichen und technischen Aspekte des Studiums gleichen Stellenwert haben. Ein tiefes Verständnis der linguistischen Grundlagen ist in der Maschinellen Sprachverarbeitung unabdingbar, gleichzeitig wird aber genau so viel Wert auf die mathematische und technische Grundausbildung gelegt, die sowohl in der Praxis als auch in der Forschung der Maschinellen Sprachverarbeitung gebraucht wird.

Wer den Bachelor MSV erworben hat, kann in allen Bereichen eingesetzt werden, in denen Sprachtechnologie erforderlich ist, in denen Kommunikationsprozesse mit mindestens einem menschlichen Partner automatisiert oder teilautomatisiert werden sollen, in denen Texte generiert, übersetzt oder analysiert werden, in denen klassische Systeme durch sprachbezogene Schnittstellen ergänzt oder ersetzt werden und in denen ganz allgemein sprachbezogene Benutzungsoberflächen erforderlich sind. Weiterhin kann er oder sie in vielen Bereichen der Informationsverarbeitung zum Einsatz kommen: bei Suchmaschinen, im Bereich des Text Mining, in Software-Unternehmen, die Textdatenbanken bauen, und in anderen Bereichen, in denen große Mengen von wissenschaftlichen oder geschäftlichen Daten in Textform gespeichert und verarbeitet werden.
Qualifikationsziele

Die Absolventinnen und Absolventen des Bachelorstudienganges Maschinelle Sprachverarbeitung

• haben linguistisches, mathematisches und informatisches Grundwissen erworben, das sie befähigt, Probleme der maschinellen Sprachverarbeitung zu lösen.
• verfügen über Fachwissen auf dem Gebiet der Maschinellen Sprachverarbeitung und können typische Aufgabenstellungen der Sprachverarbeitung beschreiben und lösen, analysieren und bewerten.
• haben ein Verständnis zu Forschungs- und Entwicklungsmethoden der Computerlinguistik und ihrer Anwendungsmöglichkeiten und verfügen über die Fertigkeit, Lösungen für Sprachverarbeitungssysteme zu erarbeiten.
• besitzen Verständnis zu in verschiedenen Aufgabenfeldern anwendbaren Methoden und Algorithmen der Maschinen Sprachverarbeitung.
• können mit SpezialistInnen verschiedener Disziplinen kommunizieren und zusammenarbeiten.

100 Basismodule

Zugeordnete Module:

- 10260 Programmierkurs
- 10280 Programmierung und Software-Entwicklung
- 10940 Theoretische Grundlagen der Informatik
- 12060 Datenstrukturen und Algorithmen
- 13160 Grundlagen der Maschinellen Sprachverarbeitung
- 13170 Grundlagen der Syntax
- 15260 Einführung in die Maschinelle Sprachverarbeitung
Modul: 12060 Datenstrukturen und Algorithmen

2. Modulkürzel: 051510005
5. Modulduauer: 1 Semester

3. Leistungspunkte: 9.0 LP
6. Turnus: jedes 2. Semester, SoSe

4. SWS: 6.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Daniel Weiskopf

9. Dozenten:
• Andrés Bruhn
• Thomas Ertl
• Stefan Funke
• Daniel Weiskopf

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Maschinelle Sprachverarbeitung, PO 2009, 2. Semester ➞ Basismodule

11. Empfohlene Voraussetzungen:
• Modul 10280 Programmierung und Software-Entwicklung

12. Lernziele:
Die Studierenden kennen nach engagierter Mitarbeit in dieser Veranstaltung diverse zentrale Algorithmen auf geeigneten Datenstrukturen, die für eine effiziente Nutzung von Computern unverzichtbar sind. Sie können am Ende zu gängigen Problemen geeignete programmiersprachliche Lösungen angeben und diese in einer konkreten Programmiersprache formulieren.

Die Lernziele lassen sich wie folgt zusammenfassen:
• Kenntnis der Eigenschaften elementarer und häufig benötigter Algorithmen
• Verständnis für die Auswirkungen theoretischer und tatsächlicher Komplexität
• Erweiterung der Kompetenz im Entwurf und Verstehen von Algorithmen und der zugehörigen Datenstrukturen
• Erste Begegnung mit nebenläufigen Algorithmen

13. Inhalt:
Es werden die folgenden Themen behandelt:
• Vorgehensweise bei der Entwicklung und Implementierung von Algorithmen
• Komplexität und Effizienz von Algorithmen, O-Notation
• Listen (Stack, Queue, doppelt verkettete Listen)
• Sortierverfahren (Selection-, Insertion-, Bubble-, Merge-, Quick-Sort)
• Bäume (Binär-, AVL-, 2-3-4-, Rot-Schwarz-, B-Bäume, Suchbäume, Traversierung, Heap)
• Räumliche Datenstrukturen (uniforme Gitter, Oktal-, BSP-, kD-, CSG-Bäume, Bounding-Volumes)
• Graphen (Datenstrukturen, DFS, BFS, topologische Traversierung, Dijkstra-, A*-Bellman-Ford-Algorithmen, minimale Spannbäume, maximaler Fluss)
• Räumliche Graphen (Triangulierung, Voronoi, Delaunay, Graph-Layout)
• Textalgorithmen (String-Matching, Knuth-Morris-Pratt, Boyer-Moore, reguläre Ausdrücke, Levenshtein-Distanz)
• Hashing (Hashfunktionen, Kollisionen)
• Verteilte Algorithmen (Petri-Netze, Programmieren nebeneinläufiger Abläufe, einige parallele und parallelisierte Algorithmen)
• Algorithmentwurf und -muster (inkrementell, greedy, divide-and-conquer, dynamische Programmierung, Backtracking, randomisierte Algorithmen)
• Maschinelles Lernen (überwachtes Lernen, Entscheidungsbäume, SVM, neuronale Netze; unüberwachtes Lernen, k-Means)

14. Literatur:

15. Lehrveranstaltungen und -formen:
• 120601 Vorlesung Datenstrukturen und Algorithmen
• 120602 Übung Datenstrukturen und Algorithmen

16. Abschätzung Arbeitsaufwand:
| Präsenzzeit: | 63 h |
| Selbststudiums- / Nachbearbeitungszeit: | 207 |
| Summe: | 270 h |

17. Prüfungsnummer/n und -name:
• V Vorleistung (USL-V), schriftlich, eventuell mündlich

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Institut für Visualisierung und Interaktive Systeme
Modul: 15260 Einführung in die Maschinelle Sprachverarbeitung

2. Modulkürzel: 052400001 5. Moduldauer: 1 Semester
4. SWS: 2.0 7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Jonas Kuhn
9. Dozenten: • Uwe Reyle
• Antje Schweitzer
11. Empfohlene Voraussetzungen:
• Die Studierenden sind mit den grundlegenden Fragestellungen bei der Verarbeitung von natürlichen Sprachen und den wichtigsten Eigenschaften phonetisch/phonologischer, morphologischer, syntaktischer und semantischer Repräsentationen für sprachliche Ausdrücke vertraut.
12. Lernziele:
• Sprachlauten, Artikulation von Sprachlauten
• phonologische und phonetische Merkmale von Sprachlauten, phonologische Regeln
• Morphologie, endliche Automaten und Transducer
• Tokenisierung, Tagging, Chunking
• Syntax und Parsing
• Bedeutungsbegriff, Korrespondenztheorie, Modelle, Extension vs. Intension
• Distributionelle Semantik
• Sprechakttheorie, Implikaturen, Informationsstruktur
13. Inhalt:
• Sprachlauten, Artikulation von Sprachlauten
• phonologische und phonetische Merkmale von Sprachlauten, phonologische Regeln
• Morphologie, endliche Automaten und Transducer
• Tokenisierung, Tagging, Chunking
• Syntax und Parsing
• Bedeutungsbegriff, Korrespondenztheorie, Modelle, Extension vs. Intension
• Distributionelle Semantik
• Sprechakttheorie, Implikaturen, Informationsstruktur
14. Literatur:
15. Lehrveranstaltungen und -formen:
152601 Vorlesung Einführung in die Maschinelle Sprachverarbeitung
16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 21 h
Nachbearbeitungszeit: 69 h
Gesamt: 90 h
17. Prüfungsnummer/n und -name:
15261 Einführung in die Maschinelle Sprachverarbeitung (LBP), schriftlich, eventuell mündlich, Gewichtung: 1.0, Mehrere lehrveranstaltungsbegleitende Kurztests. Die Modulnote ergibt sich aus dem Mittel der Testnoten.
18. Grundlage für ...
19. Medienform:
20. Angeboten von: Institut für Maschinelle Sprachverarbeitung
Modul: 13160 Grundlagen der Maschinellen Sprachverarbeitung

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>052400002</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>9.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>6.0</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Jonas Kuhn</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Sebastian Pado
• Antje Schweitzer
• Uwe Reyle |
| 11. Empfohlene Voraussetzungen: | 052400001 Einführung in die Maschinelle Sprachverarbeitung |

12. Lernziele:
- Die Studierenden sind mit den Grundlagen, zentralen Fragestellungen, Methoden und Anwendungsbereichen der Computerlinguistik und Sprachtechnologie vertraut. Sie kennen grundlegende Methoden der Signalprozessierung.
- Sie kennen formale Beschreibungsmodelle für einige Ebenen der Sprachbeschreibung sowie grundlegende algorithmische Verfahren zur Prozessierung dieser Modelle.
- Die Studierenden sind mit Grundbegriffen und Grundproblemen der deskriptiven wie theoretischen Syntax vertraut.

13. Inhalt:
Das Modul setzt sich aus zwei Teilveranstaltungen zusammen:

1) Vorlesung mit Übungen "Grundlagen der Maschinellen Sprachverarbeitung" (4 SWS)
2) Vorlesung "Einführung in die Syntax" (2 SWS)

(1.) Schall/Schwingungen, Eigenschaften von Schwingungen; Resonatoren, Quelle-Filter-Modell der Sprachproduktion; kurze Einführung in die Signalanalyse (Digitalisierung, Fensterung, RMS, Autokorrelationsmethode, Fouriertransformation). Beschreibung der Strukturen natürlicher Sprache (Syntax, Semantik) aus korpusbasierter Sicht mit Fokus auf Methodologie (Datenanalyse, Evaluation) und praktischer Erfahrung mit Modellierungsansätzen.

14. Literatur:

Folien, Skripte.

15. Lehrveranstaltungen und -formen: • 131601 Vorlesung mit Übung Grundlagen der Maschinellen Sprachverarbeitung
• 131602 Vorlesung Einführung in die Syntax

16. Abschätzung Arbeitsaufwand: Präsenzzzeit 63 h, Selbststudium 207 h

• 13162 Grundlagen der Maschinellen Sprachverarbeitung - Hausübungen (USL), Sonstiges, Gewichtung: 1.0, Erfolgreiche Bearbeitung der Hausübungen in beiden Teilveranstaltungen ist Voraussetzung für die Zulassung zur Prüfung.

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 13170 Grundlagen der Syntax

2. Modulkürzel: 052400003
5. Modulduauer: 1 Semester
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0
7. Sprache: Nach Ankuendigung

8. Modulverantwortlicher: Univ.-Prof. Jonas Kuhn

9. Dozenten:
- Özlem Cetinoglu El Khoury
- Cerstin Mahlow

11. Empfohlene Voraussetzungen: 052400001, 052400002, 050420005, 051510005, 05152005, 05152010

12. Lernziele:
- Die Studierenden kennen die Problemstellungen der syntaktischen Theoriebildung und die Kategorien, strukturellen Repräsentationen und Relationsbeschreibungen, die eingesetzt werden.
- Sie sind in der Lage, die wichtigsten sprachlichen Konstruktionen in einem theoretisch fundierten Grammatikformalismus zu modellieren.
- Sie können theoretische Beschreibungsansätze zur Syntax für die Maschinelle Sprachverarbeitung auf dem Computer umsetzen.
- Sie sind mit grundlegenden Überlegungen zum Grammar Engineering vertraut und haben praktische Erfahrungen mit der Spezifikation von linguistischen Ressourcen gesammelt.

13. Inhalt:
Vertiefte formale Grammatikbeschreibung im Formalismus der Lexikalisch-Funktionalen Grammatik (LFG); Subkategorisierung, Diathesen, Lange Abhängigkeiten, Anhebung und Kontrolle, evtl. Koordination; Implementierung von Constraint-basierten Grammatiken (im Rahmen von XLE); Einbindung von morphologischen Analysekomponenten; Fragen des Grammar Engineering.

Die Vorlesung wird in der Regel auf Englisch angeboten; Fragen können jederzeit auf Deutsch gestellt werden; Hausübungen und Tests werden wahlweise auf Deutsch und Englisch angeboten.

14. Literatur:
Folien, Fachartikel

15. Lehrveranstaltungen und -formen: 131701 Vorlesung mit Übung Grundlagen der Syntax

16. Abschätzung Arbeitsaufwand:
Präsenzzeit 42 h, Selbststudium 138 h

17. Prüfungsnummer/n und -name:
- 13171 Grundlagen der Syntax (LBP), schriftlich, eventuell mündlich, Gewichtung: 1.0, Prüfungsleistung im Regelfall: lehrveranstaltungsbegleitende benotete Tests; die Modulnote ergibt sich aus dem Mittel der Testnoten. Die erfolgreiche Bearbeitung der Hausübungen ist Zulassungsvoraussetzung.
- 13172 Grundlagen der Syntax - Hausübungen (USL), Sonstiges, Gewichtung: 1.0

18. Grundlage für ... :
19. Medienform:

20. Angeboten von:
Modul: 10260 Programmierkurs

2. Modulkürzel: 051520010
5. Modul: 10260 Programmierkurs

3. Leistungspunkte: 3.0 LP

4. SWS: 2.0
7. Sprache: Nach Ankündigung

8. Modulverantwortlicher: Univ.-Prof. Jonas Kuhn
9. Dozenten: Jason Utt

11. Empfohlene Voraussetzungen:

- Independently writing programs and solving programming tasks in the programming language Python, with emphasis on concepts relevant for Natural Language Processing and Computational Linguistics.

- The module primarily targets students in Natural Language Processing (3rd semester), Computational Linguistics and Digital Humanities. It covers the key concepts of the programming language Python and provides practical experience in writing Python programs in the context of processing linguistic data and resources. Typically, the lectures of the module course as well as the materials are in English; however, students not fluent in English in the programming context will receive support in German.

15. Lehrveranstaltungen und -formen: 102601 Übung Programmierkurs

16. Abschätzung Arbeitsaufwand:

- Präsenzzeit: 21 Stunden
- Nachbearbeitungszeit: 69 Stunden

17. Prüfungsnummer/n und -name: 10261 Programmierkurs (USL), Sonstiges, Gewichtung: 1.0, Übungsschein - Scheinkriterien werden zu Beginn der Veranstaltung angekündigt. Criteria for credits are announced at the beginning of the course.

18. Grundlage für ...

19. Medienform:
20. Angeboten von: Institut für Maschinelle Sprachverarbeitung
Modul: 10280 Programmierung und Software-Entwicklung

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>051520005</th>
<th>5. Moduldaurer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>6.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Frank Leymann</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Frank Leymann</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>Die Teilnehmer haben einen Überblick über das Gebiet der Informatik. Sie haben die wichtigsten Konzepte einer höheren Programmiersprache und ihrer Verwendung verstanden und sind in der Lage, kleine Programme (bis zu einigen hundert Zeilen) zu analysieren und selbst zu konzipieren und zu implementieren. Sie kennen die Möglichkeiten, Daten- und Ablaufstrukturen zu entwerfen, zu beschreiben und zu codieren. Sie haben die Abstraktionskonzepte moderner Programmiersprachen verstanden. Sie kennen die Techniken und Notationen zur Definition kontextfreier Programmiersprachen und können damit arbeiten.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 13. Inhalt: | • Die Programmiersprache Java und die virtuelle Maschine
• Objekte, Klassen, Schnittstellen, Blöcke, Programmstrukturen, Kontrakte
• Klassenmodellierung mit der UML
• Objekterzeugung und -ausführung
• Boolesche Logik
• Verzweigungen, Schleifen, Routinen, Abstraktionen, Modularisierung, Variablen, Zuweisungen
• Rechner, Hardware
• Syntaxdarstellungen
• Übersicht über Programmiersprachen und -werkzeuge
• Grundlegende Datenstrukturen und Algorithmen
• Vererbung, Polymorphe
• Semantik
• Programmierung graphischer Oberflächen
• Übergang zum Software Engineering |
• Meyer, Bertrand, "Touch of Class", Springer-Verlag, 2009
| 15. Lehrveranstaltungen und -formen: | • 102801 Vorlesung Programmierung und Softwareentwicklung
• 102802 Übung Programmierung und Softwareentwicklung |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 63 h
Selbststudiums- / Nachbearbeitungszeit: 187 h
Prüfungsvorbereitung: 20 h
Summe: 270 h |
17. Prüfungsnummer/n und -name:

- 10281 Programmierung und Software-Entwicklung (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0,

18. Grundlage für ... :
12060 Datenstrukturen und Algorithmen

19. Medienform:

- Folien über Beamer
- Tafelanschrieb

20. Angeboten von:
Software-Engineering
Modul: 10940 Theoretische Grundlagen der Informatik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050420005</th>
<th>5. Moduldauer:</th>
<th>2 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>8.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Apl. Prof. Ulrich Hertrampf</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Volker Diekert
• Ulrich Hertrampf |
➞ Basismodule |
| 11. Empfohlene Voraussetzungen: | Keine |
| 12. Lernziele: | Logik und Diskrete Strukturen:
• Die Studierenden haben die grundsätzlichen Kenntnisse in Logik und Diskreter Mathematik erworben, wie sie in den weiteren Grundvorlesungen der Informatik in verschiedenen Bereichen benötigt werden.
Automaten und Formale Sprachen:
• Die Studierenden beherrschen wichtige theoretische Grundlagen der Informatik, insbesondere die Theorie und Algorithmik endlicher Automaten. Hierzu gehört das Kennenlernen, Einordnung und Trennung der Chomskyschen Sprachklassen. |
| 13. Inhalt: | Logik und Diskrete Strukturen:
• Einführung in die Aussagenlogik: Semantik (Wahrheitswerte), Syntax (Axiome und Schlussregeln), Normalformen; Hornformeln; Endlichkeitssatz; aussagenlogische Resolution;
• Einführung in die Prädikatenlogik 1. Stufe: Semantik und Syntax, Normalformen, Unifikatoren, Herbrand-Theorie, prädikatenlogische Resolution;
• Elementare Zahlentheorie: Rechnen mit Restklassen, endliche Körper, Euklidischer Algorithmus, Chinesischer Restsatz, Primzahltests, RSA-Verfahren; Wachstumsabschätzungen; Grundbegriffe der Wahrscheinlichkeitsrechnung; Kombinatorik; Graphen.
Automaten und Formale Sprachen:
• Uwe Schöning, Theoretische Informatik - kurzgefasst, 1999 |
| 15. Lehrveranstaltungen und -formen: | • 109401 Vorlesung Logik und Diskrete Strukturen
• 109402 Übung Logik und Diskrete Strukturen |
16. Abschätzung Arbeitsaufwand:

<table>
<thead>
<tr>
<th></th>
<th>84 h</th>
<th>276 h</th>
<th>360 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzzeit:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Selbststudiums-/Nachbearbeitungszeit:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Summe:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

17. Prüfungsnummer/n und -name:

• 10941 Theoretische Grundlagen der Informatik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0, Prüfungsvorleistung: Übungsschein
• V Vorleistung (USL-V), schriftlich, eventuell mündlich, 30 Min.

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Institut für Formale Methoden der Informatik
200 Kernmodule

Zugeordnete Module:
- 10180 Information Retrieval und Text Mining
- 13270 Parsing
- 13870 Semantik
- 13960 Algorithmisches Sprachverstehen
- 14000 Phonetik und Phonologie
- 14040 Sprachsynthese und Spracherkennung
- 40660 Statistische Sprachverarbeitung
Modul: 13960 Algorithmisches Sprachverstehen

2. Modulkürzel: 052400006 5. Moduldaumer: 1 Semester
4. SWS: 4.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Sebastian Pado
9. Dozenten: • Roman Klinger
 • Diego Frassinelli

 ➔ Kernmodule

11. Empfohlene Voraussetzungen: 052400005

13. Inhalt: • Überblick Algorithmisches Sprachverstehen
 • Lexikalische Semantik
 • Korpusbasierte Akquisition von lexikalischen Relationen
 • Word sense disambiguation
 • Informationsextraktion
 • Semantic role labelling
 • Koreferenz-Resolution
 • Diskursrepräsentationstheorie (DRT)

 • Steven Bird, Ewan Klein, and Edward Loper, Natural Language Processing with Python, Analyzing Text with the Natural Language Toolkit, 2009, O’Reilly Media (http://www.nltk.org/book)

15. Lehrveranstaltungen und -formen: 139601 Vorlesung mit Übung Algorithmisches Sprachverstehen
16. Abschätzung Arbeitsaufwand: Präsenzzeit 42 h, Selbststudium 138 h
17. Prüfungsnummer/n und -name: 13961 Algorithmisches Sprachverstehen (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0, Vorleistung: regelmäßige Übungen

18. Grundlage für ... :
19. Medienform:
20. Angeboten von:
Modul: 10180 Information Retrieval und Text Mining

2. Modulkürzel:	052401010	5. Moduldauer:	1 Semester
4. SWS:	4.0	7. Sprache:	Deutsch
8. Modulverantwortlicher:	Roman Klinger		
9. Dozenten:	Roman Klinger		
11. Empfohlene Voraussetzungen:	Erfahrung mit Programmierung und Unix, erster Kontakt mit Verfahren des Maschinellen Lernens		
13. Inhalt:	• Textpräprozessierung		
• invertierte Indexte			
• IR-Modelle (z.B. Vektorraum-basiertes IR)			
• Linkanalyse			
• Clustering			
• Frage-Antwort-Systeme			
• korpusbasierter Erwerb von lexikalischen und Weltsprache			
15. Lehrveranstaltungen und -formen:	• 101801 Vorlesung Information Retrieval and Text Mining		
• 101802 Übung Information Retrieval and Text Mining			
16. Abschätzung Arbeitsaufwand:	Präsenzeit: 42 Stunden		
Selbststudium: 138 Stunden			
17. Prüfungsnummer/n und -name:	• 10181 Information Retrieval und Text Mining (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0		
• 10182 Information Retrieval und Text Mining - Hausübungen (USL), Sonstiges, Gewichtung: 1.0			
18. Grundlage für ... :			
19. Medienform:			
20. Angeboten von:	Institut für Maschinelle Sprachverarbeitung		
Modul: 13270 Parsing

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>052400004</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modulduer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Nach Anmeldung</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Jonas Kuhn</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Dieu Thu Le</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>052400002, 050420005, 05152005, 05152010</td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td></td>
</tr>
<tr>
<td>• Die Studierenden beherrschen Techniken zur Segmentierung von Texten in einzelne Wörter (Tokenisierung). Sie haben die gängigen Verfahren für die automatische syntaktische Analyse (Parsing) natürlicher Sprache mit kontextfreien Grammatiken verstanden und einen Einblick in das Parsing mit merkmalsbasierten Grammatiken gewonnen.</td>
<td></td>
</tr>
<tr>
<td>• Die Studierenden sind in der Lage, einen kontextfreien Parser selbständig zu programmieren.</td>
<td></td>
</tr>
<tr>
<td>• Die Studierenden haben das nötige Grundwissen erworben, um wissenschaftliche Arbeiten auf dem Gebiet des Parsings verstehen und beurteilen zu können.</td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>Parsingverfahren für kontextfreie Grammatiken (ableitungsorientierte Parser, tabellengesteuerte Parser, Chartparser); Verfahren des Dependenzparsing; Aspekte des Daten-gesteuerten Parsing; methodologischer Hintergrund</td>
</tr>
<tr>
<td>14. Literatur:</td>
<td>Skript</td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>132701 Vorlesung mit Übung Parsing</td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Präsenzzeit 42 h, Nachbearbeitungszeit 138 h</td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>13271 Parsing (PL), schriftlich, eventuell mündlich, Gewichtung: 1.0</td>
</tr>
<tr>
<td></td>
<td>13272 Parsing - Hausübungen (USL), Sonstiges, Gewichtung: 1.0</td>
</tr>
<tr>
<td>18. Grundlage für ...:</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td></td>
</tr>
</tbody>
</table>
Modul: 14000 Phonetik und Phonologie

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>052400007</th>
<th>5. Modulsdauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Grzegorz Dogil</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Grzegorz Dogil
• Jörg Mayer |
| 11. Empfohlene Voraussetzungen: | 052400001, 052400002, 080310502, 050420005, 051510005, 05152005, 05152010 |
| 12. Lernziele: | • Die Studierenden haben ein grundlegendes Verständnis für die segmentale und die suprasegmentale Struktur der Sprache. Sie sind mit der akustischen Theorie der Sprachproduktion und mit Theorien der Sprachperzeption vertraut.
• Die Studierenden sind in der Lage, gesprochene Sprache phonetisch zu transkribieren. Sie können aus der Spektrogrammdarstellung die gesprochenen Laute ableiten. Sie können selbständig phonologische Regelmäßigkeiten in vorgegebenen Sprachdaten erkennen bzw. verifizieren.
• Die Studierenden sind in der Lage, wissenschaftliche Arbeiten auf dem Gebiet der Phonetik und Phonologie zu verstehen und zu beurteilen. |
| 13. Inhalt: | Artikulation & Akustik, akustische Theorie der Sprachproduktion; Sprachperzeption; Prosodie; Phonologische Theorien; praktische Einführung in die Transkription; Ohrenphonetik; International Phonetic Alphabet, selbständiges Transkribieren |
| 15. Lehrveranstaltungen und -formen: | 140001 Vorlesung mit Übung Phonetik und Phonologie |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit 42 h, Selbststudium 138 h |
| 17. Prüfungsnummer/n und -name: | 14001 Phonetik und Phonologie (LBP), schriftlich und mündlich, Gewichtung: 1.0, 5 lehrveranstaltungsbegleitende Prüfungen: 2 Kurztests (Gewicht je 0.2), zwei Übungen (Gewicht je 0.2), eine mündliche Leistungspräsentation (Gewicht 0.2) |
| 18. Grundlage für ...: | |
| 19. Medienform: | |
| 20. Angeboten von: | Experimentelle Phonetik |
Modul: 13870 Semantik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>052400005</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Apl. Prof. Uwe Reyle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Uwe Reyle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>052400001, 052400002, 052400003, 050420005, 051510005, 05152005, 05152010</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>Extensionale Semantik, Bedeutungsbegriff, Mögliche-Welten-Semantik, Intensionen, Proposition, Typentheorie, Funktionalabstraktion, Montaguegrammatik, dynamische Semantik (Diskursrepräsentationstheorie)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>138701 Vorlesung mit Übung Semantik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Präsenzzeit 42 h, Selbststudium 138 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>13871 Semantik (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0, Vorleistung: regelmäßige Hausübungen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Modul: 14040 Sprachsynthese und Spracherkennung

2. Modulkürzel: 052400008
5. Modulduauer: 1 Semester

3. Leistungspunkte: 9.0 LP
6. Turnus: jedes 2. Semester, SoSe

4. SWS: 6.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Grzegorz Dogil

9. Dozenten:
• Grzegorz Dogil
• Wolfgang Wokurek
• Antje Schweitzer

11. Empfohlene Voraussetzungen: 052400007, 080310502

12. Lernziele:
• Die Studierenden können Werkzeuge für automatische Spracherkennung und Sprachsynthese selbständig anwenden.

13. Inhalt:
 Die Übungen behandeln im Wechsel Themen aus dem Synthese- und aus dem Erkennungsteil.

14. Literatur:
S. Euler, 2006, Grundkurs Spracherkennung, Vieweg.
P. Taylor, Text-to-Speech Synthesis, Manuskript

15. Lehrveranstaltungen und -formen:
140401 Vorlesung mit Übung Sprachsynthese und Spracherkennung

16. Abschätzung Arbeitsaufwand:
Präsenzzeit 63 h, Selbststudium 207 h

17. Prüfungsnummer/n und -name:
• 14041 Sprachsynthese und Spracherkennung (LBP), schriftlich und mündlich, Gewichtung: 1.0, 3 lehrveranstaltungs begleitende Prüfungen: 2 Kurztests (Gewicht je 1/3), eine mündliche Leistungspräsentation (Gewicht 1/3)
• 14042 Sprachsynthese und Spracherkennung - Projekte (USL), schriftlich, eventuell mündlich, Gewichtung: 1.0

18. Grundlage für ...:

19. Medienform:

20. Angeboten von: Experimentelle Phonetik
Modul: 40660 Statistische Sprachverarbeitung

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>052400009</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modul: 40660</td>
<td>Statistische Sprachverarbeitung</td>
</tr>
<tr>
<td>6. Modul: 052400009</td>
<td>Statistische Sprachverarbeitung</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modul: 052400002</td>
<td>Statistische Sprachverarbeitung</td>
</tr>
<tr>
<td>9. Modul: 052400003</td>
<td>Statistische Sprachverarbeitung</td>
</tr>
<tr>
<td>10. Modul: 052400004</td>
<td>Statistische Sprachverarbeitung</td>
</tr>
<tr>
<td>11. Modul: 052400005</td>
<td>Statistische Sprachverarbeitung</td>
</tr>
<tr>
<td>12. Modul: 052400007</td>
<td>Statistische Sprachverarbeitung</td>
</tr>
<tr>
<td>13. Modul: 080310502</td>
<td>Statistische Sprachverarbeitung</td>
</tr>
<tr>
<td>14. Modul: 050420005</td>
<td>Statistische Sprachverarbeitung</td>
</tr>
<tr>
<td>15. Modul: 051510005</td>
<td>Statistische Sprachverarbeitung</td>
</tr>
<tr>
<td>16. Modul: 05152005</td>
<td>Statistische Sprachverarbeitung</td>
</tr>
<tr>
<td>17. Modul: 05152010</td>
<td>Statistische Sprachverarbeitung</td>
</tr>
<tr>
<td>18. Modul: 052400000</td>
<td>Statistische Sprachverarbeitung</td>
</tr>
<tr>
<td>19. Dozent:</td>
<td>Sabine Schulte im Walde</td>
</tr>
<tr>
<td>20. Dozent:</td>
<td>Unv.-Prof. Jonas Kuhn</td>
</tr>
<tr>
<td>21. Dozent:</td>
<td>Unv.-Prof. Jonas Kuhn</td>
</tr>
<tr>
<td>22. Dozent:</td>
<td>Unv.-Prof. Jonas Kuhn</td>
</tr>
<tr>
<td>23. Dozent:</td>
<td>Unv.-Prof. Jonas Kuhn</td>
</tr>
<tr>
<td>24. Dozent:</td>
<td>Unv.-Prof. Jonas Kuhn</td>
</tr>
<tr>
<td>25. Dozent:</td>
<td>Unv.-Prof. Jonas Kuhn</td>
</tr>
<tr>
<td>26. Dozent:</td>
<td>Unv.-Prof. Jonas Kuhn</td>
</tr>
<tr>
<td>27. Dozent:</td>
<td>Unv.-Prof. Jonas Kuhn</td>
</tr>
<tr>
<td>28. Dozent:</td>
<td>Unv.-Prof. Jonas Kuhn</td>
</tr>
<tr>
<td>29. Dozent:</td>
<td>Unv.-Prof. Jonas Kuhn</td>
</tr>
<tr>
<td>30. Dozent:</td>
<td>Unv.-Prof. Jonas Kuhn</td>
</tr>
<tr>
<td>31. Dozent:</td>
<td>Unv.-Prof. Jonas Kuhn</td>
</tr>
<tr>
<td>32. Dozent:</td>
<td>Unv.-Prof. Jonas Kuhn</td>
</tr>
<tr>
<td>33. Dozent:</td>
<td>Unv.-Prof. Jonas Kuhn</td>
</tr>
<tr>
<td>34. Dozent:</td>
<td>Unv.-Prof. Jonas Kuhn</td>
</tr>
<tr>
<td>35. Dozent:</td>
<td>Unv.-Prof. Jonas Kuhn</td>
</tr>
<tr>
<td>36. Dozent:</td>
<td>Unv.-Prof. Jonas Kuhn</td>
</tr>
<tr>
<td>37. Dozent:</td>
<td>Unv.-Prof. Jonas Kuhn</td>
</tr>
<tr>
<td>38. Dozent:</td>
<td>Unv.-Prof. Jonas Kuhn</td>
</tr>
<tr>
<td>39. Dozent:</td>
<td>Unv.-Prof. Jonas Kuhn</td>
</tr>
<tr>
<td>40. Dozent:</td>
<td>Unv.-Prof. Jonas Kuhn</td>
</tr>
<tr>
<td>41. Dozent:</td>
<td>Unv.-Prof. Jonas Kuhn</td>
</tr>
<tr>
<td>42. Dozent:</td>
<td>Unv.-Prof. Jonas Kuhn</td>
</tr>
<tr>
<td>43. Dozent:</td>
<td>Unv.-Prof. Jonas Kuhn</td>
</tr>
<tr>
<td>44. Dozent:</td>
<td>Unv.-Prof. Jonas Kuhn</td>
</tr>
<tr>
<td>45. Dozent:</td>
<td>Unv.-Prof. Jonas Kuhn</td>
</tr>
<tr>
<td>46. Dozent:</td>
<td>Unv.-Prof. Jonas Kuhn</td>
</tr>
<tr>
<td>47. Dozent:</td>
<td>Unv.-Prof. Jonas Kuhn</td>
</tr>
<tr>
<td>48. Dozent:</td>
<td>Unv.-Prof. Jonas Kuhn</td>
</tr>
<tr>
<td>49. Dozent:</td>
<td>Unv.-Prof. Jonas Kuhn</td>
</tr>
<tr>
<td>50. Dozent:</td>
<td>Unv.-Prof. Jonas Kuhn</td>
</tr>
<tr>
<td>51. Dozent:</td>
<td>Unv.-Prof. Jonas Kuhn</td>
</tr>
<tr>
<td>52. Dozent:</td>
<td>Unv.-Prof. Jonas Kuhn</td>
</tr>
<tr>
<td>53. Dozent:</td>
<td>Unv.-Prof. Jonas Kuhn</td>
</tr>
<tr>
<td>54. Dozent:</td>
<td>Unv.-Prof. Jonas Kuhn</td>
</tr>
<tr>
<td>55. Dozent:</td>
<td>Unv.-Prof. Jonas Kuhn</td>
</tr>
<tr>
<td>56. Dozent:</td>
<td>Unv.-Prof. Jonas Kuhn</td>
</tr>
<tr>
<td>57. Dozent:</td>
<td>Unv.-Prof. Jonas Kuhn</td>
</tr>
<tr>
<td>58. Dozent:</td>
<td>Unv.-Prof. Jonas Kuhn</td>
</tr>
<tr>
<td>59. Dozent:</td>
<td>Unv.-Prof. Jonas Kuhn</td>
</tr>
<tr>
<td>60. Dozent:</td>
<td>Unv.-Prof. Jonas Kuhn</td>
</tr>
<tr>
<td>61. Dozent:</td>
<td>Unv.-Prof. Jonas Kuhn</td>
</tr>
<tr>
<td>62. Dozent:</td>
<td>Unv.-Prof. Jonas Kuhn</td>
</tr>
<tr>
<td>63. Dozent:</td>
<td>Unv.-Prof. Jonas Kuhn</td>
</tr>
<tr>
<td>64. Dozent:</td>
<td>Unv.-Prof. Jonas Kuhn</td>
</tr>
<tr>
<td>65. Dozent:</td>
<td>Unv.-Prof. Jonas Kuhn</td>
</tr>
<tr>
<td>66. Dozent:</td>
<td>Unv.-Prof. Jonas Kuhn</td>
</tr>
<tr>
<td>67. Dozent:</td>
<td>Unv.-Prof. Jonas Kuhn</td>
</tr>
<tr>
<td>68. Dozent:</td>
<td>Unv.-Prof. Jonas Kuhn</td>
</tr>
<tr>
<td>69. Dozent:</td>
<td>Unv.-Prof. Jonas Kuhn</td>
</tr>
<tr>
<td>70. Dozent:</td>
<td>Unv.-Prof. Jonas Kuhn</td>
</tr>
<tr>
<td>71. Dozent:</td>
<td>Unv.-Prof. Jonas Kuhn</td>
</tr>
<tr>
<td>72. Dozent:</td>
<td>Unv.-Prof. Jonas Kuhn</td>
</tr>
<tr>
<td>73. Dozent:</td>
<td>Unv.-Prof. Jonas Kuhn</td>
</tr>
<tr>
<td>74. Dozent:</td>
<td>Unv.-Prof. Jonas Kuhn</td>
</tr>
<tr>
<td>75. Dozent:</td>
<td>Unv.-Prof. Jonas Kuhn</td>
</tr>
<tr>
<td>76. Dozent:</td>
<td>Unv.-Prof. Jonas Kuhn</td>
</tr>
<tr>
<td>77. Dozent:</td>
<td>Unv.-Prof. Jonas Kuhn</td>
</tr>
<tr>
<td>78. Dozent:</td>
<td>Unv.-Prof. Jonas Kuhn</td>
</tr>
<tr>
<td>79. Dozent:</td>
<td>Unv.-Prof. Jonas Kuhn</td>
</tr>
<tr>
<td>80. Dozent:</td>
<td>Unv.-Prof. Jonas Kuhn</td>
</tr>
<tr>
<td>81. Dozent:</td>
<td>Unv.-Prof. Jonas Kuhn</td>
</tr>
<tr>
<td>82. Dozent:</td>
<td>Unv.-Prof. Jonas Kuhn</td>
</tr>
<tr>
<td>83. Dozent:</td>
<td>Unv.-Prof. Jonas Kuhn</td>
</tr>
<tr>
<td>84. Dozent:</td>
<td>Unv.-Prof. Jonas Kuhn</td>
</tr>
<tr>
<td>85. Dozent:</td>
<td>Unv.-Prof. Jonas Kuhn</td>
</tr>
<tr>
<td>86. Dozent:</td>
<td>Unv.-Prof. Jonas Kuhn</td>
</tr>
<tr>
<td>87. Dozent:</td>
<td>Unv.-Prof. Jonas Kuhn</td>
</tr>
<tr>
<td>88. Dozent:</td>
<td>Unv.-Prof. Jonas Kuhn</td>
</tr>
<tr>
<td>89. Dozent:</td>
<td>Unv.-Prof. Jonas Kuhn</td>
</tr>
<tr>
<td>90. Dozent:</td>
<td>Unv.-Prof. Jonas Kuhn</td>
</tr>
<tr>
<td>91. Dozent:</td>
<td>Unv.-Prof. Jonas Kuhn</td>
</tr>
<tr>
<td>92. Dozent:</td>
<td>Unv.-Prof. Jonas Kuhn</td>
</tr>
<tr>
<td>93. Dozent:</td>
<td>Unv.-Prof. Jonas Kuhn</td>
</tr>
<tr>
<td>94. Dozent:</td>
<td>Unv.-Prof. Jonas Kuhn</td>
</tr>
</tbody>
</table>

12. Lernziele:
- Die Studierenden sind mit den grundlegenden probabilistischen Methoden der Sprachverarbeitung vertraut und haben in den Übungen Erfahrung mit ihrer Anwendung und der datenorientierten Methodik der modernen Sprachverarbeitung gesammelt.

13. Inhalt:

14. Literatur:

15. Lehrveranstaltungen und -formen:
- 406601 Vorlesung mit Übung Statistische Sprachverarbeitung

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit 42 h, Selbststudium 138 h

17. Prüfungsnummer/n und -name:
- 40661 Statistische Sprachverarbeitung (PL), schriftlich, eventuell mündlich, Gewichtung: 1.0, Im Regelfall wird das Modul aufgrund einer schriftlichen Klausur über den Inhalt des Moduls bewertet. Die erfolgreiche Bearbeitung der Hausübungen ist Voraussetzung für die Zulassung zur Prüfung.
- V Vorleistung (USL-V), schriftliche Prüfung
300 Ergänzungsmodule

Zugeordnete Module: 14270 Projekt Maschinelle Sprachverarbeitung 14290 Seminar Maschinelle Sprachverarbeitung
Modul: 14270 Projekt Maschinelle Sprachverarbeitung

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>052400097</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Jonas Kuhn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>• Daniel Duran
• Sebastian Pado
• Christian Scheible
• Grzegorz Dogil</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>052400002, 052400003, 052400005, 052400007, 052400009</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 13. Inhalt: | Auf eine mehrwöchige Bearbeitung angelegte computerlinguistisch bzw. sprachtechnologisch ausgerichtete Projektthemen werden von den Dozentinnen/Dozenten ausgegeben. Im Veranstaltungsverlauf werden insbes. praktischen Aspekte der Projektarbeit besprochen und eingeübt. In der Regel werden zwei alternative Ausprägungen des Moduls zur Auswahl angeboten:
• "Phonetik" - Ausrichtung auf die Methodik der experimentellen Phonetik
• "NLP" - Ausrichtung auf die textorientierte Sprachtechnologie/Computerlinguistik |
| 14. Literatur: | |
| 15. Lehrveranstaltungen und -formen: | 142701 Projekt Maschinelle Sprachverarbeitung |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit 42 h, Selbststudium 138 h |
| 17. Prüfungsnummer/n und -name: | 14271 Projekt Maschinelle Sprachverarbeitung (USL), schriftlich, eventuell mündlich, Gewichtung: 1.0, Umfang und Inhalt der unbenoteten Studienleistungen, die zum erfolgreichen Abschluss des Projektes erforderlich sind, werden zu Beginn der Veranstaltung von den Dozierenden bekanntgegeben. |
| 18. Grundlage für ... : | |
| 19. Medienform: | |
| 20. Angeboten von: | |
Modul: 14290 Seminar Maschinelle Sprachverarbeitung

2. Modulkürzel: 052400098 5. Moduldauer: 1 Semester
4. SWS: 2.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Jonas Kuhn

9. Dozenten: • Daniel Duran
 • Sebastian Pado
 • Christian Scheible
 • Grzegorz Dogil

11. Empfohlene Voraussetzungen: 052400002, 052400003, 052400005, 052400007, 052400009

12. Lernziele: • Die Studierenden können Projektarbeiten in Präsentationen darstellen, ihre Herangehensweise in Diskussionen kritisch hinterfragen und das Ergebnis ihrer Arbeit in einer kurzen schriftlichen Arbeit wissenschaftlich darstellen.

13. Inhalt: Methoden des wissenschaftlichen Arbeitens werden besprochen und praktisch eingeführt (Literaturrecherche und -diskussion, Dokumentation und fachgerechte Darstellung von Untersuchungsergebnissen etc.)

 In der Regel werden zwei alternative Ausprägungen des Moduls zur Auswahl angeboten:

 • "Phonetik" - Ausrichtung auf die Methodik der experimentellen Phonetik
 • "NLP" - Ausrichtung auf die textorientierte Sprachtechnologie/Computerlinguistik

14. Literatur:

15. Lehrveranstaltungen und -formen: 142901 Projektseminar Maschinelle Sprachverarbeitung

16. Abschätzung Arbeitsaufwand: Präsenzzeit: 21 h + Selbststudium: 69 h; Gesamt: 90 h

17. Prüfungsnummer/n und -name: 14291 Seminar Maschinelle Sprachverarbeitung (PL), Sonstiges, Gewichtung: 1.0, Hausarbeit, 15 bis 20 Seiten

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
400 Schlüsselqualifikationen fachaffin

Zugeordnete Module: 14300 Mathematik für die Maschinelle Sprachverarbeitung
Modul: 14300 Mathematik für die Maschinelle Sprachverarbeitung

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>15.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: PD Andreas Markus Kollross

11. Empfohlene Voraussetzungen:

Die Studierenden haben die mathematischen Grundlagen für den Studiengang Maschinelle Sprachverarbeitung erarbeitet und den selbstständigen und kreativen Umgang mit den mathematischen Stoffgebieten gelernt.

13. Inhalt:

1. Semester

- Grundlagen (Aussagenlogik, Mengen, Relationen, Abbildungen, Zahlenmengen, Grundbegriffe der Algebra)
- Lineare Algebra (Vektorräume, lineare Abbildungen, Matrizen, Determinanten lineare Gleichungssysteme, Eigenwerte, Normalformen, Hauptachsentransformation, Skalarprodukte)
- Analysis (Konvergenz, Zahlenfolgen und Zahlenreihen, stetige Abbildungen, Folgen und Reihen von Funktionen, spezielle Funktionen).

2. Semester (verkürzt um ein Drittel)

- Differential- und Integralrechnung (Funktionen einer und mehrerer Variablen, Ableitungen, Taylorentwicklungen, Extremwerte, Integration, Anwendungen).

14. Literatur:

M. Brill: Mathematik für Informatiker, Hanser-Verlag 2001
P. Hartmann: Mathematik für Informatiker, Vieweg 2002.

17. Prüfungsnummer/n und -name: 14301 Mathematik für die Maschinelle Sprachverarbeitung (USL), schriftliche Prüfung, Gewichtung: 1.0, 2 unbenotete Übungsscheine, jeweils im 1. und 2. Fachsemester zu erwerben

19. Medienform: Beamer, Tafel, Visualizer

20. Angeboten von:
610 Wahlbereich E/I

<table>
<thead>
<tr>
<th>Zugeordnete Module</th>
<th>Modulnummer</th>
<th>Modulname</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>01020</td>
<td>Algorithmik</td>
</tr>
<tr>
<td></td>
<td>01060</td>
<td>Computergraphik</td>
</tr>
<tr>
<td></td>
<td>010110</td>
<td>Grundlagen der Künstlichen Intelligenz</td>
</tr>
<tr>
<td></td>
<td>010210</td>
<td>Mensch-Computer-Interaktion</td>
</tr>
<tr>
<td></td>
<td>010220</td>
<td>Modellierung</td>
</tr>
<tr>
<td></td>
<td>010240</td>
<td>Numerische und Stochastische Grundlagen</td>
</tr>
<tr>
<td></td>
<td>010330</td>
<td>Systemkonzepte und -programmierung</td>
</tr>
<tr>
<td></td>
<td>011490</td>
<td>Nachrichtentechnik</td>
</tr>
<tr>
<td></td>
<td>011640</td>
<td>Digitale Signalverarbeitung</td>
</tr>
<tr>
<td></td>
<td>011670</td>
<td>Grundlagen integrierter Schaltungen</td>
</tr>
<tr>
<td></td>
<td>011680</td>
<td>Kommunikationsnetze I</td>
</tr>
<tr>
<td></td>
<td>011710</td>
<td>Entwurf digitaler Filter</td>
</tr>
<tr>
<td></td>
<td>025610</td>
<td>Grundlagen des Software Engineerings</td>
</tr>
<tr>
<td></td>
<td>029470</td>
<td>Machine Learning</td>
</tr>
<tr>
<td></td>
<td>031600</td>
<td>Machine learning for NLP</td>
</tr>
<tr>
<td></td>
<td>039040</td>
<td>Rechnernetze</td>
</tr>
<tr>
<td></td>
<td>040090</td>
<td>Systemkonzepte und -programmierung</td>
</tr>
<tr>
<td></td>
<td>046340</td>
<td>Signale und Systeme</td>
</tr>
<tr>
<td></td>
<td>056210</td>
<td>Medieninformatik</td>
</tr>
<tr>
<td></td>
<td>056230</td>
<td>Empirische Methoden für Medieninformatik</td>
</tr>
</tbody>
</table>
Modul: 10020 Algorithmik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050420015</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modul:</td>
<td>Algorithmik</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Apl. Prof. Ulrich Hertrampf</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Volker Diekert
• Stefan Funke
• Ulrich Hertrampf |
| 12. Lernziele: | • Kennenlernen und beherrschen wichtiger Programmierparadigmen und Entwurfsstrategien
• Selbstständiges Erarbeiten von Laufzeitabschätzungen. |
| 13. Inhalt: | • Entwurfsstrategien für Algorithmen (Teile und Beherrschte, Gierige Methode, Dynamische Programmierung, Backtracking, heuristische Algorithmen)
• Analyse und Komplexität von Algorithmen
• Mustererkennung
• Sortierverfahren und ihre Komplexität
• Verwaltung von Mengen
• Union-Find-Algorithmen
• Konvexe Hüle
• optimale (Teil-) Bäume
• Minimale Schnitte
• Randomisierte Algorithmen und weitere Themen. |
• Alfred V. Aho, John E. Hopcroft, Jeffrey D. Ullmann: Data Structures and Algorithms, 1987
• T. Ottmann und P. Widmayer, Algorithmen 2004
• Volker Diekert: Entwurf und Analyse effizienter (Vorlesungsskript), 2006 |
| 15. Lehrveranstaltungen und -formen: | • 100201 Vorlesung Algorithmik
• 100202 Übung Algorithmik |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 42 h
Selbststudiums- / Nachbearbeitungszeit: 138 h
Summe: 180 h |
| 17. Prüfungsnummer/n und -name: | • 10021 Algorithmik (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0, Prüfungsvoraussetzung: Übungsschein
• Vorleistung (USL-V), schriftlich, eventuell mündlich |

Stand: 10. Oktober 2016
20. Angeboten von: Institut für Formale Methoden der Informatik
Modul: 10060 Computergraphik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>051900002</th>
<th>5. Modulduer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Thomas Ertl</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>• Thomas Ertl</td>
<td>• Daniel Weiskopf</td>
<td>• Guido Reina</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>• Modul 10210 Mensch-Computer-Interaktion</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Modul 41590 Einführung in die Numerik und Stochastik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>Folgende Themen werden in der Vorlesung behandelt:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Überblick über den Prozess der Bildsynthese</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Graphische Geräte, visuelle Wahrnehmung, Farbsysteme</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Grundlegende Rastergraphik und Bildverarbeitung</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Raytracing und Beleuchtungsmodelle</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 2D und 3D Geometrietransformationen, 3D Projektion</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Graphikprogrammierung in OpenGL 3</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Texturen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Polygonale und hierarchische Modelle</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Rasterisierung und Verdeckungsberechnung</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Grundlagen der geometrischen Modellierung (Kurven, Flächen)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Räumliche Datenstrukturen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 100601 Vorlesung Computergraphik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 100602 Übung Computergraphik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Präsenzzeit:</td>
<td>42 h</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Selbststudiums-/</td>
<td>Nachbearbeitungszeit:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nachbearbeitungszeit:</td>
<td>Summe:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>138 h</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>180 h</td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnr/n und -name:</td>
<td>• 10061 Computergraphik (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0, Prüfungsverleistung: Übungsschein.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• V Vorleistung (USL-V), schriftlich, eventuell mündlich</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stand: 10. Oktober 2016

Seite 37 von 94
Modul: 11640 Digitale Signalverarbeitung

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>051610002</th>
<th>5. Modulduauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Bin Yang

9. Dozenten: Bin Yang

11. Empfohlene Voraussetzungen: Grundkenntnisse in höherer Mathematik

Grundkenntnisse über Signale und Systeme

12. Lernziele:

Die Studierenden

- beherrschen die grundlegenden Methoden zur digitalen Signalverarbeitung,
- besitzen die notwendigen Grundfertigkeiten zur Analyse von zeitdiskreten Signalen und Systemen,
- können einfache Signale und Systeme selbstständig analysieren,
- können einfache Signalverarbeitungsaufgaben selbstständig lösen.

13. Inhalt:

- A/D- und D/A-Umwandlung, Abtastung, Quantisierung
- Zeitdiskrete Signale und Systeme, Analyse von LTI-Systemen im Zeitbereich, Differenzengleichung
- Analyse von Signalen und LTI-Systemen in der komplexen Ebene, z-Transformation, Übertragungsfunktion, Pole und Nullstellen
- Analyse von Signalen und LTI-Systemen im Frequenzbereich
- Digitale Filter, FIR und IIR, Tiefpass, Hochpass, Bandpass, Oszillator, KerbfILTER, Kammfilter, linearphasige Filter, Allpass, minimalphasige Filter
- Korrelationsanalyse, Auto- und Kreuzkorrelation, Auto- und Kreuzkorrelationsfunktion
- Diskrete Fourier-Transformation, schnelle Fourier-Transformation (FFT), schnelle Faltung
- Spektralanalyse, Periodogramm, Fenstereffekt, Zeit-Frequenz-Analyse, Spektrogramm

14. Literatur:

- Vorlesungsunterlagen, Videoaufzeichnung der Vorlesung
- M. Mandal and A. Asif, "Continuous and discrete time signals and systems", Cambridge, 2008

15. Lehrveranstaltungen und -formen:

- 116401 Vorlesung Digitale Signalverarbeitung
- 116402 Übung Digitale Signalverarbeitung

16. Abschätzung Arbeitsaufwand:

Präsenzzeit:	56 h
Selbststudium:	124 h
Gesamt:	180 h

17. Prüfungsnummer/n und -name: 11641 Digitale Signalverarbeitung (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0

18. Grundlage für ... :
<table>
<thead>
<tr>
<th>19. Medienform:</th>
<th>Laptop, Beamer, Videoaufzeichnung aller Vorlesungen und Übungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>20. Angeboten von:</td>
<td>Institut für Signalverarbeitung und Systemtheorie</td>
</tr>
</tbody>
</table>
Modul: 56230 Empirische Methoden für Medieninformatik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>[pord.modulcode]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Albrecht Schmidt</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Albrecht Schmidt
• Niels Henze |
→ Wahlbereich E/I |
| 11. Empfohlene Voraussetzungen: | Medieninformatik (Modul 56210) |
| 13. Inhalt: | • Anwendung deskriptiver Statistik
• Anwendung von statistischen Tests
• Methoden und Werkezuge zur Datenerhebung
• Methoden und Werkezuge zur Datenanalyse
• Durchführung von Experimenten und Nutzerstudien
• Ethische Richtlinien bei der Durchführung von Studien |
| 15. Lehrveranstaltungen und -formen: | • 562301 Vorlesung Empirische Methoden für Medieninformatik
• 562302 Übung Empirische Methoden für Medieninformatik |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 42 h
Selbststudiums- / Nachbearbeitungszeit: 138 h
Summe: 180 h |
| 17. Prüfungsnummer/n und -name: | 56231 Empirische Methoden für Medieninformatik (PL), schriftlich oder mündlich, 60 Min., Gewichtung: 1.0, schriftlich 60 min. oder mündlich 20 min. |
| 18. Grundlage für ... : | • 56240 Medieninformatik Projekt - Theorie
• 56270 Medieninformatik Projekt - Praktikum |
| 19. Medienform: | |
| 20. Angeboten von: | Institut für Visualisierung und Interaktive Systeme |
Modul: 17130 Entwurf digitaler Filter

2. Modulkürzel: 051610003 5. Modulduauer: 1 Semester
4. SWS: 4.0 7. Sprache: Deutsch
8. Modulverantwortlicher: PD Markus Gaida
9. Dozenten: Markus Gaida
13. Inhalt:
 • Filter und Anwendungen, FIR- und IIR-Filter, Blockdiagramm und Signalflussgraph
 • Entwurf von FIR-Filtern: linearanfaserige FIR-Filter, Fenster-Methode, Frequenzabtastmehode, Methode der kleinsten Quadrate, Remez-Algorithmus
 • Entwurf von IIR-Filtern: analoge Referenzfilter (Butterworth, Tschebyscheff I und II, Cauer), Frequenztransformation, Methode der invarianten Impulsantwort, Bilineartransformation
 • Struktur von FIR-Filtern (Direkt, Kaskade, Lattice), Struktur von IIR-Filtern (Direkt, Kaskade, Parallel, Lattice-Ladder), Levinson-Durbin-Rekursion, Schur-Cohen-Rekursion
 • Quantisierungseffekte
 • Zahlendarstellung, Fließkomma und Festkomma, Koeffizientenempfindlichkeit, Überlauf und Sättigung, Rundungsverfahren, Polgitter, Rundungsrauschen, Signal-zu-Rausch-Abstand, Grenzyklen
 • Entwurf digitaler Filter mit MATLAB
 • Abtastratenumsetzung, Dezimation, Interpolation
14. Literatur:
 • Skript (siehe ILIAS)
15. Lehrveranstaltungen und -formen:
 • 171301 Vorlesung Entwurf digitaler Filter
 • 171302 Übung Entwurf digitaler Filter
16. Abschätzung Arbeitsaufwand:

- Präsenzzeit: 56 h
- Selbststudium/Nacharbeitszeit: 124 h
- Gesamt: 180 h

17. Prüfungsnummer/n und -name:

17131 Entwurf digitaler Filter (PL), schriftlich, eventuell mündlich, 90 Min., Gewichtung: 1.0, Schriftliche Prüfung (90 Min.), Prüfung wird zwei mal im Jahr angeboten. Bei geringer Hörerzahl kann die Prüfung mündlich sein; dies wird am Anfang der Vorlesung bekanntgegeben. Im Fall einer mündlichen Prüfung kann dies auch eine mündliche Gruppenprüfung (max. 3 zu prüfende Personen pro Gruppe, ca. 15 Min. pro zu prüfender Person) sein.

18. Grundlage für ...

19. Medienform:

- Tafel, Projektor, Beamer, CIP-Pool

20. Angeboten von:

Institut für Signalverarbeitung und Systemtheorie
Modul: 10110 Grundlagen der Künstlichen Intelligenz

2. Modulkürzel: 051900205
5. Modulduauer: 1 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Marc Toussaint

9. Dozenten:
• Andrés Bruhn
• Marc Toussaint

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Maschinelle Sprachverarbeitung, PO 2009, 5. Semester
→ Wahlbereich E/I

11. Empfohlene Voraussetzungen:
• Modul 080300100 Mathematik für Informatiker und Softwaretechniker

12. Lernziele:
Der Student / die Studentin beherrscht die Grundlagen der Künstlichen Intelligenz, kann Probleme der KI selbstständig einordnen und mit den erlernten Methoden und Algorithmen bearbeiten.

13. Inhalt:
• Intelligenz
• Agentenbegriff
• Problemlösen durch Suchen, Suchverfahren
• Probleme mit Rand- und Nebenbedingungen
• Spiele
• Aussagen- und Prädikatenlogik
• Logikbasierte Agenten, Wissensrepräsentation
• Inferenz
• Planen
• Unsicherheit, probabilistisches Schließen
• probabilistisches Schließen über die Zeit
• Sprachverarbeitung
• Entscheidungstheorie

14. Literatur:
• S. Russell, P. Norvig, Künstliche Intelligenz, 2004
• G. F. Luger, Künstliche Intelligenz, 2001

15. Lehrveranstaltungen und -formen:
• 101101 Vorlesung Grundlagen der Künstlichen Intelligenz
• 101102 Übung Grundlagen der Künstlichen Intelligenz

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 Stunden
Selbststudium: 138 Stunden
Gesamt: 180 Stunden

17. Prüfungsnummer/n und -name:
• 10111 Grundlagen der Künstlichen Intelligenz (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0, Prüfungsvorleistung: Übungsschein, Kriterien werden in der ersten Vorlesung bekannt gegeben

• V Vorleistung (USL-V), schriftlich, eventuell mündlich

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Institut für Visualisierung und Interaktive Systeme
Modul: 25610 Grundlagen des Software Engineerings

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>51520170</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modulduer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Stefan Wagner</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Stefan Wagner</td>
</tr>
</tbody>
</table>
| 11. Empfohlene Voraussetzungen: | • Modul 10280 Programmierung und Software-Entwicklung
• Modul 12060 Datenstrukturen und Algorithmen
• Programmiererfahrung |
• Geschichte und Konzepte des Software Engineerings
• Der Software-Lebenszyklus und Software-Management
• Software-Prüfung und Qualitätssicherung
• Methoden, Sprachen und Werkzeuge für die einzelnen Phasen: Spezifikation, Grobentwurf, Feinentwurf, Implementierung, Test
Viele dieser Aspekte werden speziell mit Bezug auf agile Softwareentwicklung am Beispiel Scrum diskutiert. Dieses Modul kommt, wenn die Voraussetzungen erfüllt sind, auch für andere Fachrichtungen in Frage. |
• Pfleeger, Atlee: Software Engineering. Pearson, 2010
• Rubin: Essential Scrum. Addison-Wesley, 2013 |
| 15. Lehrveranstaltungen und -formen: | • 256101 Vorlesung Grundlagen des Software Engineerings
• 256102 Übung Grundlagen des Software Engineerings |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 42 h
Selbststudiums-/Nachbearbeitungszeit: 138 h
Summe: 180 h |
| 17. Prüfungsnummer/n und -name: | 25611 Grundlagen des Software Engineerings (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0 |
| 18. Grundlage für ...: | |
20. Angeboten von: Software-Engineering
Modul: 11670 Grundlagen integrierter Schaltungen

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Manfred Berroth</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Manfred Berroth</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Kenntnisse in Schaltungstechnik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kenntnisse in höherer Mathematik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>Die Studierenden besitzen Grundkenntnisse über integrierte Schaltungen der Digitaltechnik basierend auf Silizium-MOSFETs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>• Bauelemente der Digitaltechnik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Digitale Grundschaltungen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• CMOS-Logikschaltungen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Schaltwerke</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Literatur:</td>
<td>• Vorlesungsskript,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Hoffmann: VLSI-Entwurf - Modelle und Schaltungen, Oldenbourg Verlag, München, 1998</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 116701 Vorlesung Grundlagen Integrierter Schaltungen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 116702 Übung Grundlagen Integrierter Schaltungen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Präsenzzeit: 56 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Selbststudium: 124 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gesamt: 180 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>11671 Grundlagen integrierter Schaltungen (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Tafel, Beamer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Institut für Elektrische und Optische Nachrichtentechnik</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Modul: 11680 Kommunikationsnetze I

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050901005</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Andreas Kirstädter</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Andreas Kirstädter</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>• Kenntnisse, wie sie in den Modulen "Informatik I" und "Informatik II" vermittelt werden</td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>Grundprinzipien von Kommunikationsnetzwerken und -protokollen:</td>
</tr>
<tr>
<td></td>
<td>• Übertragung und Multiplextechniken</td>
</tr>
<tr>
<td></td>
<td>• Fehlersicherung</td>
</tr>
<tr>
<td></td>
<td>• Medienzugriff</td>
</tr>
<tr>
<td></td>
<td>• Vermittlung</td>
</tr>
<tr>
<td></td>
<td>• Wegesuche</td>
</tr>
<tr>
<td></td>
<td>• Transportprotokolle</td>
</tr>
<tr>
<td></td>
<td>Spezifikation mit Hilfe der Specification and Description Language (SDL)</td>
</tr>
<tr>
<td></td>
<td>Bewertung der Leistungsfähigkeit von Kommunikationsprotokollen</td>
</tr>
<tr>
<td></td>
<td>Ausgewählte Dienste und Anwendungen im Internet</td>
</tr>
<tr>
<td>14. Literatur:</td>
<td>• Skript zur Vorlesung</td>
</tr>
<tr>
<td></td>
<td>• Tanenbaum: "Computer Networks", Prentice-Hall, 2003</td>
</tr>
<tr>
<td></td>
<td>• Kurose, Ross: "Computer Networking", Addison-Wesley, 2009</td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 116801 Vorlesung Kommunikationsnetze I</td>
</tr>
<tr>
<td></td>
<td>• 116802 Übung zu Kommunikationsnetze I</td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Präsenzzeit: 56 h</td>
</tr>
<tr>
<td></td>
<td>Selbststudium: 124 h</td>
</tr>
<tr>
<td></td>
<td>Gesamt: 180 h</td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>11681 Kommunikationsnetze I (PL), schriftlich, eventuell mündlich, 120 Min., Gewichtung: 1.0</td>
</tr>
<tr>
<td>18. Grundlage für ...:</td>
<td>• 14570 Praktische Übungen im Labor "Rechnerarchitektur und Kommunikationssysteme I"</td>
</tr>
</tbody>
</table>

Stand: 10. Oktober 2016
- 21790 Communication Networks II

<table>
<thead>
<tr>
<th>19. Medienform:</th>
<th>Notebook-Präsentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>20. Angeboten von:</td>
<td>Institut für Kommunikationsnetze und Rechnersysteme</td>
</tr>
</tbody>
</table>
Modul: 29470 Machine Learning

2. Modulkürzel: 051200112
5. Moduldauer: 1 Semester

3. Leistungspunkte: 6.0 LP
6. Turnus: jedes 2. Semester, SoSe

4. SWS: 4.0
7. Sprache: Englisch

8. Modulverantwortlicher: Univ.-Prof. Marc Toussaint

9. Dozenten: Marc Toussaint

11. Empfohlene Voraussetzungen: Solid knowledge in Linear Algebra, probability theory and optimization. Fluency in at least one programming language.

12. Lernziele: Students will acquire an in depth understanding of Machine Learning methods. The concepts and formalisms of Machine Learning are understood as generic approach to a variety of disciplines, including image processing, robotics, computational linguistics and software engineering. This course will enable students to formalize problems from such disciplines in terms of probabilistic models and the derive respective learning and inference algorithms.

13. Inhalt: Exploiting large-scale data is a central challenge of our time. Machine Learning is the core discipline to address this challenge, aiming to extract useful models and structure from data. Studying Machine Learning is motivated in multiple ways: 1) as the basis of commercial data mining (Google, Amazon, Picasa, etc), 2) a core methodological tool for data analysis in all sciences (vision, linguistics, software engineering, but also biology, physics, neuroscience, etc) and finally, 3) as a core foundation of autonomous intelligent systems (which is my personal motivation for research in Machine Learning).

This lecture introduces to modern methods in Machine Learning, including discriminative as well as probabilistic generative models. A preliminary outline of topics is:

- motivation and history
- probabilistic modeling and inference
- regression and classification methods (kernel methods, Gaussian Processes, Bayesian kernel logistic regression, relations)
- discriminative learning (logistic regression, Conditional Random Fields)
- feature selection
- boosting and ensemble learning
- representation learning and embedding (kernel PCA and derivatives, deep learning)
- graphical models
- inference in graphical models (MCMC, message passing, variational)
- learning in graphical models
- structure learning and model selection
- relational learning

Please also refer to the course web page: http://ipvs.informatik.uni-stuttgart.de/mlr/marc/teaching/13-MachineLearning/
14. Literatur:

(recommended: read introductory chapter)

online: http://research.microsoft.com/en-us/um/people/cmbishop/prml/ (especially chapter 8, which is fully online)

15. Lehrveranstaltungen und -formen:

- 294701 Lecture Machine Learning
- 294702 Exercise Machine Learning

16. Abschätzung Arbeitsaufwand:

Presence time: 42 hours
Self study: 138 hours
Sum: 180 hours

17. Prüfungsnummer/n und -name:

- 29471 Machine Learning (PL), schriftlich, eventuell mündlich, 120 Min., Gewichtung: 1.0
- V Vorleistung (USL-V), schriftlich, eventuell mündlich

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:

Institut für Parallele und Verteilte Systeme
Modul: 31600 Machine learning for NLP

2. Modulkürzel: 052400616
3. Leistungspunkte: 3.0 LP
4. SWS: 2.0
5. Modul: Bachelor of Science Maschinelle Sprachverarbeitung
7. Sprache: Englisch
8. Modulverantwortlicher: Univ.-Prof. Sebastian Pado
9. Dozenten: Sebastian Pado
11. Empfohlene Voraussetzungen: Statistical natural language processing (recommended)
12. Lernziele:
 Students have acquired in-depth knowledge of several machine learning methods that are used in natural language processing and are familiar with the relevant literature.
13. Inhalt:
 - Maximum entropy models
 - Regression and regularized regression
 - Support vector machines
 - Sequence models
 - Generative models
 - Parameter estimation
14. Literatur:
15. Lehrveranstaltungen und -formen: 316001 Seminar course Machine learning for NLP
16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 28h
 Selbststudium: 60h
17. Prüfungsnummer/n und -name: 31601 Machine learning for NLP (BSL), schriftlich, eventuell mündlich, Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:

20. Angeboten von: Institut für Maschinelle Sprachverarbeitung
Modul: 56210 Medieninformatik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>[pord.modulcode]</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Albrecht Schmidt</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Albrecht Schmidt
• Niels Henze |
| 11. Empfohlene Voraussetzungen: | Keine. |
| 13. Inhalt: | • Konzepte und Strukturen digitaler Mediensysteme
• Medientypen (Texte, Typografie, Grafik, Bilder, Audio, Video)
• Digitale Kodierung und Speicherung von Medien
• Grundlagen der Produktion digitaler Inhalte
• Medien und Kommunikation
• Entwicklung interaktiver Medien
• Gesellschaftliche Bedeutung von Medien |
| 15. Lehrveranstaltungen und -formen: | • 562101 Vorlesung Medieninformatik
• 562102 Übung Medieninformatik |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 42 h
Selbststudiums- / Nachberarbeitungszeit: 138 h
Summe: 180 h |
| 17. Prüfungsnummer/n und -name: | 56211 Medieninformatik (PL), schriftlich, eventuell mündlich, 90 Min., Gewichtung: 1.0, Studienleistung: Übungsschein. Vorleistung (USL-V), schriftlich, eventuell mündlich |
| 18. Grundlage für ... : | 56220 Programmierung für Medieninformatik |
| 19. Medienform: | |
Modul: 10210 Mensch-Computer-Interaktion

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>051900001</th>
<th>5. Modulduauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Albrecht Schmidt</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>• Albrecht Schmidt</td>
<td>• Thomas Ertl</td>
<td>• Daniel Weiskopf</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>• Modul 10280 Programmierung und Software-Entwicklung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Einführung in die Grundlagen der Mensch-Computer Interaktion, historische Entwicklung</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Entwurfsprinzipien und Modelle für moderne Benutzungsschnittstellen und interaktive Systeme</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Informationsverarbeitung des Menschen, Wahrnehmung, Motorik, Eigenschaften und Fähigkeiten des Benutzers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Interaktionskonzepte und -stile, Metaphern, Normen, Regeln und Style Guides</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Ein- und Ausgabegeräte, Entwurfsraum für interaktive Systeme</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Analyse-, Entwurfs- und Entwicklungsmethoden und -werkzeuge für Benutzungsschnittstellen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Prototypische Realisierung und Implementierung von interaktiven Systemen, Werkzeuge</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Architekturen für interaktive Systeme, User Interface Toolkits und Komponenten</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>• Akzeptanz, Evaluationsmethoden und Qualitätssicherung</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Alan Dix, Janet Finley, Gregory Abowd, Russell Beale, Human-Computer Interaction, 2004</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Ben Shneiderman, Catherine Plaisant, Designing the User Interfaces, 2005</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 102101 Vorlesung Mensch-Computer-Interaktion</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 42 h
Selbststudium- /
Nachbearbeitungszeit: 138 h
Summe: 180 h |
|-----------------------------|------------------|

| 17. Prüfungsnummer/n und -name: | • 102102 Übung Mensch-Computer-Interaktion
• 10211 Mensch-Computer-Interaktion (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0, Prüfungsvorleistung: Übungsschein
• V Vorleistung (USL-V), schriftlich, eventuell mündlich |
|-----------------------------|------------------|

<table>
<thead>
<tr>
<th>18. Grundlage für ... :</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>19. Medienform:</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>20. Angeboten von:</th>
<th>Institut für Visualisierung und Interaktive Systeme</th>
</tr>
</thead>
</table>
Modul: 10220 Modellierung

2. Modulkürzel: 052010001 5. Moduldaeufer: 1 Semester
4. SWS: 4.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Frank Leymann
9. Dozenten: • Bernhard Mitschang • Frank Leymann

11. Empfohlene Voraussetzungen: • 051520005 Programmierung und Software-Entwicklung • 051510005 Datenstrukturen und Algorithmen • 051200005 Systemkonzepte und -programmierung

13. Inhalt: • Entity-Relationship Modell & komplexe Objekte • Relationenmodell & Relationenalgebra, Überblick SQL • Transformationen von ER nach Relationen, Normalisierung • XML, DTD, XML-Schema, Info-Set, Namensräume • Metamodelle & Repository • RDF, RDF-S & Ontologien • UML • Petri Netze, Workflownetze • BPMN

15. Lehrveranstaltungen und -formen: • 102201 Vorlesung Modellierung • 102202 Übung Modellierung

17. Prüfungsnummer/n und -name: • 10221 Modellierung (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0, Prüfungsvorleistung: Übungsschein • V Vorleistung (USL-V), schriftlich, eventuell mündlich

18. Grundlage für ...: • 10030 Architektur von Anwendungssystemen • 10080 Datenbanken und Informationssysteme

19. Medienform:
20. Angeboten von: Institut für Architektur von Anwendungssystemen
Modul: 11490 Nachrichtentechnik

2. Modulkürzel: 050600003
5. Modulduauer: 2 Semester

3. Leistungspunkte: 9.0 LP

4. SWS: 6.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Stephan Brink

9. Dozenten: • Jan Hesselbarth
• Stephan Brink

11. Empfohlene Voraussetzungen:

13. Inhalt:

Teil I:
Schaltungen bei höheren Frequenzen, Grundlagen der Sender- und Empfangstechnik, Leitungen, Einführung in Antennen, Wellenausbreitung und Empfängerrauschen, Übersicht wichtiger Funksysteme

Teil II:
Grundzüge der Informationstheorie, Codierung und Modulation, Signalübertragung über elektrische Leitungen

14. Literatur:
• Vorlesungsskripte,
• Meinke, Gundlach: Taschenbuch der Hochfrequenztechnik, 5. Auflage, Springer-Verlag, 1992,
• Tietze, Schenk: Halbleiterschaltungstechnik, 12. Auflage, Springer-Verlag, 2002,
• Herter, Lörcher: Nachrichtentechnik, 9. Auflage, Hanser-Verlag, 2004,

15. Lehrveranstaltungen und -formen:
• 114901 Vorlesung Nachrichtentechnik 1
• 114902 Übung Nachrichtentechnik 1
• 114903 Vorlesung Nachrichtentechnik 2
• 114904 Übung Nachrichtentechnik 2

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 84 h
Selbststudium/Nacharbeitszeit: 186 h
Gesamt: 270 h

17. Prüfungsnummer/n und -name: 11491 Nachrichtentechnik (PL), schriftlich, eventuell mündlich, 180 Min., Gewichtung: 1.0

18. Grundlage für ... :

20. Angeboten von: Institut für Hochfrequenztechnik
Modul: 10240 Numerische und Stochastische Grundlagen

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>051240005</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>6.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. Modulverantwortlicher:</th>
<th>Dirk Pflüger</th>
</tr>
</thead>
</table>
| 9. Dozenten: | • Dirk Pflüger
• Stefan Zimmer
• Miriam Mehl |

10. Zuordnung zum Curriculum in diesem Studiengang:

11. Empfohlene Voraussetzungen:

• Modul 10190 Mathematik für Informatiker und Softwaretechniker

12. Lernziele:

13. Inhalt:

Methoden der angewandten Mathematik, insbesondere der Numerik, Stochastik und Statistik, sind für viele Bereiche der Informatik wie Simulation, Grafik oder Bildverarbeitung von zentraler Bedeutung. In Ergänzung der Mathematik-Grundausbildung vermittelt diese Vorlesung folgende Grundkenntnisse:

- numerische Algorithmik
- Gleitpunktzahlen und Gleitpunkarithmetik
- Interpolation & Approximation
- Integration
- lineare Gleichungssysteme
- Iterative Lösung linearer und nichtlinearer Gleichungen
- gewöhnliche Differentialgleichungen
- Stochastik
- Zufall und Unsicherheit
- diskrete und kontinuierliche Wahrscheinlichkeitsräume
- Asymptotik
- Elementare induktive Statistik

Dabei wird ein konstruktiv-algorithmischer Zugang gewählt, der sich an konkreten Aufgabenstellungen aus der Informatik orientiert.

14. Literatur:

- Dahmen, Reusken; Numerik für Ingenieure
- Schwarz, Köckler; Numerische Mathematik
- Huckle, Schneider; Numerik für Informatiker
- Henze; Stochastik für Einsteiger
- Schickinger, Steger; Diskrete Strukturen, Band 2

15. Lehrveranstaltungen und -formen:

- 102401 Vorlesung Numerische und Stochastische Grundlagen der Informatik
- 102402 Übung Numerische und Stochastische Grundlagen der Informatik
16. Abschätzung Arbeitsaufwand:

Präsenzzeit:	63 h
Selbststudiums- / Nachbearbeitungszeit:	207 h
Summe:	270 h

17. Prüfungsnummer/n und -name:

- 10241 Numerische und Stochastische Grundlagen (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0, Prüfungsvorleistung: Übungsschein
- V Vorleistung (USL-V), schriftlich, eventuell mündlich

18. Grundlage für ...

19. Medienform:

20. Angeboten von: Simulation großer Systeme
Modul: 39040 Rechnernetze

2. Modulkürzel: 051200010 5. Modulduauer: 1 Semester
4. SWS: 4.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Kurt Rothermel
9. Dozenten: • Kurt Rothermel
 • Frank Dürr
11. Empfohlene Voraussetzungen: • 051520005 Programmierung und Software-Entwicklung
 • 051510005 Datenstrukturen und Algorithmen
 • Grundkenntnisse in Java

12. Lernziele:
• Versteht grundsätzliche Eigenschaften, Konzepte und Methoden von Rechnernetzen, insbesondere dem Internet.
• Versteht Schichten und deren Zusammenwirken in einem Protokollstapel
• Kann Rechnernetze aufbauen, verwalten und analysieren.
• Kann Protokolle entwickeln und in Schichtenarchitektur einbetten.
• Kann höhere Kommunikationsdienste zur Entwicklung von netzgestützten Systemen anwenden.
• Kann sich mit Experten anderer Domänen über Methoden der Rechnernetze verständigen.

13. Inhalt:
• Einführung in die Rechnernetze, ISO Referenzmodell;
• Bitübertragungsschicht: Übertragungsmedien, analoge und digitale Informati onskodierung und -übertragung, Vermittlungsarten;
• Sicherungsschicht: Betriebsarten, Fehlererkennung und -behandlung, Flusskontrolle;
• Lokale Netze: CSMA/CD, Token Ring, Token Bus, FDDI, Kopplung;
• Vermittlungsschicht: Verbindungsorientierter und verbindungsloser Dienst, Leitwegbestimmung, Überlastkontrolle;
• Internetworking;
• Internet-Protokoll;
• Transportschicht: ausgewählte Realisierungsprobleme und Internet-Protokolle;
• Echtzeitkommunikation: IntServ, DiffServ; Sicherheit: Verfahren, IPsec, SSL, TLS.

14. Literatur:
• D.E. Comer, Computernetzwerke und Internets, 2000
• J. F. Kurose, K. W. Ross, Computer Networks: a top-down approach featuring the Internet, 2001
• L.L. Peterson, B.S. Davie, Computer Networks: A Systems Approach, 1999

15. Lehrveranstaltungen und -formen:
• 390401 VL Rechnernetze
• 390402 ÜB Rechnernetze

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 Stunden
Nachbearbeitungszeit: 138 Stunden

| 17. Prüfungsnummer/n und -name: | • 39041 Rechnernetze (PL), schriftlich oder mündlich, 90 Min., Gewichtung: 1.0, Prüfungsdauer: 90 min schriftlich oder 30 min mündlich Exam duration: 90 min written exam or 30 min oral exam
| | • V Vorleistung (USL-V), schriftlich, eventuell mündlich |

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: | Verteilte Systeme
Modul: 46340 Signale und Systeme

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>051600044</th>
<th>5. Modulduer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>Die Studierenden besitzen Grundkenntnisse der Theorie von linearen Systemen und beherrschen die elementaren Methoden für die Analyse der Signale und Systeme im Zeit- und Frequenzbereich.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>• Signal, Klassifikation von Signalen, zeitkontinuierliche und zeitdiskrete Signale, verschiedene Elementarsignale • System, zeitkontinuierliche und zeitdiskrete Systeme, linear, gedächtnislos, kausal, zeitinvariant, stabil • Analyse zeitkontinuierlicher und zeitdiskreter LTI-Systeme im Zeitbereich, Impulsantwort, Faltung • Fourier-Reihe und Fourier-Transformation zeitkontinuierlicher und zeitdiskreter Signale • Abtastung, Abtasttheorem • Analyse zeitkontinuierlicher und zeitdiskreter LTI-Systeme im Frequenzbereich, Frequenzgang, Amplitudengang, Phasengang, Gruppenlaufzeit, rationaler Frequenzgang</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 463401 Vorlesung Signale und Systeme • 463402 Übung Signale und Systeme</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>46341 Signale und Systeme (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Laptop, Beamer, Videaufzeichnung aller Vorlesungen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Institut für Signalverarbeitung und Systemtheorie</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Modul: 10330 Systemkonzepte und -programmierung

2. Modulkürzel: 051200005 5. Moduldauer: 1 Semester
4. SWS: 4.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Kurt Rothermel
9. Dozenten: • Kurt Rothermel • Frank Dürr
11. Empfohlene Voraussetzungen: • Modul 051520005 Programmierung und Software-Entwicklung • Modul 051510005 Datenstrukturen und Algorithmen
12. Lernziele: • Verstehen grundlegender Architekturen und Organisationsformen von Software-Systemen • Verstehen systemnaher Konzepte und Mechanismen • Kann existierende Systemplattformen und Betriebssysteme hinsichtlich ihrer Eigenschaften analysieren und anwenden. • Kann systemnahe Software entwerfen und implementieren. • Kann nebenläufige Programme entwickeln • Kann mit Experten anderer Fachgebiete die Anwendung von Systemfunktionen abstimmen.
13. Inhalt: Grundlegende Systemstrukturen - und organisationen • Multitaskingsystem • Multiprozessorsystem • Verteiltes System Modellierung und Analyse nebenläufiger Programme • Abstraktionen: Atomare Befehle, Prozesse, nebenläufiges Programm • Korrektheit- und Leitungskriterien Betriebssystemkonzepte • Organisation von Betriebssystemen • Prozesse und Threads • Eingabe/Ausgabe • Scheduling Konzepte zur Synchronisation über gemeinsamen Speicher • Synchronisationsprobleme und -lösungen • Synchronisationswerkzeuge: Semaphor, Monitor Konzepte zur Kommunikation und Synchronisation mittels Nachrichtentransfer • Taxonomie: Kommunikation und Synchronisation • Nachrichten als Kommunikationskonzept • Höhere Kommunikationskonzepte Basisalgorithmen für Verteilte Systeme • Erkennung globaler Eigenschaften • Schnappschussproblem • Konsistenter globaler Zustand • Verteilte Terminierung Praktische nebenläufige Programmierung in Java • Threads und Synchronisation • Socketschnittstelle • RMI Programmierung
14. Literatur: • Literatur, siehe Webseite zur Veranstaltung
15. Lehrveranstaltungen und -formen:
 - 103301 Vorlesung Systemkonzepte und -programmierung
 - 103302 Übung Systemkonzepte und -programmierung

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 42 Stunden
 Nachbearbeitungszeit: 138 Stunden

17. Prüfungsnummer/n und -name:
 - 10331 Systemkonzepte und -programmierung (PL), schriftliche Prüfung, 90 Min., Gewichtung: 7.0
 - 10332 Systemkonzepte und -programmierung - Übungsschein (LBP), schriftliche Prüfung, 30 Min., Gewichtung: 3.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 40090 Systemkonzepte und -programmierung

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>051200005</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Moduldauber:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Kurt Rothermel</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Kurt Rothermel
• Frank Dürr |
➞ Wahlbereich E/I |
| 11. Empfohlene Voraussetzungen: | * Modul 051520005 Programmierung und Software-Entwicklung
* Modul 051510005 Datenstrukturen und Algorithmen |
| 12. Lernziele: | * Verstehen grundlegender Architekturen und Organisationsformen von Software-Systemen
* Verstehen systemnaher Konzepte und Mechanismen
* Kann existierende Systemplattformen und Betriebssysteme hinsichtlich ihrer Eigenschaften analysieren und anwenden.
* Kann systemnahe Software entwerfen und implementieren.
* Kann nebenläufige Programme entwickeln
* Kann mit Experten anderer Fachgebiete die Anwendung von Systemfunktionen abstimmen. |
| 13. Inhalt: | Grundlegende Systemstrukturen - und organisationen
• Multitaskingsystem
• Multiprozessorsystem
• Verteiltes System
Modellierung und Analyse nebenläufiger Programme
• Abstraktionen: Atomare Befehle, Prozesse, nebenläufiges Programm
• Korrektheit- und Leitungskriterien
Betriebssystemkonzepte
• Organisation von Betriebssystemen
• Prozesse und Threads
• Eingabe/Ausgabe
• Scheduling
Konzepte zur Synchronisation über gemeinsamen Speicher
• Synchronisationsprobleme und -lösungen
• Synchronisationswerkzeuge: Semaphor, Monitor
Konzepte zur Kommunikation und Synchronisation mittels Nachrichtentransfer
• Taxonomie: Kommunikation und Synchronisation
• Nachrichten als Kommunikationskonzept
• Höhere Kommunikationskonzepte
Basisalgorithmen für Verteilte Systeme
• Erkennung globaler Eigenschaften
• Schnappschussproblem
• Konsistenter globaler Zustand
• Verteilte Terminierung |
Praktische nebenläufige Programmierung in Java
 • Threads und Synchronisation
 • Socketschnittstelle
 • RMI Programmierung

14. Literatur: Literatur, siehe Webseite zur Veranstaltung

15. Lehrveranstaltungen und -formen:
 • 400901 Vorlesung Systemkonzepte und -programmierung
 • 400902 Übung Systemkonzepte und -programmierung

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 42 Stunden
 Nachbearbeitungszeit: 138 Stunden

17. Prüfungsnummer/n und -name:
 • 40091 Systemkonzepte und -programmierung (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0
 • V Vorleistung (USL-V), schriftlich, eventuell mündlich

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Verteilte Systeme
620 Wahlbereich F

Zugeordnete Module:

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
</tr>
</thead>
<tbody>
<tr>
<td>14170</td>
<td>Komputationelle Morphologie</td>
</tr>
<tr>
<td>14220</td>
<td>Fortgeschrittene Sprachsynthese</td>
</tr>
<tr>
<td>14260</td>
<td>Grundlagen der Signalverarbeitung in der Lautsprachverarbeitung</td>
</tr>
<tr>
<td>29620</td>
<td>Fortgeschrittene Aspekte der Sprachperzeption und Sprachproduktion</td>
</tr>
<tr>
<td>41060</td>
<td>Lexikalische Semantik und Komputationelle Lexikographie</td>
</tr>
<tr>
<td>41070</td>
<td>Fortgeschrittene Methoden in der Maschinellen Sprachverarbeitung</td>
</tr>
<tr>
<td>55960</td>
<td>Korpus-orientierte Ansätze in der Computerlinguistik</td>
</tr>
<tr>
<td>56100</td>
<td>Tree Automata</td>
</tr>
<tr>
<td>60180</td>
<td>Sprache, Gehirn und Kognition</td>
</tr>
<tr>
<td>68430</td>
<td>Grundlagentechnologien für die Sprachverarbeitung</td>
</tr>
<tr>
<td>68460</td>
<td>Bedeutung im Kontext</td>
</tr>
</tbody>
</table>
Modul: 68460 Bedeutung im Kontext

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>052400550</th>
<th>5. Modulduauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Nach Anmeldung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. Modulverantwortlicher:</th>
<th>Apl. Prof. Uwe Reyle</th>
</tr>
</thead>
</table>

| 9. Dozenten: | • Uwe Reyle
• Antje Roßdeutscher
• Christian Scheible
• Parvin Sadat Feizabadi |
|---------------|----------------------|

→ Wahlbereich F |
|---|---|

<table>
<thead>
<tr>
<th>11. Empfohlene Voraussetzungen:</th>
<th>Modul 13870 Semantik</th>
</tr>
</thead>
</table>

Sie können die Rolle der Syntax-Semantik-Schnittstelle, präsuppositionaler Beziehungen im Text, Verankerung der Bedeutung im Äußerungskontext, von Sprecherintention und Glaubenskontext identifizieren. Sie können den Beitrag des Kontexts im komplexen Prozess der Bedeutungskonstitution isolieren und die Reichweite dieser Komponenten beurteilen. |
|----------------|--|

|--------------|--|

| 14. Literatur: | |
|---------------| |

| 15. Lehrveranstaltungen und -formen: | • 684601 Vorlesung Pragmatik
• 684602 Seminar Lexical Semantics. Space as seen through the eyes of Natural Language
• 684603 Hauptseminar Lexical Semantics
• 684604 Hauptseminar Sentiment Analysis
• 684605 Seminar Discourse: Theories and Computational Models
• 684606 Seminar "Seminar Computational/Lexical Semantics (Temporal Relations in Discourse)" |
|-----------------|-----------------------------|

| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 56 h
Selbststudium: 124 h |
|------------------------------|-------------------|

<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>68461 Bedeutung im Kontext (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0</th>
</tr>
</thead>
</table>

| 18. Grundlage für …: | |
|---------------------| |

| 19. Medienform: | |
|----------------| |

| 20. Angeboten von: | |
Modul: 29620 Fortgeschrittene Aspekte der Sprachperzeption und Sprachproduktion

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>052400010</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Modulduer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>unregelmäßig</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Antje Schweitzer

9. Dozenten:
• Grzegorz Dogil
• Antje Schweitzer
• Natalie Lewandowski

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Maschinelle Sprachverarbeitung, PO 2009
 ➔ Wahlbereich F

11. Empfohlene Voraussetzungen: 14000 Phonetik und Phonologie

12. Lernziele:
 Die Studierenden haben ein detailliertes Verständnis für Theorien der Sprachproduktion und -perzeption entwickelt. Sie sind in der Lage, aktuelle Forschungsarbeiten in diesen Bereichen zu verstehen und kritisch zu bewerten.

13. Inhalt:
 Es werden aktuelle Konferenz- und Zeitschriftenbeiträge aus den Bereichen Sprachperzeption und Sprachproduktion erarbeitet und diskutiert, unter Berücksichtigung theoretischer und/oder praktischer Aspekte.

14. Literatur:
 • W.J.M. Levelt, Speaking: From Intention to Articulation, 1989, MIT Press
 • Konferenz- und Zeitschriftenbeiträge nach Ankündigung in den Vorlesungen.

15. Lehrveranstaltungen und -formen: 296201 Vorlesung Advanced Speech Perception and Advanced Speech Production

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit 42 h
 Selbststudium 138 h

17. Prüfungsnummer/n und -name:
 • 29621 Fortgeschrittene Aspekte der Sprachperzeption und Sprachproduktion (PL), mündliche Prüfung, 20 Min., Gewichtung: 1.0
 • V Vorleistung (USL-V), Sonstiges

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Experimentelle Phonetik
Modul: 41070 Fortgeschrittene Methoden in der Maschinellen Sprachverarbeitung

2. Modulkürzel: 052400025 5. Moduldauer: 1 Semester
4. SWS: 4.0 7. Sprache: Nach Ankuendigung
8. Modulverantwortlicher: Univ.-Prof. Jonas Kuhn
9. Dozenten: Dozenten des Instituts
11. Empfohlene Voraussetzungen: 052400009
13. Inhalt: In einer 4-stündigen Veranstaltung bzw. zwei 2-stündigen Teilveranstaltungen werden zu einem oder mehreren Bereichen der Maschinellen Sprachverarbeitung fortgeschrittene Methoden thematisiert. In Absprache mit dem Modulverantwortlichen und den Kursdozenten können verschiedene fortgeschrittene Methodenkurse zu diesem Modul kombiniert werden, z.B.
- Computational Morphology / Finite-State Morphology (2 SWS)
- Text Technology (4 SWS)
- Pragmatik (2 SWS)
- weitere für dieses Modul laut C@MPUS zulässige Veranstaltungen
14. Literatur:
Variabel nach Teilveranstaltung
15. Lehrveranstaltungen und -formen: 410701 Vorlesung Fortgeschrittene Methoden in der Maschinellen Sprachverarbeitung
16. Abschätzung Arbeitsaufwand: Präsenzzeit 42 h Selbststudiumszeit 138 h
17. Prüfungsnummer/n und -name: • 41071 Fortgeschrittene Methoden in der Maschinellen Sprachverarbeitung (PL), schriftlich oder mündlich, Gewichtung: 1.0
• V Vorleistung (USL-V), Sonstiges
18. Grundlage für ... :
19. Medienform:
20. Angeboten von:
Modul: 14220 Fortgeschrittene Sprachsynthese

2. Modulkürzel: 052400022 5. Modulduauer: 1 Semester
4. SWS: 4.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Grzegorz Dogil
9. Dozenten: • Grzegorz Dogil • Antje Schweitzer
11. Empfohlene Voraussetzungen: 052400008
Vertrautheit mit theoretischen Aspekten der Sprachsynthese
Grundkenntnisse in Linux
Programmierkenntnisse

12. Lernziele:
• Die Studierenden haben ein grundlegendes Verständnis für fortgeschrittene Konzepte der Sprachsynthese erworben.
• Die Studierenden sind in der Lage, selbständig ein Syntheseprojekt für beschränkte Domänen zu erstellen.

15. Lehrveranstaltungen und -formen: 142201 Vorlesung mit Übung Fortgeschrittene Sprachsynthese
16. Abschätzung Arbeitsaufwand: Präsenzzeit 42 h, Selbststudium 138 h
17. Prüfungsnummer/n und -name: 14221 Fortgeschrittene Sprachsynthese (PL), Sonstiges, Gewichtung: 1.0, Studienleistung: regelmäßige Hausübungen

18. Grundlage für ...
19. Medienform: Experimentelle Phonetik
20. Angeboten von: Experimentelle Phonetik
Modul: 14260 Grundlagen der Signalverarbeitung in der Lautsprachverarbeitung

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>052400024</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Modulduauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Wolfgang Wokurek

9. Dozenten: Wolfgang Wokurek

11. Empfohlene Voraussetzungen: 052400008

13. Inhalt: Schwingungen und Rauschen, Abtastung, Filter, Korrelation, Fensterfunktionen, Spektrum, Cepstrum, Lineare Prädiktion, Quelle-Filter Modell der Sprachproduktion, Kurzzeitenergie, Kurzzeitpektrum, Quelle-Modelle

15. Lehrveranstaltungen und -formen: 142601 Vorlesung mit Übung Grundlagen der Signalverarbeitung in der Lautsprachverarbeitung

16. Abschätzung Arbeitsaufwand: Präsenzzeit 42 h, Selbststudium 138 h

17. Prüfungsnummer/n und -name: 14261 Grundlagen der Signalverarbeitung in der Lautsprachverarbeitung (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0, Studienleistung: regelmäßige Hausübungen

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 68430 Grundlagentechnologien für die Sprachverarbeitung

2. Modulkürzel: -
5. Modulduauer: 1 Semester
3. Leistungspunkte: 6.0 LP
6. Turnus: jedes 2. Semester, SoSe
4. SWS: 4.0
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Sebastian Pado
9. Dozenten:
11. Empfohlene Voraussetzungen:
13. Inhalt:
14. Literatur: Das Modul setzt sich in der Regel aus zwei jeweils zweistündigen Veranstaltungen zusammen; Beispiele:
 - "Computational Morphology/Finite-State Morphology"
 - "Texttechnologie"
 - "Semantic Web"
 - weitere thematisch verwandte Veranstaltungen des Instituts
15. Lehrveranstaltungen und -formen: 684301 Vorlesung Grundlagentechnologien für die Sprachverarbeitung
16. Abschätzung Arbeitsaufwand: Präsenzzzeit: 56 h
Selbststudium: 124 h
17. Prüfungsnummer/n und -name: 68431 Grundlagentechnologien für die Sprachverarbeitung (PL), schriftlich oder mündlich, Gewichtung: 1.0, schriftlich (60 Min.), evtl. mündlich (30 Min.)
18. Grundlage für ... :
19. Medienform:
20. Angeboten von:
Modul: 14170 Komputationelle Morphologie

4. SWS: 4.0 7. Sprache: Nach Ankuendigung

8. Modulverantwortlicher: Univ.-Prof. Jonas Kuhn

9. Dozenten: • Cerstin Mahlow
• Boris Patrick Haselbach
• Marion Di Marco

11. Empfohlene Voraussetzungen: 052400002

12. Lernziele: • Die Studierenden erwerben ein grundlegendes Verständnis für die Konzepte, Algorithmen und Repräsentationsformalismen, die in der komputationellen Morphologie und anderen gängigen texttechnologischen Werkzeugen verwendet werden.
• Sie sind in der Lage, die entsprechenden Werkzeuge selbständig zu verwenden, anzupassen und sprachspezifische Komponenten zu implementieren.

Inhalte Finite-State Morphology: Endliche Transducer, Operationen auf endlichen Transducern, Tokenisierung mit endlichen Transducern, Implementierung von Flexion, Derivation und Komposition, Lexikonorganisation, Oberflächenrealisierungsregeln, besondere Phänomene.

Inhalte Texttechnologie: digitale Texte und Auszeichnungssprachen; Extensible Markup Language (XML), Text Encoding Initiative (TEI), Dokumentgrammatiken (Schemasprachen), die XML-basierten Programmiersprache XSLT.

15. Lehrveranstaltungen und -formen: 141701 Vorlesung mit Übung Komputationelle Morphologie

16. Abschätzung Arbeitsaufwand: Präsenzzeit 42 h, Selbststudium 138 h

17. Prüfungsnummer/n und -name: 14171 Komputationelle Morphologie (PL), schriftlich oder mündlich, Gewichtung: 1.0, Studienleistung: regelmäßige Hausübungen

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 55960 Korpus-orientierte Ansätze in der Computerlinguistik

2. Modulkürzel: 052400027
5. Moduldauer: 1 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0
6. Turnus: unregelmäßig

7. Sprache: Nach Anmeldung

8. Modulverantwortlicher: Univ.-Prof. Jonas Kuhn
9. Dozenten: Dozenten des Instituts

11. Empfohlene Voraussetzungen:

13. Inhalt: In einer 4-stündigen Veranstaltung bzw. zwei 2-stündigen Teilveranstaltungen werden korpus-orientierte Ansätze der Computerlinguistik thematisiert. In Absprache mit dem Modulverantwortlichen und den KursdozentInnen können verschiedene Kurse zu diesem Modul kombiniert werden, deren aktuelle Auswahl in C@MPUS dokumentiert ist.

14. Literatur:

15. Lehrveranstaltungen und -formen: 559601 Vorlesung Korpus-orientierte Ansätze in der Computerlinguistik

16. Abschätzung Arbeitsaufwand: Präsenzzeit 42 h
Selbststudiumszeit 138 h

17. Prüfungsnummer/n und -name: • 55961 Korpus-orientierte Ansätze in der Computerlinguistik (PL), schriftlich oder mündlich, Gewichtung: 1.0 • 55962 Korpus-orientierte Ansätze in der Computerlinguistik (USL) (USL), Sonstiges, Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 41060 Lexikalische Semantik und Komputationelle Lexikographie

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>052400026</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Antje Roßdeutscher</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>• Ulrich Heid</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Antje Roßdeutscher</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>Grundlagen der Komputationalen Lexikographie</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Korpuslinguistische Werkzeuge für die Lexikographie</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Modelle der elektronischen Wörterbücher</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Korpusbasierte Anreicherung elektronischer Wörterbücher</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grundlagen der lexikalischen Semantik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>DRT-basierte Lexika</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Formalisierung von Tempus im Lexikon</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nominalisierungen in der lexikalischen Semantik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>410601 Vorlesung Lexikalische Semantik und Komputationelle Lexikographie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Präsenzzeit 42 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Selbststudiumszzeit 138 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>• 41061 Lexikalische Semantik und Komputationelle Lexikographie (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• V Vorleistung (USL-V), schriftlich, eventuell mündlich</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Modul: 60180 Sprache, Gehirn und Kognition

2. Modulkürzel: 052400030 5. Modulsdauer: 1 Semester
4. SWS: 4.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Grzegorz Dogil
9. Dozenten: • Grzegorz Dogil • Natalie Lewandowski
11. Empfohlene Voraussetzungen:

12. Lernziele: Die Studierenden haben ein detailliertes Verständnis für Theorien und Phänomene in den verschiedenen Bereichen der Neurolinguistik, Neurophonetik und Kognitionswissenschaft entwickelt. Sie sind in der Lage, aktuelle Forschungsarbeiten zu o.g. Themen zu verstehen, kritisch zu bewerten und die Verbindungen zwischen verschiedenen Bereichen der Neurolinguistik, Kognitionswissenschaft und ihrem Studiengebiet zu erkennen.

(ENGLISH) Students have developed a detailed understanding of theories and phenomena from various subareas of neurolinguistics (incl. neurophonetics) and cognitive science. They are able to understand and discuss current publications from the areas above and also draw parallels between the various strands of neurolinguistics and cognitive science and their own field of study.

14. Literatur:
• Internet-Tutorial Sprache & Gehirn, http://www.ims.unistuttgart.de/phonetik/joerg/sgtutorial/
• Aktuelle Konferenz- und Zeitschriftenbeiträge nach Ankündigung in den Vorlesungen.

15. Lehrveranstaltungen und -formen:
• 601801 Vorlesung Sprache und Gehirn
• 601802 Vorlesung Introduction to Cognitive Science

16. Abschätzung Arbeitsaufwand: 56 h Präsenzzeit + 124 h Selbststudium

17. Prüfungsnummer/n und -name: 60181 Sprache, Gehirn und Kognition (PL), schriftlich oder mündlich, Gewichtung: 1.0, schriftlich 180 min oder mündlich 30 min

18. Grundlage für ... :

19. Medienform:
20. Angeboten von:
Modul: 56100 Tree Automata

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>052400033</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modulcode:</td>
<td>052400033</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Andreas Maletti</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Andreas Maletti
• Fabienne Braune |
| 11. Empfohlene Voraussetzungen: | Keine |
| 12. Lernziele: | • Theorie kontextfreier Parser
• Theorie von XML-Datenbanken
• formales Arbeiten und Beweisführung |
| 13. Inhalt: | This class is an introduction to the theory of tree automata and their applications. Properties of recognizable tree languages as well as their relation to natural language parsing will be studied. The lecture (Vorlesung) will be supplemented by a tutorial (Übung) where the contents of the lecture will be recapitulated with weekly assignments and programming exercises. The theory of tree automata and tree grammars has been studied since the 1960s. Tree automata and tree transducers have proved a useful tool in compiler construction, XML processing, verification and not least natural language processing. |
| 15. Lehrveranstaltungen und -formen: | • 561001 Lecture Tree Automata
• 561002 Tutorial Tree Automata |
| 16. Abschätzung Arbeitsaufwand: | 120h |
| 17. Prüfungsnummer/n und -name: | • 56101 Tree Automata (PL), schriftlich, eventuell mündlich, Gewichtung: 1.0
• 56102 Prerequisites Tree Automata (USL), Sonstiges, Gewichtung: 1.0, successful participation at the programming exercise |
| 18. Grundlage für ... : |
| 19. Medienform: | Elektronische Folien, Tafel |
| 20. Angeboten von: |
630 Wahlbereich W

<table>
<thead>
<tr>
<th>Zugeordnete Module</th>
<th>Bezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>14330</td>
<td>Sprache und Geist (Vertiefung Theoretische Philosophie)</td>
</tr>
<tr>
<td>14340</td>
<td>Grundlagen der Praktischen Philosophie</td>
</tr>
<tr>
<td>14350</td>
<td>Mensch und Technik</td>
</tr>
<tr>
<td>16700</td>
<td>Typologie</td>
</tr>
<tr>
<td>17240</td>
<td>Sprachwandel</td>
</tr>
<tr>
<td>20050</td>
<td>Einführung in die Theoretische Philosophie - Nebenfach</td>
</tr>
<tr>
<td>21570</td>
<td>Einführung in die Praktische Philosophie - Nebenfach</td>
</tr>
<tr>
<td>46580</td>
<td>Varietäten des Deutschen</td>
</tr>
</tbody>
</table>
Modul: 21570 Einführung in die Praktische Philosophie - Nebenfach

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>091320003</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Catrin Misselhorn</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Andreas Luckner
• Gerhard Ernst |
| 14. Literatur: | Literaturlauswahl:
• Auszüge aus klassischen Texten zur Ethik
| 15. Lehrveranstaltungen und -formen: | • 215701 Seminar Einführung in die Praktische Philosophie
• 215702 Tutorium Einführung in die Praktische Philosophie |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 42 h
Selbststudium: 138 h
Summe: 180 h |
| 17. Prüfungsnummer/n und -name: | • 21571 Einführung in die Praktische Philosophie - Nebenfach (LBP), schriftlich oder mündlich, 90 Min., Gewichtung: 1.0, Essays und/oder schriftlich, 90 min
• V Vorleistung (USL-V), schriftlich, eventuell mündlich |
| 18. Grundlage für ...: |
| 19. Medienform: | Skripte/Reader, Thesenpapiere, Tafelbilder, Power-Point, Protokolle, Literatur zur Lektüre |
| 20. Angeboten von: |
Modul: 20050 Einführung in die Theoretische Philosophie - Nebenfach

2. Modulkürzel: 091320022
5. Modulduauer: 1 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Catrin Misselhorn

9. Dozenten: • Gerhard Ernst
 • Ulrike Ramming

11. Empfohlene Voraussetzungen:

14. Literatur: Literaturnauswahl:
Auszüge aus klassischen Texten von Aristoteles, Kant, Mill, Dilthey, Frege, Heidegger, Strawson, Quine.

15. Lehrveranstaltungen und -formen: • 200501 Seminar Einführung in die Theoretische Philosophie
• 200502 Tutorium Einführung in die Theoretische Philosophie

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 h
Selbststudium: 138 h
Summe: 180 h

17. Prüfungsnummer/n und -name: 20051 Einführung in die Theoretische Philosophie (LBP), schriftlich oder mündlich, 90 Min., Gewichtung: 1.0, Essays und/oder schriftlich

18. Grundlage für ...

19. Medienform: Skripte/Reader, Thesenpapiere, Tafelbilder, Power-Point, Protokolle, Literatur zur Lektüre

20. Angeboten von:
Modul: 14340 Grundlagen der Praktischen Philosophie

2. Modulkürzel: 091320005
3. Leistungspunkte: 12.0 LP
4. SWS: 6.0
8. Modulverantwortlicher: Univ.-Prof. Catrin Misselhorn
9. Dozenten: • Gerhard Ernst
• Andreas Luckner
11. Empfohlene Voraussetzungen: keine
• Fähigkeit zur Beurteilung und differenzierten Anwendung unterschiedlicher moralphilosophischer Begründungsstrategien.
• Erwerb von Kompetenzen, Konzepte aus dem Gebiet der praktischen Philosophie systematisch und historisch zu vergleichen und einzuordnen.
• Fähigkeit, klassische Positionen des Gebiets selbständig zu interpretieren und zu analysieren sowie neuere Diskussionen zu verstehen und ein Problembewusstsein auszubilden.
14. Literatur: Literaturswahl (exemplarisch):
1) Aristoteles: Nikomachische Ethik
2) Hobbes, Thomas: Leviathan
3) Kant, Immanuel: Grundlegung zur Metaphysik der Sitten
4) Mill, John Stuart: Utilitarianism
15. Lehrveranstaltungen und -formen:
• 143401 Seminar 1 zu einem oder mehreren klassischen Werken aus dem Bereich der praktischen Philosophie
• 143402 Seminar 2 zu einem oder mehreren klassischen Werken aus dem Bereich der praktischen Philosophie
• 143403 Tutorium Grundlagen der Praktischen Philosophie
16. Abschätzung Arbeitsaufwand:
• Präsenzzeit: 63 h
• Selbststudium: 297 h
• Summe: 360 h
17. Prüfungsnummer/n und -name:

- V Vorleistung (USL-V), schriftlich, eventuell mündlich

18. Grundlage für ... :

19. Medienform: Skripte/Reader, Thesenpapiere, Tafelbilder, Power-Point, Protokolle, Literatur zur Lektüre

20. Angeboten von:
Modul: 14350 Mensch und Technik

2. Modulkürzel: 091320006
5. Moduldauler: 1 Semester
3. Leistungspunkte: 9.0 LP
6. Turnus: jedes 2. Semester, SoSe
4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Apl. Prof. Andreas Luckner
9. Dozenten:
- Andreas Luckner
- Ulrike Ramming
- Tillmann Pross

11. Empfohlene Voraussetzungen: Module 091320001-091320004
12. Lernziele:
- Kenntnis der grundlegenden Positionen der Philosophischen Anthropologie und der Technikphilosophie sowie des engen Zusammenhangs zwischen beiden Teilgebieten des Fachs.
- Fähigkeit zur Erarbeitung klassischer Texte zum Thema und ihrer systematischen Einordnung.

13. Inhalt:
In den philosophisch-anthropologischen Fragen nach dem Wesen des Menschen (mögliche Antworten reichen vom „animal rationale“ (Aristoteles) über das „tool making animal“ (Franklin) bis hin zum „Mängelwesen“ (Gehlen)) sind jeweils zugleich die Grundlinien der Bestimmung dessen angelegt, was Technik ist: Von der Technik als Kompensation natürlicher Mängel bis hin zur Bestimmung von Technik als Medium.

14. Literatur: Literatursauswahl (exemplarisch):

15. Lehrveranstaltungen und -formen:
- 143501 Integrierte Veranstaltung Anthropologie und Technik
- 143502 Seminar zu einer oder mehreren klassischen Positionen der Technikphilosophie

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 h
Selbststudium: 228 h
Summe: 270 h
17. Prüfungsnummer/n und -name:

- 14351 Mensch und Technik mündliche Prüfung (LBP), mündliche Prüfung, 20 Min., Gewichtung: 7.0, Prüfungsvorleistung: Referat inkl. Thesenpapier
- 14352 Mensch und Technik Hausarbeit (LBP), schriftliche Prüfung, Gewichtung: 3.0, Hausarbeit, max. 25 Seiten
- V Vorleistung (USL-V), schriftlich, eventuell mündlich

18. Grundlage für ...

19. Medienform: Skripte/Reader, Thesenpapiere, Tafelbilder, Power-Point, Protokolle, Literatur zur Lektüre

20. Angeboten von:
Modul: 14330 Sprache und Geist (Vertiefung Theoretische Philosophie)

2. Modulkürzel: 091320010
3. Leistungspunkte: 9.0 LP
4. SWS: 4.0
5. Modulduauer: 1 Semester
6. Turnus: jedes 2. Semester, SoSe
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Catrin Misselhorn
9. Dozenten: • Gerhard Ernst • Andreas Luckner • Ulrike Ramming • Tillmann Pross
11. Empfohlene Voraussetzungen: Module 091320001- 091320004
12. Lernziele: Fähigkeit zur Identifikation, Analyse, Systematisierung und Kritik der Ansätze zu den Wechselwirkungen zwischen Sprache und Denken in folgenden Hinsichten:
• metaphysisch unter den Dimensionen der Immaterialität, Wirksamkeit und des Selbstbewusstseins;
• kulturphilosophisch im Sinn der Überindividualität und Historizität von Sprache und Denken;
• sprachanalytisch als Frage nach der Natur mentaler Gehalte in ihren Beziehungen zu den Kognitionswissenschaften.
• Kenntnis der zentralen Ansätze zu Bedeutung und Referenz.
14. Literatur: Literaturauswahl (exemplarisch):
1) Hegel, Georg Wilhelm Friedrich: Phänomenologie des Geistes
2) Husserl, Edmund: Ideen zu einer reinen Phänomenologie
3) Frege, Gottlob: Über Sinn und Bedeutung
4) Wittgenstein, Ludwig: Philosophische Untersuchungen

13) Martinich, Aloysius (Hg.) (2006): The Philosophy of Language. OUP.

15. Lehrveranstaltungen und -formen:
• 143301 Seminar zu einem Thema aus dem Gebiet der Sprachphilosophie oder der Philosophie des Geistes
• 143302 Seminar zu einem Thema aus dem Gebiet der Sprachphilosophie oder der Philosophie des Geistes

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 h
Selbststudium: 228 h
Summe: 270 h

17. Prüfungsnummer/n und -name:
• 14331 Sprache und Geist - Referat (LBP), Sonstiges, Gewichtung: 3.0,
• 14332 Sprache und Geist - Hausarbeit (LBP), Sonstiges, Gewichtung: 7.0, Prüfungsvorleistung: Referat inkl. Thesenpapier. Die Hausarbeit ist im Seminar zu schreiben, in dem die Prüfungsvorleistung erbracht wurde; das benotete Referat ist im anderen Seminar zu halten.
• V Vorleistung (USL-V), schriftlich, eventuell mündlich

19. Medienform:
Scrippte/Reader, Thesenpapiere, Tafelbilder, Power-Point, Protokolle, Literatur zur Lektüre

20. Angeboten von:
Modul: 17240 Sprachwandel

4. SWS: 4.0 7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Jürgen Pafel
9. Dozenten: Manuela Korth
11. Empfohlene Voraussetzungen: alle Kernmodule
12. Lernziele: • Einblick in die Gesetzmäßigkeiten des Sprachwandels auf den verschiedenen Ebene der Sprache
• Grundkenntnisse der Sprachgeschichte des Deutschen, Englischen und/oder Französischen
• Theoretische und pratische Vertrautheit mit dem Phänomen der Variation bzw. dem Begriff der Varietät (Dialekt, Soziolekt etc.)
• Analyse von sprachlichem Material ausgewählter diachroner Varietäten
• Eine ältere Sprachstufe des Deutschen, Englischen oder Französischen wird vorgestellt.
• Einführung in die Struktur von Sprachvarietäten (Standardsprache, Dialekte etc.)
15. Lehrveranstaltungen und -formen: • 172401 Proseminar Sprachwandel
• 172402 Hauptseminar Sprachwandel
16. Abschätzung Arbeitsaufwand:
17. Prüfungsnummer/n und -name: • 17241 Sprachwandel Hauptseminar (LBP), schriftlich, eventuell mündlich, Gewichtung: 1.0
• 17242 Sprachwandel Proseminar (USL), schriftlich, eventuell mündlich, Gewichtung: 1.0
18. Grundlage für ... :
19. Medienform:
20. Angeboten von: Germanistische Linguistik

Stand: 10. Oktober 2016
Modul: 16700 Typologie

2. Modulkürzel: 091000010
3. Leistungspunkte: 12.0 LP
4. SWS: 8.0
5. Modulduauer: 2 Semester

Modulverantwortlicher:
Univ.-Prof. Jürgen Pafel

Dozenten:
- Daniel Hole
- Harald Knaus
- Sarah Jessica Lüking
- Jun Rößler

Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Maschinelle Sprachverarbeitung, PO 2009 ➞ Wahlbereich W

Empfohlene Voraussetzungen:
Basismodul 3, Kernmodul 1

Lernziele:
- Verständnis für den Aufbau und die Struktur von Sprachen aus unterschiedlichen Sprachfamilien
- Kenntnis der Universalienforschung und ihrer unterschiedlichen theoretischen Strömungen
- Vertiefung der Fähigkeit zur detaillierten Beschreibung einzelner Phänomene im Sprachvergleich
- Fähigkeit, fachgerecht schriftliche Arbeiten zu erstellen
- Fähigkeit, wissenschaftliche Texte zu lesen

Inhalt:
- Einführung in Grundbegriffe und Verfahren der Typologie
- Einführung in die Methoden der sprachvergleichenden Analyse sprachlicher Daten
- Behandlung ausgewählter Aspekte aus Syntax, Morphologie und Lexikon in diversen Sprachen unterschiedlicher Sprachfamilien

Literatur:
- Skripte sowie ausgewählte Aufsätze (vorwiegend auf Englisch)

Lehrveranstaltungen und -formen:
- 167001 Proseminar Typologie I
- 167002 Hauptseminar Typologie II
- 167003 Sprachkurs
- 167004 Tutorium Typologie II

Abschätzung Arbeitsaufwand:
- Präsenzzeit: 87 h
- Selbststudium / Nacharbeitszeit: 273 h
- Gesamt: 360 h

Prüfungsnummer/n und -name:
- 16701 Typologie I (PL), schriftlich, eventuell mündlich, Gewichtung: 50.0, Hausaufgaben, Klausur und Hausarbeit
- 16702 Typologie II (PL), schriftlich und mündlich, Gewichtung: 50.0, Referat und Hausarbeit
- 16703 Typologie Sprachkurs Klausur (USL), schriftlich, eventuell mündlich, Gewichtung: 1.0

Grundlage für ... :

Medienform:

Angeboten von:
Germanistische Linguistik
Modul: 46580 Varietäten des Deutschen

4. SWS: 4.0 7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Jürgen Pafel
9. Dozenten: Fabian Bross
11. Empfohlene Voraussetzungen: alle Kernmodule
12. Lernziele: theoretische und praktische Vertrautheit mit dem Phänomen der Variation bzw. dem Begriff der Varietät (Hochsprache, Dialekt, Soziolekt, gesprochene vs. geschriebene Sprache etc.) Kenntnis der charakteristischen Merkmale verschiedener Varietäten des Deutschen Analyse von konkretem Sprachmaterial ausgewählter Varietäten praktische Kenntnisse in Bezug auf die Aufnahme und Transkription von Gesprächen
13. Inhalt: Einführung in die Struktur von Sprachvarietäten (Standardsprache, Alltagssprache, Dialekt etc.) Darstellung der verschiedenen Aspekte und Ebenen ausgewählter Varietäten (Standard- und Umgangsvarietät des Hochdeutschen, Schwäbisch etc.) Diskussion der Probleme der Aufnahme und Transkription von Gesprächen
15. Lehrveranstaltungen und -formen: • 465801 Seminar Empirische Methoden, Proseminar • 465802 Hauptseminar Varietäten des Deutschen
17. Prüfungsnummer/n und -name: • 46581 Varietäten des Deutschen (LBP), schriftlich, eventuell mündlich, Gewichtung: 1.0 • 46582 Empirische Methoden - unbenotete Studienleistung (USL), schriftlich, eventuell mündlich, Gewichtung: 1.0
18. Grundlage für ... :
19. Medienform:
20. Angeboten von: Germanistische Linguistik
Modul: 81380 Bachelorarbeit Maschinelle Sprachverarbeitung

2. Modulkürzel: 050525002
5. Modulduauer: 1 Semester

3. Leistungspunkte: 12.0 LP
6. Turnus: jedes Semester

4. SWS: 8.0
7. Sprache: Nach Ankuendigung

8. Modulverantwortlicher:

9. Dozenten:

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Maschinelle Sprachverarbeitung, PO 2009

11. Empfohlene Voraussetzungen:

12. Lernziele:

13. Inhalt:

14. Literatur:

15. Lehrveranstaltungen und -formen:

16. Abschätzung Arbeitsaufwand:

17. Prüfungsnummer/n und -name:

18. Grundlage für ...

19. Medienform:

20. Angeboten von: