Inhaltsverzeichnis

19 Auflagenmodule des Masters ... 13

28820 Berufspädagogisches Projekt .. 14
28770 Berufswahl und Technikinteresse .. 15
51410 Berufswahl und Technikinteresse .. 17
20350 Didaktik beruflicher Bildung ... 19
12210 Einführung in die Elektrotechnik .. 21
12040 Einführung in die Regelungstechnik .. 23
11500 Elektrische Energetotechnik ... 25
51400 Entwicklung von Institutionen beruflicher Bildung 27
12200 Fertigungslehre mit Einführung in die Fabrikorganisation 29
51390 Forschungsmethodik für Berufspädagogen ... 31
51420 Grundlagen betrieblicher Bildungsarbeit ... 33
11240 Grundlagen der Informatik I+II ... 35
13550 Grundlagen der Umformtechnik ... 37
51660 Grundzüge der Maschinenkonstruktion I+II mit Einführung in die Festigkeitslehre .. 39
28790 Hauptseminar Berufsbildungsforschung ... 41
30630 Heiz- und Raumlufttechnik ... 42
11550 Leistungselektronik I ... 44
13800 Messtechnik - Anlagenmesstechnik .. 46
10220 Modellierung .. 48
20360 Organisation beruflicher Bildung .. 50
33160 Planung von Anlagen der Heiz- und Raumlufttechnik 52
30680 Praktikum Gebäudeenergetik .. 54
28730 Pädagogische Psychologie .. 57
11540 Regelungstechnik I ... 59
16500 Software Engineering ... 61
16250 Steuerungstechnik ... 62
14230 Steuerungstechnik der Werkzeugmaschinen und Industrieroboter 64
28740 Struktur beruflicher Bildung .. 66
10540 Technische Mechanik I ... 68
12170 Werkstoffkunde I+II mit Werkstoffpraktikum 69
13570 Werkzeugmaschinen und Produktionssysteme 71

30 Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang .. 73

130 Erziehungswissenschaft mit dem Schwerpunkt Berufspädagogik 74
132 Fachdidaktik im vorausgegangenen ingenieurwissenschaftlichen Studium ... 75
1320 Fachdidaktik im vorausgegangenen ingenieurwissenschaftlichen Studium anerkannt .. 76
12890 Fachdidaktik Hauptfach Bautechnik .. 77
12900 Fachdidaktik Hauptfach Elektro- und Informationstechnik 79
12910 Fachdidaktik Hauptfach Informatik ... 81
12920 Fachdidaktik Maschinenbau ... 84
135 Fachdidaktik des Wahlpflichtfaches .. 87
25510 Fachdidaktik 1 ... 88
25630 Fachdidaktik Chemie .. 90
27290 Fachdidaktik Englisch I ... 92
12950 Fachdidaktik Ethik ... 94
41510 Fachdidaktik Physik ... 96
12990 Fachdidaktik Religionspädagogik (evangelische Theologie) 98
31790 Fachdidaktik Sport: Lernen, Handeln und Instruieren in schulsportlichen Handlungsfeldern C .. 100
17590 Fachdidaktik Wahlpflichtfach Bautechnik .. 101
17910 Fachdidaktik Wahlpflichtfach Elektro-und Informationstechnik 104
29250 Fachdidaktik Wahlpflichtfach Informatik .. 107
<table>
<thead>
<tr>
<th>Code</th>
<th>Module</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>0260</td>
<td>Grundlagen der Fachdidaktik NwT (Hauptfach)</td>
<td>114</td>
</tr>
<tr>
<td>26300</td>
<td>Grundlagen der Fachdidaktik</td>
<td>116</td>
</tr>
<tr>
<td>27580</td>
<td>Politikdidaktik</td>
<td>118</td>
</tr>
<tr>
<td>14120</td>
<td>Wirtschaftsdidaktik</td>
<td>120</td>
</tr>
<tr>
<td>20350</td>
<td>Didaktik beruflicher Bildung</td>
<td>122</td>
</tr>
<tr>
<td>51170</td>
<td>Einführung in die Berufspädagogik</td>
<td>124</td>
</tr>
<tr>
<td>20360</td>
<td>Organisation beruflicher Bildung</td>
<td>126</td>
</tr>
<tr>
<td>133</td>
<td>Berufspädagogik (Zulassung zum Schuldienst)</td>
<td>128</td>
</tr>
<tr>
<td>134</td>
<td>Schulpraktikum</td>
<td>129</td>
</tr>
<tr>
<td>20370</td>
<td>Schulpraktikum I, Teil 1 (Universität)</td>
<td>130</td>
</tr>
<tr>
<td>20380</td>
<td>Schulpraktikum I, Teil 2 (Seminar)</td>
<td>131</td>
</tr>
<tr>
<td>23580</td>
<td>Schulpraktikum II</td>
<td>132</td>
</tr>
<tr>
<td>17150</td>
<td>Bedingungen und Strukturen beruflichen Lernens</td>
<td>134</td>
</tr>
<tr>
<td>23570</td>
<td>Didaktik beruflicher Bildung II</td>
<td>136</td>
</tr>
<tr>
<td>16570</td>
<td>Forschungsmethoden</td>
<td>138</td>
</tr>
<tr>
<td>500</td>
<td>Wahlpflichtfach B</td>
<td>140</td>
</tr>
<tr>
<td>5010</td>
<td>Wahlpflichtfach Mathematik</td>
<td>141</td>
</tr>
<tr>
<td>5011</td>
<td>Grundlagen Mathematik</td>
<td>142</td>
</tr>
<tr>
<td>11760</td>
<td>Analysis 1</td>
<td>143</td>
</tr>
<tr>
<td>11770</td>
<td>Analysis 2</td>
<td>145</td>
</tr>
<tr>
<td>11780</td>
<td>Lineare Algebra und Analytische Geometrie 1</td>
<td>147</td>
</tr>
<tr>
<td>11790</td>
<td>Lineare Algebra und Analytische Geometrie 2</td>
<td>149</td>
</tr>
<tr>
<td>11930</td>
<td>Präsentation und Vermittlung von Mathematik</td>
<td>151</td>
</tr>
<tr>
<td>5012</td>
<td>Erweiterte Themenbereiche zur Mathematik</td>
<td>153</td>
</tr>
<tr>
<td>10070</td>
<td>Analysis 3</td>
<td>154</td>
</tr>
<tr>
<td>11840</td>
<td>Geometrie</td>
<td>156</td>
</tr>
<tr>
<td>11820</td>
<td>Numerische Mathematik 1</td>
<td>158</td>
</tr>
<tr>
<td>11810</td>
<td>Topologie</td>
<td>160</td>
</tr>
<tr>
<td>11830</td>
<td>Wahrscheinlichkeits-theorie</td>
<td>162</td>
</tr>
<tr>
<td>5020</td>
<td>Wahlpflichtfach Physik</td>
<td>164</td>
</tr>
<tr>
<td>5021</td>
<td>Grundlagen zu Physik</td>
<td>165</td>
</tr>
<tr>
<td>27660</td>
<td>Grundlagen der Experimentalphysik für Lehramt I + II</td>
<td>166</td>
</tr>
<tr>
<td>27670</td>
<td>Grundlagen der Experimentalphysik für Lehramt III</td>
<td>168</td>
</tr>
<tr>
<td>27650</td>
<td>Mathematische Methoden der Physik</td>
<td>170</td>
</tr>
<tr>
<td>27680</td>
<td>Physikalisches Praktikum für Lehramt I</td>
<td>172</td>
</tr>
<tr>
<td>27690</td>
<td>Theoretische Physik für Lehramt I: Mechanik/Quantenmechanik</td>
<td>174</td>
</tr>
<tr>
<td>5022</td>
<td>Erweiterte Themenbereiche zur Physik</td>
<td>176</td>
</tr>
<tr>
<td>21900</td>
<td>Physikalisches Praktikum für Lehramt II (Technikpädagogik)</td>
<td>177</td>
</tr>
<tr>
<td>27750</td>
<td>Physikalisches Praktikum für Lehramt III</td>
<td>179</td>
</tr>
<tr>
<td>27700</td>
<td>Theoretische Physik für Lehramt II: Elektrodynamik und Thermodynamik</td>
<td>181</td>
</tr>
<tr>
<td>27730</td>
<td>Vertiefungsmodul Lehramt I - Relativitätstheorie, Astrophysik, Kosmologie</td>
<td>183</td>
</tr>
<tr>
<td>5030</td>
<td>Wahlpflichtfach Chemie</td>
<td>185</td>
</tr>
<tr>
<td>5031</td>
<td>Grundlagen Chemie</td>
<td>186</td>
</tr>
<tr>
<td>10230</td>
<td>Einführung in die Chemie</td>
<td>187</td>
</tr>
<tr>
<td>10380</td>
<td>Grundlagen der Anorganischen und Analytischen Chemie</td>
<td>190</td>
</tr>
<tr>
<td>10410</td>
<td>Instrumentelle Analytik</td>
<td>192</td>
</tr>
<tr>
<td>10340</td>
<td>Praktische Einführung in die Chemie</td>
<td>194</td>
</tr>
<tr>
<td>10490</td>
<td>Rechtsskunde und Toxikologie für Chemiker</td>
<td>196</td>
</tr>
<tr>
<td>5032</td>
<td>Erweiterte Themenbereiche zur Chemie</td>
<td>198</td>
</tr>
<tr>
<td>10400</td>
<td>Organische Chemie I</td>
<td>199</td>
</tr>
<tr>
<td>32200</td>
<td>Strukturaufklärung</td>
<td>202</td>
</tr>
<tr>
<td>10390</td>
<td>Thermodynamik, Elektrochemie und Kinetik</td>
<td>204</td>
</tr>
<tr>
<td>5040</td>
<td>Wahlpflichtfach Deutsch</td>
<td>206</td>
</tr>
<tr>
<td>5041</td>
<td>Grundlagen Deutsch</td>
<td>207</td>
</tr>
<tr>
<td>19530</td>
<td>Einführung in die Linguistik</td>
<td>208</td>
</tr>
<tr>
<td>19550</td>
<td>Einführung in die Literaturwissenschaft</td>
<td>210</td>
</tr>
</tbody>
</table>
5050 Wahlpflichtfach Englisch ... 237

5051 Grundlagen Englisch .. 238

27150 Formal Basis .. 239
27120 Grundlagen der Literaturwissenschaft und der Linguistik 241
31810 Linguistic Levels (Technikpädagogik) 243
41610 Sprachpraxis 1 ... 244
27160 Sprachpraxis 2 ... 246
31800 Text und Kontext (Technikpädagogik) 248
27140 Textwissenschaft .. 249

5052 Erweiterte Themenbereiche zu Englisch 250

5060 Wahlpflichtfach Ethik ... 262

5061 Grundlagen Ethik (TP) ... 263

30380 Einführung in die Praktische Philosophie 264
31150 Ethische Bewertung ... 266
27100 Grundlagen der Philosophie .. 268
30980 Grundlagen der Praktischen Philosophie 270

5062 Erweiterte Themenbereiche zur Ethik (TP) 272

5070 Wahlpflichtfach Politikwissenschaft .. 278

5071 Grundlagen Politikwissenschaft (TP) .. 279

27420 Analyse und Vergleich politischer Systeme LA 280
27440 Internationale Beziehungen LA ... 282
27430 Politische Theorie LA ... 284
27410 Politisches System der BRD LA ... 286

5072 Ergänzungswahlbereich Politikwissenschaft (TP) 288

28090 Analyse sozialer Strukturen und Prozesse 289
27600 Wahlmodul Seminar Politikwissenschaft: Analyse und Vergleich politischer Systeme 292
27550 Wahlmodul Seminar Politikwissenschaft: Internationale Beziehungen 294
27550 Wahlmodul Seminar Politikwissenschaft: Politische Theorie ... 296
27540 Wahlmodul Seminar Politikwissenschaft: Politisches System der BRD .. 298

5073 Erweiterte Themenbereiche zur Politikwissenschaft (TP) 300

28190 Technik- und Umweltsoziologie .. 301
28230 Vertiefung Politische Systeme .. 304
28240 Vertiefung Politische Theorie ... 306

5080 Wahlpflichtfach Sport ... 308

5081 Grundlagen Sport ... 309
<table>
<thead>
<tr>
<th>Code</th>
<th>Modul Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>12850</td>
<td>Geisteswissenschaftliche Ansätze und Theorien für Technikpädagogen</td>
</tr>
<tr>
<td>12860</td>
<td>Naturwissenschaftliche Ansätze und Theorien für Technikpädagogen</td>
</tr>
<tr>
<td>12870</td>
<td>Sozialwissenschaftliche Ansätze und Theorien für Technikpädagogen</td>
</tr>
<tr>
<td>12830</td>
<td>Sportarttypisches Handeln und Instruieren für Technikpädagogen I</td>
</tr>
<tr>
<td>12840</td>
<td>Sportarttypisches Handeln und Instruieren für Technikpädagogen II</td>
</tr>
<tr>
<td>5082</td>
<td>Erweiterte Themenbereiche zum Sport</td>
</tr>
<tr>
<td>23500</td>
<td>Geisteswissenschaftliche Vertiefung</td>
</tr>
<tr>
<td>20680</td>
<td>Lernen, Handeln und Instruieren in schulsportlichen Handlungsfeldern A</td>
</tr>
<tr>
<td>23490</td>
<td>Lernen, Handeln und Instruieren in schulsportlichen Handlungsfeldern B</td>
</tr>
<tr>
<td>23510</td>
<td>Naturwissenschaftliche Vertiefung</td>
</tr>
<tr>
<td>23520</td>
<td>Sozialwissenschaftliche Vertiefung</td>
</tr>
<tr>
<td>5090</td>
<td>Wahlpflichtfach Evangelische Theologie</td>
</tr>
<tr>
<td>5091</td>
<td>Grundlagen Evangelische Theologie</td>
</tr>
<tr>
<td>20510</td>
<td>Biblische Theologie</td>
</tr>
<tr>
<td>20530</td>
<td>Kirchengeschichte</td>
</tr>
<tr>
<td>20540</td>
<td>Religionspädagogik</td>
</tr>
<tr>
<td>20560</td>
<td>Religionswissenschaft</td>
</tr>
<tr>
<td>20550</td>
<td>Systematische Theologie</td>
</tr>
<tr>
<td>20500</td>
<td>Theologie als Wissenschaft</td>
</tr>
<tr>
<td>5092</td>
<td>Erweiterte Themenbereiche zur Ev. Theol.</td>
</tr>
<tr>
<td>23640</td>
<td>Biblische Theologie (AT)</td>
</tr>
<tr>
<td>23650</td>
<td>Biblische Theologie (NT)</td>
</tr>
<tr>
<td>23660</td>
<td>Kirchengeschichte II</td>
</tr>
<tr>
<td>23680</td>
<td>Religionspädagogik II</td>
</tr>
<tr>
<td>23670</td>
<td>Systematische Theologie II</td>
</tr>
<tr>
<td>5110</td>
<td>Wahlpflichtfach Katholische Theologie (TP)</td>
</tr>
<tr>
<td>5111</td>
<td>Grundlagen Katholische Theologie (TP)</td>
</tr>
<tr>
<td>20570</td>
<td>Katholische Theologie Basismodul 1</td>
</tr>
<tr>
<td>20580</td>
<td>Katholische Theologie Basismodul 2</td>
</tr>
<tr>
<td>20590</td>
<td>Katholische Theologie Basismodul 3</td>
</tr>
<tr>
<td>23600</td>
<td>Katholische Theologie Vertiefungsmodul 1</td>
</tr>
<tr>
<td>5112</td>
<td>Erweiterte Themenbereiche zur Katholischen Theologie (TP)</td>
</tr>
<tr>
<td>23610</td>
<td>Katholische Theologie Vertiefungsmodul 2</td>
</tr>
<tr>
<td>23620</td>
<td>Katholische Theologie Vertiefungsmodul 3</td>
</tr>
<tr>
<td>23630</td>
<td>Katholische Theologie Vertiefungsmodul 4</td>
</tr>
<tr>
<td>5120</td>
<td>Wahlpflichtfach Wirtschaftswissenschaft</td>
</tr>
<tr>
<td>5121</td>
<td>Grundlagen Wirtschaftswissenschaft (TP)</td>
</tr>
<tr>
<td>12090</td>
<td>BWL I: Produktion, Organisation, Personal</td>
</tr>
<tr>
<td>16490</td>
<td>Grundlagen der Betriebswirtschaftslehre</td>
</tr>
<tr>
<td>38160</td>
<td>Grundlagen der Volkswirtschaftslehre</td>
</tr>
<tr>
<td>27470</td>
<td>Makroökonomik</td>
</tr>
<tr>
<td>27460</td>
<td>Mikroökonomik</td>
</tr>
<tr>
<td>13030</td>
<td>Rechtliche Grundlagen der BWL</td>
</tr>
<tr>
<td>13610</td>
<td>Wissenschaftliches Arbeiten</td>
</tr>
<tr>
<td>5122</td>
<td>Erweiterte Themenbereiche zur Wirtschaftswissenschaft (TP)</td>
</tr>
<tr>
<td>38180</td>
<td>Allgemeine Wirtschaftspolitik</td>
</tr>
<tr>
<td>12100</td>
<td>BWL II: Rechnungswesen und Finanzierung</td>
</tr>
<tr>
<td>13200</td>
<td>BWL III: Marketing und Einführung in die Wirtschaftsinformatik</td>
</tr>
<tr>
<td>38190</td>
<td>Seminar zur Makroökonomik</td>
</tr>
<tr>
<td>5130</td>
<td>Wahlpflichtfach Informatik</td>
</tr>
<tr>
<td>5131</td>
<td>Grundlagen Informatik</td>
</tr>
<tr>
<td>12060</td>
<td>Datenstrukturen und Algorithmen</td>
</tr>
<tr>
<td>10260</td>
<td>Programmierkurs</td>
</tr>
<tr>
<td>10280</td>
<td>Programmierung und Software-Entwicklung</td>
</tr>
<tr>
<td>10290</td>
<td>Projekt-INF</td>
</tr>
<tr>
<td>10930</td>
<td>Technische Grundlagen der Informatik</td>
</tr>
<tr>
<td>10940</td>
<td>Theoretische Grundlagen der Informatik</td>
</tr>
<tr>
<td>5132</td>
<td>Wahnbereich Informatik</td>
</tr>
</tbody>
</table>
11890 Algorithmen und Berechenbarkeit ... 404
17210 Einführung in die Softwaretechnik .. 406
10110 Grundlagen der Künstlichen Intelligenz 408
10220 Modellierung ... 410
40090 Systemkonzepte und -programmierung 412
5200 Wahlpflichtfach Bautechnik .. 414
5201 Allgemeine Wahlfächer Bautechnik ... 415
42380 Angewandte Bauphysik .. 416
10610 Baubetriebslehre I ... 419
20640 Betontechnologie ... 421
41090 Einführung in die bauphysikalische Messtechnik 423
37150 Fertigungsverfahren in der Bauwirtschaft 425
10950 Geologie ... 427
10970 Grundlagen der Betriebswirtschaftslehre für Ingenieure 429
20650 Konstruktion und Material .. 431
10700 Planung und Konstruktion im Hochbau II (PlaKo II) 433
10720 Schutz, Instandsetzung und Ertüchtigung von Bauwerken 435
34180 Statistik und Informatik ... 437
10710 Werkstoffe im Bauwesen II .. 440
11340 Zerstörungsfreie Prüfung im Bauwesen 442
20630 Ökologische Bewertung; Nachhaltiges Bauen 444
5210 a) Entwerfen und Konstruieren .. 446
5211 a) Entwerfen u. Konstr. Pflicht .. 447
 10980 Einführung Entwurf mit Architekturstudenten 448
 10780 Entwerfen und Konstruieren .. 450
 10990 Entwurf in Zusammenarbeit mit Architekturstudenten 452
5212 a) Entwerfen und Konstruieren Wahl 454
 15850 Akustik ... 455
 34740 Ergänzungsmodul Konstruktion und Form 458
 34490 Feuchteschutz ... 460
 20660 Konstruktion und Form .. 463
 20700 Raumklima und Brandschutz .. 465
 23070 Sondergebiete des Entwerfens und Konstruierens 1 468
 23080 Sondergebiete des Entwerfens und Konstruierens 2 470
 34470 Wärmeschutz .. 472
5220 b) Techn. Ausbau ... 475
5221 b) Techn. Ausbau Pflicht ... 476
 10780 Entwerfen und Konstruieren .. 477
 31790 Entwurf Hochbau für Technikpädagogen im Bauwesen 479
 31770 Gebäudetechnik für Technikpädagogen im Bauwesen 480
 23030 Sondergebiete der Gebäudetechnik 481
5222 b) Techn. Ausbau Wahl .. 483
 23760 Grundlagen der Befestigungstechnik 484
 22820 Ressourcenorientiertes Entwerfen im Kontext 486
 10720 Schutz, Instandsetzung und Ertüchtigung von Bauwerken 488
5230 c) Baubetrieb ... 490
5231 c) Baubetrieb Pflicht .. 491
 10730 Baubetriebslehre II .. 492
 10740 Baubetriebslehre III .. 494
5232 c) Techn. Ausbau Wahl .. 496
 37050 Arbeitssicherheit im Baubetrieb 497
 11370 Ausgewählte Kapitel des Bauprozessmanagements 499
 37190 Ausgewählte Kapitel des Projektmanagements 501
 11940 Bauprozessmanagement in der Praxis 503
 37140 Immobilienbewirtschaftung ... 505
 37200 Kaufmännisches Facility Management 507
 34840 Workshop Unternehmensgründung 509
5240 d) Tragwerksbemessung und Konstruktion 511
<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>Kurzbeschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>5241 d)</td>
<td>d) Tragwerksbemessung und Konstruktion Pflicht</td>
<td></td>
</tr>
<tr>
<td>10770</td>
<td>Schlanke Tragwerke (Vorspannung und Stabilität)</td>
<td></td>
</tr>
<tr>
<td>10760</td>
<td>Verbindungen, Anschlüsse</td>
<td></td>
</tr>
<tr>
<td>5242 d)</td>
<td>d) Tragwerksbemessung und Konstruktion Wahl</td>
<td></td>
</tr>
<tr>
<td>12590</td>
<td>Produktionsverfahren im Stahlbau</td>
<td></td>
</tr>
<tr>
<td>12570</td>
<td>Temporäre Bauten</td>
<td></td>
</tr>
<tr>
<td>5250 e)</td>
<td>e) Geotechnik Pflicht</td>
<td></td>
</tr>
<tr>
<td>10745</td>
<td>Geotechnik</td>
<td></td>
</tr>
<tr>
<td>5251 e)</td>
<td>e) Geotechnik Pflicht</td>
<td></td>
</tr>
<tr>
<td>10745</td>
<td>Geotechnik</td>
<td></td>
</tr>
<tr>
<td>5252 e)</td>
<td>Geotechnik Wahl</td>
<td></td>
</tr>
<tr>
<td>5256 f)</td>
<td>Holzbau (nur in Kombination mit Tragwerksbemessung und Konstruktion möglich)</td>
<td></td>
</tr>
<tr>
<td>5261 f)</td>
<td>Holzbau Pflicht</td>
<td></td>
</tr>
<tr>
<td>37050</td>
<td>Arbeitssicherheit im Baubetrieb</td>
<td></td>
</tr>
<tr>
<td>12540</td>
<td>CAD/CAM im Stahlbau</td>
<td></td>
</tr>
<tr>
<td>33520</td>
<td>Grundlagen der Holzbearbeitungstechnologie</td>
<td></td>
</tr>
<tr>
<td>12550</td>
<td>Holzbaukonstruktionen</td>
<td></td>
</tr>
<tr>
<td>12560</td>
<td>Ingenieurholzbau</td>
<td></td>
</tr>
<tr>
<td>12570</td>
<td>Temporäre Bauten</td>
<td></td>
</tr>
<tr>
<td>5270 g)</td>
<td>Vermessungswesen Pflicht</td>
<td></td>
</tr>
<tr>
<td>13150</td>
<td>Erfassung und Verwaltung von Planungsdaten und Statistik</td>
<td></td>
</tr>
<tr>
<td>10690</td>
<td>Geodäsiie im Bauwesen</td>
<td></td>
</tr>
<tr>
<td>601</td>
<td>Statistik und Fehlerlehre</td>
<td></td>
</tr>
<tr>
<td>5271 g)</td>
<td>Vermessungswesen Wahl</td>
<td></td>
</tr>
<tr>
<td>19870</td>
<td>Amtliches Vermessungswesen und Neuordnung im ländlichen Raum</td>
<td></td>
</tr>
<tr>
<td>19880</td>
<td>Ausgleichungsrechnung</td>
<td></td>
</tr>
<tr>
<td>12690</td>
<td>Geoinformatik für Technikpädagogen</td>
<td></td>
</tr>
<tr>
<td>12670</td>
<td>Grundzüge der Rechtswissenschaft</td>
<td></td>
</tr>
<tr>
<td>12680</td>
<td>Ingenieurgeodäsiie im Bausorg</td>
<td></td>
</tr>
<tr>
<td>12690</td>
<td>Ingenieurgeodäsiische Mess- und Auswertemethoden</td>
<td></td>
</tr>
<tr>
<td>12660</td>
<td>Integriertes Projekt für Technikpädagogen</td>
<td></td>
</tr>
<tr>
<td>5280 h)</td>
<td>Straßenbau</td>
<td></td>
</tr>
<tr>
<td>15790</td>
<td>Entwurf, Lärmschutz und Umweltwirkungen von Straßenverkehrsanlagen</td>
<td></td>
</tr>
<tr>
<td>10820</td>
<td>Straßenbautechnik I</td>
<td></td>
</tr>
<tr>
<td>12700</td>
<td>Straßenbautechnik II</td>
<td></td>
</tr>
<tr>
<td>5282 h)</td>
<td>Straßenbau Wahl</td>
<td></td>
</tr>
<tr>
<td>12730</td>
<td>Ausgewählte Kapitel der Straßenbautechnik</td>
<td></td>
</tr>
<tr>
<td>12740</td>
<td>Fahrgemeitet</td>
<td></td>
</tr>
<tr>
<td>12720</td>
<td>Pavement Management Systeme</td>
<td></td>
</tr>
<tr>
<td>49000</td>
<td>Straßentenwurf innerorts</td>
<td></td>
</tr>
<tr>
<td>12750</td>
<td>Straßenplanung</td>
<td></td>
</tr>
<tr>
<td>5290 i)</td>
<td>Raum und Farbe Pflicht</td>
<td></td>
</tr>
<tr>
<td>34330</td>
<td>Raum - Farbe und Licht</td>
<td></td>
</tr>
<tr>
<td>34360</td>
<td>Raum - Farbe und Licht (Form, Textur, Material) (Wahlpflichtfach)</td>
<td></td>
</tr>
<tr>
<td>34340</td>
<td>Raum - Farbe und Licht (Wohnen)</td>
<td></td>
</tr>
<tr>
<td>Code</td>
<td>Modulbeschreibung</td>
<td>Seite</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>-------</td>
</tr>
<tr>
<td>5295</td>
<td>j) Holztechnik</td>
<td>628</td>
</tr>
<tr>
<td>5296</td>
<td>j) Holztechnik (Pflicht)</td>
<td>629</td>
</tr>
<tr>
<td>3420</td>
<td>4 Innenraum (Raumbildender Ausbau + Projekt + Werkstoffe 1)</td>
<td>630</td>
</tr>
<tr>
<td>3420</td>
<td>2 Möbel und Raum (Möbel/Innenraum und Projekt)</td>
<td>632</td>
</tr>
<tr>
<td>3426</td>
<td>0 Projekt Innenraum + Projekt Möbel und Raum (Wahlpflichtfach)</td>
<td>633</td>
</tr>
<tr>
<td>5300</td>
<td>0 Wahlpflichtfach Elektrotechnik</td>
<td>634</td>
</tr>
<tr>
<td>5310</td>
<td>Energie- und Automatisierungstechnik</td>
<td>635</td>
</tr>
<tr>
<td>5311</td>
<td>1 Schwerpunkt Energie- und Automatisierungstechnik (Pflicht)</td>
<td>636</td>
</tr>
<tr>
<td>1150</td>
<td>0 Elektrische Energietechnik</td>
<td>637</td>
</tr>
<tr>
<td>1155</td>
<td>0 Leistungselektronik I</td>
<td>639</td>
</tr>
<tr>
<td>1154</td>
<td>0 Regeltechnik I</td>
<td>641</td>
</tr>
<tr>
<td>5312</td>
<td>2 Schwerpunkt Energie- und Automatisierungstechnik (Wahl)</td>
<td>643</td>
</tr>
<tr>
<td>1162</td>
<td>0 Automatisierungstechnik I</td>
<td>644</td>
</tr>
<tr>
<td>1156</td>
<td>0 Elektrische Energienetze I</td>
<td>646</td>
</tr>
<tr>
<td>1158</td>
<td>0 Elektrische Maschinen I</td>
<td>648</td>
</tr>
<tr>
<td>1157</td>
<td>0 Hochspannungstechnik I</td>
<td>650</td>
</tr>
<tr>
<td>1159</td>
<td>0 Photovoltaik I</td>
<td>652</td>
</tr>
<tr>
<td>5313</td>
<td>3 Schwerpunkt Energie- und Automatisierungstechnik (Spezialisierung)</td>
<td>654</td>
</tr>
<tr>
<td>2173</td>
<td>0 Automatisierungstechnik II</td>
<td>655</td>
</tr>
<tr>
<td>2176</td>
<td>0 Elektrische Energienetze II</td>
<td>657</td>
</tr>
<tr>
<td>2169</td>
<td>0 Elektrische Maschinen II</td>
<td>659</td>
</tr>
<tr>
<td>2170</td>
<td>0 Hochspannungstechnik II</td>
<td>661</td>
</tr>
<tr>
<td>2171</td>
<td>0 Leistungselektronik II</td>
<td>663</td>
</tr>
<tr>
<td>2172</td>
<td>0 Numerische Feldberechnung II</td>
<td>665</td>
</tr>
<tr>
<td>2193</td>
<td>0 Photovoltaik II</td>
<td>667</td>
</tr>
<tr>
<td>2177</td>
<td>0 Radio Frequency Technology</td>
<td>669</td>
</tr>
<tr>
<td>2174</td>
<td>0 Regeltechnik II</td>
<td>671</td>
</tr>
<tr>
<td>2175</td>
<td>0 Softaretechnik II</td>
<td>673</td>
</tr>
<tr>
<td>1718</td>
<td>0 Technische Informatik II</td>
<td>675</td>
</tr>
<tr>
<td>5314</td>
<td>4 Praktische Übung im Labor (EAT)</td>
<td>677</td>
</tr>
<tr>
<td>1452</td>
<td>0 Praktische Übungen im Labor "Elektromechanische Energiewandlung I"</td>
<td>678</td>
</tr>
<tr>
<td>1453</td>
<td>0 Praktische Übungen im Labor "Leistungselektronik und Regelungstechnik"</td>
<td>680</td>
</tr>
<tr>
<td>900</td>
<td>0 Schlüsselqualifikationen fachübergreifend</td>
<td>682</td>
</tr>
<tr>
<td>5320</td>
<td>0 System- und Informationstechnik</td>
<td>683</td>
</tr>
<tr>
<td>5321</td>
<td>1 System- und Informationstechnik (Pflicht)</td>
<td>684</td>
</tr>
<tr>
<td>1167</td>
<td>0 Grundlagen integrierter Schaltungen</td>
<td>685</td>
</tr>
<tr>
<td>1149</td>
<td>0 Nachrichtentechnik</td>
<td>687</td>
</tr>
<tr>
<td>1161</td>
<td>0 Technische Informatik I</td>
<td>689</td>
</tr>
<tr>
<td>5322</td>
<td>2 System- und Informationstechnik (Wahl)</td>
<td>691</td>
</tr>
<tr>
<td>1164</td>
<td>0 Digitale Signalverarbeitung</td>
<td>692</td>
</tr>
<tr>
<td>1165</td>
<td>0 Hochfrequenztechnik I</td>
<td>694</td>
</tr>
<tr>
<td>1168</td>
<td>0 Kommunikationsnetze I</td>
<td>696</td>
</tr>
<tr>
<td>1163</td>
<td>0 Softaretechnik I</td>
<td>698</td>
</tr>
<tr>
<td>1166</td>
<td>0 Übertragungstechnik I</td>
<td>700</td>
</tr>
<tr>
<td>5323</td>
<td>3 System- und Informationstechnik (Spezialisierung)</td>
<td>702</td>
</tr>
<tr>
<td>2179</td>
<td>0 Communication Networks II</td>
<td>703</td>
</tr>
<tr>
<td>2183</td>
<td>0 Communications III</td>
<td>705</td>
</tr>
<tr>
<td>2185</td>
<td>0 Integrierte Mischsignalschaltungen</td>
<td>707</td>
</tr>
<tr>
<td>2186</td>
<td>0 Optical Signal Processing</td>
<td>709</td>
</tr>
<tr>
<td>2177</td>
<td>0 Radio Frequency Technology</td>
<td>711</td>
</tr>
<tr>
<td>2182</td>
<td>0 Statistical and Adaptive Signal Processing</td>
<td>713</td>
</tr>
<tr>
<td>2181</td>
<td>0 Stochastische Signale</td>
<td>715</td>
</tr>
<tr>
<td>1718</td>
<td>0 Technische Informatik II</td>
<td>717</td>
</tr>
<tr>
<td>2184</td>
<td>0 Übertragungstechnik II</td>
<td>719</td>
</tr>
<tr>
<td>5324</td>
<td>4 Praktische Übung im Labor</td>
<td>721</td>
</tr>
<tr>
<td>1458</td>
<td>0 Praktische Übungen im Labor "Multimedia Communications"</td>
<td>722</td>
</tr>
<tr>
<td>1457</td>
<td>0 Praktische Übungen im Labor "Rechnerarchitektur und Kommunikationssysteme I"</td>
<td>724</td>
</tr>
<tr>
<td>900</td>
<td>0 Schlüsselqualifikationen fachübergreifend</td>
<td>726</td>
</tr>
<tr>
<td>Modulhandbuch: Master of Science Technikpädagogik</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Wahlpflichtfach Maschinenbau</th>
<th>727</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fahrzeugtechnik</td>
<td>728</td>
</tr>
<tr>
<td>Mach-TP</td>
<td>729</td>
</tr>
<tr>
<td>Chemische Reaktionstechnik</td>
<td>730</td>
</tr>
<tr>
<td>Dichtungstechnik</td>
<td>732</td>
</tr>
<tr>
<td>Einführung in die effiziente Wärmenutzung</td>
<td>734</td>
</tr>
<tr>
<td>Energie- und Umwelttechnik</td>
<td>736</td>
</tr>
<tr>
<td>Fertigungsverfahren Faser- und Schichtverbundwerkstoffe</td>
<td>738</td>
</tr>
<tr>
<td>Fundamentals of Microelectronics</td>
<td>741</td>
</tr>
<tr>
<td>Gerätekonstruktion und -fertigung in der Feinwerktechnik</td>
<td>743</td>
</tr>
<tr>
<td>Grundlagen Technischer Verbrennungsvorgänge</td>
<td>745</td>
</tr>
<tr>
<td>Grundlagen der Faser- und Textiltechnik</td>
<td>747</td>
</tr>
<tr>
<td>Grundlagen der Heiz- und Raumlufttechnik</td>
<td>749</td>
</tr>
<tr>
<td>Grundlagen der Mechanischen Verfahrenstechnik</td>
<td>752</td>
</tr>
<tr>
<td>Grundlagen der Mikrotechnik</td>
<td>754</td>
</tr>
<tr>
<td>Grundlagen der Technischen Optik</td>
<td>756</td>
</tr>
<tr>
<td>Grundlagen der Thermischen Strömungsmaschinen</td>
<td>758</td>
</tr>
<tr>
<td>Grundlagen der Verbrennungsmotoren</td>
<td>760</td>
</tr>
<tr>
<td>Hydraulische Strömungsmaschinen in der Wasserkraft</td>
<td>762</td>
</tr>
<tr>
<td>Kerntechnische Anlagen zur Energieerzeugung</td>
<td>764</td>
</tr>
<tr>
<td>Kraftfahrzeuge</td>
<td>768</td>
</tr>
<tr>
<td>Kunststofftechnik - Grundlagen und Einführung</td>
<td>770</td>
</tr>
<tr>
<td>Methodische Produktdarstellung</td>
<td>772</td>
</tr>
<tr>
<td>Numerische Methoden der Dynamik</td>
<td>775</td>
</tr>
<tr>
<td>Numerische Strömungssimulation</td>
<td>777</td>
</tr>
<tr>
<td>Regelungstechnik</td>
<td>780</td>
</tr>
<tr>
<td>Schwingungen und Modalanalyse</td>
<td>783</td>
</tr>
<tr>
<td>Simulationstechnik</td>
<td>785</td>
</tr>
<tr>
<td>Technisches Design</td>
<td>787</td>
</tr>
<tr>
<td>Technologiemanagement</td>
<td>789</td>
</tr>
<tr>
<td>Technologien der Nano- und Mikrosystemtechnik</td>
<td>792</td>
</tr>
<tr>
<td>Thermische Verfahrenstechnik</td>
<td>795</td>
</tr>
<tr>
<td>Werkzeugmaschinen und Produktions-</td>
<td>797</td>
</tr>
<tr>
<td>Wissens- und Informationsmanagement in der Produktion</td>
<td>799</td>
</tr>
<tr>
<td>Zuverlässigkeitstechnik</td>
<td>801</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fahrzeugtechnik (Pflicht)</th>
<th>803</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grundlagen der Fahrzeugtechnik</td>
<td>804</td>
</tr>
<tr>
<td>Grundlagen der Verbrennungsmotoren</td>
<td>806</td>
</tr>
<tr>
<td>Kraftfahrzeuge</td>
<td>808</td>
</tr>
<tr>
<td>Kraftfahrzeugmechatronik</td>
<td>810</td>
</tr>
<tr>
<td>Messtechnik - Fahrzeugmesstechnik</td>
<td>812</td>
</tr>
<tr>
<td>Praktikum Kraftfahrzeuge</td>
<td>814</td>
</tr>
<tr>
<td>Praktikum Verbrennungsmotoren</td>
<td>816</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fahrzeugtechnik (Wahl)</th>
<th>818</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ackerschlepper und Öhydraulik</td>
<td>819</td>
</tr>
<tr>
<td>Automobiltechnisches Fachpraktikum</td>
<td>821</td>
</tr>
<tr>
<td>Elektrische Antriebe</td>
<td>824</td>
</tr>
<tr>
<td>Fahreigenschaften des Kraftfahrzeugs</td>
<td>826</td>
</tr>
<tr>
<td>Grundlagen Schienenfahrzeugtechnik und -betrieb</td>
<td>828</td>
</tr>
<tr>
<td>Grundlagen der Fahrzeugdynamik</td>
<td>830</td>
</tr>
<tr>
<td>Karosseriebau</td>
<td>832</td>
</tr>
<tr>
<td>Leichtbau</td>
<td>833</td>
</tr>
<tr>
<td>Spezielle Themen bei Verbrennungsmotoren</td>
<td>835</td>
</tr>
<tr>
<td>Technische Strömungslehre</td>
<td>839</td>
</tr>
<tr>
<td>Technische Thermodynamik</td>
<td>841</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Fertigungstechnik</th>
<th>843</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mach-TP</td>
<td>844</td>
</tr>
<tr>
<td>Chemische Reaktionstechnik</td>
<td>845</td>
</tr>
<tr>
<td>Code</td>
<td>Course Title</td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
</tr>
<tr>
<td>13920</td>
<td>Dichtungstechnik</td>
</tr>
<tr>
<td>13930</td>
<td>Einführung in die effiziente Wärmennutzung</td>
</tr>
<tr>
<td>13940</td>
<td>Energie- und Umwelttechnik</td>
</tr>
<tr>
<td>13040</td>
<td>Fertigungsverfahren Faser- und Schichtverbundwerkstoffe</td>
</tr>
<tr>
<td>14030</td>
<td>Fundamentals of Microelectronics</td>
</tr>
<tr>
<td>13970</td>
<td>Gerätekonstruktion und -fertigung in der Feinwerktechnik</td>
</tr>
<tr>
<td>14090</td>
<td>Grundlagen Technischer Verbrennungsvorgänge I + II</td>
</tr>
<tr>
<td>13980</td>
<td>Grundlagen der Faser- und Textiltechnik / Textilmaschinenbau</td>
</tr>
<tr>
<td>13060</td>
<td>Grundlagen der Heiz- und Raumlufttechnik</td>
</tr>
<tr>
<td>14020</td>
<td>Grundlagen der Mechanischen Verfahrenstechnik</td>
</tr>
<tr>
<td>13540</td>
<td>Grundlagen der Mikrotechnik</td>
</tr>
<tr>
<td>14060</td>
<td>Grundlagen der Technischen Optik</td>
</tr>
<tr>
<td>14070</td>
<td>Grundlagen der Thermischen Strömungsmaschinen</td>
</tr>
<tr>
<td>11390</td>
<td>Grundlagen der Verbrennungsprozessen</td>
</tr>
<tr>
<td>14100</td>
<td>Hydraulische Strömungsmaschinen in der Wasserkraft</td>
</tr>
<tr>
<td>14110</td>
<td>Kerntechnische Anlagen zur Energieerzeugung</td>
</tr>
<tr>
<td>13590</td>
<td>Kraftfahrzeuge I + II</td>
</tr>
<tr>
<td>14010</td>
<td>Kunststofftechnik - Grundlagen und Einführung</td>
</tr>
<tr>
<td>14160</td>
<td>Methodische Produktentwicklung</td>
</tr>
<tr>
<td>12250</td>
<td>Numerische Methoden der Dynamik</td>
</tr>
<tr>
<td>14180</td>
<td>Numerische Strömungssimulation</td>
</tr>
<tr>
<td>14190</td>
<td>Regelungstechnik</td>
</tr>
<tr>
<td>15600</td>
<td>Schwingungen und Modalanalyse</td>
</tr>
<tr>
<td>12270</td>
<td>Simulationstechnik</td>
</tr>
<tr>
<td>14240</td>
<td>Technisches Design</td>
</tr>
<tr>
<td>13330</td>
<td>Technologiemanagement</td>
</tr>
<tr>
<td>13560</td>
<td>Technologien der Nano- und Mikrosystemtechnik I</td>
</tr>
<tr>
<td>15860</td>
<td>Thermische Verfahrenstechnik I</td>
</tr>
<tr>
<td>13570</td>
<td>Werkzeugmaschinen und Produktionssysteme</td>
</tr>
<tr>
<td>13580</td>
<td>Wissens- und Informationsmanagement in der Produktion</td>
</tr>
<tr>
<td>14310</td>
<td>Zuverlässigkeitstechnik</td>
</tr>
<tr>
<td>5421</td>
<td>Fertigungstechnik (Pflicht)</td>
</tr>
<tr>
<td>13550</td>
<td>Grundlagen der Umformtechnik</td>
</tr>
<tr>
<td>14230</td>
<td>Steuerungstechnik der Werkzeugmaschinen und Industrieroboter</td>
</tr>
<tr>
<td>13570</td>
<td>Werkzeugmaschinen und Produktionssysteme</td>
</tr>
<tr>
<td>5422</td>
<td>Fertigungstechnik (Wahl)</td>
</tr>
<tr>
<td>12540</td>
<td>CAD/CAM im Stahlbau</td>
</tr>
<tr>
<td>13840</td>
<td>Fabrikbetriebslehre</td>
</tr>
<tr>
<td>13990</td>
<td>Grundlagen der Fördertechnik</td>
</tr>
<tr>
<td>32360</td>
<td>Grundlagen der Wälzlagerstechnik</td>
</tr>
<tr>
<td>30940</td>
<td>Industriegebiekeit</td>
</tr>
<tr>
<td>16260</td>
<td>Maschinendynamik</td>
</tr>
<tr>
<td>14140</td>
<td>Materialbearbeitung mit Lasern</td>
</tr>
<tr>
<td>36360</td>
<td>Qualitätsmanagement</td>
</tr>
<tr>
<td>33670</td>
<td>Rechnergestützte Konstruktion von Werkzeugmaschinen</td>
</tr>
<tr>
<td>13750</td>
<td>Technische Strömungslehre</td>
</tr>
<tr>
<td>14280</td>
<td>Werkstofftechnik und -simulation</td>
</tr>
<tr>
<td>32820</td>
<td>Werkzeuge der Blechumformung 1</td>
</tr>
<tr>
<td>33700</td>
<td>Ölhydraulik und Pneumatik in der Steuerungstechnik</td>
</tr>
<tr>
<td>5430</td>
<td>Heizungs-, Lüftungs- und Klimatechnik</td>
</tr>
<tr>
<td>5401</td>
<td>Mach-TP</td>
</tr>
<tr>
<td>13910</td>
<td>Chemische Reaktionstechnik I</td>
</tr>
<tr>
<td>13920</td>
<td>Dichtungstechnik</td>
</tr>
<tr>
<td>13930</td>
<td>Einführung in die effiziente Wärmennutzung</td>
</tr>
<tr>
<td>13940</td>
<td>Energie- und Umwelttechnik</td>
</tr>
<tr>
<td>13040</td>
<td>Fertigungsverfahren Faser- und Schichtverbundwerkstoffe</td>
</tr>
<tr>
<td>14030</td>
<td>Fundamentals of Microelectronics</td>
</tr>
<tr>
<td>13970</td>
<td>Gerätekonstruktion und -fertigung in der Feinwerktechnik</td>
</tr>
</tbody>
</table>
40 Studienprofil C - betriebliche Bildungsarbeit .. 1062

41 Vertiefungsbereich 1 ... 1063
 61100 Diagnostik und Evaluation .. 1064
 51430 Hauptseminar Berufsbildungsforschung ... 1066
 51440 Hauptseminar Didaktik .. 1067
 33550 Hauptseminar Didaktik II .. 1068
 51450 Hauptseminar Organisation beruflicher Bildung .. 1069
 61090 Historisch-politische Aspekte beruflicher Bildung und berufliche Sozialisation 1070

42 Vertiefungsbereich 2 .. 1072
 51500 Berufsbildungs- und Arbeitsrecht .. 1073
 61050 Berufspädagogische Vertiefung ... 1074
 61060 Berufspädagogische Vertiefung II .. 1075
 37540 Berufspädagogisches Projekt (Master) .. 1076
37550 Berufspädagogisches Tutorenprogramm .. 1077
61040 Bildungscontrolling in der Personalarbeit .. 1079
61020 Digitale Medien in der beruflichen Aus- und Weiterbildung 1081
26300 Grundlagen der Fachdidaktik NwT (Hauptfach) .. 1083
51490 Personal- und Organisationsentwicklung in Unternehmen 1085
28840 Soziale Kompetenz .. 1086
43 Spezialisierungsbereich ... 1088
900 Schlüsselqualifikationen fachübergreifend ... 1089
58360 Anwendungsbezogene Ethik - Technikpädagogik ... 1090
38030 Arbeit, Organisation und Innovation .. 1091
13530 Arbeitswissenschaft ... 1093
12090 BWL I: Produktion, Organisation, Personal .. 1095
37540 Berufspädagogisches Projekt (Master) .. 1098
37550 Berufspädagogisches Tutorenprogramm ... 1099
58240 Berufspädagogisches Tutorenprogramm II ... 1101
58250 Erkundungen zu Bedingungen und Strukturen betrieblicher Bildung 1102
13840 Fabrikbetriebslehre ... 1104
16570 Forschungsmethoden .. 1106
16490 Grundlagen der Betriebswirtschaftslehre ... 1108
42280 Grundlagen des Internationalen Managements .. 1111
42290 Interkulturelles Management ... 1113
48900 Konfliktbearbeitung ... 1115
38080 Konflikttheorien und Konfliktschlichtung ... 1117
80470 Masterarbeit Technikpädagogik (Studienprofil C) .. 1119
28870 Praktikum .. 1120

80470 Masterarbeit Technikpädagogik (Studienprofil C) .. 1122
80570 Masterarbeit Technikpädagogik (Studienprofil B) .. 1123
80590 Masterarbeit Technikpädagogik (Studienprofil A) .. 1124
19 Auflagenmodule des Masters

Zugeordnete Module:

- 10220 Modellierung
- 10540 Technische Mechanik I
- 11240 Grundlagen der Informatik I+II
- 11500 Elektrische Energietechnik
- 11540 Regelungstechnik I
- 11550 Leistungselektronik I
- 12040 Einführung in die Regelungstechnik
- 12170 Werkstoffkunde I+II mit Werkstoffpraktikum
- 12200 Fertigungslehre mit Einführung in die Fabrikorganisation
- 12210 Einführung in die Elektrotechnik
- 13550 Grundlagen der Umformtechnik
- 13570 Werkzeugmaschinen und Produktionssysteme
- 13800 Messtechnik - Anlagenmesstechnik
- 14230 Steuerungstechnik der Werkzeugmaschinen und Industrieroboter
- 16250 Steuerungstechnik
- 16500 Software Engineering
- 20350 Didaktik beruflicher Bildung
- 20360 Organisation beruflicher Bildung
- 28730 Pädagogische Psychologie
- 28740 Struktur beruflicher Bildung
- 28770 Berufswahl und Technikinteresse
- 28790 Hauptseminar Berufsbildungsforschung
- 28820 Berufspädagogisches Projekt
- 30630 Heiz- und Raumlufttechnik
- 30680 Praktikum Gebäudeenergetik
- 33160 Planung von Anlagen der Heiz- und Raumlufttechnik
- 51390 Forschungsmethodik für Berufspädagogen
- 51400 Entwicklung von Institutionen beruflicher Bildung
- 51410 Berufswahl und Technikinteresse
- 51420 Grundlagen betrieblicher Bildungsarbeit
- 51660 Grundzüge der Maschinenkonstruktion I+II mit Einführung in die Festigkeitslehre
Modul: 28820 Berufspädagogisches Projekt

2. Modulkürzel: 101010107
5. Modulduauer: 1 Semester
3. Leistungspunkte: 12.0 LP
6. Turnus: jedes Semester
4. SWS: 2.0
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Bernd Zinn
9. Dozenten: • Anke Treutlein
• Bernd Zinn
10. Zuordnung zum Curriculum in diesem Studiengang:
 M.Sc. Technikpädagogik, PO 2009, 5. Semester → Auflagenmodule des Masters
 M.Sc. Technikpädagogik, PO 2015, 5. Semester → Auflagenmodule des Masters
11. Empfohlene Voraussetzungen:
 erfolgreiche Bewältigung der Basismodule und mind. 3 Kernmodule
12. Lernziele:
 Die Studierenden erwerben die Fähigkeit wissenschaftliches Wissen in
 ausgewählten Anwendungsfeldern an komplexen Aufgabenstellungen
 anzuwenden und sind in der Lage bezogen auf die verarbeiteten Quellen
 und die eigenen Projektergebnisse die Geltungsansprüche der Aussagen
 abzuschätzen.
13. Inhalt:
 Anwendung forschungsmethodischer Verfahren in den Bereichen
 Didaktik und Organisation beruflicher Bildung, Anwendung von
 Planungen, Entwicklungs- und Bewertungsverfahren
14. Literatur:
 Literaturinformation zur beruflichen Bildung (wird von den Studierenden
 selbst eruiert,
 Grundlagenliteratur:
 Opladen: Leske + Budrich
 Schnell, Rainer / Hill, Paul B. / Esser, Elke (1999) : Methoden der
 empirischen Sozialforschung. 6. Aufl. München: Oldenburg Verlag
15. Lehrveranstaltungen und -formen: 288201 Projektseminar
16. Abschätzung Arbeitsaufwand:
 Präsenzzzeit: 21 h
 Vor- und Nachbereitung: 339 h
 Gesamt: 360 h
17. Prüfungsnummer/n und -name:
 • 28821 Berufspädagogisches Projekt - Bericht (LBP), schriftliche
 Prüfung, 60 Min., Gewichtung: 1.0
 • 28822 Berufspädagogisches Projekt Präsentation (USL), schriftlich,
 eventuell mündlich, 60 Min., Gewichtung: 1.0
18. Grundlage für ...
19. Medienform:
20. Angeboten von:
Modul: 28770 Berufswahl und Technikinteresse

2. Modulkürzel: 101010105
5. Modulduauer: 1 Semester
3. Leistungspunkte: 6.0 LP
4. SWS: 2.0
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Reinhold Nickolaus
9. Dozenten: • Annika Boltze
 • Anke Treutlein
10. Zuordnung zum Curriculum in diesem Studiengang:
 M.Sc. Technikpädagogik, PO 2009, 1. Semester
 → Auflagenmodule des Masters
 M.Sc. Technikpädagogik, PO 2015, 1. Semester
 → Auflagenmodule des Masters
11. Empfohlene Voraussetzungen: Basismodule 1,3,4
13. Inhalt: Berufswahltheorien; Übergänge an der ersten und zweiten Schwelle; Technikinteresse und seine Entwicklung; Maßnahmen zur Unterstützung von Berufswahlprozessen und zur Förderung des Technikinteresses
14. Literatur:
 • weitere Literatur wird im Seminar bekannt gegeben
15. Lehrveranstaltungen und -formen:
 • 287701 Seminar Berufswahl und Übergänge an der 1. und 2. Schwelle
 • 287702 Seminar Technikinteresse - Entwicklung und Maßnahmen zur Förderung
16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 21 h
 Vor- und Nachbereitung: 159 h
 Gesamt: 180 h
17. Prüfungsnummer/n und -name:

- 28771 Berufswahl und Technikinteresse - Hausarbeit (LBP), schriftliche Prüfung, Gewichtung: 1.0, schriftliche Hausarbeit in einem der Seminare (frei wählbar)
- 28772 Berufswahl und Technikinteresse - Referat 1 (USL), schriftlich und mündlich, 60 Min., Gewichtung: 1.0
- 28773 Berufswahl und Technikinteresse - Referat 2 (USL), schriftlich und mündlich, 60 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 51410 Berufswahl und Technikinteresse

2. Modulkürzel: 101010105
5. Modulduer: 1 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 2.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Reinhold Nickolaus

9. Dozenten:
• Annika Boltze
• Anke Treutlein

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Technikpädagogik, PO 2009, 1. Semester
→ Auflagenmodule des Masters
M.Sc. Technikpädagogik, PO 2015, 1. Semester
→ Auflagenmodule des Masters

11. Empfohlene Voraussetzungen: Basismodule 1,3,4

12. Lernziele:

13. Inhalt:
Berufswahltheorien; Übergänge an der ersten und zweiten Schwelle; Technikinteresse und seine Entwicklung; Maßnahmen zur Unterstützung von Berufswahlprozessen und zur Förderung des Technikinteresses

14. Literatur:
• weitere Literatur wird im Seminar bekannt gegeben

15. Lehrveranstaltungen und -formen:
• 514101 Seminar Berufswahl und Übergänge an der 1. und 2. Schwelle
• 514102 Seminar Technikinteresse - Entwicklung und Maßnahmen zur Förderung

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 21 h
Vor- und Nachbereitung: 159 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
• 51411 Klausur oder Hausarbeit über Berufswahl und Technikinteresse (PL), schriftliche Prüfung, Gewichtung: 1.0
• 51412 Berufswahl und Übergänge an der 1. und 2. Schwelle - Referat (USL), schriftlich und mündlich, 60 Min., Gewichtung: 1.0
• V Vorleistung (USL-V), schriftlich und mündlich, 60 Min.

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 20350 Didaktik beruflicher Bildung

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>6.0</td>
<td>7. Sprache:</td>
<td>-</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Reinhold Nickolaus</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Martin Kenner
| | • Reinhold Nickolaus |
| | → Erziehungswissenschaft mit dem Schwerpunkt Berufspädagogik
| | → Erziehungswissenschaft Kernmodule
| | M.Sc. Technikpädagogik, PO 2009, 3. Semester
| | → Auflagenmodule des Masters
| | M.Sc. Technikpädagogik, PO 2009, 3. Semester
| | → Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang
| | → Erziehungswissenschaft mit dem Schwerpunkt Berufspädagogik
| | M.Sc. Technikpädagogik, PO 2015, 3. Semester
| | → Auflagenmodule des Masters
| | M.Sc. Technikpädagogik, PO 2015, 3. Semester
| | → Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang
| | → Erziehungswissenschaft mit dem Schwerpunkt Berufspädagogik |
| 11. Empfohlene Voraussetzungen: | keine |
| 12. Lernziele: | Die Studierenden erwerben die Fähigkeit auf der Basis grundlegenden Wissens zur Didaktik Entscheidungen zur Gestaltung von Lehr-Lernprozessen zu reflektieren und zu begründen.
| | Sie sind insbesondere in der Lage, Lehr-Lernziele und Lehrverfahren unter Berücksichtigung relevanter Bedingungen zu planen und Lehr-Lernprozesse zu beurteilen. |
| 13. Inhalt: | Allgemeine Modelle des Lehrens und Lernens; Lehr-Lernkonzepte beruflicher Bildung; Ausgewählte Ergebnisse der Lehr-Lernforschung; Methodische Gestaltung von Lehr-Lernprozessen; Kompetenzmodelle und Kompetenzentwicklung. |
| 15. Lehrveranstaltungen und -formen: | • 203501 Vorlesung Didaktik beruflicher Bildung I
| | • 203502 Vorlesung Didaktik beruflicher Bildung II
| | • 203503 Übung Didaktik beruflicher Bildung II |
| 16. Abschätzung Arbeitsaufwand: | In den Vorlesungen und der Übung sind jeweils ca. 21h. Präsenzzeit und 68h Vor- und Nachbereitungszeit vorgesehen (Gesamtzeit = 270h). |
| 17. Prüfungsnummer/n und -name: | • V Vorleistung (USL-V), schriftlich, eventuell mündlich
<p>| | • 20354 Didaktik beruflicher Bildung (PL), schriftlich, eventuell mündlich, 120 Min., Gewichtung: 1.0 |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Vorträge, Präsentationen, Diskussionen</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td></td>
</tr>
</tbody>
</table>
Modul: 12210 Einführung in die Elektrotechnik

4. SWS: 7.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Nejila Parspour
9. Dozenten: Nejila Parspour

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technikpädagogik, PO 2011, 2. Semester
 → Hauptfach -->Hauptfach Maschinenbau -->Kernmodule
 →
 Maschinenbau
M.Sc. Technikpädagogik
 → Auflagenmodule des Masters
M.Sc. Technikpädagogik
 → Auflagenmodule des Masters

11. Empfohlene Voraussetzungen:

12. Lernziele:
Studierende haben Grundkenntnisse der Elektrotechnik. Sie können einfache Anordnungen mathematisch beschreiben und einfache Aufgabenstellungen lösen.

13. Inhalt:
 • Elektrischer Gleichstrom
 • Elektrische und magnetische Felder
 • Wechselstrom
 • Halbleiterelektronik (Diode, Bipolartransistor, Operationsverstärker)
 • Elektrische Maschinen (Gleichstrommaschine, Synchrongenerator, Asynchronmotor)

14. Literatur:
 • Hermann Linse, Rolf Fischer, Elektrotechnik für Maschinenbauer, Teubner Stuttgart, 12. Auflage 2005
 • Moeller / Fricke / Frohne / Löcherer / Müller, Grundlagen der Elektrotechnik, Teubner Stuttgart, 19. Auflage 2002
 • Jötten / Zürneck, Einführung in die Elektrotechnik I/II, uni-text Braunschweig 1972
 • Ameling, Grundlagen der Elektrotechnik I/II, Bertelsmann Universitätsverlag 1974

15. Lehrveranstaltungen und -formen:
 • 122101 Vorlesung Einführung in die Elektrotechnik
 • 122102 Übungen Einführung in die Elektrotechnik
 • 122103 Praktikum Einführung in die Elektrotechnik

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 98 h
Selbststudium / Nacharbeitszeit: 82 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
 • 12211 Einführung in die Elektrotechnik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0
 • 12212 Einführung in die Elektrotechnik: Praktikum (USL), Studienbegleitend
 • V Vorleistung (USL-V), schriftlich, eventuell mündlich

18. Grundlage für ... :

19. Medienform:
Beamer, Tafel, ILIAS
20. Angeboten von: Institut für Elektrische Energiewandlung
Modul: 12040 Einführung in die Regelungstechnik

2. Modulkürzel: 074810010
5. Modulduer: 2 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 6.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Frank Allgöwer

9. Dozenten:
 • Frank Allgöwer
 • Matthias Müller

10. Zuordnung zum Curriculum in diesem Studiengang:
 M.Sc. Technikpädagogik
 ➞ Auflagenmodule des Masters
 M.Sc. Technikpädagogik
 ➞ Wahlpflichtfach Maschinenbau -- Heizungs-, Lüftungs- und Klimatechnik
 ➞ Heizungs-, Lüftungs- und Klimatechnik (Wahl)
 M.Sc. Technikpädagogik
 ➞ Auflagenmodule des Masters
 M.Sc. Technikpädagogik
 ➞ Wahlpflichtfach Maschinenbau -- Heizungs-, Lüftungs- und Klimatechnik
 ➞ Heizungs-, Lüftungs- und Klimatechnik (Wahl)

11. Empfohlene Voraussetzungen: HM I-III, Grundlagen der Systemdynamik

12. Lernziele:
 Die Studierenden
 • haben umfassende Kenntnisse zur Analyse und Synthese einschleifiger linearer Regelkreise im Zeit- und Frequenzbereich
 • können auf Grund theoretischer Überlegungen Regler und Beobachter für dynamische Systeme entwerfen und validieren
 • können entworfene Regler und Beobachter an praktischen Laborversuchen implementieren

13. Inhalt:
 Vorlesung:
 Systemtheoretische Konzepte der Regelungstechnik, Stabilität, Beobachtbarkeit, Steuerbarkeit, Robustheit, Reglerentwurfsverfahren im Zeit- und Frequenzbereich, Beobachterentwurf

 Praktikum:
 Implementierung der in der Vorlesung Einführung in die Regelungstechnik erlernten Reglerentwurfsverfahren an praktischen Laborversuchen

 Projektwettbewerb:
 Lösen einer konkreten Regelungsaufgabe in einer vorgegebenen Zeit in Gruppen

14. Literatur:
 • Lunze, J.. Regelungstechnik 1. Springer Verlag, 2004
15. Lehrveranstaltungen und -formen:
- 120401 Vorlesung Einführung in die Regelungstechnik
- 120402 Gruppenübung Einführung in die Regelungstechnik
- 120403 Praktikum Einführung in die Regelungstechnik
- 120404 Projektwettbewerb Einführung in die Regelungstechnik

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 63h
- Selbststudiumszeit / Nacharbeitszeit: 117h
- Gesamt: 180h

17. Prüfungsnummer/n und -name:
- 12041 Einführung in die Regelungstechnik (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0
- 12042 Einführung in die Regelungstechnik - Praktikum: Anwesenheit mit Kurztest (USL), schriftlich, eventuell mündlich, Gewichtung: 1.0
- 12043 Einführung in die Regelungstechnik - Projektwettbewerb: erfolgreiche Teilnahme (USL), schriftlich, eventuell mündlich, Gewichtung: 1.0

18. Grundlage für ... :
- 12260 Mehrgrößenregelung

19. Medienform:

20. Angeboten von:
Modul: 11500 Elektrische Energietechnik

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>6.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Jörg Roth-Stielow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>• Stefan Tenbohlen</td>
<td>• Jörg Roth-Stielow</td>
<td></td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

| B.Sc. Technikpädagogik, PO 2011, 2. Semester | → Hauptfach Elektrotechnik -->Ergänzungsmodule -->Pflichtcontainer Schwerpunkt Energie- und Automatisierungstechnik |
| → Vorgezogene Master-Module |
| → M.Sc. Technikpädagogik, PO 2009, 2. Semester | → Auﬂagenmodule des Masters |
| → M.Sc. Technikpädagogik, PO 2015, 2. Semester | → Auﬂagenmodule des Masters |

11. Empfohlene Voraussetzungen:

12. Lernziele:

- ...kennen die grundlegenden Prinzipien der elektrischen Energieerzeugung, -übertragung und -verteilung.
- ...können einfache Berechnungen von Größen in Systemen der elektrischen Energieerzeugung, -übertragung und -verteilung vornehmen.
- ...kennen die grundlegenden Prinzipien der elektrischen Maschinen und Transformatoren.
- ...können einfache Berechnungen von Größen in elektrischen Maschinen und Transformatoren vornehmen.

13. Inhalt:

- Aufgabe und Bedeutung der elektrischen Energieversorgung,
• Energieumwandlung in Kraftwerken,
• Elektrizitätswirtschaft und Investitionstheorie,
• Aufbau von elektrischen Energieversorgungsnetzen und Bordnetzen,
• Lastflüsse, Kurzschlussströme, Überspannungen in elektrischen Versorgungsnetzen,
• Sicherheitstechnik,
• elektrischer Unfall,
• Elektrischer Energiefluss als Informations- und Arbeitsmedium,
• Leistungselektronik u. Regelungstechnik als Teilgebiete der Energietechnik,
• Gleichstrommaschine,
• Transformator,
• Asynchronmaschine, Synchronmaschine

14. Literatur:
• Vorlesungsskripte
• Heuck, Dettmann: Elektrische Energieversorgung, Vieweg, Braunschweig/Wiesbaden, 2005
• Schwab: Elektroenergiesysteme, Springer, 2006
• Seinsch, H. O.: Grundlagen elektrischer Maschinen und Antriebe, G. Teubner, Stuttgart, 1988
• Heumann, K.: Grundlagen der Leistungselektronik, B. G. Teubner, Stuttgart, 1989

15. Lehrveranstaltungen und -formen:
• 115001 Vorlesung Energietechnik I
• 115002 Übung Energietechnik I
• 115003 Vorlesung Energietechnik II
• 115004 Übung Energietechnik II

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 84 h
Selbststudium: 186 h
Gesamt: 270 h

17. Prüfungsnummer/n und -name:
• 11501 Elektrische Energietechnik I (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0
• 11502 Elektrische Energietechnik II (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:
Tafel, Folien, Beamer

20. Angeboten von:
Informatik, Elektrotechnik und Informationstechnik
Modul: 51400 Entwicklung von Institutionen beruflicher Bildung

2. Modulkürzel: 101010104
5. Modulduauer: 1 Semester
3. Leistungspunkte: 6.0 LP
6. Turnus: jedes 2. Semester, SoSe
4. SWS: 4.0
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Reinhold Nickolaus
9. Dozenten: • Reinhold Nickolaus
• Annika Boltze
• Anne Windaus
• Anja Sarnitz
• M.Sc. Technikpädagogik, PO 2015, 4. Semester ➞ Auflagenmodule des Masters
11. Empfohlene Voraussetzungen: Grundkenntnisse zur Struktur beruflicher Bildung

Sie sind in der Lage den Geltungsanspruch einschlägiger Aussagesysteme zu beurteilen und selbst Analysen zu Entwicklungsprozessen durchzuführen
13. Inhalt: Historische Entwicklung des beruflichen Bildungssystems und relevante Entwicklungsbedingungen; Aktuelle Entwicklungsprozesse, Innovationsansätze, Transferproblematik pädagogischer Handlungsprogramme, Qualität pädagogischen Handelns, Qualitätssicherungssysteme
14. Literatur:
15. Lehrveranstaltungen und -formen: • 514001 Seminar Entwicklung von Institutionen beruflicher Bildung
• 514002 Seminar Qualität und Qualitätssicherung in der beruflichen Bildung
16. Abschätzung Arbeitsaufwand: Präsenzzeit: 42 h
Vor- und Nachbereitung: 138 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
- 51401 Klausur oder Hausarbeit zum Seminar Entwicklung von Institutionen (PL), schriftliche Prüfung, Gewichtung: 1.0
- 51402 Qualität und Qualitätssicherung in der beruflichen Bildung - Referat (USL), schriftlich, eventuell mündlich, Gewichtung: 1.0
- V Vorleistung (USL-V), schriftlich, eventuell mündlich

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
Modul: 12200 Fertigungslehre mit Einführung in die Fabrikorganisation

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072410001</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>3.0</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Thomas Bauernhansl
9. Dozenten: Thomas Bauernhansl

10. Zuordnung zum Curriculum in diesem Studiengang:
 - B.Sc. Technikpädagogik, PO 2011, 1. Semester
 → Hauptfach -->Hauptfach Maschinenbau -->Kernmodule Maschinenbau
 → M.Sc. Technikpädagogik
 → Auflagenmodule des Masters
 - M.Sc. Technikpädagogik
 → Auflagenmodule des Masters

11. Empfohlene Voraussetzungen: keine

12. Lernziele:

Der Studierende kennt die Struktur und Abläufe sowie Prozessketten eines produzierenden Unternehmens. Er beherrscht die Grundlagen der Kosten- sowie der Investitionsrechnung. Der Studierende besitzt einen ersten Eindruck bezüglich digitaler Werkzeuge für die Planung und Simulation der Produktion.

13. Inhalt:

14. Literatur:
- Vorlesungsskripte;
- "Einführung in die Fertigungstechnik", Westkämper/Warnecke, Teubner Lehrbuch;
- "Einführung in die Organisation der Produktion", Westkämper, Springer Lehrbuch

15. Lehrveranstaltungen und -formen:
 - 122001 Vorlesung Fertigungslehre
 - 122002 Vorlesung Einführung in die Fabrikorganisation
 - 122003 Freiwillige Übungen Fertigungslehre mit Einführung in die Fabrikorganisation

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 32 Stunden
 Selbststudium: 58 Stunden
 Gesamt: 90 Stunden

17. Prüfungsnummer/n und -name:
 12203 Fertigungslehre mit Einführung in die Fabrikorganisation (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ...:

19. Medienform:
 PowerPoint, Video, Animation, Simulation

20. Angeboten von:
 Institut für Industrielle Fertigung und Fabrikbetrieb
Modul: 51390 Forschungsmethodik für Berufspädagogen

4. SWS: 6.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Reinhold Nickolaus

9. Dozenten:
• Martin Kenner
• Florina Stefanica
• Matthias Wyrwal

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technikpädagogik, PO 2011, 6. Semester
 → Vorgezogene Master-Module
 M.Sc. Technikpädagogik, PO 2009, 1. Semester
 → Auflagenmodule des Masters
 M.Sc. Technikpädagogik, PO 2009, 1. Semester
 → Studienprofil A - konsekutiver Studiengang --
 → Erziehungswissenschaft mit dem Schwerpunkt Berufspädagogik --
 → Pflichtmodule Erziehungswissenschaft
 →
 M.Sc. Technikpädagogik, PO 2015, 1. Semester
 → Auflagenmodule des Masters
 M.Sc. Technikpädagogik, PO 2015, 1. Semester
 → Studienprofil A - konsekutiver Studiengang --
 → Erziehungswissenschaft mit dem Schwerpunkt Berufspädagogik --
 → Pflichtmodule Erziehungswissenschaft
 →

11. Empfohlene Voraussetzungen:

12. Lernziele:
• Kenntnisse über empirische Forschungsmethoden in der Erziehungswissenschaft
• Statistische Grundkenntnisse
• Grundkenntnisse in einer gängigen statistischen Auswertungssoftware
• Fähigkeit, die erworbenen Kenntnisse an Übungsprojekten eigenständig anzuwenden
• Fähigkeit, Befunde aus veröffentlichten Untersuchungen und deren Entstehungskontext einzuordnen und zu bewerten (z.B. PISA-Studie)
• Positive Haltung zur empirischen Forschungsmethodik entwickeln (emotionales Lernziel)

13. Inhalt:
• Methodologie Quantitativer und Qualitativer Forschungsparadigmen
• Phasen des Forschungsprozesses (Theoretische Aufarbeitung, Forschungsdesigns, Operationalisierung, Datensammlung, Datenauswertung)
• Grundkurs Deskriptive- und Interferenz-Statistik
• Einführung in SPSS

14. Literatur:
• Diehl, Joerg M. / Staufenbiel, Thomas (2002): Statistik mit SPSS. Eschborn: Klotz
• Kenner, Martin: Einführung in die Statistik (Studienkript)

15. Lehrveranstaltungen und -formen:
• 513901 Vorlesung Forschungsmethoden der Berufs- und Wirtschaftspädagogik
• 513902 Projektseminar Forschungsmethoden
• 513903 Seminar Datenanalyse mit SPSS

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 63 h
Vor- und Nachbereitung: 207 h
Gesamt: 270 h

17. Prüfungsnummer/n und -name:
• 51391 Forschungsmethodik - Klausur in Statisik (PL), schriftliche Prüfung, Gewichtung: 1.0
• 51392 Datenanalyse mit SPSS (BSL), schriftlich, eventuell mündlich, Gewichtung: 1.0
• V Vorleistung (USL-V), schriftlich, eventuell mündlich

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
Modul: 51420 Grundlagen betrieblicher Bildungsarbeit

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>6.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Bernd Zinn</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Jutta Gassmann
• Susanne Immel
• Bernd Zinn
• Kathrin Schneider
• Duygu Sari |
M.Sc. Technikpädagogik → Auflagenmodule des Masters |
| 11. Empfohlene Voraussetzungen: | |
| 12. Lernziele: | Die Studierenden kennen die Rahmenbedingungen, zentralen Intentionen und Formen betrieblicher Bildungsarbeit und sind in der Lage betriebliche Bildungsangebote anhand ausgewählter Qualitätskriterien einzuordnen und zu bewerten. Sie sind in der Lage, ihre Kenntnisse zur betrieblichen Bildungsarbeit bei Gestaltungsprozessen von Lehrveranstaltungen (im betrieblichen Kontext) reflektiert einzubringen. |
| 13. Inhalt: | Ziele und Rahmenbedingungen betrieblicher Bildungsarbeit; Gestaltung von Lehr-Lernprozessen im betrieblichen Kontext sowie einschlägige Qualitätskriterien; Formen betrieblicher Bildungsarbeit. |
| 15. Lehrveranstaltungen und -formen: | • 514201 Seminar Einführung in die betriebliche Bildungsarbeit
• 514202 Seminar Betriebliche Ausbildung
• 514203 Seminar Betriebliche Weiterbildung |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 63 h
Vor- und Nachbereitungszeit: 207 h
Gesamtzeit: 270 h |
| 17. Prüfungsnummer/n und -name: | • 51421 Klausur zu Betriebliche Weiterbildung (PL), schriftlich, eventuell mündlich, Gewichtung: 1.0
• 51422 Klausur, Referat oder Protokoll in Einführung in die betriebliche Bildungsarbeit (USL), schriftlich, eventuell mündlich, Gewichtung: 1.0
• 51423 Klausur, Referat oder Protokoll in Betriebliche Ausbildung (USL), schriftlich, eventuell mündlich, Gewichtung: 1.0 |
18. Grundlage für ...

19. Medienform:

20. Angeboten von:
Modul: 11240 Grundlagen der Informatik I+II

2. Modulkürzel: 041500001
5. Modulduauer: 2 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 6.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Michael Resch

9. Dozenten:
• Michael Resch
• Natalia Currle-Linde
• Yevgen Dorozhko

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technikpädagogik, PO 2011, 3. Semester
→ Hauptfach --> Hauptfach Maschinenbau --> Kernmodule Maschinenbau

→ M.Sc. Technikpädagogik
→ Auflagenmodule des Masters

→ M.Sc. Technikpädagogik
→ Auflagenmodule des Masters

11. Empfohlene Voraussetzungen: keine

12. Lernziele:
• Die Studenten verstehen die Grundlagen der Informatik und sind in der Lage diese im folgenden Studium anzuwenden.
• Die Studenten verstehen die hardwaretechnischen Grundlagen eines Computersystems.
• Sie sind in der Lage grundsätzliche Leistungsabschätzungen von Computersystemen zu machen.
• Die Studenten verstehen die softwaretechnischen Grundlagen von Betriebssystemen.
• Die Studenten verfügen über Grundkenntnisse der allgemeinen Programmierung. Sie beherrschen die gängigen Datentypen und Datenstrukturen.
• Die Studenten verfügen über einen Einblick in die Problematik der Software-Entwicklung.

13. Inhalt:
• Grundlagen der Informatik
• Rechnertechnik
• Betriebssysteme und Programmierung
• Programmiertechnik
• Software Entwicklung

14. Literatur:
• Prof. Dr. Helmut Balzert, Lehrbuch Grundlagen der Informatik; Spektrum Akademischer Verlag, Heidelberg, Berlin, ISBN 3-8274-0358-8

15. Lehrveranstaltungen und -formen:
• 112401 Vorlesung Grundlagen der Informatik I
• 112402 Übung Grundlagen der Informatik I
• 112403 Vorlesung Grundlagen der Informatik II
• 112404 Übung Grundlagen der Informatik II

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 60 h
Selbststudiumszeit / Nacharbeitszeit: 120 h

Stand: 07. Oktober 2015
<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>11241 Grundlagen der Informatik I+II (PL), schriftlich, eventuell mündlich, 90 Min., Gewichtung: 1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>PPT-Präsentation, Tafelanschrieb</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td></td>
</tr>
</tbody>
</table>
Modul: 13550 Grundlagen der Umformtechnik

2. Modulkürzel: 073210001
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0
5. Modulduer: 2 Semester
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Mathias Liewald
9. Dozenten: Mathias Liewald
10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technikpädagogik
 → Vorgezogene Master-Module
 M.Sc. Technikpädagogik
 → Hauptfach Maschinenbau -->Fertigungstechnik -->Pflichtcontainer Fertigungstechnik-Hauptfach
 →
 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Fertigungstechnik (Pflicht)
 →
 M.Sc. Technikpädagogik
 → Auflagenmodule des Masters
 M.Sc. Technikpädagogik
 → Hauptfach Maschinenbau -->Fertigungstechnik -->Pflichtcontainer Fertigungstechnik-Hauptfach
 →
 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Fertigungstechnik (Pflicht)
 →
 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->WPF Fertigungstechnik -->Pflichtcontainer Fertigungstechnik
 →
11. Empfohlene Voraussetzungen: Ingenieurwissenschaftliche Grundlagen: vor allem Werkstoffkunde, aber auch Technische Mechanik und Konstruktionslehre
12. Lernziele:
 Erworbene Kompetenzen: Die Studierenden
 • kennen die Grundlagen und Verfahren der spanlosen Formgebung von Metallen in der Blech- und Massivumformung
 • können teilespezifisch die zur Herstellung optimalen Verfahren auswählen
 • kennen die Möglichkeiten und Grenzen einzelner Verfahren, sowie ihre stückzahlabhängige Wirtschaftlichkeit
 • können die zur Formgebung notwendigen Kräfte und Leistungen abschätzen
 • sind mit dem Aufbau und der Herstellung von Werkzeugen vertraut
13. Inhalt:
 Grundlagen:

Freiwillige Exkursionen: 1 Tag im WS, 1 Woche im SS, jeweils zu Firmen und Forschungseinrichtungen.

14. Literatur:
- Download: Folien „Einführung in die Umformtechnik 1/2“
- K. Lange: Umformtechnik, Band 1 - 3
- K. Siegert: Strangpressen
- H. Kugler: Umformtechnik
- K. Lange, H. Meyer-Nolkemper: Gesenkschmieden
- Schuler: Handbuch der Umformtechnik
- G. Oehler/F. Kaiser: Schneid-, Stanz- und Ziehwerkzeuge
- R. Neugebauer: Umform- und Zerteiltechnik

15. Lehrveranstaltungen und -formen:
- 135501 Vorlesung Grundlagen der Umformtechnik I
- 135502 Vorlesung Grundlagen der Umformtechnik II

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 42 h
- Selbststudium / Nacharbeitszeit: 138 h
- Gesamt: 180 h

17. Prüfungsnummer/n und -name:
- 13551 Grundlagen der Umformtechnik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:
- Download-Skript, Beamerpräsentation, Tafelaufschrift

20. Angeboten von:
- Institut für Umformtechnik
Modul: 51660 Grundzüge der Maschinenkonstruktion I+II mit Einführung in die Festigkeitslehre

2. Modulkürzel: 072711100
5. Moduldauer: 2 Semester

3. Leistungspunkte: 12.0 LP

4. SWS: 9.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Thomas Maier

9. Dozenten: • Siegfried Schmauder
• Thomas Maier

10. Zuordnung zum Curriculum in diesem Studiengang:

 B.Sc. Technikpädagogik, PO 2011, 1. Semester
 ➔ Hauptfach -->Hauptfach Maschinenbau -->Kernmodule
 Maschinenbau
 ➔
 M.Sc. Technikpädagogik
 ➔ Auflagenmodule des Masters
 M.Sc. Technikpädagogik
 ➔ Auflagenmodule des Masters

11. Empfohlene Voraussetzungen:

12. Lernziele:

13. Inhalt:

 Die Vorlesung und die Übungen vermitteln die Grundlagen
 • der räumlichen Darstellung und des Technischen Zeichnens
 • Einführung in die Produktentwicklung mit Übersicht über Produkte und Produktprogramme;
 • der Festigkeitsberechnung (Zug und Druck, Biegung, Schub, Torsion (Verdrehung), Schwingende Beanspruchung, Allgemeiner Spannungs- und Verformungszustand, Kerbwirkung) und der konstruktiven Gestaltung;
 • Grundlagen der Antriebstechnik;

14. Literatur:

 • Maier: Grundzüge der Maschinenkonstruktion I+II und Einführung ins Technische Zeichnen, Skripte zur Vorlesung u. Übungsunterlagen;
 • Schmauder: Einführung in die Festigkeitslehre, Skript zur Vorlesung und ergänzenden Folien im Internet;
Ergänzende Lehrbücher:

- Roloff, Matek: Maschinenelemente, Vieweg-Verlag;
- Dietmann: Einführung in die Festigkeitslehre, Kröner-Verlag;
- Höischen, Hesser: Technisches Zeichnen, Cornelsen-Verlag;

15. Lehrveranstaltungen und -formen:

- 516601 Vorlesung Grundzüge der Maschinenkonstruktion I
- 516602 Übung Grundzüge der Maschinenkonstruktion I
- 516603 Vorlesung Einführung in die Festigkeitslehre
- 516604 Einführung in die Festigkeitslehre Vortragsübung
- 516605 Vorlesung Grundzüge der Maschinenkonstruktion II
- 516606 Übung Grundzüge der Maschinenkonstruktion II

16. Abschätzung Arbeitsaufwand:

- Präsenzzeit: 95 h
- Selbststudiumszeit / Nacharbeitszeit: 265 h

Gesamt: 360 h

17. Prüfungsnummer/n und -name:

- 51661 Grundzüge der Maschinenkonstruktion I und II (PL), schriftlich, eventuell mündlich, Gewichtung: 2.0
- 51662 Einführung in die Festigkeitslehre (PL), schriftlich, eventuell mündlich, 60 Min., Gewichtung: 1.0
- 51663 Grundzüge der Maschinenkonstruktion I (USL) (USL), schriftlich, eventuell mündlich, Gewichtung: 1.0
- 51664 Grundzüge der Maschinenkonstruktion II (USL) (USL), schriftlich, eventuell mündlich, Gewichtung: 1.0

18. Grundlage für ...:

19. Medienform:

20. Angeboten von:
Modul: 28790 Hauptseminar Berufsbildungsforschung

2. Modulkürzel: 101010013
5. Moduldauer: 1 Semester

3. Leistungspunkte: 6.0 LP
6. Turnus: jedes Semester

4. SWS: 2.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Reinhold Nickolaus

9. Dozenten: • Martin Kenner
 • Reinhold Nickolaus
 • Bernd Zinn

 ➞ Auflagenmodule des Masters
 M.Sc. Technikpädagogik, PO 2009, 1. Semester
 ➞ Studienprofil C - betriebliche Bildungsarbeit -->Vertiefungsbereich 1
 ➞ M.Sc. Technikpädagogik, PO 2015, 1. Semester
 ➞ Auflagenmodule des Masters

11. Empfohlene Voraussetzungen: Grundkenntnisse in Forschungsmethoden

12. Lernziele: Fähigkeit Beiträge zur Berufsbildungsforschung zu analysieren und Forschungsergebnisse im Hinblick auf ihren Geltungsanspruch zu bewerten

13. Inhalt: Aktuelle Beiträge aus der Berufsbildungsforschung

15. Lehrveranstaltungen und -formen: 287901 Seminar Berufsbildungsforschung

16. Abschätzung Arbeitsaufwand: Präsenzzeit: 21 h
 Vor- und Nachbereitungszeit: 159 h
 Gesamtzeit: 180 h

17. Prüfungsnummer/n und -name: • 28791 Hauptseminar Berufsbildungsforschung - Hausarbeit (LBP), mündliche Prüfung, 15 Min., Gewichtung: 1.0
 • V Vorleistung (USL-V), schriftlich, eventuell mündlich, 60 Min.

18. Grundlage für ... :

19. Medienform: Texte, Präsentationen, Diskussionen

20. Angeboten von:
Modul: 30630 Heiz- und Raumlufttechnik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>041310003</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modulduer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Armin Ruppert</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Michael Schmidt</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- **M.Sc. Technikpädagogik**
 - **Auflagenmodule des Masters**
 - **Hauptfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik**
 - **Wahlcontainer Heizungs-, Lüftungs- und Klimatechnik-Hauptfach**
 - **M.Sc. Technikpädagogik**
 - **Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik -->Heizungs-, Lüftungs- und Klimatechnik (Pflicht)**
 - **WPF Heizungs-, Lüftungs- und Klimatechnik -->Pflichtcontainer Heizungs-, Lüftungs- und Klimatechnik**
- **M.Sc. Technikpädagogik**
 - **Hauptfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik**
 - **Wahlcontainer Heizungs-, Lüftungs- und Klimatechnik-Hauptfach**
 - **M.Sc. Technikpädagogik**
 - **Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik -->Heizungs-, Lüftungs- und Klimatechnik (Pflicht)**
 - **WPF Heizungs-, Lüftungs- und Klimatechnik -->Pflichtcontainer Heizungs-, Lüftungs- und Klimatechnik**

11. Empfohlene Voraussetzungen:

- **Grundlagen der Heiz- und Raumlufttechnik**

12. Lernziele:

Im Modul Heiz- und Raumlufttechnik haben die Studenten alle Anlagenkomponenten der Heizund Raumlufttechnik kennen gelernt und die zugehörigen ingenieurwissenschaftlichen Grundkenntnisse erworben. Auf der Basis können sie die Komponenten und Apparate auswählen und auslegen.

Erworbene Kompetenzen:

Die Studenten
- Sind mit den Systemlösungen und Auslegungen der Komponenten vertraut
- Können für gegebene Anforderungen die Systemlösung konzipieren, die Anlagenkomponenten auswählen und auslegen
13. Inhalt:

- Berechnung, Konstruktion und Betriebsverhalten von Anlagenelementen
- Raumheiz- und -kühlflächen
- Luftdurchlässe, Luftkanäle
- Apparate zur Luftbehandlung
- Rohrnetz, Armaturen, Pumpen
- Kessel, Wärmepumpe, Kältemaschine
- Aufbau, Betriebsverhalten und Energiebedarf von Heiz- und RLT-Anlagen sowie Solarsystemen
- Abnahme von Leitungsmessungen

14. Literatur:

15. Lehrveranstaltungen und -formen:

- 306301 Vorlesung Heiz- und Raumlufttechnik
- 306302 Praktikum Heiz- und Raumlufttechnik

16. Abschätzung Arbeitsaufwand:

 Präsenzzeit: 42 Stunden
 Selbststudium: 138 Stunden
 Summe: 180 Stunden

17. Prüfungsnummer/n und -name:

 30632 Heiz- und Raumlufttechnik mündlich (PL), mündliche Prüfung, 30 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

 Vorlesungsskript

20. Angeboten von:
Modul: 11550 Leistungselektronik I

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>051010011</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Jörg Roth-Stielow</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Jörg Roth-Stielow</td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen:

12. Lernziele:

 Studierende...

 • ...kennen die wichtigsten potentialverbindenden und potentialtrennenden Schaltungen der Leistungselektronik mit abschaltbaren Ventilen und die zugehörigen Modulationsverfahren.
 • ...können diese Anordnungen mathematisch beschreiben und Aufgabenstellungen lösen.
 • ...kennen die grundlegenden Prinzipien der Meßverfahren für Mischströme.

13. Inhalt:

 • Abschaltbare Leistungshalbleiter
 • Schaltungstopologien potentialverbindender Stellglieder
 • Schaltungstopologien potentialtrennender Gleichstromsteller
 • Modulationsverfahren
14. Literatur:

15. Lehrveranstaltungen und -formen:
- 115501 Vorlesung Leistungselektronik I
- 115502 Übung Leistungselektronik I

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 56 h
- Selbststudium: 124 h
- Gesamt: 180 h

17. Prüfungsnummer/n und -name:
- 11551 Leistungselektronik I (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:
- Tafel, Folien, Beamer

20. Angeboten von:
- Institut für Leistungselektronik und Elektrische Antriebe
Modul: 13800 Messtechnik - Anlagenmesstechnik

2. Modulkürzel: 042310002
5. Modulduer: 2 Semester
3. Leistungspunkte: 6.0 LP
4. SWS: 5.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Damian Vogt
9. Dozenten: Gerhard Eyb

10. Zuordnung zum Curriculum in diesem Studiengang:

 B.Sc. Technikpädagogik, PO 2011, 5. Semester
 → Hauptfach --> Hauptfach Maschinenbau --> Kernmodule Maschinenbau
 →
 M.Sc. Technikpädagogik
 → Auflagenmodule des Masters
 M.Sc. Technikpädagogik
 → Auflagenmodule des Masters

11. Empfohlene Voraussetzungen: keine

12. Lernziele:

 Teil A: MT
 Der Studierende
 • hat Grundkenntnisse der Messtechnik
 • kann mit Messgrößen und Messverfahren umgehen
 • erkennt Messunsicherheiten und kann diese bewerten
 • kennt Techniken zur Messung verschiedener Größen
 • kennt modern Verfahren zur Erfassung und Auswertung von Messgrößen
 • kann die gewonnenen Kenntnisse in der Praxis umsetzen

 Teil B: AM
 Der Studierende
 • kennt komplexe Messverfahren, die bei Messungen in Anlagen Anwendung finden
 • ist in der Lage, geeignete Messverfahren auszuwählen, zu bewerten und anzuwenden
 • kann komplexe Messungen auswerten und deren Gültigkeitsbereiche definieren

13. Inhalt:

 Teil A: MT (2 SWS)
 • Grundlagen der Messtechnik
 • Messkette, Messmethoden
 • Messunsicherheiten
 • Messverfahren für mechanische, thermische, akustische, elektrische Größen
 • Strömungs- und Durchflussmessung
 • Schadstoffmessung, Gasanalyse
 • rechnergestützte Messwerterfassung und -auswertung

 Teil B: AM (1 SWS V)
 • Messverfahren für Messungen an Maschinen und Anlagen
 • Wandlung in elektrische Signale
• Messdatenerfassung
• Messwerterfassungssysteme
• Auswertetechniken
• Beispiele

Praktikum:
Erprobung und Einübung des theoretisch gelernten Wissens an praktischen Messaufgaben im Labor

14. Literatur:

Teil A

Manuskript zur Vorlesung

Ergänzende Literatur:

- J. Hofmann: Taschenbuch der Messtechnik, Fachbuchverlag Leipzig
- P. Profos: Handbuch der industriellen Messtechnik, Oldenbourg-Verlag
- R. Müller: Mechanische Größen elektrisch gemessen, Expert-Verlag
- K. Bonfig: Durchflussmessung von Flüssigkeiten und Gasen, Expert-Verlag
- F. Adunka: Messunsicherheiten, Vulkan-Verlag

Aktualisierte Literaturlisten im Rahmen der Vorlesung

Teil B

Literaturliste wird im Rahmen der Vorlesung vorgestellt.

15. Lehrveranstaltungen und -formen:

- 138001 Vorlesung Messtechnik - Anlagenmesstechnik - Teil A: Grundlagen
- 138002 Vorlesung Messtechnik - Anlagenmesstechnik - Teil B: Anlagenmesstechnik
- 138004 Praktikum Messtechnik - Anlagenmesstechnik

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 37h + Nacharbeitszeit: 143h = 180h

17. Prüfungsnummer/n und -name:

13801 Messtechnik - Anlagenmesstechnik (USL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0, Praktikumsversuche mit Testat je Versuch

18. Grundlage für ...:

19. Medienform:

Beamer, Tafel

20. Angeboten von:
Modul: 10220 Modellierung

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>052010001</th>
<th>5. Modulduer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher:
Univ.-Prof. Frank Leymann

9. Dozenten:
• Bernhard Mitschang
• Frank Leymann

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technikpädagogik, PO 2011, 4. Semester
→ Hauptfach -->Hauptfach Informatik -->Ergänzungsmodule Informatik
→ B.Sc. Technikpädagogik, PO 2011, 4. Semester
→ Vorgezogene Master-Module
M.Sc. Technikpädagogik, PO 2009, . Semester
→ Auflagenmodule des Masters
M.Sc. Technikpädagogik, PO 2009, . Semester
→ Wahlpflichtfach A -->Wahlpflichtfach Informatik -->Wahlbereich Informatik
→ M.Sc. Technikpädagogik, PO 2009, . Semester
→ Wahlpflichtfach B -->Wahlpflichtfach Informatik -->Wahlbereich Informatik
→ M.Sc. Technikpädagogik, PO 2009, . Semester
→ Wahlpflichtfach B -->Wahlpflichtfach Informatik -->Wahlbereich Pflichtmodule
→ M.Sc. Technikpädagogik, PO 2015, . Semester
→ Auflagenmodule des Masters
M.Sc. Technikpädagogik, PO 2015, . Semester
→ Wahlpflichtfach A -->Wahlpflichtfach Informatik -->Wahlbereich Informatik
→ M.Sc. Technikpädagogik, PO 2015, . Semester
→ Wahlpflichtfach B -->Wahlpflichtfach Informatik -->Wahlbereich Informatik
→

11. Empfohlene Voraussetzungen:
• 051520005 Programmierung und Software-Entwicklung
• 051510005 Datenstrukturen und Algorithmen
• 051200005 Systemkonzepte und -programmierung

12. Lernziele:

13. Inhalt:
• Entity-Relationship Modell & komplexe Objekte
• Relationenmodell & Relationenalgebra , Überblick SQL
• Transformationen von ER nach Relationen, Normalisierung
• XML, DTD, XML-Schema, Info-Set, Namensräume
• Metamodelle & Repository
• RDF, RDF-S & Ontologien
• UML
• Petri Netze, Workflownetze
• BPMN

14. Literatur:
• A. Silberschatz, H. F. Korth, S. Sudarshan, Database System Concepts, 2002
• R. Eckstein, S. Eckstein, "XML und Datenmodellierung", dpunkt.verlag 2004
• M. Hitz, G. Kappel, E. Kapsammer, W. Retschitzegger, UML @ Work - Objektorientierte Modellierung mit UML2, 2005
• P. Hitzler, M. Krötzsch, S. Rudolph, Y. Sure, Semantic Web, 2008
• H.J. Habermann, F. Leymann, "Repository", Oldenbourg 1993
• W. Reisig, "Petri-Netze", Vieweg & Teubner 2010
• B. Silver,"BPMN Method & Style",Cody-Cassidy Press 2009

15. Lehrveranstaltungen und -formen:
• 102201 Vorlesung Modellierung
• 102202 Übung Modellierung

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 Stunden
Nachbearbeitungszeit: 138 Stunden

17. Prüfungsnummer/n und -name:
• 10221 Modellierung (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0, Prüfungsvorleistung: Übungsschein
• V Vorleistung (USL-V), schriftlich, eventuell mündlich

18. Grundlage für ... :
• 10030 Architektur von Anwendungssystemen
• 10080 Datenbanken und Informationssysteme

19. Medienform:

20. Angeboten von: Institut für Architektur von Anwendungssystemen
Modul: 20360 Organisation beruflicher Bildung

2. Modulkürzel: 101010003 5. Moduldauer: 1 Semester
4. SWS: 4.0 7. Sprache: -

8. Modulverantwortlicher: Univ.-Prof. Reinhold Nickolaus
9. Dozenten: • Reinhold Nickolaus • Hanspeter Erne • Cordula Petsch

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technikpädagogik, PO 2011, 2. Semester
→ Erziehungswissenschaft mit dem Schwerpunkt Berufspädagogik
 → Erziehungswissenschaft Kernmodule

B.Sc. Technikpädagogik, PO 2011, 2. Semester
→ Vorgezogene Master-Module

M.Sc. Technikpädagogik, PO 2009, 2. Semester
→ Auflagenmodule des Masters

M.Sc. Technikpädagogik, PO 2009, 2. Semester
→ Studienprofil B - ohne erziehungswissenschaftliche Studien
 im Bachelor-Studiengang --> Erziehungswissenschaft mit dem
 Schwerpunkt Berufspädagogik

M.Sc. Technikpädagogik, PO 2015, 2. Semester
→ Auflagenmodule des Masters

M.Sc. Technikpädagogik, PO 2015, 2. Semester
→ Studienprofil B - ohne erziehungswissenschaftliche Studien
 im Bachelor-Studiengang --> Erziehungswissenschaft mit dem
 Schwerpunkt Berufspädagogik

11. Empfohlene Voraussetzungen: keine
12. Lernziele:
Die Studierenden erwerben Grundkenntnisse zur Organisation beruflicher Bildung und sind in der Lage Bezüge zwischen dem Bildungssystem und anderen gesellschaftlichen Subsystemen zu analysieren und Entwicklungsprozesse auf der Makro- und Mesoebene im Rekurs auf reflektierte normative Bezugsgrößen zu beurteilen. Sie besitzen die Fähigkeit theoretiegelitet und selbstständig betriebliche Aus- und Weiterbildung zu erkunden und zu analysieren.

13. Inhalt:

14. Literatur:

15. Lehrveranstaltungen und -formen:
 - 203601 Vorlesung Organisation beruflicher Bildung
 - 203602 Seminar oder Übung zur Organisation beruflicher Bildung

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit ca. 22h / Veranstaltung = 44h,
 Vor- und Nachbereitung ca. 86h / Veranstaltung = 136h

17. Prüfungsnummer/n und -name:
 - 20361 Organisation beruflicher Bildung (Klausur zur Vorlesung) (PL), schriftlich, eventuell mündlich, 60 Min., Gewichtung: 1.0
 - 20362 Übung oder Seminar - Organisation beruflicher Bildung (USL), schriftlich, eventuell mündlich, Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:
 Texte, Vorträge, OHP, Skripte

20. Angeboten von:
Modul: 33160 Planung von Anlagen der Heiz- und Raumlufttechnik

2. Modulkürzel: 041310011
5. Moduldauer: 1 Semester

3. Leistungspunkte: 3.0 LP
6. Turnus: jedes 2. Semester, SoSe

4. SWS: 2.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Armin Ruppert
9. Dozenten: Michael Schmidt

10. Zuordnung zum Curriculum in diesem Studiengang:
 M.Sc. Technikpädagogik
 → Auflagenmodule des Masters
 M.Sc. Technikpädagogik
 → Hauptfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik
 --Pflichtcontainer Heizungs-, Lüftungs- und Klimatechnik-Hauptfach
 →
 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik
 -->Heizungs-, Lüftungs- und Klimatechnik (Pflicht)
 →
 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->WPF Heizungs-, Lüftungs-
 und Klimatechnik -->Pflichtcontainer Heizungs-, Lüftungs- und
 Klimatechnik
 →
 M.Sc. Technikpädagogik
 → Auflagenmodule des Masters
 M.Sc. Technikpädagogik
 → Hauptfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik
 -->Pflichtcontainer Heizungs-, Lüftungs- und Klimatechnik-Hauptfach
 →
 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und
 Klimatechnik -->Heizungs-, Lüftungs- und Klimatechnik (Pflicht)
 →
 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->WPF Heizungs-, Lüftungs-
 und Klimatechnik -->Pflichtcontainer Heizungs-, Lüftungs- und
 Klimatechnik
 →

11. Empfohlene Voraussetzungen: Grundlagen der Heiz- und Raumlufttechnik

Erworbene Kompetenzen:
Die Studenten
• sind mit der praktischen Anwendung der Anlagenauslegung vertraut,
• kennen die Grundzüge der Heizlastberechnung
• können Heizflächen, Rohnetze, Wärmeerzeuger und Wärmespeicher dimensionieren und auswählen

13. Inhalt:
• Pflichtenhefterstellung
• Heizlastberechnung
• Heizflächendimensionierung
• Rohnetzberechnung
• Wärmeerzeugerdimensionierung
• Wärmespecherdimensionierung
• Auswahl geeigneter Komponenten auf Basis der Berechnungen
• Anfertigen von Skizzen und Zeichnungen der heiz- und raumlufstechnischen Anlagen

14. Literatur:
• Rietschel, H.; Raumklimatechnik Band 3: Raumheiztechnik -16. Auflage, Berlin: Springer-Verlag, 2004
• Arbeitskreis der Dozenten für Klimatechnik: Lehrbuch der Klimatechnik, Bd.1-Grundlagen, Bd.2-Berechnung und Regelung, Bd.3- Bauelemente, Karlsruhe: C.F. Müller-Verlag, 1974-1977

15. Lehrveranstaltungen und -formen:
• 331601 Vorlesung Planung von Anlagen der Heiz- und Raumlufttechnik
• 331602 Übung Planung von Anlagen der Heiz- und Raumlufttechnik

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 21 Stunden
Selbststudium: 69 Stunden
Summe: 90 Stunden

17. Prüfungsnummer/n und -name:
33161 Planung von Anlagen der Heiz- und Raumlufttechnik (BSL), mündliche Prüfung, 20 Min., Gewichtung: 1.0

18. Grundlage für ...:

19. Medienform:
Tafelaufschrieb, Handout, Overheadfolien

20. Angeboten von:
Modul: 30680 Praktikum Gebäudeenergetik

2. Modulkürzel: 041310009 5. Modulduauer: 1 Semester
3. Leistungspunkte: 3.0 LP 6. Turnus: jedes Semester
4. SWS: 0.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Armin Ruppert
9. Dozenten: Michael Schmidt

10. Zuordnung zum Curriculum in diesem Studiengang:
 M.Sc. Technikpädagogik
 → Auflagenmodule des Masters
 M.Sc. Technikpädagogik
 → Hauptfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik -->Pflichtcontainer Heizungs-, Lüftungs- und Klimatechnik-Hauptfach
 →
 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik -->Heizungs-, Lüftungs- und Klimatechnik (Pflicht)
 →
 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->WPF Heizungs-, Lüftungs- und Klimatechnik -->Pflichtcontainer Heizungs-, Lüftungs- und Klimatechnik
 →
 M.Sc. Technikpädagogik
 → Auflagenmodule des Masters
 M.Sc. Technikpädagogik
 → Hauptfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik -->Pflichtcontainer Heizungs-, Lüftungs- und Klimatechnik-Hauptfach
 →
 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik -->Heizungs-, Lüftungs- und Klimatechnik (Pflicht)
 →
 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->WPF Heizungs-, Lüftungs- und Klimatechnik -->Pflichtcontainer Heizungs-, Lüftungs- und Klimatechnik
 →

11. Empfohlene Voraussetzungen: Spezialisierungsfach Gebäudeenergetik

 Aus den folgenden Spezialisierungsfachversuchen sind 4 auszuwählen dazu ist jeweils eine Ausarbeitung anzufertigen:
 • Wärmeerzeuger
 • Simulation
• Thermostatventile
• Heizkörper
• Rohrhydraulik
• Thermokamera
• Maschinelle Lüftung
• Freie Lüftung

Beispiele:

1. Versuch "Wärmeerzeuger":

2. Versuch "Maschinelle Lüftung":

4 weitere Versuche sind aus dem Angebot des Allgemeinen Praktikums Maschinenbau (APMB) zu absolvieren:

• APMB 1
• APMB 2
• APMB 3
• APMB 4

14. Literatur:
Praktikums - Unterlagen

15. Lehrveranstaltungen und -formen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Veranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>306801</td>
<td>Spezialisierungsfachversuch 1</td>
</tr>
<tr>
<td>306802</td>
<td>Spezialisierungsfachversuch 2</td>
</tr>
<tr>
<td>306803</td>
<td>Spezialisierungsfachversuch 3</td>
</tr>
<tr>
<td>306804</td>
<td>Spezialisierungsfachversuch 4</td>
</tr>
<tr>
<td>306805</td>
<td>Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 1</td>
</tr>
<tr>
<td>306806</td>
<td>Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 2</td>
</tr>
<tr>
<td>306808</td>
<td>Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 4</td>
</tr>
</tbody>
</table>

16. Abschätzung Arbeitsaufwand:

| 30 Std. Präsenz |
| Selbststudiumszeit/ Nacharbeitszeit: 60 Stunden |
| Gesamt: 90 Stunden |

17. Prüfungsnummer/n und -name:

| 30681 | Praktikum Gebäudeenergetik (USL), schriftlich, eventuell mündlich, Gewichtung: 1.0, USL. Art und Umfang der USL werden jeweils zu Beginn des Praktikums bekannt gegeben |
18. Grundlage für ...

19. Medienform: Handout

20. Angeboten von:
Modul: 28730 Pädagogische Psychologie

4. SWS: 4.0 7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Reinhold Nickolaus
9. Dozenten: • Anke Treutlein
 • Daniel Schweyer
10. Zuordnung zum Curriculum in diesem Studiengang:
 M.Sc. Technikpädagogik, PO 2009, 1. Semester ➞ Auflagenmodule des Masters
 M.Sc. Technikpädagogik, PO 2015, 1. Semester ➞ Auflagenmodule des Masters
11. Empfohlene Voraussetzungen: • keine
12. Lernziele:
 • Die Studierenden haben Grundwissen zu psychologischen Theorien und Modellen des menschlichen Lernens und Behaltens und kennen psychologische und neurobiologische Erkenntnisse zum Lernen und Gedächtnis. Differentielle und Persönlichkeitspsychologie,
 • Zudem haben sie Grundkenntnisse in einem der folgenden Bereiche:
 • Entwicklungspychologie,
 • Sozialpsychologie oder
 • Beratung.
13. Inhalt:
 Entwicklungstheorien, insbesondere zur kognitiven Entwicklung
 Lernen als Verhaltensänderung: Lernprinzipien der Konditionierungstheorien (z. B. Kontiguität, Verstärkung) Latentes Lernen
 Lernen als kognitiver Prozess: Kognitive Struktur, Kategorisierung, mentale Repräsentationen, Gedächtnismodelle
 Lernen als sozial-interaktiver Prozess: Soziales Lernen durch Modelllernen, soziale Einflüsse und Prozesse
 Lernen und individuelle Voraussetzungen des Lernenden (z. B. Leistungs- und Persönlichkeitsmerkmale wie Intelligenz, Motivation, Gedächtnis, Kontrollüberzeugungen, Selbstwirksamkeit, usw.)
 Diagnostik individueller Lernvoraussetzungen als Grundlage von Lehrprozessen
 Lernstörungen und Grundlagen der Intervention Neurologische Veränderungen beim Lernen
14. Literatur:
15. Lehrveranstaltungen und -formen:
- 287301 Vorlesung Einführung in die Pädagogische Psychologie
- 287302 Seminar Pädagogische Psychologie

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 42 h
- Vor- und Nachbereitungszeit: 138 h
- Gesamtzeit: 180 h

17. Prüfungsnummer/n und -name:
- 28731 Pädagogische Psychologie (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0
- 28732 Pädagogische Psychologie Referat (USL), schriftlich, eventuell mündlich, Gewichtung: 1.0

Stand: 07. Oktober 2015
Modul: 11540 Regelungstechnik I

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>051010012</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modulduer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Jörg Roth-Stielow</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Jörg Roth-Stielow</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- **B.Sc. Technikpädagogik, PO 2011, 4. Semester**
 - Hauptfach Elektrotechnik --> Ergänzungsmodulte --> Pflichtcontainer Schwerpunkt Energie- und Automatisierungstechnik
 - Vorgezogene Master-Module
- **B.Sc. Technikpädagogik, PO 2011, 4. Semester**
 - Wahlpflichtfach Elektrotechnik --> a) Schwerpunkt Energie- und Automatisierungstechnik --> Pflichtcontainer Schwerpunkt Energie- und Automatisierungstechnik
- **M.Sc. Technikpädagogik, PO 2009, 2. Semester**
 - Affines Wahlpflichtfach Elektro- und Informationstechnik --> Wahlpflichtfach Energie- und Automatisierungstechnik --> Energie- und Automatisierungstechnik Pflichtfächer
 - Auflagenmodule des Masters
- **M.Sc. Technikpädagogik, PO 2009, 2. Semester**
 - Wahlpflichtfach Elektrotechnik --> energie- und Automatisierungstechnik --> Schwerpunkt Energie- und Automatisierungstechnik (Pflicht)
 - Auflagenmodule des Masters
- **M.Sc. Technikpädagogik, PO 2015, 2. Semester**
 - Wahlpflichtfach Elektrotechnik --> energie- und Automatisierungstechnik --> Schwerpunkt Energie- und Automatisierungstechnik (Pflicht)
 - Auflagenmodule des Masters

11. Empfohlene Voraussetzungen:

12. Lernziele:

Studierende...
- ...können eine Regelstrecke modellieren und kennen die wichtigsten Regelsysteme.
- ...können diese Anordnungen mathematisch beschreiben, hinsichtlich ihrer Stabilität beurteilen und Aufgabenstellungen lösen.

13. Inhalt:

- Beschreibung von Übertragungssstrecken
- Stabilität von Regelsystemen
- Herkömmliche Regelsysteme
- Regelsysteme mit Rückführung eines vollständigen Satzes von Zustandsvariablen
- Echtes Integralverhalten
- Beobachter
• Systemführung nach dem Prinzip unterlagerter Schleifen
• Systeme mit einem Wechsel der Regelgröße

14. Literatur:
• Lunze, Jan: Regelungstechnik 1 Springer, Berlin, 1999
• Unbehauen, H.: Regelungstechnik 1, Vieweg, Braunschweig, 1989
• Leonhard, W.: Einführung in die Regelungstechnik, Vieweg, Braunschweig, 1992

15. Lehrveranstaltungen und -formen:
• 115401 Vorlesung Regelungstechnik I
• 115402 Übung Regelungstechnik I

16. Abschätzung Arbeitsaufwand:
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzzeit:</td>
<td>56 h</td>
</tr>
<tr>
<td>Selbststudium:</td>
<td>124 h</td>
</tr>
<tr>
<td>Gesamt:</td>
<td>180 h</td>
</tr>
</tbody>
</table>

17. Prüfungsnummer/n und -name:
11541 Regelungstechnik I (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:
Tafel, Folien, Beamer

20. Angeboten von:
Institut für Leistungselektronik und Elektrische Antriebe
Modul: 16500 Software Engineering

2. Modulkürzel: 051520110
5. Moduldauer: 1 Semester
3. Leistungspunkte: 6.0 LP
6. Turnus: jedes 2. Semester, SoSe
4. SWS: 4.0
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Stefan Wagner
9. Dozenten: Lars Grunske
10. Zuordnung zum Curriculum in diesem Studiengang:
 M.Sc. Technikpädagogik, PO 2009, 4. Semester
 → Auflagenmodule des Masters
 M.Sc. Technikpädagogik, PO 2015, 4. Semester
 → Auflagenmodule des Masters
11. Empfohlene Voraussetzungen:
 • Einführung in die Softwaretechnik
 • Programmentwicklung
13. Inhalt: Ergänzend zur "Einführung in die Softwaretechnik" und daran anknüpfend behandelt diese Lehrveranstaltung folgende Themen:
 • Softwarequalitätssicherung
 • Organisationsaspekte der Software-Bearbeitung
 • Software-Prozesse, Prozess-Bewertung und -Verbesserung
 • Software-Wartung
 • Weitere ausgewählte Kapitel des Software Engineerings
14. Literatur:
 • Ludewig J., Lichter, H., Software Engineering - Grundlagen, Menschen, Prozesse, Techniken, 2. Aufl. 2010
15. Lehrveranstaltungen und -formen:
 • 165001 Vorlesung Software Engineering
 • 165002 Übung Software Engineering
16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 42 h
 Selbststudiums-/Nachbearbeitungszeit: 138 h
 Summe: 180 h
17. Prüfungsnummer/n und -name: 16501 Software Engineering (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0,
18. Grundlage für ... :
19. Medienform:
20. Angeboten von: Institut für Softwaretechnologie
Modul: 16250 Steuerungstechnik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072910002</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.5</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Peter Klemm</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Peter Klemm
• Michael Seyfarth
• Armin Lechler |
→ Hauptfach --> Hauptfach Maschinenbau --> Kernmodule Maschinenbau
→ M.Sc. Technikpädagogik
→ Auflagenmodule des Masters |
| 11. Empfohlene Voraussetzungen: | Keine besonderen Vorkenntnisse |
| 13. Inhalt: | • Steuerungsarten (mechanisch, fluidisch, Kontaktsteuerung, SPS, Motion Control, Numerische Steuerung, Robotertechnik, Leitsteuerung): Aufbau, Architektur, Funktionsweise, Programmierung.
• Darstellung und Lösung steuerungstechnischer Problemstellungen.
• Grundlagen der in der Automatisierungstechnik verwendeten Antriebssysteme (Elektromotoren, fluidische Antriebe).
• Typische praxisrelevante Anwendungsbierbeispiele.
• Praktikumsversuche zur Programmierung der verschiedenen Steuerungsarten |
| 15. Lehrveranstaltungen und -formen: | • 162501 Vorlesung Steuerungstechnik mit Antriebstechnik
• 162502 Übung Steuerungstechnik
• 162503 Praktikum Steuerungstechnik |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzzeit: 48 h
Selbststudium / Nacharbeit: 132 h
Gesamt: 180 h |
<p>| 17. Prüfungsnummer/n und -name: | • 16251 Steuerungstechnik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0, |</p>
<table>
<thead>
<tr>
<th>18. Grundlage für ...</th>
<th>14230</th>
<th>Steuerungstechnik der Werkzeugmaschinen und Industrieroboter</th>
</tr>
</thead>
<tbody>
<tr>
<td>19. Medienform:</td>
<td></td>
<td>Beamer, Overhead, Tafelanschrieb</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td></td>
<td>Institut für Steuerungstechnik der Werkzeugmaschinen und Fertigungseinrichtungen</td>
</tr>
</tbody>
</table>
Modul: 14230 Steuerungstechnik der Werkzeugmaschinen und Industrieroboter

2. Modulkürzel: 072910003
5. Modulduer: 1 Semester

3. Leistungspunkte: 6.0 LP
6. Turnus: jedes 2. Semester, SoSe

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Andreas Pott

9. Dozenten:
• Armin Lechler
• Andreas Pott

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Technikpädagogik
→ Auflagenmodule des Masters
M.Sc. Technikpädagogik
→ Hauptfach Maschinenbau -->Fertigungstechnik -->Wahlcontainer
Fertigungstechnik-Hauptfach
→
M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Fertigungstechnik --
>Fertigungstechnik (Pflicht)
→
M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->WPF Fertigungstechnik --
>Pflichtcontainer Fertigungstechnik
→
M.Sc. Technikpädagogik
→ Auflagenmodule des Masters
M.Sc. Technikpädagogik
→ Hauptfach Maschinenbau -->Fertigungstechnik -->Wahlcontainer
Fertigungstechnik-Hauptfach
→
M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Fertigungstechnik --
>Fertigungstechnik (Pflicht)
→
M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->WPF Fertigungstechnik --
>Pflichtcontainer Fertigungstechnik

11. Empfohlene Voraussetzungen: Vorlesung „Steuerungstechnik mit Antriebstechnik“ (Modul Regelungs- und Steuerungstechnik)

12. Lernziele:
Die Studierenden können erkennen, wie die Kinematik und Dynamik von Robotern und Parallelkinematiken beschrieben, gelöst und steuerungstechnisch integriert werden kann.

13. Inhalt:
- Steuerungsarten (mechanisch, fluidisch, Numerische Steuerung, Robotersteuerung): Aufbau, Architektur, Funktionsweise.
- Mess-, Antriebs-, Regelungstechnik für Werkzeugmaschinen und Industrieroboter
- Kinematische und Dynamische Modellierung von Robotern und Parallelkinematiken.
- Praktikum zur Inbetriebnahme von Antriebssystemen und regelungstechnischer Einstellung.

14. Literatur:
Pritschow, G.: Einführung in die Steuerungstechnik, Carl Hanser Verlag, München, 2006

15. Lehrveranstaltungen und -formen:
- 142301 Vorlesung Steuerungstechnik der Werkzeugmaschinen und Industrieroboter
- 142302 Übung Steuerungstechnik der Werkzeugmaschinen und Industrieroboter

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 42h
- Nacharbeitszeit: 138h
- Gesamt: 180h

17. Prüfungsnummer/n und -name:
- 14231 Steuerungstechnik der Werkzeugmaschinen und Industrieroboter (PL), schriftlich, eventuell mündlich, 120 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:
- Beamer, Overhead, Tafel

20. Angeboten von:
- Institut für Steuerungstechnik der Werkzeugmaschinen und Fertigungseinrichtungen
Modul: 28740 Struktur beruflicher Bildung

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>101010102</th>
<th>5. Modulduauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Reinhold Nickolaus</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Reinhold Nickolaus
• Cordula Petsch |
→ Auflagenmodule des Masters
M.Sc. Technikpädagogik, PO 2015, 2. Semester
→ Auflagenmodule des Masters |
| 11. Empfohlene Voraussetzungen: | keine |
| 12. Lernziele: | Die Studierenden erwerben Grundkenntnisse zur Organisation beruflicher Bildung und sind in der Lage Bezüge zwischen dem Bildungssystem und anderen gesellschaftlichen Subsystemen zu analysieren und Entwicklungsprozesse auf der Makro- und Mesoebene im Rekurs auf reflektierte normative Bezugsgrößen zu beurteilen. Sie besitzen die Fähigkeit theoriegeleitet und selbstständig betriebliche Aus- und Weiterbildung zu erkunden und zu analysieren |
| 15. Lehrveranstaltungen und -formen: | • 287401 Vorlesung Organisation beruflicher Bildung
• 287402 Übung zur Vorlesung Organisation beruflicher Bildung |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: | 42 h |
| | Vor- und Nachbereitung: | 138 h |
| | Gesamt: | 180 h |
17. Prüfungsnummer/n und -name:

- 28741 Struktur beruflicher Bildung (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0
- 28742 Struktur beruflicher Bildung Übung (USL), schriftlich, eventuell mündlich, Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform: Texte, Vorträge, OHP, Skripte

20. Angeboten von:
Modul: 10540 Technische Mechanik I

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072810001</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Peter Eberhard</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Peter Eberhard
• Michael Hanss |
→ Hauptfach -->Hauptfach Maschinenbau -->Kernmodule Maschinenbau
→ M.Sc. Technikpädagogik, PO 2015, 1. Semester
→ Auflagenmodule des Masters |
| 11. Empfohlene Voraussetzungen: | Grundlagen in Mathematik und Physik |
| 12. Lernziele: | Nach erfolgreichem Besuch des Moduls Technische Mechanik I haben die Studierenden ein grundlegendes Verständnis und Kenntnis der wichtigsten Zusammenhänge in der Stereo-Statik. Sie beherrschen selbständig, sicher, kritisch und kreativ einfache Anwendungen der grundlegendsten mechanischen Methoden der Statik. |
• Stereo-Statik: Kräftesysteme und Gleichgewicht, Gewichtskraft und Schwerpunkt, ebene Kräftesysteme, Lagerung von Mehrkörpersystemen, Innere Kräfte und Momente am Balken, Fachwerke, Seilstatik, Reibung |
| 14. Literatur: | • Vorlesungsmitschrieb
• Vorlesungs- und Übungsunterlagen
• Hibbeler, R.C.: Technische Mechanik 1 - Statik. München: Pearson Studium, 2005
| 15. Lehrveranstaltungen und -formen: | • 105401 Vorlesung Technische Mechanik I
• 105402 Übung Technische Mechanik I |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 42 h
Selbststudiumszeit / Nacharbeitszeit: 138 h
Gesamt: 180 h |
| 17. Prüfungsnummer/n und -name: | 10541 Technische Mechanik I (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0 |
| 18. Grundlage für ... : | |
| 20. Angeboten von: | Institut für Technische und Numerische Mechanik |
Modul: 12170 Werkstoffkunde I+II mit Werkstoffpraktikum

2. Modulkürzel: 041810001
5. Moduldauer: 2 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 6.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Michael Seidenfuß

9. Dozenten: Michael Seidenfuß

 → Hauptfach -->Hauptfach Maschinenbau -->Basismodule Maschinenbau
 →
 M.Sc. Technikpädagogik, PO 2015, 1. Semester
 → Auflagenmodule des Masters

11. Empfohlene Voraussetzungen: keine

13. Inhalt:
 Vorlesung
 Atomarer Aufbau kristalliner Werkstoffe, Legierungsbildung, Thermisch aktivierte Vorgänge, Mechanische Eigenschaften, Eisenwerkstoffe, Nichteisenmetalle, Kunststoffe, Keramische Werkstoffe, Verbundwerkstoffe, Korrosion, Tribologie, Recycling

 Praktikum
 Thermische Analyse, Kerbschlagbiegeversuch, Härteprüfung, Zugversuch, Schwingfestigkeitsuntersuchung Korrosion, Metallographie, Wärmebehandlung, Dillatometer

14. Literatur:
 - ergänzende Folien zur Vorlesung (online verfügbar)
 - Lecturnity Aufzeichnungen der Übungen (online verfügbar)
 - Skripte zum Praktikum (online verfügbar)
 - interaktive multimediale praktikumsbegleitende-CD

15. Lehrveranstaltungen und -formen:
 • 121701 Vorlesung Werkstoffkunde I
 • 121702 Vorlesung Werkstoffkunde II
 • 121703 Werkstoffpraktikum I
 • 121704 Werkstoffpraktikum II
 • 121705 Werkstoffkunde Übung II
 • 121706 Werkstoffkunde Übung I

16. Abschätzung Arbeitsaufwand: Präsenzzeit Vorlesungen (2x 2 SWS): 42 h
Präsenzzeit Übung (2x 0,5 SWS): 12 h
Präsenzzeit Praktikum (2x Blockveranstaltung): 8 h
Präsenzzeit gesamt: 62h
Selbststudium: 120 h
GESAMT: 182h

17. Prüfungsnummer/n und -name:
• V Vorleistung (USL-V), schriftlich, eventuell mündlich

18. Grundlage für ... :

19. Medienform: PPT auf Tablet PC, Skripte zu den Vorlesungen und zum Praktikum (online verfügbar), Animationen und Simulationen, interaktive multimediale praktikumsbegleitende CD, online Lecturnity, Aufzeichnungen der Übungen, Abruf über Internet

20. Angeboten von: Institut für Materialprüfung, Werkstoffkunde und Festigkeitslehre
Modul: 13570 Werkzeugmaschinen und Produktionssysteme

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>073310001</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Prof. Uwe Heisel</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Uwe Heisel</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- B.Sc. Technikpädagogik, PO 2011, 5. Semester
 - Vorgezogene Master-Module
 - B.Sc. Technikpädagogik, PO 2011, 5. Semester
 - Wahlpflichtfach -->Wahlpflichtfach Maschinenbau -->Modulcontainer Wahlpflichtbereich (Mach-TP)
 - B.Sc. Technikpädagogik, PO 2011, 5. Semester
 - Wahlpflichtfach -->Wahlpflichtfach Maschinenbau -->b) Fertigungstechnik Pflichtcontainer Grundlagen Fertigungstechnik
 - M.Sc. Technikpädagogik
 - Hauptfach Maschinenbau -->Fertigungstechnik -->Pflichtcontainer Fertigungstechnik-Hauptfach
 - M.Sc. Technikpädagogik
 - Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP
 - M.Sc. Technikpädagogik
 - Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Fertigungstechnik (Pflicht)
 - M.Sc. Technikpädagogik
 - Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP
 - M.Sc. Technikpädagogik
 - Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik -->Mach-TP
 - M.Sc. Technikpädagogik
 - Auflagenmodule des Masters
 - M.Sc. Technikpädagogik
 - Hauptfach Maschinenbau -->Fertigungstechnik -->Pflichtcontainer Fertigungstechnik-Hauptfach
 - M.Sc. Technikpädagogik
 - Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP
 - M.Sc. Technikpädagogik
 - Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Fertigungstechnik (Pflicht)
 - M.Sc. Technikpädagogik
 - Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP
 - M.Sc. Technikpädagogik
 - Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP
 - M.Sc. Technikpädagogik
 - Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP
 - M.Sc. Technikpädagogik
 - M.Sc. Technikpädagogik
Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik -->Mach-TP

12. Lernziele: Die Studierenden kennen den konstruktiven Aufbau und die Funktionseinheiten von spanenden Werkzeugmaschinen und Produktionssystemen sowie die Formeln zu deren Berechnung, sie wissen, wie Werkzeugmaschinen und deren Funktionseinheiten funktionieren, sie können deren Aufbau und Funktionsweise erklären und die Formeln zur Berechnung von Werkzeugmaschinen anwenden.

14. Literatur: Skript, Vorlesungsunterlagen im Internet, alte Prüfungsaufgaben

15. Lehrveranstaltungen und -formen: 135701 Vorlesung Werkzeugmaschinen und Produktionssysteme

16. Abschätzung Arbeitsaufwand: Präsenzzeit: 42 h

 Selbststudiumszeit / Nacharbeitszeit: 138 h

 Gesamt: 180 h

17. Prüfungsnr/n und -name: 13571 Werkzeugmaschinen und Produktionssysteme (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform: Medienmix: Präsentation, Tafelanschrieb, Videoclips

20. Angeboten von: Institut für Werkzeugmaschinen
30 Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang

<table>
<thead>
<tr>
<th>Zugeordnete Module:</th>
<th>Erziehungswissenschaft mit dem Schwerpunkt Berufspädagogik</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Berufspädagogik (Zulassung zum Schuldienst)</td>
</tr>
<tr>
<td></td>
<td>Wahlpflichtfach B</td>
</tr>
<tr>
<td></td>
<td>Masterarbeit Technikpädagogik (Studienprofil B)</td>
</tr>
</tbody>
</table>
130 Erziehungswissenschaft mit dem Schwerpunkt Berufspädagogik

Zugeordnete Module:

132 Fachdidaktik im vorausgegangenen ingenieurwissenschaftlichen Studium
135 Fachdidaktik des Wahlpflichtfaches
20350 Didaktik beruflicher Bildung
20360 Organisation beruflicher Bildung
51170 Einführung in die Berufspädagogik
132 Fachdidaktik im vorausgegangenen ingenieurwissenschaftlichen Studium

Zugeordnete Module:

12890 Fachdidaktik Hauptfach Bautechnik
12900 Fachdidaktik Hauptfach Elektro- und Informationstechnik
12910 Fachdidaktik Hauptfach Informatik
12920 Fachdidaktik Maschinenbau
1320 Fachdidaktik im vorausgegangenen ingenieurwissenschaftlichen Studium anerkannt
1320 Fachdidaktik im vorausgegangenen ingenieurwissenschaftlichen Studium anerkannt
Modul: 12890 Fachdidaktik Hauptfach Bautechnik

2. Modulkürzel: 101010031
5. Modulduauer: 2 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Bernd Zinn

9. Dozenten: • Bernd Zinn
• Janos Klaus

10. Zuordnung zum Curriculum in diesem Studiengang:

 - B.Sc. Technikpädagogik, PO 2011, 2. Semester
 → Vorgezogene Master-Module

 - M.Sc. Technikpädagogik, PO 2009, 2. Semester
 → Studienprofil A - konsekutiver Studiengang --> Hauptfach
 Studienprofil A --> Hauptfach Bautechnik
 →

 - M.Sc. Technikpädagogik, PO 2009, 2. Semester
 → Studienprofil B - ohne erziehungswissenschaftliche Studien
 im Bachelor-Studiengang --> Erziehungswissenschaft mit
dem Schwerpunkt Berufspädagogik --> Fachdidaktik im
vorausgegangenen ingenieurwissenschaftlichen Studium
 →

 - M.Sc. Technikpädagogik, PO 2015, 2. Semester
 → Studienprofil A - konsekutiver Studiengang --> Hauptfach
 Studienprofil A --> Hauptfach Bautechnik
 →

 - M.Sc. Technikpädagogik, PO 2015, 2. Semester
 → Studienprofil B - ohne erziehungswissenschaftliche Studien
 im Bachelor-Studiengang --> Erziehungswissenschaft mit
dem Schwerpunkt Berufspädagogik --> Fachdidaktik im
vorausgegangenen ingenieurwissenschaftlichen Studium
 →

11. Empfohlene Voraussetzungen: Didaktik beruflicher Bildung I

12. Lernziele:

 Die Studierenden sind in der Lage,

 • die Fachdidaktik im Kontext der korrespondierenden Bezugsdisziplinen
 zu verorten und ihr Bedeutungsspektrum zu überblickenden
 • komplexen Prozess der Unterrichtsplanung, -durchführung und -
 evaluation von technischem Unterricht zu erfassen
 • beruflich-technischen Unterricht zielorientiert zu planen und
 dabei didaktisch-methodische Bezugspunkte kriterienorientiert zu
 berücksichtigen
 • beruflich-technische Konzepte des Unterrichts so zu gestalten,
 dass neben fachlich-methodischen auch sozial-kommunikative und
 personale Kompetenzen unter Berücksichtigung zentraler Aspekte
 (Umgang mit Inklusion und Heterogenität, Einsatz diagnostischer
 Verfahren) vermittelt werden können
 • Erkenntnisse aus der (fachdidaktischen) Lehr-Lernforschung
 im Hinblick auf ihre Bedeutung für das Lehren und Lernen zu
 interpretieren und diese bei der Konzeptionierung von baudotechnischem
 Unterricht zu berücksichtigen
 • die Durchführung und Evaluation des Unterrichts in ihrer Komplexität
 als vielfältig interaktiven, inhaltss orientierten und insgesamt
kriterienorientierten Prozess zu erfassen und die Ergebnisse kritisch zu reflektieren

13. Inhalt:
Im Mittelpunkt des Moduls stehen folgende Lerninhalte:

- Ausgangslage und Grundkonzeptionen der allgemeinen und beruflichen Technikdidaktik, Stellung der Fachdidaktik im Gefüge der Fachwissenschaft und Erziehungswissenschaft, zentrale Ansätze und Konzepte der beruflichen Bildung
- methodisch-didaktische Ansätze im technischen Unterricht, Berufsfeldspezifische Aspekte (z.B. Lernen in technischen Realräumen, Experimente)
- Umgang mit Inklusion und Heterogenität, Pädagogische Diagnostik
- Analyse berufs- und schulformbezogener Lehrpläne
- Planung, Durchführung und Evaluation von bautechnischem Unterricht in der Aus- und Weiterbildung
- Wandel beruflicher Anforderungen und Rahmenbedingungen in der Bautechnik
- Aktuelle Inhalte der Lehr-Lernforschung im Bezugsfeld der Technikdidaktik und speziell Fachdidaktik Bautechnik

14. Literatur:
- Aktuelle wissenschaftliche Zeitschriftenbeiträge, insbesondere aus der Lehrlernforschung, im Bezugsfeld der beruflichen Technikdidaktik.

15. Lehrveranstaltungen und -formen:
- 128901 Vorlesung Technikdidaktik
- 128902 Fachdidaktik Hauptfach Bautechnik - Seminar

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 2 x 28 h = 56h Selbststudium: ca. 70 h
(Vorlesung) Selbststudium: ca. 54 h (Seminar)
Gesamt: ca. 180 h

17. Prüfungsnummer/n und -name:
- 12891 Fachdidaktik Hauptfach Bautechnik - Technikdidaktik (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0,
- 12892 Seminar - Fachdidaktik Hauptfach Bautechnik (USL), schriftlich, eventuell mündlich, Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
Modul: 12900 Fachdidaktik Hauptfach Elektro- und Informationstechnik

2. Modulkürzel: 101040003

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0

5. Modulduer: 2 Semester

7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Bernd Zinn

9. Dozenten:
 • Andreas Mußotter
 • Bernd Zinn

10. Zuordnung zum Curriculum in diesem Studiengang:

 B.Sc. Technikpädagogik, PO 2011, 2. Semester
 ➔ Vorgezogene Master-Module

 M.Sc. Technikpädagogik, PO 2009, 2. Semester
 ➔ Studiengang A - konsekutiver Studiengang --> Hauptfach
 Studiengang A --> Hauptfach Elektrotechnik
 ➔

 M.Sc. Technikpädagogik, PO 2009, 2. Semester
 ➔ Studiengang B - ohne erziehungswissenschaftliche Studien
 im Bachelor-Studiengang --> Erziehungswissenschaft mit
 dem Schwerpunkt Berufspädagogik --> Fachdidaktik im
 vorausgegangenen ingenieurwissenschaftlichen Studium
 ➔

 M.Sc. Technikpädagogik, PO 2015, 2. Semester
 ➔ Studiengang A - konsekutiver Studiengang --> Hauptfach
 Studiengang A --> Hauptfach Elektrotechnik
 ➔

 M.Sc. Technikpädagogik, PO 2015, 2. Semester
 ➔ Studiengang B - ohne erziehungswissenschaftliche Studien
 im Bachelor-Studiengang --> Erziehungswissenschaft mit
 dem Schwerpunkt Berufspädagogik --> Fachdidaktik im
 vorausgegangenen ingenieurwissenschaftlichen Studium
 ➔

11. Empfohlene Voraussetzungen: Didaktik beruflicher Bildung I

12. Lernziele:

 Die Studierenden sind in der Lage,
 • die Fachdidaktik im Kontext der korrespondierenden Bezugswissenschaften zu verorten und ihre Bedeutungsspektrum zu überblicken
 • einen komplexen Prozess der Unterrichtsplanung, -durchführung und -evaluation von technischem Unterricht zu erfassen
 • beruflich-technischen Unterricht zielorientiert zu planen und dabei didaktisch-methodische Bezugspunkte kriterienorientiert zu berücksichtigen
 • beruflich-technische Konzepte des Unterrichts so zu gestalten, dass neben fachlich-methodischen auch sozial-kommunikative und personale Kompetenzen unter Berücksichtigung zentraler Aspekte (Umgang mit Inklusion und Heterogenität, Einsatz diagnostischer Verfahren) vermittelt werden können
 • Erkenntnisse aus der (fachdidaktischen) Lehr-Lernforschung im Hinblick auf ihre Bedeutung für das Lehren und Lernen zu interpretieren und diese bei der Konzeptionierung von elektro- und informationstechnischem Unterricht zu berücksichtigen
 • die Durchführung und Evaluation des Unterrichts in ihrer Komplexität als vielfältig interaktiven, inhaltsorientierten und insgesamt
kriterienorientierten Prozess zu erfassen und die Ergebnisse kritisch zu reflektieren

13. Inhalt: Im Mittelpunkt des Moduls stehen folgende Lerninhalte:
 • Ausgangslage und Grundkonzeptionen der allgemeinen und beruflichen Technikdidaktik, Stellung der Fachdidaktik im Gefüge der Fachwissenschaft und Erziehungswissenschaft, zentrale Ansätze und Konzepte der beruflichen Bildung
 • methodisch-didaktische Ansätze im technischen Unterricht, Berufsfeldspezifische Aspekte (z.B. Lernen in technischen Realenräumen, Experimente)
 • Umgang mit Inklusion und Heterogenität, Pädagogische Diagnostik
 • Analyse berufs- und schulformbezogener Lehrpläne
 • Planung, Durchführung und Evaluation von technischem Unterricht in der Aus- und Weiterbildung
 • Wandel beruflicher Anforderungen und Rahmenbedingungen in der Elektro- und Informationstechnik
 • Aktuelle Inhalte der Lehr-Lernforschung im Bezugsfeld der Technikdidaktik und speziell Fachdidaktik Elektro- und Informationstechnik

14. Literatur:
 • Aktuelle wissenschaftliche Zeitschriftenbeiträge, insbesondere aus der Lehr-Lernforschung, im Bezugsfeld der beruflichen Technikdidaktik.

15. Lehrveranstaltungen und -formen:
 • 129001 Vorlesung Technikdidaktik
 • 129002 Fachdidaktik Hauptfach Elektro- und Informationstechnik - Seminar

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 2 x 28 h = 56h
 Selbststudium: ca. 70 h (Vorlesung)
 Selbststudium: ca. 54 h (Seminar)
 Gesamt: ca. 180 h

17. Prüfungsnummer/n und -name:
 • 12901 Fachdidaktik Hauptfach Elektro- und Informationstechnik - Technikdidaktik (PL), schriftlich, eventuell mündlich, Gewichtung: 1.0, Präsentation (0.3) Projektbericht (0.7)
 • 12902 Seminar - Fachdidaktik Hauptfach Elektro- und Informationstechnik (USL), schriftlich, eventuell mündlich, Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 12910 Fachdidaktik Hauptfach Informatik

2. Modulkürzel: 101040004

5. Modulduauer: 1 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0

7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Bernd Zinn

9. Dozenten:
 • Andreas Mußotter
 • Bernd Zinn

10. Zuordnung zum Curriculum in diesem Studiengang:

 B.Sc. Technikpädagogik, PO 2011, 2. Semester
 ➔ Vorgezogene Master-Module

 M.Sc. Technikpädagogik, PO 2009, 2. Semester
 ➔ Studienprofil A - konsekutiver Studiengang --› Hauptfach
 Studienprofil A --› Hauptfach Informatik
 ➔

 M.Sc. Technikpädagogik, PO 2009, 2. Semester
 ➔ Studienprofil B - ohne erziehungswissenschaftliche Studien
 im Bachelor-Studiengang --› Erziehungswissenschaft mit dem Schwerpunkt Berufspädagogik --› Fachdidaktik im vorausgegangenen ingenieurwissenschaftlichen Studium
 ➔

 M.Sc. Technikpädagogik, PO 2015, 2. Semester
 ➔ Studienprofil A - konsekutiver Studiengang --› Hauptfach
 Studienprofil A --› Hauptfach Informatik
 ➔

 M.Sc. Technikpädagogik, PO 2015, 2. Semester
 ➔ Studienprofil B - ohne erziehungswissenschaftliche Studien
 im Bachelor-Studiengang --› Erziehungswissenschaft mit dem Schwerpunkt Berufspädagogik --› Fachdidaktik im vorausgegangenen ingenieurwissenschaftlichen Studium
 ➔

11. Empfohlene Voraussetzungen: Didaktik beruflicher Bildung I

12. Lernziele:

 Die Studierenden sind in der Lage,
 • die Fachdidaktik im Kontext der korrespondierenden Bezugsdisziplinen zu verorten und ihr Bedeutungsspektrum zu überblickenden
 • komplexen Prozess der Unterrichtsplanung, -durchführung und -evaluation von technischem Unterricht zu erfassen
 • beruflich-technischen Unterricht zielorientiert zu planen und dabei didaktisch-methodischen Bezugspunkte kriterienorientiert zu berücksichtigen
 • beruflich-technische Konzepte des Unterrichts so zu gestalten, dass neben fachlich-methodischen auch sozial-kommunikative und personale Kompetenzen unter Berücksichtigung zentraler Aspekte (Umgang mit Inklusion und Heterogenität, Einsatz diagnostischer Verfahren) vermittelt werden können
 • Erkenntnisse aus der (fachdidaktischen) Lehr-Lernforschung im Hinblick auf ihre Bedeutung für das Lehren und Lernen zu interpretieren
 und diese bei der Konzeptionierung von elektro- und informationstechnischem Unterricht zu berücksichtigen
 • die Durchführung und Evaluation des Unterrichts in ihrer Komplexität
als vielfältig interaktiven, inhaltssortierten und insgesamt kriterienorientierten Prozess zu erfassen und die Ergebnisse kritisch zu reflektieren

13. Inhalt: Im Mittelpunkt des Moduls stehen folgende Lerninhalte:

- Ausgangslage und Grundkonzeptionen der allgemeinen und beruflichen Technikdidaktik, Stellung der Fachdidaktik im Gefüge der Fachwissenschaft und Erziehungswissenschaft, zentrale Ansätze und Konzepte der beruflichen Bildung
- methodisch-didaktische Ansätze im technischen Unterricht, Berufsfeldspezifische Aspekte (z.B. Lernen in technischen Reallernräumen, Experimente)
- Umgang mit Inklusion und Heterogenität, Pädagogische Diagnostik
- Analyse berufs- und schulformbezogener Lehrpläne
- Planung, Durchführung und Evaluation von technischem Unterricht in der Aus- und Weiterbildung
- Wandel beruflicher Anforderungen und Rahmenbedingungen in der Informatik
- Aktuelle Inhalte der Lehr-Lernforschung im Bezugsfeld der Technikdidaktik und speziell Fachdidaktik Informatik

14. Literatur:

Aktuelle wissenschaftliche Zeitschriftenbeiträge, insbesondere aus der Lehr-Lernforschung, im Bezugsfeld der beruflichen Technikdidaktik.

15. Lehrveranstaltungen und -formen:

- 129101 Vorlesung Technikdidaktik
- 129102 Fachdidaktik Wahlpflichtfach Informatik - Seminar

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 2 x 28 h = 56hSelbststudium: ca. 70 h (Vorlesung)Selbststudium: ca. 54 h (Seminar)

Gesamt: ca. 180 h

17. Prüfungsnummer/n und -name:

- 12911 Fachdidaktik HF Informatik - Technikdidaktik (PL), schriftlich, eventuell mündlich, Gewichtung: 1.0, Präsentation (0.3) Projektbericht (0.7)
- 12912 Seminar - Fachdidaktik HF Informatik (USL), schriftlich, eventuell mündlich, Gewichtung: 1.0

18. Grundlage für ... :
<table>
<thead>
<tr>
<th>19. Medienform:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>20. Angeboten von:</td>
<td></td>
</tr>
</tbody>
</table>
Modul: 12920 Fachdidaktik Maschinenbau

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>101040002</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>2 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Bernd Zinn</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Bernhard Felix Stolzenburg
• Bernd Zinn |
M.Sc. Technikpädagogik, PO 2009, 2. Semester ➔ Studienprofil A - konsekutiver Studiengang ➔ Hauptfach
M.Sc. Technikpädagogik, PO 2015, 2. Semester ➔ Studienprofil A - konsekutiver Studiengang ➔ Erziehungswissenschaft mit dem Schwerpunkt Berufspädagogik ➔ Fachdidaktik Wahlpflichtfach
M.Sc. Technikpädagogik, PO 2015, 2. Semester ➔ Studienprofil A - konsekutiver Studiengang ➔ Hauptfach
M.Sc. Technikpädagogik, PO 2015, 2. Semester ➔ Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang ➔ Erziehungswissenschaft mit dem Schwerpunkt Berufspädagogik ➔ Fachdidaktik im vorausgegangenen ingenieurwissenschaftlichen Studium |
| 11. Empfohlene Voraussetzungen: | Didaktik beruflicher Bildung I |
| 12. Lernziele: | Die Studierenden sind in der Lage,
• die Fachdidaktik im Kontext der korrespondierenden Bezugsdisziplinen zu verorten und ihr Bedeutungsspektrum zu überblicken
• komplexen Prozess der Unterrichtsplanung, -durchführung und -evaluation von technischem Unterricht zu erfassen
• beruflich-technischen Unterricht zielorientiert zu planen und dabei didaktisch-methodische Bezugspunkte kriterienorientiert zu berücksichtigen
• beruflich-technische Konzepte des Unterrichts so zu gestalten, dass |
neben fachlich-methodischen auch sozial-kommunikative und personale Kompetenzen unter Berücksichtigung zentraler Aspekte (Umgang mit Inklusion und Heterogenität, Einsatz diagnostischer Verfahren) vermittelt werden können

- Erkenntnisse aus der (fachdidaktischen) Lehr-Lernforschung im Hinblick auf ihre Bedeutung für das Lehren und Lernen zu interpretieren und diese bei der Konzeptionierung von maschinenbaubezogenen Unterricht zu berücksichtigen

- die Durchführung und Evaluation des Unterrichts in ihrer Komplexität als vielfältig interaktiven, inhaltsorientierten und insgesamt kriterienorientierten Prozess zu erfassen und die Ergebnisse kritisch zu reflektieren

13. Inhalt:

Im Mittelpunkt des Moduls stehen folgende Lerninhalte:

- Ausgangslage und Grundkonzeptionen der allgemeinen und beruflichen Technikdidaktik, Stellung der Fachdidaktik im Gefüge der Fachwissenschaft und Erziehungswissenschaft, zentrale Ansätze und Konzepte der beruflichen Bildung
- methodisch-didaktische Ansätze im technischen Unterricht, Berufsfeldspezifische Aspekte (z.B. Lernen in technischen Realenräumen, Experimente)
- Umgang mit Inklusion und Heterogenität, Pädagogische Diagnostik
- Analyse berufs- und schulf ormbezogener Lehrpläne
- Planung, Durchführung und Evaluation von technischem Unterricht in der Aus- und Weiterbildung
- Wandel beruflicher Anforderungen und Rahmenbedingungen im Maschinenbau
- Aktuelle Inhalte der Lehr-Lernforschung im Bezugsfeld der Technikdidaktik und speziell Fachdidaktik Maschinenbau

14. Literatur:

Beispiel der Bereichsdidaktik Bau-, Holz- und Gestaltungstechnik. Bd. 3.
Baltmannsweiler: Schneider Hohengehren
- Aktuelle wissenschaftliche Zeitschriftenbeiträge, insbesondere aus der Lehr-Lernforschung,
im Bezugsfeld der beruflichen Technikdidaktik.

15. Lehrveranstaltungen und -formen:
- 129201 Vorlesung Technikdidaktik
- 129202 Fachdidaktik Hauptfach Maschinenbau - Seminar

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 2 x 28 h = 56h Selbststudium: ca. 70 h (Vorlesung)
Selbststudium: ca. 54 h (Seminar)
Gesamt: ca. 180 h

17. Prüfungsnummer/n und -name:
- 12921 Fachdidaktik Hauptfach Maschinenbau - Technikdidaktik (PL),
schriftlich, eventuell mündlich, Gewichtung: 1.0, Präsentation (0.3) Projektbericht (0.7)
- 12922 Seminar - Fachdidaktik Hauptfach Maschinenbau (USL),
schriftlich, eventuell mündlich, Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
135 Fachdidaktik des Wahlpflichtfaches

Zugeordnete Module:
12950 Fachdidaktik Ethik
12990 Fachdidaktik Religionspädagogik (evangelische Theologie)
13260 Fachdidaktik katholische Theologie
14120 Wirtschaftsdidaktik
17590 Fachdidaktik Wahlpflichtfach Bautechnik
17910 Fachdidaktik Wahlpflichtfach Elektro-und Informationstechnik
25510 Fachdidaktik 1
25630 Fachdidaktik Chemie
26300 Grundlagen der Fachdidaktik NwT (Hauptfach)
27290 Fachdidaktik Englisch I
27580 Politikdidaktik
28010 Literaturdidaktik I
29250 Fachdidaktik Wahlpflichtfach Informatik
31790 Fachdidaktik Sport: Lernen, Handeln und Instruieren in schulsportlichen Handlungsfeldern C
41200 Fachdidaktik Wahlpflichtfach Maschinenbau
41510 Fachdidaktik Physik
Modul: 25510 Fachdidaktik 1

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Apl. Prof. Wolfgang Kimmerle</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>B.Sc. Technikpädagogik</th>
<th>Vorgezogene Master-Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>M.Sc. Technikpädagogik</td>
<td>Studienprofil A - konsekutiver Studiengang --</td>
</tr>
<tr>
<td></td>
<td>Erziehungswissenschaft mit dem Schwerpunkt Berufspädagogik --</td>
</tr>
<tr>
<td></td>
<td>Fachdidaktik Wahlpflichtfach</td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik</td>
<td>Studienprofil B - ohne erziehungswissenschaftliche Studien</td>
</tr>
<tr>
<td></td>
<td>im Bachelor-Studiengang --> Erziehungswissenschaft mit dem Schwerpunkt Berufspädagogik --> Fachdidaktik des Wahlpflichtfaches</td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik</td>
<td>Studienprofil A - konsekutiver Studiengang --</td>
</tr>
<tr>
<td></td>
<td>Erziehungswissenschaft mit dem Schwerpunkt Berufspädagogik --</td>
</tr>
<tr>
<td></td>
<td>Fachdidaktik Wahlpflichtfach</td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik</td>
<td>Studienprofil B - ohne erziehungswissenschaftliche Studien</td>
</tr>
<tr>
<td></td>
<td>im Bachelor-Studiengang --> Erziehungswissenschaft mit dem Schwerpunkt Berufspädagogik --> Fachdidaktik des Wahlpflichtfaches</td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen:
- Zulassungsvoraussetzung: Keine
- Inhaltliche Voraussetzung: LAAG I u II, Analysis I u II
- Fachvorlesungen der ersten zwei Semester
- Empfohlen: Vorlesungen des Bildungswissenschaftlichen Begleitstudiums der ersten zwei Semester

12. Lernziele:

13. Inhalt:
- An ausgewählten Inhalten der Sekundarstufen und ihres fachwissenschaftlichen Überbaus werden erarbeitet:
 - Grundlagen des Mathematiklehrers (z.B. Modellieren, Begriffsbildung)
 - einschlägige Lehr- und Lernforschung (z.B. kognitive Aktivierung)
 - Didaktische Prinzipien (z.B. Reduktion, Spiralprinzip, Beispiel, Aufgabe)
 - Formen des Mathematikunterrichts (z.B. Planarbeit, Gruppenpuzzle)
 - Einbezug fachspezifischer Medien

14. Literatur:
- Wird in der Vorlesung bekannt gegeben

Stand: 07. Oktober 2015
15. Lehrveranstaltungen und -formen:
 • 255101 Vorlesung Fachdidaktik 1
 • 255102 Übung Fachdidaktik 1

16. Abschätzung Arbeitsaufwand: **Insgesamt 180 h**, die sich wie folgt ergeben:
 Präsenzstunden: 45 h
 Selbststudienzeit: 135 h

17. Prüfungsnummer/n und -name: 25511 Fachdidaktik 1 (LBP), schriftliche Prüfung, 60 Min.,
 Gewichtung: 1.0, Studienleistung: aktive Teilnahme,
 Hausaufgaben (unbenotet)

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 25630 Fachdidaktik Chemie

2. Modulkürzel: 030230551
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0
5. Modulduauer: 1 Semester
6. Turnus: jedes 2. Semester, SoSe
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Thomas Schleid
9. Dozenten:
10. Zuordnung zum Curriculum in diesem Studiengang:
 - B.Sc. Technikpädagogik ➔ Vorgezogene Master-Module
 - M.Sc. Technikpädagogik ➔ Studienprofil A - konsekutiver Studiengang -- Erziehungswissenschaft mit dem Schwerpunkt Berufspädagogik -- Fachdidaktik Wahlpflichtfach
 - M.Sc. Technikpädagogik ➔ Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang --> Erziehungswissenschaft mit dem Schwerpunkt Berufspädagogik --> Fachdidaktik des Wahlpflichtfaches
 - M.Sc. Technikpädagogik ➔ Studienprofil A - konsekutiver Studiengang -- Erziehungswissenschaft mit dem Schwerpunkt Berufspädagogik --> Fachdidaktik Wahlpflichtfach
 - M.Sc. Technikpädagogik ➔ Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang --> Erziehungswissenschaft mit dem Schwerpunkt Berufspädagogik --> Fachdidaktik des Wahlpflichtfaches
11. Empfohlene Voraussetzungen:
<table>
<thead>
<tr>
<th>14. Literatur</th>
<th>s. gesonderte Liste des aktuellen Semesters</th>
</tr>
</thead>
<tbody>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>256301 Seminar Fachdidakt Lehramt-Chemie</td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td></td>
</tr>
<tr>
<td>Vorlesung</td>
<td></td>
</tr>
<tr>
<td>Präsenzstd.: 2 SWS * 14 Wochen = 28 h</td>
<td></td>
</tr>
<tr>
<td>Vor- und Nachbereitung 1,5 h/Präsenzstd. = 42 h</td>
<td></td>
</tr>
<tr>
<td>Seminar</td>
<td></td>
</tr>
<tr>
<td>Präsenzstd.: 2 SWS * 14 Wochen = 28 h</td>
<td></td>
</tr>
<tr>
<td>Vor- und Nachbereitung 1,25 h/Präsenzstd. = 35 h</td>
<td></td>
</tr>
<tr>
<td>Vorbereitung Seminarvortrag 17 h</td>
<td></td>
</tr>
<tr>
<td>Prüfungsvorbereitung = 30 h</td>
<td></td>
</tr>
<tr>
<td>Summe: 180 h</td>
<td></td>
</tr>
</tbody>
</table>

17. Prüfungsnummer/n und -name:	25631 Fachdidaktik Chemie - Lehramt Hauptfach (LBP), schriftlich, eventuell mündlich, Gewichtung: 1,0, Lehrveranstaltungsbegleitende Prüfung, Art und Umfang der LBP wird zu Beginn des Moduls/der Lehrveranstaltung bekannt gegeben
18. Grundlage für ... :	25720 Fachdidaktik Chemie - Demonstrationsversuche
19. Medienform:	
20. Angeboten von:	
Modul: 27290 Fachdidaktik Englisch I

2. Modulkürzel: 091110341
5. Modulduauer: 2 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0
7. Sprache: Englisch

8. Modulverantwortlicher: Saskia Schabio

9. Dozenten: Dozenten der Anglistik

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technikpädagogik
→ Vorgezogene Master-Module
M.Sc. Technikpädagogik, PO 2009, 1. Semester
→ Studienprofil A - konsekutiver Studiengang --
 > Erziehungswissenschaft mit dem Schwerpunkt Berufspädagogik --
 > Fachdidaktik Wahlpflichtfach
→
M.Sc. Technikpädagogik, PO 2009, 1. Semester
→ Studienprofil B - ohne erziehungswissenschaftliche Studien
 im Bachelor-Studiengang --> Erziehungswissenschaft mit
 dem Schwerpunkt Berufspädagogik --> Fachdidaktik des
 Wahlpflichtfaches
→
M.Sc. Technikpädagogik, PO 2015, 1. Semester
→ Studienprofil A - konsekutiver Studiengang --
 > Erziehungswissenschaft mit dem Schwerpunkt Berufspädagogik --
 > Fachdidaktik Wahlpflichtfach
→
M.Sc. Technikpädagogik, PO 2015, 1. Semester
→ Studienprofil B - ohne erziehungswissenschaftliche Studien
 im Bachelor-Studiengang --> Erziehungswissenschaft mit
 dem Schwerpunkt Berufspädagogik --> Fachdidaktik des
 Wahlpflichtfaches
→

11. Empfohlene Voraussetzungen:
Empfehlung: Vorlesungen und Seminare aus dem
Bildungswissenschaftlichen Begleitstudium der ersten 4 Semester zur
Pädagogischen Psychologie, Didaktik und Methodik, und zu Lehr- /
Lernprozessen

12. Lernziele:
Die Studierenden
1) lernen - bei einer konsequenten Fokussierung auf das Handlungsfeld
 Gymnasium - ein Spektrum an fachdidaktischen Konzepten inklusive
 methodischer Ansätze und einschlägiger Ergebnisse der Lehr- und
 Lernforschung kennen.
2) gewinnen Einblick in die Praxisrelevanz dieser Theorien und
 Modelle.
3) lernen die Anforderungen und die Leistungsfähigkeit des
 kompetenzorientierten Unterrichts kennen.
4) erwerben die Fähigkeit, diese Modelle / Theorien in der Praxis
 anzuwenden und dabei kritisch zu überprüfen.
5) erwerben exemplarisch die Fähigkeit fachwissenschaftliche Inhalte
 aus fachdidaktischer Perspektive einzordnen.

13. Inhalt:
Handwerkszeug zur Planung und Durchführung von Unterricht
auf verschiedenen Stufen des Gymnasiums vor dem Hintergrund
fachdidaktischer und forschungsbezogener Ansätze
Einführung in die gängigen fachdidaktischen Konzepte und ihre Bedeutung für den Englischunterricht anhand von Bildungsplänen und Bildungsstandards sowie der Analyse von Lehrwerken

Anforderungen und Leistungsfähigkeit des kompetenzorientierten Englischunterrichts

Englische Fachdidaktik und ihre Bezugswissenschaften (insbes. literary studies, cultural studies, linguistics)

Kriteriengeleitete Planung, Gestaltung und Analyse von Unterricht unter Berücksichtigung von Spracherwerbs- und Lerntheorien sowie verschiedener Methoden, Medien und Lernstrategien in den Bereichen

• Wortschatz und Grammatik (insbes. linguistische Basis)
• Textarbeit (Lesen, Schreiben und Verstehen)
• Interaktion (Lehr- und Lerngespräche)

Sprachliche Fertigkeiten und ihr Stellenwert in einem kompetenzorientierten und kommunikativen Englischunterricht (classroom English) z.B. im Hinblick auf Fragen der Übergangsdidaktik

Reflexion: Historische Entwicklung des Schulfachs Englisch - Theorien, Ziele und Verfahren des fremdsprachlichen und interkulturellen Lernens in historischer Perspektive

14. Literatur:

15. Lehrveranstaltungen und -formen:
• 272901 Seminar Fachdidaktik Englisch I (Erster Teil)
• 272902 Seminar Fachdidaktik Englisch I (Zweiter Teil)

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 h
Selbststudium: 138 h
Summe: 180 h

17. Prüfungsnummer/n und -name:
27291 Fachdidaktik Englisch I (PL), schriftlich, eventuell mündlich, Gewichtung: 1.0, Hausarbeit (z.B. Lehranalyse; Unterrichtsentwurf) (Bearbeitungszeit: 6 Wochen)

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 12950 Fachdidaktik Ethik

2. Modulkürzel:	091320097
3. Leistungspunkte:	6.0 LP
4. SWS:	2.0
5. Modulbauer:	1 Semester
6. Turnus:	jedes Semester
7. Sprache:	Deutsch
8. Modulverantwortlicher:	Prof. Dr. Christoph Hubig
9. Dozenten:	Tilo Klaiber
	M.Sc. Technikpädagogik, PO 2009, 1. Semester → Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang → Erziehungswissenschaft mit dem Schwerpunkt Berufspädagogik → Fachdidaktik des Wahlpflichtfaches
	M.Sc. Technikpädagogik, PO 2015, 1. Semester → Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang → Erziehungswissenschaft mit dem Schwerpunkt Berufspädagogik → Fachdidaktik des Wahlpflichtfaches
11. Empfohlene Voraussetzungen:	Keine
12. Lernziele:	Die Studierenden • Kennen den Unterschied zwischen Lerninhalten und Lernzielen • Wählen spezifische Inhalte für die jeweils verfolgten Lernziele aus unter Berücksichtigung der relevanten fachspezifischen Methoden • Vergleichen Kriterien, die eine Auswahl und didaktisch begründete Reduktion von Lerninhalten ermöglichen • Sind in der Lage, aktuelle Bildungsstandards zu reflektieren und auf ihre konkrete Anwendung für die Unterrichtspraxis zu überprüfen • sind in der Lage Erkenntnisse aus der fachdidaktischen Lehr-Lernforschung des Fachs im Hinblick auf ihre Bedeutung für das Lehren und Lernen zu interpretieren und diese bei der Konzeptionierung von Unterricht zu berücksichtigen

14. Literatur: Literaturnauswahl (exemplarisch)

• Aktuelle wissenschaftliche Veröffentlichungen aus der fachspezifischen und fachübergreifenden Lehr-Lernforschung.

15. Lehrveranstaltungen und -formen: 129501 Vorlesung Fachdidaktik Ethik

16. Abschätzung Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Präsenzzeit: 21 h</th>
<th>Selbststudium: 159 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Summe: 180 h</td>
<td></td>
</tr>
</tbody>
</table>

17. Prüfungsnummer/n und -name: 12951 Fachdidaktik Ethik (LBP), Sonstiges, Gewichtung: 1.0, Prüfungsvorleistung: Voraussetzungen für den Erwerb sind: Referat incl. Thesenpapier Hausarbeit, max. 25 Seiten

18. Grundlage für ... :

19. Medienform: Skripte/Reader, Thesenpapiere, Tafelbilder, Power-Point, Protokolle, Literatur zur Lektüre

20. Angeboten von:
Modul: 41510 Fachdidaktik Physik

2. Modulkürzel: 081000101 5. Modulduauer: 1 Semester
4. SWS: 0.0 7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Franz Kranzinger

10. Zuordnung zum Curriculum in diesem Studiengang:
 - B.Sc. Technikpädagogik
 → Vorgezogene Master-Module
 - M.Sc. Technikpädagogik
 → Studienprofil A - konsekutiver Studiengang --
 > Erziehungswissenschaft mit dem Schwerpunkt Berufspädagogik --
 > Fachdidaktik Wahlpflichtfach
 →
 - M.Sc. Technikpädagogik
 → Studienprofil B - ohne erziehungswissenschaftliche Studien
 im Bachelor-Studiengang -- > Erziehungswissenschaft mit dem Schwerpunkt Berufspädagogik --
 > Fachdidaktik des Wahlpflichtfaches
 →
 - M.Sc. Technikpädagogik
 → Studienprofil A - konsekutiver Studiengang --
 > Erziehungswissenschaft mit dem Schwerpunkt Berufspädagogik --
 > Fachdidaktik Wahlpflichtfach
 →
 - M.Sc. Technikpädagogik
 → Studienprofil B - ohne erziehungswissenschaftliche Studien
 im Bachelor-Studiengang -- > Erziehungswissenschaft mit dem Schwerpunkt Berufspädagogik --
 > Fachdidaktik des Wahlpflichtfaches
 →

11. Empfohlene Voraussetzungen:

12. Lernziele:

 Die Studierenden sind in der Lage, Erkenntnisse aus der fachdidaktischen Lehr-Lernforschung des Faches Physik im Hinblick auf ihre Bedeutung für das Lehren und Lernen zu interpretieren und diese bei der Konzeptionierung von Unterricht zu berücksichtigen.

 Die Studierenden erwerben die Fähigkeit, fachdidaktische Theorien/Konzepte in der Praxis - vor allem in passenden Experimenten - zu veranschaulichen.

13. Inhalt:

 Ausgewählte Inhalte zur fachspezifischen und fachübergreifenden Lehr-Lernforschung.
Die **Lehr- und Lernforschung** liefert methodische und didaktische Hinweise zu folgenden Themenstellungen:

- Experimentieren und Computereinsatz im Physikunterricht (Messen, Auswerten, Modellieren)
- Fachdidaktische Rekonstruktion von Fachinhalten.
- Begriffsbildung im Physikunterricht.
- Fachdidaktische Positionen und Ansätze zum Physikunterricht.

Auf Physik bezogene **Lehr-Lern-Forschung** liefert Hinweise für wesentliche Schwerpunkte bei der Planung, Organisation und Umsetzung von Lernprozessen mit dem Fokus auf die experimentelle Seite des Physikunterrichts. Hier spielt die Heterogenität, Genderaspekte und die Teamfähigkeit eine besondere Rolle.

14. **Literatur:**
Aktuelle wissenschaftliche Veröffentlichungen aus der fachspezifischen und fachübergreifenden Lehr-Lernforschung - u.a. auch (a) Kircher, Girwitz, Häußler: Physikdidaktik - Theorie und Praxis, Springer ... und (b) Paus, Physik in Experimenten und Beispielen, Hanser Verlag

15. **Lehrveranstaltungen und -formen:**
 - 415101 Vorlesung Fachdidaktik Physik

16. **Abschätzung Arbeitsaufwand:**

17. **Prüfungsnummer/n und -name:**
 - 41511 Fachdidaktik Physik USL (USL), schriftlich, eventuell mündlich, Gewichtung: 0.0
 - 41512 Fachdidaktik Physik (PL), schriftlich, eventuell mündlich, Gewichtung: 0.0

18. **Grundlage für ... :**

19. **Medienform:**

20. **Angeboten von:**

Stand: 07. Oktober 2015
Modul: 12990 Fachdidaktik Religionspädagogik (evangelische Theologie)

2. Modulkürzel: Hohenheim oder Tübingen 5. Modulduauer: 1 Semester
4. SWS: 2.0 7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Ulrich Mell

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technikpädagogik
→ Vorgezogene Master-Module

M.Sc. Technikpädagogik, PO 2009, 3. Semester
→ Studienprofil A - konsekutiver Studiengang --
 >Erziehungswissenschaft mit dem Schwerpunkt Berufspädagogik --
 >Fachdidaktik Wahlpflichtfach
→

M.Sc. Technikpädagogik, PO 2009, 3. Semester
→ Studienprofil B - ohne erziehungswissenschaftliche Studien
 im Bachelor-Studiengang -->Erziehungswissenschaft mit
 dem Schwerpunkt Berufspädagogik -->Fachdidaktik des
 Wahlpflichtfaches
→

M.Sc. Technikpädagogik, PO 2015, 3. Semester
→ Studienprofil A - konsekutiver Studiengang --
 >Erziehungswissenschaft mit dem Schwerpunkt Berufspädagogik --
 >Fachdidaktik Wahlpflichtfach
→

M.Sc. Technikpädagogik, PO 2015, 3. Semester
→ Studienprofil B - ohne erziehungswissenschaftliche Studien
 im Bachelor-Studiengang -->Erziehungswissenschaft mit
 dem Schwerpunkt Berufspädagogik -->Fachdidaktik des
 Wahlpflichtfaches
→

11. Empfohlene Voraussetzungen:

12. Lernziele:

Studierende nehmen Einblick in Geschichte und Themen der evangelischen Religionspädagogik. Sie setzen sich exemplarisch mit den wichtigsten religionspädagogischen Ansätzen und Konzeptionen in Geschichte und Gegenwart auseinander. Sie können begründet zu didaktischen Grundentscheidungen des evangelischen Religionsunterrichts an Beruflichen Schulen Stellung nehmen und beginnen, eigenständig Religionsunterricht in verschiedenen Schularten und Klassenstufen religionsdidaktisch sachgemäß zu erschließen und entsprechende Lehr- und Lernprozesse zu planen.

13. Inhalt:

Überblick zur Religionspädagogik; Grundinformationen zu den Voraussetzungen und Zielen evangelischer Religionspädagogik (ausgehend von Luther und Schleiermacher als Klassikern) sowie zu religionspädagogischen Aufgaben im Jugendalter; Ansätze
der Religionsdidaktik (Bibeldidaktik, ethische Themen, interreligiöses Lernen u.a.) und ihre empirische Bewährung.

14. Literatur:
Fr. Schweitzer, Religionspädagogik, Gütersloh 2006ff.

15. Lehrveranstaltungen und -formen:
129901 Vorlesung Fachdidaktik Religionspädagogik (evangelische Theologie)

16. Abschätzung Arbeitsaufwand:
30 Std. Präsenzzeit; 60 Std. Selbststudiumszeit

17. Prüfungsnummer/n und -name:
12991 Fachdidaktik Religionspädagogik (evangelische Theologie) (LBP), schriftlich, eventuell mündlich, Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
Modul: 31790 Fachdidaktik Sport: Lernen, Handeln und Instruieren in schulsportlichen Handlungsfeldern C

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>0.0</td>
</tr>
<tr>
<td>5. Modulduer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Dieter Bubeck</td>
</tr>
</tbody>
</table>

Zuordnung zum Curriculum in diesem Studiengang:

- **B.Sc. Technikpädagogik**
 - Vorgezogene Master-Module
- **M.Sc. Technikpädagogik**
 - Studienprofil A - konsekutiver Studiengang
 - Erziehungswissenschaft mit dem Schwerpunkt Berufspädagogik
 - Fachdidaktik Wahlpflichtfach
 - Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang
 - Erziehungswissenschaft mit dem Schwerpunkt Berufspädagogik
 - Fachdidaktik des Wahlpflichtfaches
- **M.Sc. Technikpädagogik**
 - Studienprofil A - konsekutiver Studiengang
 - Erziehungswissenschaft mit dem Schwerpunkt Berufspädagogik
 - Fachdidaktik Wahlpflichtfach
 - Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang
 - Erziehungswissenschaft mit dem Schwerpunkt Berufspädagogik
 - Fachdidaktik des Wahlpflichtfaches

Empfohlene Voraussetzungen:

Lernziele:

Inhalt:

Literatur:

Lehrveranstaltungen und -formen:

<table>
<thead>
<tr>
<th>Prüfungsnummer/n und -name:</th>
<th>317901 Fachdidaktik Sport: Lernen, Handeln und Instruieren in schulsportlichen Handlungsfeldern C</th>
</tr>
</thead>
</table>

Abschätzung Arbeitsaufwand:

Prüfungsnummer/n und -name:

<table>
<thead>
<tr>
<th>Prüfungsnummer/n und -name:</th>
<th>31791 Fachdidaktik Sport: Lernen, Handeln und Instruieren in schulsportlichen Handlungsfeldern C (LBP), schriftliche Prüfung, Gewichtung: 1.0</th>
</tr>
</thead>
</table>

Grundlage für ... :

Medienform:

Angeboten von:
Modul: 17590 Fachdidaktik Wahlpflichtfach Bautechnik

2. Modulkürzel: 101040013
5. Moduldauber: 1 Semester
3. Leistungspunkte: 6.0 LP
6. Turnus: jedes 2. Semester, SoSe
4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Bernd Zinn
9. Dozenten: • Bernd Zinn
• Janos Klaus

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technikpädagogik
→ Vorgezogene Master-Module
M.Sc. Technikpädagogik, PO 2009, 1. Semester
→ Studienprofil A - konsekutiver Studiengang --
 > Erziehungswissenschaft mit dem Schwerpunkt Berufspädagogik --
 > Fachdidaktik Wahlpflichtfach
→
M.Sc. Technikpädagogik, PO 2009, 1. Semester
→ Studienprofil B - ohne erziehungswissenschaftliche Studien
 im Bachelor-Studiengang -->Erziehungswissenschaft mit
 dem Schwerpunkt Berufspädagogik -->Fachdidaktik des
 Wahlpflichtfaches
→
M.Sc. Technikpädagogik, PO 2015, 1. Semester
→ Studienprofil A - konsekutiver Studiengang --
 > Erziehungswissenschaft mit dem Schwerpunkt Berufspädagogik --
 > Fachdidaktik Wahlpflichtfach
→
M.Sc. Technikpädagogik, PO 2015, 1. Semester
→ Studienprofil B - ohne erziehungswissenschaftliche Studien
 im Bachelor-Studiengang -->Erziehungswissenschaft mit
 dem Schwerpunkt Berufspädagogik -->Fachdidaktik des
 Wahlpflichtfaches
→

11. Empfohlene Voraussetzungen: Didaktik beruflicher Bildung I

12. Lernziele:
Die Studierenden sind in der Lage,
• den komplexen Prozess der Unterrichtsplanung, -durchführung und
 -evaluation von holztechnischem Unterricht zu erfassen

• beruflich-holztechnischen Unterricht zielorientiert zu planen und dabei
didaktisch-methodische
 Bezugspunkte kriterienorientiert zu berücksichtigen
• beruflich-holztechnische Konzepte des Unterrichts so zu gestalten,
 dass neben fachlich-methodischen auch sozial-kommunikative und
 personale Kompetenzen unter Berücksichtigung zentraler Aspekte
 (Umgang mit Inklusion und Heterogenität, Einsatz diagnostischer
 Verfahren) vermittelt werden können
• Erkenntnisse aus der (fachdidaktischen) Lehr-Lernforschung im
 Hinblick auf ihre Bedeutung
 für das Lehren und Lernen zu interpretieren und diese bei der
 Konzeptionierung
 von bau- und holztechnischem Unterricht zu berücksichtigen
• die Durchführung und Evaluation des Unterrichts in ihrer Komplexität als vielfältig interaktiven, inhaltsorientierten und insgesamt kriterienorientierten Prozess zu erfassen und die Ergebnisse kritisch zu reflektieren

13. Inhalt: Im Mittelpunkt des Moduls stehen folgende Lerninhalte:
• methodisch-didaktische Ansätze im technischen Unterricht, Berufsfeldspezifische Aspekte (z.B. Lernen in technischen Realienräumen, Experimente)
• Umgang mit Inklusion und Heterogenität, Pädagogische Diagnostik
• Analyse berufs- und schulförderbezogener Lehrpläne
• Planung, Durchführung und Evaluation von technischem Unterricht in der Aus- und Weiterbildung
• Wandel beruflicher Anforderungen und Rahmenbedingungen im Holzbau und der Holztechnik
• Aktuelle Inhalte der Lehr-Lernforschung im Bezugsfeld der Technikdidaktik und speziell Fachdidaktik Holztechnik

14. Literatur:
• Aktuelle wissenschaftliche Zeitschriftenbeiträge, insbesondere aus der Lehr-Lernforschung, im Bezugsfeld der beruflichen Technikdidaktik.

15. Lehrveranstaltungen und -formen:
• 175901 Fachdidaktik WPF Bautechnik (Teil 1) - Seminar
• 175902 Fachdidaktik WPF Bautechnik (Teil 2) - Projektseminar

16. Abschätzung Arbeitsaufwand:
Preiszeit:
2 x 28 h = 56h
Selbststudium:
cia. 54 h (Seminar)
Selbststudium:
cia. 70 h (Projektseminar)
Gesamt: ca. 180 h

17. Prüfungsnummer/n und -name: • 17591 Seminar - Fachdidaktik Wahlpflichtfach Bautechnik (PL), schriftlich, eventuell mündlich, Gewichtung: 1.0
• 17592 Projektseminar - Fachdidaktik Wahlpflichtfach Bautechnik (USL), schriftlich, eventuell mündlich, Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 17910 Fachdidaktik Wahlpflichtfach Elektro-und Informationstechnik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>101040013</th>
<th>5. Modulduauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Bernd Zinn

9. Dozenten:
- Andreas Mußotter
- Bernd Zinn

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>B.Sc. Technikpädagogik</th>
<th>Vorgezogene Master-Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>➞ Studienprofil A - konsekutiver Studiengang --</td>
<td></td>
</tr>
<tr>
<td>> Erziehungswissenschaft mit dem Schwerpunkt Berufspädagogik --</td>
<td></td>
</tr>
<tr>
<td>> Fachdidaktik Wahlpflichtfach</td>
<td></td>
</tr>
</tbody>
</table>

| M.Sc. Technikpädagogik, PO 2009, 1. Semester |
| Studienprofil B - ohne erziehungswissenschaftliche Studien |
| im Bachelor-Studiengang --> Erziehungswissenschaft mit dem Schwerpunkt Berufspädagogik --> Fachdidaktik des Wahlpflichtfaches |

| M.Sc. Technikpädagogik, PO 2009, 1. Semester |
| Studienprofil B - ohne erziehungswissenschaftliche Studien |
| im Bachelor-Studiengang --> Erziehungswissenschaft mit dem Schwerpunkt Berufspädagogik --> Fachdidaktik des Wahlpflichtfaches |

| M.Sc. Technikpädagogik, PO 2015, 1. Semester |
| Studienprofil A - konsekutiver Studiengang -- |
| > Erziehungswissenschaft mit dem Schwerpunkt Berufspädagogik -- |
| > Fachdidaktik Wahlpflichtfach |

| M.Sc. Technikpädagogik, PO 2015, 1. Semester |
| Studienprofil B - ohne erziehungswissenschaftliche Studien |
| im Bachelor-Studiengang --> Erziehungswissenschaft mit dem Schwerpunkt Berufspädagogik --> Fachdidaktik des Wahlpflichtfaches |

11. Empfohlene Voraussetzungen: Didaktik beruflicher Bildung I

12. Lernziele:

Die Studierenden sind in der Lage,

- den komplexen Prozess der Unterrichtsplanung, -durchführung und - evaluation von holztechnischem Unterricht zu erfassen

- beruflich-holztechnischen Unterricht zielorientiert zu planen und dabei didaktisch-methodische Bezugspunkte kriterienorientiert zu berücksichtigen

- beruflich-holztechnische Konzepte des Unterrichts so zu gestalten, dass neben fachlich-methodischen auch sozial-kommunikative und personale Kompetenzen unter Berücksichtigung zentraler Aspekte (Umgang mit Inklusion und Heterogenität, Einsatz diagnostischer Verfahren) vermittelt werden können

- Erkenntnisse aus der (fachdidaktischen) Lehr-Lernforschung im Hinblick auf ihre Bedeutung für das Lehren und Lernen zu interpretieren und diese bei der Konzeptionierung von bau- und holztechnischem Unterricht zu berücksichtigen
• die Durchführung und Evaluation des Unterrichts in ihrer Komplexität als vielfältig interaktiven, inhaltsspezifischen und insgesamt kriterienorientierten Prozess zu erfassen und die Ergebnisse kritisch zu reflektieren

13. Inhalt: Im Mittelpunkt des Moduls stehen folgende Lerninhalte:

• methodisch-didaktische Ansätze im technischen Unterricht, Berufsfeldspezifische Aspekte (z.B. Lernen in technischen Real-lernräumen, Experimente)
• Umgang mit Inklusion und Heterogenität, Pädagogische Diagnostik
• Analyse berufs- und schulformbezogener Lehrpläne

14. Literatur:

• Aktuelle wissenschaftliche Zeitschriftenbeiträge, insbesondere aus der Lehr-Lernforschung, im Bezugsfeld der Technikdidaktik.

15. Lehrveranstaltungen und -formen:

• 179101 Fachdidaktik WPF Elektro- und Informationstechnik (Teil 1) - Seminar
• 179102 Fachdidaktik WPF Elektro- und Informationstechnik (Teil 1) - Projektseminar

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 2 x 28 h = 56h
Selbststudium: ca. 54 h (Seminar)
Selbststudium: ca. 70 h (Projektseminar)
Gesamt: ca. 180 h
17. Prüfungsnummer/n und -name:

- 17911 Seminar -Fachdidaktik WPF Elektro-und Informationstechnik (PL), Studienbegleitend, Gewichtung: 1.0
- 17912 Projektseminar -Fachdidaktik WPF Elektro-und Informationstechnik (USL), Studienbegleitend, Gewichtung: 1.0

18. Grundlage für ...:

19. Medienform:

20. Angeboten von:
Modul: 29250 Fachdidaktik Wahlpflichtfach Informatik

2. Modulkürzel: 101040014
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0
5. Moduldauer: 1 Semester
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Bernd Zinn
9. Dozenten:
 • Andreas Mußotter
 • Bernd Zinn
10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technikpädagogik
 ➔ Vorgezogene Master-Module
 M.Sc. Technikpädagogik
 ➔ Studienprofil A - konsekutiver Studiengang --
 ➔ Erziehungswissenschaft mit dem Schwerpunkt Berufspädagogik --
 ➔ Fachdidaktik Wahlpflichtfach
 ➔ M.Sc. Technikpädagogik
 ➔ Studienprofil B - ohne erziehungswissenschaftliche Studien
 im Bachelor-Studiengang -->Erziehungswissenschaft mit dem Schwerpunkt Berufspädagogik -->Fachdidaktik des Wahlpflichtfaches
 ➔ M.Sc. Technikpädagogik
 ➔ Studienprofil A - konsekutiver Studiengang --
 ➔ Erziehungswissenschaft mit dem Schwerpunkt Berufspädagogik --
 ➔ Fachdidaktik Wahlpflichtfach
 ➔ M.Sc. Technikpädagogik
 ➔ Studienprofil B - ohne erziehungswissenschaftliche Studien
 im Bachelor-Studiengang -->Erziehungswissenschaft mit dem Schwerpunkt Berufspädagogik -->Fachdidaktik des Wahlpflichtfaches

11. Empfohlene Voraussetzungen: Didaktik beruflicher Bildung I

12. Lernziele:
Die Studierenden sind in der Lage,
 • den komplexen Prozess der Unterrichtsplanung, -durchführung und -evaluation von informationstechnischem Unterricht zu erfassen
 • informationstechnischen Unterricht zielorientiert zu planen und dabei didaktisch-methodische Bezugspunkte kritierenorientiert zu berücksichtigen
 • beruflich-technische Konzepte des Unterrichts so zu gestalten, dass neben fachlich-methodischen auch sozial-kommunikative und personale Kompetenzen unter Berücksichtigung zentraler Aspekte (Umgang mit Inklusion und Heterogenität, Einsatz diagnostischer Verfahren) vermittelt werden können
 • Erkenntnisse aus der (fachdidaktischen) Lehr-Lernforschung im Hinblick auf ihre Bedeutung für das Lehren und Lernen zu interpretieren und diese bei der Konzeptionierung von informationstechnischem Unterricht zu berücksichtigen
• die Durchführung und Evaluation des Unterrichts in ihrer Komplexität als vielfältig interaktiven, inhaltsspezifischen und insgesamt kriterienorientierten Prozess zu erfassen und die Ergebnisse kritisch zu reflektieren

13. Inhalt:
Im Mittelpunkt des Moduls stehen folgende Lerninhalte:

• methodisch-didaktische Ansätze im informationstechnischen Unterricht, Berufsfeldspezifische Aspekte (z.B. Programmierübungen, Internetworking)
• Umgang mit Inklusion und Heterogenität, Pädagogische Diagnostik
• Analyse berufs- und schulformbezogener Lehrpläne
• Planung, Durchführung und Evaluation von technischem Unterricht in der Aus- und Weiterbildung
• Wandel beruflicher Anforderungen und Rahmenbedingungen in der Informatik
• Aktuelle Inhalte der Lehr-Lernforschung im Bezugsfeld der Technikdidaktik und speziell Fachdidaktik Informatik

14. Literatur:
• Aktuelle wissenschaftliche Zeitschriftenbeiträge, insbesondere aus der Lehr-Lernforschung, im Bezugsfeld der beruflichen Technikdidaktik.

15. Lehrveranstaltungen und -formen:
• 292501 Fachdidaktik WPF Informatik (Teil 1) - Seminar
• 292502 Fachdidaktik WPF Informatik (Teil 2) - Projektseminar

16. Abschätzung Arbeitsaufwand:
Präsenzzeit:
2 x 28 h = 56h
Selbststudium:
c. 54 h (Seminar)
Selbststudium:
c. 70 h (Projektseminar)
Gesamt: c. 180 h
17. Prüfungsnummer/n und -name:

- 29251 Seminar - Fachdidaktik Wahlpflichtfach Informatik (PL), schriftlich, eventuell mündlich, Gewichtung: 1.0
- 29252 Projektseminar - Fachdidaktik Wahlpflichtfach Informatik (USL), schriftlich, eventuell mündlich, Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 41200 Fachdidaktik Wahlpflichtfach Maschinenbau

2. Modulkürzel: 101040012
5. Modulduer: 1 Semester
3. Leistungspunkte: 6.0 LP
6. Turnus: jedes 2. Semester, SoSe
4. SWS: 4.0
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Bernd Zinn
9. Dozenten:
 • Bernd Zinn
 • Bernhard Felix Stolzenburg

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technikpädagogik
 ➔ Vorgezogene Master-Module
 M.Sc. Technikpädagogik
 ➔ Studienprofil A - konsekutiver Studiengang --
 ➔ Erziehungswissenschaft mit dem Schwerpunkt Berufspädagogik --
 ➔ Fachdidaktik Wahlpflichtfach
 ➔
 M.Sc. Technikpädagogik
 ➔ Studienprofil B - ohne erziehungswissenschaftliche Studien
 im Bachelor-Studiengang -->Erziehungswissenschaft mit
dem Schwerpunkt Berufspädagogik -->Fachdidaktik des
 Wahlpflichtfaches
 ➔
 M.Sc. Technikpädagogik
 ➔ Studienprofil A - konsekutiver Studiengang --
 ➔ Erziehungswissenschaft mit dem Schwerpunkt Berufspädagogik --
 ➔ Fachdidaktik Wahlpflichtfach
 ➔
 M.Sc. Technikpädagogik
 ➔ Studienprofil B - ohne erziehungswissenschaftliche Studien
 im Bachelor-Studiengang -->Erziehungswissenschaft mit
dem Schwerpunkt Berufspädagogik -->Fachdidaktik des
 Wahlpflichtfaches
 ➔

11. Empfohlene Voraussetzungen: Didaktik beruflicher Bildung I

12. Lernziele:
 Die Studierenden sind in der Lage,
 • den komplexen Prozess der Unterrichtsplanung, -durchführung und
 -evaluation von technischem Unterricht zu erfassen, insbesondere
 in ausgewählten Schwerpunktsetzungen (Fahrzeugtechnik,
 Fertigungstechnik, Heizungs-, Lüftungs- und Klimatechnik).
 • beruflich-technischen Unterricht zielorientiert zu planen und
 dabei didaktisch-methodische Bezugspunkte kriterienorientiert zu
 berücksichtigen
 • beruflich-technische Konzepte des Unterrichts so zu gestalten,
 dass neben fachlich-methodischen auch sozial-kommunikative und
 personale Kompetenzen unter Berücksichtigung zentraler Aspekte
 (Umgang mit Inklusion und Heterogenität, Einsatz diagnostischer
 Verfahren) vermittelt werden können
 • Erkenntnisse aus der (fachdidaktischen) Lehr-Lernforschung
 im Hinblick auf ihre Bedeutung für das Lehren und Lernen
 zu interpretieren und diese bei der Konzeptionierung von
 metalotechnischem Unterricht zu berücksichtigen
die Durchführung und Evaluation des Unterrichts in ihrer Komplexität als vielfältig interaktiven, inhaltsspezifischen und insgesamt kriterienorientierten Prozess zu erfassen und die Ergebnisse kritisch zu reflektieren.

13. Inhalt: Im Mittelpunkt des Moduls stehen folgende Lerninhalte:

- Ausgangslage und Grundkonzeptionen der allgemeinen und beruflichen Technikdidaktik, Stellung der Fachdidaktik im Gefüge der Fachwissenschaft und Erziehungswissenschaft, zentrale Ansätze und Konzepte der beruflichen Bildung
- methodisch-didaktische Ansätze im technischen Unterricht, Berufsfeldspezifische Aspekte (z.B. Lernen in technischen Reallernräumen, Experimente)
- Umgang mit Inklusion und Heterogenität, Pädagogische Diagnostik
- Analyse berufs- und schulformbezogener Lehrpläne
- Planung, Durchführung und Evaluation von technischem Unterricht in der Aus- und Weiterbildung
- Wandel beruflicher Anforderungen und Rahmenbedingungen in den korrespondierenden berufen des Wahlpflichtfachs
- Aktuelle Inhalte der Lehr-Lernforschung im Bezugsfeld der Technikdidaktik und speziell des Maschinenbaus

14. Literatur:

15. Lehrveranstaltungen und -formen:

- 412001 Fachdidaktik WPF Maschinenbau (Teil 1) - Seminar
- 412002 Fachdidaktik WPF Maschinenbau (Teil 2) - Projektseminar

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 2 x 28 h = 56h
Selbststudium: ca. 54 h (Seminar)
Selbststudium: ca. 70 h (Projektseminar)
Gesamt: ca. 180 h

17. Prüfungsnummer/n und -name:

- 41201 Seminar - Fachdidaktik Wahlpflichtfach Maschinenbau (PL), Sonstiges, Gewichtung: 3.0
- 41202 Projektseminar - Fachdidaktik Wahlpflichtfach Maschinenbau (USL), Sonstiges, Gewichtung: 7.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 13260 Fachdidaktik katholische Theologie

2. Modulkürzel: Hohenheim oder Tübingen 5. Modulduauer: 1 Semester
4. SWS: 3.0 7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Michael Schramm
9. Dozenten: Katharina Eckstein

10. Zuordnung zum Curriculum in diesem Studiengang:

 B.Sc. Technikpädagogik
 ➔ Vorgezogene Master-Module

 M.Sc. Technikpädagogik
 ➔ Studienprofil A - konsekutiver Studiengang --
 ➔ Erziehungswissenschaft mit dem Schwerpunkt Berufspädagogik --
 ➔ Fachdidaktik Wahlpflichtfach
 ➔

 M.Sc. Technikpädagogik
 ➔ Studienprofil B - ohne erziehungswissenschaftliche Studien
 im Bachelor-Studiengang --> Erziehungswissenschaft mit
 dem Schwerpunkt Berufspädagogik --> Fachdidaktik des
 Wahlpflichtfaches
 ➔

 M.Sc. Technikpädagogik
 ➔ Studienprofil A - konsekutiver Studiengang --
 ➔ Erziehungswissenschaft mit dem Schwerpunkt Berufspädagogik --
 ➔ Fachdidaktik Wahlpflichtfach
 ➔

 M.Sc. Technikpädagogik
 ➔ Studienprofil B - ohne erziehungswissenschaftliche Studien
 im Bachelor-Studiengang --> Erziehungswissenschaft mit
 dem Schwerpunkt Berufspädagogik --> Fachdidaktik des
 Wahlpflichtfaches
 ➔

11. Empfohlene Voraussetzungen:

12. Lernziele:

Die Studierenden haben vertiefte Kenntnisse in der Planung von
Berufsschulreligionsunterricht. Sie verfügen über die Fähigkeit, Unterricht
auf der Basis von allgemein- und religionsdidaktischen Modellen
und Prinzipien zu konzipieren, durchzuführen und zu reflektieren.
Sie sind in der Lage Erkenntnisse aus der fachdidaktischen Lehr-
Lernforschung des Fachs im Hinblick auf ihre Bedeutung für das Lehren
und Lernen zu interpretieren und diese bei der Konzeptionierung von
Unterricht zu berücksichtigen. Die Studierenden haben die Kompetenz,
Unterrichtsplanungen ihrer Kommilitonen zu analysieren und ihnen
Feedback zu einzelnen Aspekten des beobachteten Unterrichts zu
geben.

13. Inhalt:

1. Theorie des Religionsunterrichts (2 SWS)

In der Lehrveranstaltung wird ausgehend von ersten
Unterrichtserfahrungen auf der Grundlage von allgemein- und
religionsdidaktischen Modellen und Prinzipien sowie der fachdidaktischen
Lehr-Lernforschung erarbeitet, wie Berufsschulreligionsunterricht
professionell geplant, gestaltet, reflektiert und in einem Unterrichtsentwurf
dokumentiert werden kann. Zentrale schulbezogene Inhalte
von Pädagogik und Psychologie (z.B. Kompetenzorientierung,
Individualisierung, Motivation, Kommunikation) werden aus fachdidaktischer und bildungspolitischer Perspektive diskutiert.

2. Praxis des Religionsunterrichts an Beruflichen Schulen (1 SWS)

| 14. Literatur: |
| --- | --- |
| 15. Lehrveranstaltungen und -formen: | 132601 Vorlesung Fachdidaktik katholische Theologie |
| 16. Abschätzung Arbeitsaufwand: | 45 Stunden Präsenzstudium; 135 Stunden Vor- und Nachbereitung |
| 17. Prüfungsnummer/n und -name: | 13261 Fachdidaktik katholische Theologie (LBP), Sonstiges, Gewichtung: 1.0 |
| 18. Grundlage für ... : | |
| 19. Medienform: | |
| 20. Angeboten von: | Universität Hohenheim |
Modul: 26300 Grundlagen der Fachdidaktik NwT (Hauptfach)

2. Modulkürzel: 101010060
5. Modulduauer: 2 Semester
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Bernd Zinn
9. Dozenten: Bernd Geißel
10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technikpädagogik
 → Vorgezogene Master-Module
 M.Sc. Technikpädagogik, PO 2009, 3. Semester
 → Studienprofil A - konsekutiver Studiengang
 → Erziehungswissenschaft mit dem Schwerpunkt Berufspädagogik
 → Fachdidaktik Wahlpflichtfach
 →
 M.Sc. Technikpädagogik, PO 2009, 3. Semester
 → Studienprofil B - ohne erziehungswissenschaftliche Studien
 im Bachelor-Studiengang
 → Erziehungswissenschaft mit dem Schwerpunkt Berufspädagogik
 → Fachdidaktik des Wahlpflichtfaches
 →
 M.Sc. Technikpädagogik, PO 2009, 3. Semester
 → Studienprofil C - betriebliche Bildungsarbeit
 → Vertiefungsbereich 2
 →
 M.Sc. Technikpädagogik, PO 2015, 3. Semester
 → Studienprofil A - konsekutiver Studiengang
 → Erziehungswissenschaft mit dem Schwerpunkt Berufspädagogik
 → Fachdidaktik Wahlpflichtfach
 →
 M.Sc. Technikpädagogik, PO 2015, 3. Semester
 → Studienprofil B - ohne erziehungswissenschaftliche Studien
 im Bachelor-Studiengang
 → Erziehungswissenschaft mit dem Schwerpunkt Berufspädagogik
 → Fachdidaktik des Wahlpflichtfaches
 →
 M.Sc. Technikpädagogik, PO 2015, 3. Semester
 → Studienprofil C - betriebliche Bildungsarbeit
 → Vertiefungsbereich 2
 →

11. Empfohlene Voraussetzungen: keine, allgemeine didaktische Grundkenntnisse sind vorteilhaft

12. Lernziele: Die Studierenden erwerben die Fähigkeit auf der Basis grundlegenden
 Wissens zur Technikdidaktik Entscheidungen zur Gestaltung von Lehr-
 Lernprozessen zu reflektieren und zu begründen. Sie sind insbesondere
 in der Lage Lehr-Lernziele und Lehrverfahren unter Berücksichtigung
 relevanter Bedingungen zu planen und Lehr-Lernprozesse zu beurteilen.

13. Inhalt: Konzepte und curriculare Grundlagen der Didaktik der Naturwissenschaft
 und Technik; Gestaltung von Lehr-Lernprozessen;
 Ausgewählte Ergebnisse der bereichsspezifischen Lehr-Lernforschung;
 Kompetenzmodelle und Kompetenzentwicklung

14. Literatur: • Bonz, B./Ott, B. (Hrsg.): Allgemeine Technikdidaktik - Theorieansätze
 und Praxisbezüge. Hohengehren 2003;
 • Wagener, W./Haupt, W.: Technikdidaktik als Fach in der gymnasialen
 Oberstufe. In: Bader, R./Jenewein, K. (Hrsg.): Didaktik der Technik
• Nickolaus, R.: Didaktik beruflicher Bildung. 3. Aufl. Hohengehren 2008

15. Lehrveranstaltungen und -formen:
• 263001 Vorlesung Einführung in die Technikdidaktik
• 263002 Seminar Vertiefung zur Einführung in die Technikdidaktik

16. Abschätzung Arbeitsaufwand:
In beiden Veranstaltungen sind jeweils 21 h Präsenzzeit und 69 h Vor- und Nachbearbeitungszeit vorgesehen (Gesamtzeit 180 h)

17. Prüfungsnummer/n und -name:
• 26301 Grundlagen der Fachdidaktik NwT (Hauptfach) (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0
• 26302 Grundlagen der Fachdidaktik NwT (Hauptfach), Ausarbeitung incl. Präsentation (USL), schriftlich, eventuell mündlich, Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:
Vorträge, Präsentationen, Diskussionen

20. Angeboten von:
Modul: 28010 Literaturdidaktik I

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>091130450</th>
<th>5. Moduldaurer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. Modulverantwortlicher:</th>
<th>Univ.-Prof. Sandra Richter</th>
</tr>
</thead>
</table>
| 9. Dozenten: | • Dozenten des Seminars Stuttgart
 | • Dozenten des Seminars Esslingen
 | • Dozenten der Pädagogischen Hochschule Ludwigsburg |

10. Zuordnung zum Curriculum in diesem Studiengang:
- B.Sc. Technikpädagogik
 → Vorgezogene Master-Module
- M.Sc. Technikpädagogik
 → Studienprofil A - konsekutiver Studiengang
 > Erziehungswissenschaft mit dem Schwerpunkt Berufspädagogik
 > Fachdidaktik Wahlpflichtfach
- M.Sc. Technikpädagogik
 → Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang
 > Erziehungswissenschaft mit dem Schwerpunkt Berufspädagogik
 > Fachdidaktik Wahlpflichtfach
- M.Sc. Technikpädagogik
 → Studienprofil A - konsekutiver Studiengang
 > Erziehungswissenschaft mit dem Schwerpunkt Berufspädagogik
 > Fachdidaktik Wahlpflichtfach
- M.Sc. Technikpädagogik
 → Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang
 > Erziehungswissenschaft mit dem Schwerpunkt Berufspädagogik
 > Fachdidaktik Wahlpflichtfaches

11. Empfohlene Voraussetzungen:

12. Lernziele:
- Die Studierenden
 • kennen die relevanten Ausschnitte des Bildungsplans für Deutsch / Literaturunterricht
 • kennen didaktische Modelle des Literaturunterrichts und können die Stärken und Schwächen unterschiedlicher Modelle einschätzen
 • haben die Fähigkeit zu einem reflektierten Umgang mit literarischen Texten des Curriculums
 • kennen wichtige fachdidaktische Fragestellungen
 • kennen die Grundlagen eines kompetenzorientierten Unterrichts
 • verfügen über Grundkonzepte altersgerechten Literaturunterrichts, die sie entsprechend ihrem Kenntnisstand bei der Planung und Unterrichtsdurchführung einbringen können
 • sind in der Lage Erkenntnisse aus der fachdidaktischen Lehr-Lernforschung des Fachs im Hinblick auf ihre Bedeutung für das Lehren und Lernen zu interpretieren und diese bei der Konzeptionierung von Unterricht zu berücksichtigen.

- Vorstellung und Diskussion des Bildungsplans für Deutsch
- Einführung in die unterschiedlichen didaktischen Modelle des Literaturunterrichts in Deutsch
- exemplarische Einführung in die didaktische Reduktion fachwissenschaftlicher Inhalte
- Ausgewählte Inhalte zur fachspezifischen und fachübergreifenden Lehr-Lernforschung.

14. Literatur:
- Paefgen, Elisabeth K.: Einführung in die Literaturdidaktik. Stuttgart; Weimar: Metzler, 1999

15. Lehrveranstaltungen und -formen: 280101 Seminar Literaturdidaktik I

16. Abschätzung Arbeitsaufwand:
| Präsenzzeit: | 21 h |
| Selbststudium: | 159 h |
| Gesamt: | 180 h |

17. Prüfungsnummer/n und -name: 28011 Literaturdidaktik I (LBP), schriftliche Prüfung, Gewichtung: 1.0, Art und Umfang der LBP werden zu Beginn der Veranstaltung bekanntgegeben.

18. Grundlage für ...

19. Medienform: Neue Deutsche Literatur I

20. Angeboten von: Neue Deutsche Literatur I
Modul: 27580 Politikdidaktik

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Reinhold Nickolaus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Martin Kenner</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- **B.Sc. Technikpädagogik**
 - Vorgezogene Master-Module
- **M.Sc. Technikpädagogik**
 - Studienprofil A - konsekutiver Studiengang -- Erziehungswissenschaft mit dem Schwerpunkt Berufspädagogik -- Fachdidaktik Wahlpflichtfach
- **M.Sc. Technikpädagogik**
 - Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang -- Erziehungswissenschaft mit dem Schwerpunkt Berufspädagogik -- Fachdidaktik des Wahlpflichtfaches
- **M.Sc. Technikpädagogik**
 - Studienprofil A - konsekutiver Studiengang -- Erziehungswissenschaft mit dem Schwerpunkt Berufspädagogik -- Fachdidaktik des Wahlpflichtfaches
- **M.Sc. Technikpädagogik**
 - Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang -- Erziehungswissenschaft mit dem Schwerpunkt Berufspädagogik -- Fachdidaktik des Wahlpflichtfaches

11. Empfohlene Voraussetzungen:

keine

12. Lernziele:

- Fähigkeit, die Relevanz politischer Bildung im Kontext schulischer Bildung einzuordnen
- Kenntnisse über fachdidaktische Ansätze, Methoden und Befunde der politischen Bildung
- Fähigkeit, politikdidaktische Theorien und Ansätze für die Entwicklung eigener Unterrichtskonzepte zu nutzen (Praxistransfer)

13. Inhalt:

PDI (Grundlagen)

Rechtlich-institutionelle Aspekte der politischen Bildung an Schulen
Ausgewählte politikdidaktische Ansätze und Methoden und deren Umsetzung in die Unterrichtspraxis
Empirische Befunde zur Situation politischer Bildung an Schulen

PDII (Exemplarischer Praxistransfer)

Analyse und Reflexion des Lehrplans (Inhalte, Lernziele)
Inhaltliche Auseinandersetzung mit einem ausgewählten Lerninhalt
Lern- und sozial-psychologische Auseinandersetzung mit dem Lerninhalt
Entwicklung eines eigenen Unterrichtskonzepts unter Rückgriff auf fachdidaktische Konzepte
Alternativ: Analyse eines bereits vorliegenden Unterrichtskonzepts

14. Literatur:

- Sander, Wolfgang (Hrsg.) (2005): Handbuch politische Bildung. Schwabach/Ts.: Wochenschau Verlag

15. Lehrveranstaltungen und -formen:

- 275801 Seminar Politikdidaktik Teil 1
- 275802 Seminar Politikdidaktik Teil 2

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 2x21 h = 42h
Vor-/Nachbereitungszeit: 2x69h = 138h
Gesamtzeit: 180 h

17. Prüfungsnummer/n und -name:

- 27581 Politikdidaktik (LBP), schriftliche Prüfung, Gewichtung: 1.0, Lehrveranstaltungsbegleitende Prüfung: Eine Hausarbeit oder eine 90minütige Klausur zum Modul Politikdidaktik.
- 27582 Politikdidaktik, USL (USL), mündliche Prüfung, Gewichtung: 1.0, Aktive MitarbeitÜbernahme eines Impulsreferates

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 14120 Wirtschaftsdidaktik

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Reinhold Nickolaus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Jürgen Kochendörfer</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zuordnung zum Curriculum in diesem Studiengang:

- B.Sc. Technikpädagogik
 - Vorgezogene Master-Module
- M.Sc. Technikpädagogik, PO 2009, 1. Semester
 - Studienprofil A - konsekutiver Studiengang
 - Erziehungswissenschaft mit dem Schwerpunkt Berufspädagogik
 - Fachdidaktik Wahlpflichtfach
- M.Sc. Technikpädagogik, PO 2009, 1. Semester
 - Studienprofil B - ohne erziehungswissenschaftliche Studien
 - im Bachelor-Studiengang
 - Erziehungswissenschaft mit dem Schwerpunkt Berufspädagogik
 - Fachdidaktik des Wahlpflichtfaches
- M.Sc. Technikpädagogik, PO 2015, 1. Semester
 - Studienprofil A - konsekutiver Studiengang
 - Erziehungswissenschaft mit dem Schwerpunkt Berufspädagogik
 - Fachdidaktik Wahlpflichtfach
- M.Sc. Technikpädagogik, PO 2015, 1. Semester
 - Studienprofil B - ohne erziehungswissenschaftliche Studien
 - im Bachelor-Studiengang
 - Erziehungswissenschaft mit dem Schwerpunkt Berufspädagogik
 - Fachdidaktik des Wahlpflichtfaches

Empfohlene Voraussetzungen:

- Wirtschaftsdidaktische Grundkenntnisse; Fähigkeit fachwissenschaftliche und fachdidaktische Theorien im Hinblick auf die Analyse und Planung von Lehr-Lernprozessen im wirtschaftskundlichen Unterricht situationsadäquat einzusetzen

- Erkenntnisse aus der (fachdidaktischen) Lehr-Lernforschung im Hinblick auf ihre Bedeutung für das Lehren und Lernen zu interpretieren und diese bei der Konzeptionierung von kaufmännischem Unterricht zu berücksichtigen.

Inhalt:

14. Literatur:
Bonz, Bernhard, Kochendörfer, Jürgen; Schanz, Heinrich: Lernfeldorientierter Unterricht und allgemeinbildende Fächer, Hohengehren, 2009.

15. Lehrveranstaltungen und -formen:
141201 Vorlesung Wirtschaftsdidaktik

16. Abschätzung Arbeitsaufwand:
Je Veranstaltung 21h Präsenzzeit: 42h und 39h Vor- und Nachbereitung: 78h Gesamtzeit: 120h

17. Prüfungsnummer/n und -name:
14121 Wirtschaftsdidaktik (LBP), schriftlich, eventuell mündlich, Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 20350 Didaktik beruflicher Bildung

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>101010002</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>9.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>6.0</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>2 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>-</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Reinhold Nickolaus</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>• Martin Kenner</td>
</tr>
<tr>
<td></td>
<td>• Reinhold Nickolaus</td>
</tr>
<tr>
<td></td>
<td>M.Sc. Technikpädagogik, PO 2015, 3. Semester → Auflagenmodule des Masters</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>keine</td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>Allgemeine Modelle des Lehrens und Lernens; Lehr-Lernkonzepte beruflicher Bildung; Ausgewählte Ergebnisse der Lehr-Lernforschung; Methodische Gestaltung von Lehr-Lernprozessen; Kompetenzmodelle und Kompetenzentwicklung.</td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 203501 Vorlesung Didaktik beruflicher Bildung I</td>
</tr>
<tr>
<td></td>
<td>• 203502 Vorlesung Didaktik beruflicher Bildung II</td>
</tr>
<tr>
<td></td>
<td>• 203503 Übung Didaktik beruflicher Bildung II</td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>In den Vorlesungen und der Übung sind jeweils ca. 21h. Präsenzzeit und 68h Vor- und Nachbereitungszeit vorgesehen (Gesamtzeit = 270h).</td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>• V Vorleistung (USL-V), schriftlich, eventuell mündlich</td>
</tr>
<tr>
<td></td>
<td>• 20354 Didaktik beruflicher Bildung (PL), schriftlich, eventuell mündlich, 120 Min., Gewichtung: 1.0</td>
</tr>
</tbody>
</table>
18. Grundlage für ...

19. Medienform: Vorträge, Präsentationen, Diskussionen

20. Angeboten von:
Modul: 51170 Einführung in die Berufspädagogik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>101010001</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>9.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>6.0</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Reinhold Nickolaus</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Martin Fromm
• Reinhold Nickolaus
• Annika Boltze |

10. Zuordnung zum Curriculum in diesem Studiengang:

- B.Sc. Technikpädagogik, PO 2011, 1. Semester
 → Erziehungswissenschaft mit dem Schwerpunkt Berufspädagogik
- B.Sc. Technikpädagogik, PO 2011, 1. Semester
 → Vorgezogene Master-Module
- M.Sc. Technikpädagogik, PO 2009, 1. Semester
 → Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang --> Erziehungswissenschaft mit dem Schwerpunkt Berufspädagogik
 →
- M.Sc. Technikpädagogik, PO 2015, 1. Semester
 → Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang --> Erziehungswissenschaft mit dem Schwerpunkt Berufspädagogik

11. Empfohlene Voraussetzungen: Keine

12. Lernziele:

Kenntnis wesentlicher Grundlagen der Berufs- und Wirtschaftspädagogik, insbesondere wissenschaftstheoretische Kenntnisse. Fähigkeit die Relevanz wissenschaftstheoretischer Erkenntnisse für das praktische Handeln aufzuzeigen, forschungsmethodische Grundkenntnisse; Fähigkeit Techniken wissenschaftlichen Arbeitens situationsadäquat zu nutzen; Grundlegende Kenntnisse zu Lerntheorien und Fähigkeit deren Relevanz für praktische Verhandlungssituationen abzuschätzen.

13. Inhalt:

- Grundrichtung der Erziehungswissenschaft
- Grundlagen Geisteswissenschaftlicher und empirischer Forschungsmethoden
- Grundbegriffe der Berufs- und Wirtschaftspädagogik
- Lehrende und Lernende in der beruflichen Bildung (Anforderungen an Lehrende, Merkmale der Lernenden)
- Gegenstandsfaelder der Berufs- und Wirtschaftspädagogik
- Grundlagen der Lernpsychologie

14. Literatur:

15. Lehrveranstaltungen und -formen:

- 511701 Vorlesung Einführung in die Berufspädagogik
- 511702 Übung Einführung in die Berufspädagogik
- 511703 Vorlesung zu psychologischen Grundlagen

16. Abschätzung Arbeitsaufwand:

Präsenzzzeit: 3 x 22h = 66h
Vor- und Nachbereitung: 3 x 68h = 204h
Gesamtzeit = 270h

17. Prüfungsnummer/n und -name:

- 51171 Klausur zur Vorlesung Einführung in die Berufspädagogik (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0
- 51172 Protokoll und Hausarbeit in der Übung: Techniken wissenschaftlichen Arbeitens (USL), schriftlich und mündlich, Gewichtung: 1.0
- 51173 Klausur zur Vorlesung: Einführung in die Pädagogische Psychologie (USL), schriftlich und mündlich, Gewichtung: 1.0

18. Grundlage für ...:

19. Medienform:

20. Angeboten von:
Modul: 20360 Organisation beruflicher Bildung

2. Modulkürzel: 101010003 5. Moduldaurer: 1 Semester
4. SWS: 4.0 7. Sprache: -

8. Modulverantwortlicher: Univ.-Prof. Reinhold Nickolaus

9. Dozenten: • Reinhold Nickolaus
• Hanspeter Erne
• Cordula Petsch

10. Zuordnung zum Curriculum in diesem Studiengang:

 • B.Sc. Technikpädagogik, PO 2011, 2. Semester
 ➔ Erziehungswissenschaft mit dem Schwerpunkt Berufspädagogik
 ➔ Erziehungswissenschaft Kernmodule

 • B.Sc. Technikpädagogik, PO 2011, 2. Semester
 ➔ Vorgezogene Master-Module

 • M.Sc. Technikpädagogik, PO 2009, 2. Semester
 ➔ Auflagenmodule des Masters

 • M.Sc. Technikpädagogik, PO 2009, 2. Semester
 ➔ Studienprofil B - ohne erziehungswissenschaftliche Studien
 ➔ im Bachelor-Studiengang
 ➔ Erziehungswissenschaft mit dem Schwerpunkt Berufspädagogik

 • M.Sc. Technikpädagogik, PO 2015, 2. Semester
 ➔ Auflagenmodule des Masters

 • M.Sc. Technikpädagogik, PO 2015, 2. Semester
 ➔ Studienprofil B - ohne erziehungswissenschaftliche Studien
 ➔ im Bachelor-Studiengang
 ➔ Erziehungswissenschaft mit dem Schwerpunkt Berufspädagogik

11. Empfohlene Voraussetzungen: keine

12. Lernziele:

 Die Studierenden erwerben Grundkenntnisse zur Organisation beruflicher Bildung und sind in der Lage Bezüge zwischen dem Bildungssystem und anderen gesellschaftlichen Subsystemen zu analysieren und Entwicklungsprozesse auf der Makro- und Mesoebene im Rekurs auf reflektierte normative Bezugsgrößen zu beurteilen. Sie besitzen die Fähigkeit theoretengereifter und selbstständig betriebliche Aus- und Weiterbildung zu erkunden und zu analysieren

13. Inhalt:

 Gesellschafts- und organisationstheoretische Grundlagen, Struktur des Berufsbildungssystems und dessen Entwicklung, komparative Aspekte beruflicher Bildung;
 Modellversuche und Projekte in der betrieblichen Bildung für Lernschwache und leistungsstarke Auszubildende, neue Lernformen und Methoden, Kompetenzerweiterungen bei An- und Ungelernten, Bildungspartnerschaften zwischen Wirtschaft und Schulen, betriebliche Bildungswege und Angebote für Mädchen und Frauen in naturwissenschaftlichen und technischen Berufen

14. Literatur:

 Berufsbildungsberichte

15. Lehrveranstaltungen und -formen:
- 203601 Vorlesung Organisation beruflicher Bildung
- 203602 Seminar oder Übung zur Organisation beruflicher Bildung

16. Abschätzung Arbeitsaufwand:
Präsenzzeit ca. 22h / Veranstaltung = 44h, Vor- und Nachbereitung ca. 86h / Veranstaltung = 136h

17. Prüfungsnummer/n und -name:
- 20361 Organisation beruflicher Bildung (Klausur zur Vorlesung) (PL), schriftlich, eventuell mündlich, 60 Min., Gewichtung: 1.0
- 20362 Übung oder Seminar - Organisation beruflicher Bildung (USL), schriftlich, eventuell mündlich, Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:
Texte, Vorträge, OHP, Skripte

20. Angeboten von:
133 Berufspädagogik (Zulassung zum Schuldienst)

Zugeordnete Module:

<table>
<thead>
<tr>
<th>Code</th>
<th>Titel</th>
</tr>
</thead>
<tbody>
<tr>
<td>134</td>
<td>Schulpraktikum</td>
</tr>
<tr>
<td>16570</td>
<td>Forschungsmethoden</td>
</tr>
<tr>
<td>17150</td>
<td>Bedingungen und Strukturen beruflichen Lernens</td>
</tr>
<tr>
<td>23570</td>
<td>Didaktik beruflicher Bildung II</td>
</tr>
</tbody>
</table>
134 Schulpraktikum

<table>
<thead>
<tr>
<th>Zugeordnete Module</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>20370 20380 23580</td>
<td>Schulpraktikum I, Teil 1 (Universität) Schulpraktikum I, Teil 2 (Seminar) Schulpraktikum II</td>
</tr>
</tbody>
</table>
Modul: 20370 Schulpraktikum I, Teil 1 (Universität)

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>101010004</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Bernd Zinn</td>
</tr>
</tbody>
</table>
B.Sc. Technikpädagogik, PO 2011, 1. Semester → Vorgezogene Master-Module
M.Sc. Technikpädagogik, PO 2009, 2. Semester
M.Sc. Technikpädagogik, PO 2015, 2. Semester |
| 11. Empfohlene Voraussetzungen: | keine |
| 12. Lernziele: | • Reflexion eigener Berufsentscheidung und -eignung
• grundlegende Kenntnisse über die Anforderungen an die Lehrkräfte und deren Aufgaben im beruflichen Schulwesen
• grundlegende Fähigkeiten zur Analyse und Planung von Lehr-Lernprozessen, Anwendung wissenschaftlichen Wissens |
| 13. Inhalt: | *(entspricht Modul 1 des Staatlichen Seminars)*
• Überblick über die Schularten im beruflichen Schulwesen
• Rolle und Funktion des Lehrers an beruflichen Schulen
• Aspekte der Unterrichtsbeobachtung
• einfaches Unterrichtsplanungsmodell
• Konsolidierung des Gelernten
• Medieneinsatz
• Tipps für die Unterrichtsvorbereitung |
| 14. Literatur: | • Foliensatz
• weitere ausgewählte Texte |
| 15. Lehrveranstaltungen und -formen: | 203701 Seminar Didaktische Übung zum Schulpraktikum I |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit ca. 22h, Praktikumszeit an der Schule ca. 68h incl. Vor- und Nachbereitung (Gesamtzeit = 90h) |
| 17. Prüfungsnummer/n und -name: | 20371 Schulpraktikum I, Teil 1 (Universität) (PL), schriftlich, eventuell mündlich, Gewichtung: 1.0, Präsentationen, Bericht zum Praktikum |
| 18. Grundlage für ... : | 20380 Schulpraktikum I, Teil 2 (Seminar) |
| 19. Medienform: | Beamer, Tafel, Overhead, Handout, persönliche Interaktion |
| 20. Angeboten von: | |
Modul: 20380 Schulpraktikum I, Teil 2 (Seminar)

2. Modulkürzel: 101010005
5. Moduldauer: 1 Semester

3. Leistungspunkte: 6.0 LP
6. Turnus: jedes Semester

4. SWS: 4.0
7. Sprache: -

8. Modulverantwortlicher: Univ.-Prof. Bernd Zinn

10. Zuordnung zum Curriculum in diesem Studiengang:
- B.Sc. Technikpädagogik, PO 2011, 1. Semester
 ➔ Erziehungswissenschaft mit dem Schwerpunkt Berufspädagogik
- B.Sc. Technikpädagogik, PO 2011, 1. Semester
 ➔ Vorgezogene Master-Module
- M.Sc. Technikpädagogik, PO 2009, 1. Semester
- M.Sc. Technikpädagogik, PO 2015, 1. Semester

11. Empfohlene Voraussetzungen: Schulpraktikum I, Teil 1 (Universität)

12. Lernziele:
Fähigkeit, weniger komplexe erziehungsrelevante Fragestellungen in Bezug zum praktischen Feld zu reflektieren; Grundlegendes Wissen zu Einflussgrößen und Zusammenhänge von Unterrichtsmerkmalen; Erworb grundlegender Kompetenzen zur Planung von Unterricht

13. Inhalt: *(entspricht Modul 2 des Staatlichen Seminars)*
Einflussgrößen auf Unterricht, ausgewählte didaktische Modelle, ausgewählte Unterrichtsplanungsmodelle, Erziehungs- und Bildungsziele, Unterrichtsprinzipien

14. Literatur:
Foliensatz
weitere ausgewählte Texte

15. Lehrveranstaltungen und -formen:
- 203801 Seminar Nachbereitende Übungen zum Schulpraktikum I
- 203802 Blockveranstaltung Praktikum an der Schule

16. Abschätzung Arbeitsaufwand:
Präsenzstunden 22h, Praktikum an der Schule 132h, Nachbereitung 26h

17. Prüfungsnummer/n und -name:
20381 Schulpraktikum I, Teil 2 (Seminar) (PL), schriftlich, eventuell mündlich, Gewichtung: 1.0, wird im Seminar bekanntgegeben

18. Grundlage für ... :
23580 Schulpraktikum II

19. Medienform:
Beamer, Tafel, Overhead, Handout, persönliche Interaktion

20. Angeboten von:
Modul: 23580 Schulpraktikum II

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>101010012</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>0.0</td>
<td>7. Sprache:</td>
<td>-</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Bernd Zinn

9. Dozenten: Bernhard Felix Stolzenburg

 M.Sc. Technikpädagogik, PO 2009, 2. Semester
 M.Sc. Technikpädagogik, PO 2015, 2. Semester

11. Empfohlene Voraussetzungen: Schulpraktikum I, Grundkenntnisse zur Didaktik beruflicher Bildung

12. Lernziele: Organisatorische Abwicklung des Schulpraktikums kennen, Gesichtspunkte bei der Planung von Unterricht kennen, Rahmendinhalte für Unterricht kennen und einschätzen, Vorgaben aus Rahmenstoffplänen kennen, Fähigkeit, Lernziele zu formulieren und zu begründen, Unterrichtsmethoden kennen und praktisch anwenden, Unterrichtsmedien kennen, herstellen und sinnvoll einsetzen, Verlaufspläne für Unterricht erstellen und präsentieren, Gesichtspunkte zu Verhaltensweisen beim Halten von Unterricht kennen und beachten, Qualitäts- und Beurteilungskriterien für Unterricht kennen und Fähigkeit, diese einzulösen

13. Inhalt: (entspricht Modul 3 des Staatlichen Seminars)

didaktisch-methodische Planung von Berufsschulunterricht, Leitlinien für Informations- und Materialbeschaffung sowie für die Planung einer Unterrichtseinheit, aktuelle Bildungspläne, Unterrichtseinheiten zu ausgewählten Themen, Unterrichtsvorbereitung, Stoffpläne sowie relevante Schulbücher, Beurteilung von Unterricht, Lehrermedien für Unterricht, Kommunikation I (Grundlagen), Kommunikation II (Kommunikationsskripten), Aspekte des Lernens

14. Literatur:

15. Lehrveranstaltungen und -formen: 235801 Schulpraktikum II

16. Abschätzung Arbeitsaufwand: 21h Präsenzzeit, 180h Praktikum, 69h Vor- und Nachbereitung

17. Prüfungsnummer/n und -name: 23581 Schulpraktikum II (USL), schriftlich, eventuell mündlich, Gewichtung: 1.0, Präsentation einer in Gruppenarbeit erstellten Unterrichtsplanung, Hospitationen und Erstellung von mindestens 5 Hospitationsprotokollen, Vorbereiten und Halten von 6 Unterrichtsständen im Rahmen eines 4-wöchigen Vollzeitpraktikums an einer gewerblichen Schule, Erstellen eines Berichtes über das Schulpraktikum

18. Grundlage für ...:
19. Medienform:

20. Angeboten von:
Modul: 17150 Bedingungen und Strukturen beruflichen Lernens

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>101010006</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>2 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Reinhold Nickolaus</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Martin Kenner
• Reinhold Nickolaus |

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>B.Sc. Technikpädagogik</th>
<th>Vorgezogene Master-Module</th>
</tr>
</thead>
</table>
| M.Sc. Technikpädagogik, PO 2009, 1. Semester | Studienprofil A - konsekutiver Studiengang --
> Erziehungswissenschaft mit dem Schwerpunkt Berufspädagogik --
> Pflichtmodule Erziehungswissenschaft |
| M.Sc. Technikpädagogik, PO 2009, 1. Semester | Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang -->Berufspädagogik (Zulassung zum Schuldienst) |
| M.Sc. Technikpädagogik, PO 2009, 1. Semester | Studienprofil C - betriebliche Bildungsarbeit -->Vertiefungsbereich 1 |
| M.Sc. Technikpädagogik, PO 2015, 1. Semester | Studienprofil A - konsekutiver Studiengang --
> Erziehungswissenschaft mit dem Schwerpunkt Berufspädagogik --
> Pflichtmodule Erziehungswissenschaft |
| M.Sc. Technikpädagogik, PO 2015, 1. Semester | Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang -->Berufspädagogik (Zulassung zum Schuldienst) |

11. Empfohlene Voraussetzungen: | Grundkenntnisse zur Organisation beruflicher Bildung |

13. Inhalt: | Historische Entwicklung des beruflichen Bildungssystems und relevante Entwicklungshypothesen; Aktuelle Entwicklungsprozesse, Innovationsansätze, Transferproblematik pädagogischer Handlungsprogramme, Theorien beruflicher Sozialisation; Ergebnisse zentraler empirischer Studien zur beruflichen Sozialisation und deren praktische Implikationen |

Persönlichkeitsentwicklung in der betrieblichen Ausbildung und Arbeit.
Baltmannsweiler
Quellenbände und Dokumente zur Geschichte der Berufsbildung in Deutschland
Nickolaus, R./Gräsel, C (Hg.) (2006): Innovation und Transfer. Baltmannsweiler

15. Lehrveranstaltungen und -formen:
• 171501 Vorlesung Geschichte beruflicher Bildung
• 171502 Seminar Berufliche Arbeit, Sozialisation und betriebliche Bildung

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 2 x 21h = 42h
Selbststudium: 2 x 69h = 138h
Gesamtzeit = 180h

17. Prüfungsnummer/n und -name:
• 17151 Geschichte beruflicher Bildung (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0, Vorleistung: Referat im Seminar
• 17152 Berufliche Arbeit, Sozialisation und betriebliche Bildung (USL), schriftlich oder mündlich, Gewichtung: 1.0, Vorleistung: Referat im Seminar

18. Grundlage für ...

19. Medienform: Texte, Präsentationen, Vortrag

20. Angeboten von: Institut für Erziehungswissenschaft
Modul: 23570 Didaktik beruflicher Bildung II

2. Modulkürzel: 101010007
5. Moduldauer: 2 Semester

3. Leistungspunkte: 9.0 LP
6. Turnus: jedes Semester

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Reinhold Nickolaus

9. Dozenten:
 • Reinhold Nickolaus
 • Bernd Zinn
 • Stephan Abele
 • Daniel Schweyer
 • Anke Treutlein

10. Zuordnung zum Curriculum in diesem Studiengang:

 B.Sc. Technikpädagogik
 ➔ Vorgezogene Master-Module

 M.Sc. Technikpädagogik, PO 2009, 3. Semester
 ➔ Studienprofil A - konsekutiver Studiengang
 ➔ Erziehungswissenschaft mit dem Schwerpunkt Berufspädagogik
 ➔ Pflichtmodule Erziehungswissenschaft

 M.Sc. Technikpädagogik, PO 2009, 3. Semester
 ➔ Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang
 ➔ Berufspädagogik (Zulassung zum Schuldienst)

 M.Sc. Technikpädagogik, PO 2009, 3. Semester
 ➔ Studienprofil C - betriebliche Bildungsarbeit
 ➔ Vertiefungsbereich 1

 M.Sc. Technikpädagogik, PO 2015, 3. Semester
 ➔ Studienprofil A - konsekutiver Studiengang
 ➔ Erziehungswissenschaft mit dem Schwerpunkt Berufspädagogik
 ➔ Pflichtmodule Erziehungswissenschaft

 M.Sc. Technikpädagogik, PO 2015, 3. Semester
 ➔ Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang
 ➔ Berufspädagogik (Zulassung zum Schuldienst)

11. Empfohlene Voraussetzungen:
 Grundlegende Kompetenzen in Didaktik beruflicher Bildung, wie sie im Bachelor-Studiengang Technikpädagogik erworben werden

12. Lernziele:
 Die Studierenden erwerben vertiefte Kenntnisse im Bereich der Diagnostik und Evaluation beruflicher Lehr-Lernprozesse und können selbst kleinere Evaluationsstudien durchführen. In zwei ausgewählten Themenfeldern der Didaktik planen und analysieren sie im Rückgriff auf wissenschaftliche Erkenntnisse Lehr-Lernprozesse und erwerben dabei die Fähigkeit, die Kriterienauswahl zu begründen und kriterienorientiert komplexe didaktische Handlungssituationen zu bewältigen.

13. Inhalt:

14. Literatur:
 Heft 1 der ZBW 2008
15. Lehrveranstaltungen und -formen:

- 235701 Seminar Diagnostik und Evaluation beruflicher Lernprozesse und Lernergebnisse
- 235702 Hauptseminar zur Didaktik beruflicher Bildung

16. Abschätzung Arbeitsaufwand:

Präsenzzeit der Seminare: 2 x 21h,
Vor- und Nachbereitungszeit des Seminars „Diagnostik und Evaluation“: 69h
Vor- und Nachbereitungszeit des Hauptseminars: 159h
Gesamtzeit = 270h

17. Prüfungsnummer/n und -name:

- 23571 Diagnostik und Evaluation beruflicher Lernprozesse und Lernergebnisse (LBP), schriftliche Prüfung, Gewichtung: 1.0, Evaluation und Diagnostik: schriftliche Hausarbeit, ca. 20 Seiten
- 23573 Didaktik beruflicher Bildung II - Hausarbeit (LBP), schriftliche Prüfung, Gewichtung: 1.0, Hauptseminar Didaktik: schriftliche Hausarbeit, ca. 30 Seiten

18. Grundlage für ...

19. Medienform:

Texte, Präsentationen, Diskussionen

20. Angeboten von:
Modul: 16570 Forschungsmethoden

2. Modulkürzel: 101010005

3. Leistungspunkte: 6.0 LP

4. SWS: 0.0

5. Modulduauer: 1 Semester

7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Reinhold Nickolaus

9. Dozenten: • Martin Kenner
 • Florina Stefanica
 • Matthias Wyrwal

10. Zuordnung zum Curriculum in diesem Studiengang:

M.Sc. Technikpädagogik, PO 2009, 1. Semester
 → Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang --> Berufspädagogik (Zulassung zum Schuldienst)

M.Sc. Technikpädagogik, PO 2009, 1. Semester
 → Studienprofil C - betriebliche Bildungsarbeit --> Spezialisierungsbereich

M.Sc. Technikpädagogik, PO 2015, 1. Semester
 → Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang --> Berufspädagogik (Zulassung zum Schuldienst)

M.Sc. Technikpädagogik, PO 2015, 1. Semester
 → Studienprofil C - betriebliche Bildungsarbeit --> Spezialisierungsbereich

11. Empfohlene Voraussetzungen: keine

12. Lernziele:
 Kenntnisse über empirische Forschungsmethoden in der Erziehungswissenschaft
 Statistische Grundkenntnisse
 Fähigkeit, die erworbenen Kenntnisse an Übungsprojekten eigenständig anzuwenden
 Fähigkeit, Befunde aus veröffentlichten Untersuchungen und deren Entstehungskontext einzuordnen und zu bewerten (z.B. PISA-Studie)
 Positive Haltung zur empirischen Forschungsmethodik entwickeln
 (emotionales Lernziel)

13. Inhalt:
 Methodologie Quantitativer und Qualitativer Forschungsparadigmen
 Phasen des Forschungsprozesses (Theoretische Aufarbeitung, Forschungsdesigns, Operationalisierung, Datensammlung, Auswertung)
 Grundkurs Deskriptive- und Interferenz-Statistik

14. Literatur:
 Kenner, Martin: Einführung in die Statistik (Studienskript)

15. Lehrveranstaltungen und -formen: 165701 Vorlesung Forschungsmethoden

16. Abschätzung Arbeitsaufwand: Vorlesung (incl. Statistikklausur): Präsenzzeit 22 h, Vor- und Nachbereitungszeit 68 h
 Projektseminar: Präsenzzeit 22 h, Vor- und Nachbereitungszeit 68 h
 Gesamtzeit: 180 h

17. Prüfungsnummer/n und -name:
 • 16571 Forschungsmethoden I (PL), schriftlich, eventuell mündlich, 90 Min., Gewichtung: 1.0, Klausur in Statistik: 0.3 Gruppenarbeit / Projektpräsentation: 0.3 Projektdokumentation: 0.4
 • 16572 Forschungsmethoden II (LBP), schriftlich, eventuell mündlich, Gewichtung: 1.0, Klausur in Statistik: 0.3 Gruppenarbeit / Projektpräsentation: 0.3 Projektdokumentation: 0.4

18. Grundlage für ...

19. Medienform: OHP, PP, Tafel, Skripte

20. Angeboten von:
500 Wahlpflichtfach B

<table>
<thead>
<tr>
<th>Zugeordnete Module</th>
<th>Wahlpflichtfach</th>
</tr>
</thead>
<tbody>
<tr>
<td>5010</td>
<td>Mathematik</td>
</tr>
<tr>
<td>5020</td>
<td>Physik</td>
</tr>
<tr>
<td>5030</td>
<td>Chemie</td>
</tr>
<tr>
<td>5040</td>
<td>Deutsch</td>
</tr>
<tr>
<td>5050</td>
<td>Englisch</td>
</tr>
<tr>
<td>5060</td>
<td>Ethik</td>
</tr>
<tr>
<td>5070</td>
<td>Politikwissenschaft</td>
</tr>
<tr>
<td>5080</td>
<td>Sport</td>
</tr>
<tr>
<td>5090</td>
<td>Evangelische Theologie</td>
</tr>
<tr>
<td>5110</td>
<td>Katholische Theologie (TP)</td>
</tr>
<tr>
<td>5120</td>
<td>Wirtschaftswissenschaft</td>
</tr>
<tr>
<td>5130</td>
<td>Informatik</td>
</tr>
<tr>
<td>5200</td>
<td>Bautechnik</td>
</tr>
<tr>
<td>5300</td>
<td>Elektrotechnik</td>
</tr>
<tr>
<td>5400</td>
<td>Maschinenbau</td>
</tr>
</tbody>
</table>
5010 Wahlpflichtfach Mathematik

Zugeordnete Module:
- 5011 Grundlagen Mathematik
- 5012 Erweiterte Themenbereiche zur Mathematik
5011 Grundlagen Mathematik

Zugeordnete Module:

- 11760 Analysis 1
- 11770 Analysis 2
- 11780 Lineare Algebra und Analytische Geometrie 1
- 11790 Lineare Algebra und Analytische Geometrie 2
- 11930 Präsentation und Vermittlung von Mathematik
Modul: 11760 Analysis 1

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>080200001</th>
<th>5. Modulduauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>7.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. **Modulverantwortlicher:** Univ.-Prof. Jürgen Pöschel

9. **Dozenten:**
- Marcel Griesemer
- Peter Lesky
- Jürgen Pöschel
- Guido Schneider
- Timo Weidl

10. **Zuordnung zum Curriculum in diesem Studiengang:**
- B.Sc. Technikpädagogik, PO 2011, 1. Semester
 → Vorgezogene Master-Module
- B.Sc. Technikpädagogik, PO 2011, 1. Semester
 → Wahlpflichtfach ---> Wahlpflichtfach Mathematik
- M.Sc. Technikpädagogik, PO 2009, 1. Semester
 → Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang
 --> Wahlpflichtfach B --> Wahlpflichtfach Mathematik
- M.Sc. Technikpädagogik, PO 2009, 1. Semester
 → Wahlpflichtfach B --> Wahlpflichtfach Mathematik --> Grundlagen Mathematik
- M.Sc. Technikpädagogik, PO 2015, 1. Semester
 → Wahlpflichtfach B --> Wahlpflichtfach Mathematik --> Grundlagen Mathematik

11. **Empfohlene Voraussetzungen:** keine

12. **Lernziele:**
- Korrektes Formulieren und selbständiges Lösen von mathematischen Problemen aus der Analysis.
- Abstraktion und mathematische Argumentation.

14. **Literatur:** Wird in der Vorlesung bekannt gegeben.

15. **Lehrveranstaltungen und -formen:**
- 117601 Vorlesung Analysis 1
- 117602 Vortragsübungen und Übungen zur Vorlesung Analysis 1

16. **Abschätzung Arbeitsaufwand:** **Insgesamt 270 h**, die sich wie folgt verteilen:
- Präsenztunden: 75 h
- Selbststudium: 195 h

17. **Prüfungsnummer/n und -name:**
- 11761 Analysis 1 (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0.
- V Vorleistung (USL-V), schriftlich, eventuell mündlich.
18. Grundlage für ...: 11770 Analysis 2

19. Medienform:

20. Angeboten von:
Modul: 11770 Analysis 2

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>080200002</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Modulduer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>9.0 LP</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>6.0</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

| 8. Modulverantwortlicher: | Univ.-Prof. Jürgen Pöschel |

<table>
<thead>
<tr>
<th>9. Dozenten:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Jürgen Pöschel</td>
</tr>
<tr>
<td>• Peter Lesky</td>
</tr>
<tr>
<td>• Timo Weidl</td>
</tr>
<tr>
<td>• Marcel Griesemer</td>
</tr>
<tr>
<td>• Guido Schneider</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10. Zuordnung zum Curriculum in diesem Studiengang:</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.Sc. Technikpädagogik, PO 2011, 2. Semester</td>
</tr>
<tr>
<td>➔ Vorzeigene Master-Module</td>
</tr>
<tr>
<td>B.Sc. Technikpädagogik, PO 2011, 2. Semester</td>
</tr>
<tr>
<td>➔ Wahlpflichtfach --> Wahlpflichtfach Mathematik</td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik, PO 2009, 2. Semester</td>
</tr>
<tr>
<td>➔ Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang --> Wahlpflichtfach B --> Wahlpflichtfach Mathematik</td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik, PO 2009, 2. Semester</td>
</tr>
<tr>
<td>➔ Wahlpflichtfach B --> Wahlpflichtfach Mathematik --> Grundlagen Mathematik</td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik, PO 2015, 2. Semester</td>
</tr>
<tr>
<td>➔ Wahlpflichtfach B --> Wahlpflichtfach Mathematik --> Grundlagen Mathematik</td>
</tr>
</tbody>
</table>

| 11. Empfohlene Voraussetzungen: | Analysis 1, Lineare Algebra 1 |

<table>
<thead>
<tr>
<th>12. Lernziele:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Sichere Kenntnisse und kritischer sowie kreativer Umgang mit den theoretischen Grundlagen und den Methoden der Differential- und Integralgleichung in einer und mehreren Variablen.</td>
</tr>
<tr>
<td>• Korrektes Formulieren und selbständiges Lösen von mathematischen Problemen aus der Analysis.</td>
</tr>
<tr>
<td>• Verständnis für die Anwendung der Analysis in Modellen der Ingenieur- und Naturwissenschaften.</td>
</tr>
<tr>
<td>• Selbständiges Erarbeiten von mathematischen Sachverhalten.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13. Inhalt:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>14. Literatur:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wird in der Vorlesung bekannt gegeben.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15. Lehrveranstaltungen und -formen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 117701 Vorlesung Analysis 2</td>
</tr>
<tr>
<td>• 117702 Vortragsübungen und Übungen zur Vorlesung Analysis 2</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16. Abschätzung Arbeitsaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Insgesamt 270 h, die sich wie folgt ergeben:</td>
</tr>
<tr>
<td>Präsenzstunden: 60 h</td>
</tr>
<tr>
<td>Selbststudium: 210 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 11771 Analysis 2 (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0</td>
</tr>
</tbody>
</table>
18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 11780 Lineare Algebra und Analytische Geometrie 1

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>080100001</th>
<th>5. Modulduer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>7.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Steffen König</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10. Zuordnung zum Curriculum in diesem Studiengang:</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.Sc. Technikpädagogik, PO 2011, 1. Semester</td>
</tr>
<tr>
<td>Vorgezogene Master-Module</td>
</tr>
<tr>
<td>B.Sc. Technikpädagogik, PO 2011, 1. Semester</td>
</tr>
</tbody>
</table>
| Wahlpflichtfach --
Wahlpflichtfach Mathematik |
| M.Sc. Technikpädagogik, PO 2009, 1. Semester |
| Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang --
Wahlpflichtfach B --
Wahlpflichtfach Mathematik |
| M.Sc. Technikpädagogik, PO 2015, 1. Semester |
| Wahlpflichtfach B --
Wahlpflichtfach Mathematik --
Grundlagen Mathematik |

| 11. Empfohlene Voraussetzungen: | keine |

<table>
<thead>
<tr>
<th>12. Lernziele:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Selbständiges Lösen mathematischer Probleme</td>
</tr>
<tr>
<td>• Fähigkeit zur Abstraktion und mathematischen Argumentation; präzises Formulieren und Aufschreiben</td>
</tr>
<tr>
<td>• Sicherer Umgang mit Vektorraumstrukturen, linearen Abbildungen, Matrizen und linearen Gleichungssystemen, sowie selbständiges Lösen mathematischer Probleme dieses Themenkreises</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13. Inhalt:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Aussagenlogik, Beweismethoden, Mengen, Relationen und Abbildungen</td>
</tr>
<tr>
<td>• Matrizenrechnung, lineare Gleichungssysteme, Gauss Algorithmus</td>
</tr>
<tr>
<td>• algebraische Grundstrukturen, Vektorräume, lineare Unabhängigkeit, Erzeugendensysteme, Basen, lineare Abbildungen, Dimensionsformeln</td>
</tr>
<tr>
<td>• Geometrische Beispiele in Ebene und Raum</td>
</tr>
<tr>
<td>• Determinante, Eigenwerte, Eigenvektoren</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15. Lehrveranstaltungen und -formen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 117801 Vorlesung Lineare Algebra und Analytische Geometrie 1 (LAAG 1)</td>
</tr>
<tr>
<td>• 117802 Übungen zur Vorlesung (LAAG 1)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16. Abschätzung Arbeitsaufwand:</th>
<th>Insgesamt 270 h, die sich wie folgt ergeben:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzstunden:</td>
<td>73,5 h</td>
</tr>
<tr>
<td>Selbststudiumszeit:</td>
<td>196,5 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 11781 Lineare Algebra und Analytische Geometrie 1 (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0, Vorleistung: Übungsschein und Scheinklausur</td>
</tr>
</tbody>
</table>
• **V** Vorleistung (USL-V), schriftlich, eventuell mündlich

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>18.</td>
<td>Grundlage für ... :</td>
</tr>
<tr>
<td>19.</td>
<td>Medienform:</td>
</tr>
<tr>
<td>20.</td>
<td>Angeboten von: Mathematik und Physik</td>
</tr>
</tbody>
</table>
Modul: 11790 Lineare Algebra und Analytische Geometrie 2

2. Modulkürzel: 080100002
5. Moduldauer: 1 Semester
3. Leistungspunkte: 9.0 LP
6. Turnus: jedes 2. Semester, SoSe
4. SWS: 7.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Steffen König

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technikpädagogik, PO 2011, 2. Semester
→ Vorgezogene Master-Module
B.Sc. Technikpädagogik, PO 2011, 2. Semester
→ Wahlpflichtfach → Wahlpflichtfach Mathematik
→
M.Sc. Technikpädagogik, PO 2009, 2. Semester
→ Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang → Wahlpflichtfach B → Wahlpflichtfach Mathematik
→
M.Sc. Technikpädagogik, PO 2009, 2. Semester
→ Wahlpflichtfach B → Wahlpflichtfach Mathematik → Grundlagen Mathematik
→
M.Sc. Technikpädagogik, PO 2015, 2. Semester
→ Wahlpflichtfach B → Wahlpflichtfach Mathematik → Grundlagen Mathematik
→

11. Empfohlene Voraussetzungen: LAAG 1

12. Lernziele:
• Selbständiges Lösen mathematischer Probleme
• Fähigkeit zur Abstraktion und mathematischen Argumentation; präzises Formulieren und Aufschreiben
• Sicherer Umgang mit elementaren und vertieften Konzepten und Methoden der linearen Algebra und analytischen Geometrie

13. Inhalt:
• Determinante, Eigenwerte und Eigenvektoren
• Normalformen von Endomorphismen, Hauptraumzerlegung
• Dualräume
• Skalarprodukte, Gram-Schmidt Orthogonalisierung, euklidische/unitäre Räume

14. Literatur:
Wird in der Vorlesung bekannt gegeben.

15. Lehrveranstaltungen und -formen:
• 117901 Vorlesung Lineare Algebra und Analytische Geometrie 2 (LAAG 2)
• 117902 Übungen zur Vorlesung LAAG 2

16. Abschätzung Arbeitsaufwand: Insgesamt 270 h, die sich wie folgt ergeben:
Präsenzstunden: 73,5 h
Selbststudium: 196,5 h

17. Prüfungsnummer/n und -name:
• 11791 Lineare Algebra und Analytische Geometrie 2 (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0
• V Vorleistung (USL-V), schriftlich, eventuell mündlich, Übungsschein und Scheinklausur

18. Grundlage für ... :
19. Medienform:

<table>
<thead>
<tr>
<th>20. Angeboten von:</th>
<th>Mathematik und Physik</th>
</tr>
</thead>
</table>

Modul: 11930 Präsentation und Vermittlung von Mathematik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>080600011</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>0.0</td>
</tr>
<tr>
<td>5. Modulduer:</td>
<td>2 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Jürgen Dippon</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Dozenten der Mathematik</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Technikpädagogik, PO 2011, 4. Semester → Wahlpflichtfach → Wahlpflichtfach Mathematik</td>
</tr>
<tr>
<td></td>
<td>M.Sc. Technikpädagogik, PO 2009, 4. Semester → Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang → Wahlpflichtfach B → Wahlpflichtfach Mathematik</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Orientierungsprüfung</td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>• Beherrsehen elementarer Präsentationsfähigkeiten und mathematischer Softwaretools.</td>
</tr>
<tr>
<td></td>
<td>• Kompetente Vermittlung mathematischer Sachverhalte an unterschiedlichen Adressatengruppen.</td>
</tr>
<tr>
<td></td>
<td>• Kritische Einschätzung der eigenen Mathematikkenntnisse.</td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>Strukturierung mathematischer Vorträge:</td>
</tr>
<tr>
<td></td>
<td>Motivation - Theorem - Beweis - Interpretation.</td>
</tr>
<tr>
<td></td>
<td>Präsentationstechnik:</td>
</tr>
<tr>
<td></td>
<td>Einsatz von Multimediakomponenten, Software (Powerpoint, LaTeX, ..)</td>
</tr>
<tr>
<td></td>
<td>Individuelle Nachbereitung eigener mathematischer Vorträge anhand von z.B. Mitschriften, Videoanalyse, Beurteilung durch Mitstudierende, etc.</td>
</tr>
<tr>
<td></td>
<td>Aktive Mitwirkung in den Bereichen:</td>
</tr>
<tr>
<td></td>
<td>Information von Studienanfängern/-interessenten, Schülerzirkel.</td>
</tr>
<tr>
<td></td>
<td>Vermittlung von mathematischen Sachverhalten an Nichtmathematiker</td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>119301 Zentrale Veranstaltung zur Einführung in die Präsentationstechniken, Orientierungsgespräch/-beratung und Gruppenarbeit</td>
</tr>
<tr>
<td>Nr.</td>
<td>Inhalt</td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
</tr>
<tr>
<td>16.</td>
<td>Abschätzung Arbeitsaufwand:</td>
</tr>
<tr>
<td></td>
<td>Präsenzzeit: 20h</td>
</tr>
<tr>
<td></td>
<td>Selbststudium/Nacharbeitszeit: 70h</td>
</tr>
<tr>
<td></td>
<td>Gesamt: 90h</td>
</tr>
<tr>
<td>17.</td>
<td>Prüfungsnummer/n und -name:</td>
</tr>
<tr>
<td></td>
<td>11931 Präsentation und Vermittlung von Mathematik (USL), schriftlich, eventuell mündlich, Gewichtung: 1.0, Kriterien werden zu Beginn der Veranstaltung bekannt gegeben</td>
</tr>
<tr>
<td>18.</td>
<td>Grundlage für ... :</td>
</tr>
<tr>
<td></td>
<td>11880 Mathematisches Seminar</td>
</tr>
<tr>
<td>19.</td>
<td>Medienform:</td>
</tr>
<tr>
<td>20.</td>
<td>Angeboten von:</td>
</tr>
</tbody>
</table>
5012 Erweiterte Themenbereiche zur Mathematik

Zugeordnete Module:

- 10070 Analysis 3
- 11810 Topologie
- 11820 Numerische Mathematik 1
- 11830 Wahrscheinlichkeitstheorie
- 11840 Geometrie
Modul: 10070 Analysis 3

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>5. Modulduauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. Modulverantwortlicher:</th>
<th>9. Dozenten:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Univ.-Prof. Jürgen Pöschel</td>
<td>Peter Lesky</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10. Zuordnung zum Curriculum in diesem Studiengang:</th>
</tr>
</thead>
<tbody>
<tr>
<td>M.Sc. Technikpädagogik, PO 2009, 1. Semester</td>
</tr>
<tr>
<td>→ Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang -->Wahlpflichtfach B -->Wahlpflichtfach Mathematik</td>
</tr>
<tr>
<td>→ M.Sc. Technikpädagogik, PO 2009, 1. Semester</td>
</tr>
<tr>
<td>→ Wahlpflichtfach A -->Wahlpflichtfach Mathematik -->Erweiterte Themenbereiche zur Mathematik</td>
</tr>
<tr>
<td>→ M.Sc. Technikpädagogik, PO 2009, 1. Semester</td>
</tr>
<tr>
<td>→ Wahlpflichtfach B -->Wahlpflichtfach Mathematik -->Erweiterte Themenbereiche zur Mathematik</td>
</tr>
<tr>
<td>→ M.Sc. Technikpädagogik, PO 2015, 1. Semester</td>
</tr>
<tr>
<td>→ Wahlpflichtfach A -->Wahlpflichtfach Mathematik -->Erweiterte Themenbereiche zur Mathematik</td>
</tr>
<tr>
<td>→ M.Sc. Technikpädagogik, PO 2015, 1. Semester</td>
</tr>
<tr>
<td>→ Wahlpflichtfach B -->Wahlpflichtfach Mathematik -->Erweiterte Themenbereiche zur Mathematik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11. Empfohlene Voraussetzungen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Zulassungsvoraussetzung: Analysis 1, Analysis2</td>
</tr>
<tr>
<td>Inhaltliche Voraussetzung: LAAG 1 und LAAG2 (Lineare Algebra und Analytische Geometrie)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12. Lernziele:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Kenntnis und Umgang mit Differentialgleichungen und Vektoranalysis. Grundkenntnisse der Maßtheorie.</td>
</tr>
<tr>
<td>• Korrektes Formulieren und selbständiges Lösen von mathematischen Problemen.</td>
</tr>
<tr>
<td>• Abstraktion und mathematische Argumentation.</td>
</tr>
<tr>
<td>• Studierende erkennen die Bedeutung der Analysis als Grundlage der Modellierung in Natur- und Technikwissenschaften.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13. Inhalt:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vektoranalysis: Mannigfaltigkeiten, Differentialformen, Kurven- und Oberflächenintegrale, Integralsätze.</td>
</tr>
</tbody>
</table>
14. Literatur:

- Walter Rudin, Analysis
- G. M. Fichtenholz, Differential- und Integralrechnung, Band 1
- G. M. Fichtenholz, Differential- und Integralrechnung, Band 2
- G. M. Fichtenholz, Differential- und Integralrechnung, Band 3

15. Lehrveranstaltungen und -formen:

- 100701 Vorlesung Analysis 3
- 100702 Übung Analysis 3

16. Abschätzung Arbeitsaufwand:

\textbf{Insgesamt 270 h}, die sich wie folgt ergeben:
- Präsenzstunden: 63 h
- Vor-/Nachbereitungszeit: 187 h
- Prüfungsvorbereitung: 20 h

17. Prüfungsnummer/n und -name:

- 10071 Analysis 3 (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0
- V Vorleistung (USL-V), schriftlich, eventuell mündlich

18. Grundlage für ...:

- 11820 Numerische Mathematik 1
- 11830 Wahrscheinlichkeitstheorie
- 11840 Geometrie
- 11860 Höhere Analysis

19. Medienform:

20. Angeboten von:
Modul: 11840 Geometrie

2. Modulkürzel: 080400002
5. Modulsdauer: 1 Semester

3. Leistungspunkte: 9.0 LP
6. Turnus: jedes 2. Semester, SoSe

4. SWS: 6.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Uwe Semmelmann

9. Dozenten: • Wolfgang Kühnel
• Uwe Semmelmann

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Technikpädagogik, PO 2009, 4. Semester
→ Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang -->Wahlpflichtfach B -->Wahlpflichtfach Mathematik

→ M.Sc. Technikpädagogik, PO 2009, 4. Semester
→ Wahlpflichtfach B -->Wahlpflichtfach Mathematik -->Erweiterte Themenbereiche zur Mathematik

→ M.Sc. Technikpädagogik, PO 2015, 4. Semester
→ Wahlpflichtfach B -->Wahlpflichtfach Mathematik -->Erweiterte Themenbereiche zur Mathematik

11. Empfohlene Voraussetzungen:
Zulassungsvoraussetzung: Orientierungsprüfung
Inhaltliche Voraussetzung: LAAG I&II, Analysis I&II

12. Lernziele:
• Kenntnis der Grundlagen der Geometrie von Kurven und Flächen
• Befähigung zur Spezialisierung in weiterführenden Kursen der Differentialgeometrie.

13. Inhalt:

14. Literatur:
Wird in der Vorlesung bekannt gegeben.

15. Lehrveranstaltungen und -formen:
• 118401 Vorlesung Geometrie
• 118402 Übungen zur Vorlesung Geometrie

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 63h
Selbststudium/Nacharbeitszeit: 207h
Gesamt: 270h

17. Prüfungsnummer/n und -name:
• 11841 Geometrie (PL), schriftlich, eventuell mündlich, 120 Min., Gewichtung: 1.0, Übungsschein
• V Vorleistung (USL-V), schriftlich, eventuell mündlich
<table>
<thead>
<tr>
<th>18. Grundlage für ... :</th>
</tr>
</thead>
<tbody>
<tr>
<td>19. Medienform:</td>
</tr>
<tr>
<td>20. Angeboten von: Institut für Geometrie und Topologie</td>
</tr>
</tbody>
</table>
Modul: 11820 Numerische Mathematik 1

2. Modulkürzel: 080300002
5. Modulduer: 1 Semester

3. Leistungspunkte: 9.0 LP
6. Turnus: unregelmäßig

4. SWS: 6.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Christian Rohde
9. Dozenten: Dozenten der Mathematik

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Technikpädagogik, PO 2009, 1. Semester
 → Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang -->Wahlpflichtfach B -->Wahlpflichtfach Mathematik
 → M.Sc. Technikpädagogik, PO 2009, 1. Semester
 → Wahlpflichtfach A -->Wahlpflichtfach Mathematik -->Erweiterte Themenbereiche zur Mathematik
 → M.Sc. Technikpädagogik, PO 2009, 1. Semester
 → Wahlpflichtfach B -->Wahlpflichtfach Mathematik -->Erweiterte Themenbereiche zur Mathematik
 → M.Sc. Technikpädagogik, PO 2015, 1. Semester
 → Wahlpflichtfach A -->Wahlpflichtfach Mathematik -->Erweiterte Themenbereiche zur Mathematik
 → M.Sc. Technikpädagogik, PO 2015, 1. Semester
 → Wahlpflichtfach B -->Wahlpflichtfach Mathematik -->Erweiterte Themenbereiche zur Mathematik

11. Empfohlene Voraussetzungen:
Zulassungsvoraussetzung: Analysis 1, Analysis 2
Inhaltliche Voraussetzung: LAAG 1, LAAG2, Computermathematik

12. Lernziele:
• Analyse, Implementierung und Anwendung numerischer Algorithmen.
• Potenzial und Grenzen numerischer Simulationsmethoden.
• Korrektes Formulieren und selbständiges Lösen mathematischer Probleme.
• Abstraktion und mathematische Argumentation.

13. Inhalt:
Numerische Behandlung der Grundprobleme aus der Analysis:
• Approximation: Polynominterpolation, Splineapproximation, diskrete Fouriertransformation.
• Integration: Quadraturverfahren (Newton-Cotes, Gauß-Quadratur, adaptive Verfahren).
• Nichtlineare Gleichungen: Fixpunkt- und Newtonverfahren.
• Optimierung: Optimierung unter Nebenbedingungen, Ausgleichsprobleme, Abstiegsverfahren.

14. Literatur:
Wird in der Vorlesung bekannt gegeben.

15. Lehrveranstaltungen und -formen:
• 118201 Vorlesung Numerische Mathematik I
• 118202 Übungen zur Vorlesung Numerische Mathematik I

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 63h
Selbststudium/Nacharbeitszeit: 187h
Prüfungsvorbereitung: 20h
Gesamt: 270h

| 17. Prüfungsnummer/n und -name: | • 11821 Numerische Mathematik 1 (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0
• V Vorleistung (USL-V), schriftlich, eventuell mündlich
• V Vorleistung (USL-V), schriftlich, eventuell mündlich |

18. Grundlage für ...:
19. Medienform:
20. Angeboten von:
Modul: 11810 Topologie

2. Modulkürzel: 080400001 5. Modulsdauer: 1 Semester
4. SWS: 6.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Michael Eisermann
9. Dozenten: • Dozenten des Instituts für Geometrie und Topologie
• Dozenten des Instituts für Algebra & Zahlentheorie

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Technikpädagogik, PO 2009, 1. Semester
→ Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang -->Wahlpflichtfach B -->Wahlpflichtfach Mathematik

→ M.Sc. Technikpädagogik, PO 2009, 1. Semester
→ Wahlpflichtfach A -->Wahlpflichtfach Mathematik -->Erweiterte Themenbereiche zur Mathematik

→ M.Sc. Technikpädagogik, PO 2009, 1. Semester
→ Wahlpflichtfach B -->Wahlpflichtfach Mathematik -->Erweiterte Themenbereiche zur Mathematik

→ M.Sc. Technikpädagogik, PO 2015, 1. Semester
→ Wahlpflichtfach A -->Wahlpflichtfach Mathematik -->Erweiterte Themenbereiche zur Mathematik

→ M.Sc. Technikpädagogik, PO 2015, 1. Semester
→ Wahlpflichtfach B -->Wahlpflichtfach Mathematik -->Erweiterte Themenbereiche zur Mathematik

11. Empfohlene Voraussetzungen:
Inhaltliche Voraussetzung ist die sichere Beherrschung des Stoffes der Grundvorlesungen:
• Analysis 1 und 2
• Lineare Algebra und analytische Geometrie 1 und 2

12. Lernziele:
Die Studierenden verfügen über grundlegende Kenntnisse der Topologie und ihrer Anwendungen:
• Sie können sicher mit topologischen Begriffen und Konstruktionen umgehen.
• Sie können die behandelten Methoden selbstständig, sicher, kritisch und kreativ anwenden.
• Sie können mathematische Probleme korrekt formulieren und selbstständig lösen.
• Sie können Problemstellungen abstrahieren und mathematisch argumentieren.

13. Inhalt:
Grundlagen der geometrischen Topologie: Simpliziale Komplexe, Euler-Charakteristik, Umlaufzahl / Abbildungsgrad, Topologie des euklidischen Raumes, Klassifikation der geschlossenen Flächen, Fundamentalgruppen und Überlagerungen, Anwendungen.

15. Lehrveranstaltungen und -formen:

- 118101 Vorlesung Topologie
- 118102 Übungen zur Vorlesung Topologie

16. Abschätzung Arbeitsaufwand:

- Präsenzzeit in Vorlesung (4SWS) und Übung (2SWS): ca 90h.
- Wöchentliche Nachbereitung, Übungsaufgaben, Selbststudium und Prüfungsvorbereitung: ca 180h.
- Gesamt: 270h.

Das Verhältnis 1:2 ist realistisch: Sechs Präsenzstunden pro Woche erfordern zwölf Stunden eigene Arbeit. Das ist keine Übertreibung sondern regelmäßige Erfahrung.

17. Prüfungsnummer/n und -name:

- 11811 Topologie (PL), schriftlich, eventuell mündlich, 120 Min., Gewichtung: 1.0, Übungsschein
- V Vorleistung (USL-V), schriftlich, eventuell mündlich

18. Grundlage für ...:

- 11840 Geometrie
- 34580 Geometrische Topologie
- 14620 Algebra
- 14680 Algebraische Topologie 1
- 34570 Algebraische Topologie 2
- 34560 Differentialtopologie
- 28570 Differentialgeometrie

19. Medienform:

- Vorlesung: Stimme, Tafel & Kreide, evtl. weitere Medien

20. Angeboten von:

- Institut für Geometrie und Topologie
Modul: 11830 Wahrscheinlichkeitstheorie

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>080600001</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>9.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>6.0</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Christian Hesse</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Dozenten der Mathematik</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Zulassungsvoraussetzung: Analysis 1, Analysis 2
Inhaltliche Voraussetzung: LAAG 1, LAAG 2</td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>• Kenntnis grundlegender wahrscheinlichkeitstheoretischer Konzepte und Fähigkeit, diese in den Anwendungen einzusetzen.
• Korrektes Formulieren und selbständiges Lösen von mathematischen Problemen.
• Abstraktion und mathematische Argumentation.</td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 118301 Vorlesung Wahrscheinlichkeitstheorie
• 118302 Übungen zur Vorlesung Wahrscheinlichkeitstheorie</td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Präsenzzeit: 63h</td>
</tr>
</tbody>
</table>
Selbststudium/Nacharbeitszeit: 207h
Gesamt: 270h

17. Prüfungsnummer/n und -name:
 • 11831 Wahrscheinlichkeitstheorie (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0, Übungsschein
 • V Vorleistung (USL-V), schriftlich, eventuell mündlich

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
5020 Wahlpflichtfach Physik

<table>
<thead>
<tr>
<th>Zugeordnete Module</th>
<th>5021</th>
<th>Grundlagen zu Physik</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5022</td>
<td>Erweiterte Themenbereiche zur Physik</td>
</tr>
</tbody>
</table>
5021 Grundlagen zu Physik

Zugeordnete Module:
- 27650 Mathematische Methoden der Physik
- 27660 Grundlagen der Experimentalphysik für Lehramt I + II
- 27670 Grundlagen der Experimentalphysik für Lehramt III
- 27680 Physikalisches Praktikum für Lehramt I
- 27690 Theoretische Physik für Lehramt I: Mechanik/Quantenmechanik
Modul: 27660 Grundlagen der Experimentalphysik für Lehramt I + II

2. Modulkürzel: 081200104
5. Modulsdauer: 2 Semester
3. Leistungspunkte: 12.0 LP
4. SWS: 6.0
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Clemens Bechinger
9. Dozenten: Gert Denninger

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technikpädagogik, PO 2011, 3. Semester
 ➞ Vorgezogene Master-Module
B.Sc. Technikpädagogik, PO 2011, 3. Semester
 ➞ Wahlpflichtfach -->Wahlpflichtfach Physik
M.Sc. Technikpädagogik, PO 2009, 3. Semester
 ➞ Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang -->Wahlpflichtfach B -->Wahlpflichtfach Physik
M.Sc. Technikpädagogik, PO 2009, 3. Semester
 ➞ Wahlpflichtfach B -->Wahlpflichtfach Physik -->Grundlagen zu Physik
M.Sc. Technikpädagogik, PO 2015, 3. Semester
 ➞ Wahlpflichtfach B -->Wahlpflichtfach Physik -->Grundlagen zu Physik

12. Lernziele:
Erwerb von Grundlagen aus dem Bereich der klassischen Physik (Mechanik, Thermodynamik und Elektrodynamik).
In den Übungen werden Lösungsstrategien zur Bearbeitung konkreter Probleme in diesen Teilgebieten vermittelt.

13. Inhalt:

WiSe: Mechanik und Wärmelehre:
- Mechanik starrer Körper
- Mechanik deformierbarer Körper
- Schwingungen und Wellen
- Grundlagen der Thermodynamik

SoSe: Thermodynamik und Elektrodynamik:
- Thermodynamik (Fortsetzung)
- Mikroskopische Thermodynamik
- Elektrostatik
- Materie im elektrischen Feld
- Stationäre Ladungsströme
- Magnetostatik
- Induktion, zeitlich veränderliche Felder
- Materie im Magnetfeld
- Wechselstrom
- Maxwellgleichungen
- Elektromagnetische Wellen im Vakuum
14. Literatur:
• Demtröder, Experimentalphysik 1, Mechanik und Wärme, und Experimentalphysik 2, Elektrizität und Optik, Springer Verlag
• Paus, Physik in Experimenten und Beispielen, Hanser Verlag (1995)
• Bergmann, Schaefer, Lehrbuch der Experimentalphysik, Band 1, Mechanik, Akustik, Wärme, und Band 2, Elektromagnetismus, De Gruyter
• Feynman, Leighton, Sands, Vorlesungen über Physik, Band 1 und Band 2, Oldenbourg Verlag (1997)
• Halliday, Resnick, Walker, Physik, Wiley-VCH
• Gerthsen, Physik, Springer Verlag;
• Daniel, Physik 1 und 2, De Gruyter, Berlin (1997)

15. Lehrveranstaltungen und -formen:
• 276601 Vorlesung Teil I - Mechanik und Wärmelehre
• 276602 Übung Teil I - Mechanik und Wärmelehre
• 276603 Vorlesung Teil II - Elektrodynamik
• 276604 Übung Teil II - Elektrodynamik

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 126 h
Selbststudium: 234 h
Summe: 360 h

17. Prüfungsnummer/n und -name:
• 27662 Grundlagen der Experimentalphysik für Lehramt II Elektrodynamik (LBP), schriftlich, eventuell mündlich, 90 Min., Gewichtung: 1.0, Lehrveranstaltungsbegleitende Prüfung nach Teil II der Vorlesung (Sommersemester). Vorleistung: Erfolgreiche Teilnahme (Schein) an den Übungen zu Teil II (276604).

18. Grundlage für ...

19. Medienform:
Demonstrationsexperimente, Projektion, Overhead, Tafel

20. Angeboten von:
Modul: 27670 Grundlagen der Experimentalphysik für Lehramt III

2. Modulkürzel: 081500015
5. Moduldauer: 1 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 6.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Tilman Pfau

9. Dozenten:
- Martin Dressel
- Jörg Wrachtrup
- Tilman Pfau
- Gert Denninger
- Clemens Bechinger
- Peter Michler
- Ulrich Stroth
- Harald Gieße

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technikpädagogik, PO 2011, 5. Semester
→ Vorgezogene Master-Module

B.Sc. Technikpädagogik, PO 2011, 5. Semester
→ Wahlpflichtfach →Wahlpflichtfach Physik

M.Sc. Technikpädagogik, PO 2009, 5. Semester
→ Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang
→ Wahlpflichtfach B →Wahlpflichtfach Physik

M.Sc. Technikpädagogik, PO 2009, 5. Semester
→ Wahlpflichtfach B →Wahlpflichtfach Physik →Grundlagen zu Physik

M.Sc. Technikpädagogik, PO 2015, 5. Semester
→ Wahlpflichtfach B →Wahlpflichtfach Physik →Grundlagen zu Physik

11. Empfohlene Voraussetzungen: Modul Grundlagen der Experimentalphysik für Lehramt I+II

12. Lernziele:

13. Inhalt:
- Elektromagnetische Wellen im Medium
- Geometrische Optik
- Wellenoptik
- Welle und Teilchen
- Laserprinzip und Lasertypen

14. Literatur:
- Demtröder, "Experimentalphysik 2, Elektrizität und Optik", Springer Verlag
- Bergmann, Schaefer, "Lehrbuch der Experimentalphysik", Band 2, Elektromagnetismus; Band 1, Optik, De Gruyter Verlag
- Paus, "Physik in Experimenten und Beispielen", Hanser Verlag
- Gerthsen, "Physik", Springer Verlag
15. Lehrveranstaltungen und -formen:
 • 276701 Vorlesung Grundlagen der Experimentalphysik III: Optik
 • 276702 Übung Grundlagen der Experimentalphysik III: Optik

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 63 h
 Selbststudium: 117 h
 Summe: 180 h

17. Prüfungsnummer/n und -name:
 27671 Grundlagen der Experimentalphysik für Lehramt III (LBP), schriftlich, eventuell mündlich, Gewichtung: 1.0, lehrveranstaltungsbegleitende Prüfung Art und Umfang der LBP wird vom Dozenten zu Beginn der Veranstaltung bekannt gegeben.

18. Grundlage für ...:

19. Medienform:
 Overhead, Projektion, Tafel, Demonstration

20. Angeboten von:
Modul: 27650 Mathematische Methoden der Physik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>081100301</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modulname:</td>
<td>Mathematische Methoden der Physik</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>PD Johannes Roth</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Johannes Roth</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- B.Sc. Technikpädagogik, PO 2011, 3. Semester
 - Vorgezogene Master-Module
 - B.Sc. Technikpädagogik, PO 2011, 3. Semester
 - Wahlrichtung -->Wahlrichtung Physik
 - Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang -->Wahlrichtung B -->Wahlrichtung Physik
 - Grundlagen zu Physik
 - M.Sc. Technikpädagogik, PO 2015, 3. Semester
 - Wahlrichtung B -->Wahlrichtung Physik -->Grundlagen zu Physik

11. Empfohlene Voraussetzungen:

Die Studierenden verfügen über die mathematischen Methoden, welche zur Lösung von Aufgaben in der Mechanik und Elektrodynamik benötigt werden und können diese anwenden.

12. Lernziele:

- Gewöhnliche Differentialgleichungen
- Lineare Algebra
- Vektoranalysis

13. Inhalt:

- Gewöhnliche Differentialgleichungen
- Lineare Algebra
- Vektoranalysis

14. Literatur:

- Dennery + Krzywicki, "Mathematics for Physicists", Dover

15. Lehrveranstaltungen und -formen:

- 276501 Vorlesung Mathematische Methoden der Physik
- 276502 Übung Mathematische Methoden der Physik

16. Abschätzung Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Vorlesung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzstunden: 2.25 h (3 SWS)*14 Wochen</td>
</tr>
<tr>
<td>Vor- u. Nachbereitung: 2 h pro Präsenzstunde</td>
</tr>
<tr>
<td>Gesamt: 31,5h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Übungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzstunden: 0.75 h (1 SWS)*14 Wochen</td>
</tr>
<tr>
<td>Vor- u. Nachbereitung: 4 h pro Präsenzstunde</td>
</tr>
<tr>
<td>Gesamt: 42,0h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Prüfung incl. Vorbereitung</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamt: 33h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>180h</td>
</tr>
</tbody>
</table>

17. Prüfungsnummer/n und -name:

- 27651 Mathematische Methoden der Physik (PL), schriftlich, eventuell mündlich, 120 Min., Gewichtung: 1.0
18. Grundlage für ...

19. Medienform: Tafelanschrieb, z.T. Handouts

20. Angeboten von:
Modul: 27680 Physikalisches Praktikum für Lehramt I

2. Modulkürzel: 081100304
5. Moduldauer: 1 Semester
3. Leistungspunkte: 6.0 LP
6. Turnus: jedes 2. Semester, SoSe
4. SWS: 3.0
7. Sprache: Deutsch
8. Modulverantwortlicher: Arthur Grupp
9. Dozenten: Arthur Grupp

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technikpädagogik, PO 2011, 4. Semester
 → Vorgezogene Master-Module
 B.Sc. Technikpädagogik, PO 2011, 4. Semester
 → Wahlpflichtfach → Wahlpflichtfach Physik
 →
 M.Sc. Technikpädagogik, PO 2009, 4. Semester
 → Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang → Wahlpflichtfach B → Wahlpflichtfach Physik
 →
 M.Sc. Technikpädagogik, PO 2009, 4. Semester
 → Wahlpflichtfach B → Wahlpflichtfach Physik → Grundlagen zu Physik
 →
 M.Sc. Technikpädagogik, PO 2015, 4. Semester
 → Wahlpflichtfach B → Wahlpflichtfach Physik → Grundlagen zu Physik
 →

11. Empfohlene Voraussetzungen: Modul Grundlagen der Experimentalphysik I + II: Teil I (Mechanik und Wärmelehre)

12. Lernziele:

13. Inhalt:
 Gebiete der Experimentalphysik: Mechanik, Wärmelehre, Strömungslehre, Akustik

14. Literatur:
 • Dobrinski, Krakau, Vogel; Physik für Ingenieure; Teubner Verlag
 • Demtröder, Wolfgang; Experimentalphysik Bände 1 und 2; Springer Verlag
 • Paus, Hans J.; Physik in Experimenten und Beispielen; Hanser Verlag
 • Halliday, Resnick, Walker; Physik; Wiley-VCH
 • Bergmann-Schaefer: Lehrbuch der Experimentalphysik; De Gruyter
 • Paul A. Tipler: Physik, Spektrum Verlag
 • Cutnell & Johnson; Physics; Wiley-VCH
 • Linder: Physik für Ingenieure; Hanser Verlag
 • Kuypers: Physik für Ingenieure und Naturwissenschaftler, Wiley-VHC
 • Anleitungstexte zum Praktikum, darin aufgeführte Literatur

15. Lehrveranstaltungen und -formen: 276801 Physikalisches Praktikum LA I

16. Abschätzung Arbeitsaufwand:
 Präsenzzzeit: 30 h
 Selbststudium: 150 h
| 17. Prüfungsnummer/n und -name: | 27681 Physikalisches Praktikum für Lehramt I (LBP), schriftlich, eventuell mündlich, Gewichtung: 1.0, lehrveranstaltungsbegleitende Prüfung: schriftliche Ausarbeitung der Versuche und Kolloquium
27682 Physikalisches Praktikum für Lehramt I, 10 Versuche (USL), schriftlich, eventuell mündlich, Gewichtung: 1.0 |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td>27740 Physikalisches Praktikum für Lehramt II</td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td></td>
</tr>
</tbody>
</table>
Modul: 27690 Theoretische Physik für Lehramt I: Mechanik/Quantenmechanik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>081100305</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>9.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>6.0</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Alejandro Muramatsu</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Rudolf Hilfer
• Günter Wunner
• Alejandro Muramatsu
• Manfred Fähnle
• Jörg Main
• Siegfried Dietrich
• Udo Seifert
• Johannes Roth
• Hans Peter Büchler |
→ Vorgezogene Master-Module
→ B.Sc. Technikpädagogik, PO 2011, 5. Semester
→ Wahlpflichtfach → Wahlpflichtfach Physik
→ M.Sc. Technikpädagogik, PO 2009, 5. Semester
→ Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang
→ Wahlpflichtfach B → Wahlpflichtfach Physik
→ M.Sc. Technikpädagogik, PO 2009, 5. Semester
→ Wahlpflichtfach B → Wahlpflichtfach Physik → Grundlagen zu Physik
→ M.Sc. Technikpädagogik, PO 2015, 5. Semester
→ Wahlpflichtfach B → Wahlpflichtfach Physik → Grundlagen zu Physik
| 11. Empfohlene Voraussetzungen: | Modul: Mathematische Methoden der Physik |
| 13. Inhalt: | **Mechanik:**
• Newtonsche Gleichungen
• Zwangsbedingungen und generalisierte Koordinaten
• Variationsprinzipien
• Lagrangesche und Hamiltonsche Gleichungen
• Zentralkraftprobleme

Quantenmechanik:
• Welle-Teilchen Dualismus
• Schrödingergleichung |
• Freies Teilchen, Wellenpakete
• Eindimensionale Potentiale
• Harmonischer Oszillator
• Coulombproblem

14. Literatur:
• Goldstein, "Klassische Mechanik", AULA-Verlag
• Landau-Lifshitz, "Mechanik", Akademie Verlag
• Cohen-Tannoudji, "Quantenmechanik", 2 Bände, Gruyter Verlag
• Messiah, "Quantenmechanik I und II", Gruyter Verlag
• Landau-Lifshitz, "Lehrbuch der Theoretischen Physik", Band III, Deutsch Verlag

15. Lehrveranstaltungen und -formen:
• 276901 Vorlesung Grundlagen der Theoretischen Physik für Lehramt I: Mechanik/Quantenmechanik
• 276902 Übung Grundlagen der Theoretischen Physik für Lehramt I: Mechanik/Quantenmechanik

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 63 h
Selbststudium: 207 h
Summe: 270 h

17. Prüfungsnummer/n und -name:
27691 Theoretische Physik für Lehramt I: Mechanik/Quantenmechanik (LBP), schriftliche Prüfung, 120 Min., Gewichtung: 1.0, lehrveranstaltungsbegleitende Prüfung, Art und Umfang der LBP wird vom Dozenten zu Beginn der Veranstaltung bekannt gegeben.

18. Grundlage für ... :

19. Medienform: Tafelanschrieb

20. Angeboten von:
5022 Erweiterte Themenbereiche zur Physik

Zugeordnete Module:
- 21900 Physikalisches Praktikum für Lehramt II (Technikpädagogik)
- 27700 Theoretische Physik für Lehramt II: Elektrodynamik und Thermodynamik
- 27730 Vertiefungsmodul Lehramt I - Relativitätstheorie, Astrophysik, Kosmologie
- 27750 Physikalisches Praktikum für Lehramt III
Modul: 21900 Physikalisches Praktikum für Lehramt II (Technikpädagogik)

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>081000310</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>5. Modulduer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Arthur Grupp</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- M.Sc. Technikpädagogik, PO 2009, 2. Semester
 - Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang -->Wahlpflichtfach B -->Wahlpflichtfach Physik
 - M.Sc. Technikpädagogik, PO 2009, 2. Semester
 - Wahlpflichtfach A -->Wahlpflichtfach Physik -->Erweiterte Themenbereiche zur Physik
 - M.Sc. Technikpädagogik, PO 2009, 2. Semester
 - Wahlpflichtfach B -->Wahlpflichtfach Physik -->Erweiterte Themenbereiche zur Physik
 - M.Sc. Technikpädagogik, PO 2015, 2. Semester
 - Wahlpflichtfach A -->Wahlpflichtfach Physik -->Erweiterte Themenbereiche zur Physik
 - M.Sc. Technikpädagogik, PO 2015, 2. Semester
 - Wahlpflichtfach B -->Wahlpflichtfach Physik -->Erweiterte Themenbereiche zur Physik

11. Empfohlene Voraussetzungen:

- Grundlagen der Experimentalphysik: Mechanik, Elektrik, Optik, Atom- und Kernphysik

12. Lernziele:

- Durchführung einzelner Experimente unter Anleitung
- Protokollierung von Messdaten
- Auswertung von Messdaten und Erstellung eines schriftlichen Berichts (Protokoll)

13. Inhalt:

- Gebiete der Experimentalphysik:
 - Optik, Elektrodynamik, Atomphysik, Kernphysik

14. Literatur:

- Lehrbücher der Experimentalphysik;
 - Anleitungstexte zum Praktikum, darin aufgeführte Literatur

15. Lehrveranstaltungen und -formen:

| Modul: 219001 Physikalisches Praktikum LA II |

16. Abschätzung Arbeitsaufwand:

Präsenzstunden: 5 Versuche a 3 h	15 h
Selbststudium, Vor- u. Nachbereitung:	165 h
Summe:	180 h

17. Prüfungsnummer/n und -name:

• 21901 Physikalisches Praktikum für Lehramt II (LBP), schriftlich, eventuell mündlich, Gewichtung: 1.0
\begin{itemize}
\item 21902 Physikalisches Praktikum für Lehramt II, 5 Versuche (USL),
 schriftlich, eventuell mündlich, Gewichtung: 1.0
\end{itemize}

<table>
<thead>
<tr>
<th>18. Grundlage für ... :</th>
</tr>
</thead>
<tbody>
<tr>
<td>19. Medienform:</td>
</tr>
<tr>
<td>online verfügbare Versuchsanleitungen</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
</tr>
<tr>
<td>Mathematik und Physik</td>
</tr>
</tbody>
</table>
Modul: 27750 Physikalisches Praktikum für Lehramt III

2. Modulkürzel: 081000311
5. Modulduauer: 2 Semester
3. Leistungspunkte: 6.0 LP
6. Turnus: jedes Semester
4. SWS: 4.0
7. Sprache: Deutsch
8. Modulverantwortlicher: Bruno Gompf

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Technikpädagogik
→ Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang -> Wahlpflichtfach B --> Wahlpflichtfach Physik

→ M.Sc. Technikpädagogik
→ Wahlpflichtfach A --> Wahlpflichtfach Physik --> Erweiterte Themenbereiche zur Physik

→ M.Sc. Technikpädagogik
→ Wahlpflichtfach B --> Wahlpflichtfach Physik --> Erweiterte Themenbereiche zur Physik

→ M.Sc. Technikpädagogik
→ Wahlpflichtfach A --> Wahlpflichtfach Physik --> Erweiterte Themenbereiche zur Physik

→ M.Sc. Technikpädagogik
→ Wahlpflichtfach B --> Wahlpflichtfach Physik --> Erweiterte Themenbereiche zur Physik

11. Empfohlene Voraussetzungen:
Module Grundlagen der Experimentalphysik und Fortgeschrittene Experimentalphysik

12. Lernziele:
Durchführung grundlegender physikalischer Experimente; Erfassung und Auswertung von Messdaten; Bearbeitung eines wohldefinierten physikalischen Projektes einschließlich der theoretischen Vorbereitung, Durchführung, Analyse und Diskussion der Ergebnisse. Beherrschung der Präsentationsformen Poster, Vortrag und schriftliches wissenschaftliches Protokoll.

13. Inhalt:
Auswahl aus 15 bis 20 grundlegenden, aber komplexeren Experimenten folgender Gebiete der Physik:

• Atom- und Kernphysik
• Molekül- und Festkörperphysik
• Resonanzphänomene
• Optik
• Plasmaphysik

14. Literatur:
Anleitungstexte zu den Versuchen und die darin aufgeführte Literatur

15. Lehrveranstaltungen und -formen:
• 277501 Physikalisches Praktikum LA III Teil I
• 277502 Physikalisches Praktikum LA III Teil II

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 8 Versuchstage a' 7 h = 56 h
Vor- und Nacharbeit: 14 h pro Versuchstag = 112 h
Präsenzzeit Seminar: 1,5 h pro Versuchstag = 12 h
Summe: 180 h

17. Prüfungsnummer/n und -name:
- 27751 Physikalisches Praktikum für Lehramt III (LBP), schriftlich, eventuell mündlich, Gewichtung: 1.0, lehrveranstaltungsbegleitende Prüfung: schriftliche Ausarbeitung der Versuche; Kolloquium, alternativ Vortrag oder Poster.
- 27752 Physikalisches Praktikum für Lehramt III, Studienleistung Teil I (USL), schriftlich, eventuell mündlich, Gewichtung: 1.0, Teil I und II insgesamt 8 Versuchstage
- 27753 Physikalisches Praktikum für Lehramt III, Studienleistung Teil II (USL), schriftlich, eventuell mündlich, Gewichtung: 1.0, Teil I und II insgesamt 8 Versuchstage

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 27700 Theoretische Physik für Lehramt II: Elektrodynamik und Thermodynamik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>081800306</th>
<th>5. Moduldaurer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>6.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Alejandro Muramatsu</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

9. Dozenten:
- Rudolf Hilfer
- Günter Wunner
- Alejandro Muramatsu
- Manfred Fähnle
- Jörg Main
- Siegfried Dietrich
- Udo Seifert
- Johannes Roth
- Hans Peter Büchler

10. Zuordnung zum Curriculum in diesem Studiengang:
- M.Sc. Technikpädagogik
 - Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang --> Wahlpflichtfach B --> Wahlpflichtfach Physik
 - → M.Sc. Technikpädagogik
 - → Wahlpflichtfach A --> Wahlpflichtfach Physik --> Erweiterte Themenbereiche zur Physik
 - → M.Sc. Technikpädagogik
 - → Wahlpflichtfach B --> Wahlpflichtfach Physik --> Erweiterte Themenbereiche zur Physik
 - → M.Sc. Technikpädagogik
 - → Wahlpflichtfach A --> Wahlpflichtfach Physik --> Erweiterte Themenbereiche zur Physik
 - → M.Sc. Technikpädagogik
 - → Wahlpflichtfach B --> Wahlpflichtfach Physik --> Erweiterte Themenbereiche zur Physik

11. Empfohlene Voraussetzungen:
- Modul Grundlagen der Theoretischen Physik für Lehramt I: Klassische Mechanik und Quantenmechanik

12. Lernziele:
Die Studierenden verfügen über gründliche Verständnisse der mathematisch-quantitativen Beschreibung der Elektro- und Thermodynamik. Sie können Probleme der Elektro- und Thermodynamik selbständig mathematisch behandeln und dabei die erlernten Rechenmethoden anwenden.

13. Inhalt:
- **Elektrodynamik**
 - Maxwellsche Gleichungen
 - Elektrodynamische Potentiale
 - Strahlungstheorie
 - Elektrostatik und Magnetostatik
 - Elektromagnetische Wellen
Thermostatistik
- Grundlagen der statistischen Physik
- Ensemble Theorie
- Entropie und Informationstheorie

Thermodynamik
- Hauptsätze
- Thermodynamische Potentiale

14. Literatur:
- Jackson, „Klassische Elektrodynamik"
- Nolting: „Grundkurs Theoretische Physik 3: Elektrodynamik"
- Nolting: „Grundkurs Theoretische Physik 6: Statistische Physik"

15. Lehrveranstaltungen und -formen:
- 277001 Vorlesung Grundlagen der Theoretischen Physik für Lehramt II: Elektrodynamik und Thermodynamik
- 277002 Übung Grundlagen der Theoretischen Physik für Lehramt II: Elektrodynamik und Thermodynamik

16. Abschätzung Arbeitsaufwand:
<table>
<thead>
<tr>
<th>Präsenzzeit</th>
<th>Selbststudium</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>63 h</td>
<td>117 h</td>
<td>270 h</td>
</tr>
</tbody>
</table>

17. Prüfungsnummer/n und -name:
- 27701 Theoretische Physik für Lehramt II: Elektrodynamik und Thermodynamik (LBP), schriftlich, eventuell mündlich, Gewichtung: 1.0, lehrveranstaltungsbegleitende Prüfung, Art und Umfang der LBP wird vom Dozenten zu Beginn der Veranstaltung bekannt gegeben

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
Modul: 27730 Vertiefungsmodul Lehramt I - Relativitätstheorie, Astrophysik, Kosmologie

2. Modulkürzel: 081000309
5. Modulsdauer: 1 Semester

3. Leistungspunkte: 6.0 LP
6. Turnus: jedes 2. Semester, SoSe

4. SWS: 6.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Günter Wunner

9. Dozenten:
 • Günter Wunner
 • Alejandro Muramatsu
 • Jörg Main
 • Johannes Roth

10. Zuordnung zum Curriculum in diesem Studiengang:

M.Sc. Technikpädagogik
 ➔ Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang
 ➔ Wahlpflichtfach B ➔ Wahlpflichtfach Physik
 ➔

M.Sc. Technikpädagogik
 ➔ Wahlpflichtfach A ➔ Wahlpflichtfach Physik ➔ Erweiterte Themenbereiche zur Physik
 ➔

M.Sc. Technikpädagogik
 ➔ Wahlpflichtfach B ➔ Wahlpflichtfach Physik ➔ Erweiterte Themenbereiche zur Physik
 ➔

M.Sc. Technikpädagogik
 ➔ Wahlpflichtfach A ➔ Wahlpflichtfach Physik ➔ Erweiterte Themenbereiche zur Physik
 ➔

M.Sc. Technikpädagogik
 ➔ Wahlpflichtfach B ➔ Wahlpflichtfach Physik ➔ Erweiterte Themenbereiche zur Physik

11. Empfohlene Voraussetzungen:

Module der ersten 4 Fachsemester

12. Lernziele:

Die Studierenden verfügen über ein Verständnis der Relativitätstheorie und der grundlegenden physikalischen Vorgänge im Kosmos.

13. Inhalt:

• Pulsare und Neutronensterne: Beobachtungen und spektakuläre Physik.
• Steilkurs in Allgemeiner Relativitätstheorie und klassische Tests der ART im Sonnensystem.
• Das Prunkstück der ART: der Doppelpulsar 1913+16, Gravitationswellen.
• Kosmologie auf der Grundlage der Allgemeinen Relativitätstheorie (Lösung der Gravitationsgleichungen, kosmologische Rotverschiebung, Weltmodelle mit kosmologischer Konstante)
• Supernovae und Kosmologie (Abschätzung des Zustands des Universums)
• Das frühe Universum (Szenarien für die Evolution des Universums)

14. Literatur:

• Spatschek: Astrophysik (Teubner, 2003)
• Bascheck/Unsöld: Der neue Kosmos (Springer, 1991)
• Berry: Kosmologie und Gravitation (Teubner, 1990)
• Kaler: Sterne (Spektrum Akad. V. 2000)
• Layzer: Das Universum (Spektrum Akad. V. 1998)
• Keller: Astrowissen (Franckh Kosmos 2000)
• Sexl: Weiße Zwerge, schwarze Löcher (Vieweg 1975)
• Rebhan: Theoretische Physik Band 1 ... Relativitätstheorie, Kosmologie Spektrum Akademischer Verlag (1999)

15. Lehrveranstaltungen und -formen:

• 277301 Vorlesung Vertiefungsmodul Lehramt I - Relativitätstheorie, Astronomie und Astrophysik
• 277302 Übung Vertiefungsmodul Lehramt I - Relativitätstheorie, Astronomie und Astrophysik

16. Abschätzung Arbeitsaufwand:

Präsenzzeit:	63 h
Selbststudium:	117 h
Summe:	**180 h**

17. Prüfungsnummer/n und -name:

| 27731 | Vertiefungsmodul Lehramt I - Relativitätstheorie, Astrophysik, Kosmologie (PL), mündliche Prüfung, 45 Min., Gewichtung: 1.0 |

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
5030 Wahlpflichtfach Chemie

<table>
<thead>
<tr>
<th>Zugeordnete Module</th>
<th>Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>5031</td>
<td>Grundlagen Chemie</td>
</tr>
<tr>
<td>5032</td>
<td>Erweiterte Themenbereiche zur Chemie</td>
</tr>
</tbody>
</table>
5031 Grundlagen Chemie

Zugeordnete Module:
- 10230 Einführung in die Chemie
- 10340 Praktische Einführung in die Chemie
- 10380 Grundlagen der Anorganischen und Analytischen Chemie
- 10410 instrumentelle Analytik
- 10490 Rechtskunde und Toxikologie für Chemiker
Modul: 10230 Einführung in die Chemie

2. Modulkürzel: 030230001
5. Modulduauer: 1 Semester

3. Leistungspunkte: 12.0 LP

4. SWS: 9.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Thomas Schleid

9. Dozenten: • Rene Peters
 • Thomas Schleid
 • Joris Slageren

10. Zuordnung zum Curriculum in diesem Studiengang:

 B.Sc. Technikpädagogik, PO 2011, 1. Semester
 → Vorgezogene Master-Module
 B.Sc. Technikpädagogik, PO 2011, 1. Semester
 → Wahlpflichtfach -->Wahlpflichtfach Chemie
 →
 M.Sc. Technikpädagogik, PO 2009, 1. Semester
 → Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang -->Wahlpflichtfach B -->Wahlpflichtfach Chemie
 →
 M.Sc. Technikpädagogik, PO 2009, 1. Semester
 → Wahlpflichtfach B -->Wahlpflichtfach Chemie -->Grundlagen Chemie
 →
 M.Sc. Technikpädagogik, PO 2015, 1. Semester
 → Wahlpflichtfach B -->Wahlpflichtfach Chemie -->Grundlagen Chemie
 →

11. Empfohlene Voraussetzungen: Keine

12. Lernziele:

 Die Studierenden beherrschen grundlegende Konzepte der Chemie wie Atomismus, Periodensystem, Bindungsverhältnisse, Formelsprache und Stöchiometrie und können diese eigenständig anwenden, erkennen Struktur-Eigenschaftsbeziehungen am Beispiel ausgewählter Elemente und Verbindungen.

13. Inhalt:

 Physikalische Chemie:

Ostwaldses Verdünnungsgesetz, Bestimmung der Grenzleitfähigkeit, Überführungs- zahlen.

Anorganische Chemie:

Stöchiometrische Grundgesetze: Erhalt von Masse und Ladung, Gesetze der konstanten und der multiplen Proportionen, Reaktionsgleichungen.

Chemische Gleichgewichte: Protonenübertragung (Bronsted-Lowry Säure/Base-Theorie, protochemische Spannungsreihe), Elektronenübertragung (Redoxreaktionen, galvanische Zellen und Zellpotentiale, elektrochemische Spannungsreihe, Elektrolyse) Lewis-Säure/Base-Gleichgewichte (Komplexgleichgewichte, Aquakomplexe), Löslichkeitsgleichgewichte.

Organische Chemie:

14. Literatur:

Physikalische Chemie:

Anorganische Chemie:

Organische Chemie:
15. Lehrveranstaltungen und -formen:

- 102301 Vorlesung Einführung in die Chemie
- 102302 Seminar / Übung Einführung in die Chemie

16. Abschätzung Arbeitsaufwand:

Vorlesung
Präsenztunden: 6 SWS * 14 Wochen = 84 h
Vor- und Nachbereitung: 1,5 h pro Präsenztunde = 126 h

Übung/Seminar
Präsenztunden: 3 SWS * 14 Wochen = 42 h
Vor- und Nachbereitung: 2,0 h pro Präsenztunde = 84 h
2 Übungsklausuren á 2 h = 4 h

Abschlussprüfung incl. Vorbereitung: 20 h

Summe: 360 h

17. Prüfungsnummer/n und -name:

- 10231 Einführung in die Chemie (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0, Prüfungsvorleistung: Teilnahme an den Übungsklausuren
- V Vorleistung (USL-V), schriftliche Prüfung, 120 Min.

18. Grundlage für ... :

- 10380 Grundlagen der Anorganischen und Analytischen Chemie
- 10390 Thermodynamik, Elektrochemie und Kinetik
- 10400 Organische Chemie I
- 10440 Biochemie

19. Medienform:

20. Angeboten von:
Modul: 10380 Grundlagen der Anorganischen und Analytischen Chemie

2. Modulkürzel: 030201004
3. Leistungspunkte: 12.0 LP
4. SWS: 14.0
5. Modul: Grundlagen der Anorganischen und Analytischen Chemie
6. Turnus: jedes 2. Semester, SoSe
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dietrich Gudat
9. Dozenten:
 • Dietrich Gudat
 • Ingo Hartenbach
 • Björn Blaschkowski
10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technikpädagogik, PO 2011, 2. Semester
 → Vorgezogene Master-Module
 B.Sc. Technikpädagogik, PO 2011, 2. Semester
 → Wahlpflichtfach → Wahlpflichtfach Chemie
 M.Sc. Technikpädagogik, PO 2009, 2. Semester
 → Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang → Wahlpflichtfach B → Wahlpflichtfach Chemie
 M.Sc. Technikpädagogik, PO 2009, 2. Semester
 → Wahlpflichtfach B → Wahlpflichtfach Chemie → Grundlagen Chemie
 M.Sc. Technikpädagogik, PO 2015, 2. Semester
 → Wahlpflichtfach B → Wahlpflichtfach Chemie → Grundlagen Chemie
11. Empfohlene Voraussetzungen:
 Einführung in die Chemie
 Praktische Einführung in die Chemie
12. Lernziele:
 Die Studierenden
 • können ausgehend vom Periodensystem die stofflichen Eigenschaften wichtiger Elemente und Verbindungen ableiten
 • können Trends in chemischen und physikalischen Eigenschaften erfassen und abschätzen
 • können anorganische Strukturmodelle, Reaktionen und Reaktionsmechanismen verstehen
 • haben anhand spezifischer Nachweisreaktionen und analytischer Trenn- und Bestimmungsmethoden praktische Erfahrung in der Durchführung von Reaktionen in der anorganischen Chemie gewonnen
13. Inhalt:
 • Vorkommen, Herstellung, Strukturen der Haupt- und Nebengruppenelemente, f-Block-Elemente und wichtiger Verbindungsklassen dieser Elemente
 • Struktur-Eigenschaftsbeziehungen
 • Herstellung und praktische Verwendung von Elementen und Verbindungen
 • Charakteristische Reaktionsmuster von Elementen und wichtigen Verbindungsklassen
 • Grundlagen der analytischen Chemie
 • Nasschemische Analytik
14. Literatur:
zur Vorlesung:
C. E. Housecroft, A. G. Sharpe: Anorganische Chemie
E. Riedel, C. Janiak: Anorganische Chemie
zum Praktikum:
Jander - Blasius, Einführung in das Anorganische Chemische Praktikum
weiterführende Literatur:
Holleman-Wiberg, Lehrbuch der Anorganischen Chemie
J. E. Huheey, E. Keiter, R. Keiter: Anorganische Chemie - Prinzipien von Struktur und Reaktivität

15. Lehrveranstaltungen und -formen:
- 103801 Experimentalvorlesung Grundlagen der Anorganischen und Analytischen Chemie
- 103802 Übung Grundlagen der Anorganischen und Analytischen Chemie
- 103803 Seminar Grundlagen der Anorganischen und Analytischen Chemie
- 103804 Praktikum Grundlagen der Anorganischen und Analytischen Chemie

16. Abschätzung Arbeitsaufwand:
Experimentalvorlesung
Präsenzstd.: 5 SWS * 14 Wochen = 70 h
Vor- und Nachbereitung 1,5 h/Präsenzstd. = 105 h

Übung zur Vorlesung
Präsenzstd.: 2 SWS * 6 Wochen = 12 h
Vor- und Nachbereitung 2 h/Präsenzstd. = 24 h

Seminar
Präsenzstd.: 2 SWS * 8 Wochen = 16 h
Vor- und Nachbereitung 1 h/Präsenzstd. = 16 h

Praktikum
Präsenzstd.: 24 Tage * 4 h = 96 h
Vor- und Nachbereitung 1 h/Praktikumstag = 24 h

Summe 363 h

17. Prüfungsnummer/n und -name:
- 10381 Grundlagen der Anorganischen und Analytischen Chemie (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0,
- V Vorleistung (USL-V), Sonstiges, Testat aller Protokolle, aktive Teilnahme an Seminar (mit Vortrag), erfolgreicher Abschluss von 3 Übungskolloquien

18. Grundlage für ... :
- 10410 Instrumentelle Analytik
- 10470 Vertiefte Anorganische Chemie

19. Medienform:

20. Angeboten von: Institut für Anorganische Chemie
Modul: 10410 Instrumentelle Analytik

4. SWS: 7.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dietrich Gudat

9. Dozenten:
 • Dietrich Gudat
 • Birgit Claasen
 • Herbert Dilger
 • Wolfgang Kaim
 • Brigitte Schwederski

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technikpädagogik, PO 2011, 3. Semester
 ➔ Vorgezogene Master-Module
 B.Sc. Technikpädagogik, PO 2011, 3. Semester
 ➔ Wahlpflichtfach -->Wahlpflichtfach Chemie
 M.Sc. Technikpädagogik, PO 2009, 3. Semester
 ➔ Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang -->Wahlpflichtfach B -->Wahlpflichtfach Chemie
 M.Sc. Technikpädagogik, PO 2009, 3. Semester
 ➔ Wahlpflichtfach B -->Wahlpflichtfach Chemie -->Grundlagen Chemie
 M.Sc. Technikpädagogik, PO 2015, 3. Semester
 ➔ Wahlpflichtfach B -->Wahlpflichtfach Chemie -->Grundlagen Chemie

11. Empfohlene Voraussetzungen:
 Grundlagen der Anorganischen und Analytischen Chemie

12. Lernziele:
 Die Studierenden können
 • wichtige spektroskopische, spektrometrische und elektrochemische Bestimmungsmethoden anwenden
 • chromatographische Trennmethoden anwenden
 • Konstitution einfach aufgebauter Verbindungen aus spektroskopischen Daten ableiten

13. Inhalt:
 • Spektroskopische und elektrochemische Bestimmungsverfahren
 • Chromatographische Trennverfahren
 • Konstitutionsermittlung aus spektroskopischen Daten

14. Literatur:
 • M. Hesse, H. Meier, B. Zeeh, "Spektroskopische Methoden in der Organischen Chemie"
 • M. Reichenbacher, J. Popp, "Strukturanalytik organischer und anorganischer Verbindungen: Ein Übungsbuch"
 • D.A. Skoog, J.J. Leary, "Instrumentelle Analytik: Grundlagen, Geräte, Anwendungen"

15. Lehrveranstaltungen und -formen:
 • 104101 Experimentalvorlesung Instrumentelle Analytik
 • 104102 Seminar Instrumentelle Analytik
 • 104103 Gruppenübung Instrumentelle Analytik
16. Abschätzung Arbeitsaufwand:

Vorlesung
Präsenzstd.: 1 SWS * 14 Wochen = 14 h
Vor- und Nachbereitung 2 h/Präsenzstd. = 28 h

Seminar
Präsenzstd.: 2 SWS * 13 Wochen = 26 h
Vor- und Nachbereitung 1,5 h/Präsenzstd. = 39 h

Gruppenübung (Präsenzarbeit in Kleingruppen)
Präsenzstd.: 22 h
Vor- und Nachbereitung 0,5 h/Präsenzstd. = 11 h

Praktikum
Präsenzstd.: 8 Tage * 4 h = 32 h
Vorbereitung und Protokolle 2 h/Praktikumstag = 16 h

Summe 188 h

17. Prüfungsnummer/n und -name:

- 104104 Praktikum Instrumentelle Analytik

- 10411 Instrumentelle Analytik (USL),Sonstiges,Gewichtung: 1.0,
 alle Protokolle und Übungsaufgabe testiert, Übungsklausuren
 1 und 2 von je 60 Min bestanden

- V Vorleistung (USL-V), Sonstiges

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Institut für Anorganische Chemie
Modul: 10340 Praktische Einführung in die Chemie

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>030230002</th>
<th>5. Modulduauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>9.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Thomas Schleid

9. Dozenten: Ingo Hartenbach

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th></th>
<th>B.Sc. Technikpädagogik, PO 2011, 1. Semester</th>
<th>Vorgezogene Master-Module</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>B.Sc. Technikpädagogik, PO 2011, 1. Semester</td>
<td>Wahlpflichtfach --> Wahlpflichtfach Chemie</td>
</tr>
<tr>
<td></td>
<td>M.Sc. Technikpädagogik, PO 2015, 1. Semester</td>
<td>Wahlpflichtfach B --> Wahlpflichtfach Chemie --> Grundlagen Chemie</td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen: Keine

12. Lernziele:

13. Inhalt:

Atombau und Periodisches System der Elemente: Gasgesetz, Molmassenbestimmung, Teilchen im Kasten, Spektroskopie, Periodensystem der Elemente, Haupt- und Nebengruppen, Bindungstheorie und Physikalische Eigenschaften (7 Versuche)

Chemisches Gleichgewicht, Thermodynamik und Reaktionskinetik: Massenwirkungsgesetz, Säure-Base-Gleichgewichte, Fällungs- und Löschlichkeitsgleichgewichte, Redox-Gleichgewichte, Komplexgleichgewichte, Kalorimetrie, Reaktionskinetik (7 Versuche)

Organische Chemie und Arbeitstechniken: Destillation, Sublimation, Chromatographie, Extraktion, Umkristallisation, Synthese einfacher Präparate, Sicheres Arbeiten im Labor (7 Versuche)

Das Praktikum wird von einem wöchentlichen 2 stündigen Seminar begleitet.

14. Literatur:

Physikalische Chemie:

Anorganische Chemie:

Organische Chemie:

• K. Schwetlick, Organikum, 23. Aufl. 2009

<table>
<thead>
<tr>
<th>15. Lehrveranstaltungen und -formen:</th>
<th>103401 Praktikum Praktische Einführung in die Chemie</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>16. Abschätzung Arbeitsaufwand:</th>
<th>Praktikum:</th>
</tr>
</thead>
<tbody>
<tr>
<td>21 Praktikumsnachmittage à 4 h = 84 h</td>
<td></td>
</tr>
<tr>
<td>Vorbereitung u. Protokolle: 3,5 h pro Praktikumstag = 73,5 h</td>
<td></td>
</tr>
</tbody>
</table>

Seminar zur Unterstützung der Vor- und Nachbereitung der Praktikumsnachmittage:

<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>10341 Praktische Einführung in die Chemie (USL), schriftlich, eventuell mündlich, Gewichtung: 1.0, Testat aller Versuchsprotokolle</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>18. Grundlage für ... :</th>
<th>• 10380 Grundlagen der Anorganischen und Analytischen Chemie</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• 10390 Thermodynamik, Elektrochemie und Kinetik</td>
</tr>
<tr>
<td></td>
<td>• 10400 Organische Chemie I</td>
</tr>
</tbody>
</table>

19. Medienform:

20. Angeboten von: Chemie
Modul: 10490 Rechtskunde und Toxikologie für Chemiker

2. Modulkürzel: 030200009
5. Modulldauer: 1 Semester

3. Leistungspunkte: 3.0 LP

4. SWS: 2.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Otto Mundt

9. Dozenten:
• Heinz Weiss
• Michael Schwarz

10. Zuordnung zum Curriculum in diesem Studiengang:

 B.Sc. Technikpädagogik, PO 2011, 3. Semester
 ➔ Vorgezogene Master-Module

 B.Sc. Technikpädagogik, PO 2011, 3. Semester
 ➔ Wahlpflichtfach →Wahlpflichtfach Chemie

 M.Sc. Technikpädagogik, PO 2009, 3. Semester
 ➔ Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang
 ➔ Wahlpflichtfach B →Wahlpflichtfach Chemie

 M.Sc. Technikpädagogik, PO 2009, 3. Semester
 ➔ Wahlpflichtfach Chemie →Grundlagen Chemie

 M.Sc. Technikpädagogik, PO 2015, 3. Semester
 ➔ Wahlpflichtfach B →Wahlpflichtfach Chemie →Grundlagen Chemie

11. Empfohlene Voraussetzungen: -

12. Lernziele: Die Studierenden können die Sachkunde für das Inverkehrbringen von gefährlichen Stoffen und Zubereitungen gemäß § 5 Abs. 1 Nr. 7 der Chemikalienverbots-Verordnung nachweisen. Als zukünftige Entscheidungsträger und Verantwortliche für Sicherheit und Gesundheitsschutz haben sie die zur Wahrnehmung ihrer Verantwortung erforderliche Grundwissen erworben.

13. Inhalt:

 Allgemeine Toxikologie:
 Grundbegriffe und Definitionen in der Toxikologie; Grundlagen der Lehre über unerwünschte Wirkungen von Substanzen auf lebende Organismen und das Ökosystem; Zusammenhänge zwischen Exposition, Expositionsduer, Toxikokinetik (Resorption, Verteilung, Metabolismus, Elimination), Toxikodynamik und Wirkmechanismen; Grenzwerte und Beurteilungsparameter; Wirkung ausgewählter Stoffe und Stoffklassen.

 Rechtskunde:
kennen. Sicherheitswissenschaftliche Grundlagen werden insbesondere hinsichtlich der Gefährdungsermittlung, Risikobewertung und der Gefahrenabwehr vermittelt.

14. Literatur:

Allgemeine Toxikologie:

Rechtskunde:
Die in der Vorlesung zu behandelnden Vorschriften unterliegen einem ständigen Wandel. Deshalb entsprechen auch in den nachfolgend aufgeführten Werken die Angaben zum Regelwerk nicht in allen Punkten dem aktuellen Stand.

Vorlesungsunterlagen mit dem jeweils aktuellen Stand werden einige Tage vor Beginn eines neuen Zyklus gegen Kostenersatz abgegeben. Näheres ist der entsprechenden Vorlesungsankündigung zu entnehmen.

15. Lehrveranstaltungen und -formen: 104901 Vorlesung Rechtskunde und Toxikologie für Chemiker

16. Abschätzung Arbeitsaufwand: Vorlesung
Präsenz: 2 SWS * 14 Wochen 28 h
Vor- und Nachbereitung: 1,5 h pro Präsenzstunde 42 h

Abschlussklausuren incl. Vorbereitung 20 h

Summe: 90 h

17. Prüfungsnummer/n und -name:
- 10491 Einführung in die Toxikologie (USL), schriftliche Prüfung, 45 Min., Gewichtung: 1.0
- 10492 Rechtskunde für Chemiker (USL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
Anorganische Chemie
5032 Erweiterte Themenbereiche zur Chemie

Zugeordnete Module:

10390 Thermodynamik, Elektrochemie und Kinetik
10400 Organische Chemie I
32200 Strukturaufklärung
Modul: 10400 Organische Chemie I

2. Modulkürzel: 030610006 5. Moduldaurer: 1 Semester

4. SWS: 16.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Sabine Laschat

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Technikpädagogik, PO 2009, 3. Semester
 ➔ Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang -->Wahlpflichtfach B -->Wahlpflichtfach Chemie
 ➔ M.Sc. Technikpädagogik, PO 2009, 3. Semester
 ➔ Wahlpflichtfach A -->Wahlpflichtfach Chemie -->Erweiterte Themenbereiche zur Chemie
 ➔ M.Sc. Technikpädagogik, PO 2009, 3. Semester
 ➔ Wahlpflichtfach B -->Wahlpflichtfach Chemie -->Erweiterte Themenbereiche zur Chemie
 ➔ M.Sc. Technikpädagogik, PO 2015, 3. Semester
 ➔ Wahlpflichtfach A -->Wahlpflichtfach Chemie -->Erweiterte Themenbereiche zur Chemie
 ➔ M.Sc. Technikpädagogik, PO 2015, 3. Semester
 ➔ Wahlpflichtfach B -->Wahlpflichtfach Chemie -->Erweiterte Themenbereiche zur Chemie

11. Empfohlene Voraussetzungen:

12. Lernziele:
Die Studierenden
 • kennen die organisch-chemischen Stoffklassen, ihre Reaktionen und Reaktionsmechanismen,
 • fertigen einfache einstufige Präparate (Addition, Eliminierung, Substitution, Oxidation, Reduction, Aromaten- und Carbonylgruppen-Reaktionen, Heterocyclen-Reaktionen) an,
 • beherrschen die Charakterisierung der Produkte,
 • gehen mit Chemikalien, Geräten und Abfällen sachgerecht um und
 • protokollieren Versuche übersichtlich und nachvollziehbar.

13. Inhalt:

Alkane
Homologe Reihe, Eigenschaften, Darstellung, radikale Substitution, Struktur/Reaktivität/Selektivität von Radikalen, Hammond-Postulat

Cycloalkane
Kleine/Normale/Mittlere/Große Ringe, physikalische Eigenschaften, Ringspannung (Baeyer-, Pitzer-Spannung), Bindungskonzepte, Eigenschaften, Konformationen (z.B. Twist, Sessel, Wanne)

Alkene
Homologe Reihe, Eigenschaften, Darstellung, katalytische Hydrierung, radikale Addition, elektrophile Addition (Markovnikov-Regel), Stereoselektivität
Alkine
Eigenschaften, Acetylid-Anionen und Folgereaktionen, katalytische Hydrierung, Reduktion, elektrophile Addition

Konjugierte Systeme
Bindungsverhältnisse, Darstellung von Dienen, elektrophile 1,2- versus 1,4-Addition (kinetische/thermodynamische Kontrolle), Pericyclische Reaktionen (Diels-Alder-Cycloaddition, endo-Regel, Reversibilität)

Aromaten
Eigenschaften, Beispiele für (4n+2)p-Systeme, Heteroaromaten, elektrophile aromatische Substitution, Mehrfachsubstitution, Substituenteneffekte, nucleophile aromatische Substitution, Reduktion, Diazotierung und Folgereaktionen, Azofarbstoffe

Halogenverbindungen
Eigenschaften, Darstellung, halogenierte Kohlenwasserstoffe, Reaktionen, nucleophile Substitution, Eliminierung

Alkohole
Homologe Reihe, Eigenschaften, Darstellung, Oxidation von primären/ sekundären/tertiären Alkoholen, Veresterung, nucleophile Substitution, Eliminierung, Umlagerung

Phenole und Chinone
Eigenschaften, Oxidation, Darstellung, Bromierung, Kolbe-Synthese, Claisen-Umlagerung

Ether
Eigenschaften, Darstellung, Etherspaltung, Epoxide, Darstellung, Ringöffnung, Kronenether

Schwefelverbindungen
Eigenschaften, Darstellung, Oxidation, biologisch relevante Schwefelverbindungen

Amine
Eigenschaften, Struktur, Bindung, Darstellung, Reaktionen

Metallorganische Verbindungen
Eigenschaften, Struktur, Darstellung, Reaktionen

Aldehyde, Ketone
Struktur, Bindung, Eigenschaften, Darstellung, nucleophile Addition, Oxidation, Reduktion

Carbonsäuren
Struktur, Bindung, Eigenschaften, Fette, Darstellung, Substitution über Addition/Eliminierung, Veresterung, Amidbildung

14. Literatur:
s. gesonderte Liste des aktuellen Semesters

15. Lehrveranstaltungen und -formen:
• 104001 Vorlesung Organische Chemie I
• 104002 Seminar Organische Chemie I
• 104003 Praktikum Organische Chemie I

16. Abschätzung Arbeitsaufwand:
Vorlesung
Präsenzstunden: 64 h Experimentalvorlesung = 64 h
Vor- und Nachbereitung: 1.25 h pro Präsenzstd. = 80 h

Seminar
Präsenzstunden: 14 Wo x 1.5 h = 21 h
Vor- und Nachbereitung: 30 h

Praktikum
30 Tage Halbtagspraktikum à 5 h pro Tag = 150 h
Vorbereitung u. Protokollführung: 15 Versuche à 1h = 15 h

Summe: 360 h

| 17. Prüfungsnummer/n und -name: | 10401 Organische Chemie I (PL), schriftliche Prüfung, Gewichtung: 1.0, Prüfungsvorleistung: 2 Übungsklausuren mit mindestens 50 % der Punkte bestanden alle Versuchsprotokolle testiert
| | V Vorleistung (USL-V), schriftliche Prüfung |
| 18. Grundlage für ...: | 10430 Organische Chemie II
	10450 Grundlagen der Makromolekularen Chemie
19. Medienform:	
20. Angeboten von:	
Modul: 32200 Strukturaufklärung

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>030620020</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. Modulverantwortlicher:</th>
<th>Univ.-Prof. Clemens Richert</th>
</tr>
</thead>
</table>
| 9. Dozenten: | • Hans-Joachim Massonne
• Michael Hunger
• Dietrich Gudat
• Clemens Richert
• Birgit Claasen |

10. Zuordnung zum Curriculum in diesem Studiengang:

- M.Sc. Technikpädagogik
 - Wahlpflichtfach A --> Wahlpflichtfach Chemie --> Erweiterte Themenbereiche zur Chemie
 - Wahlpflichtfach B --> Wahlpflichtfach Chemie --> Erweiterte Themenbereiche zur Chemie
 - Wahlpflichtfach A --> Wahlpflichtfach Chemie --> Erweiterte Themenbereiche zur Chemie
 - Wahlpflichtfach B --> Wahlpflichtfach Chemie --> Erweiterte Themenbereiche zur Chemie

11. Empfohlene Voraussetzungen:

keine

12. Lernziele:

Die Studierenden verstärken ihre Problemlösungsfähigkeit, Kreativität, Selbständigkeit und Leistungsfähigkeit. Sie lernen

- komplexe Probleme zu analysieren
- unterschiedliche Datenquellen zusammen zu führen
- die Identität von Verbindungen aufzuklären.

Bei der gemeinsamen Bearbeitung von Aufgaben werden Denkfähigkeit, Begründungs- und Bewertungsfähigkeit sowie Kommunikations- und Kooperationsfähigkeit verbessert.

13. Inhalt:

Dieser Kurs fördert die fachübergreifende Kompetenz der Studierenden, indem er Strategien zur Bewältigung von komplexen Problemen, die eine Kombination von Techniken erfordern, vermittelt. Die Betonung liegt dabei auf Methoden für die spektroskopische Strukturaufklärung wie ein- und zweidimensionale NMR-Spektroskopie von Lösungen und festen Proben, Massenspektrometrie und Röntgen-Spektroskopie. Es werden u.a. kombinierte Techniken, Probenvorbereitung, Simulationen von Spektren, Auflösungsvermögen, qualitative und quantitative Aspekte behandelt.

Der Kurs unterstützt die Studierenden bei der Identifizierung neuer Verbindungen. Dabei steht die praktische Anleitung zur Lösung spektroskopischer Probleme im Vordergrund. Dies kann Fragestellungen, wie sie sich im Rahmen von Bachelor-Arbeiten
ergeben, einschließen. Die wichtigsten Lösungsstrategien werden an
Hand der spektroskopischen Methoden vorgestellt und die Interpretation
der Daten wird an ausgewählten, praxisnahen Beispielen geübt.
Dabei werden neben fachübergreifenden Aspekten auch fachaffine
Informationen sowie logische Vorgehensweisen gelehrt.

14. Literatur:

- Manfred Hesse, Herbert Meier, Bernd Zeeh, Spektroskopische
 Methoden in der organischen Chemie, 7., überarbeitete Auflage 2005,
 Georg Thieme Verlag, Stuttgart

15. Lehrveranstaltungen und -formen:

- 322001 Vorlesung Strukturaufklärung
- 322002 Übung Strukturaufklärung

16. Abschätzung Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>Stunden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung</td>
<td>28</td>
</tr>
<tr>
<td>Übungen</td>
<td>28</td>
</tr>
<tr>
<td>Abschlussprüfung</td>
<td>20</td>
</tr>
<tr>
<td>Summe</td>
<td>86</td>
</tr>
</tbody>
</table>

17. Prüfungsnummer/n und -name:

- 32201 Strukturaufklärung (USL), schriftliche Prüfung, 60 Min.,
 Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
Modul: 10390 Thermodynamik, Elektrochemie und Kinetik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>030710005</th>
<th>5. Modulduer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>9.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Frank Gießelmann</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Dozenten der Physikalischen Chemie</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.Sc. Technikpädagogik, PO 2009, 2. Semester → Wahlpflichtfach A → Wahlpflichtfach Chemie → Erweiterte Themenbereiche zur Chemie</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.Sc. Technikpädagogik, PO 2009, 2. Semester → Wahlpflichtfach B → Wahlpflichtfach Chemie → Erweiterte Themenbereiche zur Chemie</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.Sc. Technikpädagogik, PO 2015, 2. Semester → Wahlpflichtfach A → Wahlpflichtfach Chemie → Erweiterte Themenbereiche zur Chemie</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.Sc. Technikpädagogik, PO 2015, 2. Semester → Wahlpflichtfach B → Wahlpflichtfach Chemie → Erweiterte Themenbereiche zur Chemie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Einführung in die Chemie</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mathematik für Chemiker, Teil I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>Die Studierenden</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>verstehen die Konzepte der chemischen Thermodynamik, der Elektrochemie und der Kinetik chemischer Reaktionen und wenden diese problembereorrientiert an,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>beherrschen die Grundlagen physikalisch-chemischer Meßmethoden in Theorie und Praxis und</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>können experimentelle Daten anhand thermodynamischer und kinetischer Modelle kritisch analysieren.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Elektrochemie: Elektrochemisches Gleichgewicht, galvanische Zellen, Elektrodenpotentiale, Elektrolyse.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kinetik: Grundbegriffe und Messmethoden der Reaktionskinetik, einfache Geschwindigkeitsgesetzte (Formalkinetik), Kinetik zusammengesetzter Reaktionen, Temperaturabhängigkeit der</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Geschwindigkeitskonstanten, homogene und heterogene Katalyse, Einführung in die Theorie der Elementarreaktionen.

14. Literatur:

15. Lehrveranstaltungen und -formen:
• 103901 Vorlesung Thermodynamik, Elektrochemie und Kinetik (PC I)
• 103902 Übung Thermodynamik, Elektrochemie und Kinetik (PC I)
• 103903 Praktikum Thermodynamik, Elektrochemie und Kinetik (PC I)

16. Abschätzung Arbeitsaufwand:
Vorlesung
Präsenzstunden: 4 SWS * 14 Wochen = 56 h
Vor- und Nachbereitung: 2 h pro Präsenzstunde = 112 h

Übung
Präsenzstunden: 2 SWS * 12 Wochen = 24 h
Vor- und Nachbereitung: 2 h pro Präsenzstunde = 48 h
1 Übungsklausur = 2 h

Praktikum
10 Versuche à 4 h = 40 h
Vorbereitung u. Protokoll: 6 h pro Versuch = 60 h
Abschlussprüfung incl. Vorbereitung: 18 h

Gesamt: 360 h

17. Prüfungsnummer/n und -name:
• 10391 Thermodynamik, Elektrochemie und Kinetik (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0,
• V Vorleistung (USL-V), Sonstiges, Übungsteilnahme, Übungsklausur bestanden, alle Versuchsprotokolle testiert

18. Grundlage für ... :
• 10410 Instrumentelle Analytik
• 10450 Grundlagen der Makromolekularen Chemie
• 10460 Technische Chemie

19. Medienform:

20. Angeboten von: Chemie
5040 Wahlpflichtfach Deutsch

<table>
<thead>
<tr>
<th>Zugeordnete Module</th>
<th>19580</th>
<th>Ergänzungsmodul 1: Literatur im Kommunikationsprozess</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5041</td>
<td>Grundlagen Deutsch</td>
</tr>
<tr>
<td></td>
<td>5042</td>
<td>Linguistischer Spezialisierungsbereich</td>
</tr>
<tr>
<td></td>
<td>5043</td>
<td>Fachaffine bzw. facherweiternde Schlüsselqualifikationen</td>
</tr>
</tbody>
</table>
5041 Grundlagen Deutsch

Zugeordnete Module:
19500 Einführung in die Literaturwissenschaft
19530 Einführung in die Linguistik
19540 Literatur im kulturgeschichtlichen Kontext
19560 Grammatische Analyse (Kernmodul 3)
Modul: 19530 Einführung in die Linguistik

2. Modulkürzel: 091000401
5. Modulduauer: 1 Semester

3. Leistungspunkte: 12.0 LP

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Jürgen Pafel
9. Dozenten: Ulrich Lutz

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technikpädagogik, PO 2011, 3. Semester
→ Vorgezogene Master-Module

B.Sc. Technikpädagogik, PO 2011, 3. Semester
→ Wahlpflichtfach -->Wahlpflichtfach Deutsch

M.Sc. Technikpädagogik, PO 2009, 1. Semester
→ Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang -->Wahlpflichtfach B -->Wahlpflichtfach Deutsch

M.Sc. Technikpädagogik, PO 2009, 1. Semester
→ Wahlpflichtfach B -->Wahlpflichtfach Deutsch -->Grundlagen Deutsch

M.Sc. Technikpädagogik, PO 2015, 1. Semester
→ Wahlpflichtfach B -->Wahlpflichtfach Deutsch -->Grundlagen Deutsch

11. Empfohlene Voraussetzungen: keine

12. Lernziele:
• Kenntnis der grammatische Grundbegriffe und Überblick über die verschiedenen Ebenen der linguistischen Analyse
• Ein erster Einblick in die Komplexität des sprachlichen Systems mit seinen relativ autonomen, aber interagierenden Ebenen
• Fähigkeit, ausgewählte sprachliche Phänomene mit linguistischen Grundbegriffen zu beschreiben

13. Inhalt:
Das Seminar vermittelt die Grundlagen der Analyse des Deutschen auf der phonetisch-phonologischen, morphologischen, syntaktischen, semantischen und pragmatischen Ebene. In dem begleitenden Tutorium werden die Inhalte in Kleingruppen diskutiert und durch Analyseaufgaben geübt und vertieft.

14. Literatur:
• Meibauer, J. et al. (22007). Einführung in die germanistische Linguistik. Stuttgart.
• Folien auf ILIAS
• Aufgabenblätter

15. Lehrveranstaltungen und -formen: 195301 Vorlesung Einführung in die Linguistik

16. Abschätzung Arbeitsaufwand:
Präsenzzeit (Vorlesung und Tutorium): 48 h
Selbststudium (Vor- und Nachbereitung): 312 h
Summe: 360 h

17. Prüfungsnummer/n und -name: 19531 Einführung in die Linguistik (PL), schriftliche Prüfung, Gewichtung: 1.0, Analyseaufgaben und Klausur (90 Minuten)

18. Grundlage für ... :
19. Medienform:

20. Angeboten von: Germanistische Linguistik
Modul: 19500 Einführung in die Literaturwissenschaft

2. Modulkürzel: 091140001
5. Moduldauer: 2 Semester
3. Leistungspunkte: 9.0 LP
4. SWS: 5.0
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Andrea Albrecht
9. Dozenten:

10. Zuordnung zum Curriculum in diesem Studiengang:

| B.Sc. Technikpädagogik, PO 2011, 3. Semester | Vorgezogene Master-Module |
| M.Sc. Technikpädagogik, PO 2015, 1. Semester | Wahlpflichtfach B --> Wahlpflichtfach Deutsch --> Grundlagen Deutsch |

11. Empfohlene Voraussetzungen: keine

12. Lernziele:

Die Einführung befähigt dazu:

- lyrische, dramatische und erzählende Texte zu verstehen, zu unterscheiden und einzuordnen
- wissenschaftliche Texte zu ermitteln, auszuwählen und kritisch mit ihnen umzugehen
- schriftliche Arbeiten nach wissenschaftlichen Standards zu verfassen

13. Inhalt:

14. Literatur:

Zur Anschaffung empfohlene Literatur:

- Dieter Burdorf: Einführung in die Gedichtanalyse.
- Silke Lahn / Jan Christoph Meister: Einführung in die Erzähltextanalyse.
- Bernhard Asmuth: Einführung in die Dramenanalyse.
- Claudius Sittig: Arbeitstechniken Germanistik.

15. Lehrveranstaltungen und -formen:

- 195001 Vorlesung Einführung in die Literaturwissenschaft
- 195002 Seminar Einführung in die Literaturwissenschaft
16. Abschätzung Arbeitsaufwand:

<table>
<thead>
<tr>
<th></th>
<th>Präsenzzeit:</th>
<th>42 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selbststudium (Vor- und Nachbereitung):</td>
<td>228 h</td>
<td></td>
</tr>
<tr>
<td>Summe:</td>
<td>270 h</td>
<td></td>
</tr>
</tbody>
</table>

17. Prüfungsnummer/n und -name:

- 195003 Übung Einführung in die Literaturwissenschaft
- 19501 Einführung in die Literaturwissenschaft - Klausur (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0
- 19502 Einführung in die Literaturwissenschaft - Hausarbeit (LBP), schriftliche Prüfung, 0 Min., Gewichtung: 1.0, Hausarbeit im Umfang von 12-15 Seiten.

18. Grundlage für ... :

19540 Literatur im kulturgeschichtlichen Kontext

19. Medienform:

20. Angeboten von:

Neue Deutsche Literatur II
Modul: 19560 Grammatische Analyse (Kernmodul 3)

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>091000402</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modulbeginn:</td>
<td>2 Semester, WiSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Jürgen Pafel</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Jürgen Pafel
• Manuela Korth
• Natalia Tkachuk |
→ Vorgezogene Master-Module
→ B.Sc. Technikpädagogik, PO 2011, 5. Semester
→ Wahlpflichtfach -->Wahlpflichtfach Deutsch
→ M.Sc. Technikpädagogik, PO 2009, 4. Semester
→ Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang -->Wahlpflichtfach B -->Wahlpflichtfach Deutsch
→ M.Sc. Technikpädagogik, PO 2009, 4. Semester
→ Wahlpflichtfach B -->Wahlpflichtfach Deutsch -->Grundlagen Deutsch
→ M.Sc. Technikpädagogik, PO 2015, 4. Semester
→ Wahlpflichtfach B -->Wahlpflichtfach Deutsch -->Grundlagen Deutsch
| 11. Empfohlene Voraussetzungen: | Einführung in die Linguistik |
| 12. Lernziele: | • Vertiefung der syntaktischen Kenntnisse aus dem Basismodul
• erster Einblick in die Schnittstelle zwischen Syntax und Semantik
• sichere Anwendung der syntaktischen Kenntnisse bei der Analyse von Wortgruppen und Sätzen
• sichere Anwendung von basalen satzsemantischen Begriffen |
| 13. Inhalt: | • Durchgang durch die verschiedenen Aspekte der grammatischen Analyse (Wortarten, Flexion, Satzglieder, Konstituentenstruktur)
• Elemente der Satzsemantik und ihr Verhältnis zur Syntax (insb. syntaktische und semantische Valenz) |
• Online-Übungen auf ILIAS |
| 15. Lehrveranstaltungen und -formen: | • 195601 Proseminar Grammatische Analyse
• 195602 Tutorium Grammatische Analyse |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit (Vorlesung und Tutorial): 42 h
Selbststudium (Vor- und Nachbereitung): 138 h
Summe: 180 h |
| 17. Prüfungsnummer/n und -name: | 19561 Grammatische Analyse (Kernmodul 3) (PL), schriftliche Prüfung, Gewichtung: 1.0, Analyseaufgaben und Klausur (90 Minuten) |

Stand: 07. Oktober 2015
18. Grundlage für ... :

<table>
<thead>
<tr>
<th>19. Medienform:</th>
<th>Linguistikstudium online (ILIAS), diverse digitale und konventionelle Lehrmaterialien</th>
</tr>
</thead>
<tbody>
<tr>
<td>20. Angeboten von:</td>
<td>Germanistische Linguistik</td>
</tr>
</tbody>
</table>
Modul: 19540 Literatur im kulturgeschichtlichen Kontext

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>091130002</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>12.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modul dauer:</td>
<td>2 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Sandra Richter</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td></td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- **B.Sc. Technikpädagogik, PO 2011, 5. Semester**
 - Vorgezogene Master-Module

- **B.Sc. Technikpädagogik, PO 2011, 5. Semester**
 - Wahlpflichtfach --> Wahlpflichtfach Deutsch

- **M.Sc. Technikpädagogik, PO 2009, 3. Semester**
 - Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang --> Wahlpflichtfach B --> Wahlpflichtfach Deutsch

- **M.Sc. Technikpädagogik, PO 2009, 3. Semester**
 - Wahlpflichtfach B --> Wahlpflichtfach Deutsch --> Grundlagen Deutsch

- **M.Sc. Technikpädagogik, PO 2015, 3. Semester**
 - Wahlpflichtfach B --> Wahlpflichtfach Deutsch --> Grundlagen Deutsch

11. Empfohlene Voraussetzungen:

- **BM 1: Einführung in die Literaturwissenschaft**
- **BM 2: Kanonische Texte**

12. Lernziele:

- Ausgehend von literarischen Texten können die Studierenden kulturgeschichtliche Kontexte identifizieren und beschreiben.
- Die Studierenden können die Relevanz eines jeweiligen Kontextes für einen bestimmten Text erklären und Interpretationsvorschläge erarbeiten.
- Schließlich können sie die Bedeutung des jeweiligen Kontextes für einen literarischen Text gewichten und die entsprechende Forschungsliteratur bewerten.

13. Inhalt:

- Literatur entsteht in historisch variablen Kontexten und kann unter Bezugnahme auf diese Kontexte verstanden werden
- Gegenstand des Moduls ist die Literatur in ihrer Korrelation zu kulturellen, sozialen und politischen Kontexten, insbesondere zu anderen Künsten, zu Wissenschaften, zu Philosophie und Religion
- Die im Einführungsmodul erlernten literaturwissenschaftlichen Techniken und Methoden sollen dabei vertieft werden

14. Literatur:

15. Lehrveranstaltungen und -formen:
• 195401 Seminar Literatur im kulturgeschichtlichen Kontext
• 195402 Vorlesung Literatur im kulturgeschichtlichen Kontext

16. Abschätzung Arbeitsaufwand:

Präsenzzeit:	42 h
Selbststudium (Vor- und Nachbereitung):	318 h
(Das Selbststudium wird durch Tutorien unterstützt)	
Summe:	**360 h**

17. Prüfungsnummer/n und -name:
• 19541 Literatur im kulturgeschichtlichen Kontext - Hausarbeit (LBP), schriftliche Prüfung, Gewichtung: 1.0, Hausarbeit im Umfang von 12-15 Seiten.
• 19542 Literatur im kulturgeschichtlichen Kontext - Klausur (LBP), schriftliche Prüfung, 90 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:

20. Angeboten von: Neue Deutsche Literatur I
5042 Linguistischer Spezialisierungsbereich

Zugeordnete Module:

- 19610 Morphologie (Ergänzungsmodul)
- 19620 Syntax I (Ergänzungsmodul)
- 19630 Pragmatik I (Ergänzungsmodul)
- 19640 Sprachgeschichte (Ergänzungsmodul)
Modul: 19610 Morphologie (Ergänzungsmodul)

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>091000404</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modulduer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Jürgen Pafel</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Natalia Tkachuk
| | • Eva-Maria Uebel |
| | M.Sc. Technikpädagogik → Wahlpflichtfach B → Wahlpflichtfach Deutsch → Ergänzungswahlbereich Linguistik 1 |
| | M.Sc. Technikpädagogik → Wahlpflichtfach B → Wahlpflichtfach Deutsch → Linguistischer Spezialisierungsbereich |
| | M.Sc. Technikpädagogik → Wahlpflichtfach A → Wahlpflichtfach Deutsch → Linguistischer Spezialisierungsbereich |
| | M.Sc. Technikpädagogik → Wahlpflichtfach B → Wahlpflichtfach Deutsch → Linguistischer Spezialisierungsbereich |

| 11. Empfohlene Voraussetzungen: | Basismodul Linguistik |
| 12. Lernziele: | • breite Kenntnisse der Morphologie des Deutschen
| | • Vertiefung der Fähigkeit zur morphologischen Analyse
| | • Vertrautheit mit linguistischen Argumentationsformen
| | • Fähigkeit, wissenschaftliche Texte zu lesen |
| 13. Inhalt: | • Einführung in die verschiedenen Gebiete der Flexion und Wortbildung des Deutschen
| | • Einführung in die wichtigsten morphologischen Theorien |
| 15. Lehrveranstaltungen und -formen: | • 196101 Proseminar Morphologie
| | • 196102 Tutorium Morphologie
| | • 196103 Seminar Morphologie |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit (Vorlesung und Tutorium): 42 h
| | Selbstdstudium (Vor- und Nachbereitung): 138 h
	Summe: 180 h
17. Prüfungsnummer/n und -name:	19611 Morphologie (Ergänzungsmodul) (PL), schriftliche Prüfung, Gewichtung: 1.0, Analyseaufgaben und Klausur (90 Minuten)
18. Grundlage für ...:	
19. Medienform:	
20. Angeboten von: Germanistische Linguistik
Modul: 19630 Pragmatik I (Ergänzungsmodul)

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>091000406</th>
<th>5. Modulduer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

| 8. Modulverantwortlicher: | Univ.-Prof. Jürgen Pafel |
| 9. Dozenten: | Antje Roßdeutscher, Daniella Schenkenhofer |

	→ Wahlpflichtfach A → Wahlpflichtfach Deutsch → Linguistischer Spezialisierungsbereich
	→ M.Sc. Technikpädagogik
	→ Wahlpflichtfach B → Wahlpflichtfach Deutsch → Ergänzungswahlbereich Linguistik 1
	→ M.Sc. Technikpädagogik
	→ Wahlpflichtfach B → Wahlpflichtfach Deutsch → Linguistischer Spezialisierungsbereich
	→ M.Sc. Technikpädagogik
	→ Wahlpflichtfach A → Wahlpflichtfach Deutsch → Linguistischer Spezialisierungsbereich
	→ M.Sc. Technikpädagogik
	→ Wahlpflichtfach B → Wahlpflichtfach Deutsch → Linguistischer Spezialisierungsbereich

| 11. Empfohlene Voraussetzungen: | Basismodul Linguistik |

12. Lernziele:	• vertiefte Kenntnisse pragmatischer Phänomenbereiche und pragmatischer Theorien
	• erster Einblick in die Schnittstelle zwischen Semantik und Pragmatik
	• Fähigkeit zur pragmatischen Analyse
	• Vertrautheit mit linguistischen Argumentationsformen
	• Fähigkeit, wissenschaftliche Texte zu lesen

| 13. Inhalt: | • Einführung in die Gebiete der Pragmatik: Deixis, Sprechakte, Implikatur, Präsupposition, Konversationsstruktur |
| | • Darstellung der Relevanz kontextueller Information bei der Interpretation von Ausdrücken sowie der Rolle von pragmatischen Schlüssen |

| | • Reader sowie Skripte auf ILIAS |

15. Lehrveranstaltungen und -formen:	• 196301 Proseminar Pragmatik I
	• 196302 Tutorium Pragmatik I
	• 196303 Seminar Pragmatik I

16. Abschätzung Arbeitsaufwand:	Präsenzzeit (Vorlesung und Tutorial): 42 h
	Selbststudium (Vor- und Nachbereitung): 138 h
	Summe: 180 h

Stand: 07. Oktober 2015
<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>19631 Pragmatik I (Ergänzungsmodul) (PL), schriftlich, eventuell mündlich, Gewichtung: 1.0, Endklausur (90 Minuten) - sowie je nach Kurs Hausaufgaben bzw. Referat und/oder Zwischenklausur (90 Minuten)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Germanistische Linguistik</td>
</tr>
</tbody>
</table>
Modul: 19640 Sprachgeschichte (Ergänzungsmodul)

2. Modulkürzel: 091000407
5. Modulduauer: 1 Semester

3. Leistungspunkte: 6.0 LP
6. Turnus: unregelmäßig

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Jürgen Pafel

9. Dozenten: Manuela Korth

10. Zuordnung zum Curriculum in diesem Studiengang:
 M.Sc. Technikpädagogik
 → Wahlpflichtfach A --> Wahlpflichtfach Deutsch --> Linguistischer Spezialisierungsbereich
 →
 M.Sc. Technikpädagogik
 → Wahlpflichtfach B --> Wahlpflichtfach Deutsch --> Ergänzungswahlbereich Linguistik 1
 →
 M.Sc. Technikpädagogik
 → Wahlpflichtfach B --> Wahlpflichtfach Deutsch --> Linguistischer Spezialisierungsbereich
 →
 M.Sc. Technikpädagogik
 → Wahlpflichtfach A --> Wahlpflichtfach Deutsch --> Linguistischer Spezialisierungsbereich
 →
 M.Sc. Technikpädagogik
 → Wahlpflichtfach A --> Wahlpflichtfach Deutsch --> Linguistischer Spezialisierungsbereich
 →
 M.Sc. Technikpädagogik
 → Wahlpflichtfach B --> Wahlpflichtfach Deutsch --> Linguistischer Spezialisierungsbereich
 →

11. Empfohlene Voraussetzungen: linguistische Kernmodule

12. Lernziele:
 • Grundkenntnisse der Sprachgeschichte des Deutschen
 • Einblick in die Gesetzmäßigkeiten des Sprachwandels auf den verschiedenen Ebenen der Sprache
 • Analyse von sprachlichem Material ausgewählter diachroner Varietäten

13. Inhalt:
 • Die verschiedenen diachronen Phasen des Deutschen werden vorgestellt
 • Das Phänomen des Sprachwandels wird auf den verschiedenen Ebenen der Sprache behandelt, theoretische Ansätze zur Erklärung von Sprachwandelpheomenen vorgestellt

14. Literatur:

15. Lehrveranstaltungen und -formen:
 • 196401 Proseminar Sprachgeschichte
 • 196402 Tutorium Sprachgeschichte

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit (Vorlesung und Tutorium): 42 h
 Selbststudium (Vor- und Nachbereitung): 138 h
 Summe: 180 h
<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>19641 Sprachgeschichte (Ergänzungsmodul) (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0, Analyseaufgaben und Klausur (wahlweise Referat und Hausarbeit)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Germanistische Linguistik</td>
</tr>
</tbody>
</table>
Modul: 19620 Syntax I (Ergänzungsmodul)

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>091000405</th>
<th>5. Modulduer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Jürgen Pafel</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Jürgen Pafel
• Fabian Dirscherl
• Ulrich Lutz |
\(\arrow{\text{Wahlpflichtfach A --> Wahlpflichtfach Deutsch --> Linguistischer Spezialisierungsbereich}}\)
M.Sc. Technikpädagogik
\(\arrow{\text{Wahlpflichtfach B --> Wahlpflichtfach Deutsch --> Ergänzungswahlbereich Linguistik 1}}\)
M.Sc. Technikpädagogik
\(\arrow{\text{Wahlpflichtfach A --> Wahlpflichtfach Deutsch --> Linguistischer Spezialisierungsbereich}}\)
M.Sc. Technikpädagogik
\(\arrow{\text{Wahlpflichtfach B --> Wahlpflichtfach Deutsch --> Linguistischer Spezialisierungsbereich}}\)
M.Sc. Technikpädagogik
\(\arrow{\text{Wahlpflichtfach A --> Wahlpflichtfach Deutsch --> Linguistischer Spezialisierungsbereich}}\)
M.Sc. Technikpädagogik
\(\arrow{\text{Wahlpflichtfach B --> Wahlpflichtfach Deutsch --> Linguistischer Spezialisierungsbereich}}\) |
| 11. Empfohlene Voraussetzungen: | • gute Grundkenntnisse in der syntaktischen Analyse des Deutschen
• Kernmodul Grammatische Analyse |
| 12. Lernziele: | • breite Kenntnisse der Syntax des Deutschen
• Verständnis für den Aufbau von syntaktischen Theorien
• Vertiefung der Fähigkeit zur syntaktischen Analyse
• Vertrautheit mit linguistischen Argumentationsformen
• Fähigkeit, wissenschaftliche Texte zu lesen |
| 13. Inhalt: | • Vertiefung der Kenntnisse der Topologie des Deutschen (lineare Syntax)
• Durchgang durch zentrale empirische Phänomenbereiche des Deutschen (insb. Satzstruktur)
• Koordination und Koordinationsellipse |
| 15. Lehrveranstaltungen und -formen: | • 196201 Proseminar Syntax I
• 196202 Tutorium Syntax I
• 196203 Seminar Syntax I |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit (Vorlesung und Tutorium): 42 h
Selbststudium (Vor- und Nachbereitung): 138 h
Summe: 180 h |
<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>19621 Syntax I (Ergänzungsmodul) (PL), schriftliche Prüfung, Gewichtung: 1.0, Analyseaufgaben und Klausur (90 Minuten)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Germanistische Linguistik</td>
</tr>
</tbody>
</table>
5043 Fachaffine bzw. facherweiternde Schlüsselqualifikationen

Zugeordnete Module:

- 23550 Projektseminar 1: Germanistik
- 930190 Präsentieren und Moderieren: Kompetenzen für Studium und Beruf
- 930440 Unternehmenskommunikation
- 940070 Tutorien gestalten, Lerngruppen leiten
- 940090 Verantwortungsvoll führen
Modul: 23550 Projektseminar 1: Germanistik

2. Modulkürzel: 090000005
5. Moduldauer: -
3. Leistungspunkte: 3.0 LP
6. Turnus: unregelmäßig
4. SWS: 2.0
7. Sprache: -
8. Modulverantwortlicher: Univ.-Prof. Manuel Braun
9. Dozenten:

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Technikpädagogik
 → Studienprofil A - konsekutiver Studiengang --> Wahlpflichtfach A --> Wahlpflichtfach Deutsch
 →
M.Sc. Technikpädagogik
 → Wahlpflichtfach B --> Wahlpflichtfach Deutsch --> Fachaffine bzw. facherweiternde Schlüsselqualifikationen
 →
M.Sc. Technikpädagogik
 → Studienprofil A - konsekutiver Studiengang --> Wahlpflichtfach A --> Wahlpflichtfach Deutsch
 →
M.Sc. Technikpädagogik
 → Wahlpflichtfach B --> Wahlpflichtfach Deutsch --> Fachaffine bzw. facherweiternde Schlüsselqualifikationen
 →

11. Empfohlene Voraussetzungen:
12. Lernziele:
13. Inhalt:
14. Literatur:
15. Lehrveranstaltungen und -formen: 235501 Projektseminar 1 Germanistik
16. Abschätzung Arbeitsaufwand:
17. Prüfungsnummer/n und -name: 23551 Projektseminar 1: Germanistik (USL), schriftlich oder mündlich, Gewichtung: 1.0
18. Grundlage für ... :
19. Medienform:
20. Angeboten von: Germanistische Mediävistik
Modul: Präsentieren und Moderieren: Kompetenzen für Studium und Beruf

<table>
<thead>
<tr>
<th>Modulkürzel:</th>
<th>9300019</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Modulkürzel:</td>
<td>930190</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>3.0</td>
</tr>
<tr>
<td>5. Modulduer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td></td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- **M.Sc. Technikpädagogik**
 - Affines Wahlpflichtfach Elektro- und Informationstechnik --> Schlüsselqualifikationen fachübergreifend --> Kompetenzbereich 3: Kommunikative Kompetenzen
 - Energie- und Automatisierungstechnik --> Schlüsselqualifikationen fachübergreifend --> Kompetenzbereich 3: Kommunikative Kompetenzen
 - Spezialisierungsbereich --> Schlüsselqualifikationen fachübergreifend --> Kompetenzbereich 3: Kommunikative Kompetenzen
 - Studienprofil A - konsekutiver Studiengang --> Wahlpflichtfach A --> Wahlpflichtfach Deutsch
 - System- und Informationstechnik --> Schlüsselqualifikationen fachübergreifend --> Kompetenzbereich 3: Kommunikative Kompetenzen
 - WPF Energie- und Automatisierungstechnik --> Schlüsselqualifikationen fachübergreifend --> Kompetenzbereich 3: Kommunikative Kompetenzen
 - WPF System- und Informationstechnik --> Schlüsselqualifikationen fachübergreifend --> Kompetenzbereich 3: Kommunikative Kompetenzen
 - Wahlpflichtfach Deutsch --> Fachaffine bzw. facherweiternde Schlüsselqualifikationen

- **M.Sc. Technikpädagogik**
 - Wahlpflichtfach B --> Wahlpflichtfach Deutsch --> Fachaffine bzw. facherweiternde Schlüsselqualifikationen
Modulhandbuch: Master of Science Technikpädagogik

→ Energie- und Automatisierungstechnik -- Schlüsselqualifikationen fachübergreifend -- Kompetenzbereich 3: Kommunikative Kompetenzen

→ M.Sc. Technikpädagogik
 → Spezialisierungsbereich -- Schlüsselqualifikationen fachübergreifend -- Kompetenzbereich 3: Kommunikative Kompetenzen

→ M.Sc. Technikpädagogik
 → System- und Informationstechnik -- Schlüsselqualifikationen fachübergreifend -- Kompetenzbereich 3: Kommunikative Kompetenzen

→ M.Sc. Technikpädagogik
 → WPF Energie- und Automatisierungstechnik -- Schlüsselqualifikationen fachübergreifend -- Kompetenzbereich 3: Kommunikative Kompetenzen

→ M.Sc. Technikpädagogik
 → WPF System- und Informationstechnik -- Schlüsselqualifikationen fachübergreifend -- Kompetenzbereich 3: Kommunikative Kompetenzen

→ M.Sc. Technikpädagogik
 → Wahlpflichtfach B -- Wahlpflichtfach Deutsch -- Fachaffine bzw. facherweiternde Schlüsselqualifikationen

11. Empfohlene Voraussetzungen:

12. Lernziele:

13. Inhalt:

14. Literatur:

15. Lehrveranstaltungen und -formen:

16. Abschätzung Arbeitsaufwand:

17. Prüfungsnummer/n und -name:

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: Tutorien gestalten, Lerngruppen leiten
940070

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>9400007</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
<td>6. Turnus:</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>0.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher:

9. Dozenten:

10. Zuordnung zum Curriculum in diesem Studiengang:

M.Sc. Technikpädagogik
→ Affines Wahlpflichtfach Elektro- und Informationstechnik --
 >Schlüsselqualifikationen fachübergreifend -->Kompetenzbereich 4:
 Personale Kompetenzen
→

M.Sc. Technikpädagogik
→ Energie- und Automatisierungstechnik -->Schlüsselqualifikationen
 fachübergreifend -->Kompetenzbereich 4: Personale Kompetenzen
→

M.Sc. Technikpädagogik
→ Spezialisierungsbereich -->Schlüsselqualifikationen
 fachübergreifend -->Kompetenzbereich 4: Personale Kompetenzen
→

M.Sc. Technikpädagogik
→ System- und Informationstechnik -->Schlüsselqualifikationen
 fachübergreifend -->Kompetenzbereich 4: Personale Kompetenzen
→

M.Sc. Technikpädagogik
→ WPF Energie- und Automatisierungstechnik --
 >Schlüsselqualifikationen fachübergreifend -->Kompetenzbereich 4:
 Personale Kompetenzen
→

M.Sc. Technikpädagogik
→ WPF System- und Informationstechnik -->Schlüsselqualifikationen
 fachübergreifend -->Kompetenzbereich 4: Personale Kompetenzen
→

M.Sc. Technikpädagogik
→ Wahlpflichtfach B -->Wahlpflichtfach Deutsch -->Fachaffine bzw.
 fachweiternde Schlüsselqualifikationen
→

M.Sc. Technikpädagogik
→ Wahlpflichtfach Deutsch -->Schlüsselqualifikationen
 fachübergreifend -->Kompetenzbereich 4: Personale Kompetenzen
→

M.Sc. Technikpädagogik
→ Energie- und Automatisierungstechnik -->Schlüsselqualifikationen
 fachübergreifend -->Kompetenzbereich 4: Personale Kompetenzen
→

M.Sc. Technikpädagogik
→ Spezialisierungsbereich -->Schlüsselqualifikationen
 fachübergreifend -->Kompetenzbereich 4: Personale Kompetenzen
→

M.Sc. Technikpädagogik
→ System- und Informationstechnik -->Schlüsselqualifikationen
 fachübergreifend -->Kompetenzbereich 4: Personale Kompetenzen
M.Sc. Technikpädagogik
WPF Energie- und Automatisierungstechnik -- >Schlüsselqualifikationen fachübergreifend -->Kompetenzbereich 4: Personale Kompetenzen

M.Sc. Technikpädagogik
WPF System- und Informationstechnik -->Schlüsselqualifikationen fachübergreifend -->Kompetenzbereich 4: Personale Kompetenzen

M.Sc. Technikpädagogik
Wahlpflichtfach B -->Wahlpflichtfach Deutsch -->Fachaffine bzw. facherweiternde Schlüsselqualifikationen

11. Empfohlene Voraussetzungen:

12. Lernziele:

13. Inhalt:

14. Literatur:

15. Lehrveranstaltungen und -formen:

16. Abschätzung Arbeitsaufwand:

17. Prüfungsnummer/n und -name:

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Unternehmenskommunikation

Modul: 930440

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>9300044</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>5. Modul:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>unregelmäßig</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- M.Sc. Technikpädagogik
 - Affines Wahlpflichtfach Elektro- und Informationstechnik --> Schlüsselqualifikationen fachübergreifend --> Kompetenzbereich 3: Kommunikative Kompetenzen
 - Energie- und Automatisierungstechnik --> Schlüsselqualifikationen fachübergreifend --> Kompetenzbereich 3: Kommunikative Kompetenzen
 - Spezialisierungsbereich --> Schlüsselqualifikationen fachübergreifend --> Kompetenzbereich 3: Kommunikative Kompetenzen
 - Studienprofil A - konsekutiver Studiengang --> Wahlpflichtfach A --> Wahlpflichtfach Deutsch
 - System- und Informationstechnik --> Schlüsselqualifikationen fachübergreifend --> Kompetenzbereich 3: Kommunikative Kompetenzen
 - WPF Energie- und Automatisierungstechnik --> Schlüsselqualifikationen fachübergreifend --> Kompetenzbereich 3: Kommunikative Kompetenzen
 - WPF System- und Informationstechnik --> Schlüsselqualifikationen fachübergreifend --> Kompetenzbereich 3: Kommunikative Kompetenzen
 - Wahlplichtfach B --> Wahlpflichtfach Deutsch --> Fachaffine bzw. facherweiternde Schlüsselqualifikationen

- M.Sc. Technikpädagogik

Stand: 07. Oktober 2015
→ Energie- und Automatisierungstechnik -->Schlüsselqualifikationen fachübergreifend -->Kompetenzbereich 3: Kommunikative Kompetenzen

→ M.Sc. Technikpädagogik
 → Spezialisierungsbereich -->Schlüsselqualifikationen fachübergreifend -->Kompetenzbereich 3: Kommunikative Kompetenzen

→ M.Sc. Technikpädagogik
 → System- und Informationstechnik -->Schlüsselqualifikationen fachübergreifend -->Kompetenzbereich 3: Kommunikative Kompetenzen

→ M.Sc. Technikpädagogik
 → WPF Energie- und Automatisierungstechnik -->Schlüsselqualifikationen fachübergreifend -->Kompetenzbereich 3: Kommunikative Kompetenzen

→ M.Sc. Technikpädagogik
 → WPF System- und Informationstechnik -->Schlüsselqualifikationen fachübergreifend -->Kompetenzbereich 3: Kommunikative Kompetenzen

→ M.Sc. Technikpädagogik
 → Wahlpflichtfach B -->Wahlpflichtfach Deutsch -->Fachaffine bzw. facherweiternde Schlüsselqualifikationen
Modul: Verantwortungsvoll führen

<table>
<thead>
<tr>
<th>Modulkürzel:</th>
<th>940090</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Modulkürzel:</td>
<td>9400009</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>0.0</td>
</tr>
<tr>
<td>5. Modulduer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

Modulverantwortlicher:

Zuordnung zum Curriculum in diesem Studiengang:

- M.Sc. Technikpädagogik
 - Affines Wahlpflichtfach Elektro- und Informationstechnik -- Schlüsselqualifikationen fachübergreifend -- Kompetenzbereich 4: Personale Kompetenzen

- M.Sc. Technikpädagogik
 - Energie- und Automatisierungstechnik -- Schlüsselqualifikationen fachübergreifend -- Kompetenzbereich 4: Personale Kompetenzen

- M.Sc. Technikpädagogik
 - Spezialisierungsbereich -- Schlüsselqualifikationen fachübergreifend -- Kompetenzbereich 4: Personale Kompetenzen

- M.Sc. Technikpädagogik
 - System- und Informationstechnik -- Schlüsselqualifikationen fachübergreifend -- Kompetenzbereich 4: Personale Kompetenzen

- M.Sc. Technikpädagogik
 - WPF Energie- und Automatisierungstechnik -- Schlüsselqualifikationen fachübergreifend -- Kompetenzbereich 4: Personale Kompetenzen

- M.Sc. Technikpädagogik
 - WPF System- und Informationstechnik -- Schlüsselqualifikationen fachübergreifend -- Kompetenzbereich 4: Personale Kompetenzen

- M.Sc. Technikpädagogik
 - Wahlpflichtfach B -- Wahlpflichtfach Deutsch -- Fachaffine bzw. fachweiternde Schlüsselqualifikationen

- M.Sc. Technikpädagogik
 - Wahlpflichtfach Deutsch -- Schlüsselqualifikationen fachübergreifend -- Kompetenzbereich 4: Personale Kompetenzen

- M.Sc. Technikpädagogik
 - Energie- und Automatisierungstechnik -- Schlüsselqualifikationen fachübergreifend -- Kompetenzbereich 4: Personale Kompetenzen

- M.Sc. Technikpädagogik
 - Spezialisierungsbereich -- Schlüsselqualifikationen fachübergreifend -- Kompetenzbereich 4: Personale Kompetenzen

- M.Sc. Technikpädagogik
 - System- und Informationstechnik -- Schlüsselqualifikationen fachübergreifend -- Kompetenzbereich 4: Personale Kompetenzen
M.Sc. Technikpädagogik
 ➞ WPF Energie- und Automatisierungstechnik
 ➞ Schlüsselqualifikationen fachübergreifend
 ➞ Kompetenzbereich 4: Personale Kompetenzen

M.Sc. Technikpädagogik
 ➞ WPF System- und Informationstechnik
 ➞ Schlüsselqualifikationen fachübergreifend
 ➞ Kompetenzbereich 4: Personale Kompetenzen

M.Sc. Technikpädagogik
 ➞ Wahlpflichtfach B
 ➞ Wahlpflichtfach Deutsch
 ➞ Fachaffine bzw. facherweiternde Schlüsselqualifikationen

11. Empfohlene Voraussetzungen:

12. Lernziele:

13. Inhalt:

14. Literatur:

15. Lehrveranstaltungen und -formen:

16. Abschätzung Arbeitsaufwand:

17. Prüfungsnummer/n und -name:

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 19580 Ergänzungsmodul 1: Literatur im Kommunikationsprozess

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>6.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td></td>
<td></td>
<td>Univ.-Prof. Andrea Albrecht</td>
</tr>
<tr>
<td>10. Dozenten:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- M.Sc. Technikpädagogik, PO 2009, 1. Semester
 - Studienprofil A - konsekutiver Studiengang --> Wahlpflichtfach A --> Wahlpflichtfach Deutsch
 - Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang --> Wahlpflichtfach B --> Wahlpflichtfach Deutsch

- M.Sc. Technikpädagogik, PO 2015, 1. Semester
 - Studienprofil A - konsekutiver Studiengang --> Wahlpflichtfach A --> Wahlpflichtfach Deutsch
 - Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang --> Wahlpflichtfach B --> Wahlpflichtfach Deutsch

11. Empfohlene Voraussetzungen:

BM Einführung in die Literaturwissenschaft und KM Literatur im kulturgeschichtlichen Kontext

12. Lernziele:

- Die Studierenden können mündliche und schriftliche Äußerungen analysieren und ihre Transformationsmechanismen bestimmen.
- Sie können medienspezifische Vermittlungsformen und die Wechselbeziehungen zwischen den Medien analysieren, vergleichen und kritisch überprüfen sowie die Prozesse der Medienkooperation und Medienkonkurrenz untersuchen und auswerten.
- Sie sind in der Lage, literarische Gattungen als historische Kategorien zu beschreiben, zu analysieren und zu interpretieren, können auch mit Texten zur Gattungstheorie und Gattungsgeschichte kritisch umgehen.
- Sie können literarische Motive und Stoffe in ihrem gesellschaftshistorischen Kontext erkennen, vergleichen, analysieren und interpretieren.
- Das Modul befähigt die Studierenden dazu, die Formen und Mittel der Kommunikation zwischen den Wissensdiskursen zu analysieren und zu interpretieren.

13. Inhalt:

- Mündlichkeit und Schriftlichkeit
- Medialität und Intermediaität
- Literarische Gattungen - Gattungstheorie und Gattungsgeschichte
- Motiv- und Stoffgeschichte
- Kommunikative Wechselprozesse zwischen Wissensdiskursen

14. Literatur:

15. Lehrveranstaltungen und -formen:
 • 195801 Seminar Kommunikation
 • 195802 Übung 1 Kommunikation
 • 195803 Übung 2 Kommunikation

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 63 h
 Selbststudium (Vor- und Nachbereitung): 297 h
 Summe: 360 h

17. Prüfungsnummer/n und -name:
 • 19581 Ergänzungsmodul 1: Literatur im Kommunikationsprozess (LBP), schriftliche Prüfung, Gewichtung: 1.0, Hausarbeit im Umfang von 20-25 Seiten.
 • 19582 Ergänzungsmodul 1: Literatur im Kommunikationsprozess Übung 1 (USL), schriftlich oder mündlich, Gewichtung: 1.0, Art und Umfang der USL werden vom Dozenten zu Beginn des Semesters festgelegt.
 • 19583 Ergänzungsmodul 1: Literatur im Kommunikationsprozess Übung 2 (USL), schriftlich oder mündlich, Gewichtung: 1.0, Art und Umfang der USL werden vom Dozenten zu Beginn des Semesters festgelegt.

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Neue Deutsche Literatur II
5050 Wahlpflichtfach Englisch

Zugeordnete Module:

- 5051 Grundlagen Englisch
- 5052 Erweiterte Themenbereiche zu Englisch
5051 Grundlagen Englisch

Zugeordnete Module:

- 27120 Grundlagen der Literaturwissenschaft und der Linguistik
- 27140 Textwissenschaft
- 27150 Formal Basis
- 27160 Sprachpraxis 2
- 31800 Text und Kontext (Technikpädagogik)
- 31810 Linguistic Levels (Technikpädagogik)
- 41610 Sprachpraxis 1
Modul: 27150 Formal Basis

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>091010304</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Silke Fischer

9. Dozenten: • Marcel Pitteroff
• Sabine Mohr
• Durdica Zeljka Caruso
• Ekaterini Zobolou
• Patrick Lindert

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technikpädagogik ➞ Vorgezogene Master-Module

B.Sc. Technikpädagogik ➞ Wahlpflichtfach --> Wahlpflichtfach Englisch

M.Sc. Technikpädagogik ➞ Wahlpflichtfach B --> Wahlpflichtfach Englisch --> Grundlagen Englisch

M.Sc. Technikpädagogik ➞ Wahlpflichtfach B --> Wahlpflichtfach Englisch --> Grundlagen Englisch

11. Empfohlene Voraussetzungen: Grundlagen der Literaturwissenschaft und der Linguistik (Pflichtmodul 1)

12. Lernziele: Die Studierenden

• sind in der Lage, einfache morphologische Strukturen (Wort, Morphem) zu identifizieren und zu analysieren
• beherrschen die Grundlagen syntaktischer Analyse (z.B. Konstituententests)
• können die Grundprinzipien allgemeiner linguistischer Theorien nachvollziehen

13. Inhalt:

• einfache Wortbildungsprozesse
• Wortarten erkennen
• Unterscheidung von Argumenten und Adjunkten
• Phrasenstruktur, einfache Baumstrukturen (X'-Theorie)

14. Literatur:

15. Lehrveranstaltungen und -formen:

• 271501 Seminar Basic Sentence Structure
• 271502 Seminar Basics of Morphological Analysis

16. Abschätzung Arbeitsaufwand:

Präsenzzeit:	42 h
Selbststudium:	138 h
Summe:	180 h

17. Prüfungsnummer/n und -name:

• 27151 Formal Basis (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0, Klausur, die sich zu gleichen Teilen auf die Inhalte der beiden zugrundeliegenden Kurse bezieht; Vorleistung: Analyseaufgaben
<table>
<thead>
<tr>
<th></th>
<th>Vorleistung (USL-V), Sonstiges</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Linguistik/Anglistik</td>
</tr>
</tbody>
</table>
Modul: 27120 Grundlagen der Literaturwissenschaft und der Linguistik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>091110301</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>8.0</td>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. Modulverantwortlicher:</th>
<th>Saskia Schabio</th>
</tr>
</thead>
<tbody>
<tr>
<td>9. Dozenten:</td>
<td>Silke Fischer</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- B.Sc. Technikpädagogik, PO 2011, 1. Semester
 - Vorgezogene Master-Module
- B.Sc. Technikpädagogik, PO 2011, 1. Semester
 - Wahlpflichtfach --> Wahlpflichtfach Englisch
- M.Sc. Technikpädagogik, PO 2009, 1. Semester
 - Wahlpflichtfach B --> Wahlpflichtfach Englisch --> Grundlagen
 - Englisch
- M.Sc. Technikpädagogik, PO 2015, 1. Semester
 - Wahlpflichtfach B --> Wahlpflichtfach Englisch --> Grundlagen
 - Englisch

11. Empfohlene Voraussetzungen:

- keine

12. Lernziele:

- erlangen Kenntnis der Grundelemente der verschiedenen Kernbereiche der Linguistik (Phonetik, Phonologie, Morphologie, Syntax, Semantik)
- entwickeln Verständnis für die Grundlagen linguistischer Theorie, insbesondere der Universalgrammatik
- gewinnen Einblick in die verschiedenen Teilbereiche des Faches in seiner literatur- und kulturwissenschaftlichen Ausrichtung
- erlangen Kenntnis grundlegender fachwissenschaftlicher Begriffe, Theorien und Methoden
- erwerben die Fähigkeit zu gattungsbezogener Anwendung textanalytischer Methoden
- verstehen den Konstruktcharakter von Literaturgeschichte (Periodisierung)
- lernen grundlegende Techniken und Hilfsmittel literatur- und kulturwissenschaftlicher Forschung (Literaturrecherche und kritischer Umgang mit Sekundärliteratur) kennen und anwenden

13. Inhalt:

- Prinzipien der Kommunikation
- Grundlagen der menschlichen Sprachfähigkeit
- Einführung in Phonetik/Phonologie, Morphologie, Syntax, Semantik
- beispielhafte Beschäftigung mit einer Auswahl von literatur- und kulturwissenschaftlichen Referenzwerken
- beispielhafte Lektüre einer Auswahl kanonisierter Schlüsseltexte von der frühen Neuzeit bis zur Gegenwart, die zugleich einen ersten Überblick über Gattungsgeschichte und gattungsspezifische Herangehensweisen vermittelt

14. Literatur:

- Reader "Introduction to Linguistics"

15. Lehrveranstaltungen und -formen:
• 271201 Seminar Introduction to Literary Studies
• 271202 Seminar Introduction to Linguistics
• 271203 Übung Literary Studies
• 271204 Übung Linguistics

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 84 h
Selbststudium: 186 h
Summe: 270 h

17. Prüfungsnummer/n und -name:
• 27121 Klausur Literaturwissenschaft (PL), schriftliche Prüfung, 90 Min., Gewichtung: 25.0, Vorleistungen: Analyseaufgaben, Referat
• 27122 Hausarbeit Lyrikinterpretation (PL), schriftliche Prüfung, Gewichtung: 25.0, Vorleistungen: Analyseaufgaben, Referat
• 27123 Klausur Linguistik (PL), schriftlich, eventuell mündlich, 90 Min., Gewichtung: 50.0, Vorleistungen: Analyseaufgaben, Referat
• V Vorleistung (USL-V), schriftlich, eventuell mündlich

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 31810 Linguistic Levels (Technikpädagogik)

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>-</th>
<th>5. Moduldauer:</th>
<th>2 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Silke Fischer

9. Dozenten:
- Sabine Zerbian
- Silke Fischer
- Gianina-Nicoleta Iordachioaia
- Sabine Mohr
- Georgios Spathas
- Durdica Zeljka Caruso
- Fabian Schubö
- Florian Schäfer
- Heidi Altmann
- Marcel Pitteroff

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>B.Sc. Technikpädagogik</th>
<th>→ Vorgezogene Master-Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>→ Wahlpflichtfach -->Wahlpflichtfach Englisch</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M.Sc. Technikpädagogik</th>
<th>→ Wahlpflichtfach B -->Wahlpflichtfach Englisch -->Grundlagen Englisch</th>
</tr>
</thead>
<tbody>
<tr>
<td>→</td>
<td></td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen:

12. Lernziele:

13. Inhalt:

14. Literatur:

15. Lehrveranstaltungen und -formen: 318101 Linguistic Levels

16. Abschätzung Arbeitsaufwand:

17. Prüfungsnummer/n und -name:
- 31811 Linguistic Levels (Technikpädagogik) (USL), Sonstiges, Gewichtung: 1.0
- 31812 Linguistic Levels (Technikpädagogik) (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0
- 31813 Linguistic Levels (Technikpädagogik) (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 41610 Sprachpraxis 1

2. Modulkürzel: 091010302 5. Moduldaurer: 1 Semester
4. SWS: 4.0 7. Sprache: Englisch

8. Modulverantwortlicher: Amanda Renee Kahrsch

9. Dozenten: • Beate Kaebel • Amanda Renee Kahrsch • Monika Müller • Jennifer Pyroth • Ericka Seifried

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technikpädagogik, PO 2011, 1. Semester
→ Vorgezogene Master-Module

B.Sc. Technikpädagogik, PO 2011, 1. Semester
→ Wahlpflichtfach -->Wahlpflichtfach Englisch

M.Sc. Technikpädagogik, PO 2009, 1. Semester
→ Wahlpflichtfach B -->Wahlpflichtfach Englisch -->Grundlagen Englisch

M.Sc. Technikpädagogik, PO 2015, 1. Semester
→ Wahlpflichtfach B -->Wahlpflichtfach Englisch -->Grundlagen Englisch

11. Empfohlene Voraussetzungen:

12. Lernziele:

Die Studierenden
- werden systematisch in unterschiedliche Formen des Übersetzens eingeführt und
- verbessern ihre Übersetzungsfähigkeiten und Übersetzungs techniken an praktischen Beispielen
- bauen ihre sprachpraktischen Fähigkeiten im Bereich schriftlicher Ausdrucksfähigkeit entscheidend aus

13. Inhalt:

• Übersetzungsübung
• Erweiterung bzw. situationsbezogene Stabilisierung des Wortschatzes und der generellen lexikalischen Ausdrucksfähigkeit

14. Literatur:

• Gordon Taylor, A Student's Writing Guide: How to Cambridge: Plan and Write Successful Essays,
Cambridge UP, 2009
• im Kurs gestellte Themen und Texte

15. Lehrveranstaltungen und -formen:

• 416101 Sprachpraktische Übung Translation
• 416102 Sprachpraktische Übung Essay Writing

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 42 h
Selbststudium: 48 h
Summe: 90 h

17. Prüfungsnummer/n und -name:
• 41611 Sprachpraxis 1 (PL), schriftlich, eventuell mündlich,
 Gewichtung: 1.0
• V Vorleistung (USL-V), schriftlich, eventuell mündlich

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 27160 Sprachpraxis 2

2. Modulkürzel: 091010305
5. Moduldauer: 1 Semester
3. Leistungspunkte: 3.0 LP
6. Turnus: jedes 2. Semester, SoSe
4. SWS: 4.0
7. Sprache: Englisch

8. Modulverantwortlicher: Heidi Altmann

9. Dozenten:
• Heidi Altmann
• Beate Kaebel
• Amanda Renee Kahrsch
• Monika Müller
• Jennifer Pyroth
• Ericka Seifried

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technikpädagogik ➔ Vorgezogene Master-Module
B.Sc. Technikpädagogik ➔ Wahlpflichtfach → Wahlpflichtfach Englisch
M.Sc. Technikpädagogik ➔ Wahlpflichtfach B → Wahlpflichtfach Englisch → Grundlagen Englisch
M.Sc. Technikpädagogik ➔ Wahlpflichtfach B → Wahlpflichtfach Englisch → Grundlagen Englisch

11. Empfohlene Voraussetzungen: Sprachpraxis 1 (Pflichtmodul 2)

12. Lernziele:
Die Studierenden
- erweitern ihre Ausdrucksfähigkeit im Bereich der Wortwahl auf fortgeschrittenem Niveau (Stil, erweiterter Wortschatz)
- bauen ihre sprachpraktischen Fähigkeiten beim Erwerb nativ klingender Aussprache (RP/GA) im Gegensatz zu typischem Schulenglisch entscheidend aus

13. Inhalt:
- Erweiterung bzw. situationsbezogene Stabilisierung des Wortschatzes und der generellen lexikalischen Ausdrucksfähigkeit
- Grundlagen phonetisch-phonologischer Struktur,
Artikulatorische Grundlagen, Kenntnis der Eigenschaften standardmäßiger britischer und amerikanischer Aussprache

14. Literatur:
- im Kurs gestellte tagesaktuelle Themen und Texte
- Humphreys, R.: Your words, your world, Stuttgart: Klett, 2001

15. Lehrveranstaltungen und -formen:
 • 271601 Sprachpraktische Übung Lexicon and Phraseology
 • 271602 Sprachpraktische Übung Phonetic Practice

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 42 h
 Selbststudium: 48 h
 Summe: 90 h

17. Prüfungsnummer/n und -name:
 • 27161 Sprachpraxis 2, Klausur Lexicon and Phraseology (PL (PL), schriftliche Prüfung, 60 Min., Gewichtung: 50.0, Vorleistungen: improvisierte Gesprächssituationen, Wortschatzübungen; Transkriptionsübungen, Aussprachedemonstrationen
 • 27162 Sprachpraxis 2, Klausur Phonetic Practice (PL (PL), schriftlich, eventuell mündlich, 20 Min., Gewichtung: 50.0, Vorleistungen: improvisierte Gesprächssituationen, Wortschatzübungen; Transkriptionsübungen, Aussprachedemonstrationen
 • V Vorleistung (USL-V), schriftlich, eventuell mündlich

18. Grundlage für ... :
 27210 Sprachpraxis 3

19. Medienform:

20. Angeboten von:
Modul: 31800 Text und Kontext (Technikpädagogik)

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>5. Modulduauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>6.0 LP</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. SWS:</th>
<th>7. Sprache:</th>
<th>Deutsch</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. Modulverantwortlicher:</th>
<th>9. Dozenten:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Univ.-Prof. Renate Brosch</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10. Zuordnung zum Curriculum in diesem Studiengang:</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.Sc. Technikpädagogik</td>
</tr>
<tr>
<td>➔ Vorgezogene Master-Module</td>
</tr>
<tr>
<td>B.Sc. Technikpädagogik</td>
</tr>
<tr>
<td>➔ Wahlpflichtfach -->Wahlpflichtfach Englisch</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik</td>
</tr>
<tr>
<td>➔ Wahlpflichtfach B -->Wahlpflichtfach Englisch -->Grundlagen Englisch</td>
</tr>
<tr>
<td>➔</td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik</td>
</tr>
<tr>
<td>➔ Wahlpflichtfach B -->Wahlpflichtfach Englisch -->Grundlagen Englisch</td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen:

12. Lernziele:

13. Inhalt:

14. Literatur:

15. Lehrveranstaltungen und -formen: 318001 Vorlesung Text und Kontext (Technikpädagogik)

16. Abschätzung Arbeitsaufwand:

17. Prüfungsnummer/n und -name: 31801 Text und Kontext (Technikpädagogik) (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
Modul: 27140 Textwissenschaft

2. Modulkürzel: 091110303 5. Modulduauer: 1 Semester

4. SWS: 3.0 7. Sprache: Englisch

8. Modulverantwortlicher: Univ.-Prof. Walter Göbel

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technikpädagogik
 → Vorgezogene Master-Module
 B.Sc. Technikpädagogik
 → Wahlpflichtfach → Wahlpflichtfach Englisch
 →
 M.Sc. Technikpädagogik
 → Wahlpflichtfach B → Wahlpflichtfach Englisch → Grundlagen Englisch
 →
 M.Sc. Technikpädagogik
 → Wahlpflichtfach B → Wahlpflichtfach Englisch → Grundlagen Englisch
 →

11. Empfohlene Voraussetzungen: Grundlagen der Literaturwissenschaft und der Linguistik (Pflichtmodul 1)

12. Lernziele:
 Die Studierenden
 • lernen ein Spektrum von Theorien der cultural studies kennen
 • machen sich mit Grundbegriffen verschiedener Literaturtheorien vertraut
 • können unterschiedliche theoretische Modelle auf literarische Texte und visuelle Medien anwenden

13. Inhalt:
 • Grundbegriffe verschiedener Kultur- und Literaturtheorien vom Formalismus bis zum Poststrukturalismus
 • Analyse exemplarischer Werke mit Hilfe unterschiedlicher Theorieansätze

14. Literatur:
 Online-VL Literatur- und Kulturtheorien

15. Lehrveranstaltungen und -formen:
 • 271401 Online-Vorlesung Literary and Cultural Theory
 • 271402 Seminar Textual Analysis

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 31,5 h
 Selbststudium: 148,5 h
 Summe: 180 h

17. Prüfungsnummer/n und -name:
 • 27141 Textwissenschaft (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0, Vorleistung: 1 Kurzvortrag
 • V Vorleistung (USL-V), schriftlich, eventuell mündlich

18. Grundlage für ...:
 27170 Text und Kontext

19. Medienform:

20. Angeboten von:
5052 Erweiterte Themenbereiche zu Englisch

<table>
<thead>
<tr>
<th>Zugeordnete Module</th>
<th>Beispielbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>27200</td>
<td>Language and Cognition</td>
</tr>
<tr>
<td>27210</td>
<td>Sprachpraxis 3</td>
</tr>
<tr>
<td>27240</td>
<td>Varieties</td>
</tr>
<tr>
<td>41030</td>
<td>Kolloquium Literaturwissenschaft und Linguistik (Technikpädagogik)</td>
</tr>
<tr>
<td>50060</td>
<td>Interculturality</td>
</tr>
<tr>
<td>50070</td>
<td>Textformen</td>
</tr>
</tbody>
</table>
Modul: 50060 Interculturality

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>091110321</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>5. Modulbauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Walter Göbel</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Walter Göbel</td>
</tr>
</tbody>
</table>
→ Wahlpflichtfach B --> Wahlpflichtfach Englisch --> Erweiterte Themenbereiche zu Englisch
→ M.Sc. Technikpädagogik
→ Wahlpflichtfach Englisch --> Erweiterte Themenbereiche zu Englisch --> Erweiterte Themenbereiche zu Englisch Interculturality oder Textformen
→ M.Sc. Technikpädagogik
→ Wahlpflichtfach Englisch --> Erweiterte Themenbereiche zu Englisch
→ M.Sc. Technikpädagogik
→ Wahlpflichtfach Englisch --> Erweiterte Themenbereiche zu Englisch
→ Erweiterte Themenbereiche zu Englisch Interculturality oder Textformen |
| 11. Empfohlene Voraussetzungen: | Zwischenprüfung |
| 12. Lernziele: | Die Studierenden
gewinnen einen Überblick über die Literaturen der Terranglia
lernen die Grundbegriffe postkolonialer Theorie kennen
erarbeiten die Grundlagen interkultureller Kommunikation
beschreiben mündliche und schriftliche Gattungsmuster der Terranglia
lernen ihr Wissen auf exemplarische Texte der Terranglia anzuwenden |
| 13. Inhalt: | Grundbegriffe der postkolonialen Literatur und Literaturtheorie
exemplarische Lektüre und Analyse von Texten der Terranglia
komparatistische Darstellung verschiedener Literaturen und Kulturen |
| 15. Lehrveranstaltungen und -formen: | 500601 Seminar Interculturality |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 21 h
Selbststudium: 159 h
Summe: 180 h |
| 17. Prüfungsnummer/n und -name: | 50061 Interculturality (PL), schriftliche Prüfung, Gewichtung: 1.0 |
| 18. Grundlage für ... : | |
| 19. Medienform: | |
| 20. Angeboten von: | |
Modul: 41030 Kolloquium Literaturwissenschaft und Linguistik (Technikpädagogik)

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>091010426</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>9.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Moduldauner:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Artemis Alexiadou</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td></td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- **M.Sc. Technikpädagogik**
 - Wahlpflichtfach A --> Wahlpflichtfach Englisch --> Erweiterte Themenbereiche zu Englisch

- **M.Sc. Technikpädagogik**
 - Wahlpflichtfach B --> Wahlpflichtfach Englisch --> Erweiterte Themenbereiche zu Englisch

- **M.Sc. Technikpädagogik**
 - Wahlpflichtfach A --> Wahlpflichtfach Englisch --> Erweiterte Themenbereiche zu Englisch

- **M.Sc. Technikpädagogik**
 - Wahlpflichtfach B --> Wahlpflichtfach Englisch --> Erweiterte Themenbereiche zu Englisch

11. Empfohlene Voraussetzungen:

Englisch im Studiengang Technikpädagogik M.Sc. (Studienprofil A und Studienprofil B), Interculturality (Vertiefungsmodul 1a) oder Textformen (Vertiefungsmodul 1b) und Varieties (Vertiefungsmodul 2a) oder Language and Cognition (Vertiefungsmodul 2b)

12. Lernziele:

Die Studierenden

- vertiefen den Stoff des vorausgegangenen Studiums
- erweitern den literaturhistorischen Überblick mit Kenntnis stilistischer und rhetorischer Besonderheiten im jeweiligen kulturellen Kontext
- sind fähig, literatur- und kulturwissenschaftliche Theorieansätze und Methoden zu vergleichen
- sichern und vertiefen ihre Kenntnisse des wissenschaftsgeschichtlichen und philosophischen Hintergrundes zu Hauptwerken der englischsprachigen Literatur
- bestätigen ihr Verständnis der wichtigsten Prinzipien linguistischer Theorie
- demonstrieren solides Wissen in allen Bereichen linguistischer Disziplinen (Phonetik, Phonologie, Morphologie, Syntax, Semantik)
- sind in der Lage ihre Erkenntnisse mit wissenschaftlicher Methodik darzustellen und sich auf individuelle Spezialgebiete zu fokussieren
13. Inhalt:

- Überblick über die Geschichte der englischsprachigen Literatur anhand von Fallbeispielen
- Diskussion von Texten zu Poetik und Ästhetik
- Präsentation von Lernmaterialien und Bibliographien
- Simulation von Prüfungs situationen
- Prinzipien linguistischer Theorie und deren Manifestation in sprachspezifischen Phänomenen
- Wortbildung, Phonetik/Phonologie des Englischen, Sprachgeschichte, syntaktische Strukturen, Semantik

14. Literatur:

- Ina Schabert (Hg.), Shakespeare-Handbuch, München: Kröner, 2009
- Hubert Zapf (Hg.), Amerikanische Literaturgeschichte, Stuttgart: Metzler, 2004
- Hans Ulrich Seeber (Hg.), Englische Literaturgeschichte, Stuttgart, Metzler, 2004
- Linguistik- verschiedene wissenschaftliche Artikel

15. Lehrveranstaltungen und -formen:

- 410301 Kolloquium Literaturwissenschaft
- 410302 Kolloquium Linguistik

16. Abschätzung Arbeitsaufwand:

Präsenzeit:	42 h
Selbststudium:	228 h
Summe:	**270 h**

17. Prüfungsnummer/n und -name:

41031 Kolloquium Literaturwissenschaft und Linguistik (Technikpädagogik) (PL), mündliche Prüfung, Gewichtung: 0.0, Vorleistung: Lernmaterialien und Bibliographien mündliche Modulabschlussprüfung: Literaturwissenschaft 0.5, Linguistik

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 27200 Language and Cognition

2. Modulkürzel: 091010309 5. Modulduer: 1 Semester
4. SWS: 2.0 7. Sprache: Englisch

8. Modulverantwortlicher: Heidi Altmann
9. Dozenten: • Artemis Alexiadou • Heidi Altmann • Sabine Zerbian

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>M.Sc. Technikpädagogik</th>
<th>Wahlpflichtfach B -- Wahlpflichtfach Englisch -- Erweiterte Themenbereiche zu Englisch</th>
</tr>
</thead>
<tbody>
<tr>
<td>M.Sc. Technikpädagogik</td>
<td>Wahlpflichtfach Englisch -- Erweiterte Themenbereiche zu Englisch -- Erweiterte Themenbereiche zu Englisch Varieties oder Language and Cognition</td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik</td>
<td>Wahlpflichtfach B -- Wahlpflichtfach Englisch -- Erweiterte Themenbereiche zu Englisch</td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik</td>
<td>Wahlpflichtfach Englisch -- Erweiterte Themenbereiche zu Englisch -- Erweiterte Themenbereiche zu Englisch Varieties oder Language and Cognition</td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen: Zwischenprüfung

12. Lernziele: Die Studierenden

• verstehen die Rolle kognitiver Prozesse bei Sprachverarbeitung und -erwerb
• sind in der Lage die linguistischen, motorischen und perzeptiven Funktionen im Gehirn zu lokalisieren und sind sich der Äquivalenzen zwischen linguistisch-theoretischen und anatomisch-konkreten Modulen bewusst

13. Inhalt:

• Anatomie des Gehirns
• Untersuchungsmethoden (bildgebende Verfahren, Aphasien, Dysarthrien etc.)
• kognitive Prozesse
• Erst- und Zweispracherwerb

14. Literatur:

• Verschiedene wiss. Artikel

15. Lehrveranstaltungen und -formen: 272001 Seminar Cognitive Linguistics

16. Abschätzung Arbeitsaufwand:

Präsenzzeit:	21 h
Selbststudium:	159 h
Summe:	180 h
17. Prüfungsnr/n und -name:

- 27201 Language and Cognition, Klausur (PL), schriftliche Prüfung, 90 Min., Gewichtung: 50.0, Vorleistung: Referat
- 27202 Language and Cognition, Hausarbeit (PL), schriftlich, eventuell mündlich, Gewichtung: 50.0, Vorleistung: Referat
 Hausarbeit 6500 Wörter (Bearbeitungszeit: 6 Wochen)

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 27210 Sprachpraxis 3

2. Modulkürzel: 091010310
5. Moduldauer: 1 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0
7. Sprache: Englisch

8. Modulverantwortlicher: Amanda Renee Kahrsch

9. Dozenten:
• Amanda Renee Kahrsch
• Beate Kaebel
• Monika Müller
• Jennifer Pyroth
• Ericka Seifried

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Technikpädagogik
→ Wahlpflichtfach A --> Wahlpflichtfach Englisch --> Erweiterte Themenbereiche zu Englisch
→ M.Sc. Technikpädagogik
→ Wahlpflichtfach B --> Wahlpflichtfach Englisch --> Erweiterte Themenbereiche zu Englisch
→ M.Sc. Technikpädagogik
→ Wahlpflichtfach A --> Wahlpflichtfach Englisch --> Erweiterte Themenbereiche zu Englisch
→ M.Sc. Technikpädagogik
→ Wahlpflichtfach B --> Wahlpflichtfach Englisch --> Erweiterte Themenbereiche zu Englisch

11. Empfohlene Voraussetzungen: Zwischenprüfung

12. Lernziele:
Die Studierenden
• bauen ihre verbale Ausdrucksfähigkeit (Wortwahl, Stil, Aussprache) im (wiss.) Gespräch und Vortrag weiter auf muttersprachlerähnliches Niveau aus
• entwickeln hochstehende Übersetzungsfähigkeiten

13. Inhalt:
• Übersetzungsaufgaben
• Trainieren verbaler Ausdrucksfähigkeit (situationsbezogen)

14. Literatur:
im Kurs gestellte tagesaktuelle Themen und Texte aus Printmedien (NYT, Guardian, etc.) und audiovisuellen Medien (Filme und TV)
• New York Times
• The Guardian

15. Lehrveranstaltungen und -formen:
• 272101 Sprachpraktische Übung Translation 2
• 272102 Sprachpraktische Übung Verbal Communication

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 h
Selbststudium: 138 h
Summe: 180 h

17. Prüfungsnummer/n und -name:
• 27211 Übersetzungsklausur (PL), schriftliche Prüfung, 60 Min., Gewichtung: 50.0, Vorleistungen: Übersetzungsaufgaben, improvisierte Gesprächssituationen
• 27212 Bewertung verbaler Ausdrucksfähigkeit in Gespräch und Vortrag (PL), mündliche Prüfung, 20 Min., Gewichtung: 50.0, Vorleistungen: Übersetzungsübungen, improvisierte Gesprächssituationen

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 50070 Textformen

2. Modulkürzel: 091010308
5. Modulwdauer: 1 Semester

3. Leistungspunkte: 6.0 LP
6. Turnus: jedes 2. Semester, SoSe

4. SWS: 2.0
7. Sprache: Englisch

8. Modulverantwortlicher: Univ.-Prof. Walter Göbel

9. Dozenten: Walter Göbel

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Technikpädagogik
M.Sc. Technikpädagogik

11. Empfohlene Voraussetzungen: Zwischenprüfung

12. Lernziele:
Die Studierenden
• machen sich mit den grundlegenden gattungstheoretischen Modellen und deren Geltung vertraut
• gewinnen einen vertieften Einblick in die Entwicklung medialer Ausdrucks- und Vermittlungsformen und der ästhetischen Formen

13. Inhalt:
• Klassische Texte der Gattungstheorie
• Gattungshybride und Parodien
• exemplarische Bezüge zwischen Texten, Medien und Textsorten/Gattungen

14. Literatur:
• John Frow, Genre (The New Critical Idiom), New York: Taylor and Francis, 2005

15. Lehrveranstaltungen und -formen: 500701 Seminar Text and Genre

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 21 h
Selbststudium: 159 h
Summe: 180 h

17. Prüfungsnummer/n und -name: 50071 Textformen (PL), schriftliche Prüfung, Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
Modul: 27240 Varieties

2. Modulkürzel: 091010322

3. Leistungspunkte: 6.0 LP

4. SWS: 2.0

5. Modul: 27240 Varieties

7. Sprache: Englisch

8. Modulverantwortlicher: Univ.-Prof. Sabine Zerbian

9. Dozenten: • Sabine Zerbian
• Artemis Alexiadou

10. Zuordnung zum Curriculum in diesem Studiengang:

 M.Sc. Technikpädagogik, PO 2009, 1. Semester
 → Wahlpflichtfach B --> Wahlpflichtfach Englisch --> Erweiterte Themenbereiche zu Englisch

 M.Sc. Technikpädagogik, PO 2009, 1. Semester
 → Wahlpflichtfach Englisch --> Erweiterte Themenbereiche zu Englisch
 --> Erweiterte Themenbereiche zu Englisch Varieties oder Language and Cognition

 M.Sc. Technikpädagogik, PO 2015, 1. Semester
 → Wahlpflichtfach Englisch --> Wahlpflichtfach Englisch --> Erweiterte Themenbereiche zu Englisch

 M.Sc. Technikpädagogik, PO 2015, 1. Semester
 → Wahlpflichtfach Englisch --> Erweiterte Themenbereiche zu Englisch
 --> Erweiterte Themenbereiche zu Englisch Varieties oder Language and Cognition

11. Empfohlene Voraussetzungen: Zwischenprüfung

12. Lernziele: Die Studierenden

 • verfügen über detaillierte Kenntnisse der dialektalen und soziolektalen Varietäten des Englischen
 • erkennen Mechanismen der Diversifizierung und Distribution von Akzenten, Jargons etc.
 • verstehen deren Bedeutung für das Phänomen der Sprachentwicklung

13. Inhalt:

 • regionale Dialekte des Englischen
 • soziolektale Variation
 • Theorie der Sprach-/Dialektentwicklung und -verbreitung
 • Instrumente der Dialektbeschreibung

14. Literatur:

15. Lehrveranstaltungen und -formen: 272401 Seminar Dialectology

16. Abschätzung Arbeitsaufwand:

 Präsenzzeit: 21 h
 Selbststudium: 159 h
 Summe: 180 h

17. Prüfungsnummer/n und -name: • 27241 Varieties, Klausur 1 (PL), schriftliche Prüfung, 60 Min., Gewichtung: 50.0, Vorleistung: Analyseaufgaben

Stand: 07. Oktober 2015
• 27242 Varieties, Klausur 2 (PL), schriftliche Prüfung, 60 Min., Gewichtung: 50.0, Vorleistung: Analyseaufgaben
• V Vorleistung (USL-V), schriftliche Prüfung

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
5060 Wahlpflichtfach Ethik

Zugeordnete Module:
5061 Grundlagen Ethik (TP)
5062 Erweiterte Themenbereiche zur Ethik (TP)
5061 Grundlagen Ethik (TP)

Zugeordnete Module:

- 27100 Grundlagen der Philosophie
- 30380 Einführung in die Praktische Philosophie
- 30980 Grundlagen der Praktischen Philosophie
- 31150 Ethische Bewertung
Modul: 30380 Einführung in die Praktische Philosophie

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>091320191</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modulbeginn:</td>
<td>5. Modulbeginn:</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Catrin Misselhorn</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Gerhard Ernst</td>
</tr>
<tr>
<td></td>
<td>→ Vorgezogene Master-Module</td>
</tr>
<tr>
<td></td>
<td>→ Wahlpflichtfach Ethik</td>
</tr>
<tr>
<td></td>
<td>→ Wahlpflichtfach B --> Wahlpflichtfach Ethik</td>
</tr>
<tr>
<td></td>
<td>→ Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang --> Wahlpflichtfach B --> Wahlpflichtfach Ethik</td>
</tr>
<tr>
<td></td>
<td>→ Wahlpflichtfach B --> Wahlpflichtfach Ethik --> Grundlagen Ethik (TP)</td>
</tr>
<tr>
<td></td>
<td>→ Wahlpflichtfach B --> Wahlpflichtfach Ethik --> Grundlagen Ethik (TP)</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Modul 091320190</td>
</tr>
<tr>
<td>14. Literatur:</td>
<td>Literatursauswahl (exemplarisch)</td>
</tr>
<tr>
<td></td>
<td>1. Aristoteles: Nikomachische Ethik</td>
</tr>
<tr>
<td></td>
<td>2. Hobbes: Leviathan</td>
</tr>
<tr>
<td></td>
<td>3. Kant: Grundlegung zur Metaphysik der Sitten</td>
</tr>
<tr>
<td></td>
<td>4. Mill: Utilitarianism</td>
</tr>
<tr>
<td></td>
<td>5. Nietzsche: Genealogie der Moral</td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 303801 Seminar Einführung in die Praktische Philosophie</td>
</tr>
<tr>
<td></td>
<td>• 303802 Tutorium Einführung in die Praktische Philosophie</td>
</tr>
</tbody>
</table>

Stand: 07. Oktober 2015
16. Abschätzung Arbeitsaufwand:

- Präsenzzeit: 42 h
- Selbststudium: 138 h (davon 84 h Nachbereitung, 54 h Vertiefung)
- Summe: 180 h

17. Prüfungsnummer/n und -name:

<table>
<thead>
<tr>
<th>Prüfungsnummer/n</th>
<th>Name</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>30381</td>
<td></td>
<td>Einführung in die Praktische Philosophie (PL), Sonstiges, 90 Min., Gewichtung: 1.0</td>
</tr>
</tbody>
</table>

18. Grundlage für ...:

- Skripte/Reader, Thesenpapiere, Tafelbilder, Power-Point, Protokolle, Literatur zur Lektüre

19. Medienform:

- Skripte/Reader, Thesenpapiere, Tafelbilder, Power-Point, Protokolle, Literatur zur Lektüre

20. Angeboten von:
Modul: 31150 Ethische Bewertung

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>091320192</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>12.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modulprüfung:</td>
<td>2 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Apl. Prof. Andreas Luckner</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Martin Windisch
| | • Andreas Luckner
| | • Michael Weingarten
| | • Tillmann Pross
| | • Hans-Peter Goldberg
| | • Rolf Kretschmann
| | • Karl-Heinz Mamber
| | • Alexandra Popp
| | • Annette Ohme-Reinicke
| | • Eckhart Arnold
| | • Diana Del Carmen Aurenque Stephan |
| | → Vorgezogene Master-Module
| | B.Sc. Technikpädagogik, PO 2011, 1. Semester
| | → Wahlpflichtfach -->Wahlpflichtfach Ethik
| | M.Sc. Technikpädagogik, PO 2009, 1. Semester
| | → Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang -->Wahlpflichtfach B -->Wahlpflichtfach Ethik
| | M.Sc. Technikpädagogik, PO 2009, 1. Semester
| | → Wahlpflichtfach B -->Wahlpflichtfach Ethik -->Grundlagen Ethik (TP)
| | M.Sc. Technikpädagogik, PO 2015, 1. Semester
| | → Wahlpflichtfach B -->Wahlpflichtfach Ethik -->Grundlagen Ethik (TP)
| 11. Empfohlene Voraussetzungen: | Modul 091320190, 09132191, 09132193
| 13. Inhalt: | Grundlegende Ansätze und Methoden einer interdisziplinären angewandten Ethik; ethische Dimensionen und Fragen des jeweiligen Faches im Kontext der Bereichsethiken; Berufsethische Fragen; Gesellschaftliche Bedeutung des jeweiligen Faches (vgl. GymPO, Anlage D)
| 14. Literatur: | Materialien werden durch Dozenten bereitgestellt
| 15. Lehrveranstaltungen und -formen: | • 311501 EPG II, Seminar 1
| | • 311502 EPG II, Seminar 2
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 42 h
| | Selbststudium: 318 h
| | Summe: 360 h
| 17. Prüfungsnummer/n und -name: | • 31151 EPG II Hausarbeit 1 (LBP), mündliche Prüfung, 20 Min., Gewichtung: 0.5

Stand: 07. Oktober 2015
Seite 266 von 1124
• 31152 EPG II Hausarbeit 2 (LBP), mündliche Prüfung, Gewichtung: 0.5

18. Grundlage für ...

19. Medienform: Skripte/Reader, Thesenpapiere, Tafelbilder, Power-Point, Protokolle, Literatur zur Lektüre

20. Angeboten von:
Modul: 27100 Grundlagen der Philosophie

4. SWS: 4.0 7. Sprache: Deutsch
8. Modulverantwortlicher: Apl. Prof. Andreas Luckner
9. Dozenten: • Andreas Luckner
 • Ulrike Ramming
 • Gerhard Ernst
10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technikpädagogik, PO 2011, 1. Semester
 → Vorgezogene Master-Module
 B.Sc. Technikpädagogik, PO 2011, 1. Semester
 → Wahlpflichtfach -->Wahlpflichtfach Ethik
 →
 M.Sc. Technikpädagogik, PO 2009, 1. Semester
 → Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang -->Wahlpflichtfach B -->Wahlpflichtfach Ethik
 →
 M.Sc. Technikpädagogik, PO 2009, 1. Semester
 → Wahlpflichtfach B -->Wahlpflichtfach Ethik -->Grundlagen Ethik (TP)
 →
 M.Sc. Technikpädagogik, PO 2015, 1. Semester
 → Wahlpflichtfach B -->Wahlpflichtfach Ethik -->Grundlagen Ethik (TP)
 →
11. Empfohlene Voraussetzungen: keine
12. Lernziele: Die Studierenden gewinnen erste inhaltliche Einblicke in das Fach Philosophie und erlernen elementare Studentenkenken und philosophische Kompetenzen:
 • Sie können über die inhaltlichen Einblicke bestimmen, wodurch sich Philosophie sowohl von anderen wissenschaftlichen Disziplinen als auch von weltanschaulichen Privatmeinungen unterscheidet.
 • Sie erkennen Unterschiede in philosophischen Stilen, epochenspezifischen Textgattungen usw
 • Sie erhalten einen orientierenden Überblick über die systematische Entwicklung der philosophischen Kerndisziplinen in der Geschichte.
14. Literatur:
 Literaturauswahl (optional):
 1) Textauszüge von Platon bis zur Gegenwart (Reader)

15. Lehrveranstaltungen und -formen:

- 271001 Einführung in das Studium der Philosophie
- 271002 Tutorium zur Einführung in das Studium der Philosophie

16. Abschätzung Arbeitsaufwand:

- Präsenzzeit: 42 h
- Selbststudium: 138 h (davon 84h Nachbereitung, 54h Vertiefung)
- Summe: 180 h

17. Prüfungsnummer/n und -name:

- 27101 Grundlagen der Philosophie (LBP), schriftliche Prüfung, Gewichtung: 1.0

19. Medienform:

- Skripte/Reader, Thesenpapiere, Tafelbilder, Power-Point, Protokolle, Literatur zur Lektüre

20. Angeboten von:
Modul: 30980 Grundlagen der Praktischen Philosophie

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>091320193</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>15.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>6.0</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Catrin Misselhorn</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Andreas Luckner, Gerhard Ernst</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Technikpädagogik, PO 2011, 1. Semester, → Wahlpflichtfach → Wahlpflichtfach Ethik</td>
</tr>
<tr>
<td></td>
<td>M.Sc. Technikpädagogik, PO 2009, 1. Semester, → Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang → Wahlpflichtfach B → Wahlpflichtfach Ethik</td>
</tr>
<tr>
<td></td>
<td>M.Sc. Technikpädagogik, PO 2015, 1. Semester, → Wahlpflichtfach B → Wahlpflichtfach Ethik → Grundlagen Ethik (TP)</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Modul 091320190-91</td>
</tr>
<tr>
<td></td>
<td>• Fähigkeit zur Beurteilung und differenzierten Anwendung unterschiedlicher moralphilosophischer Begründungsstrategien.</td>
</tr>
<tr>
<td></td>
<td>• Erwerb von Kompetenzen, Konzepte aus dem Gebiet der praktischen Philosophie systematisch und historisch zu vergleichen und einzuordnen.</td>
</tr>
<tr>
<td></td>
<td>• Fähigkeit, klassische Positionen des Gebietes selbständig zu interpretieren und zu analysieren sowie neuere Diskussionen zu verstehen und ein Problem Bewusstsein auszubilden.</td>
</tr>
<tr>
<td>14. Literatur:</td>
<td>Literaturauswahl (optional):</td>
</tr>
<tr>
<td></td>
<td>1) Aristoteles: Nikomachische Ethik</td>
</tr>
<tr>
<td></td>
<td>2) Kant, Immanuel: Grundlegung zur Metaphysik der Sitten</td>
</tr>
<tr>
<td></td>
<td>3) Hobbes, Thomas: Leviathan</td>
</tr>
<tr>
<td></td>
<td>4) Mill, John Stuart: Utilitarism</td>
</tr>
</tbody>
</table>

15. Lehrveranstaltungen und -formen:
• 309801 Vorlesung Handlungstheorie und Ethik
• 309802 Seminar 1 zu einem oder mehreren klassischen Werken aus dem Bereich der praktischen Philosophie

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 63 h
Selbststudium: 387 h (davon 187 h Nachbereitung, 200 h Vertiefung)
Summe: 450 h

17. Prüfungsnummer/n und -name:
• 30981 Grundlagen der Praktischen Philosophie (LBP), mündliche Prüfung, 20 Min., Gewichtung: 0.5
• 30982 Grundlagen der Praktischen Philosophie Hausarbeit (PL), Sonstiges, Gewichtung: 0.5
• 30983 Grundlagen der Praktischen Philosophie Referat (USL), Sonstiges, Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:
Skripte/Reader, Thesenpapiere, Tafelbilder, Power-Point, Protokolle, Literatur zur Lektüre

20. Angeboten von:
5062 Erweiterte Themenbereiche zur Ethik (TP)

<table>
<thead>
<tr>
<th>Zugeordnete Module</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>16970</td>
<td>Mensch und Technik - Technikpädagogik</td>
</tr>
<tr>
<td>18670</td>
<td>Technikphilosophie und Technikethik - Technikpädagogik</td>
</tr>
<tr>
<td>58360</td>
<td>Anwendungsbezogene Ethik - Technikpädagogik</td>
</tr>
</tbody>
</table>
Modul: 58360 Anwendungsbezogene Ethik - Technikpädagogik

2. Modulkürzel: 091320194
5. Modulduauer: 1 Semester
3. Leistungspunkte: 12.0 LP
4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher:

9. Dozenten:

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>Modul</th>
<th>Leistungspunkte</th>
<th>Modulduauer</th>
<th>Turnus</th>
</tr>
</thead>
<tbody>
<tr>
<td>58360</td>
<td>12.0 LP</td>
<td>1 Semester</td>
<td>jedes 2. Semester, WiSe</td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen:

12. Lernziele:

13. Inhalt:

14. Literatur:

15. Lehrveranstaltungen und -formen:

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>583601</td>
<td>Integrierte Veranstaltung zu Themen der Anwendungsbezogenen Ethik 1</td>
</tr>
<tr>
<td>583602</td>
<td>Integrierte Veranstaltung zu Themen der Anwendungsbezogenen Ethik 2</td>
</tr>
</tbody>
</table>

16. Abschätzung Arbeitsaufwand:

17. Prüfungsnummer/n und -name: 58361 Hausarbeit (PL), Sonstiges, Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 16970 Mensch und Technik - Technikpädagogik

2. Modulkürzel: 091320196 5. Modulduauer: 1 Semester
4. SWS: 3.0 7. Sprache: Deutsch
8. Modulverantwortlicher: Apl. Prof. Andreas Luckner
9. Dozenten: • Andreas Luckner • Ulrike Ramming
10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Technikpädagogik, PO 2009, 2. Semester
 ➞ Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang --> Wahlpflichtfach B --> Wahlpflichtfach Ethik
 ➞ M.Sc. Technikpädagogik, PO 2009, 2. Semester
 ➞ Wahlpflichtfach A --> Wahlpflichtfach Ethik --> Erweiterte Themenbereiche zu Ethik
 ➞ M.Sc. Technikpädagogik, PO 2009, 2. Semester
 ➞ Wahlpflichtfach B --> Wahlpflichtfach Ethik --> Erweiterte Themenbereiche zur Ethik (TP)
 ➞ M.Sc. Technikpädagogik, PO 2015, 2. Semester
 ➞ Wahlpflichtfach A --> Wahlpflichtfach Ethik --> Erweiterte Themenbereiche zu Ethik
 ➞ M.Sc. Technikpädagogik, PO 2015, 2. Semester
 ➞ Wahlpflichtfach B --> Wahlpflichtfach Ethik --> Erweiterte Themenbereiche zur Ethik (TP)

11. Empfohlene Voraussetzungen: keine
13. Inhalt: In den philosophisch-anthropologischen Fragen nach dem Wesen des Menschen (mögliche Antworten vom „animal rationale“ (Aristoteles) über das „tool making animal“ (Franklin) bis hin zum „Mängelwesen“ (Gehlen)) sind jeweils zugleich die Grundlinien der Bestimmung dessen angelegt, was Technik ist: Von der Technik als Kompensation natürlicher Mängel bis hin zur Bestimmung von Technik als Medium.
14. Literatur: Literaturauswahl (exemplarisch):

15. Lehrveranstaltungen und -formen:
• 169701 Integrierte Veranstaltung zu Themen zu ausgewählten Themen aus den Bereichen von Anthrophologie und Technik
• 169702 Seminar zu einer oder mehreren klassischen Positionen der Technikphilosophie

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 h
Selbststudium: 228 h (davon 134 h Nachbereitung, 94 h Vertiefung)
Summe: 270 h

17. Prüfungsnummer/n und -name:
• 16971 Mensch und Technik (PL), mündliche Prüfung, Gewichtung: 0.5
• 16972 Mensch und Technik: Hausarbeit (LBP), schriftlich, eventuell mündlich, Gewichtung: 1.0
• V Vorleistung (USL-V), schriftlich, eventuell mündlich

19. Medienform:
Skripte/Reader, Thesenpapiere, Tafelbilder, Power-Point, Protokolle, Literatur zur Lektüre

20. Angeboten von:
Modul: 18670 Technikphilosophie und Technikethik - Technikpädagogik

2. Modulkürzel: 09132195
5. Modulduauer: 1 Semester

3. Leistungspunkte: 6.0 LP
6. Turnus: jedes 2. Semester, SoSe

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Apl. Prof. Andreas Luckner

9. Dozenten: • Andreas Luckner
• Ulrike Ramming
• Tillmann Pross

10. Zuordnung zum Curriculum in diesem Studiengang:

 M.Sc. Technikpädagogik, PO 2009, 3. Semester
 ➔ Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang -->Wahlpflichtfach B -->Wahlpflichtfach Ethik

 M.Sc. Technikpädagogik, PO 2009, 3. Semester
 ➔ Wahlpflichtfach A -->Wahlpflichtfach Ethik -->Erweiterte Themenbereiche zu Ethik

 M.Sc. Technikpädagogik, PO 2009, 3. Semester
 ➔ Wahlpflichtfach B -->Wahlpflichtfach Ethik -->Erweiterte Themenbereiche zur Ethik (TP)

 M.Sc. Technikpädagogik, PO 2015, 3. Semester
 ➔ Wahlpflichtfach A -->Wahlpflichtfach Ethik -->Erweiterte Themenbereiche zu Ethik

 M.Sc. Technikpädagogik, PO 2015, 3. Semester
 ➔ Wahlpflichtfach B -->Wahlpflichtfach Ethik -->Erweiterte Themenbereiche zur Ethik (TP)

11. Empfohlene Voraussetzungen: Modul 091320196

12. Lernziele: Studierende lernen

 • relevante theoriegeschichtliche Positionen der wissenschafts- und techniktheoretischen Reflexion kennen und hinsichtlich ihres systematischen Gehalts zu beurteilen und zu verorten;
 • die gegenwärtige technik- und wissenschaftstheoretische Diskussion in ihren prägenden Argumentations- und Begründungsmustern zu evaluieren;
 • den systematischen Zusammenhang zwischen Technikphilosophie, Wissenschaftstheorie und Wissenschaftskritik a) systematisch zu rekonstruieren und b) bezogen auf konkrete Anwendungsfälle zu reflektieren

13. Inhalt:

 • Techniktheorie und -philosophie: Systemtheorie der Technik vs. Technik als Medium menschlicher Welteroberung
 • Systematische Rekonstruktion des Wissenschaftsbegriffs am Leitfaden der Entwicklung der Wissenschaftstheorie: empiristische Grundlagen („Wiener Kreis“ und logischer Positivismus); strukturalistische und konstruktive Wissenschaftstheorie (Wissenschaft als Handlungspraxis)
 • Grundbegriffe der Wissenschaftstheorie: Beobachtung, Erklärung, (Natur-)Gesetz, Experiment, Verifizierung/ Falsifizierung, Modell/ Modellierung, Simulation, Theorie
14. Literatur: Literatnranswahl (optional):

15. Lehrveranstaltungen und -formen:

• 186701 Vorlesung Ethik- und Technikbewertung
• 186702 Vorlesung Technikphilosophie

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 42 h
Selbststudium: 138 h (davon 84 h Nachbereitung, 54 h Selbststudium)
Summe: 180 h

17. Prüfungsnummer/n und -name:

• 18671 Ethik- und Technikbewertung (PL), schriftlich, eventuell mündlich, Gewichtung: 0.5
• 18672 Technikphilosophie (PL), schriftlich, eventuell mündlich, Gewichtung: 0.5

18. Grundlage für ... :

19. Medienform: Skripte/Reader, Thesenpapiere, Tafelbilder, Power-Point, Protokolle, Literatur zur Lektüre

20. Angeboten von:
5070 Wahlpflichtfach Politikwissenschaft

Zugeordnete Module:
5071 Grundlagen Politikwissenschaft (TP)
5072 Ergänzungswahlbereich Politikwissenschaft (TP)
5073 Erweiterte Themenbereiche zur Politikwissenschaft (TP)
5071 Grundlagen Politikwissenschaft (TP)

Zugeordnete Module:

27410 Politisches System der BRD LA
27420 Analyse und Vergleich politischer Systeme LA
27430 Politische Theorie LA
27440 Internationale Beziehungen LA
Modul: 27420 Analyse und Vergleich politischer Systeme LA

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>100200303</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Patrick Bernhagen</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Patrick Bernhagen</td>
</tr>
</tbody>
</table>
 ➞ Vorgezogene Master-Module
 ➞ Wahlpflichtfach --Wahlpflichtfach Politikwissenschaft --
 >Grundlagen Politikwissenschaft
 ➞ M.Sc. Technikpädagogik
 ➞ Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang -->Wahlpflichtfach B -->Wahlpflichtfach Politik
 ➞ M.Sc. Technikpädagogik
 ➞ Wahlpflichtfach B -->Wahlpflichtfach Politikwissenschaft --
 >Grundlagen Politikwissenschaft (TP)
 ➞ M.Sc. Technikpädagogik
 ➞ Wahlpflichtfach B -->Wahlpflichtfach Politikwissenschaft --
 >Grundlagen Politikwissenschaft (TP)
| 11. Empfohlene Voraussetzungen: | Keine |
 • Sie verfügen über Grundwissen bezüglich der in der Politikwissenschaft gängigen Methoden des Vergleichs politischer Systeme.
 • Sie kennen zentrale Begriffe und Konzepte des Vergleichs demokratischer politischer Systeme (u.a. Parlamentarismus, Präsidentialismus, Mehrheitsdemokratie, Konsensdemokratie).
 • Sie können das Fachvokabular situationsgerecht anwenden.
 • Sie sind in der Lage, ausgewählte politische Systeme vergleichend zu beschreiben, zu erklären und demokratietheoretisch zu reflektieren.
 • Sie können Zusammenhänge zwischen verschiedenen Aspekten des politischen Systemvergleichs erkennen, systematisch beschreiben und kritisch hinterfragen. |
der Vorlesung ist es, die TeilnehmerInnen mit dem theoretischen und konzeptionellen „Instrumentenkasten“ der Vergleichenden Politikwissenschaft vertraut zu machen und dessen Möglichkeiten mit Beispielen aus der Forschungspraxis zu illustrieren.

14. Literatur:

15. Lehrveranstaltungen und -formen: 274201 Vorlesung Einführung in Analyse und Vergleich politischer Systeme

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 21h
- Selbststudium: 159 h
- Gesamt: 180 h

18. Grundlage für ...

19. Medienform:

20. Angeboten von: Politische Systeme und Politische Soziologie
Modul: 27440 Internationale Beziehungen LA

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>100200305</th>
<th>5. Modulduauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Cathleen Kantner</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Maximilian Overbeck
• Iris Nothofer
• Dieter Reinhardt
• Halima Akhrif
• Cathleen Kantner
• Udo Tietz
• Golareh Khalilpour-Khodadadi |
→ Vorgezogene Master-Module
B.Sc. Technikpädagogik
→ Wahlpflichtfach → Wahlpflichtfach Politikwissenschaft → Grundlagen Politikwissenschaft
M.Sc. Technikpädagogik
→ Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang → Wahlpflichtfach B → Wahlpflichtfach Politik
M.Sc. Technikpädagogik
→ Wahlpflichtfach B → Wahlpflichtfach Politikwissenschaft → Grundlagen Politikwissenschaft (TP)
M.Sc. Technikpädagogik
→ Wahlpflichtfach B → Wahlpflichtfach Politikwissenschaft → Grundlagen Politikwissenschaft (TP) |
| 11. Empfohlene Voraussetzungen: | Keine |

14. Literatur:

15. Lehrveranstaltungen und -formen:

274401 Vorlesung Einführung in die Internationale Beziehungen

16. Abschätzung Arbeitsaufwand:

Präsenzzeit	21 h
Selbststudium	159 h
Gesamt	180 h

17. Prüfungsnummer/n und -name:

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
Modul: 27430 Politische Theorie LA

2. Modulkürzel: 100200304
5. Modulsdauer: 1 Semester
3. Leistungspunkte: 6.0 LP
6. Turnus: jedes 2. Semester, SoSe
4. SWS: 2.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. André Bächtiger
9. Dozenten: André Bächtiger

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technikpädagogik
→ Vorgezogene Master-Module
B.Sc. Technikpädagogik
→ Wahlpflichtfach --> Wahlpflichtfach Politikwissenschaft --> Grundlagen Politikwissenschaft
→
M.Sc. Technikpädagogik
→ Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang --> Wahlpflichtfach B --> Wahlpflichtfach Politik
→
M.Sc. Technikpädagogik
→ Wahlpflichtfach B --> Wahlpflichtfach Politikwissenschaft --> Grundlagen Politikwissenschaft (TP)
→
M.Sc. Technikpädagogik
→ Wahlpflichtfach B --> Wahlpflichtfach Politikwissenschaft --> Grundlagen Politikwissenschaft (TP)
→

11. Empfohlene Voraussetzungen: Keine

12. Lernziele:
• Die Studierenden haben einen Überblick über die Disziplin Politische Theorie und können diese von anderen politikwissenschaftlichen Disziplinen unterscheiden. Zu dem Überblick gehören die wichtigsten zeitgenössische Theorien. Das umfasst sowohl philosophischnormative als auch empirisch-analytische Theorien.
• Sie können ersten die verschiedenen politikwissenschaftlichen Theorien miteinander vergleichen. Sie können zweitens diese Theorien in Bezug zur empirischen Forschung setzen.
• Sie haben Grundkenntnisse des relevanten politiktheoretischen Fachvokabulars.

13. Inhalt:
Politische Theorie ist eine der grundlegenden Disziplinen der Politikwissenschaft. In dem Modul werden die notwendigen Kenntnisse dieser Disziplin vermittelt und die Voraussetzungen für eine systematische Beschäftigung mit ihr gelegt. Es werden drei konkrete Zielsetzungen verfolgt: Erstens wird vermittelt, was politische Theorie ist und welchen Stellenwert sie in der politikwissenschaftlichen Forschung hat, zweitens welche Arten politischer Theorie sich unterscheiden lassen, drittens werden wichtige Vertreter verschiedener politischer Theorien vorgestellt.

14. Literatur:
15. Lehrveranstaltungen und -formen: 274301 Vorlesung Einführung in die Politische Theorie

16. Abschätzung Arbeitsaufwand:

Präsenzzeit:	42 h
Selbststudium:	138 h
Gesamt:	**180 h**

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 27410 Politisches System der BRD LA

2. Modulkürzel: 100200302
5. Modulduauer: 1 Semester
3. Leistungspunkte: 6.0 LP
4. SWS: 2.0
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Patrick Bernhagen
9. Dozenten: Angelika Vetter
10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technikpädagogik
→ Vorgezogene Master-Module
B.Sc. Technikpädagogik
→ Wahlpflichtfach --> Wahlpflichtfach Politikwissenschaft --> Grundlagen Politikwissenschaft
M.Sc. Technikpädagogik
→ Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang --> Wahlpflichtfach B --> Wahlpflichtfach Politik
M.Sc. Technikpädagogik
→ Wahlpflichtfach B --> Wahlpflichtfach Politikwissenschaft --> Grundlagen Politikwissenschaft (TP)
M.Sc. Technikpädagogik
→ Wahlpflichtfach B --> Wahlpflichtfach Politikwissenschaft --> Grundlagen Politikwissenschaft (TP)

11. Empfohlene Voraussetzungen: Keine
12. Lernziele:

• Die Studierenden verfügen über Grundwissen zu den aus politikwissenschaftlicher Sicht relevanten Aspekten der Systemanalyse. Hierzu gehören Kenntnisse über die Analyse politischer Strukturen (polity), politischer Prozesse (politics) und/oder von Politikinhalten (policies).
• Sie erwerben Kenntnisse über die Methodik politikwissenschaftlicher Analyse in diesem Fachbereich.
• Sie kennen zentrale Begriffe und Konzepte der Analyse demokratischer politischer Systeme (u.a. Parlamentarismus, Präsidialismus, Mehrheitsdemokratie, Konsensdemokratie).
• Sie verfügen über Grundwissen zum politischen System der Bundesrepublik Deutschland: Grundgesetz, Bundesinstitutionen, Föderalismus, Parteien, Bürger/politische Kultur.
• Sie können das Fachvokabular situationsgerecht anwenden.
• Sie können Zusammenhänge zwischen verschiedenen Aspekten des politischen Systems erkennen, systematisch beschreiben und kritisch hinterfragen.

13. Inhalt:

in der BRD. Zu diesen vertieft behandelten Aspekten gehören die Verfassungsprinzipien des Grundgesetzes, die zentralen institutionellen Bestandteile und deren Zusammenwirken (Bundestag, Bundesrat, Bundesregierung, Länder und kooperativer Föderalismus) sowie das Interessenvermittlungssystem (v.a. politische Parteien, Medien, Verbände). Im letzten Drittel der Vorlesung richtet sich der Blick auf die politischen Einstellungs- und Verhaltensmuster der Bevölkerung (Mikro-Ebene) und ihre Ursachen.

14. Literatur:

<table>
<thead>
<tr>
<th>Autorinnen/Autoren</th>
<th>Buchtitel</th>
<th>Jahr</th>
<th>Ausgabe</th>
<th>Verlag</th>
</tr>
</thead>
<tbody>
<tr>
<td>GABRIEL, Oscar W./HOLTMANN, Everhard (Hrsg.)</td>
<td>Handbuch Politisches System der Bundesrepublik Deutschland. 3. völlig neu bearbeitete und erweiterte Auflage.</td>
<td>2004</td>
<td>München: Oldenbourg.</td>
<td></td>
</tr>
<tr>
<td>RUDZIO, Wolfgang</td>
<td>Das politische System der Bundesrepublik Deutschland. 8. überarbeitete Auflage.</td>
<td>2011</td>
<td>Wiesbaden: VS Verlag.</td>
<td></td>
</tr>
</tbody>
</table>

15. Lehrveranstaltungen und -formen:

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>Ort</th>
<th>Jahr</th>
</tr>
</thead>
<tbody>
<tr>
<td>274101</td>
<td>Vorlesung Einführung in das politische System der BRD</td>
<td></td>
</tr>
</tbody>
</table>

16. Abschätzung Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Tätigkeit</th>
<th>Zeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzzeit</td>
<td>21 h</td>
</tr>
<tr>
<td>Selbststudium</td>
<td>159 h</td>
</tr>
<tr>
<td>Gesamt</td>
<td>180 h</td>
</tr>
</tbody>
</table>

17. Prüfungsnummer/n und -name:

<table>
<thead>
<tr>
<th>Prüfungsnummer</th>
<th>Prüfungstitel</th>
</tr>
</thead>
</table>

18. Grundlage für ... : |

19. Medienform:

20. Angeboten von: | Politische Systeme und Politische Soziologie |
5072 Ergänzungswahlbereich Politikwissenschaft (TP)

Zugeordnete Module:

27540 Wahlmodul Seminar Politikwissenschaft: Politisches System der BRD
27550 Wahlmodul Seminar Politikwissenschaft: Politische Theorie
27560 Wahlmodul Seminar Politikwissenschaft: Internationale Beziehungen
27600 Wahlmodul Seminar Politikwissenschaft: Analyse und Vergleich politischer Systeme
28090 Analyse sozialer Strukturen und Prozesse
Modul: 28090 Analyse sozialer Strukturen und Prozesse

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>100200003</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>9.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>2 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dieter Urban</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Dieter Urban
• Gerhard Fuchs
• Ulrich Dolata |
➞ Vorgezogene Master-Module

B.Sc. Technikpädagogik
➞ Wahlpflichtfach -->Wahlpflichtfach Politikwissenschaft -- >Ergänzungswahlbereich Politikwissenschaft 9LP

M.Sc. Technikpädagogik
➞ Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang -->Wahlpflichtfach B -->Wahlpflichtfach Politik

M.Sc. Technikpädagogik
➞ Wahlpflichtfach B -->Wahlpflichtfach Politikwissenschaft -- >Ergänzungswahlbereich Politikwissenschaft (TP)

M.Sc. Technikpädagogik
➞ Wahlpflichtfach B -->Wahlpflichtfach Politikwissenschaft -- >Ergänzungswahlbereich Politikwissenschaft (TP)

11. Empfohlene Voraussetzungen: | Keine |
| 12. Lernziele: | • Die Studierenden verfügen über ein Grundwissen zu theoretischen Modellen und empirischen Analysestrategien zur Beschreibung und Erklärung sozialstruktureller, wirtschaftlicher sowie gesellschaftlicher Entwicklungen.
• Sie verfügen über ein Grundwissen zu Modellen sozialer Ungleichheit und Methoden der Sozialstrukturanalyse.
• Sie kennen zentrale Strukturmerkmale der bundesrepublikanischen Gegenwartsgesellschaft.
• Sie sind in der Lage, die grundlegenden theoretischen Ansätze und empirischen Untersuchungen der „neuen Wirtschaftssoziologie“ zu reflektieren, zu diskutieren und auf spezifische Fallbeispiele anzuwenden.
• Sie können erkennen, unter welchen Bedingungen es sinnvoll ist, wirtschaftliche Sachverhalte aus soziologischer Perspektive zu untersuchen.
• Sie verfügen über ein analytisches und methodisches Instrumentarium, um komplexe gesellschaftliche und wirtschaftliche Sachverhalte analysieren zu können. |
| 13. Inhalt: | Das Modul bietet einen Überblick über Themen, Anwendungen, Theorien und Methoden zur Analyse sozialstruktureller und sozioökonomischer Entwicklungen. Hierzu führt das Modul sowohl in zentrale Themen der Sozialstrukturanalyse als auch der „neuen

14. Literatur:

15. Lehrveranstaltungen und -formen:
 • 280901 Vorlesung Einführung in die Sozialstrukturanalyse
 • 280902 Seminar Wirtschaft und Gesellschaft

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 42 Stunden
 Selbststudium: 228 Stunden
 Summe: 270 Stunden

17. Prüfungsnummer/n und -name:
 • 28093 Einführung in die Sozialstrukturanalyse Klausur (LBP), schriftliche Prüfung, 90 Min., Gewichtung: 1.0, ODER eine lehrveranstaltungsbegleitende Prüfung (Hausarbeit) zum Seminar „Wirtschaft und Gesellschaft“.
• 28094 Wirtschaft und Gesellschaft Hausarbeit (LBP), schriftlich, eventuell mündlich, Gewichtung: 1.0, ODER Eine lehrveranstaltungsbegleitende Prüfung (Klausur) zur Vorlesung „Einführung in die Sozialstrukturanalyse“

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 27600 Wahlmodul Seminar Politikwissenschaft: Analyse und Vergleich politischer Systeme

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>100200312</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Moduldaauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Patrick Bernhagen</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Elisa Deiss-Helbig
• Jonas Löser
• Dominic Pakull
• Uwe Remer-Bollow
• Isabell Thaidigsmann
• Eva-Maria Trüdinger |
→ Vorgezogene Master-Module |
| | B.Sc. Technikpädagogik
→ Wahlpflichtfach --> Wahlpflichtfach Politikwissenschaft --> > Ergänzungswahlbereich Politikwissenschaft 6LP |
| | M.Sc. Technikpädagogik
→ Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang --> Wahlpflichtfach B --> Wahlpflichtfach Politik |
| | M.Sc. Technikpädagogik
→ Wahlpflichtfach B --> Wahlpflichtfach Politikwissenschaft --> > Ergänzungswahlbereich Politikwissenschaft (TP) |
| | M.Sc. Technikpädagogik
→ Wahlpflichtfach B --> Wahlpflichtfach Politikwissenschaft --> > Ergänzungswahlbereich Politikwissenschaft (TP) |
| 11. Empfohlene Voraussetzungen: | Keine |
| 12. Lernziele: | • Die Studierenden verfügen über das notwendige Fachvokabular im Bereich der Analyse und des Vergleichs politischer Systeme und können diese situationsgerecht anwenden.
• Sie können für die Disziplin typische Konzepte und Methoden anwenden, kritisch hinterfragen und bei der eigenen wissenschaftlichen Analyse nutzen. |
| 13. Inhalt: | Im Seminar zur Analyse und zum Vergleich politischer Systeme werden exemplarisch verschiedene Themen der Disziplin vertieft, wie z.B. mehrheits- und konsensdemokratische Strukturen, Politische Kultur im internationalen Vergleich, Wahlverhalten oder Parteiensysteme in europäischen und außereuropäischen Demokratien, Rechtsextremismus und Rechtspopulismus im internationalen Vergleich. |
• GABRIEL, Oscar W./KROPP, Sabine (Hrsg.) 2008: EU-Staaten im Vergleich. Wiesbaden: VS Verlag. |

<table>
<thead>
<tr>
<th>15. Lehrveranstaltungen und -formen:</th>
<th>276001 Seminar Analyse und Vergleich politischer Systeme</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>16. Abschätzung Arbeitsaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzzeit: 21 Stunden</td>
</tr>
<tr>
<td>Selbststudium: 159 Stunden</td>
</tr>
<tr>
<td>Summe: 180 Stunden</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
</tr>
</thead>
<tbody>
<tr>
<td>27601 Wahlmodul Seminar Politikwissenschaft: Analyse und Vergleich politischer Systeme (LBP), schriftlich, eventuell mündlich, Gewichtung: 1.0, Lehrveranstaltungsbegleitende Prüfung (Hausarbeit) zum Seminar „Analyse und Vergleich politischer Systeme“</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>18. Grundlage für ... :</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>19. Medienform:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

| 20. Angeboten von: |
Modul: 27560 Wahlmodul Seminar Politikwissenschaft: Internationale Beziehungen

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>100200314</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>5. Modulduer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Cathleen Kantner</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Cathleen Kantner
• Udo Tietz
• Maximilian Overbeck
• Iris Nothofer
• Hanno Boller
• Dieter Reinhardt
• Halima Akhrif
• Golareh Khalilpour-Khodadadi |
→ Vorgezogene Master-Module
→ B.Sc. Technikpädagogik
→ Wahlpflichtfach -->Wahlpflichtfach Politikwissenschaft -->Ergänzungswahlbereich Politikwissenschaft 6LP
→ M.Sc. Technikpädagogik
→ Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang -->Wahlpflichtfach B -->Wahlpflichtfach Politik
→ M.Sc. Technikpädagogik
→ Wahlpflichtfach B -->Wahlpflichtfach Politikwissenschaft -->Ergänzungswahlbereich Politikwissenschaft (TP)
→ M.Sc. Technikpädagogik
→ Wahlpflichtfach B -->Wahlpflichtfach Politikwissenschaft -->Ergänzungswahlbereich Politikwissenschaft (TP)
| 11. Empfohlene Voraussetzungen: | Keine |
| 12. Lernziele: | • Die Studierenden kennen die grundlegenden Theorien sowie quantitativen und qualitativen Methoden zur Analyse der Internationale Beziehungen.
• Sie können diese auf den verschiedenen Feldern der Internationalen Politik anwenden. |

15. Lehrveranstaltungen und -formen: 275601 Seminar Internationale Beziehungen

16. Abschätzung Arbeitsaufwand:

Präsenzzeit:	21 Stunden
Selbststudium:	159 Stunden
Summe:	**180 Stunden**

17. Prüfungsnummer/n und -name:

27561 Wahlmodul Seminar Politikwissenschaft: Internationale Beziehungen (LBP), schriftliche Prüfung, Gewichtung: 1.0, Lehrveranstaltungsbegleitende Prüfung (Hausarbeit) zum Seminar „Internationale Beziehungen“.

18. Grundlage für ...:

19. Medienform:

20. Angeboten von:
Modul: 27550 Wahlmodul Seminar Politikwissenschaft: Politische Theorie

2. Modulkürzel: 100200313
5. Modulduer: 1 Semester
3. Leistungspunkte: 6.0 LP
6. Turnus: jedes 2. Semester, SoSe
4. SWS: 2.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. André Bächtiger

9. Dozenten:
 • Hans-Joachim Hildebrandt
 • Felix Heidenreich
 • Lisa Schöllhammer
 • Eda Keremoğlu-Waibler
 • Maurice Schuhmann

10. Zuordnung zum Curriculum in diesem Studiengang:

 B.Sc. Technikpädagogik
 → Vorgezogene Master-Module

 B.Sc. Technikpädagogik
 → Wahlpflichtfach -->Wahlpflichtfach Politikwissenschaft -->
 >Ergänzungswahlbereich Politikwissenschaft 6LP
 →

 M.Sc. Technikpädagogik
 → Studienprofil B - ohne erziehungswissenschaftliche Studien im
 Bachelor-Studiengang -->Wahlpflichtfach B -->Wahlpflichtfach
 Politik
 →

 M.Sc. Technikpädagogik
 → Wahlpflichtfach B -->Wahlpflichtfach Politikwissenschaft -->
 >Ergänzungswahlbereich Politikwissenschaft (TP)
 →

 M.Sc. Technikpädagogik
 → Wahlpflichtfach B -->Wahlpflichtfach Politikwissenschaft -->
 >Ergänzungswahlbereich Politikwissenschaft (TP)
 →

11. Empfohlene Voraussetzungen: Keine

12. Lernziele:
 • Die Studierenden sind mit unterschiedlichen politikwissenschaftlichen
 Theorien vertraut und in der Lage, diese eigenständig zur Analyse von
 politischen Phänomenen anzuwenden.
 • Darüber hinaus können sie verschiedene Theorien miteinander
 vergleichen und kritisieren. Die Studierenden beherrschen das
 relevante politiktheoretische Fachvokabular und können dieses in
 einem wissenschaftlichen Diskurs heranziehen.

13. Inhalt:
 Das Seminar vertieft ein Thema aus dem Bereich der Politischen
 Theorie. Dazu können gehören: Ein umfassendes theoretisches
 Paradigma, eine empirische Theorie, ein wichtiges theoretisches
 Konzept, ein prominenter Vertreter der politischen Theorie sowie auch
 die Aneignung einer politischen Denktradition und die Aufarbeitung einer
 aktuellen theoretischen Debatte.

14. Literatur:
 • BRODOCZ, André/SCHAAL, Gary S. (Hrsg.) 2009: Politische Theorien
der Gegenwart. 3. überarb. und erw. Auflage. Opladen/Farmington
 Hills: Barbara Budrich (UTB), (Zwei Bände)
 • HONNETH, Axel (Hrsg) 1993: Kommunitarismus. Frankfurt/New York:
 Campus.
 • SCHMIDT, Manfred G. 2008: Demokratietheorien. Eine Einführung. 4.
15. Lehrveranstaltungen und -formen: 275501 Seminar Politische Theorie

16. Abschätzung Arbeitsaufwand:

Präsenzzeit:	21 Stunden
Selbststudium:	159 Stunden
Summe:	**180 Stunden**

17. Prüfungsnummer/n und -name: 27551 Wahlmodul Seminar Politikwissenschaft: Politische Theorie (LBP), schriftlich, eventuell mündlich, Gewichtung: 1.0, Lehrveranstaltungsbegleitende Prüfung (Hausarbeit) zum Seminar „Politische Theorie“.

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 27540 Wahlmodul Seminar Politikwissenschaft: Politisches System der BRD

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>100200311</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Modulduer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Patrick Bernhagen</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | · Elisa Deiss-Helbig
| | · Jonas Löser
| | · Dominic Pakull
| | · Uwe Remer-Bollow
| | · Isabell Thaidigsmann
| | · Eva-Maria Trüdinger |
| | → Vorgezogene Master-Module
| | B.Sc. Technikpädagogik
| | → Wahlpflichtfach → Wahlpflichtfach Politikwissenschaft → >Ergänzungswahlbereich Politikwissenschaft 6LP
| | → M.Sc. Technikpädagogik
| | → Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang → Wahlpflichtfach B → Wahlpflichtfach Politik
| | → M.Sc. Technikpädagogik
| | → Wahlpflichtfach B → Wahlpflichtfach Politikwissenschaft → >Ergänzungswahlbereich Politikwissenschaft (TP)
| | → M.Sc. Technikpädagogik
| | → Wahlpflichtfach B → Wahlpflichtfach Politikwissenschaft → >Ergänzungswahlbereich Politikwissenschaft (TP)
| 11. Empfohlene Voraussetzungen: | Keine |
| 12. Lernziele: | · Die Studierenden verfügen über das notwendige Fachvokabular im Bereich des Politischen Systems der Bundesrepublik Deutschland und können dies situationsgerecht anwenden.
| | · Sie können für die Disziplin typische Konzepte und Methoden auf den Gegenstandsbereich des politischen Systems der BRD anwenden, kritisch hinterfragen und bei der eigenen wissenschaftlichen Analyse nutzen. |
| 13. Inhalt: | Im Seminar zum politischen System der BRD werden exemplarisch verschiedene Themen der Disziplin vertieft. Hierzu gehören beispielsweise die politische Kultur in der BRD, das Wahlverhalten in Deutschland, politische Parteien in der BRD, Kommunalpolitik oder Rechtsextremismus in der BRD. |

15. Lehrveranstaltungen und -formen: 275401 Seminar Politisches System der BRD

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 21 Stunden
Selbststudium: 159 Stunden
Summe: 180 Stunden

17. Prüfungsnummer/n und -name: 27541 Wahlmodul Seminar Politikwissenschaft: Politisches System der BRD (LBP), schriftlich, eventuell mündlich, Gewichtung: 1.0, Lehrveranstaltungsbegleitende Prüfung (Hausarbeit) zum Seminar „Politisches System der BRD“.

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
5073 Erweiterte Themenbereiche zur Politikwissenschaft (TP)

Zugeordnete Module:

- 28190 Technik- und Umweltsoziologie
- 28230 Vertiefung Politische Systeme
- 28240 Vertiefung Politische Theorie
Modul: 28190 Technik- und Umweltoziologie

2. Modulkürzel: 100200013
5. Moduldauer: 1 Semester
3. Leistungspunkte: 9.0 LP
6. Turnus: jedes 2. Semester, SoSe
4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Ortwin Renn
9. Dozenten:
 • Ortwin Renn
 • Dieter Fremdling
 • Jürgen Hampel
 • Michael Zwick

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technikpädagogik
 ➔ Vorgezogene Master-Module
 B.Sc. Technikpädagogik
 ➔ Wahlpflichtfach → Wahlpflichtfach Politikwissenschaft →
 > Ergänzungswahlbereich Politikwissenschaft 9LP
 ➔
 M.Sc. Technikpädagogik
 ➔ Studienprofil B - ohne erziehungswissenschaftliche Studien im
 Bachelor-Studiengang → Wahlpflichtfach B → Wahlpflichtfach
 Politik
 ➔
 M.Sc. Technikpädagogik
 ➔ Wahlpflichtfach A → Wahlpflichtfach Politik → Erweiterte
 Themenbereiche zur Politikwissenschaft
 ➔
 M.Sc. Technikpädagogik
 ➔ Wahlpflichtfach B → Wahlpflichtfach Politikwissenschaft →
 > Erweiterte Themenbereiche zur Politikwissenschaft (TP)
 ➔
 M.Sc. Technikpädagogik
 ➔ Wahlpflichtfach A → Wahlpflichtfach Politik → Erweiterte
 Themenbereiche zur Politikwissenschaft
 ➔
 M.Sc. Technikpädagogik
 ➔ Wahlpflichtfach B → Wahlpflichtfach Politikwissenschaft →
 > Erweiterte Themenbereiche zur Politikwissenschaft (TP)
 ➔

11. Empfohlene Voraussetzungen: Keine
12. Lernziele:
 • Die Studierenden kennen die einschlägigen sozialwissenschaftlichen
 Konzepte der Techniksoziologie, vor allem Theorien zur
 techniksoziologischen Innovations- und Diffusionsforschung
 sowie die wichtigsten Probleme und Lösungsansätze der
 Technikfolgenabschätzung inklusive der Katastrophenforschung.
 • Sie sind in der Lage, gesellschaftliche Auseinandersetzungen um neue
 Technologien begrifflich und konzeptionell adäquat zu beschreiben
 und zu erklären, und sie kennen die sozialwissenschaftliche Diskussion
 über die Möglichkeiten, den gesellschaftlichen Umgang mit neuen
 Technologien zu gestalten.
 • Sie verfügen über grundlegende Kenntnisse der Risikoforschung
 und kennen die zentralen theoretischen Forschungskonzepte zur
 Risikowahrnehmung und Risikokommunikation.
• Sie sind in der Lage, Untersuchungen zu Umwelteinrichtungen angemessen zu interpretieren und zu erklären, welchen Zusammenhang es zwischen Umwelteinrichtungen und umweltbezogenem Handeln gibt.
• Sie sind mit der Nachhaltigkeitsforschung vertraut und kennen insbesondere Konzepte zur Erfassung der sozialen Dimension von Nachhaltigkeit.
• Sie kennen die Komponenten des Umweltbewusstseins. Sie sind in der Lage, die Kluft zwischen Umweltbewusstsein und umweltgerechtem Verhalten zu erklären. Sie können eine Reihe umweltpolitischer Maßnahmen hinsichtlich ihrer Vorteile und Grenzen realistisch einschätzen.
• Sie kennen die konstruktiven Merkmale - Komplexität und Kopplung - von Technik, die Technikversagen begünstigen und u.U. zu Technikkatastrophen führen können.

13. Inhalt:

In der Vorlesung werden diese Inhalte im Überblick vorgestellt. Im dazu gehörenden Seminar des Moduls werden ausgewählte Themenbereiche vertieft behandelt, so etwa Risikoforschung, Techniksoziologie oder sozialwissenschaftliche Umweltforschung.

14. Literatur:
RENN, Ortwin 2014: Das Risikoparadox. Warum wir uns vor dem Falschen fürchten. Frankfurt am Main: Fischer

15. Lehrveranstaltungen und -formen:
• 281901 Vorlesung Technik- und Umweltsoziologie
• 281902 Seminar Technik- und Umweltsoziologie

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 63 Stunden
Selbststudium: 207 Stunden
Summe: 270 Stunden

17. Prüfungsnummer/n und -name:
• 28191 Technik- und Umweltsoziologie USL (USL), Sonstiges, Gewichtung: 1.0, Eine unbenotete Studienleistung (USL) zur Vorlesung „Technik- und Umweltsoziologie“. Art und Umfang dieser USL werden vom Leiter zu Beginn der jeweiligen Lehrveranstaltung den Studierenden bekannt gegeben.
• 28192 Technik- und Umweltsoziologie HA (LBP), schriftliche Prüfung, Gewichtung: 1.0, Eine lehrveranstaltungsbegleitende Prüfung (Hausarbeit) zum Seminar „Technik- und Umweltsoziologie“.

18. Grundlage für ... :
19. Medienform:

20. Angeboten von: Soziologie mit Schwerpunkt sozialwissenschaftliche Risiko- und Technikforschung
Modul: 28230 Vertiefung Politische Systeme

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>100200017</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>9.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Patrick Bernhagen</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Jan Michael Bergmann
• Patrick Bernhagen
• Axel Görlitz
• Volker Haug
• Michael Uechtritz
• Angelika Vetter |
→ Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang -->Wahlpflichtfach B -->Wahlpflichtfach Politik
→ M.Sc. Technikpädagogik
→ Wahlpflichtfach A -->Wahlpflichtfach Politik -->Erweiterte Themenbereiche zur Politikwissenschaft
→ M.Sc. Technikpädagogik
→ Wahlpflichtfach B -->Wahlpflichtfach Politikwissenschaft --> Erweiterte Themenbereiche zur Politikwissenschaft (TP)
→ M.Sc. Technikpädagogik
→ Wahlpflichtfach A -->Wahlpflichtfach Politik -->Erweiterte Themenbereiche zur Politikwissenschaft
→ M.Sc. Technikpädagogik
→ Wahlpflichtfach B -->Wahlpflichtfach Politikwissenschaft --> Erweiterte Themenbereiche zur Politikwissenschaft (TP)
→ |
| 12. Lernziele: | • Die Studierenden sind dazu in der Lage, ihr theoretisches und methodisches Grundlagenwissen im Bereich Politische Systeme zur Lösung ausgewählter Forschungsprobleme anzuwenden.
• Sie systematisieren selbständig (auch komparatistisch) für die politische Systemanalyse relevante Themenbereiche.
• Sie führen selbstständig Literatur- und Datenrecherchen durch und können die recherchierten Daten zur Beschreibung, Erklärung und Bewertung von Systemcharakteristika verwenden. |
| 13. Inhalt: | In dem Modul wird das Grundlagenwissen zur vergleichenden Analyse der Strukturen, Prozesse und Politikinhalte einzelner oder mehrerer politischer Systeme vertieft. Dabei können unterschiedliche Aspekte des Regierens auf verschiedenen Ebenen des politischen Systems der BRD (Bund, Länder, Kommunen) ebenso im Mittelpunkt stehen wie Aspekte der vergleichenden Systemanalyse in anderer Ländern oder der europäischen Mehrebenensystems. Zu diesen Aspekten gehören beispielsweise politische Beteiligung (Partizipation), politische
Einstellungen, Parteien, Parteiensysteme, Interessengruppen oder Regierungsinstitutionen.

14. Literatur:

15. Lehrveranstaltungen und -formen:
- 282301 Vorlesung oder Seminar Vertiefung Politische Systeme I
- 282302 Seminar Vertiefung Politische Systeme II

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 42 Stunden
 Selbststudium: 228 Stunden
 Summe: 270 Stunden

17. Prüfungsnummer/n und -name:
- 28231 Vertiefung Politische Systeme I USL (USL), schriftlich oder mündlich, Gewichtung: 1.0, Eine unbenotete Studienleistung (USL) zu Vorlesung oder Seminar „Vertiefung Politische Systeme I“. Art und Umfang dieser USL werden vom Leiter zu Beginn der jeweiligen Lehrveranstaltung den Studierenden bekannt gegeben.
- 28232 Vertiefung Politische Systeme II Hausarbeit (PL), schriftliche Prüfung, Gewichtung: 1.0, Eine Prüfungsleistung (Hausarbeit) zum Seminar „Vertiefung Politische Systeme II“

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Institut für Sozialwissenschaften
Modul: 28240 Vertiefung Politische Theorie

2. Modulkürzel: 100200018
5. Modulduauer: 1 Semester

3. Leistungspunkte: 9.0 LP

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. André Bächtiger

9. Dozenten:
• Hans-Joachim Hildebrandt
• Felix Heidenreich
• Eda Keremoglu-Waibler
• André Bächtiger

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Technikpädagogik
→ Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang -->Wahlpflichtfach B -->Wahlpflichtfach Politik
→
M.Sc. Technikpädagogik
→ Wahlpflichtfach A -->Wahlpflichtfach Politik -->Erweiterte Themenbereiche zur Politikwissenschaft
→
M.Sc. Technikpädagogik
→ Wahlpflichtfach B -->Wahlpflichtfach Politikwissenschaft -->Erweiterte Themenbereiche zur Politikwissenschaft (TP)
→
M.Sc. Technikpädagogik
→ Wahlpflichtfach A -->Wahlpflichtfach Politik -->Erweiterte Themenbereiche zur Politikwissenschaft
→
M.Sc. Technikpädagogik
→ Wahlpflichtfach B -->Wahlpflichtfach Politikwissenschaft -->Erweiterte Themenbereiche zur Politikwissenschaft (TP)
→

11. Empfohlene Voraussetzungen:
Modul 100200008 „Politische Theorie“

12. Lernziele:
• Die Studierenden eignen sich breite und fundierte Kenntnisse wichtiger philosophisch-normativer und empirisch-analytischer Theorien an.
• Sie können die verschiedenen politikwissenschaftlichen Theorien systematisch und nach wissenschaftlichen Kriterien miteinander vergleichen und kritisieren.
• Sie beherrschen das relevante politiktheoretische Fachvokabular und können dieses in einem wissenschaftlichen Diskurs heranziehen.

13. Inhalt:

14. Literatur:

15. Lehrveranstaltungen und -formen:
• 282401 Vorlesung Vertiefung Politische Theorie
• 282402 Seminar Vertiefung Politische Theorie

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 Stunden
Selbststudium: 228 Stunden
Summe: 270 Stunden

17. Prüfungsnummer/n und -name:
• 28241 Vertiefung Politische Theorie USL (USL), schriftlich, eventuell mündlich, Gewichtung: 1.0, Eine unbenotete Studienleistung (USL) zur Vorlesung „Vertiefung Politische Theorie“. Art und Umfang dieser USL werden vom Leiter zu Beginn der jeweiligen Lehrveranstaltung den Studierenden bekannt gegeben.
• 28242 Vertiefung Politische Theorie Hausarbeit (PL), schriftlich, eventuell mündlich, Gewichtung: 1.0, Eine Prüfungsleistung (Hausarbeit) zum Seminar „Vertiefung Politische Theorie“.

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
5080 Wahlpflichtfach Sport

Zugeordnete Module:

- 5081 Grundlagen Sport
- 5082 Erweiterte Themenbereiche zum Sport
5081 Grundlagen Sport

Zugeordnete Module:

- 12830 Sportarttypisches Handeln und Instruieren für Technikpädagogen I
- 12840 Sportarttypisches Handeln und Instruieren für Technikpädagogen II
- 12850 Geisteswissenschaftliche Ansätze und Theorien für Technikpädagogen
- 12860 Naturwissenschaftliche Ansätze und Theorien für Technikpädagogen
- 12870 Sozialwissenschaftliche Ansätze und Theorien für Technikpädagogen
Modul: 12850 Geisteswissenschaftliche Ansätze und Theorien für Technikpädagogen

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>100300703</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Modulduer:</td>
<td>2 Semester</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>9.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>0.0</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Carsten Kretschmann</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td></td>
</tr>
<tr>
<td>• Herbert Leikov</td>
<td></td>
</tr>
<tr>
<td>• Uwe Gomolinsky</td>
<td></td>
</tr>
<tr>
<td>• Carsten Kretschmann</td>
<td></td>
</tr>
<tr>
<td>10. Zuordnung zum Curriculum in diesem Studiengang:</td>
<td></td>
</tr>
<tr>
<td>B.Sc. Technikpädagogik, PO 2011, 1. Semester</td>
<td>Vorgezogene Master-Module</td>
</tr>
<tr>
<td>B.Sc. Technikpädagogik, PO 2011, 1. Semester</td>
<td>Wahlpflichtfach -->Wahlpflichtfach Sport</td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik, PO 2009, 1. Semester</td>
<td>Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang -->Wahlpflichtfach B -->Wahlpflichtfach Sport</td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik, PO 2009, 1. Semester</td>
<td>Wahlpflichtfach B -->Wahlpflichtfach Sport -->Grundlagen Sport</td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik, PO 2015, 1. Semester</td>
<td>Wahlpflichtfach B -->Wahlpflichtfach Sport -->Grundlagen Sport</td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen:

12. Lernziele:

- Die Studierenden können Handlungsfelder, Theorien, Begrifflichkeiten und empirische Befunde der Sportpädagogik, -didaktik und -geschichte verstehen, darstellen und erklären.
- Die Studierenden können sportdidaktische Modelle auf eine praktische Lehr-/Lernsituation adressatengerecht transformieren.
- Die Studierenden können die ideengeschichtliche Verschränkung von Sportpädagogik, -didaktik und -geschichte synthetisieren und strukturieren. Sie können pädagogische, didaktische und historische Denktraditionen in die aktuelle Befundlage und in Praxisbeispiele integrieren.
- Die Studierenden können die Zusammenhänge sportpädagogischer, sportdidaktischer und sportgeschichtlicher Inhalte diskutieren und kommunizieren.
- Die Studierenden sind in der Lage, sich selbständig auf der Grundlage einer sportpädagogischen und/oder sportgeschichtlichen Problemsstellung weiteres Wissen zu beschaffen, zu erschließen und in ihren Wissensfundus ein zu ordnen.

13. Inhalt:

Die Veranstaltungen dieses Moduls informieren in verschiedenen „Lehrund Lernarrangements“ (Vorlesung, Seminar und Übung) grundlegend über die Themen- und Handlungsfelder pädagogischer, didaktischer und historischer Zusammenhänge in Bewegung, Spiel und Sport. Hierzu zählen fachterminologische, anthropologische und soziologische Grundlegungen, Theorien und Modelle, empirische Befunde,
aktuelle fachwissenschaftliche Diskussion, Ideengeschichte und Adressatenorientierung (Kinder, Jugendliche, Erwachsene, Ältere).

14. Literatur:

15. Lehrveranstaltungen und -formen:
 - 128501 Vorlesung Einführung in die Sportpädagogik
 - 128502 Vorlesung Einführung in die Sportgeschichte
 - 128503 Seminar Grundfragen der Sportpädagogik

16. Abschätzung Arbeitsaufwand:
 Gesamtaufwand: 270 Stunden

17. Prüfungsnummer/n und -name:
 12851 Geisteswissenschaftliche Ansätze und Theorien für Technikpädagogen (LBP), schriftlich, eventuell mündlich, Gewichtung: 1.0, Sukzessiver Erwerb der Prüfungsleistungen durch Teilprüfungen zum Abschluss der Vorlesungen (Pos. 1, 2) in Form von Klausur oder mündlicher Prüfung. Referat, Präsentation, Gestaltung einer Seminareinheit und Hausarbeit sowie Lernaktivitäten in Moodle als Prüfungsleistungen im Seminar (Pos. 3). Art und Umfang der lehrveranstaltungsbegleitenden Prüfungen werden vom jeweiligen Dozenten zu Beginn der Lehrveranstaltung den Studierenden offen gelegt. Jede Teilprüfung ist mit Bezug auf die Prüfungsleistung gleich gewichtet.

18. Grundlage für ...

19. Medienform:
 Moodle Lernplattform, Powerpoint-Präsentation, Texte

20. Angeboten von:
Modul: 12860 Naturwissenschaftliche Ansätze und Theorien für Technikpädagogen

2. Modulkürzel: 100300704
5. Modulduer: 2 Semester

3. Leistungspunkte: 9.0 LP

4. SWS: 0.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Wilfried Alt

9. Dozenten:
 • Rolf Brack
 • Wilfried Alt
 • Julia Bühlmeier
 • Benjamin Haar
 • Claudia Reule

10. Zuordnung zum Curriculum in diesem Studiengang:

 B.Sc. Technikpädagogik, PO 2011, 1. Semester
 → Vorgezogene Master-Module

 B.Sc. Technikpädagogik, PO 2011, 1. Semester
 → Wahlpflichtfach →Wahlpflichtfach Sport

 M.Sc. Technikpädagogik, PO 2009, 1. Semester
 → Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang
 → Wahlpflichtfach B -->Wahlpflichtfach Sport

 M.Sc. Technikpädagogik, PO 2009, 1. Semester
 → Wahlpflichtfach B -->Wahlpflichtfach Sport -->Grundlagen Sport

 M.Sc. Technikpädagogik, PO 2015, 1. Semester
 → Wahlpflichtfach B -->Wahlpflichtfach Sport -->Grundlagen Sport

11. Empfohlene Voraussetzungen:

12. Lernziele:
 • Die Studierenden können auf der Basis eines naturwissenschaftlichen Standpunktes die Phänomene von Bewegung und Training auf unterschiedlichen Komplexitätstufen beschreiben und erklären.
 • Sie können empirische Studien vor dem Hintergrund ihrer theoretischen Kenntnisse auf ihren wissenschaftlichen Gehalt hin beurteilen.
 • Die Studierenden können die elementaren Theorien und Modelle der Bewegungs- und Trainingswissenschaft in Ihrer Anwendung auf die Phänomene von Bewegung und Training diskutieren.
 • Sie sind in der Lage, sich selbständig auf der Grundlage eines naturwissenschaftlichen Standpunktes weiteres Wissen zu beschaffen und können praktische technologische Konsequenzen ziehen.

13. Inhalt:

 Vorlesung 1: Biologie für Bewegung und Training
 • Anatomie und Physiologie der Funktionssysteme des Bewegungsapparates
 • Das Belastungs-Beanspruchungskonzept und seine Relevanz für Anpassungsvorgänge durch Bewegung und Training

 Vorlesung 2: Bewegung und Training
 • Konstruktions- und Antriebsprinzipien des Bewegungsapparates
 • Prinzipien der motorischen Kontrolle
 • Biomechanische Aspekte von Haltung, Lokomotion und sportlichen Bewegungen
• Modelle der sportlichen Leistung
• Mechanismen der Leistungsentwicklung Seminar: Biomechanik und Training der Sportarten
• Integrative Aspekte von Bewegung und Training im Leistungs- und Gesundheitssport aus naturwissenschaftlicher Sicht

14. Literatur:

15. Lehrveranstaltungen und -formen:
• 128601 Vorlesung Biologie für Bewegung und Training
• 128602 Vorlesung Bewegung und Training
• 128603 Seminar Biomechanik und Training der Sportarten

16. Abschätzung Arbeitsaufwand: Gesamtaufwand: 270 Stunden

17. Prüfungsnummer/n und -name:
• 12861 Naturwissenschaftliche Ansätze und Theorien für Technikpädagogen (LBP), mündliche Prüfung, 60 Min., Gewichtung: 1.0, Studienleistungen: Onlineübungen (Lernplattform Moodle) zu den Inhalten der Vorlesungen (Pos. 1 und 2) sowie Hausarbeit und Referat im Seminar (Pos. 3)

18. Grundlage für ...

19. Medienform:
Moodle Lernplattform, Powerpoint-Präsentation, Online Übung, Texte und biologisch/physikalische Modelle und Experimente

20. Angeboten von:
Modul: 12870 Sozialwissenschaftliche Ansätze und Theorien für Technikpädagogen

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>0.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Wolfgang Schlicht</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Uwe Gomolinsky
• Wolfgang Schlicht
• Torsten Wojciechowski |
→ Vorgezogene Master-Module
B.Sc. Technikpädagogik, PO 2011, 1. Semester
→ Wahlpflichtfach --Wahlpflichtfach Sport
→ M.Sc. Technikpädagogik, PO 2009, 1. Semester
→ Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang
→ Wahlpflichtfach B -->Wahlpflichtfach Sport
→ M.Sc. Technikpädagogik, PO 2009, 1. Semester
→ Wahlpflichtfach B -->Wahlpflichtfach Sport
→ Grundlagen Sport
→ M.Sc. Technikpädagogik, PO 2015, 1. Semester
→ Wahlpflichtfach B -->Wahlpflichtfach Sport
→ Grundlagen Sport |
| 11. Empfohlene Voraussetzungen: |
• Die Studierenden können fundamentale Konzepte der Sportpsychologie und Sportsoziologie benennen und definieren. Sie kennen gängige Theorien (und die korrespondierende Empirie) zur Erklärung menschlichen Verhaltens auf personaler und struktureller Ebene.
• Sie können grundlegende Forschungsthemen der beiden sportwissenschaftlichen Teilgebiete erkennen, verstehen und aufeinander beziehen sowie diese Forschungsthemen Phänomenen im Handlungsfeld Sport zuordnen.
• Die Studierenden können Ergebnisse der empirischen Sozial- und Verhaltensforschung beurteilen und kritisch würdigen, sowie die Angemessenheit grundlegender methodischer Versuchs- bzw. Studienanordnungen einschätzen.
• Die Studierenden können sportpsychologisches und sportsoziologisches Grundlagenwissen wiedergeben und einem Laienpublikum erläutern.
• Die Studierenden sind dazu in der Lage, sich neues sozial- und verhaltenswissenschaftliche Wissen selbständig zu erschließen und es in ihren Wissensfunden einzuordnen. |
Im ersten Studiensemester erfolgt eine phänomenbezogene und die beiden disziplinären Sichtweisen integrierende Einführung in die Thematik in Form eines Seminars mit Übungen, darauf folgend werden in zwei Vorlesungsveranstaltungen je fachspezifische Themenüberblicke angeboten.

14. Literatur:

15. Lehrveranstaltungen und -formen:
- 128701 Vorlesung Themenüberblick Sportpsychologie
- 128702 Vorlesung Themenüberblick Sportsoziologie
- 128703 Seminar mit Übung Individuum und Gruppe

16. Abschätzung Arbeitsaufwand:
Seminar: 90 Stunden
Vorlesung: 180 Stunden
Gesamt: 270 Stunden

17. Prüfungsnummer/n und -name:
12871 Sozialwissenschaftliche Ansätze und Theorien für Technikpädagogen (LBP), schriftlich, eventuell mündlich, Gewichtung: 1.0, Sukzessiver Erwerb der Prüfungsleistungen in den jeweiligen Vorlesungen (Pos. 2, 3) durch lehrveranstaltungsbegleitende Prüfungen mittels einer Klausur. Im Seminar (Pos. 1) sind Teilprüfungen in Form zusätzlicher Lernaktivitäten nachzuweisen, sowie ein Referat plus Hausarbeit. Alle Teilprüfungen sind mit Bezug auf die Prüfungsleistung gleich gewichtet. Der Dozent gibt zu Beginn der jeweiligen Veranstaltung den genauen Umfang bzw. die Dauer der lehrveranstaltungsbegleitenden Prüfungen bekannt.

18. Grundlage für ...

19. Medienform:
Moodle Lernplattform, digitale und konventionelle Lernmaterialien

20. Angeboten von:
Modul: 12830 Sportarttypisches Handeln und Instruieren für Technikpädagogen I

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>0.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Dieter Bubeck

9. Dozenten:
- Herbert Leikov
- Udo Grabowiecki
- Rolf Brack
- Uwe Gomolinsky
- Rolf Kretschmann

10. Zuordnung zum Curriculum in diesem Studiengang:
- B.Sc. Technikpädagogik, PO 2011, 1. Semester → Vorgezogene Master-Module
- B.Sc. Technikpädagogik, PO 2011, 1. Semester → Wahlpflichtfach → Wahlpflichtfach Sport
- M.Sc. Technikpädagogik, PO 2009, 1. Semester → Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang → Wahlpflichtfach B → Wahlpflichtfach Sport
- M.Sc. Technikpädagogik, PO 2009, 1. Semester → Wahlpflichtfach B → Wahlpflichtfach Sport → Grundlagen Sport
- M.Sc. Technikpädagogik, PO 2015, 1. Semester → Wahlpflichtfach B → Wahlpflichtfach Sport → Grundlagen Sport

11. Empfohlene Voraussetzungen:

12. Lernziele:
Die Studierenden kennen didaktisch orientierte Vermittlungskonzepte und sie verfügen über eine grundlegende sportmotorische Performanz.
Die Studierenden können unterschiedliche fachdidaktische Konzepte in Theorie und Praxis kritisch bewerten.
Die Studierenden sind in der Lage, sportartspezifische Lern- und Trainingsformen zu analysieren, wiederzugeben und diese fachlich zu kommentieren.
Die Studierenden sind in der Lage, sich selbständig in ihrem Können zu vervollkommnen und ihr eigenes fachdidaktisches Handeln zu begründen.

13. Inhalt:
Drei Individuualsportarten aus dem Angebotskatalog des Instituts für Sportwissenschaft.
Entwicklung von Fach- und Lehrkompetenz in den Individuualsportarten.

14. Literatur:
Siehe gesonderte Liste des aktuellen Semesters.

15. Lehrveranstaltungen und -formen:
- 128301 Übung Sportartgruppe Ia
- 128302 Übung Sportartgruppe Ib
16. Abschätzung Arbeitsaufwand:

17. Prüfungsnummer/n und -name: • 12831 Sportarttypisches Handeln und Instruieren für Technikpädagogen I - Sportartgruppe Ia (LBP), schriftlich, eventuell mündlich, Gewichtung: 1.0, Sukzessiver Erwerb der Prüfungsleistungen durch Teilprüfungen zum Abschluss der einzelnen Veranstaltungen (Pos. 1, 2, 3) in Form von Klausur oder mündlicher Prüfung sowie einer jeweiligen fachpraktischen Prüfung. Zu Beginn der jeweiligen Lehrveranstaltung werden Art und Umfang der lehrveranstaltungsbegleitenden Prüfungen den Studierenden vom Leiter mitgeteilt. Alle Teilprüfungen sind mit Bezug auf die Prüfungsleistung gleich gewichtet.

• 12832 Sportarttypisches Handeln und Instruieren für Technikpädagogen I - Sportartgruppe Ib (LBP), schriftlich, eventuell mündlich, Gewichtung: 1.0, Sukzessiver Erwerb der Prüfungsleistungen durch Teilprüfungen zum Abschluss der einzelnen Veranstaltungen (Pos. 1, 2, 3) in Form von Klausur oder mündlicher Prüfung sowie einer jeweiligen fachpraktischen Prüfung. Zu Beginn der jeweiligen Lehrveranstaltung werden Art und Umfang der lehrveranstaltungsbegleitenden Prüfungen den Studierenden vom Leiter mitgeteilt. Alle Teilprüfungen sind mit Bezug auf die Prüfungsleistung gleich gewichtet.

18. Grundlage für ... :

19. Medienform: Moodle Lernplattform, Powerpoint-Präsentation, Texte

20. Angeboten von:
Modul: 12840 Sportarttypisches Handeln und Instruieren für Technikpädagogen II

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>0.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Dieter Bubeck</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B.Sc. Technikpädagogik, PO 2011, 3. Semester → Wahlpflichtfach → Wahlpflichtfach Sport</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.Sc. Technikpädagogik, PO 2015, 3. Semester → Wahlpflichtfach B → Wahlpflichtfach Sport → Grundlagen Sport</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Literatur:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>128401 Übung Sportartgruppe IIa</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>128402 Übung Sportartgruppe IIb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>12841 Sportarttypisches Handeln und Instruieren für Technikpädagogen II - Sportartgruppe IIa (LBP), schriftlich, eventuell mündlich, Gewichtung: 1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>12842 Sportarttypisches Handeln und Instruieren für Technikpädagogen II - Sportartgruppe IIb (LBP), schriftlich, eventuell mündlich, Gewichtung: 1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Grundlage für ...:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5082 Erweiterte Themenbereiche zum Sport

Zugeordnete Module:
- 20680 Lernen, Handeln und Instruieren in schulsportlichen Handlungsfeldern A
- 23490 Lernen, Handeln und Instruieren in schulsportlichen Handlungsfeldern B
- 23500 Geisteswissenschaftliche Vertiefung
- 23510 Naturwissenschaftliche Vertiefung
- 23520 Sozialwissenschaftliche Vertiefung
Modul: 23500 Geisteswissenschaftliche Vertiefung

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>100300803</th>
<th>5. Moduldauer:</th>
<th>2 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>0.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Nadja Schott</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zuordnung zum Curriculum in diesem Studiengang:

- **M.Sc. Technikpädagogik, PO 2009, 2. Semester**
 - Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang
 - Wahlpflichtfach B --> Wahlpflichtfach Sport
 - Wahlpflichtfach A --> Wahlpflichtfach Sport --> Erweiterte Themenbereiche zum Sport
- **M.Sc. Technikpädagogik, PO 2009, 2. Semester**
 - Wahlpflichtfach B --> Wahlpflichtfach Sport --> Erweiterte Themenbereiche zum Sport
- **M.Sc. Technikpädagogik, PO 2015, 2. Semester**
 - Wahlpflichtfach A --> Wahlpflichtfach Sport --> Erweiterte Themenbereiche zum Sport
- **M.Sc. Technikpädagogik, PO 2015, 2. Semester**
 - Wahlpflichtfach B --> Wahlpflichtfach Sport --> Erweiterte Themenbereiche zum Sport

Empfohlene Voraussetzungen:

Lernziele:

Inhalt:

Literatur:

- 235001 Hauptseminar Sportpädagogik
- 235002 Übung Sportpädagogik

Abschätzung Arbeitsaufwand:

Prüfungsnummer/n und -name:

- **23501** Geisteswissenschaftliche Vertiefung (LBP), schriftlich, eventuell mündlich, Gewichtung: 1.0

Grundlage für ...:

Medienform:

Angeboten von:
Modul: 20680 Lernen, Handeln und Instruieren in schulsportlichen Handlungsfeldern A

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>0.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Dieter Bubeck</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zuordnung zum Curriculum in diesem Studiengang:

M.Sc. Technikpädagogik, PO 2009, 1. Semester

→ Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang --> Wahlpflichtfach B --> Wahlpflichtfach Sport

→ M.Sc. Technikpädagogik, PO 2009, 1. Semester

→ Wahlpflichtfach A --> Wahlpflichtfach Sport --> Erweiterte Themenbereiche zum Sport

→ M.Sc. Technikpädagogik, PO 2009, 1. Semester

→ Wahlpflichtfach B --> Wahlpflichtfach Sport --> Erweiterte Themenbereiche zum Sport

→ M.Sc. Technikpädagogik, PO 2015, 1. Semester

→ Wahlpflichtfach A --> Wahlpflichtfach Sport --> Erweiterte Themenbereiche zum Sport

→ M.Sc. Technikpädagogik, PO 2015, 1. Semester

→ Wahlpflichtfach B --> Wahlpflichtfach Sport --> Erweiterte Themenbereiche zum Sport

Empfohlene Voraussetzungen:

Lernziele:

Inhalt:

Literatur:

Lehrveranstaltungen und -formen:

- 206801 Übung Sportartgruppe I Profibildung
- 206802 Übung Sportartgruppe II Natursport

Abschätzung Arbeitsaufwand:

Prüfungsnummer/n und -name:

20681 Lernen, Handeln und Instruieren in schulsportlichen Handlungsfeldern A (LBP), schriftlich, eventuell mündlich, Gewichtung: 1.0

Grundlage für ... :

Medienform:

Angeboten von:
Modul: 23490 Lernen, Handeln und Instruieren in schulsportlichen Handlungsfeldern B

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>0.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>PD Rolf Brack</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:
 - M.Sc. Technikpädagogik, PO 2009, 2. Semester
 ➔ Bachelor-Studiengang --> Wahlpflichtfach B --> Wahlpflichtfach Sport
 ➔ Wahlpflichtfach A --> Wahlpflichtfach Sport --> Erweiterte Themenbereiche zum Sport
 - M.Sc. Technikpädagogik, PO 2009, 2. Semester
 ➔ Wahlpflichtfach B --> Wahlpflichtfach Sport --> Erweiterte Themenbereiche zum Sport
 - M.Sc. Technikpädagogik, PO 2015, 2. Semester
 ➔ Wahlpflichtfach A --> Wahlpflichtfach Sport --> Erweiterte Themenbereiche zum Sport
 ➔ Wahlpflichtfach B --> Wahlpflichtfach Sport --> Erweiterte Themenbereiche zum Sport

17. Prüfungsnummer/n und -name: 23491 Lernen, Handeln und Instruieren in schulsportlichen Handlungsfeldern B (LBP), schriftlich, eventuell mündlich, Gewichtung: 1.0
Modul: 23510 Naturwissenschaftliche Vertiefung

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>0.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>10. Zuordnung zum Curriculum in diesem Studiengang:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>M.Sc. Technikpädagogik, PO 2009, 4. Semester</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>→ Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>→ Wahlpflichtfach B -->Wahlpflichtfach Sport</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>→ M.Sc. Technikpädagogik, PO 2009, 4. Semester</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>→ Wahlpflichtfach A -->Wahlpflichtfach Sport -->Erweiterte Themenbereiche zum Sport</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>→ M.Sc. Technikpädagogik, PO 2009, 4. Semester</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>→ Wahlpflichtfach B -->Wahlpflichtfach Sport -->Erweiterte Themenbereiche zum Sport</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>→ M.Sc. Technikpädagogik, PO 2015, 4. Semester</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>→ Wahlpflichtfach A -->Wahlpflichtfach Sport -->Erweiterte Themenbereiche zum Sport</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>→ M.Sc. Technikpädagogik, PO 2015, 4. Semester</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>→ Wahlpflichtfach B -->Wahlpflichtfach Sport -->Erweiterte Themenbereiche zum Sport</td>
<td></td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen: |

12. Lernziele: |

13. Inhalt: |

14. Literatur: |

15. Lehrveranstaltungen und -formen: | 235101 Projektseminar |

16. Abschätzung Arbeitsaufwand: |

17. Prüfungsnummer/n und -name: | 23511 Naturwissenschaftliche Vertiefung (LBP), schriftlich, eventuell mündlich, Gewichtung: 1.0 |

18. Grundlage für ... : |

19. Medienform: |

20. Angeboten von: |
Modul: 23520 Sozialwissenschaftliche Vertiefung

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>100300805</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>0.0</td>
</tr>
<tr>
<td>5. Modulduer:</td>
<td>2 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Ulrich Dolata</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Volker Haug
• Gerhard Fuchs
• Dieter Klumpp
• Ulrich Dolata
• Jan-Felix Schrape |

Zuordnung zum Curriculum in diesem Studiengang:

 → Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang -->Wahlpflichtfach B -->Wahlpflichtfach Sport
 → Wahlpflichtfach A -->Wahlpflichtfach Sport -->Erweiterte Themenbereiche zum Sport
 → Wahlpflichtfach B -->Wahlpflichtfach Sport -->Erweiterte Themenbereiche zum Sport
- M.Sc. Technikpädagogik, PO 2015, 3. Semester
 → Wahlpflichtfach A -->Wahlpflichtfach Sport -->Erweiterte Themenbereiche zum Sport
- M.Sc. Technikpädagogik, PO 2015, 3. Semester
 → Wahlpflichtfach B -->Wahlpflichtfach Sport -->Erweiterte Themenbereiche zum Sport

Empfohlene Voraussetzungen:

Lernziele:

Inhalt:

Literatur:

Lehrveranstaltungen und -formen:

- 235201 Vorlesung II
- 235202 Hauptseminar

Abschätzung Arbeitsaufwand:

Prüfungsnummer/n und -name:

- 23521 Sozialwissenschaftliche Vertiefung (LBP), schriftlich, eventuell mündlich, Gewichtung: 1.0

Grundlage für ... :

Medienform:

Angeboten von:
5090 Wahlpflichtfach Evangelische Theologie

Zugeordnete Module:

5091 Grundlagen Evangelische Theologie
5092 Erweiterte Themenbereiche zur Ev. Theol.
5091 Grundlagen Evangelische Theologie

Zugeordnete Module:
- 20500 Theologie als Wissenschaft
- 20510 Biblische Theologie
- 20530 Kirchengeschichte
- 20540 Religionspädagogik
- 20550 Systematische Theologie
- 20560 Religionswissenschaft
Modul: 20510 Biblische Theologie

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>6.0</td>
<td>7. Sprache:</td>
<td>-</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Ulrich Mell</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

9. Dozenten:

10. Zuordnung zum Curriculum in diesem Studiengang:

- B.Sc. Technikpädagogik, PO 2011, 4. Semester → Vorgezogene Master-Module
- B.Sc. Technikpädagogik, PO 2011, 4. Semester → Wahlpflichtfach → Wahlpflichtfach Evangelische Theologie
- M.Sc. Technikpädagogik, PO 2009, 1. Semester → Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang → Wahlpflichtfach B → Wahlpflichtfach Evangelische Theologie
- M.Sc. Technikpädagogik, PO 2015, 1. Semester → Wahlpflichtfach B → Wahlpflichtfach Evangelische Theologie → Grundlagen Evangelische Theologie

11. Empfohlene Voraussetzungen:

- Einführung in die Bibel als historischem Schriftenkanon des Christentums.
- Inhaltliche Kenntnisse wichtiger biblischer Texte und Problemstellungen biblischer Überlieferung.
- Erlangung einer methodisch reflektierten hermeneutischen Kompetenz im Umgang mit den traditionellen biblischen Grundlagen des Christentums.

12. Lernziele:

- Kenntnisse von Inhalt und Aufbau der wichtigsten Bücher im alttestamentlichen Kanon.
- Grundzüge der Kanoneinteilung und der historischen Kanonentwicklung.
- Grundkenntnisse der alttestamentlichen Literaturgeschichte.

13. Inhalt:

- Bibelkunde AT

Stand: 07. Oktober 2015 Seite 327 von 1124
Bibelkunde NT

Kenntnisse von Inhalt und Aufbau der wichtigsten Bücher im neutestamentlichen Kanon.

Grundzüge der Kanoneinteilung des NT und der historischen Kanonentwicklung.

Grundkenntnisse der urchristlichen Literaturgeschichte.

AT/NT-Proseminar: Vom Verstehen biblischer Texte:

14. Literatur:

<table>
<thead>
<tr>
<th>Autor / Titel</th>
<th>Verlag, Jahr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Einheitsübersetzung der Bibel, Freiburg u.a. 2000ff.</td>
<td></td>
</tr>
<tr>
<td>Bull, K.-M., Bibelkunde des Neuen Testaments, Neukirchen-Vluyn 1997ff.</td>
<td></td>
</tr>
</tbody>
</table>

Weitere Literatur wird im Verlauf der Veranstaltung angegeben.

15. Lehrveranstaltungen und -formen:

<table>
<thead>
<tr>
<th>Veranstaltung</th>
<th>Veranstaltungsnr.</th>
<th>Gliederung</th>
<th>Vor- / Nachbereitungszeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Übung Bibelkunde: Altes Testament</td>
<td>205101</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Übung Bibelkunde: Neues Testament</td>
<td>205102</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Seminar: Vom Verstehen biblischer Text</td>
<td>205103</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

16. Abschätzung Arbeitsaufwand:

90 Stunden Präsenzzeit; Pro SWS Lehreinheit doppelte Vor- bzw. Nachbereitungszeit.

Vorbereitung von Seminarsitzungen durch intensive Lektüre (Exzerpte); Erstellung von Arbeitspapieren; Individuell verschiedener Zeitaufwand für die Abfassung einer Hausarbeit und die Vorbereitung von Klausuren.

17. Prüfungsnummer/n und -name:

<table>
<thead>
<tr>
<th>Prüfungsnr.</th>
<th>Name</th>
<th>Gewichtung</th>
</tr>
</thead>
<tbody>
<tr>
<td>20511 Biblische Theologie Klausur 1 (LBP), schriftlich, eventuell mündlich</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>20512 Biblische Theologie Klausur 2 (LBP), schriftlich, eventuell mündlich</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>20513 Biblische Theologie Hausarbeit (LBP), schriftlich, eventuell mündlich</td>
<td>1.0</td>
<td></td>
</tr>
</tbody>
</table>

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 20530 Kirchengeschichte

4. SWS: 2.0 7. Sprache: -
8. Modulverantwortlicher: Univ.-Prof. Ulrich Mell

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technikpädagogik, PO 2011, 6. Semester
 ➔ Vorgezogene Master-Module
 B.Sc. Technikpädagogik, PO 2011, 6. Semester
 ➔ Wahlpflichtfach -->Wahlpflichtfach Evangelische Theologie
 ➔
 M.Sc. Technikpädagogik, PO 2009, 2. Semester
 ➔ Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang -->Wahlpflichtfach B -->Wahlpflichtfach Evangelische Theologie
 ➔
 M.Sc. Technikpädagogik, PO 2009, 2. Semester
 ➔ Wahlpflichtfach B -->Wahlpflichtfach Evangelische Theologie -->Grundlagen Evangelische Theologie
 ➔
 M.Sc. Technikpädagogik, PO 2015, 2. Semester
 ➔ Wahlpflichtfach B -->Wahlpflichtfach Evangelische Theologie -->Grundlagen Evangelische Theologie

11. Empfohlene Voraussetzungen:
12. Lernziele:
13. Inhalt:
 Zusammenhang von Glaube und Handeln anhand eines exemplarischen Beispiels aus der evangelischen Kirchengeschichte.
 Zentraler Brennpunkt der Kirchengeschichte in Neuzeit und Moderne.
 Relevanz der Thematik für die ethische und theologische Situation der Gegenwart.
14. Literatur:
 Wird am Beginn und Verlauf des Seminars angegeben.
15. Lehrveranstaltungen und -formen:
 205301 Seminar Grundthema der Neueren Kirchengeschichte
16. Abschätzung Arbeitsaufwand:
 30 Std. Präsenzstudium; Einfacher Zeitaufwand zur Vorbereitung der Lehrveranstaltung. Lektüre; Vorbereitung wie Teilnahme an einer kirchengeschichtlichen Exkursion. Individuell verschiedener Zeitaufwand für ein Referat.
17. Prüfungsnummer/n und -name:
 20531 Kirchengeschichte (LBP), schriftlich, eventuell mündlich, Gewichtung: 1.0
18. Grundlage für ... :
19. Medienform:

20. Angeboten von:
Modul: 20540 Religionspädagogik

2. Modulkürzel: Hohenheim oder Tübingen
5. Modulduer: 2 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0
7. Sprache: -

8. Modulverantwortlicher: Univ.-Prof. Ulrich Mell

9. Dozenten:

10. Zuordnung zum Curriculum in diesem Studiengang:

 B.Sc. Technikpädagogik, PO 2011, 5. Semester
 ➔ Vorgezogene Master-Module

 B.Sc. Technikpädagogik, PO 2011, 5. Semester
 ➔ Wahlpflichtfach -->Wahlpflichtfach Evangelische Theologie

 M.Sc. Technikpädagogik, PO 2009, 1. Semester
 ➔ Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang -->Wahlpflichtfach B -->Wahlpflichtfach Evangelische Theologie

 M.Sc. Technikpädagogik, PO 2009, 1. Semester
 ➔ Wahlpflichtfach B -->Wahlpflichtfach Evangelische Theologie -->Grundlagen Evangelische Theologie

 M.Sc. Technikpädagogik, PO 2015, 1. Semester
 ➔ Wahlpflichtfach B -->Wahlpflichtfach Evangelische Theologie -->Grundlagen Evangelische Theologie

11. Empfohlene Voraussetzungen:

12. Lernziele:

13. Inhalt:

 Übung zum Schulpraktikum:

Proseminar:

15. Lehrveranstaltungen und -formen:
 • 205401 Übung Zum Schulpraktikum
 • 205402 Seminar Grundlagen der Religionspädagogik

16. Abschätzung Arbeitsaufwand: 60 Std. Präsenzzeit; 120 Std. Selbststudiumszeit

17. Prüfungsnummer/n und -name: 20541 Religionspädagogik (LBP), schriftlich, eventuell mündlich, Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
Modul: 20560 Religionswissenschaft

2. Modulkürzel: Hohenheim oder Tübingen
5. Moduldauer: 2 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0
7. Sprache: -

8. Modulverantwortlicher: Univ.-Prof. Ulrich Mell

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technikpädagogik, PO 2011, 5. Semester
 → Vorgezogene Master-Module
 B.Sc. Technikpädagogik, PO 2011, 5. Semester
 → Wahlpflichtfach -->Wahlpflichtfach Evangelische Theologie
 →
 M.Sc. Technikpädagogik, PO 2009, 3. Semester
 → Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang -->Wahlpflichtfach B -->Wahlpflichtfach Evangelische Theologie
 →
 M.Sc. Technikpädagogik, PO 2009, 3. Semester
 → Wahlpflichtfach B -->Wahlpflichtfach Evangelische Theologie -->
 Grundlagen Evangelische Theologie
 →
 M.Sc. Technikpädagogik, PO 2015, 3. Semester
 → Wahlpflichtfach B -->Wahlpflichtfach Evangelische Theologie -->
 Grundlagen Evangelische Theologie
 →

11. Empfohlene Voraussetzungen:

12. Lernziele:

13. Inhalt:
 Religionswissenschaftliches Seminar

 Vorlesung: Einführung in die Religionswissenschaft
 Die Vorlesung führt anhand verschiedener Ansätze wie Religionsphänomenologie, Religionpsychologie und Religionsoziologie in religionswissenschaftliche Methodik und Grundbegriffe ein. Exemplarisch werden Fragestellungen vergleichender Religionswissenschaft wie Religion und Politik, Konversion, Synkretismus und Inkulturation behandelt.

14. Literatur:
 Literatur wird zu Beginn und im Verlauf der Veranstaltungen angegeben.

15. Lehrveranstaltungen und -formen:
 • 205601 Vorlesung Einführung in die Religionswissenschaft
 • 205602 Seminar Grundthema der Religionswissenschaft

16. Abschätzung Arbeitsaufwand:
 Präsenzn Zeit: 42 h
Vor- und Nachbereitung: 138 h

Gesamt: 180 h

17. Prüfungsnummer/n und -name:
- 20561 Religionswissenschaft Hausarbeit (LBP), schriftlich, eventuell mündlich, Gewichtung: 1.0
- 20562 Religionswissenschaft Vorlesungsprüfung (LBP), schriftlich, eventuell mündlich, Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
Modul: 20550 Systematische Theologie

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>Hohenheim oder Tübingen</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modulaufr:</td>
<td>2 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>-</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Ulrich Mell</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td></td>
</tr>
<tr>
<td>10. Zuordnung zum Curriculum in diesem Studiengang:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>B.Sc. Technikpädagogik, PO 2011, 5. Semester → Vorgezogene Master-Module</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Technikpädagogik, PO 2011, 5. Semester → Wahlpflichtfach → Wahlpflichtfach Evangelische Theologie</td>
</tr>
<tr>
<td></td>
<td>M.Sc. Technikpädagogik, PO 2009, 1. Semester → Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang → Wahlpflichtfach B → Wahlpflichtfach Evangelische Theologie</td>
</tr>
<tr>
<td></td>
<td>M.Sc. Technikpädagogik, PO 2015, 1. Semester → Wahlpflichtfach B → Wahlpflichtfach Evangelische Theologie → Grundlagen Evangelische Theologie</td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen:

Einführung in die Prinzipien einer evangelischen Ethik.

Reflektion einer bedeutsamen ethisch-theologischen Programmatik aus Neuzeit und Moderne.

12. Lernziele:

Proseminar: Der Evangelische Glaube:

Vorlesung: Die Evangelische Ethik:

Die Vorlesung vermittelt einen Einblick in Voraussetzungen, Problemstellungen, Themenbereiche und Grundbegriffe ethischen Denkens der Gegenwart. Sie beschäftigt sich mit den Spezifika einer

15. Lehrveranstaltungen und -formen:
- 205501 Seminar Der evangelische Glaube
- 205502 Seminar Die evangelische Ethik

16. Abschätzung Arbeitsaufwand:

17. Prüfungsnummer/n und -name:
- 20551 Systematische Theologie Hausarbeit (LBP), schriftlich, eventuell mündlich, Gewichtung: 1.0
- 20552 Systematische Theologie Vorlesungsprüfung (LBP), schriftlich, eventuell mündlich, Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 20500 Theologie als Wissenschaft

2. Modulkürzel: Hohenheim oder Tübingen
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0
5. Modulduauer: 2 Semester
6. Turnus: jedes 2. Semester, SoSe
7. Sprache: -
8. Modulverantwortlicher: Univ.-Prof. Ulrich Mell
9. Dozenten:

10. Zuordnung zum Curriculum in diesem Studiengang:
 - B.Sc. Technikpädagogik, PO 2011, 4. Semester
 → Vorgezogene Master-Module
 → Wahlpflichtfach Evangelische Theologie
 - M.Sc. Technikpädagogik, PO 2009, 1. Semester
 → Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang
 → Wahlpflichtfach Evangelische Theologie
 - M.Sc. Technikpädagogik, PO 2015, 1. Semester
 → Wahlpflichtfach Evangelische Theologie

11. Empfohlene Voraussetzungen:

12. Lernziele:

13. Inhalt:

Proseminar: Einführung in die Evangelische Theologie:

Proseminar: Einführung in die evangelische Religionspädagogik:

Das Proseminar führt in die Grundlagen evangelischer Religionspädagogik an Beruflichen Schulen ein. Behandelt

14. Literatur:
Weitere Literatur wird im Verlauf der Seminare angegeben.

15. Lehrveranstaltungen und -formen:
• 205001 Seminar Einführung in die evangelische Religionspädagogik
• 205002 Seminar Einführung in die evangelische Theologie

16. Abschätzung Arbeitsaufwand:
180 Stunden:
60 Stunden Präsenzstudium
80 Stunden Vor- und Nachbereitung
40 Stunden Erstellung der Seminararbeit

17. Prüfungsnummer/n und -name:
20501 Theologie als Wissenschaft (PL), schriftlich, eventuell mündlich, Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
5092 Erweiterte Themenbereiche zur Ev. Theol.

Zugeordnete Module:
- 23640 Biblische Theologie (AT)
- 23650 Biblische Theologie (NT)
- 23660 Kirchengeschichte II
- 23670 Systematische Theologie II
- 23680 Religionspädagogik II
Modul: 23640 Biblische Theologie (AT)

2. Modulkürzel: Hohenheim oder Tübingen
5. Moduldauer: 2 Semester

3. Leistungspunkte: 3.0 LP

4. SWS: 5.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Ulrich Mell

9. Dozenten: N. N.

10. Zuordnung zum Curriculum in diesem Studiengang:
 M.Sc. Technikpädagogik, PO 2009, 1. Semester
 → Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang
 → Wahlpflichtfach B →Wahlpflichtfach Evangelische Theologie
 →
 M.Sc. Technikpädagogik, PO 2009, 1. Semester
 → Wahlpflichtfach A →Wahlpflichtfach Evangelische Theologie
 → Erweiterte Themenbereiche zur Evangelischen Theologie
 →
 M.Sc. Technikpädagogik, PO 2009, 1. Semester
 → Wahlpflichtfach B →Wahlpflichtfach Evangelische Theologie
 → Erweiterte Themenbereiche zur Evangelischen Theologie
 →
 M.Sc. Technikpädagogik, PO 2015, 1. Semester
 → Wahlpflichtfach A →Wahlpflichtfach Evangelische Theologie
 → Erweiterte Themenbereiche zur Evangelischen Theologie
 →
 M.Sc. Technikpädagogik, PO 2015, 1. Semester
 → Wahlpflichtfach B →Wahlpflichtfach Evangelische Theologie
 → Erweiterte Themenbereiche zur Evangelischen Theologie
 →

11. Empfohlene Voraussetzungen: Modul 20510 Biblische Theologie

12. Lernziele:

13. Inhalt:
Die Vorlesung AT I und die sie begleitende Übung befassen sich entweder mit der Geschichte Israels und des Frühjudentums oder mit der Entstehungsgeschichte der Jüdischen Bibel, dem christlichen "Alten Testament".

Die Vorlesung AT II beschäftigt sich entweder mit einem ausgewählten Teil der Literaturgeschichte Israels und des Frühjudentums oder mit Israels Theologiegeschichte. Schwerpunkte bilden entweder die exilische oder die nachexilische Zeit oder ein Kanonteil (Thora; Propheten; Schriften).

14. Literatur:
Wird am Beginn und im Verlauf der Lehrveranstaltungen angegeben.

15. Lehrveranstaltungen und -formen:
• 236401 Vorlesung Altes Testament I
• 236402 Übung Altes Testament
• 236403 Vorlesung Altes Testament II
16. Abschätzung Arbeitsaufwand: 180 h
56 Stunden Präsenzstudium
124 Stunden Selbststudium

17. Prüfungsnummer/n und -name: 23641 Biblische Theologie (AT) (PL), schriftlich, eventuell mündlich, Gewichtung: 1.0

18. Grundlage für ...:

19. Medienform:

20. Angeboten von:
Modul: 23650 Biblische Theologie (NT)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>7.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Ulrich Mell</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>N. N.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang -- Wahlpflichtfach B --> Wahlpflichtfach Evangelische Theologie</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ M.Sc. Technikpädagogik, PO 2009, 3. Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Wahlpflichtfach A --> Wahlpflichtfach Evangelische Theologie -- Erweiterte Themenbereiche zur Evangelischen Theologie</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ M.Sc. Technikpädagogik, PO 2009, 3. Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ M.Sc. Technikpädagogik, PO 2015, 3. Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Wahlpflichtfach A --> Wahlpflichtfach Evangelische Theologie -- Erweiterte Themenbereiche zur Evangelischen Theologie</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ M.Sc. Technikpädagogik, PO 2015, 3. Semester</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen:

13. Inhalt:

Die Vorlesung NT I und die sie begleitende Übung führen in Fragestellungen und Probleme des historisch-kritischen Verständnisses neutestamentlicher Schriften ein. Behandelt werden die biblische Kanons Geschichte, die Entstehung der urchristlichen Literatur und die Phasen urchristlicher Theologiegeschichte.
Die Vorlesung NT II beschäftigt sich mit der Theologie des Neuen Testaments an einem thematischen Schwerpunkt. Infrage kommen dafür die Theologie des historischen Jesus von Nazaret, die Theologie von Paulus, oder die Christologie der Evangelienschriften.

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 236501 Vorlesung Neues Testament I</td>
</tr>
<tr>
<td></td>
<td>• 236502 Übung Neues Testament</td>
</tr>
<tr>
<td></td>
<td>• 236503 Vorlesung Neues Testament II</td>
</tr>
<tr>
<td></td>
<td>• 236504 Seminar Neues Testament</td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>360 h, 98 h Präsenzstudium, 262 h Selbststudium</td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>23651 Biblische Theologie (NT) (PL), schriftlich, eventuell mündlich, Gewichtung: 1.0</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td></td>
</tr>
</tbody>
</table>
Modul: 23660 Kirchengeschichte II

2. Modulkürzel: Hohenheim oder Tübingen
5. Moduldauer: 2 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Ulrich Mell

9. Dozenten: N. N.

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Technikpädagogik, PO 2009, 3. Semester
→ Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang →Wahlpflichtfach B →Wahlpflichtfach Evangelische Theologie
→ M.Sc. Technikpädagogik, PO 2009, 3. Semester
→ Wahlpflichtfach A →Wahlpflichtfach Evangelische Theologie →Erweiterte Themenbereiche zur Evangelischen Theologie
→ M.Sc. Technikpädagogik, PO 2009, 3. Semester
→ Wahlpflichtfach B →Wahlpflichtfach Evangelische Theologie →Erweiterte Themenbereiche zur Ev. Theol.
→ M.Sc. Technikpädagogik, PO 2015, 3. Semester
→ Wahlpflichtfach A →Wahlpflichtfach Evangelische Theologie →Erweiterte Themenbereiche zur Evangelischen Theologie
→ M.Sc. Technikpädagogik, PO 2015, 3. Semester
→ Wahlpflichtfach B →Wahlpflichtfach Evangelische Theologie →Erweiterte Themenbereiche zur Ev. Theol.

11. Empfohlene Voraussetzungen:

Das Seminar beschäftigt sich mit einem Brennpunkt neuzzeitlicher Kirchengeschichte sowie seiner Bedeutung für die Gegenwart und gebraucht die für eine Einordnung und Beurteilung notwendigen Methoden historischer Forschung.

15. Lehrveranstaltungen und -formen: • 236601 Vorlesung Kirchengeschichte im Überblick
• 236602 Seminar Thema der Neueren Kirchengeschichte

16. Abschätzung Arbeitsaufwand: 180 Stunden, 56 Stunden Präsenzstudium, 124 Stunden Selbststudium
17. Prüfungsnummer/n und -name: 23661 Kirchengeschichte II (PL), schriftlich, eventuell mündlich, Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 23680 Religionspädagogik II

2. Modulkürzel: Hohenheim oder Tübingen
5. Modulduauer: 2 Semester
3. Leistungspunkte: 6.0 LP
4. SWS: 2.0
7. Sprache: -
8. Modulverantwortlicher: Univ.-Prof. Ulrich Mell
9. Dozenten: N. N.
→ Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang -->Wahlpflichtfach B -->Wahlpflichtfach Evangelische Theologie
→ M.Sc. Technikpädagogik, PO 2009, 2. Semester
→ Wahlpflichtfach A -->Wahlpflichtfach Evangelische Theologie -->Erweiterte Themenbereiche zur Evangelischen Theologie
→ M.Sc. Technikpädagogik, PO 2009, 2. Semester
→ M.Sc. Technikpädagogik, PO 2015, 2. Semester
→ Wahlpflichtfach A -->Wahlpflichtfach Evangelische Theologie -->Erweiterte Themenbereiche zur Evangelischen Theologie
→ M.Sc. Technikpädagogik, PO 2015, 2. Semester
→
15. Lehrveranstaltungen und -formen: Vorlesung Religionspädagogik des BRU
16. Abschätzung Arbeitsaufwand: 90 h, 30 h Präsenzstudium, 60 h Selbststudium
17. Prüfungsnummer/n und -name: 23681 Religionspädagogik II (PL), schriftlich, eventuell mündlich, Gewichtung: 1.0
<table>
<thead>
<tr>
<th>Nummer</th>
<th>Fragestellung</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.</td>
<td>Grundlage für ... :</td>
</tr>
<tr>
<td>19.</td>
<td>Medienform:</td>
</tr>
<tr>
<td>20.</td>
<td>Angeboten von:</td>
</tr>
</tbody>
</table>
Modul: 23670 Systematische Theologie II

2. Modulkürzel: Hohenheim oder Tübingen

3. Leistungspunkte: 6.0 LP

4. SWS: 6.0

5. Modulduauer: 2 Semester

7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Ulrich Mell

9. Dozenten: N. N.

10. Zuordnung zum Curriculum in diesem Studiengang:

M.Sc. Technikpädagogik, PO 2009, 2. Semester

→ Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang
→ Wahlpflichtfach B → Wahlpflichtfach Evangelische Theologie

→ M.Sc. Technikpädagogik, PO 2009, 2. Semester
→ Wahlpflichtfach A → Wahlpflichtfach Evangelische Theologie → Erweiterte Themenbereiche zur Evangelischen Theologie

→ M.Sc. Technikpädagogik, PO 2009, 2. Semester
→ Wahlpflichtfach B → Wahlpflichtfach Evangelische Theologie → Erweiterte Themenbereiche zur Ev. Theol.

→ M.Sc. Technikpädagogik, PO 2015, 2. Semester
→ Wahlpflichtfach A → Wahlpflichtfach Evangelische Theologie → Erweiterte Themenbereiche zur Evangelischen Theologie

→ M.Sc. Technikpädagogik, PO 2015, 2. Semester
→ Wahlpflichtfach B → Wahlpflichtfach Evangelische Theologie → Erweiterte Themenbereiche zur Ev. Theol.

11. Empfohlene Voraussetzungen:

12. Lernziele:

13. Inhalt:

Die Vorlesung führt in die systematische Erfassung und theologische Reflexion christlichen Glaubens in der Gegenwart ein. Sie setzt Schwerpunkte in der Gotteslehre, Christologie oder Ekklesiologie.

14. Literatur:

Wird am Beginn und Verlauf der Lehrveranstaltungen bekannt gegeben.

15. Lehrveranstaltungen und -formen:

• 236701 Seminar Thema der Dogmatik oder Ethik
• 236702 Vorlesung Dogmatik
• 236703 Seminar Thema der Dogmatik

<table>
<thead>
<tr>
<th>16. Abschätzung Arbeitsaufwand:</th>
<th>210 h, 70 h Präsenzstudium, 140 h Selbststudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>23671 Systematische Theologie II (PL), schriftlich, eventuell mündlich, Gewichtung: 1.0</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td></td>
</tr>
</tbody>
</table>
5110 Wahlpflichtfach Katholische Theologie (TP)

Zugeordnete Module:

- 5111 Grundlagen Katholische Theologie (TP)
- 5112 Erweiterte Themenbereiche zur Katholischen Theologie (TP)
5111 Grundlagen Katholische Theologie (TP)

<table>
<thead>
<tr>
<th>Zugeordnete Module</th>
<th>Modulnummer</th>
<th>Modulname</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>20570</td>
<td>Katholische Theologie Basismodul 1</td>
</tr>
<tr>
<td></td>
<td>20580</td>
<td>Katholische Theologie Basismodul 2</td>
</tr>
<tr>
<td></td>
<td>20590</td>
<td>Katholische Theologie Basismodul 3</td>
</tr>
<tr>
<td></td>
<td>23600</td>
<td>Katholische Theologie Vertiefungsmodul 1</td>
</tr>
</tbody>
</table>
Modul: 20570 Katholische Theologie Basismodul 1

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>Hohenheim oder Tübingen</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>9.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>6.0</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>2 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>-</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Michael Schramm</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10. Zuordnung zum Curriculum in diesem Studiengang:</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.Sc. Technikpädagogik, PO 2011, 4. Semester</td>
</tr>
<tr>
<td>→ Vorgezogene Master-Module</td>
</tr>
<tr>
<td>B.Sc. Technikpädagogik, PO 2011, 4. Semester</td>
</tr>
<tr>
<td>→ Wahlpflichtfach Katholische Theologie</td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik, PO 2009, 1. Semester</td>
</tr>
<tr>
<td>→ Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang</td>
</tr>
<tr>
<td>→ Wahlpflichtfach Katholische Theologie</td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik, PO 2009, 1. Semester</td>
</tr>
<tr>
<td>→ Wahlpflichtfach Katholische Theologie (TP)</td>
</tr>
<tr>
<td>→ Grundlagen Katholische Theologie (TP)</td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik, PO 2015, 1. Semester</td>
</tr>
<tr>
<td>→ Wahlpflichtfach Katholische Theologie (TP)</td>
</tr>
<tr>
<td>→ Grundlagen Katholische Theologie (TP)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11. Empfohlene Voraussetzungen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>12. Lernziele:</td>
</tr>
<tr>
<td>13. Inhalt:</td>
</tr>
<tr>
<td>14. Literatur:</td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
</tr>
<tr>
<td>• 205701 Vorlesung Der unterhaltsame Gott</td>
</tr>
<tr>
<td>• 205702 Vorlesung Die geschichtlichen Bücher des Alten Testaments</td>
</tr>
<tr>
<td>• 205703 Vorlesung Grundfragen der Religionsphilosophie</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16. Abschätzung Arbeitsaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
</tr>
<tr>
<td>20571 Katholische Theologie Basismodul 1 (LBP), schriftlich, eventuell mündlich, Gewichtung: 1.0</td>
</tr>
</tbody>
</table>

| 18. Grundlage für ... : |
| 19. Medienform: |
| 20. Angeboten von: |
Modul: 20580 Katholische Theologie Basismodul 2

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>Katholische Theologie Basismodul 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>9.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>6.0</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>2 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>-</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Michael Schramm</td>
</tr>
</tbody>
</table>

Zuordnung zum Curriculum in diesem Studiengang:
- B.Sc. Technikpädagogik, PO 2011, 5. Semester
 - Vorgezogene Master-Module
- B.Sc. Technikpädagogik, PO 2011, 5. Semester
 - Wahlpflichtfach → Wahlpflichtfach Katholische Theologie
- M.Sc. Technikpädagogik, PO 2009, 2. Semester
 - Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang → Wahlpflichtfach B → Wahlpflichtfach Katholische Theologie
- M.Sc. Technikpädagogik, PO 2009, 2. Semester
 - Wahlpflichtfach B → Wahlpflichtfach Katholische Theologie (TP) → Grundlagen Katholische Theologie (TP)
- M.Sc. Technikpädagogik, PO 2015, 2. Semester
 - Wahlpflichtfach B → Wahlpflichtfach Katholische Theologie (TP) → Grundlagen Katholische Theologie (TP)

Empfohlene Voraussetzungen:

Lernziele:

Inhalt:

Literatur:

Lehrveranstaltungen und -formen:
- 205801 Vorlesung Grundlagen der Theologischen Ethik
- 205802 Vorlesung Grundfragen der Religionspädagogik
- 205803 Vorlesung Gotteslehre

Abschätzung Arbeitsaufwand:

Prüfungsnummer/n und -name:
- 20581 Katholische Theologie Basismodul 2 (LBP), schriftlich, eventuell mündlich, Gewichtung: 1.0

Angeboten von:
Modul: 20590 Katholische Theologie Basismodul 3

2. Modulkürzel: Hohenheim oder Tübingen
5. Modulduauer: 2 Semester
3. Leistungspunkte: 9.0 LP
4. SWS: 6.0
7. Sprache: -

8. Modulverantwortlicher: Univ.-Prof. Michael Schramm

10. Zuordnung zum Curriculum in diesem Studiengang:
 - B.Sc. Technikpädagogik, PO 2011, 4. Semester
 -> Vorgezogene Master-Module
 - B.Sc. Technikpädagogik, PO 2011, 4. Semester
 -> Wahlpflichtfach -->Wahlpflichtfach Katholische Theologie
 - M.Sc. Technikpädagogik, PO 2009, 1. Semester
 -> Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang -->Wahlpflichtfach B -->Wahlpflichtfach Katholische Theologie
 - M.Sc. Technikpädagogik, PO 2009, 1. Semester
 -> Wahlpflichtfach B -->Wahlpflichtfach Katholische Theologie (TP) -- >Grundlagen Katholische Theologie (TP)
 - M.Sc. Technikpädagogik, PO 2015, 1. Semester
 -> Wahlpflichtfach B -->Wahlpflichtfach Katholische Theologie (TP) -- >Grundlagen Katholische Theologie (TP)

11. Empfohlene Voraussetzungen:

12. Lernziele:

13. Inhalt:

15. Lehrveranstaltungen und -formen:
 - 205901 Vorlesung Didaktik des Religionsunterrichts ODER Vom Lehrplan zum Unterricht
 - 205902 Vorlesung Theologische Wirtschafts- und Technikethik ODER Bioethik
 - 205903 Vorlesung Die synoptischen Evangelien

16. Abschätzung Arbeitsaufwand:

17. Prüfungsnummer/n und -name: 20591 Katholische Theologie Basismodul 3 (LBP), schriftlich, eventuell mündlich, Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 23600 Katholische Theologie Vertiefungsmodul 1

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>0.0</td>
<td>7. Sprache:</td>
<td>-</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Michael Schramm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10. Zuordnung zum Curriculum in diesem Studiengang:</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.Sc. Technikpädagogik, PO 2011, 4. Semester</td>
</tr>
<tr>
<td>→ Vorgezogene Master-Module</td>
</tr>
<tr>
<td>B.Sc. Technikpädagogik, PO 2011, 4. Semester</td>
</tr>
<tr>
<td>→ Wahlpflichtfach -->Wahlpflichtfach Katholische Theologie</td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik, PO 2009, 1. Semester</td>
</tr>
<tr>
<td>→ Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang -->Wahlpflichtfach B -->Wahlpflichtfach Katholische Theologie</td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik, PO 2009, 1. Semester</td>
</tr>
<tr>
<td>→ Wahlpflichtfach B -->Wahlpflichtfach Katholische Theologie (TP) -->Grundlagen Katholische Theologie (TP)</td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik, PO 2015, 1. Semester</td>
</tr>
<tr>
<td>→ Wahlpflichtfach B -->Wahlpflichtfach Katholische Theologie (TP) -->Grundlagen Katholische Theologie (TP)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11. Empfohlene Voraussetzungen:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>12. Lernziele:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>13. Inhalt:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>14. Literatur:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>15. Lehrveranstaltungen und -formen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 236001 Vorlesung Offenbarung und Theologie der Weltreligionen ODER Christologie</td>
</tr>
<tr>
<td>• 236002 Vorlesung Exegetische Methoden</td>
</tr>
<tr>
<td>• 236003 Vorlesung Christentum und Weltreligionen</td>
</tr>
<tr>
<td>• 236004 Vorlesung Theorie und Praxis des Religionsunterrichts mit Hospitationen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16. Abschätzung Arbeitsaufwand:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
</tr>
</thead>
<tbody>
<tr>
<td>23601 Katholische Theologie Vertiefungsmodul 1 (LBP), schriftlich, eventuell mündlich, Gewichtung: 1.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>18. Grundlage für ... :</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>19. Medienform:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>20. Angeboten von:</th>
</tr>
</thead>
</table>
5112 Erweiterte Themenbereiche zur Katholischen Theologie (TP)

Zugeordnete Module:
- 23610 Katholische Theologie Vertiefungsmodul 2
- 23620 Katholische Theologie Vertiefungsmodul 3
- 23630 Katholische Theologie Vertiefungsmodul 4
Modul: 23610 Katholische Theologie Vertiefungsmodul 2

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>0.0</td>
<td>7. Sprache:</td>
<td>-</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Michael Schramm</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th></th>
<th>M.Sc. Technikpädagogik, PO 2009, 1. Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>→ Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang -->Wahlpflichtfach B -->Wahlpflichtfach Katholische Theologie</td>
</tr>
<tr>
<td></td>
<td>→ M.Sc. Technikpädagogik, PO 2009, 1. Semester</td>
</tr>
<tr>
<td></td>
<td>→ Wahlpflichtfach A -->Wahlpflichtfach Katholische Theologie -- >Erweiterte Themenbereiche zur Katholischen Theologie</td>
</tr>
<tr>
<td></td>
<td>→ M.Sc. Technikpädagogik, PO 2009, 1. Semester</td>
</tr>
<tr>
<td></td>
<td>→ Wahlpflichtfach B -->Wahlpflichtfach Katholische Theologie (TP) -- >Erweiterte Themenbereiche zur Katholischen Theologie (TP)</td>
</tr>
<tr>
<td></td>
<td>→ M.Sc. Technikpädagogik, PO 2015, 1. Semester</td>
</tr>
<tr>
<td></td>
<td>→ Wahlpflichtfach A -->Wahlpflichtfach Katholische Theologie -- >Erweiterte Themenbereiche zur Katholischen Theologie</td>
</tr>
<tr>
<td></td>
<td>→ M.Sc. Technikpädagogik, PO 2015, 1. Semester</td>
</tr>
<tr>
<td></td>
<td>→ Wahlpflichtfach B -->Wahlpflichtfach Katholische Theologie (TP) -- >Erweiterte Themenbereiche zur Katholischen Theologie (TP)</td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen:

12. Lernziele:

13. Inhalt:

14. Literatur:

* 236101 Vorlesung Propheten / Weisheitsbücher ODER Johannes / Paulus
* 236102 Vorlesung Theologische Wirtschafts- und Technikethik ODER Bioethik
* 236103 Vorlesung Sozial- und Gesellschaftsgeschichte der christlichen Religion

16. Abschätzung Arbeitsaufwand:

17. Prüfungsnummer/n und -name:

23611 Katholische Theologie Vertiefungsmodul 2 (LBP), schriftlich, eventuell mündlich, Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 23620 Katholische Theologie Vertiefungsmodul 3

2. Modulkürzel:	Hohenheim oder Tübingen
3. Leistungspunkte:	3.0 LP
4. SWS:	0.0
5. Modulduer:	2 Semester
7. Sprache:	-
8. Modulverantwortlicher:	Univ.-Prof. Michael Schramm

Zuordnung zum Curriculum in diesem Studiengang:

| M.Sc. Technikpädagogik, PO 2009, 2. Semester |
| → Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang -->Wahlpflichtfach B -->Wahlpflichtfach Katholische Theologie |
| → M.Sc. Technikpädagogik, PO 2009, 2. Semester |
| → Wahlpflichtfach A -->Wahlpflichtfach Katholische Theologie -->Erweiterte Themenbereiche zur Katholischen Theologie |
| → M.Sc. Technikpädagogik, PO 2009, 2. Semester |
| → Wahlpflichtfach B -->Wahlpflichtfach Katholische Theologie (TP) -->Erweiterte Themenbereiche zur Katholischen Theologie (TP) |
| → M.Sc. Technikpädagogik, PO 2015, 2. Semester |
| → Wahlpflichtfach A -->Wahlpflichtfach Katholische Theologie -->Erweiterte Themenbereiche zur Katholischen Theologie |
| → M.Sc. Technikpädagogik, PO 2015, 2. Semester |
| → Wahlpflichtfach B -->Wahlpflichtfach Katholische Theologie (TP) -->Erweiterte Themenbereiche zur Katholischen Theologie (TP) |

Empfohlene Voraussetzungen:

Lernziele:

Inhalt:

Literatur:

- 236201 Vorlesung Frömmigkeits- und Theologiegeschichten der christlichen Religion
- 236202 Vorlesung Offenbarung und Theologie der Weltreligionen
- 236203 Vorlesung Christologie

Abschätzung Arbeitsaufwand:

Prüfungsnummer/n und -name:

23621 Katholische Theologie Vertiefungsmodul 3 (LBP), schriftlich, eventuell mündlich, Gewichtung: 1.0

Grundlage für ... :

Medienform:

Angeboten von:
Modul: 23630 Katholische Theologie Vertiefungsmodul 4

4. SWS: 0.0 7. Sprache: -

8. Modulverantwortlicher: Univ.-Prof. Michael Schramm

9. Dozenten:

10. Zuordnung zum Curriculum in diesem Studiengang:

M.Sc. Technikpädagogik, PO 2009, 3. Semester

→ Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang -->Wahlpflichtfach B -->Wahlpflichtfach Katholische Theologie

→ M.Sc. Technikpädagogik, PO 2009, 3. Semester

→ Wahlpflichtfach A --> Wahlpflichtfach Katholische Theologie -- >Erweiterte Themenbereiche zur Katholischen Theologie

→ M.Sc. Technikpädagogik, PO 2009, 3. Semester

→ Wahlpflichtfach B --> Wahlpflichtfach Katholische Theologie (TP) -- >Erweiterte Themenbereiche zur Katholischen Theologie (TP)

→ M.Sc. Technikpädagogik, PO 2015, 3. Semester

→ Wahlpflichtfach A --> Wahlpflichtfach Katholische Theologie -- >Erweiterte Themenbereiche zur Katholischen Theologie

→ M.Sc. Technikpädagogik, PO 2015, 3. Semester

→ Wahlpflichtfach B --> Wahlpflichtfach Katholische Theologie (TP) -- >Erweiterte Themenbereiche zur Katholischen Theologie (TP)

11. Empfohlene Voraussetzungen:

12. Lernziele:

13. Inhalt:

14. Literatur:

15. Lehrveranstaltungen und -formen:

• 236301 Vorlesung Zentrale Themen alt- und neutestamentlicher Theologie
• 236302 Vorlesung Schöpfungstheologie
• 236303 Vorlesung Die katholische Kirche
• 236304 Vorlesung Der Religionsunterricht an Berufsbildenden Schulen

16. Abschätzung Arbeitsaufwand:

17. Prüfungsnummer/n und -name: 23631 Katholische Theologie Vertiefungsmodul 4 (LBP), schriftlich, eventuell mündlich, Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
5120 Wahlpflichtfach Wirtschaftswissenschaft

Zugeordnete Module:
5121 Grundlagen Wirtschaftswissenschaft (TP)
5122 Erweiterte Themenbereiche zur Wirtschaftswissenschaft (TP)
5121 Grundlagen Wirtschaftswissenschaft (TP)

Zugeordnete Module:

12090 BWL I: Produktion, Organisation, Personal
13030 Rechtliche Grundlagen der BWL
13610 Wissenschaftliches Arbeiten
16490 Grundlagen der Betriebswirtschaftslehre
27460 Mikroökonomik
27470 Makroökonomik
38160 Grundlagen der Volkswirtschaftslehre
Modul: 12090 BWL I: Produktion, Organisation, Personal

2. Modulkürzel: 100120001 5. Moduldauer: 1 Semester
4. SWS: 6.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Birgit Renzl
9. Dozenten: • Michael Reiß • Rudolf Large

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technikpädagogik, PO 2011, 5. Semester
 → Vorgezogene Master-Module
 B.Sc. Technikpädagogik, PO 2011, 5. Semester
 → Wahlpflichtfach -->Wahlpflichtfach Wirtschaftswissenschaften
 →
 M.Sc. Technikpädagogik, PO 2009, 1. Semester
 → Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang -->Wahlpflichtfach B -->Wahlpflichtfach Wirtschaftswissenschaften
 →
 M.Sc. Technikpädagogik, PO 2009, 1. Semester
 → Studienprofil C - betriebliche Bildungsarbeit --
 >Spezialisierungsbereich
 →
 M.Sc. Technikpädagogik, PO 2009, 1. Semester
 → Wahlpflichtfach B -->Wahlpflichtfach Wirtschaftswissenschaft --
 >Grundlagen Wirtschaftswissenschaft (TP)
 →
 M.Sc. Technikpädagogik, PO 2015, 1. Semester
 → Studienprofil C - betriebliche Bildungsarbeit --
 >Spezialisierungsbereich
 →
 M.Sc. Technikpädagogik, PO 2015, 1. Semester
 → Wahlpflichtfach B -->Wahlpflichtfach Wirtschaftswissenschaft --
 >Grundlagen Wirtschaftswissenschaft (TP)
 →

11. Empfohlene Voraussetzungen: Grundlagen der BWL

12. Lernziele:

 Veranstaltung "Produktionsmanagement":
 Die Studierenden sind am Ende der Veranstaltung in der Lage,
 • Produktionssysteme mit Hilfe von Produktions- und Kostenfunktionen abzubilden,
 • produktionswirtschaftliche Fragestellungen in Planungsmodellen abzubilden,
 • grundlegende Planungsmethoden der Produktion anzuwenden.

 Veranstaltung "Organisation und Personalführung":
 Die Studierenden verfügen über Grundkenntnisse zum Aufbau und zum Prozess der Gestaltung von Produktionssystemen für Sach- und Dienstleistungen sowie von Führungssystemen (Kenntnisse der zentralen Führungsaufgaben auf den Gebieten der Organisationsgestaltung,
Personalentwicklung, Personalbeschaffung, Personalbindung und Personalfreisetzung und des Aufbaus von Anreizsystemen).

Die Studierenden sind in der Lage, ausgewählte Führungsmethoden anzuwenden.

13. Inhalt:

Veranstaltung "Produktionsmanagement":

Veranstaltung "Organisation und Personalführung":

Funktionelle, institutionelle, personelle und instrumentelle Zugänge zu Führungssystemen; Führungsstile und Führungsmodelle; Dezentralisierung der Personalführung; interaktionale und infrastrukturelle Führung; Grundlagen der Qualifizierung, Rekrutierung und Motivierung (Aufbau von Anreizsystemen); Eingliederung und Aufgliederung der Organisationsgestaltung; Organisationsstrukturen; Organisationsprozesse; Projektorganisation; Center-Konzepte; Matrixorganisation; Koordinationsorgan; Kontextfaktoren: Strategie, Personal und Technologie; Organisationsstrukturen für das internationale und das Produktgeschäft.

14. Literatur:

- Skript Produktionsmanagement
- Skript Organisation und Personalführung

Veranstaltung "Produktionsmanagement":

15. Lehrveranstaltungen und -formen:

- 120901 Vorlesung BWL I: Produktionsmanagement
- 120902 Übung BWL I: Produktionsmanagement
- 120903 Vorlesung BWL I: Organisation und Personalführung
- 120904 Übung BWL I: Organisation und Personalführung

16. Abschätzung Arbeitsaufwand:

Vorlesung BWL I: Produktionsmanagement
- Präsenzzeit: 28 h
- Selbststudium: ca. 40 h

Übung BWL I: Produktionsmanagement
- Präsenzzeit: 14 h
- Selbststudium: ca. 54 h

Vorlesung BWL I: Organisation und Personalführung
- Präsenzzeit: 28 h
- Selbststudium: ca. 40 h
Übung BWL I: Organisation und Personalführung
- Präsenzzeit: 14 h
- Selbststudium: ca. 54 h
Gesamt: 270 h

<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>12091 BWL I: Produktion, Organisation, Personal (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Betriebswirtschaftliches Institut</td>
</tr>
</tbody>
</table>
Modul: 16490 Grundlagen der Betriebswirtschaftslehre

2. Modulkürzel: 100110001 5. Moduldaurer: 1 Semester
4. SWS: 3.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Wolfgang Burr
9. Dozenten: • Wolfgang Burr • Manuel Bail

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technikpädagogik, PO 2011, 1. Semester
→ Vorgezogene Master-Module
B.Sc. Technikpädagogik, PO 2011, 1. Semester
→ Wahlpflichtfach -->Wahlpflichtfach Wirtschaftswissenschaften

M.Sc. Technikpädagogik, PO 2009, 1. Semester
→ Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang -->Wahlpflichtfach B -->Wahlpflichtfach Wirtschaftswissenschaften

M.Sc. Technikpädagogik, PO 2009, 1. Semester
→ Studienprofil C - betriebliche Bildungsarbeit -->Spezialisierungsbereich

M.Sc. Technikpädagogik, PO 2009, 1. Semester
→ Wahlpflichtfach B -->Wahlpflichtfach Wirtschaftswissenschaft -->Grundlagen Wirtschaftswissenschaft (TP)

M.Sc. Technikpädagogik, PO 2015, 1. Semester
→ Studienprofil C - betriebliche Bildungsarbeit -->Spezialisierungsbereich

M.Sc. Technikpädagogik, PO 2015, 1. Semester
→ Wahlpflichtfach B -->Wahlpflichtfach Wirtschaftswissenschaft -->Grundlagen Wirtschaftswissenschaft (TP)

11. Empfohlene Voraussetzungen: Keine
12. Lernziele:
• Die Studierenden sind mit dem betriebswirtschaftlichen Vokabular vertraut und lernen auf der Basis der zentralen betriebswirtschaftlichen Begrifflichkeiten und Konzepte zu argumentieren.
• Die Studierenden kennen nach Abschluss des Moduls die verschiedenen betriebswirtschaftlichen Teilbereiche und die dortigen Problemstellungen und eingesetzte Instrumente. Sie sind in der Lage die wichtigsten betriebswirtschaftlichen Theorien zu erklären und anzuwenden.
• Die Studierenden lernen die vielfältigen Beziehungen zwischen ausgewählten betriebswirtschaftlichen Teilbereichen kennen. Sie können die Grundlagen der thematisierten betriebswirtschaftlichen Teildisziplinen darstellen und in den betriebswirtschaftlichen Gesamtkontext einordnen.
• Die Studierenden erwerben ein Wissensfundament für nachfolgende vertiefende Veranstaltungen.

Weiterhin werden entscheidungstheoretische Grundlagen und Modelle diskutiert. Anhand praxisorientierter Aufgaben wird die Entscheidungsproblematik innerhalb der Betriebswirtschaftslehre begreiflich gemacht.

Anschließend werden die grundlegenden Theorien der Unternehmensführung betrachtet. Im Einzelnen werden Anwendungsbereiche, Grundannahmen, Grundelemente und Untersuchungseinheiten erläutert und innerhalb praxisorientierter Aufgaben angewendet.

14. Literatur:
- Ergänzende Folien zu Vorlesungen und Übungen
- Übungsaufgaben und Lösungen stehen zum Download zur Verfügung.

Die Basisliteratur umfasst die folgenden Werke:

15. Lehrveranstaltungen und -formen:
- 164901 Vorlesung Grundlagen der Betriebswirtschaftslehre
- 164902 Übung Grundlagen der Betriebswirtschaftslehre

16. Abschätzung Arbeitsaufwand:
- Vorlesung
 - Präsenzzeit: 28 h
 - Selbststudium: 32 h
Übung

- Präsenzzeit: 14 h
- Selbststudium: 16 h

Gesamt: 90 h

<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>16491 Grundlagen der Betriebswirtschaftslehre (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Tafel, Beamer, Overhead-Projektor</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>ABWL, Forschungs-, Entwicklungs- und Innovationsmanagement</td>
</tr>
</tbody>
</table>
Modul: 38160 Grundlagen der Volkswirtschaftslehre

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>100402005</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>3.0</td>
</tr>
<tr>
<td>5. Moduldaurer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Bernd Woeckener</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Bernd Woeckener</td>
</tr>
</tbody>
</table>
 → Vorgezogene Master-Module
 → B.Sc. Technikpädagogik
 → Wahlpflichtfach --Wahlpflichtfach Wirtschaftswissenschaften
 → M.Sc. Technikpädagogik
 → Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang --Wahlpflichtfach B --Wahlpflichtfach Wirtschaftswissenschaften
 → M.Sc. Technikpädagogik
 → Wahlpflichtfach B --Wahlpflichtfach Wirtschaftswissenschaft --Grundlagen Wirtschaftswissenschaft (TP)
 → M.Sc. Technikpädagogik
 → Wahlpflichtfach B --Wahlpflichtfach Wirtschaftswissenschaft --Grundlagen Wirtschaftswissenschaft (TP)
| 11. Empfohlene Voraussetzungen: | Die Studierenden sind nach Abschluss des Moduls in der Lage, • auf der Basis der zentralen ökonomischen Begrifflichkeiten und Konzepte zu argumentieren,
 • das Funktionieren und die Funktionsbedingungen von Märkten richtig einzuschätzen,
 • auf der Basis der Kenntnis der wichtigsten makroökonomischen Größen und ihrer Zusammenhänge gesamtwirtschaftliche Argumentationen und Politikansätze kompetent einzuschätzen.
 • P. Samuelson: Economics, McGraw-Hill/ Irwin, neueste Auflage
| 14. Literatur: | 381601 Vorlesung Einführung in die VWL
 • 381602 Übung Einführung in die VWL
| 15. Lehrveranstaltungen und -formen: | Vorlesung: |
Präsenzzeit: 28 h
Selbststudiumszeit / Nacharbeitszeit: 32 h

Übung:
Präsenzzeit: 14 h
Selbststudiumszeit / Nacharbeitszeit: 16 h

Gesamt: 90 h

<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>38161 Grundlagen der Volkswirtschaftslehre (PL), schriftlich oder mündlich, 60 Min., Gewichtung: 1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Mikroökonomik und räumliche Ökonomik</td>
</tr>
</tbody>
</table>
Modul: 27470 Makroökonomik

2. Modulkürzel: 100410005 5. Modulduer: 1 Semester
4. SWS: 4.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Frank Clemens Englmann
9. Dozenten: Frank Clemens Englmann

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technikpädagogik → Vorgezogene Master-Module
 B.Sc. Technikpädagogik → Wahlpflichtfach → Wahlpflichtfach Wirtschaftswissenschaften
 M.Sc. Technikpädagogik → Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang → Wahlpflichtfach B → Wahlpflichtfach Wirtschaftswissenschaften
 M.Sc. Technikpädagogik → Wahlpflichtfach Wirtschaftswissenschaft → Grundlagen Wirtschaftswissenschaft (TP)
 M.Sc. Technikpädagogik → Wahlpflichtfach Wirtschaftswissenschaft → Grundlagen Wirtschaftswissenschaft (TP)

11. Empfohlene Voraussetzungen:

12. Lernziele:
 Die Studierenden sind nach Abschluss des Moduls in der Lage,
 • die Bedeutung der makroökonomischen Entwicklung für die einzelnen Unternehmen und Haushalte einzuschätzen,
 • die Auswirkungen von technischen Neuerungen und wirtschaftspolitischen Maßnahmen auf Volkseinkommen, Nettoexporte und Wechselkurs zu prognostizieren,
 • wirtschaftspolitische Maßnahmen kritisch zu diskutieren.

13. Inhalt:

14. Literatur:
 Ergänzende Folien, Übungsaufgaben und Lösungen stehen zum Download zur Verfügung.

 Die Basisliteratur umfasst die folgenden Werke:
 • F. C. Englemann: Makroökonomik, Kohlhammer, neueste Auflage
• N. G. Mankiw: Macroeconomics, Palgrave Macmillan, neueste Auflage

15. Lehrveranstaltungen und -formen:

<table>
<thead>
<tr>
<th>Kursnummer</th>
<th>Veranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>274701</td>
<td>Vorlesung Makroökonomik</td>
</tr>
<tr>
<td>274702</td>
<td>Übung Makroökonomik</td>
</tr>
<tr>
<td>274703</td>
<td>Methodenübung Makroökonomik</td>
</tr>
</tbody>
</table>

16. Abschätzung Arbeitsaufwand:

Vorlesung
- Präsenzzeit: 28 h
- Selbststudiumszeit / Nacharbeitszeit: 62 h

Übung
- Präsenzzeit: 14 h
- Selbststudiumszeit / Nacharbeitszeit: 31 h

Methodenübung
- Präsenzzeit: 14 h
- Selbststudiumszeit / Nacharbeitszeit: 31 h

Gesamtzeitaufwand: 180 h

17. Prüfungsnummer/n und -name:

<table>
<thead>
<tr>
<th>Prüfungsnummer</th>
<th>Prüfungsbereich</th>
</tr>
</thead>
<tbody>
<tr>
<td>27471</td>
<td>Makroökonomik (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0, Lehramtsstudiengang Politikwissenschaft/Wirtschaftswissenschaft: schriftliche Abschlussprüfung von 60 Minuten Dauer</td>
</tr>
<tr>
<td></td>
<td>BSc Technikpädagogik: schriftliche Abschlussprüfung von 60 Minuten Dauer</td>
</tr>
<tr>
<td></td>
<td>MSc Technikpädagogik: schriftliche Abschlussprüfung von 60 Minuten Dauer</td>
</tr>
</tbody>
</table>

18. Grundlage für ...:

<table>
<thead>
<tr>
<th>Kursnummer</th>
<th>Fachgebiet</th>
</tr>
</thead>
<tbody>
<tr>
<td>27480</td>
<td>Wirtschaftspolitik LA</td>
</tr>
<tr>
<td>31130</td>
<td>Umweltpolitik</td>
</tr>
<tr>
<td>31140</td>
<td>Standort und Verkehr</td>
</tr>
</tbody>
</table>

19. Medienform:

20. Angeboten von:

Volkswirtschaftslehre
Modul: 27460 Mikroökonomik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>100402004</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Bernd Woeckener</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Bernd Woeckener</td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen:

Die Studierenden sind nach Abschluss des Moduls in der Lage,

- die wichtigsten ökonomischen Entscheidungsprobleme der privaten Haushalte und Unternehmen strukturiert zu behandeln,
- den Einfluss von Marktmacht und von strategischem Verhalten auf das Marktergebnis zu erkennen und richtig einzuschätzen,
- staatliche Markteingriffe kompetent zu beurteilen.

12. Lernziele:

- Ausgehend von der Analyse der ökonomischen Entscheidungen privater Unternehmen und Haushalte auf den Güter- und Faktormärkten wird die Interaktion dieser beiden Marktseiten auf Märkten der Vollkommenen Konkurrenz, auf Monopolmärkten und auf Oligopolmärkten betrachtet. Diskutiert wird zudem die Rolle des Staates bei der Internalisierung externer Effekte und bei der Korrektur der marktlichen Einkommensverteilung.

13. Inhalt:

- Die Studierenden sind nach Abschluss des Moduls in der Lage,

14. Literatur:

- B. Woeckener: Mikroökonomik für Bachelorstudenten, Springer, neueste Auflage
- R.S. Pindyck und D.L. Rubinfeld: Microeconomics, Prentice Hall, neueste Auflage

15. Lehrveranstaltungen und -formen:

- 274601 Vorlesung Mikroökonomik
- 274602 Übung Mikroökonomik
- 274603 Methodenübung Mikroökonomik

16. Abschätzung Arbeitsaufwand:

- Vorlesung: Präsenzzeit: 28 h
- Selbststudium: 62 h

Stand: 07. Oktober 2015

Seite 372 von 1124
Übung:
Präsenzzeit: 14 h
Selbststudiumszeit / Nacharbeitszeit: 31 h

Methodenübung:
Präsenzzeit: 14 h
Selbststudiumszeit / Nacharbeitszeit: 31 h

Gesamt: 180 h

17. Prüfungsnummer/n und -name: 27461 Mikroökonomik (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1,0, Lehramtsstudiengang Politikwissenschaft/Wirtschaftswissenschaft: schriftliche Abschlussprüfung von 60 Minuten Dauer BSc Technikpädagogik: schriftliche Abschlussprüfung von 60 Minuten Dauer MSc Technikpädagogik: schriftliche Abschlussprüfung von 60 Minuten Dauer

18. Grundlage für:

19. Medienform:

20. Angeboten von: Mikroökonomik und räumliche Ökonomik
Modul: 13030 Rechtliche Grundlagen der BWL

2. Modulkürzel: 100190001
5. Modulduauer: 1 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 6.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Henry Schäfer

9. Dozente:
 • Henry Schäfer
 • Rainer Lorz

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technikpädagogik, PO 2011, 3. Semester
 ➔ Vorgezogene Master-Module
 ➔ Wahlpflichtfach -->Wahlpflichtfach Wirtschaftswissenschaften
 ➔
 M.Sc. Technikpädagogik, PO 2009, 3. Semester
 ➔ Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang -->Wahlpflichtfach B -->Wahlpflichtfach Wirtschaftswissenschaften
 ➔
 M.Sc. Technikpädagogik, PO 2009, 3. Semester
 ➔ Wahlpflichtfach B -->Wahlpflichtfach Wirtschaftswissenschaft -- >Grundlagen Wirtschaftswissenschaft (TP)
 ➔
 M.Sc. Technikpädagogik, PO 2015, 3. Semester
 ➔ Wahlpflichtfach B -->Wahlpflichtfach Wirtschaftswissenschaft -- >Grundlagen Wirtschaftswissenschaft (TP)
 ➔

11. Empfohlene Voraussetzungen: Keine

12. Lernziele:
 Nach Abschluss des Moduls beherrschen die Studierenden folgende Grundlagen:
 • Handelsrechtliche Grundlagen (HGB)
 • Technik zur Aufstellung eines Jahresabschlusses für Handels- und Industriebetriebe gemäß HGB
 • Grundkenntnisse des Bürgerlichen Rechts
 • Zentrale, praxisrelevante Kenntnisse im Handels- und Gesellschaftsrecht

 Die Studierenden sind nach Abschluss des Moduls in der Lage, Sachverhalte des täglichen Leben sowie Vorgänge/Geschäftsverfalle aus dem Bereich des Wirtschaftslebens in ihrer rechtlichen Bedeutung und Problemstellung zu beurteilen, ggf. handelsrechtlich für das Unternehmen abzubilden sowie mögliche Lösungsweges zu erkennen und zu entwickeln.

 Die Studierenden verfügen über ein geschärftes Problembewusstsein für die Einordnung juristisch relevanter Vorgänge.

13. Inhalt:
 Das Modul hat die Aufgabe, die Studierenden in die rechtlichen Grundlagen der Betriebswirtschaftslehre einzuführen.

 Im ersten Teil des Moduls (Technik des betrieblichen Rechnungswesens) wird die Technik zur Aufstellung eines Jahresabschlusses (Bilanz und Gewinn- und Verlustrechnung) für Handels- und Industriebetriebe

Im zweiten Teil des Moduls werden die Grundzüge des Bürgerlichen Rechts, insbesondere die Grundlagen der Rechtsordnung, die Systematik des Bürgerlichen Rechts, die Entstehung von Rechtsgeschäften sowie insbesondere das vertragliche und außervertragliche Schuldrecht vermittelt. Im Vorlesungsteil Handels- und Gesellschaftsrecht wird zunächst ein Überblick über beide Bereiche gegeben, sodann die Handelsgeschäfte erläutert und die wichtigsten Rechtsformen im Detail erörtert.

14. Literatur:

Technik des betrieblichen Rechnungswesens:

Alle Folien, Übungsaufgaben und Lösungen stehen zum Download zur Verfügung. Die Basisliteratur umfasst die folgenden Werke:

- Gesetzentext: Handelsgesetzbuch (HGB), Aktuellste Auflage.

Grundzüge der Rechtswissenschaften:

Lehrbücher:

- Ulrich Eisenhardt, Einführung in das Bürgerliche Recht, 5. Aufl. 2007, Verlag C. F. Müller
- Wolfgang B. Schünemann, Wirtschaftsprivatrecht, 5. Auflage Mai 2006, UTB 1584 (UTB Lucius & Lucius)
- Peter Bähr, Grundzüge des Bürgerlichen Rechts, 10. Auflage 2004, Verlag Vahlen
- Knut Werner Lange, Basiswissen Ziviles Wirtschaftsrecht, 4. Auflage 2007 Verlag Vahlen
- Jos Mehrings, Grundlagen des Wirtschaftsprivatrechts, 2006 (Pearsons Studium)
- Friedrich Schade, Wirtschaftsprivatrecht - Grundlagen des Bürgerlichen Rechts sowie des Handels- und Wirtschaftsrechts, 2006 (Kohlhammer)

Zur Vorbereitung auf die Multiple Choice-Diplom-Vorprüfungsklausur:

<table>
<thead>
<tr>
<th>15. Lehrveranstaltungen und -formen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 130301 Vorlesung Technik des betrieblichen Rechnungswesens</td>
</tr>
<tr>
<td>• 130302 Übung Technik des betrieblichen Rechnungswesens</td>
</tr>
<tr>
<td>• 130303 Vorlesung Grundzüge der Rechtswissenschaften</td>
</tr>
<tr>
<td>• 130304 Übung Grundzüge der Rechtswissenschaften</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16. Abschätzung Arbeitsaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzzeit:</td>
</tr>
<tr>
<td>Selbststudiengesetz / Nacharbeitzeit:</td>
</tr>
<tr>
<td>Gesamt:</td>
</tr>
<tr>
<td>84 h</td>
</tr>
<tr>
<td>96 h</td>
</tr>
<tr>
<td>180 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 13031 Technik des betrieblichen Rechnungswesens (PL), schriftliche Prüfung, 60 Min., Gewichtung: 7.0</td>
</tr>
<tr>
<td>• 13032 Grundzüge der Rechtswissenschaft (PL), schriftliche Prüfung, 120 Min., Gewichtung: 5.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>18. Grundlage für ... :</th>
</tr>
</thead>
<tbody>
<tr>
<td>12100 BWL II: Rechnungswesen und Finanzierung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>19. Medienform:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>20. Angeboten von:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Betriebswirtschaftliches Institut</td>
</tr>
</tbody>
</table>
Modul: 13610 Wissenschaftliches Arbeiten

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>100410002</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modulduer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Susanne Becker</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Susanne Becker</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Keine</td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>Die Studierenden sind nach Abschluss des Moduls in der Lage, • eine vorgegebene wirtschaftswissenschaftliche Themenstellung mit Hilfe der Technik Wissenschaftlichen Arbeitens eigenständig zu bearbeiten und entsprechend ihres Studiengangs • die in den nachfolgenden Semestern zu erbringende(n) Seminararbeite(n) sowie • die abschließende Bachelorarbeit anzufertigen.</td>
</tr>
</tbody>
</table>
14. Literatur: Skript

Basisliteratur:
- N. Franck und J. Stary: Die Technik wissenschaftlichen Arbeitens, Schöningh, neueste Auflage
- M. Kornmeier: Wissenschaftlich schreiben leicht gemacht, Haupt UTB, neueste Auflage
- W.E. Rossig und J. Prätsch: Wissenschaftliche Arbeiten, Achim, neueste Auflage
- M.R. Theisen: Wissenschaftliches Arbeiten, Vahlen, neueste Auflage

15. Lehrveranstaltungen und -formen:
- 136101 Vorlesung Wissenschaftliches Arbeiten
- 136102 Übung Wissenschaftliches Arbeiten

16. Abschätzung Arbeitsaufwand:

Vorlesung:
Präsenzzeit: 28 h
Selbststudiumszeit: 62 h

Übung:
Präsenzzeit: 28h
Selbststudiumszeit: 62 h

Gesamtzeitaufwand: 180 h

17. Prüfungsnummer/n und -name: 13611 Wissenschaftliches Arbeiten (LBP), schriftlich, eventuell mündlich, Gewichtung: 1.0, Hausarbeit (max. 15 Seiten), Präsentation (max. 30 Minuten) Gewichtung: Hausarbeit 60%, Präsentation 40%.

18. Grundlage für ... : 3999 Bachelorarbeit

19. Medienform:

20. Angeboten von: Volkswirtschaftslehre
5122 Erweiterte Themenbereiche zur Wirtschaftswissenschaft (TP)

Zugeordnete Module:

12100 BWL II: Rechnungswesen und Finanzierung
13200 BWL III: Marketing und Einführung in die Wirtschaftsinformatik
38180 Allgemeine Wirtschaftspolitik
38190 Seminar zur Makroökonomik
Modul: 38180 Allgemeine Wirtschaftspolitik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>100410006</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Modulduauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>3.0</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher:

Suzanne Becker

9. Dozenten:

Suzanne Becker

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>B.Sc. Technikpädagogik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorgezogene Master-Module</td>
</tr>
<tr>
<td>→</td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik</td>
</tr>
<tr>
<td>Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang --Wahlpflichtfach B -->Wahlpflichtfach Wirtschaftswissenschaften</td>
</tr>
<tr>
<td>→</td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik</td>
</tr>
<tr>
<td>Wahlpflichtfach A -->Wahlpflichtfach Wirtschaftswissenschaft --Erweiterte Themenbereiche zur Wirtschaftswissenschaft</td>
</tr>
<tr>
<td>→</td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik</td>
</tr>
<tr>
<td>Wahlpflichtfach B -->Wahlpflichtfach Wirtschaftswissenschaft --Erweiterte Themenbereiche zur Wirtschaftswissenschaft (TP)</td>
</tr>
<tr>
<td>→</td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik</td>
</tr>
<tr>
<td>Wahlpflichtfach A -->Wahlpflichtfach Wirtschaftswissenschaft --Erweiterte Themenbereiche zur Wirtschaftswissenschaft</td>
</tr>
<tr>
<td>→</td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik</td>
</tr>
<tr>
<td>Wahlpflichtfach B -->Wahlpflichtfach Wirtschaftswissenschaft --Erweiterte Themenbereiche zur Wirtschaftswissenschaft (TP)</td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen:

Grundlagen der VWL, Mikroökonomik, Makroökonomik

12. Lernziele:

Die Studierenden sind nach Abschluss des Moduls in der Lage,

- wirtschaftspolitische Eingriffe des Staates zu begründen,
- aktuelle wirtschaftspolitische Diskussionen in den Gesamtzusammenhang einzuordnen und auf der Basis der zentralen wirtschaftspolitischen Begriffe zu argumentieren,
- wirtschaftspolitische Maßnahmen zu beurteilen.

13. Inhalt:

14. Literatur:

Ergänzende Folien und Übungsaufgaben stehen zum Download zur Verfügung. Die Basisliteratur umfasst die folgenden Werke:

Allgemeine Wirtschaftspolitik:
15. Lehrveranstaltungen und -formen:
- 381801 Vorlesung Allgemeine Wirtschaftspolitik
- 381802 Übung Allgemeine Wirtschaftspolitik

16. Abschätzung Arbeitsaufwand:
Vorlesung Allgemeine Wirtschaftspolitik
- Präsenzzeit: 28 h
- Selbststudiumszeit: 62 h

Übung Allgemeine Wirtschaftspolitik
- Präsenzzeit: 14 h
- Selbststudiumszeit: 16 h

Gesamtzeitaufwand: 90 h

17. Prüfungsnummer/n und -name:
- 38181 Allgemeine Wirtschaftspolitik (PL), schriftlich oder mündlich, Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:

20. Angeboten von: Volkswirtschaftslehre

Modul: 12100 BWL II: Rechnungswesen und Finanzierung

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>100150001</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>9.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>8.0</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Burkhard Pedell</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Henry Schäfer
| | • Burkhard Pedell |
| | → Vorgezogene Master-Module
| | M.Sc. Technikpädagogik, PO 2009, 2. Semester
| | → Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang -->Wahlpflichtfach B -->Wahlpflichtfach Wirtschaftswissenschaften
| | M.Sc. Technikpädagogik, PO 2009, 2. Semester
| | → Wahlpflichtfach A -->Wahlpflichtfach Wirtschaftswissenschaft
| | → Erweiterte Themenbereiche zur Wirtschaftswissenschaft
| | M.Sc. Technikpädagogik, PO 2009, 2. Semester
| | → Wahlpflichtfach B -->Wahlpflichtfach Wirtschaftswissenschaft
| | → Erweiterte Themenbereiche zur Wirtschaftswissenschaft (TP)
| | M.Sc. Technikpädagogik, PO 2015, 2. Semester
| | → Wahlpflichtfach A -->Wahlpflichtfach Wirtschaftswissenschaft
| | → Erweiterte Themenbereiche zur Wirtschaftswissenschaft
| | M.Sc. Technikpädagogik, PO 2015, 2. Semester
| | → Wahlpflichtfach B -->Wahlpflichtfach Wirtschaftswissenschaft
| | → Erweiterte Themenbereiche zur Wirtschaftswissenschaft (TP)
| | 11. Empfohlene Voraussetzungen: | Grundlagen der BWL |
| | Die Studierenden können grundlegende Problemstellungen der Kostenrechnung, des externen Rechnungswesens sowie der Bereiche Investition und Finanzierung lösen und sich in weiterführende Problemstellungen selbstständig einarbeiten.
Grundlagen von Investitions-/Finanzierungsprozessen, Investitionsentscheidungen - Grundlagenmethoden bei sicheren Erwartungen, Finanzierungsentscheidungen bei gegebenen Erwartungen, Entscheidungen bei Unsicherheit und Risiko, kapitalmarkttheoretische Basismodelle der Bewertung, CAPM, Grundlagen von Optionen, Forwards/Futures; Bewertung von Optionen/Forwards.

14. Literatur:
- Skript Internes und Externes Rechnungswesen
- Skript Investition und Finanzierung

15. Lehrveranstaltungen und -formen:
- 121001 Vorlesung BWL II: Investition und Finanzierung
- 121002 Übung BWL II: Investition und Finanzierung
- 121003 Vorlesung BWL II: Internes und externes Rechnungswesen
- 121004 Übung BWL II: Internes und externes Rechnungswesen

16. Abschätzung Arbeitsaufwand:
Gesamtzeitaufwand: 270 h

Internes und Externes Rechnungswesen
Präsenzzeit : 56 h
Selbststudium: 79 h

Investition und Finanzierung
Präsenzzeit : 56 h
Selbststudium: 79 h

17. Prüfungsnummer/n und -name: 12101 BWL II: Rechnungswesen und Finanzierung (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :
- 13210 Controlling
- 13220 Investitions- und Finanzmanagement
<table>
<thead>
<tr>
<th>19. Medienform:</th>
<th>Beamer-Präsentation, Overhead-Projektion</th>
</tr>
</thead>
<tbody>
<tr>
<td>20. Angeboten von:</td>
<td>Betriebswirtschaftliches Institut</td>
</tr>
</tbody>
</table>
Modul: 13200 BWL III: Marketing und Einführung in die Wirtschaftsinformatik

<table>
<thead>
<tr>
<th></th>
<th>Modulkürzel:</th>
<th>Modul: 13200 BWL III: Marketing und Einführung in die Wirtschaftsinformatik</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Modulkürzel:</td>
<td>100160001</td>
<td>5. Moduldaurer: 1 Semester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>6.0</td>
<td>7. Sprache: Deutsch</td>
</tr>
<tr>
<td></td>
<td>M.Sc. Technikpädagogik, PO 2009, 3. Semester</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wahlpflichtfach A -->Wahlpflichtfach Wirtschaftswissenschaft -->Erweiterte Themenbereiche zur Wirtschaftswissenschaft</td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.Sc. Technikpädagogik, PO 2009, 3. Semester</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wahlpflichtfach B -->Wahlpflichtfach Wirtschaftswissenschaft -->Erweiterte Themenbereiche zur Wirtschaftswissenschaft (TP)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.Sc. Technikpädagogik, PO 2015, 3. Semester</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wahlpflichtfach A -->Wahlpflichtfach Wirtschaftswissenschaft -->Erweiterte Themenbereiche zur Wirtschaftswissenschaft</td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.Sc. Technikpädagogik, PO 2015, 3. Semester</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Wahlpflichtfach B -->Wahlpflichtfach Wirtschaftswissenschaft -->Erweiterte Themenbereiche zur Wirtschaftswissenschaft (TP)</td>
<td></td>
</tr>
</tbody>
</table>
EiW:

14. Literatur:

Marketing:

- Vorlesungsskript und Übungsunterlagen
- Homburg, Ch. (2012), Marketingmanagement, 4. Auflage, Wiesbaden. (vertiefend)

Einführung in die Wirtschaftsinformatik:

- Stahlknecht, P., Hasenkamp, U., Einführung in die Wirtschaftsinformatik, aktuelle Auflage
- Hansen, H. R., Neumann, G.: Wirtschaftsinformatik 1, aktuelle Auflage
- Skript

15. Lehrveranstaltungen und -formen:

- 132001 Vorlesung Marketing
- 132002 Übung Marketing
- 132003 Vorlesung Einführung in die Wirtschaftsinformatik
- 132004 Übung Einführung in die Wirtschaftsinformatik

16. Abschätzung Arbeitsaufwand:

Präsenzzeit:	63 h
Selbststudiumszeit / Nacharbeitszeit:	207 h
Gesamt:	270 h

17. Prüfungsnummer/n und -name:

13201 BWL III: Marketing und Einführung in die Wirtschaftsinformatik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:

20. Angeboten von: Betriebswirtschaftliches Institut
Modul: 38190 Seminar zur Makroökonomik

2. Modulkürzel: 100410013
5. Modulduauer: 1 Semester

3. Leistungspunkte: 6.0 LP
6. Turnus: jedes 2. Semester, SoSe

4. SWS: 2.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Frank Clemens Englmann

9. Dozenten: Frank Clemens Englmann

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Technikpädagogik
→ Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang -->Wahlpflichtfach B -->Wahlpflichtfach Wirtschaftswissenschaften
→ M.Sc. Technikpädagogik
→ Wahlpflichtfach A -->Wahlpflichtfach Wirtschaftswissenschaft -->Erweiterte Themenbereiche zur Wirtschaftswissenschaft
→ M.Sc. Technikpädagogik
→ Wahlpflichtfach B -->Wahlpflichtfach Wirtschaftswissenschaft -->Erweiterte Themenbereiche zur Wirtschaftswissenschaft (TP)
→ M.Sc. Technikpädagogik
→ Wahlpflichtfach A -->Wahlpflichtfach Wirtschaftswissenschaft -->Erweiterte Themenbereiche zur Wirtschaftswissenschaft
→ M.Sc. Technikpädagogik
→ Wahlpflichtfach B -->Wahlpflichtfach Wirtschaftswissenschaft -->Erweiterte Themenbereiche zur Wirtschaftswissenschaft (TP)

11. Empfohlene Voraussetzungen:
Grundlagen der Volkswirtschaftslehre, Mikroökonomik, Makroökonomik

12. Lernziele:
Die Studierenden sind nach Abschluss des Moduls in der Lage, vertiefende theoretische und angewandte Fragestellungen der Makroökonomik zu strukturieren und einer Lösung zuzuführen.

13. Inhalt:
Wechselnde Themen aus dem Bereich der Makroökonomik. Die aktuellen Seminarthemen werden jeweils im Vorfeld bekanntgegeben.

14. Literatur:
Basisliteratur:
• F. C. Englmann: Makroökonomik, Kohlhammer, neueste Auflage

Weiterführende Literatur wird im Vorfeld bekanntgegeben.

15. Lehrveranstaltungen und -formen:
381901 Seminar zur Makroökonomik

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 28 h
Selbststudiumszeit: 152 h
Gesamtzeitaufwand: 180 h

17. Prüfungsnummer/n und -name:
38191 Seminar zur Makroökonomik (PL), Sonstiges, Gewichtung: 1.0, Hausarbeit (max. 15 Seiten), Referat (Präsentation max. 30 Minuten) und MitarbeitGewichtung: Hausarbeit 60%, Referat 30% und Mitarbeit 10%.

18. Grundlage für ...:
19. Medienform:

20. Angeboten von: Volkswirtschaftslehre
5130 Wahlpflichtfach Informatik

Zugeordnete Module:

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
</tr>
</thead>
<tbody>
<tr>
<td>5131</td>
<td>Grundlagen Informatik</td>
</tr>
<tr>
<td>5132</td>
<td>Wahlbereich Informatik</td>
</tr>
</tbody>
</table>
5131 Grundlagen Informatik

Zugeordnete Module:

10260 Programmierkurs
10280 Programmierung und Software-Entwicklung
10290 Projekt-INF
10930 Technische Grundlagen der Informatik
10940 Theoretische Grundlagen der Informatik
12060 Datenstrukturen und Algorithmen
Modul: 12060 Datenstrukturen und Algorithmen

2. Modulkürzel: 051510005 5. Modulduauer: 1 Semester
4. SWS: 6.0 7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Daniel Weiskopf
9. Dozenten: • Andrés Bruhn
 • Thomas Ertl
 • Stefan Funke
 • Daniel Weiskopf
10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technikpädagogik, PO 2011, 2. Semester
 → Hauptfach -->Hauptfach Informatik -->Basismodule Informatik
 →
 B.Sc. Technikpädagogik, PO 2011, 2. Semester
 → Vorgezogene Master-Module
 B.Sc. Technikpädagogik, PO 2011, 2. Semester
 → Wahlpflichtfach -->Wahlpflichtfach Informatik, Grundlagen
 Informatik
 →
 M.Sc. Technikpädagogik, PO 2009, 2. Semester
 → Wahlpflichtfach B -->Wahlpflichtfach Informatik -->Grundlagen
 Informatik
 →
 M.Sc. Technikpädagogik, PO 2009, 2. Semester
 → Wahlpflichtfach B -->Wahlpflichtfach Informatik -->Wahlpflichtfach
 Informatik Basismodule
 →
 M.Sc. Technikpädagogik, PO 2015, 2. Semester
 → Wahlpflichtfach B -->Wahlpflichtfach Informatik -->Grundlagen
 Informatik
 →
11. Empfohlene Voraussetzungen: • Modul 051520005 Programmierung und Software-Entwicklung
12. Lernziele:
 Die Studierenden kennen nach engagierter Mitarbeit in dieser Veranstaltung diverse zentrale Algorithmen auf geeigneten Datenstrukturen, die für eine effiziente Nutzung von Computern unverzichtbar sind. Sie können am Ende zu gängigen Problemen geeignete programmiersprachliche Lösungen angeben und diese in einer konkreten Programmiersprache formulieren. Konkret:
 • Kenntnis der Eigenschaften elementarer und häufig benötigter Algorithmen
 • Verständnis für die Auswirkungen theoretischer und tatsächlicher Komplexität
 • Erweiterung der Kompetenz im Entwurf und Verstehen von Algorithmen und der zugehörigen Datenstrukturen
 • Erste Begegnung mit nebenläufigen Algorithmen; sowohl „originär“ parallel, als auch parallelisierte Versionen bereits vorgestellter sequentieller Algorithmen
13. Inhalt: • Vorgehensweise bei der Entwicklung und Implementierung von Algorithmen
• Komplexität und Effizienz von Algorithmen, O-Notation
• Wahl der Datenstrukturen; Listen, Bäume, Graphen; deren Definitionen, deren Datenstrukturen
• diverse interne und externe Such- und Sortierverfahren (z.B. Linear-, Binär-, Interpolationssuche, AVL-, B-Bäume, internes und externes Hashing, mehrere langsamer Sortierungen, Heap-, Quick-, Bucket-, Mergesort)
• diverse Graphenalgorithmen (DFS, BFS, Besuchssequenzen, topol. Traversierung, Zusammenhangskomponenten, minimale Spannbäume, Dijkstra-, Floyd- kürzeste Wege)
• Algorithmen auf Mengen und Relationen (transitive Hüllen, Warshall)
• Korrektheitsbegriff und -formalismen; Spezifikation und Implementierung
• Einige parallele und parallelisierte Algorithmen
• einfache Elemente paralleler Programmierung, soweit für obiges notwendig

14. Literatur:
 • Appelrath H.J., Ludewig. J., Skriptum Informatik, 1999
 • Sedgewick, R., Algorithms in C, 1998

15. Lehrveranstaltungen und -formen:
 • 120601 Vorlesung Datenstrukturen und Algorithmen
 • 120602 Übung Datenstrukturen und Algorithmen

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 63 h
 Selbststudiums- / Nachbearbeitungszeit: 207
 Summe: 270 h

17. Prüfungsnummer/n und -name:
 • V Vorleistung (USL-V), schriftlich, eventuell mündlich

18. Grundlage für …:

19. Medienform:

20. Angeboten von:
Modul: 10260 Programmierkurs

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>051520010</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>5. Modulduer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Nach Ankuendigung</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Jonas Kuhn</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Max Kisselew</td>
</tr>
<tr>
<td></td>
<td>→ Hauptfach -->Hauptfach Informatik -->Basismodule Informatik</td>
</tr>
<tr>
<td></td>
<td>→ Vorgezogene Master-Module</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Technikpädagogik, PO 2011, 2. Semester</td>
</tr>
<tr>
<td></td>
<td>→ Wahlpflichtfach -->Wahlpflichtfach Informatik, Grundlagen Informatik</td>
</tr>
<tr>
<td></td>
<td>→ M.Sc. Technikpädagogik, PO 2009, 2. Semester</td>
</tr>
<tr>
<td></td>
<td>→ Wahlpflichtfach B -->Wahlpflichtfach Informatik -->Grundlagen Informatik</td>
</tr>
<tr>
<td></td>
<td>→</td>
</tr>
<tr>
<td></td>
<td>M.Sc. Technikpädagogik, PO 2009, 2. Semester</td>
</tr>
<tr>
<td></td>
<td>→ Wahlpflichtfach B -->Wahlpflichtfach Informatik -->Wahlpflichtfach Informatik Basismodule</td>
</tr>
<tr>
<td></td>
<td>→</td>
</tr>
<tr>
<td></td>
<td>M.Sc. Technikpädagogik, PO 2015, 2. Semester</td>
</tr>
<tr>
<td></td>
<td>→ Wahlpflichtfach B -->Wahlpflichtfach Informatik -->Grundlagen Informatik</td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen:

12. Lernziele:
Selbstständiges Erstellen von Programmen und Lösung von Programmieraufgaben in der Programmiersprache Python, mit einem Schwerpunkt auf Konzepten, die für die maschinelle Sprachverarbeitung und Computerlinguistik wichtig sind.

13. Inhalt:

Die Modulveranstaltung und die Materialien sind in der Regel überwiegend englischsprachig; es werden jedoch deutschsprachige Hilfestellungen angeboten.

The module primarily targets students in Natural Language Processing (3rd semester), Computational Linguistics and Digital Humanities. It covers the key concepts of the programming language Python and
provides practical experience in writing Python programs in the context of processing linguistic data and resources. Typically, the lectures of the module course as well as the materials are in English; however, students not fluent in English in the programming context will receive support in German.

15. Lehrveranstaltungen und -formen: 102601 Übung Programmierkurs

17. Prüfungsnummer/n und -name: 10261 Programmierkurs (USL), Sonstiges, Gewichtung: 1.0, Übungsschein - Scheinkriterien werden zu Beginn der Modulveranstaltung angekündigt. Criteria for credit are announced at the beginning of the module course.

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Institut für Maschinelle Sprachverarbeitung
Modul: 10280 Programmierung und Software-Entwicklung

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>051520005</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>6.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher:
Univ.-Prof. Frank Leymann

9. Dozenten:
Frank Leymann

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>B.Sc. Technikpädagogik, PO 2011, 1. Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauptfach --> Hauptfach Informatik --> Basismodule Informatik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B.Sc. Technikpädagogik, PO 2011, 1. Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorgezogene Master-Module</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B.Sc. Technikpädagogik, PO 2011, 1. Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wahlpflichtfach --> Wahlpflichtfach Informatik, Grundlagen Informatik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M.Sc. Technikpädagogik, PO 2009, . Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wahlpflichtfach B --> Wahlpflichtfach Informatik --> Grundlagen Informatik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M.Sc. Technikpädagogik, PO 2009, . Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wahlpflichtfach B --> Wahlpflichtfach Informatik --> Basismodule</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M.Sc. Technikpädagogik, PO 2015, . Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wahlpflichtfach B --> Wahlpflichtfach Informatik --> Grundlagen Informatik</td>
</tr>
</tbody>
</table>

12. Lernziele:
Die Teilnehmer haben einen Überblick über das Gebiet der Informatik. Sie haben die wichtigsten Konzepte einer höheren Programmiersprache und ihrer Verwendung verstanden und sind in der Lage, kleine Programme (bis zu einigen hundert Zeilen) zu analysieren und selbst zu konzipieren und zu implementieren. Sie kennen die Möglichkeiten, Daten- und Ablaufstrukturen zu entwerfen, zu beschreiben und zu codieren. Sie haben die Abstraktionskonzepte moderner Programmiersprachen verstanden. Sie kennen die Techniken und Notationen zur Definition kontextfreier Programmiersprachen und können damit arbeiten.

13. Inhalt:
- Die Programmiersprache Java und die virtuelle Maschine
- Objekte, Klassen, Schnittstellen, Blöcke, Programmstrukturen, Kontrakte
- Klassenmodellierung mit der UML
- Objekterzeugung und -ausführung
- Boolesche Logik
- Verzweigungen, Schleifen, Routinen, Abstraktionen, Modularisierung, Variablen, Zuweisungen
- Rechner, Hardware
- Syntaxdarstellungen
- Übersicht über Programmiersprachen und -werkzeuge
- Grundlegende Datenstrukturen und Algorithmen
- Vererbung, Polymorphe
- Semantik
- Programmierung graphischer Oberflächen
- Übergang zum Software Engineering

14. Literatur:
- Meyer, Bertrand, "Touch of Class", Springer-Verlag, 2009

15. Lehrveranstaltungen und -formen:
- 102801 Vorlesung Programmierung und Softwareentwicklung
- 102802 Übung Programmierung und Softwareentwicklung

16. Abschätzung Arbeitsaufwand:
<table>
<thead>
<tr>
<th>Tätigkeit</th>
<th>Zeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzzeit</td>
<td>63 h</td>
</tr>
<tr>
<td>Selbststudiums-/</td>
<td>187 h</td>
</tr>
<tr>
<td>Nachbearbeitungszeit:</td>
<td></td>
</tr>
<tr>
<td>Prüfungsvorbereitung:</td>
<td>20 h</td>
</tr>
<tr>
<td>Summe:</td>
<td>270 h</td>
</tr>
</tbody>
</table>

17. Prüfungsnummer/n und -name:
- 10281 Programmierung und Software-Entwicklung (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0,

18. Grundlage für ...:
12060 Datenstrukturen und Algorithmen

19. Medienform:
- Folien über Beamer
- Tafelanschrieb

20. Angeboten von:
Software-Engineering
Modul: 10290 Projekt-INF

2. Modulkürzel: 051900095
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0
5. Modulduauer: 1 Semester
6. Turnus: jedes Semester
7. Sprache: Deutsch
8. Modulverantwortlicher: Martin Fuchs
9. Dozenten: Dozenten der Informatik
10. Zuordnung zum Curriculum in diesem Studiengang:

 - B.Sc. Technikpädagogik, PO 2011, 5. Semester → Hauptfach -->Hauptfach Informatik -->Kernmodule Informatik
 - B.Sc. Technikpädagogik, PO 2011, 5. Semester → Vorgezogene Master-Module
 - B.Sc. Technikpädagogik, PO 2011, 5. Semester → Wahlpflichtfach -->Wahlpflichtfach Informatik, Grundlagen Informatik

12. Lernziele:

 Die Studierenden sollen frühzeitig und beispielhaft an Informatik-Forschung herangeführt werden („undergraduate research“). Dazu soll in einem Team von mindestens 3 Studierenden in einem Zeitraum von höchstens 6 Monaten ein Projekt bearbeitet werden, das sich an aktuellen Forschungsfragestellungen der Abteilungen und Institute orientiert. Ein Beitrag zu laufenden Drittmittelprojekten ist möglich, ebenso eine Fortsetzung des Projekts in ausgewählten Bachelor-Arbeiten. Die Teilnehmer können ein forschungsorientiertes Projekt unter Anleitung planen, durchführen und die Ergebnisse dokumentieren und präsentieren.

13. Inhalt:

 Variabel: Es werden Projekte zu aktuellen Forschungsfragestellungen von den Prüfern des Fachbereichs Informatik angeboten. Die Themen haben einen überwiegender Forschungscharakter, was sich aus

Um dem Forschungscharakter des Projekts gerecht zu werden, soll das Ergebnis in einer wissenschaftlichen Publikation (max. 10 Seiten in Englisch) festgehalten werden, die einer einheitlichen Formatvorlage folgt. Einmal pro Semester sollen die bis zu einem Stichtag abgegebenen Projektpapiere auf einer internen Konferenz in einem Kurzbeitrag von den Studierenden präsentiert werden.

15. Lehrveranstaltungen und -formen: 102901 Seminar Projekt

16. Abschätzung Arbeitsaufwand: 180 Stunden pro Teammitglied

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Institut für Visualisierung und Interaktive Systeme
Modul: 10930 Technische Grundlagen der Informatik

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>6.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td></td>
<td>9. Dozenten:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Univ.-Prof. Martin Radetzki</td>
<td>Martin Radetzki</td>
<td></td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- B.Sc. Technikpädagogik, PO 2011, 1. Semester
 - Hauptfach --> Hauptfach Informatik --> Kernmodule Informatik
- B.Sc. Technikpädagogik, PO 2011, 1. Semester
 - Vorgezogene Master-Module
- M.Sc. Technikpädagogik, PO 2009, 1. Semester
 - Studienprofil A - konsekutiver Studiengang --> Wahlpflichtfach A --> Wahlpflichtfach Informatik
- M.Sc. Technikpädagogik, PO 2009, 1. Semester
 - Wahlpflichtfach B --> Wahlpflichtfach Informatik --> Grundlagen Informatik
- M.Sc. Technikpädagogik, PO 2009, 1. Semester
 - Wahlpflichtfach B --> Wahlpflichtfach Informatik --> Wahlpflichtfach Kernmodule
- M.Sc. Technikpädagogik, PO 2015, 1. Semester
 - Studienprofil A - konsekutiver Studiengang --> Wahlpflichtfach A --> Wahlpflichtfach Informatik
- M.Sc. Technikpädagogik, PO 2015, 1. Semester
 - Wahlpflichtfach B --> Wahlpflichtfach Informatik --> Grundlagen Informatik

| 11. Empfohlene Voraussetzungen: | Keine |

12. Lernziele:

- Elektrotechnische Grundlagen:

 Grundlegendes Verständnis elektrischer Schaltkreise und der Funktionsweise der Bauelemente und Komponenten von Computersystemen, wie Transistoren, digitale Halbleiterschaltungen, Speicher.

- Digitaltechnische Komponenten:

 Fähigkeit zur Analyse, Konstruktion und Optimierung digitaler Schaltungen von begrenzter Komplexität.

13. Inhalt:

1. Teil des Moduls (im Wintersemester, "Elektrotechnische Grundlagen"):

 - Informationsbegriff, Codierung, Darstellung mit analogen Größen
 - Übersicht über den Entwurf informationsverarbeitender Systeme
 - Boole'sche Algebra
 - Physikalische und mathematische Grundbegriffe der Elektrotechnik
 - Elektrostatisches Feld, Potential, Spannung und Kondensator
 - Elektrischer Strom, elektrische Netzwerke und Widerstand
• Halbleitertechnik, Diode, Transistor
• Digitale Grundschaltungen, Logik- und Speicherschaltungen

2. Teil des Moduls (im Sommersemester, "Digitaltechnische Komponenten"):
• Schaltalgebra, Schaltnetze / kombinatorische Netzwerke
• Verzögerungsanalyse
• Kombinatorische Komponenten von Rechensystemen
• Sequentielle Komponenten von Rechensystemen
• Modelle sequentiellen Verhaltens, Schaltwerke / sequentielle Netzwerke
• Taktung und Taktschemata
• Entwurfsmethodik und Entwurfsautomatisierung

14. Literatur:
-

15. Lehrveranstaltungen und -formen:
• 109301 Vorlesung Elektrotechnische Grundlagen
• 109302 Übung Elektrotechnische Grundlagen
• 109303 Vorlesung Digitaltechnische Komponenten
• 109304 Übung Digitaltechnische Komponenten

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 94 Stunden
Nachbearbeitungszeit: 176 Stunden

17. Prüfungsnummer/n und -name:
• V Vorleistung (USL-V), schriftlich, eventuell mündlich

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Eingebettete Systeme (Embedded Systems Engineering)
Modul: 10940 Theoretische Grundlagen der Informatik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050420005</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Modulduer:</td>
<td>2 Semester</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>12.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>8.0</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Apl. Prof. Ulrich Hertrampf</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Volker Diekert
| | • Ulrich Hertrampf |
| | → Hauptfach -->Hauptfach Informatik --> Kernmodule Informatik
| | →
| | B.Sc. Technikpädagogik, PO 2011, 1. Semester
| | → Vorgezogene Master-Module
| | →
| | B.Sc. Technikpädagogik, PO 2011, 1. Semester
| | → Wahlpflichtfach -->Wahlpflichtfach Informatik, Grundlagen Informatik
| | →
| | M.Sc. Technikpädagogik, PO 2009, 1. Semester
| | → Wahlpflichtfach B -->Wahlpflichtfach Informatik --> Grundlagen Informatik
| | →
| | M.Sc. Technikpädagogik, PO 2009, 1. Semester
| | → Wahlpflichtfach B -->Wahlpflichtfach Informatik --> Wahlpflichtfach Informatik Kernmodule
| | →
| | M.Sc. Technikpädagogik, PO 2015, 1. Semester
| | → Wahlpflichtfach B -->Wahlpflichtfach Informatik --> Grundlagen Informatik
| | →
| 11. Empfohlene Voraussetzungen: | Keine |
| 12. Lernziele: | Logik und Diskrete Strukturen:
| | • Die Studierenden haben die grundsätzlichen Kenntnisse in Logik und Diskreter Mathematik erworben, wie sie in den weiteren Grundvorlesungen der Informatik in verschiedenen Bereichen benötigt werden.
| | Automaten und Formale Sprachen:
| | • Die Studierenden beherrschen wichtige theoretische Grundlagen der Informatik, insbesondere die Theorie und Algorithmik endlicher Automaten. Hierzu gehört das Kennenlernen, Einordnung und Trennung der Chomskyschen Sprachklassen. |
| 13. Inhalt: | Logik und Diskrete Strukturen:
| | • Einführung in die Aussagenlogik: Semantik (Wahrheitswerte), Syntax (Axiome und Schlussregeln), Normalformen; Hornformeln; Endlichkeitssatz; aussagenlogische Resolution;
| | • Einführung in die Prädikatenlogik 1. Stufe: Semantik und Syntax, Normalformen, Unifikatoren, Herbrand-Theorie, prädikatenlogische Resolution;
Elementare Zahlentheorie: Rechnen mit Restklassen, endliche Körper, Euklidischer Algorithmus, Chinesischer Restsatz, Primzahltests, RSA-Verfahren; Wachstumsabschätzungen; Grundbegriffe der Wahrscheinlichkeitsrechnung; Kombinatorik; Graphen.

Automaten und Formale Sprachen:

14. Literatur:
- John Hopcroft, Jeffrey Ullman, Einführung in die Automatentheorie, formale Sprachen und Komplexitätstheorie, 1988
- Uwe Schöning, Theoretische Informatik - kurzgefasst, 1999

15. Lehrveranstaltungen und -formen:
- 109401 Vorlesung Logik und Diskrete Strukturen
- 109402 Übung Logik und Diskrete Strukturen
- 109403 Vorlesung Automaten und Formale Sprachen
- 109404 Übung Automaten und Formale Sprachen

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 84 h
Selbststudiums- / Nachbearbeitungszeit: 276 h
Summe: 360 h

17. Prüfungsnummer/n und -name:
- 10941 Theoretische Grundlagen der Informatik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0, Prüfungsvorleistung: Übungsschein
- V Vorleistung (USL-V), schriftlich, eventuell mündlich, 30 Min.

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Institut für Formale Methoden der Informatik
5132 Wahlbereich Informatik

Zugeordnete Module:

10110 Grundlagen der Künstlichen Intelligenz
10220 Modellierung
11890 Algorithmen und Berechenbarkeit
17210 Einführung in die Softwaretechnik
40090 Systemkonzepte und -programmierung
Modul: 11890 Algorithmen und Berechenbarkeit

| 2. Modulkürzel: | 050420020 | 5. Modulduauer: | 1 Semester |
| 4. SWS: | 4.0 | 7. Sprache: | Deutsch |

8. Modulverantwortlicher:
Univ.-Prof. Stefan Funke

9. Dozenten:
- Stefan Funke
- Volker Diekert
- Ulrich Hertrampf

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>B.Sc. Technikpädagogik, PO 2011, 5. Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauptfach -->Hauptfach Informatik -->Ergänzungsmodule Informatik</td>
</tr>
<tr>
<td>Vorgezogene Master-Module</td>
</tr>
<tr>
<td>B.Sc. Technikpädagogik, PO 2011, 5. Semester</td>
</tr>
<tr>
<td>Wahlpflichtfach A -->Wahlpflichtfach Informatik -->Wahlbereich Informatik</td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik, PO 2009, 5. Semester</td>
</tr>
<tr>
<td>Wahlpflichtfach A -->Wahlpflichtfach Informatik -->Wahlbereich Informatik</td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik, PO 2009, 5. Semester</td>
</tr>
<tr>
<td>Wahlpflichtfach B -->Wahlpflichtfach Informatik -->Wahlpflichtfach Informatik Pflichtmodule</td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik, PO 2015, 5. Semester</td>
</tr>
<tr>
<td>Wahlpflichtfach A -->Wahlpflichtfach Informatik -->Wahlbereich Informatik</td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik, PO 2015, 5. Semester</td>
</tr>
<tr>
<td>Wahlpflichtfach B -->Wahlpflichtfach Informatik -->Wahlpflichtfach Informatik</td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen:
Vorlesungen aus dem 1. und 2. Semester

12. Lernziele:

13. Inhalt:
Berechenbarkeit vs. Unberechenbarkeit, Church'sche These, NP-Vollständigkeit, PSPACE-vollständige Algorithmen (QBF). Entwurfsstrategien: Teile und Herrsche, gierig (greedy), Dynamisches Programmieren, Randomisierte Algorithmen

14. Literatur:
- John Hopcroft, Jeffrey Ullman, Einführung in die Automatentheorie, formale Sprachen und Komplexitätstheorie, 1988
- Volker Diekert, Entwurf und Analyse effizienter Algorithmen (Vorlesungsskript), 2006
15. Lehrveranstaltungen und -formen:
- 118901 Vorlesung Algorithmen und Berechenbarkeit
- 118902 Übung Algorithmen und Berechenbarkeit

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 42 h
- Selbststudiums- / Nacharbeitszeit: 138 h
- Summe: 180 h

17. Prüfungsnummer/n und -name:
- 11891 Algorithmen und Berechenbarkeit (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0, Prüfungsvorleistung: Übungsschein
- V Vorleistung (USL-V), schriftlich, eventuell mündlich, 30 Min.

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
Institut für Formale Methoden der Informatik
Modul: 17210 Einführung in die Softwaretechnik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>051520015</th>
<th>5. Modulduauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Stefan Wagner</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Stefan Wagner</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Zuordnung zum Curriculum in diesem Studiengang:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B.Sc. Technikpädagogik, PO 2011, 4. Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>➞ Hauptfach -->Hauptfach Informatik -->Ergänzungsmodule Informatik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>➞ B.Sc. Technikpädagogik, PO 2011, 4. Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>➞ Vorgezogene Master-Module</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.Sc. Technikpädagogik, PO 2009, 4. Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>➞ Wahlpflichtfach A -->Wahlpflichtfach Informatik -->Wahlbereich Informatik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>➞ M.Sc. Technikpädagogik, PO 2009, 4. Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>➞ Wahlpflichtfach B -->Wahlpflichtfach Informatik -->Wahlbereich Informatik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>➞ M.Sc. Technikpädagogik, PO 2009, 4. Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>➞ Wahlpflichtfach B -->Wahlpflichtfach Informatik -->Wahlpflichtfach Informatik Pflichtmodule</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>➞ M.Sc. Technikpädagogik, PO 2015, 4. Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>➞ Wahlpflichtfach A -->Wahlpflichtfach Informatik -->Wahlbereich Informatik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>➞ M.Sc. Technikpädagogik, PO 2015, 4. Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>➞ Wahlpflichtfach B -->Wahlpflichtfach Informatik -->Wahlbereich Informatik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>• Modul 10280 Programmierung und Software-Entwicklung</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Modul 12060 Datenstrukturen und Algorithmen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• sowie entsprechende Programmiererfahrung</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Die Teilnehmer kennen die Grundbegriffe der Softwaretechnik und haben wichtige Techniken des Softwareprojekt-Managements und der Software-Entwicklung erlernt. Sie kennen Scrum als eine konkrete Vorgehensweise zur Softwareentwicklung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>Die Vorlesung behandelt technische und andere Aspekte der Softwarebearbeitung, wie sie in der Praxis stattfindet. Die einzelnen Themen sind:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Abgrenzung und Motivation des Software Engineerrings</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Vorgehensmodelle, agiles Vorgehen, Scrum</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Software-Management</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
• Software-Prüfung und Qualitätssicherung
• Methoden, Sprachen und Werkzeuge für die einzelnen Phasen: Spezifikation, Grobentwurf, Feinentwurf, Implementierung, Test

14. Literatur:
• Ludewig, Lichter: Software Engineering. dpunkt-Verlag, Heidelberg. 2. Aufl. 2010
• Pfleeger, Atlee: Software Engineering. Pearson, 2010
• Rubin: Essential Scrum. Addison-Wesley, 2013

15. Lehrveranstaltungen und -formen:
• 172101 Vorlesung Einführung in die Softwaretechnik
• 172102 Übung Einführung in die Softwaretechnik

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 h
Selbststudiums-/Nachbearbeitungszeit: 138 h
Summe: 180 h

17. Prüfungsnummer/n und -name:
• 17211 Einführung in die Softwaretechnik (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0,
• V Vorleistung (USL-V), schriftlich, eventuell mündlich, Hausaufgaben

18. Grundlage für ...:
• 16500 Software Engineering
• 16510 Software-Praktikum

19. Medienform:
• Folien am Beamer unterstützt durch Tafel und Overhead
• Dokumente, Links und Diskussionsforum in ILIAS

20. Angeboten von: Software-Engineering
Modul: 10110 Grundlagen der Künstlichen Intelligenz

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>051900205</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modulduer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Marc Toussaint</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Andrés Bruhn
| | • Marc Toussaint |
| | ✏ Wahlpflichtfach A ↔ Wahlpflichtfach Informatik ↔ Wahlbereich Informatik
| | ✏ M.Sc. Technikpädagogik, PO 2009, . Semester
| | ✏ Wahlpflichtfach B ↔ Wahlpflichtfach Informatik ↔ Wahlbereich Informatik
| | ✏ M.Sc. Technikpädagogik, PO 2015, . Semester
| | ✏ Wahlpflichtfach A ↔ Wahlpflichtfach Informatik ↔ Wahlbereich Informatik
| | ✏ M.Sc. Technikpädagogik, PO 2015, . Semester
| | ✏ Wahlpflichtfach B ↔ Wahlpflichtfach Informatik ↔ Wahlbereich Informatik |
| 11. Empfohlene Voraussetzungen: | • Modul 080300100 Mathematik für Informatiker und Softwaretechniker |
| 12. Lernziele: | Der Student / die Studentin beherrscht die Grundlagen der Künstlichen Intelligenz, kann Probleme der KI selbständig einordnen und mit den erlernten Methoden und Algorithmen bearbeiten. |
| 13. Inhalt: | • Intelligenz
| | • Agentenbegriff
| | • Problemlösen durch Suchen, Suchverfahren
| | • Probleme mit Rand- und Nebenbedingungen
| | • Spiele
| | • Aussagen- und Prädikatenlogik
| | • Logikbasierte Agenten, Wissensrepräsentation
| | • Inferenz
| | • Planen
| | • Unsicherheit, probabilistisches Schließen
| | • Probabilistisches Schließen über die Zeit
| | • Sprachverarbeitung
| | • Entscheidungstheorie |
| | • G. F. Luger, Künstliche Intelligenz, 2001 |
| 15. Lehrveranstaltungen und -formen: | • 101101 Vorlesung Grundlagen der Künstlichen Intelligenz
| | • 101102 Übung Grundlagen der Künstlichen Intelligenz |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 42 Stunden
| | Selbststudium: 138 Stunden
| | Gesamt: 180 Stunden |
17. Prüfungsnummer/n und -name:
• 10111 Grundlagen der Künstlichen Intelligenz (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0. Prüfungsvorleistung: Übungsschein, Kriterien werden in der ersten Vorlesung bekannt gegeben
• V Vorleistung (USL-V), schriftlich, eventuell mündlich

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Institute für Visualisierung und Interaktive Systeme
Modul: 10220 Modellierung

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>052010001</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Moduldaeuers:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Frank Leymann</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Bernhard Mitschang
• Frank Leymann |
→ Hauptfach -->Hauptfach Informatik -->Ergänzungsmodule
Informatik
→ B.Sc. Technikpädagogik, PO 2011, 4. Semester
→ Vorgezogene Master-Module
M.Sc. Technikpädagogik, PO 2009, . Semester
→ Auflagenmodule des Masters
M.Sc. Technikpädagogik, PO 2009, . Semester
→ Wahlpflichtfach A -->Wahlpflichtfach Informatik -->Wahlbereich
Informatik
→ M.Sc. Technikpädagogik, PO 2009, . Semester
→ Wahlpflichtfach B -->Wahlpflichtfach Informatik -->Wahlbereich
Informatik
→ M.Sc. Technikpädagogik, PO 2009, . Semester
→ Wahlpflichtfach B -->Wahlpflichtfach Informatik -->Wahlpflichtfach
Pflichtmodule
→ M.Sc. Technikpädagogik, PO 2015, . Semester
→ Auflagenmodule des Masters
M.Sc. Technikpädagogik, PO 2015, . Semester
→ Wahlpflichtfach A -->Wahlpflichtfach Informatik -->Wahlbereich
Informatik
→ M.Sc. Technikpädagogik, PO 2015, . Semester
→ Wahlpflichtfach B -->Wahlpflichtfach Informatik -->Wahlbereich
Informatik |
| 11. Empfohlene Voraussetzungen: | • 051520005 Programmierung und Software-Entwicklung
• 051510005 Datenstrukturen und Algorithmen
• 051200005 Systemkonzepte und -programmierung |
| 13. Inhalt: | • Entity-Relationship Modell & komplexe Objekte
• Relationenmodell & Relationenalgebra , Überblick SQL
• Transformationen von ER nach Relationen, Normalisierung
• XML, DTD, XML-Schema, Info-Set, Namensräume
• Metamodelle & Repository
• RDF, RDF-S & Ontologien |
• UML
• Petri Netze, Workflownetze
• BPMN

14. Literatur:
• A. Silberschatz, H. F. Korth, S. Sudarshan, Database System Concepts, 2002
• R. Eckstein, S. Eckstein, "XML und Datenmodellierung", dpunkt.verlag 2004
• M. Hitz, G. Kappel, E. Kapsammer, W. Retschitzegger, UML @ Work - Objektorientierte Modellierung mit UML2, 2005
• P. Hitzler, M. Krötzsch, S. Rudolph, Y. Sure, Semantic Web, 2008
• H.J. Habermann, F. Leymann, "Repository", Oldenbourg 1993
• W. Reisig, "Petri-Netze", Vieweg & Teubner 2010
• B. Silver, "BPMN Method & Style", Cody-Cassidy Press 2009

15. Lehrveranstaltungen und -formen:
• 102201 Vorlesung Modellierung
• 102202 Übung Modellierung

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 Stunden
Nachbearbeitungszeit: 138 Stunden

17. Prüfungsnummer/n und -name:
• 10221 Modellierung (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0, Prüfungsvorleistung: Übungsschein
• V Vorleistung (USL-V), schriftlich, eventuell mündlich

18. Grundlage für ... :
• 10030 Architektur von Anwendungssystemen
• 10080 Datenbanken und Informationssysteme

19. Medienform:

20. Angeboten von: Institut für Architektur von Anwendungssystemen
Modul: 40090 Systemkonzepte und -programmierung

2. Modulkürzel: 051200005
5. Modulduer: 1 Semester
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Kurt Rothermel
9. Dozenten: • Kurt Rothermel
• Frank Dürr

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technikpädagogik, PO 2011, 5. Semester
 ➔ Hauptfach -->Hauptfach Informatik -->Ergänzungsmodule
 Informatik
 ➔
 B.Sc. Technikpädagogik, PO 2011, 5. Semester
 ➔ Vorgezogene Master-Module
 M.Sc. Technikpädagogik, PO 2009, 1. Semester
 ➔ Wahlpflichtfach A -->Wahlpflichtfach Informatik -->Wahlbereich
 Informatik
 ➔
 M.Sc. Technikpädagogik, PO 2009, 1. Semester
 ➔ Wahlpflichtfach B -->Wahlpflichtfach Informatik -->Wahlbereich
 Informatik
 ➔
 M.Sc. Technikpädagogik, PO 2009, 1. Semester
 ➔ Wahlpflichtfach B -->Wahlpflichtfach Informatik -->Wahlpflichtfach
 Pflichtmodule
 ➔
 M.Sc. Technikpädagogik, PO 2015, 1. Semester
 ➔ Wahlpflichtfach A -->Wahlpflichtfach Informatik -->Wahlbereich
 Informatik
 ➔
 M.Sc. Technikpädagogik, PO 2015, 1. Semester
 ➔ Wahlpflichtfach B -->Wahlpflichtfach Informatik -->Wahlbereich
 Informatik
 ➔

11. Empfohlene Voraussetzungen:
 * Modul 051520005 Programmierung und Software-Entwicklung
 * Modul 051510005 Datenstrukturen und Algorithmen

12. Lernziele:
 * Verstehen grundlegender Architekturen und Organisationsformen von Software-Systemen
 * Verstehen systemnaher Konzepte und Mechanismen
 * Kann existierende Systemplattformen und Betriebssysteme hinsichtlich ihrer Eigenschaften analysieren und anwenden.
 * Kann systemnahe Software entwerfen und implementieren.
 * Kann nebenläufige Programme entwickeln
 * Kann mit Experten anderer Fachgebiete die Anwendung von Systemfunktionen abstimmen.

13. Inhalt:
 Grundlegende Systemstrukturen - und organisationen
 • Multitaskingsystem
 • Multiprozessorsystem
 • Verteiltes System
 Modellierung und Analyse nebenläufiger Programme
• Abstraktionen: Atomare Befehle, Prozesse, nebenläufiges Programm
• Korrectheit- und Leitungskriterien

Betriebssystemkonzepte
• Organisation von Betriebssystemen
• Prozesse und Threads
• Eingabe/Ausgabe
• Scheduling

Konzepte zur Synchronisation über gemeinsamen Speicher
• Synchronisationsprobleme und -lösungen
• Synchronisationswerkzeuge: Semaphor, Monitor

Konzepte zur Kommunikation und Synchronisation mittels Nachrichtentransfer
• Taxonomie: Kommunikation und Synchronisation
• Nachrichten als Kommunikationskonzept
• Höhere Kommunikationskonzepte

Basisalgorithmen für Verteilte Systeme
• Erkennung globaler Eigenschaften
• Schnappschussproblem
• Konsistenter globaler Zustand
• Verteilte Terminierung

Praktische nebenläufige Programmierung in Java
• Threads und Synchronisation
• Socketschnittstelle
• RMI Programmierung

14. Literatur: Literatur, siehe Webseite zur Veranstaltung

15. Lehrveranstaltungen und -formen:
• 400901 Vorlesung Systemkonzepte und -programmierung
• 400902 Übung Systemkonzepte und -programmierung

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 Stunden
Nachbearbeitungszeit: 138 Stunden

17. Prüfungsnummer/n und -name:
• 40091 Systemkonzepte und -programmierung (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0
• V Vorleistung (USL-V), schriftlich, eventuell mündlich

18. Grundlage für ...

19. Medienform:

20. Angeboten von: Verteilte Systeme
5200 Wahlpflichtfach Bautechnik

Zugeordnete Module:

- 5201 Allgemeine Wahlfächer Bautechnik
- 5210 a) Entwerfen und Konstruieren
- 5220 b) Techn. Ausbau
- 5230 c) Baubetrieb
- 5240 d) Tragwerksbemessung und Konstruktion
- 5250 e) Geotechnik
- 5260 f) Holzbau (nur in Kombination mit Tragwerksbemessung und -konstruktion möglich)
- 5270 g) Vermessungswesen
- 5280 h) Straßenbau
- 5290 i) Raum und Farbe
- 5295 j) Holztechnik
5201 Allgemeine Wahlfächer Bautechnik

<table>
<thead>
<tr>
<th>Zugeordnete Module</th>
<th>Modulbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>10610</td>
<td>Baubetriebslehre I</td>
</tr>
<tr>
<td>10700</td>
<td>Planung und Konstruktion im Hochbau II (PlaKo II)</td>
</tr>
<tr>
<td>10710</td>
<td>Werkstoffe im Bauwesen II</td>
</tr>
<tr>
<td>10720</td>
<td>Schutz, Instandsetzung und Ertüchtigung von Bauwerken</td>
</tr>
<tr>
<td>10950</td>
<td>Geologie</td>
</tr>
<tr>
<td>10970</td>
<td>Grundlagen der Betriebswirtschaftslehre für Ingenieure</td>
</tr>
<tr>
<td>11340</td>
<td>Zerstörungsfreie Prüfung im Bauwesen</td>
</tr>
<tr>
<td>20630</td>
<td>Ökologische Bewertung; Nachhaltiges Bauen</td>
</tr>
<tr>
<td>20640</td>
<td>Betontechnologie</td>
</tr>
<tr>
<td>20650</td>
<td>Konstruktion und Material</td>
</tr>
<tr>
<td>34180</td>
<td>Statistik und Informatik</td>
</tr>
<tr>
<td>37150</td>
<td>Fertigungsverfahren in der Bauwirtschaft</td>
</tr>
<tr>
<td>41090</td>
<td>Einführung in die bauphysikalische Messtechnik</td>
</tr>
<tr>
<td>42380</td>
<td>Angewandte Bauphysik</td>
</tr>
</tbody>
</table>
Modul: 42380 Angewandte Bauphysik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>020800010</th>
<th>5. Modulduer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>5.3</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Hon.-Prof. Schew-Ram Mehra

9. Dozenten: • Eva Veres • Susanne Urlaub • Simone Eitele

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technikpädagogik → Hauptfach --> Hauptfach Bautechnik -->Wahlbereich 2 Bautechnik
→

B.Sc. Technikpädagogik → Vorgezogene Master-Module
→

B.Sc. Technikpädagogik → Wahlpflichtfach -->Wahlpflichtfach Bautechnik -->Allgemeine
Wahlfächer Bautechnik
→

M.Sc. Technikpädagogik → Wahlpflichtfach B -->Wahlpflichtfach Bautechnik -->Allgemeine
Wahlfächer Bautechnik
→

M.Sc. Technikpädagogik → Wahlpflichtfach B -->Wahlpflichtfach Bautechnik -->Allgemeine
Wahlfächer Bautechnik
→

11. Empfohlene Voraussetzungen: Modul 020800001 Bauphysik und Baukonstruktion

12. Lernziele:

Konstruktive Bauphysik

Studierende

• beherrschen Grundlagen stationärer und instationärer, bauphysikalischer Vorgänge.
• kennen das Verhalten von Bauprodukten (Gebäude, Räume, Bauteile, Werkstoffe) unter verschiedenen Einwirkungen.
• können Ausführungsbeispiele hinsichtlich ihrer bauphysikalischen Eigenschaften beurteilen.
• sind in der Lage bauphysikalisch richtig zu konstruieren, kritische Details zu erkennen und konstruktive Lösungen zu entwickeln.

Technische Bauphysik

Studierende

• beherrschen Planungsprinzipien und Wirkungsweise haustechnischer Anlagen.
• kennen die wechselseitigen Einflüsse haustechnischer Anlagen.
• sind in der Lage bau- und haustechnische Maßnahmen aufeinander abzustimmen.
• beherrschen die Auslegung und Dimensionierung.

Bauphysikalischer Diskurs
Studierende

- haben die methodische Vorgehensweise bei der Behandlung
 bauphysikalischer Problemstellungen kennen gelernt und können diese
 anwenden.
- bekommen Einblicke in wissenschaftliche Arbeitsweisen.
- haben einen Überblick über praxisrelevante bauphysikalische
 Aufgabenstellungen.

13. Inhalt:

Inhalt Lehrveranstaltung Angewandte (konstruktive und technische)
Bauphysik:

- stationäres und instationäres thermisches und hygrisches Verhalten
 von Bauteilen
- schalltechnisches Verhalten von Bauteilen
- Wechselwirkung bauphysikalischer Phänomene
- Ausführungsbeispiele für konstruktive Details im Bestand und im
 Neubau
- bauphysikalische Schwerpunkte bei der Konstruktion von
 Außenwänden, Fenstern, Dächern,erdberührten Bauteilen, Decken,
 Treppen und Innenwänden
- Heizungstechnik
- Nutzung erneuerbarer Energie
- Wärmerrückgewinnung
- Erdwärme
- Lüftungstechnik
- Klimatechnik
- natürliche und künstliche Beleuchtung
- Installationsgeräusche
- Regel- und Sicherheitstechnik

Inhalt der Lehrveranstaltung Bauphysikalischer Diskurs:

- Anwendung aus/in der Praxis,
- Innovationen und Ausblicke sowie neue Materialien/Bauteile/
 Ausführungen
- Schwachstellen und Fehlerquellen bei der Ausführung

14. Literatur:

Skript: Konstruktive Bauphysik
Skript: Technische Bauphysik
Unterlagen zur Vortragsreihe Bauphysikalischer Diskurs

Cziesielski, E.; Daniels, K.; Trümper, H.: Ruhrgas Handbuch -
Haustechnische Planung, Krämer Verlag, Stuttgart (1985)

Eichler, F.; Arndt, H.: Bautechnischer Wärme- und Feuchtigkeitsschutz -
Bauphysikalische Entwurfsslehre. VEB Verlag, Berlin (1982)

Rietschel, H.; Esdorn, H.: Raumklimatechnik. Springer-Verlag,
Heidelberg (1994)

Lohmeyer, G., Post, M. und Bergmann, H.: Praktische Bauphysik - Eine
Einführung mit Berechnungsbeispielen, 7. Auflage , Vieweg + Teubner,
Wiesbaden (2010)

15. Lehrveranstaltungen und -formen:

- 423801 Vorlesung Konstruktive Bauphysik
- 423802 Vorlesung Technische Bauphysik
- 423803 Vortragsreihe Bauphysikalischer Diskurs

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 56 h
Selbststudium / Nacharbeitszeit: 124 h
Gesamt: 180 h

| 17. Prüfungsnummer/n und -name: | • 42381 Konstruktive und Technische Bauphysik (PL), mündliche Prüfung, 25 Min., Gewichtung: 1.0
• V Vorleistung (USL-V), schriftlich, eventuell mündlich |
|---------------------------------|--|

<table>
<thead>
<tr>
<th>18. Grundlage für ...</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>19. Medienform:</th>
<th>Powerpointpräsentation, Anschauungsmaterial (Material-Muster)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>20. Angeboten von:</th>
<th>Lehrstuhl für Bauphysik</th>
</tr>
</thead>
</table>
Modul: 10610 Baubetriebslehre I

2. Modulkürzel: 020200100 5. Modulduauer: 1 Semester
4. SWS: 5.0 7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Fritz Berner
9. Dozenten: Fritz Berner

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technikpädagogik, PO 2011, 3. Semester
→ Hauptfach -->Hauptfach Bautechnik -->Wahlbereich 1 Bautechnik
→
B.Sc. Technikpädagogik, PO 2011, 3. Semester
→ Vorgezogene Master-Module
B.Sc. Technikpädagogik, PO 2011, 3. Semester
→ Wahlpflichtfach -->Wahlpflichtfach Bautechnik -->Allgemeine Wahlfächer Bautechnik
→
M.Sc. Technikpädagogik, PO 2009, 3. Semester
→ Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang -->Wahlpflichtfach B -->Affines Wahlpflichtfach Bautechnik
→
M.Sc. Technikpädagogik, PO 2009, 3. Semester
→ Wahlpflichtfach B -->Wahlpflichtfach Bautechnik -->Allgemeine Wahlfächer Bautechnik
→
M.Sc. Technikpädagogik, PO 2015, 3. Semester
→ Wahlpflichtfach B -->Wahlpflichtfach Bautechnik -->Allgemeine Wahlfächer Bautechnik
→

11. Empfohlene Voraussetzungen:

• Bau: Einführung in das Bauingenieurwesen - Fertigungsverfahren in der Bauwirtschaft
• IuI, Techn.-Päd., BWL techn.: Fertigungsverfahren in der Bauwirtschaft

12. Lernziele:

13. Inhalt:

Kalkulation von Bauleistungen

a) Einführung in die Kalkulation

• Grundlagen des Rechnungswesens
• Bauauftragsrechnung und Kalkulation
• Verfahren der Kalkulation
• Aufbau der Kalkulation

b) Durchführung der Kalkulation

• Gliederung der Kalkulation
• Kostenbestandteile einer Kalkulation
• praktische Durchführung anhand von Beispielen

Ausschreibung und Vergabe
• Ausschreibung von freiberuflichen Leistungen
• Ausschreibung von Lieferleistungen
• Ausschreibung von Bauleistungen
• VOB
• HOAI
• Aufbau von Ausschreibungsunterlagen

14. Literatur:
- VOB/ HOAI

15. Lehrveranstaltungen und -formen:
- 106101 Vorlesung Baubetriebslehre I
- 106102 Übung Baubetriebslehre I
- 106103 Hausübung und Kolloquium Baubetriebslehre I

16. Abschätzung Arbeitsaufwand:
| Präsenzzeit: | 48 h |
| Selbststudium / Nacharbeitszeit: | 132 h |
| Gesamt: | 180 h |

17. Prüfungsnummer/n und -name:
- 10611 Baubetriebslehre I (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0, Prüfungsvorleistung: 1 Hausübung + 1 Kolloquium
- V Vorleistung (USL-V), schriftlich, eventuell mündlich

18. Grundlage für ...:
- 10730 Baubetriebslehre II

19. Medienform:

20. Angeboten von:
- Institut für Baubetriebslehre
Modul: 20640 Betontechnologie

2. Modulkürzel: 021500133
5. Modulduer: 1 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Harald Garrecht

9. Dozenten: Harald Garrecht

10. Zuordnung zum Curriculum in diesem Studiengang:

 B.Sc. Technikpädagogik, PO 2011, 5. Semester
 → Vorgezogene Master-Module
 B.Sc. Technikpädagogik, PO 2011, 5. Semester
 → Wahlpflichtfach → Wahlpflichtfach Bautechnik → Allgemeine
 Wahlfächer Bautechnik
 →
 M.Sc. Technikpädagogik, PO 2009, 5. Semester
 → Studienprofil B - ohne erziehungswissenschaftliche Studien
 im Bachelor-Studiengang → Wahlpflichtfach B → Affines
 Wahlpflichtfach Bautechnik
 →
 M.Sc. Technikpädagogik, PO 2009, 5. Semester
 → Wahlpflichtfach B → Wahlpflichtfach Bautechnik → Allgemeine
 Wahlfächer Bautechnik
 →
 M.Sc. Technikpädagogik, PO 2015, 5. Semester
 → Wahlpflichtfach B → Wahlpflichtfach Bautechnik → Allgemeine
 Wahlfächer Bautechnik
 →

11. Empfohlene Voraussetzungen: keine

12. Lernziele:
Der Student kennt die wichtigsten Eigenschaften des Betons und die
aktuellen Forschungsgebiete in der Betontechnologie. Durch praktische
Laborarbeiten erlangt er Kenntnisse darüber, wie Versuche konzipiert,
durchgeführt und ausgewertet werden.

13. Inhalt:
Die Vorlesung umfasst Zusammensetzung, Herstellung,
Verarbeitung und Anwendung aller relevanten Betonsorten. Im
einzelnen gliedert sich die Vorlesung dabei in folgende Kapitel:
1. Einführung: Geschichte des Betons, Beispiele historischer
 Anwendungen
2. Zemente: Arten, Eigenschaften und Entwicklungen
3. Zementhydratation: die chemische Reaktionen und alle
 Arten der Beeinflussung
4. Gesteinskörnung und Betonzusatzmittel: Einflüsse auf die
 Eigenschaften des Betons
5. Frischbeton und seine Eigenschaften
6. Betonierverfahren
 a. für Normalbetone
 b. für Sonderbetone
7. Junger Beton I und II
 a. Schädigungsmechanismen
 b. Eigenschaftsentwicklung
8. Festbeton I und II
 a. Bruchmechanische Kenngrößen
 b. Eigenschaften unterschiedlicher Betone
9. Zeitabhängiges Verhalten
 a. Verformung
 b. Reifeentwicklung
10. Verbund Stahl/Beton
11. Dauerhaftigkeit I und II
 a. Frost und Verschleiß
 b. Carbonatisierung und chemischer Angriff
12. Brandbeanspruchung
13. Modelle für Betone
 a. empirische Modelle, z.B. Powers
 b. numerische Modelle, z.B. Hymostruc, CEMHyd3d
14. Besondere Eigenschaften von Sonderbetonen
 a. Leichtbeton und Faserbeton
 b. Hochfester und Ultrahochfester Beton
15. Prüfverfahren für Betone
16. Aktuelle Forschungsprojekte und Stand der Wissenschaften

14. Literatur:
 Pflichtlektüre:
 - H.W. Reinhardt: „Betonkalender“, Sonderdruck
 - Stark: „Dauerhaftigkeit von Beton“, Birkhäuser Verlag
 Skript
 Kopien der gezeigten Folien

15. Lehrveranstaltungen und -formen:
 • 206401 Vorlesung Betontechnologie
 • 206402 Übung Betontechnologie

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: rd. 56 h
 Hausübungen: 30 h
 Laborarbeit: 14 h
 Seminararbeit (Auswertung Laborarbeit): 80 h

17. Prüfungsnummer/n und -name:
 20641 Betontechnologie (PL), schriftlich, eventuell mündlich, 90 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
 Institut für Werkstoffe im Bauwesen
Modul: 41090 Einführung in die bauphysikalische Messtechnik

2. Modulkürzel: 020800002
5. Moduldaumer: 1 Semester

3. Leistungspunkte: 3.0 LP

4. SWS: 2.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Hon.-Prof. Schew-Ram Mehra
9. Dozenten: Eva Veres

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technikpädagogik
 → Vorgezogene Master-Module
 B.Sc. Technikpädagogik
 → Wahlpflichtfach → Wahlpflichtfach Bautechnik → Allgemeine Wahlfächer Bautechnik
 →
M.Sc. Technikpädagogik
 → Wahlpflichtfach B → Wahlpflichtfach Bautechnik → Allgemeine Wahlfächer Bautechnik
 →
M.Sc. Technikpädagogik
 → Wahlpflichtfach B → Wahlpflichtfach Bautechnik → Allgemeine Wahlfächer Bautechnik
 →

11. Empfohlene Voraussetzungen: Modul 020800001 Bauphysik und Baukonstruktion

12. Lernziele:
Die Studierenden

 • haben diverse Messapparaturen kennengelernt und können einfache Messungen durchführen und Messgrößen bestimmen.
 • können die Größenordnung der Messwerte abschätzen.
 • können mit der Messelektronik umgehen.
 • kennen diverse Wandlerprinzipien.
 • können Bezugsgrößen festlegen (Kalibrierung).
 • kennen die Analogien aus der Elektrotechnik.
 • können statistische Analysen aus den Messreihen erstellen (Fehleranalysen).

13. Inhalt:
Die Veranstaltung vermittelt Grundlagen bauphysikalischer Messtechnik. Sie zeigt Randbedingungen, Anwendungsgrenzen, Fehlerinterpretationen und deren Schwachpunkte auf.

Der Schwerpunkt des Studienfachs liegt in der Entwicklung einer funktionsfähigen Messkette in den Bereichen der Akustik, der Wärme, der Feuchte und des Lichtes.

Einführende Grundlagen:

 • Aufbau einer Messkette
 • Messgenauigkeit / Reproduzierbarkeit
 • Varieren der Randbedingungen
 • Auswerten und Darstellen der Messergebnisse
 • Interpretation der Ergebnisse

Gemessen wird:

 • Lufttemperatur
 • Oberflächentemperaturen
• Wärmestrahlung (Thermografie)
• relative Luftfeuchte
• Luftgeschwindigkeit
• Schalldämmung (Lärmpegel verschiedener Lärmquellen, A-Bewertung)
• Nachhallzeit
• Beleuchtungsstärke

Maximal 15 Personen

14. Literatur: Handouts

15. Lehrveranstaltungen und -formen: 410901 Seminar Einführung in die bauphysikalische Messtechnik

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 22,5 h
 Selbststudiumszeit / Nacharbeitszeit: 67,5 h
 Gesamt: 90,0 h

17. Prüfungsnummer/n und -name:
 • 41091 Einführung in die bauphysikalische Messtechnik (BSL), mündliche Prüfung, 25 Min., Gewichtung: 1.0
 • V Vorleistung (USL-V), schriftlich, eventuell mündlich

18. Grundlage für ... :

19. Medienform: Powerpointpräsentation, Tafel, Overhead, Video, Vorortmessungen

20. Angeboten von: Lehrstuhl für Bauphysik
Modul: 37150 Fertigungsverfahren in der Bauwirtschaft

2. Modulkürzel: 020200180
5. Modulduauer: 1 Semester

3. Leistungspunkte: 3.0 LP
6. Turnus: jedes 2. Semester, SoSe

4. SWS: 2.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Fritz Berner

9. Dozenten: Fritz Berner

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technikpädagogik
→ Hauptfach -->Hauptfach Bautechnik -->Wahlbereich 1 Bautechnik
→
B.Sc. Technikpädagogik
→ Vorgezogene Master-Module
B.Sc. Technikpädagogik
→ Wahlpflichtfach -->Wahlpflichtfach Bautechnik -->Allgemeine Wahlfächer Bautechnik
→
M.Sc. Technikpädagogik
→ Wahlpflichtfach B -->Wahlpflichtfach Bautechnik -->Allgemeine Wahlfächer Bautechnik
→
M.Sc. Technikpädagogik
→ Wahlpflichtfach B -->Wahlpflichtfach Bautechnik -->Allgemeine Wahlfächer Bautechnik
→

11. Empfohlene Voraussetzungen: keine

13. Inhalt: Ablauf und Beteiligte beim Bauen

• Am Bau Beteiligte
• Bauablauf
• HOAI
• Voraussetzungen zum Baubeginn
• Vergabe an Bauunternehmen

Baustelleneinrichtung

• Grundlagen
• Vorschriften
• Sozial- und Büroinrichtungen, Lagerräume
• Verkehrsf lächen und Transportwege
• Medienvorsorgung der Baustelle

Hebezeuge

• Turmkrane
• Autokrane, Mobilkrane
• Portalkrane
• Kabelkrane
• Bauaufzüge
• Kranwahl

Beton
• Grundlagen
• Betonmischen
• Betontransport
• Betonverarbeitung
• Betonstahlbearbeitung

Schalung und Rüstung
• Aufgaben einer Schalung
• Aufbau von Schalungen
• Schalungsarten
• Spezial schalungen
• Schalungsentwurf
• Gerüste

14. Literatur:
• Manuskript: Fertigungsverfahren in der Bauwirtschaft

15. Lehrveranstaltungen und -formen:
• 371501 Vorlesung Fertigungsverfahren in der Bauwirtschaft
• 371502 Übung Fertigungsverfahren in der Bauwirtschaft
• 371503 Hausübung und Kolloquium Fertigungsverfahren

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 21 h
Selbststudiumszeit / Nachbereitungszeit: 69 h
Gesamt: 90 h

17. Prüfungsnummer/n und -name:
• 37151 Fertigungsverfahren in der Bauwirtschaft (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0, Prüfungsvoraussetzung: Fertigungsverfahren in der Bauwirtschaft: 1 Hausübung + 1 Kolloquium
• V Vorleistung (USL-V), schriftlich, eventuell mündlich

18. Grundlage für ...

19. Medienform:

20. Angeboten von: Institut für Baubetriebslehre
Modul: 10950 Geologie

2. Modulkürzel: 020600003
5. Moduldauer: 1 Semester

3. Leistungspunkte: 3.0 LP

4. SWS: 2.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Christian Moormann

9. Dozenten: Bernd Zweschper

10. Zuordnung zum Curriculum in diesem Studiengang:

 B.Sc. Technikpädagogik, PO 2011, 1. Semester
 → Vorgezogene Master-Module
 → Studienprofil B - ohne erziehungswissenschaftliche Studien
 → Wahlpflichtfach Bautechnik
 → Allgemeine Wahlfächer Bautechnik

 B.Sc. Technikpädagogik, PO 2011, 1. Semester
 → Wahlpflichtfach Bautechnik

 M.Sc. Technikpädagogik, PO 2009, 1. Semester
 → Studienprofil B - ohne erziehungswissenschaftliche Studien
 → Wahlpflichtfach Bautechnik
 → Affines Wahlpflichtfach Bautechnik

 M.Sc. Technikpädagogik, PO 2009, 1. Semester
 → Wahlpflichtfach Bautechnik

 M.Sc. Technikpädagogik, PO 2015, 1. Semester
 → Wahlpflichtfach Bautechnik

11. Empfohlene Voraussetzungen: keine

12. Lernziele:

 Mit elementaren Grundlagen der Mineralogie und der Petrographie sind den Studierenden vertraut. Sie sind in der Lage, verschiedene Gesteine zu unterscheiden, zu klassifizieren und kennen ihre wesentlichen Eigenschaften. Grundlagen der regionalen Geologie Südwestdeutschlands sind den Studierenden geläufig.

 Aus ingenieurgeologischer Sichtweise relevante Eigenschaften sowie ihre auf ihre Gesteinsgenese zurückgehenden Ausprägungen sind den Studierenden geläufig. Sie können diese Kenntnisse auf bautechnische und umweltschutztechnische Problemstellungen anwenden.

 Letztlich verstehen die Studierenden die Bedeutung der Geologie als anwendungsorientierte Naturwissenschaft und ihren Bezug zum täglichen Leben.
13. Inhalt:
- System Erde, Einführung und Überblick
- Schalenaufbau der Erde, Plattentektonik
- Seismologie, Erdbeben
- Vulkanismus, magmatische Gesteine
- Verwitterung, Erosion, Transportvorgänge
- Sedimente und Sedimentgesteine
- metamorphe Gesteine
- Gebirgsbildung
- Massenbewegungen, Kreislauf des Wassers
- Regionale Geologie von Südwestdeutschland
- Ingenieurgeologie: Festgesteine und Lockergesteine - Eigenschaften und Klassifikation
- Baugrunduntersuchungsverfahren

14. Literatur:
Skripte und Übungsunterlagen werden in der Vorlesung ausgegeben, außerdem:

15. Lehrveranstaltungen und -formen:
109501 Vorlesung Geologie

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit (2 SWS): 28 h
- Selbststudium / Nacharbeitszeit (2 h pro Präsenzstunde): 56 h
- Gesamt: 84 h

17. Prüfungsnummer/n und -name:
10951 Geologie (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0

18. Grundlage für ...
10640 Geotechnik I: Bodenmechanik

19. Medienform:
Beamer-Präsentationen, Tafelauflaufschriebe, Film

20. Angeboten von:
Institut für Geotechnik
Modul: 10970 Grundlagen der Betriebswirtschaftslehre für Ingenieure

2. Modulkürzel: 020200400
5. Moduldauer: 1 Semester

3. Leistungspunkte: 3.0 LP
6. Turnus: jedes 2. Semester, SoSe

4. SWS: 2.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Fritz Berner

9. Dozenten: Cornelius Väth

10. Zuordnung zum Curriculum in diesem Studiengang:

 | Vorgezogene Master-Module | Vorgezogene Master-Module |
 | Wahlpflichtfach -->Wahlpflichtfach Bautechnik -->Allgemeine Wahlfächer Bautechnik | Wahlpflichtfach -->Wahlpflichtfach Bautechnik -->Allgemeine Wahlfächer Bautechnik |

 | Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang -->Wahlpflichtfach B -->Affines Wahlpflichtfach Bautechnik | Wahlpflichtfach B -->Wahlpflichtfach Bautechnik -->Allgemeine Wahlfächer Bautechnik |

11. Empfohlene Voraussetzungen: Keine

13. Inhalt:

 - Unternehmen und Unternehmenszusammenschlüsse
 - Rechtsformen
 - Handelsregister
 - Organisationsformen von Unternehmen
 - Produktion und Leistungserstellungsprozess
 - Fertigung
 - Produktpolitik
 - Personal
 - Finanzwirtschaftlicher Prozess
 - Zahlungsmittel
 - Investitionsrechnung
 - Rechnungswesen
 - Buchführung
 - Jahresabschluss (Bilanz und GuV)
 - Ausgewählte Kennzahlen

14. Literatur: Olfert/Rahn, Einführung in die Betriebswirtschaftslehre
15. Lehrveranstaltungen und -formen:

- 109701 Vorlesung Grundlagen der Betriebswirtschaftslehre
- 109702 Übung Grundlagen der Betriebswirtschaftslehre

16. Abschätzung Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Tätigkeit</th>
<th>Zeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzzeit</td>
<td>21 h</td>
</tr>
<tr>
<td>Selbststudium / Nacharbeitszeit</td>
<td>44 h</td>
</tr>
<tr>
<td>Gesamt</td>
<td>65 h</td>
</tr>
</tbody>
</table>

17. Prüfungsnummer/n und -name:

- 10971 Grundlagen der Betriebswirtschaftslehre für Ingenieure (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0

18. Grundlage für ...:

- 12090 BWL I: Produktion, Organisation, Personal
- 12100 BWL II: Rechnungs- und Finanzierung
- 13200 BWL III: Marketing und Einführung in die Wirtschaftsinformatik

19. Medienform:

- Vorlesung, visuell unterstützt

20. Angeboten von:

- Institut für Baubetriebslehre
Modul: 20650 Konstruktion und Material

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>021500131</th>
<th>5. Moduldauger:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Harald Garrecht</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Harald Garrecht
• Werner Sobek |
→ Vorgezogene Master-Module
→ Wahlrichtung -->Wahlrichtung Bautechnik -->Allgemeine Wahlfächer Bautechnik |
| | M.Sc. Technikpädagogik, PO 2009, 5. Semester
→ Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang -->Wahlrichtung B -->Affines Wahlrichtung Bautechnik |
| | M.Sc. Technikpädagogik, PO 2015, 5. Semester
→ Wahlrichtung B -->Wahlrichtung Bautechnik -->Allgemeine Wahlfächer Bautechnik |
| 11. Empfohlene Voraussetzungen: | keine |
| 13. Inhalt: | Folgende Inhalte werden im Rahmen von Vorlesungen, Übungen... |
und Exkursionen vermittelt:

- Übernommene Funktionen von Werkstoffen in Konstruktionen, Funktionsprofile
- Potentiale der Werkstoffe hinsichtlich der vielfältigen Funktionsanforderungen, welches Spektrum wird von welchem Werkstoff bzw. Werkstoffgruppe abgedeckt
- Herstellungs- und Bearbeitungsverfahren
- Werkstoffübergreifende Konstruktionsmethoden
- Überführen eines Entwurfs in eine Konstruktion
- Analyse ausgeführter Konstruktionen

<table>
<thead>
<tr>
<th>14. Literatur:</th>
<th>ausgewählte Veröffentlichungen zum Thema, Handouts</th>
</tr>
</thead>
<tbody>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>206501 Vorlesung Konstruktion und Material \ 206502 Übung Konstruktion und Material</td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Präsenzzeit: 56 h \ Selbststudium: 124 h \ Gesamt: 180h</td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>20651 Konstruktion und Material (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Institut für Werkstoffe im Bauwesen</td>
</tr>
</tbody>
</table>
Modul: 10700 Planung und Konstruktion im Hochbau II (PlaKo II)

2. Modulkürzel: 010600491
5. Moduldauer: 1 Semester

3. Leistungspunkte: 6.0 LP
6. Turnus: jedes 2. Semester, SoSe

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Jose Luis Moro

9. Dozenten:

10. Zuordnung zum Curriculum in diesem Studiengang:

M.Sc. Technikpädagogik, PO 2009, 2. Semester
➞ Studienprofil B - ohne erziehungswissenschaftliche Studien
 im Bachelor-Studiengang -->Wahlpflichtfach B -->Affines
 Wahlpflichtfach Bautechnik

➞ M.Sc. Technikpädagogik, PO 2009, 2. Semester
 ➞ Wahlpflichtfach B -->Wahlpflichtfach Bautechnik -->Allgemeine
 Wahlfächer Bautechnik

➞ M.Sc. Technikpädagogik, PO 2015, 2. Semester
 ➞ Wahlpflichtfach B -->Wahlpflichtfach Bautechnik -->Allgemeine
 Wahlfächer Bautechnik

11. Empfohlene Voraussetzungen:
Modul 010600490 Grundlagen der Darstellung und Konstruktion

12. Lernziele:
Aufbauend auf den Grundlagen, die im Pflichtmodul 010600490
im Rahmen von Planung und Konstruktion im Hochbau I (PlaKo I)
vermittelt wurden, haben die Studierenden weiter führende wesentliche
Aspekte der Planung und Konstruktion von Gebäuden kennen
gelernt. Insbesondere haben die Studierenden ihre Fähigkeiten
im Bauwerksentwurf und in der Baukonstruktion im Rahmen
einer umfangreicherer praktischen Entwürfsübung getestet und
weiterentwickelt.

13. Inhalt:
Planung und Konstruktion im Hochbau
 • Planungsprozess/Entwurf
 • Brandschutz
 • Bauweisen
 • Ausbau von Hochbauten
 • Bearbeitung einer studienbegleitenden Übung (Bew. Übung)

14. Literatur:
 • Vorlesungsskripte
 • Übungsskript
 • Literaturliste

15. Lehrveranstaltungen und -formen:
 • 107001 Vorlesung Planung und Konstruktion im Hochbau II
 • 107002 Übung Planung und Konstruktion im Hochbau II

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 h
Selbststudium / Nacharbeitszeit: 138 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
 • 10701 Planung und Konstruktion im Hochbau II (PL), schriftliche
 Prüfung, 75 Min., Gewichtung: 1.0, Prüfungsvorleistung:
 Planerische und konstruktive Übung, betreute

Stand: 07. Oktober 2015
studienbegleitende Übungsbearbeitung als Gruppenarbeit mit 3 - 4 Bearbeitern.

- 10702 Planung und Konstruktion im Hochbau II: Übung (LBP), mündliche Prüfung, 20 Min., Gewichtung: 1.0, Vortrag bei Übungsabgabe mit Plandarstellung und Modell

| 18. Grundlage für ... : | • 10780 Entwerfen und Konstruieren
<table>
<thead>
<tr>
<th></th>
<th>• 10990 Entwurf in Zusammenarbeit mit Architekturstudenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>19. Medienform:</td>
<td>Vorlesung mit Computerpräsentation, CAD, Übung, Modellbau</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Architektur und Stadtplanung</td>
</tr>
</tbody>
</table>
Modul: 10720 Schutz, Instandsetzung und Ertüchtigung von Bauwerken

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>021500103</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Jan Hofmann</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Jan Hofmann</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- **B.Sc. Technikpädagogik, PO 2011, 6. Semester**
 - Vorgezogene Master-Module
 - *Hauptfach Bautechnik --> Technischer Ausbau --> Wahlcontainer*

- **B.Sc. Technikpädagogik, PO 2011, 6. Semester**
 - *Wahlpflichtfach --> Wahlpflichtfach Bautechnik --> Allgemeine Wahlfächer Bautechnik*
 - *Hauptfach Bautechnik --> Technischer Ausbau --> Wahlcontainer*

- **M.Sc. Technikpädagogik, PO 2009, 6. Semester**
 - Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang --> *Wahlpflichtfach B --> Affines Wahlpflichtfach Bautechnik*
 - *Hauptfach Bautechnik --> Technischer Ausbau --> Wahlcontainer*

- **M.Sc. Technikpädagogik, PO 2009, 6. Semester**
 - *Wahlpflichtfach Bautechnik --> Affines Wahlpflichtfach Bautechnik*
 - *Hauptfach Bautechnik --> Technischer Ausbau --> Wahlcontainer*

- **M.Sc. Technikpädagogik, PO 2015, 6. Semester**
 - *Wahlpflichtfach Bautechnik --> Affines Wahlpflichtfach Bautechnik*

- **M.Sc. Technikpädagogik, PO 2015, 6. Semester**
 - *Hauptfach Bautechnik --> Technischer Ausbau --> Wahlcontainer*

- **M.Sc. Technikpädagogik, PO 2015, 6. Semester**
 - *Wahlpflichtfach Bautechnik --> Affines Wahlpflichtfach Bautechnik*

11. Empfohlene Voraussetzungen:

- Werkstoffe I

12. Lernziele:

- Der/die Studierende kennt Schadensbilder, Schädigungsmechanismen und Schadensverläufe in Betontragwerken sowie Verfahren zur
13. Inhalt: Die Vorlesung ist unterteilt in:

- Denkmalerhaltung
- Schäden und Restaurierung von Naturstein
- Schäden und Instandsetzung von Holzkonstruktionen
- Hochbauten, Parkbauten, Brückenbauwerken, Tief- und Wasserbauwerken, Tunnel- und Sonderbauwerken

Es werden Arbeitsblätter verteilt, die von den Studierenden bearbeitet werden müssen.

14. Literatur:

- Folien.

15. Lehrveranstaltungen und -formen:

- 107201 Vorlesung Schutz, Instandsetzung und Ertüchtigung von Bauwerken
- 107202 Übung Schutz, Instandsetzung und Ertüchtigung von Bauwerken

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 56 h
Selbststudium: 124 h

17. Prüfungsnummer/n und -name:

10721 Schutz, Instandsetzung und Ertüchtigung von Bauwerken (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

-

20. Angeboten von:

Institut für Werkstoffe im Bauwesen
Modul: 34180 Statistik und Informatik

2. Modulkürzel: 021500302
5. Modulduauer: 1 Semester
3. Leistungspunkte: 6.0 LP
4. SWS: 6.0
7. Sprache: Deutsch
8. Modulverantwortlicher: Joachim Schwarte
9. Dozenten: • Joachim Schwarte
• Andras Bardossy
10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technikpädagogik
 → Vorgezogene Master-Module
 B.Sc. Technikpädagogik
 → Wahlpflichtfach -->Wahlpflichtfach Bautechnik -->Allgemeine
 Wahlfächer Bautechnik
 →
 M.Sc. Technikpädagogik
 → Wahlpflichtfach B -->Wahlpflichtfach Bautechnik -->Allgemeine
 Wahlfächer Bautechnik
 →
 M.Sc. Technikpädagogik
 → Wahlpflichtfach B -->Wahlpflichtfach Bautechnik -->Allgemeine
 Wahlfächer Bautechnik
 →
11. Empfohlene Voraussetzungen: keine
12. Lernziele:
 Statistik:
 Nach Abschluß der Veranstaltung Statistik werden von den Studierenden
die grundlegenden statistischen Werkzeuge und Methoden beherrscht.
Die Teilnehmer kennen die Möglichkeiten und Grenzen der eingesetzten
Werkzeuge und sind in der Lage, Methoden kritisch zu bewerten und
entsprechend den Anforderungen geeignet anzuwenden:
Die theoretischen Konzepte von Wahrscheinlichkeit, Zufallsvariable und
Stichprobenverteilung werden verstanden und können entsprechend
eingeordnet werden. Die Studierenden sind mit Methoden zur
Identifizierung nichtlinearer Prozesse und statistischer Artefakte vertraut.
Darüber hinaus beherrschen sie die grundlegenden Methoden der
Bewertung von Untersuchungsergebnissen, wie z.B. Signifikanztests.

 Informatik:
 Die Studierenden können algorithmische Lösungswege für einfache
Problemeinsätze selbstständig finden und unter Verwendung
einer modernen Programmiersprache umsetzen. Sie sind im
Stande die Komplexitätsordnung einer Problems bzw. eines
Lösungsverfahrens abzuschätzen und somit Aussagen über die
praktische Brauchbarkeit der jeweils betrachteten Methoden zu machen.
Mit Hilfe von Tabellenkalkulationsprogrammen können Sie typische
Aufgabenstellungen wie Massenermittlungen und Kostenberechnungen
durchführen. Unter Verwendung des Softwaresystems "Matlab" sind
die Studierenden im Stande kleinere Anwendungsprogramme und die
zugehörigen Benutzeroberflächen (GUIs) systematisch zu entwickeln
und zu implementieren. Sie sind mit den wesentlichen Risiken der
Informations- und Kommunikationstechnologie sowie mit der Anwendung
entsprechender Schutzmethoden vertraut.

13. Inhalt:
 Statistik:
• deskriptive Statistik
• Darstellung und Interpretation statistischer Daten
• lineare und nicht-lineare Regressionsrechnung
• Grundlagen der Wahrscheinlichkeitsrechnung, theoretische
• Verteilungsfunktionen
• Binomialverteilung, hypergeometrische Verteilung
• Poissonverteilung, Exponentialverteilung
• Normalverteilung und Log-Normalverteilung
• schließende Statistik, Konzept der Stichproben und unendlichen
• Grundgesamtheiten
• Konfidenzintervalle für die Momente von Verteilungen
• Hypothesentests
• Konfidenzintervalle und Hypothesentests in der bivariaten Statistik

Informatik:

• Algorithmen und Turing-Maschinen
• Datenstrukturen
• Computer
• Programmiersprachen
• Programmierprinzipien
• Programmentwicklung mit MatLab
• Tabellenkalkulation
• Sicherheit und Datenschutz

14. Literatur:

Statistik:

• Vorlesungsskript Statistik
• Unterlagen von Übungen und Hausübungen (Downloadbereich der IWS Homepage)

Informatik:

• Online-Skript innerhalb der Ilias-Umgebung
• Duden Informatik

15. Lehrveranstaltungen und -formen:

• 341801 Vorlesung Statistik
• 341802 Übung Statistik
• 341803 Vorlesung Einführung in die Informatik
• 341804 Übung Einführung in die Informatik

16. Abschätzung Arbeitsaufwand:

Statistik:

<table>
<thead>
<tr>
<th>Aktivität</th>
<th>Zeit (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzzeit</td>
<td>42</td>
</tr>
<tr>
<td>Selbststudium</td>
<td>48</td>
</tr>
<tr>
<td>Gesamt</td>
<td>90</td>
</tr>
</tbody>
</table>

Informatik:
Vorlesung: 28 h
Virtuell unterstütze Gruppenübungen: 14 h
Nachbereitung der Vorlesung: 14 h
Nachbereitung der Gruppenübungen: 14 h
Prüfungsvorbereitung in der vorlesungsfreien Zeit: 20 h
Gesamt: 90 h

17. Prüfungsnummer/n und -name:
- 34181 Statistik und Informatik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0
- V Vorleistung (USL-V), schriftlich, eventuell mündlich

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 10710 Werkstoffe im Bauwesen II

2. Modulkürzel: 021500102
5. Modulduer: 2 Semester
3. Leistungspunkte: 6.0 LP
6. Turnus: jedes 2. Semester, SoSe
4. SWS: 4.0
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Harald Garrecht
9. Dozenten: • Joachim Schwarte
 • Karim Hariri
 • Harald Garrecht
10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technikpädagogik, PO 2011, 2. Semester
 → Vorgezogene Master-Module
 B.Sc. Technikpädagogik, PO 2011, 2. Semester
 → Wahlpflichtfach → Wahlpflichtfach Bautechnik → Allgemeine Wahlfächer Bautechnik
 M.Sc. Technikpädagogik, PO 2009, 2. Semester
 → Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang → Wahlpflichtfach B → Affines Wahlpflichtfach Bautechnik
 M.Sc. Technikpädagogik, PO 2009, 2. Semester
 → Wahlpflichtfach B → Wahlpflichtfach Bautechnik → Allgemeine Wahlfächer Bautechnik
 M.Sc. Technikpädagogik, PO 2015, 2. Semester
 → Wahlpflichtfach B → Wahlpflichtfach Bautechnik → Allgemeine Wahlfächer Bautechnik

11. Empfohlene Voraussetzungen: Werkstoffe im Bauwesen I

12. Lernziele: Die Studierenden verfügen über vertiefte Kenntnisse, die über die im Fach "Werkstoffe im Bauwesen I" vermittelten Grundlagen hinausgehen, bzgl. der material- und milieugerechten Anwendung der Ingenieurbaustoffe. Sie können realen Deformations- und Schädigungsprozessen die jeweils zugehörigen verfügbaren theoretischen Modelle zuordnen und mit den entsprechenden Rechenverfahren Rückschlüsse auf die Prozesse gewinnen.

13. Inhalt: Inhalt der Vorlesung im Sommersemester:
 • Rheologie (mit Übungen)
 • Transportvorgänge (mit Übungen)
 • Bautenschutz (Grundlagen)
 • Instandsetzung (Grundlagen)

 Inhalt der Vorlesung im Wintersemester:
 • Betriebsfestigkeit (mit Übungen)
 • Bruchmechanik (mit Übungen)
 • Faserbeton; Faserverbundsysteme; Kunststoffe; Holz

14. Literatur: Online-Materialien im Ilias-System
15. Lehrveranstaltungen und -formen:
- 107101 Vorlesung Werkstoffe im Bauwesen II
- 107102 Übung Werkstoffe im Bauwesen II

16. Abschätzung Arbeitsaufwand:
| Präsentzeit: | 56 h |
| Selbststudium / Nacharbeitszeit: | 124 h |
| Gesamt: | 180 h |

17. Prüfungsnummer/n und -name:
10711 Werkstoffe im Bauwesen II (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Institut für Werkstoffe im Bauwesen
Modul: 11340 Zerstörungsfreie Prüfung im Bauwesen

2. Modulkürzel: 021500631
5. Modulduauer: 1 Semester

3. Leistungspunkte: 3.0 LP

4. SWS: 2.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Markus Krüger

9. Dozenten:
• Markus Krüger
• Frank Alexander Lehmann
• Sandra Dugan
• Jürgen Frick

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technikpädagogik, PO 2011, 5. Semester
→ Vorgezogene Master-Module
→ Wahlplflichtfach -->Wahlpflichtfach Bautechnik -->Allgemeine Wahlfächer Bautechnik

→ M.Sc. Technikpädagogik, PO 2009, 5. Semester
→ Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang -->Wahlpflichtfach B -->Affines Wahlpflichtfach Bautechnik

→ M.Sc. Technikpädagogik, PO 2015, 5. Semester
→ Wahlpflichtfach B -->Wahlpflichtfach Bautechnik -->Allgemeine Wahlfächer Bautechnik

11. Empfohlene Voraussetzungen: Keine.

12. Lernziele:

13. Inhalt:
Es werden sowohl die Grundlagen der zerstörungsfreien Prüfung als auch deren Praxisanwendung an zementgebundenen und metallischen Werkstoffen vermittelt. Schwerpunkte sind die Qualitätssicherung und Inspektion von Bauwerken und Bauteilen. Einzelne Inhalte sind:

• Einführung und Grundlagen: Schwingungen und Wellen, Messtechnik und Sensorik
• Sichtprüfung einschließlich Endoskopie
• Fehlersuche und Materialcharakterisierung mittels Ultraschall
• Infrathermographie
• Radar
• Bewehrungssuche mit inductiven und kapazitiven Messmethoden
• Messung der Bewehrungskorrosion (Potentialfeldmessung)
• Detektion von Spanndrahtbrüchen
• Schallemissionsanalyse
• Schwingungsanalyse
• Holzfeuchte- und Bohrwiderstandsmessungen
• Betongüteprüfung mittels Rückprallhammer
• Messung des Erstarrungs- und Erhärtungsverlaufs von Frischbeton
• Bauwerksmonitoring

14. Literatur:
 • Vorlesungsskript.

15. Lehrveranstaltungen und -formen: 113401 Vorlesung Zerstörungsfreie Prüfung im Bauwesen

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 28 h
 Selbststudium: 62 h

17. Prüfungsnummer/n und -name: 11341 Zerstörungsfreie Prüfung im Bauwesen (BSL), schriftlich oder mündlich, Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform: Powerpoint, Skript, Übungen an Geräten

20. Angeboten von: Institut für Werkstoffe im Bauwesen
Modul: 20630 Ökologische Bewertung; Nachhaltiges Bauen

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>021500134</th>
<th>5. Modulduer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Harald Garrecht

9. Dozenten: • Harald Garrecht • Joachim Schwarte

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>M.Sc. Technikpädagogik, PO 2009, 3. Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>→ Studienprofil B - ohne erziehungswissenschaftliche Studien</td>
</tr>
<tr>
<td>→ Wahlfach B - Rechnungswesen --> Affines</td>
</tr>
<tr>
<td>→ M.Sc. Technikpädagogik, PO 2009, 3. Semester</td>
</tr>
<tr>
<td>→ Wahlfach B - Rechnungswesen --> Allgemeine</td>
</tr>
<tr>
<td>→ M.Sc. Technikpädagogik, PO 2015, 3. Semester</td>
</tr>
<tr>
<td>→ Wahlfach B - Rechnungswesen --> Allgemeine</td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen: keine

13. Inhalt: Inhalt der Vorlesung:

- Verfügbarkeit von Rohstoffen
- Energieverbrauch und Emissionen beim Herstellen von Baustoffen
- Gefahrstoffe auf Baustellen
- Luftqualität in Innenräumen
- Gesundheitliche Bewertung von Bauprodukten
- Radioaktivität
- Einflüsse auf Boden und Grundwasser
- Sanieren von schadstoffbelasteten Gebäuden
- Verwerten und Beseitigen von Abbruchmaterial
- Bewertungsinstrumente
- Stoffströme, modules Bauen

14. Literatur: Skript

15. Lehrveranstaltungen und -formen: • 206301 Vorlesung Ökologische Bewertung
• 206302 Vorlesung Nachhaltiges Bauen

16. Abschätzung Arbeitsaufwand: Vorlesung, 4 SWS; 14 mal 4 = 56 h Nachbereitung der Vorlesung: 14 mal 4 = 56 h Prüfungsvorbereitung in der vorlesungsfreien Zeit: 78 h Summe = 180 h
17. Prüfungsnummer/n und -name: 20631 Ökologische Bewertung: Nachhaltiges Bauen (PL), schriftlich, eventuell mündlich, Gewichtung: 1.0, Prüfungsvoraussetzung: Abgabe einer unbenoteten Hausübung oder Kurzvortrag im Rahmen der Lehrveranstaltung

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
5210 a) Entwerfen und Konstruieren

Zugeordnete Module:
5211 a) Entwerfen u. Konstr. Pflicht
5212 a) Entwerfen und Konstruieren Wahl
5211 a) Entwerfen u. Konstr. Pflicht

Zugeordnete Module:

10780 Entwerfen und Konstruieren
10980 Einführung Entwurf mit Architekturstudenten
10990 Entwurf in Zusammenarbeit mit Architekturstudenten
Modul: 10980 Einführung Entwurf mit Architekturstudenten

2. Modulkürzel:	010600390
5. Modulduauer:	1 Semester
3. Leistungspunkte:	6.0 LP
6. Turnus:	jedes Semester
4. SWS:	2.0
7. Sprache:	Deutsch
8. Modulverantwortlicher:	Univ.-Prof. Jose Luis Moro

10. Zuordnung zum Curriculum in diesem Studiengang:

- M.Sc. Technikpädagogik, PO 2009, 2. Semester
 - Affines Wahlpflichtfach Bautechnik --> Vertiefungsrichtung a) Entwerfen und Konstruieren --> Entwerfen und Konstruieren Pflichtfacher
 - M.Sc. Technikpädagogik, PO 2009, 2. Semester
 - Hauptfach Bautechnik --> Entwerfen und Konstruieren --> Pflichtcontainer
 - M.Sc. Technikpädagogik, PO 2009, 2. Semester
 - M.Sc. Technikpädagogik, PO 2009, 2. Semester
 - hochaffines Wahlpflichtfach Bautechnik --> WPF Entwerfen und Konstruieren --> Pflichtcontainer
 - M.Sc. Technikpädagogik, PO 2015, 2. Semester
 - Hauptfach Bautechnik --> Entwerfen und Konstruieren --> Pflichtcontainer
 - M.Sc. Technikpädagogik, PO 2015, 2. Semester
 - M.Sc. Technikpädagogik, PO 2015, 2. Semester
 - hochaffines Wahlpflichtfach Bautechnik --> WPF Entwerfen und Konstruieren --> Pflichtcontainer

11. Empfohlene Voraussetzungen:
Grundlegende Kenntnisse in Tragwerkslehre, Technischem Zeichnen - CAD, Planung und Gebäudeentwurf, Konstruktion, Gebäudetechnik inkl. erfolgreicher Abschluss Modul Grundlagen der Darstellung und Konstruktion

12. Lernziele:
Die Studierenden sind befähigt, eine spezifische Thematik aufzuarbeiten, welche die Grundlage für die weitere Arbeit im Rahmen des Entwurfs mit Architekturstudenten darstellt. Die Studierenden erwerben dadurch die Fähigkeit, entwurfbezogene Themenbereiche durch Analyse, Informationssammlung, -aufarbeitung und -vermittlung derart für die eigene Arbeit und für diejenige anderer Beteiligter zu erschließen, dass eine fundierte Entwurfsarbeit in Angriff genommen werden kann.

13. Inhalt:
Der Schwerpunkt des Studienfachs liegt in der Entwicklung und Durcharbeitung eines Entwurfs in ganzheitlicher Betrachtung unter Berücksichtigung nicht nur konstruktiver, sondern auch funktionaler und formalästhetischer Gesichtspunkte. Zu den Inhalten zählt nicht
nur die Analyse und Umsetzung der relevanten Entwurfsfaktoren beim Konzipieren eines Gebäudes, sondern darüber hinaus das Verdeutlichen der Wechselbeziehungen und gegenseitigen Abhängigkeiten zwischen ihnen. Das Fach soll als praxisorientierte Form der Lehre die Denk-, Arbeits- und Vorgehensweisen von Planern vermitteln und die Komplexität des Bauens durch die Arbeit an einem praktischen Entwurf mit komplexen Randbedingungen verdeutlichen.

Das Fach wird in fakultätsübergreifender Form für Architektur-, Bauingenieur- und Technikpädagogikstudenten gelehrt.

14. Literatur:
 • Vorlesungsskripte
 • Übungsskripte
 • Literaturliste

15. Lehrveranstaltungen und -formen:
 109801 Vorlesung Einführung Entwurf in Zusammenarbeit mit Architekturstudenten

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 21 h
 Selbststudium / Nacharbeitszeit: 69 h
 Gesamt: 90 h

17. Prüfungsnummer/n und -name:
 • V Vorleistung (USL-V), schriftlich, eventuell mündlich

18. Grundlage für ... :
 10990 Entwurf in Zusammenarbeit mit Architekturstudenten

19. Medienform:
 Analog und/oder digital, Modell

20. Angeboten von:
 Architektur und Stadtplanung
Modul: 10780 Entwerfen und Konstruieren

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>010600420</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Jose Luis Moro</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- **M.Sc. Technikpädagogik, PO 2009, 3. Semester**
 - Affines Wahlpflichtfach Bautechnik --> Vertiefungsrichtung a) Entwerfen und Konstruieren --> Entwerfen und Konstruieren Pflichtfächer
 - Affines Wahlpflichtfach Bautechnik --> Vertiefungsrichtung b) Technischer Ausbau ("Derzeit noch nicht im Angebot") --> Technischer Ausbau Wahlfächer
 - Hauptfach Bautechnik --> Entwerfen und Konstruieren --> Pflichtcontainer
 - Hauptfach Bautechnik --> Technischer Ausbau --> Pflichtcontainer
 - Wahlpflichtfach Bautechnik --> b) Techn. Ausbau --> b) Techn. Ausbau Pflicht
 - hochaffines Wahlpflichtfach Bautechnik --> WPF Entwerfen und Konstruieren --> Pflichtcontainer
 - hochaffines Wahlpflichtfach Bautechnik --> WPF Technischer Ausbau --> Pflichtcontainer
 - M.Sc. Technikpädagogik, PO 2015, 3. Semester
 - Hauptfach Bautechnik --> Entwerfen und Konstruieren --> Pflichtcontainer
 - M.Sc. Technikpädagogik, PO 2015, 3. Semester
 - Hauptfach Bautechnik --> Technischer Ausbau --> Pflichtcontainer
 - M.Sc. Technikpädagogik, PO 2015, 3. Semester
 - M.Sc. Technikpädagogik, PO 2015, 3. Semester

Stand: 07. Oktober 2015
11. Empfohlene Voraussetzungen: Grundlegende Kenntnisse in Tragwerkserlehre, Technischem Zeichnen, Konstruktion, Planung und Gebäudeentwurf

Zu den Inhalten zählt nicht nur die Analyse der relevanten Entwurfsfaktoren beim Konzipieren eines Gebäudes, sondern darüber hinaus das Verdeutlichen der Wechselbeziehungen und gegenseitigen Abhängigkeiten zwischen ihnen. Zum Seminarprogramm gehören Gebäudeanalysen, Stegreifübungen, Vorträge und Bauwerksbesichtigungen.

Das Fach wird in fakultätsübergreifender Form für Architektur-, Bauingenieur- und Technikpädagogikstudenten gelehrt

14. Literatur: • Vorlesungsskripte • Übungsskripte • Literaturliste

15. Lehrveranstaltungen und -formen: • 107801 Vorlesung Entwerfen und Konstruieren • 107802 Übung Entwerfen und Konstruieren

17. Prüfungsnummer/n und -name: • 10781 Entwerfen und Konstruieren (PL), schriftlich, eventuell mündlich, Gewichtung: 1,0, 2 Entwurfssübung (Pläne und Modell) und eine schriftliche Ausarbeitung incl. Vortrag 2 Übungen, 0,40, lehrveranstaltungsbegleitende Prüfung, je 15 min Vortrag, 0,20, lehrveranstaltungsbegleitende Prüfung, 20 min Entwerfen und Konstruieren, 0,40, schriftlich, 75 min Vorleistung (USL-V), schriftlich, eventuell mündlich • V

18. Grundlage für ... : 10990 Entwurf in Zusammenarbeit mit Architekturstudenten

19. Medienform: Vortrag mit digitaler Präsentation, Videos, Podcast

20. Angeboten von: Architektur und Stadtplanung
Modul: 10990 Entwurf in Zusammenarbeit mit Architekturstudenten

2. Modulkürzel: 010600391
5. Modulldauer: 1 Semester
3. Leistungspunkte: 6.0 LP
6. Turnus: jedes Semester
4. SWS: 2.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Jose Luis Moro
9. Dozenten: Matthias Rottner

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technikpädagogik, PO 2011, 4. Semester
→ Hauptfach -->Hauptfach Bautechnik -->Wahlbereich 2 Bautechnik

B.Sc. Technikpädagogik, PO 2011, 4. Semester
→ Vorgezogene Master-Module

B.Sc. Technikpädagogik, PO 2011, 4. Semester
→ Wahlpflichtfach -->Wahlpflichtfach Bautechnik -->Allgemeine
Wahlfächer Bautechnik

M.Sc. Technikpädagogik, PO 2009, 2. Semester
→ Affines Wahlpflichtfach Bautechnik -->Vertiefungsrichtung a)
Entwerfen und Konstruieren -->Entwerfen und Konstruieren
Pflichtfächer

M.Sc. Technikpädagogik, PO 2009, 2. Semester
→ Hauptfach Bautechnik -->Entwerfen und Konstruieren -->
Pflichtcontainer

M.Sc. Technikpädagogik, PO 2009, 2. Semester
→ Wahlpflichtfach Bautechnik -->a) Entwerfen und Konstruieren -->a)
Entwerfen u. Konstr. Pflicht

M.Sc. Technikpädagogik, PO 2009, 2. Semester
→ hochaffines Wahlpflichtfach Bautechnik -->WPF Entwerfen und
Konstruieren -->Pflichtcontainer

M.Sc. Technikpädagogik, PO 2015, 2. Semester
→ Hauptfach Bautechnik -->Entwerfen und Konstruieren -->
Pflichtcontainer

M.Sc. Technikpädagogik, PO 2015, 2. Semester
→ Wahlpflichtfach Bautechnik -->a) Entwerfen und Konstruieren -->a)
Entwerfen u. Konstr. Pflicht

M.Sc. Technikpädagogik, PO 2015, 2. Semester
→ hochaffines Wahlpflichtfach Bautechnik -->WPF Entwerfen und
Konstruieren -->Pflichtcontainer

erfolgreicher Abschluss Modul Grundlagen der Darstellung und
Konstruktion

12. Lernziele: Das bereits erworbene Grundlagenwissen im Gebäudeentwurf ist im
Rahmen der Lehrveranstaltung weiter vertieft worden. Die Studierenden
haben weiter reichende Fähigkeiten in der Konzeptfindung, entwurflichen

Das Fach soll als praxisorientierte Form der Lehre die Denk-, Arbeits- und Vorgehensweisen von Planern vermitteln und die Komplexität des Bauens durch die Arbeit an einem praktischen Entwurf mit komplexen Randbedingungen verdeutlichen.

14. Literatur:
- Vorlesungsskripte
- Übungsskripte
- Literaturliste

15. Lehrveranstaltungen und -formen: 109901 Vorlesung Entwurf in Zusammenarbeit mit Architekturstudenten

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 21 h
Selbststudium / Nacharbeitszeit: 159 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
- V Vorleistung (USL-V), schriftlich, eventuell mündlich

18. Grundlage für ...

19. Medienform: Analog und/oder digital, Zeichnungen, Modell, Vortrag

20. Angeboten von: Architektur und Stadtplanung
5212 a) Entwerfen und Konstruieren Wahl

Zugeordnete Module:

15850 Akustik
20660 Konstruktion und Form
20700 Raumklima und Brandschutz
23070 Sondergebiete des Entwerfens und Konstruierens 1
23080 Sondergebiete des Entwerfens und Konstruierens 2
34470 Wärmeschutz
34490 Feuchteschutz
34740 Ergänzungsmodul Konstruktion und Form
Modul: 15850 Akustik

2. Modulkürzel: 020800021
5. Moduldauer: 1 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Hon.-Prof. Schew-Ram Mehra

9. Dozenten: Schew-Ram Mehra

10. Zuordnung zum Curriculum in diesem Studiengang:

M.Sc. Technikpädagogik, PO 2009, 1. Semester
→ Affines Wahlpflichtfach Bautechnik -->Vertiefungsrichtung a) Entwerfen und Konstruieren -->Entwerfen und Konstruieren Wahlfächer

M.Sc. Technikpädagogik, PO 2009, 1. Semester
→ Affines Wahlpflichtfach Bautechnik -->Vertiefungsrichtung b) Technischer Ausbau ("Derzeit noch nicht im Angebot") -- >Technischer Ausbau Wahlfächer

M.Sc. Technikpädagogik, PO 2009, 1. Semester
→ Hauptfach Bautechnik --Entwerfen und Konstruieren -- >Wahlcontainer

M.Sc. Technikpädagogik, PO 2009, 1. Semester
→ Wahlpflichtfach Bautechnik -->a) Entwerfen und Konstruieren -->a) Entwerfen und Konstruieren Wahl

M.Sc. Technikpädagogik, PO 2009, 1. Semester
→ hochaffines Wahlpflichtfach Bautechnik -->WPF Entwerfen und Konstruieren -->Wahlcontainer

M.Sc. Technikpädagogik, PO 2015, 1. Semester
→ Hauptfach Bautechnik -->Entwerfen und Konstruieren -- >Wahlcontainer

M.Sc. Technikpädagogik, PO 2015, 1. Semester
→ Wahlpflichtfach Bautechnik -->a) Entwerfen und Konstruieren -->a) Entwerfen und Konstruieren Wahl

M.Sc. Technikpädagogik, PO 2015, 1. Semester
→ hochaffines Wahlpflichtfach Bautechnik -->WPF Entwerfen und Konstruieren -- >Wahlcontainer

11. Empfohlene Voraussetzungen: keine

12. Lernziele:

Studierende

• beherrschen vertiefte Grundlagen der Bau- und Raumakustik.
• beherrschen die theoretischen Hintergründe und Zusammenhänge bau- und raumakustischer Phänomene.
• haben ein vertieftes Verständnis für bau- und raumakustische Phänomene und deren Wechselwirkungen.
• können bau- und raumakustische Fragen bei Entwürfen und Planungen anhand des erlernten Wissens erkennen, analysieren, bewerten und nach dem Stand der Technik lösen.
Studierende

- beherrschen vertiefte Grundlagen der Schallausbreitung und der Bewertungsmethoden des Lärms.
- können das akustische Verhalten unterschiedlicher Lärmmquellen analysieren und bewerten.
- verstehen die Wirkungsweise von Lärmschutzmaßnahmen.
- können innovative, wirksame und wirtschaftliche Maßnahmen gegen den von verschiedenen Lärmmquellen, wie Straße, Industrie, Bau, Freizeit ausgehenden Lärm entwickeln und umsetzen.

13. Inhalt:

Inhalt Lehrveranstaltung Bau- und Raumakustik:

- Akustische Grundlagen
- Schallübertragung in Gebäuden
- Mechanismen der Luft- und Trittschalldämmung
- Wege der Flankenübertragung,
- Körperschalldämmung und Körperschalldämpfung
- Anforderungen an den konstruktiven Schallschutz (Normen, Richtlinien, Vorschriften)
- Abstrahlverhalten von Bauteilen
- Statistische Energieanalyse
- Installationsgeräusche
- Gestaltung von Bauteilen
- Mess- und Beurteilungsmethoden
- Fehler in der Planung und Ausführung
- Raumakustische Phänomene
- Mechanismen der Schallabsorption
- Raumakustische Gestaltung

Inhalt Lehrveranstaltung Lärm und Lärmbekämpfung:

- Grundlagen (Größen, Begriffe und Definitionen)
- Anatomie des Ohres
- Frequenzbewertung von Geräuschen
- Physische, psychische und soziale Lärmwirkungen
- Art und Verhalten von Lärmmquellen
- Grenz- und Richtwerte
- Schallabschirmung durch natürliche und künstliche Hindernisse
- Aktive und passive Lärmschutzmaßnahmen
- Relevante Berechnungs- und Messmethoden sowie deren Auswertung
- Lärmmkosten
- Lärmschutzrecht

14. Literatur:

Skript: Bau- und Raumakustik,
Skript: Lärm und Lärmbekämpfung,
Sonic-Lab, Virtuelles Praktikum Bauakustik

Bau- und Raumakustik:
Fasold, W. (Hrsg.): Taschenbuch Akustik. Teil 2: Bauakustik,

Lärm und Lärmbekämpfung:

Lärm und Lärmbekämpfung:

15. Lehrveranstaltungen und -formen:

158501 Vorlesung Bau- und Raumakustik
158502 Vorlesung Lärm und Lärmbekämpfung

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: ca. 42 h
Selbststudium: ca. 138 h

17. Prüfungsnummer/n und -name:

15851 Akustik (PL), mündliche Prüfung, 45 Min., Gewichtung: 1.0

18. Grundlage für ...:

19. Medienform:

Powerpointpräsentation

20. Angeboten von:

Lehrstuhl für Bauphysik
Modul: 34740 Ergänzungsmodul Konstruktion und Form

2. Modulkürzel: 010600460 5. Modulsdauer: 1 Semester
4. SWS: 2.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Jose Luis Moro

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Technikpädagogik
→ Hauptfach Bautechnik -->Entwerfen und Konstruieren --> Wahlcontainer
 → M.Sc. Technikpädagogik
 → Wahlpflichtfach Bautechnik -->a) Entwerfen und Konstruieren -->a) Entwerfen und Konstruieren Wahl
 → M.Sc. Technikpädagogik
 → hochaffines Wahlpflichtfach Bautechnik -->WPF Entwerfen und Konstruieren -->Wahlcontainer
 → M.Sc. Technikpädagogik
 → Hauptfach Bautechnik -->Entwerfen und Konstruieren --> Wahlcontainer
 → M.Sc. Technikpädagogik
 → Wahlpflichtfach Bautechnik -->a) Entwerfen und Konstruieren -->a) Entwerfen und Konstruieren Wahl
 → M.Sc. Technikpädagogik
 → hochaffines Wahlpflichtfach Bautechnik -->WPF Entwerfen und Konstruieren -->Wahlcontainer

11. Empfohlene Voraussetzungen: Keine, Lehre in Verbindung mit Konstruktion und Form

14. Literatur: Vorlesungsskripte/ Übungsskripte/ Literaturliste

15. Lehrveranstaltungen und -formen: 347401 Vorlesung und Übung Ergänzungsmodul Konstruktion und Form
16. Abschätzung Arbeitsaufwand: | Präsenzzeit: ca. 21 h
Selbststudium: ca. 69 h

17. Prüfungsnummer/n und -name: | 34741
Ergänzungsmodul Konstruktion und Form (BSL), schriftlich,
eventuell mündlich, Gewichtung: 1.0

18. Grundlage für ... : | • 20660 Konstruktion und Form
• 34710 Entwurf für Studierende des Bauingenieurwesens

19. Medienform: | Vortrag mit digitaler Präsentation, Videos, Podcast

20. Angeboten von:
Modul: 34490 Feuchteschutz

2. Modulkürzel: 020800022 5. Modulsdauer: 1 Semester
4. SWS: 5.0 7. Sprache: Deutsch
8. Modulverantwortlicher: Hon.-Prof. Schew-Ram Mehra
9. Dozenten: • Martin Krus • Nadine Harder

10. Zuordnung zum Curriculum in diesem Studiengang:

M.Sc. Technikpädagogik
➔ Hauptfach Bautechnik -->Entwerfen und Konstruieren -->Wahlcontainer

M.Sc. Technikpädagogik
➔ Wahlpflichtfach Bautechnik -->a) Entwerfen und Konstruieren -->a) Entwerfen und Konstruieren Wahl

M.Sc. Technikpädagogik
➔ hochaffines Wahlpflichtfach Bautechnik -->WPF Entwerfen und Konstruieren -->Wahlcontainer

M.Sc. Technikpädagogik
➔ Hauptfach Bautechnik -->Entwerfen und Konstruieren -->Wahlcontainer

M.Sc. Technikpädagogik
➔ Wahlpflichtfach Bautechnik -->a) Entwerfen und Konstruieren -->a) Entwerfen und Konstruieren Wahl

M.Sc. Technikpädagogik
➔ hochaffines Wahlpflichtfach Bautechnik -->WPF Entwerfen und Konstruieren -->Wahlcontainer

11. Empfohlene Voraussetzungen: keine

12. Lernziele: Baulicher Feuchteschutz

Studierende
• beherrschen die Grundlagen der Hygrothermik und des Feuchteschutzes.
• können anhand des erlernten Wissens, Planungen und Entwürfe bauphysikalisch richtig umsetzen.
• kennen die bauphysikalischen Zusammenhänge zwischen der Konstruktion und der Feuchteentwicklung.
• beherrschen die konstruktiven Regeln zur Vermeidung von Feuchteschäden.
• beherrschen die Verfahren und konstruktiven Methoden, um Feuchteschäden zu beheben.
• können die Problematik unerwünschter Feuchte und Schimmelpilzbildung erkennen und geeignete Maßnahmen treffen.
• beherrschen die Grundlagen der Entstehung und Ausbreitung von Mikroorganismen.
können Strategien entwickeln, um einen vorhandenen Befall zu minimieren oder zu beseitigen.
beachten bei der Planung den Einfluss der Bauweise und Ausrichtung.

Hygrothermische Bauteilmodellierung

Studierende
können instationäre hygrothermische Phänomene verstehen, diese modellieren, in das Rechenverfahren WUFI eingeben und die Ergebnisse richtig analysieren.

13. Inhalt:

Inhalt Lehrveranstaltung Baulicher Feuchteschutz:
- Grundbegriffe und Definitionen des Feuchteschutzes
- Luftfeuchte, Stofffeuchte
- Bilanz Raumluftfeuchte
- Feuchteproduktion und Feuchteabfuhr
- Lüftung und Lüftungssysteme
- Bestimmungsverfahren der Kenngrößen
- Transportphänomene und Tauwasserbildung
- konstruktive Anforderungen
- Mechanismen der Feuchteübertragung
- Feuchteübergang
- Randbedingungen
- numerische Berechnungsverfahren
- Tauwasserbildung an Bauteiloberflächen
- Tauwasserbildung im Inneren von Bauteilen
- Vereinfachte Klimaranbedingungen gem. DIN 4108-3
- Vergleich Diffusion und Konvektion
- Einführung Schimmelpilzbildung und -vermeidung
- Anwendungsbeispiele
- Tauwasserbildung infolge nicht ausreichender oder mangelhafter Belüftung
- (Schlag-)Regenschutz
- Fugen
- Luftdichtheit, Winddichtigkeit
- Planung und Ausführung von Dächern
- Fachwerksanierung
- Berechnungen zum Einfluss der Dampfbremse
- feuchteadaptive Dampfbremse
- Mikroorganismen auf Bauteiloberflächen
- Charakteristik der Algen und Schimmelpilze
- Wachstums- und Voraussetzungen von Schimmelpilzen
- Gesundheitsgefährdung durch Schimmelpilze
- Bauphysikalische Ursachen für Schimmelpilze in Wohnräumen
- Vorhersagensmodelle
- Mikroorganismen auf Fassaden
- Taupunktunterschreitungen an Fassaden
- Einfluss der Bauweise und Ausrichtung
- Neuartige Ansätze

Inhalt Lehrveranstaltung hygrothermische Bauteilmodellierung:
- Hygrothermische Transport- und Übergangsphänomene
- Grundzüge der hygrothermischen Modellierung
• Definition sinnvoller Klimarandbedingungen
• Diskretisierung der Bauteilaufbauten und der entsprechenden Rechenzeit-schrittweiten
• Ergebnisdarstellung instationärer mehrdimensionaler Transportphänomene
• Evaluierung der Rechenergebnisse und deren Analyse bzw. Beurteilung

14. Literatur:

Skript: Baulicher Feuchteschutz
Skript: Hygrothermische Bauteilmodellierung

Allgemein:

Baulicher Feuchteschutz:

Hygrothermsiche Bauteilmodellierung:
Rucker-Gramm, P.: Modellierung des Feuchte-und Salztransports unter Berücksichtigung der Selbstabdichtung in zementgebundenen Baustoffen

15. Lehrveranstaltungen und -formen:
• 344901 Vorlesung Baulicher Feuchteschutz
• 344902 Vorlesung Hygrothermische Bauteilmodellierung

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: ca. 70 h
Selbststudium/Nacharbeitszeit: 110 h

Gesamt: 180 h

17. Prüfungsnummer/n und -name:
34491 Feuchteschutz (PL), mündliche Prüfung, 40 Min., Gewichtung: 1.0

18. Grundlage für … :

19. Medienform:
Powerpointpräsentation und Computerberechnungen

20. Angeboten von:
Lehrstuhl für Bauphysik
Modul: 20660 Konstruktion und Form

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>010600461</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>0.0</td>
<td>7. Sprache:</td>
<td>-</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Jose Luis Moro</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>M.Sc. Technikpädagogik, PO 2009, 2. Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Affines Wahlpflichtfach Bautechnik --> Verließungsrichtung a) Entwerfen und Konstruieren --> Entwerfen und Konstruieren Wahlfach</td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik, PO 2009, 2. Semester</td>
</tr>
<tr>
<td>Hauptfach Bautechnik --> Entwerfen und Konstruieren --> Wahlcontainer</td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik, PO 2009, 2. Semester</td>
</tr>
<tr>
<td>Wahlpflichtfach Bautechnik --> a) Entwerfen und Konstruieren --> Entwerfen und Konstruieren Wahl</td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik, PO 2009, 2. Semester</td>
</tr>
<tr>
<td>hochaffines Wahlpflichtfach Bautechnik --> WPF Entwerfen und Konstruieren --> Wahlcontainer</td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik, PO 2015, 2. Semester</td>
</tr>
<tr>
<td>Hauptfach Bautechnik --> Entwerfen und Konstruieren --> Wahlcontainer</td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik, PO 2015, 2. Semester</td>
</tr>
<tr>
<td>Wahlpflichtfach Bautechnik --> a) Entwerfen und Konstruieren --> Entwerfen und Konstruieren Wahl</td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik, PO 2015, 2. Semester</td>
</tr>
<tr>
<td>hochaffines Wahlpflichtfach Bautechnik --> WPF Entwerfen und Konstruieren --> Wahlcontainer</td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen: Keine V., Lehre in Verbindung mit Erg.-modul-Konstr. und Form

12. Lernziele:

13. Inhalt:

Hierzu finden theoretische Untersuchungen statt, weiterhin werden ausgeführte Bauwerke analysiert und im Schwerpunkt eigenständige Entwurfsübungen angefertigt. Das spätere fachübergreifende Arbeiten im Team soll darüber hinaus geübt und das Verständnis für die
Argumentations- und Entscheidungskriterien der beteiligten Fachbereiche gefördert werden.

<table>
<thead>
<tr>
<th>14. Literatur:</th>
<th>Vorlesungsskripte/ Übungsskripte/ Literaturliste</th>
</tr>
</thead>
</table>
| 15. Lehrveranstaltungen und -formen: | • 206601 Vorlesung Konstruktion und Form
• 206602 Übung Konstruktion und Form |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: ca. 70 h
Selbststudium: ca. 110 h
Gesamt: 180h |
| 17. Prüfungsnummer/n und -name: | • 20661 Konstruktion und Form (PL), schriftlich, eventuell mündlich, 90 Min., Gewichtung: 1.0
• V Vorleistung (USL-V), schriftlich, eventuell mündlich |
| 18. Grundlage für ... : | Vortrag mit digitaler Präsentation, Videos, Podcast,
Entwurfsübungen incl. zeichnerischer Ausarbeitung und Modell |
| 20. Angeboten von: | |
Modul: 20700 Raumklima und Brandschutz

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>020800032</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Hon.-Prof. Schew-Ram Mehra</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>• Marcus Hermes</td>
<td>• Thomas Kolb</td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Affines Wahlpflichtfach Bautechnik --> Vertiefungsrichtung a) Entwerfen und Konstruieren --> Entwerfen und Konstruieren Wahlflächer</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ M.Sc. Technikpädagogik, PO 2009, 3. Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Hauptfach Bautechnik --> Entwerfen und Konstruieren --> Wahlcontainer</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ M.Sc. Technikpädagogik, PO 2009, 3. Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Wahlpflichtfach Bautechnik --> a) Entwerfen und Konstruieren --> Entwerfen und Konstruieren Wahl</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ M.Sc. Technikpädagogik, PO 2009, 3. Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ hochaffines Wahlpflichtfach Bautechnik --> WPF Entwerfen und Konstruieren --> Wahlcontainer</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ M.Sc. Technikpädagogik, PO 2015, 3. Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Hauptfach Bautechnik --> Entwerfen und Konstruieren --> Wahlcontainer</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ M.Sc. Technikpädagogik, PO 2015, 3. Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Wahlpflichtfach Bautechnik --> a) Entwerfen und Konstruieren --> Entwerfen und Konstruieren Wahl</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ M.Sc. Technikpädagogik, PO 2015, 3. Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ hochaffines Wahlpflichtfach Bautechnik --> WPF Entwerfen und Konstruieren --> Wahlcontainer</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| 11. Empfohlene Voraussetzungen: | keine |
| 12. Lernziele: | Raumklima |

Studierende

- verstehen den Menschen als Mittelpunkt aller raumklimatischen Maßnahmen und können raumklimatisch behaglich entwerfen bzw. Behaglichkeit in Räumen herstellen.
- beherrschen die Wechselwirkungen des Menschen mit dem Klima und umgekehrt insbesondere für den praktischen Einsatz.
- haben ein vertieftes Verständnis bzgl. der Beurteilung der Innenluftqualität.
Baulicher Brandschutz

Studierende

- kennen brandschutztechnische Grundlagen
- können brandschutzgerecht planen und entwerfen
- beherrschen die grundlegenden Anforderungen nach den nationalen und teilweise europäischen Rechtsgrundlagen und Normen.

13. Inhalt:

Inhalt Lehrveranstaltung Raumklima:

- Raumklima, Einführung und physiologische Grundlagen
- Thermische Behaglichkeit, Grundlagen und Behaglichkeitsdiagramme
- Wärmeverlustgleichung, konvektiver und strahlungsbedingter Anteil, Zugluft
- Klimasummengrößen, Äquivalent- und Operativtemperatur
- Fanger, Klimabewertungsskala, PMV und PPD
- Thermische Behaglichkeitsmodelle, Alternativen zum Fanger-Modell
- Innenluftqualität, Einführung, Zusammensetzung Atmosphäre, CO₂, Staub
- Flüchtige organische Verbindungen (VOC) und Radon
- Gerüche, Weber-Fechner-Gesetz
- Düfte, Zusammensetzung, Einsatzbereiche, Gefährdungspotential
- Fanger, Komfortgleichung zur Luftqualität, Einheiten Olf und Dezipol
- Natürliche Lüftung von Räumen

Inhalt Lehrveranstaltung Baulicher Brandschutz:

- Verbrennungsvorgänge
- chemisch-physikalische Vorgänge
- Brandentstehung, Brandausbreitung und Brandauswirkungen
- Baustoff und Bauteilklassifizierung
- Baurecht
- Schutzziele des Brandschutzes
- Brandschutztechnische Auslegung von Hoch- und Industriebauten
- Vorbeugender Brandschutz
- bauliche, anlagentechnische und organisatorische Brandschutzmaßnahmen
- Gestaltung von Rettungswegen
- Dimensionierung von Rauch- und Wärmeabzuganlagen
- Maßnahmen zur Löschwasserrückhaltung
- Berechnung des Ablaufes von Bränden
- Grundlagen der Wärmeverlustgleichung unter Verwendung von CFD-Modellen
- Grundlagen der Evakuierungsberechnung

14. Literatur:

Skript : Raumklima
Skript : Baulicher Brandschutz

Baulicher Brandschutz:

15. Lehrveranstaltungen und -formen:
• 207001 Vorlesung Raumklima und Innenluftqualität
• 207003 Vorlesung Baulicher Brandschutz

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 56 h
Selbststudium / Nacharbeit: 124 h

Gesamt: 180 h

17. Prüfungsnummer/n und -name:
• 20701 Raumklima (PL), mündliche Prüfung, 20 Min., Gewichtung: 1.0
• 20703 Baulicher Brandschutz (PL), mündliche Prüfung, 20 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:
Tafelanschrieb, Powerpointpräsentation

20. Angeboten von:
Lehrstuhl für Bauphysik
Modul: 23070 Sondergebiete des Entwerfens und Konstruierens 1

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>010600392</th>
<th>5. Modulduauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
<td>6. Turnus:</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
<td>7. Sprache:</td>
<td>-</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Jose Luis Moro</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>M.Sc. Technikpädagogik, PO 2009, 2. Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>➔ Affines Wahlpflichtfach Bautechnik --> Vertiefungsrichtung a) Entwerfen und Konstruieren --> Entwerfen und Konstruieren Wahlfächter</td>
</tr>
<tr>
<td>➔ M.Sc. Technikpädagogik, PO 2009, 2. Semester</td>
</tr>
<tr>
<td>➔ Hauptfach Bautechnik --> Entwerfen und Konstruieren --> Wahlcontainer</td>
</tr>
<tr>
<td>➔ M.Sc. Technikpädagogik, PO 2009, 2. Semester</td>
</tr>
<tr>
<td>➔ Wahlpflichtfach Bautechnik --> a) Entwerfen und Konstruieren --> a) Entwerfen und Konstruieren Wahl</td>
</tr>
<tr>
<td>➔ M.Sc. Technikpädagogik, PO 2009, 2. Semester</td>
</tr>
<tr>
<td>➔ hochaffines Wahlpflichtfach Bautechnik --> WPF Entwerfen und Konstruieren --> Wahlcontainer</td>
</tr>
<tr>
<td>➔ M.Sc. Technikpädagogik, PO 2015, 2. Semester</td>
</tr>
<tr>
<td>➔ Hauptfach Bautechnik --> Entwerfen und Konstruieren --> Wahlcontainer</td>
</tr>
<tr>
<td>➔ M.Sc. Technikpädagogik, PO 2015, 2. Semester</td>
</tr>
<tr>
<td>➔ Wahlpflichtfach Bautechnik --> a) Entwerfen und Konstruieren --> a) Entwerfen und Konstruieren Wahl</td>
</tr>
<tr>
<td>➔ M.Sc. Technikpädagogik, PO 2015, 2. Semester</td>
</tr>
<tr>
<td>➔ hochaffines Wahlpflichtfach Bautechnik --> WPF Entwerfen und Konstruieren --> Wahlcontainer</td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen:

Abschluss bauphysikal. und konstr. Grundlagen

12. Lernziele:

13. Inhalt:

Ergänzende und vertiefende Bearbeitung eines konstruktiven Sonderthemas. Die Bearbeitung erfolgt als betreute Hausarbeit oder Seminar in Absprache mit dem Institut.
14. Literatur:
- Institut für Entwerfen und Konstruieren: Vorlesungsskript Planung und Konstruktion im Hochbau

15. Lehrveranstaltungen und -formen: 230701 Seminar Sondergebiete des Entwerfens und Konstruierens 1

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 21 h
Selbststudium: 69 h
Gesamt: 90 h

17. Prüfungsnummer/n und -name: 23071 Sondergebiete des Entwerfens und Konstruierens 1 (LBP), schriftlich, eventuell mündlich, Gewichtung: 1.0

18. Grundlage für ...

19. Medienform: Reader, Zeichnung, Animation, Modell

20. Angeboten von:
Modul: 23080 Sondergebiete des Entwerfens und Konstruierens 2

2. Modulkürzel: 010600393
5. Moduldauer: 1 Semester

3. Leistungspunkte: 3.0 LP
6. Turnus: jedes Semester

4. SWS: 2.0
7. Sprache: -

8. Modulverantwortlicher: Univ.-Prof. Jose Luis Moro

10. Zuordnung zum Curriculum in diesem Studiengang:
- M.Sc. Technikpädagogik, PO 2009, 2. Semester
 → Affines Wahlpflichtfach Bautechnik -->Vertiefungsrichtung a) Entwerfen und Konstruieren -->Entwerfen und Konstruieren Wahlfächer
 → M.Sc. Technikpädagogik, PO 2009, 2. Semester
 → Hauptfach Bautechnik -->Entwerfen und Konstruieren -->Wahlcontainer
 → M.Sc. Technikpädagogik, PO 2009, 2. Semester
 → Wahlpflichtfach Bautechnik -->a) Entwerfen und Konstruieren -->a) Entwerfen und Konstruieren Wahl
 → M.Sc. Technikpädagogik, PO 2009, 2. Semester
 → hochaffines Wahlpflichtfach Bautechnik -->WPF Entwerfen und Konstruieren -->Wahlcontainer
 → M.Sc. Technikpädagogik, PO 2015, 2. Semester
 → Hauptfach Bautechnik -->Entwerfen und Konstruieren -->Wahlcontainer
 → M.Sc. Technikpädagogik, PO 2015, 2. Semester
 → Wahlpflichtfach Bautechnik -->a) Entwerfen und Konstruieren -->a) Entwerfen und Konstruieren Wahl
 → M.Sc. Technikpädagogik, PO 2015, 2. Semester
 → hochaffines Wahlpflichtfach Bautechnik -->WPF Entwerfen und Konstruieren -->Wahlcontainer

12. Lernziele:
 Die Studierenden haben die Fähigkeit erworben, ein vertiefendes baukonstruktives Einzelthema wissenschaftlich zu untersuchen. Sie wurden in die Lage versetzt, sich die hierfür erforderlichen Informationen selbständig zu beschaffen, aufzuarbeiten und zu dokumentieren. Darüber hinaus haben sie gelernt, im thematischen Zusammenhang eine fundierte wissenschaftliche These zu formulieren.

13. Inhalt:
 Ergänzende und vertiefende Bearbeitung eines konstruktiven Sonderthemas. Die Bearbeitung erfolgt als betreute Hausarbeit oder Seminar in Absprache mit dem Institut.

14. Literatur:
15. Lehrveranstaltungen und -formen: | 230801 Seminar Sondergebiete des Entwerfens und Konstruierens 2
---|---
16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 21 h
Selbststudium: 69 h
Gesamt: 90 h
17. Prüfungsnummer/n und -name: | 23081 Sondergebiete des Entwerfens und Konstruierens 2 (LBP), schriftlich, eventuell mündlich, Gewichtung: 1.0
18. Grundlage für ... : |
19. Medienform: | Reader, Zeichnung, Animation, Modell
20. Angeboten von:
Modul: 34470 Wärmeschutz

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>020800020</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>2 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Hon.-Prof. Schew-Ram Mehra</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Johann Reiß
| | • Simone Eitele |
| | → Hauptfach Bautechnik -->Entwerfen und Konstruieren -->Wahlcontainer
| | → Wahlpflichtfach Bautechnik -->a) Entwerfen und Konstruieren -->a) Entwerfen und Konstruieren Wahl
| | → hochaffines Wahlpflichtfach Bautechnik -->WPF Entwerfen und Konstruieren -->Wahlcontainer
| | → Hauptfach Bautechnik -->Entwerfen und Konstruieren -->Wahlcontainer
| | → Wahlpflichtfach Bautechnik -->a) Entwerfen und Konstruieren -->a) Entwerfen und Konstruieren Wahl
| | → hochaffines Wahlpflichtfach Bautechnik -->WPF Entwerfen und Konstruieren -->Wahlcontainer
| 11. Empfohlene Voraussetzungen: | keine |
| 12. Lernziele: | Wärmeschutz und Energieeinsparung:
| | Studierende
| | • beherrschen die Grundlagen des Wärmeschutzes und des energieeffizienten Bauens und besitzen das dazu benötigte technische Fachwissen
| | • können Wärmebrücken vermeiden bzw.aufspüren und geeignete Maßnahmen treffen
| | • beherrschen die Anforderungen nach den geltenden nationalen und europäischen Regeln und Normen und können ihren Anwendungsbereich definieren
| | • können Gebäude entsprechend der geltenden Vorschriften energieeffizient entwerfen
| | Altbausanierung:
| | Studierende |
• haben den Altbaubestand, gängige Konstruktionsweisen und deren Einflussfaktoren kennengelernt
• kennen Merkmale bestimmter Baualtersklassen sowie deren Schwachstellen (Gebäudetypologie)
• Kennen Hilfsmittel und mögliche Messverfahren bei der Bestandsaufnahme
• können eine technische, energetische, akustische und feuchtetechnische Bestandsaufnahme durchführen
• sind in der Lage Schwachstellen, Schäden und Mängel zu lokalisieren
• können energetische, akustische und feuchtetechnische Sanierungsmaßnahmen erarbeiten
• sind sensibilisiert in Bezug auf Altlasten und Gefahrstoffe
• haben Einblick in diverse Förderprogramm erhalten
• kennen die Vorgaben und Nachrüstverpflichtungen der EnEV 2014

13. Inhalt:

Inhalt Lehrveranstaltung Wärmeschutz und Energieeinsparung:

• Wärmeschutz und Energieeffizienz
• Einführung Wärmebrücken
• baulicher Wärmeschutz
• bauliche und heiztechnische Maßnahmen zur Senkung des Energieverbrauchs von Gebäuden und der heizungsbedingten Emissionen
• Niedrigenergie-und Nullheizenergiehaus
• Energiebilanz
• EPBD (Energy Performance of Buildings Directive)
• Energiepass
• Grundlagen und Grenzen für die Minimierung der Transmissions- und Lüftungswärmeverluste
• Methoden zur Nutzung der Solarenergie
• Wärmerückgewinnung
• Sommerlicher Wärmeschutz nach DIN 18599

Inhalt der Lehrveranstaltung Altbausanierung

• Kennenlernen des Gebäudebestandes
• Typische Konstruktionsweisen
• Gebäudetypologien
• Hilfsmittel und Messverfahren bei der Bestandsaufnahme
• Analyse von Bestandsgebäuden
• Schwachstellen, Schäden und Mängel
• Altlasten und Gefahrstoffe
• Sanierungsmaßnahmen (energetisch, akustisch, feuchtetechnisch)
• Bundesweite Förderprogramme
• Vorgaben und Nachrüstverpflichtungen der EnEV 2014
• Berücksichtigung von Wärmebrücken
• Energetische Berechnung mit ZUB Helena Ultra

14. Literatur:

Skript: Wärmeschutz und Energieeinsparung

Skript: Altbausanierung

Wärmeschutz und Energieeinsparung

Bobran, H. W. und Bobran-Wittfoth, I.: Handbuch der Bauphysik. Berechnungs- und Konstruktionsunterlagen für Schallschutz,

Altbausanierung

15. Lehrveranstaltungen und -formen:

• 344701 Vorlesung Wärmeschutz und Energieeinsparung
• 344702 Vorlesung Altbausanierung

16. Abschätzung Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Lehrveranstaltungen</th>
<th>Präsenszeit:</th>
<th>Selbststudium:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wärmeschutz und Energieeinsparung</td>
<td>ca. 28 h</td>
<td>ca. 56 h</td>
</tr>
<tr>
<td>Altbausanierung</td>
<td>ca. 28 h</td>
<td>ca. 56 h</td>
</tr>
</tbody>
</table>

17. Prüfungsnummer/n und -name:

34471 Wärmeschutz (PL), schriftlich und mündlich, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

Powerpointpräsentation und Folien

20. Angeboten von:

Lehrstuhl für Bauphysik
5220 b) Techn. Ausbau

Zugeordnete Module:

<table>
<thead>
<tr>
<th>Code</th>
<th>Bezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>5221</td>
<td>b) Techn. Ausbau Pflicht</td>
</tr>
<tr>
<td>5222</td>
<td>b) Techn. Ausbau Wahl</td>
</tr>
</tbody>
</table>
5221 b) Techn. Ausbau Pflicht

Zugeordnete Module:

10780 Entwerfen und Konstruieren
23030 Sondergebiete der Gebäudetechnik
31770 Gebäudetechnik für Technikpädagogen im Bauwesen
31780 Entwurf Hochbau für Technikpädagogen im Bauwesen
Modul: 10780 Entwerfen und Konstruieren

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>010600420</th>
<th>5. Modulduauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Jose Luis Moro

Zuordnung zum Curriculum in diesem Studiengang:

M.Sc. Technikpädagogik, PO 2009, 3. Semester
- Affines Wahlpflichtfach Bautechnik --> Vertiefungsrichtung a) Entwerfen und Konstruieren --> Entwerfen und Konstruieren Pflichtfächer
 - Affines Wahlpflichtfach Bautechnik --> Vertiefungsrichtung b) Technischer Ausbau ("Derzeit noch nicht im Angebot") --> Technischer Ausbau Wahlfächer
 - Hauptfach Bautechnik --> Entwerfen und Konstruieren --> Pflichtcontainer
 - Hauptfach Bautechnik --> Technischer Ausbau --> Pflichtcontainer
 - Wahlpflichtfach Bautechnik --> b) Techn. Ausbau --> b) Techn. Ausbau Pflicht
 - hochaffines Wahlpflichtfach Bautechnik --> WPF Entwerfen und Konstruieren --> Pflichtcontainer
 - hochaffines Wahlpflichtfach Bautechnik --> WPF Technischer Ausbau --> Pflichtcontainer
- M.Sc. Technikpädagogik, PO 2015, 3. Semester
 - Hauptfach Bautechnik --> Entwerfen und Konstruieren --> Pflichtcontainer
- M.Sc. Technikpädagogik, PO 2015, 3. Semester
 - Hauptfach Bautechnik --> Technischer Ausbau --> Pflichtcontainer
- M.Sc. Technikpädagogik, PO 2015, 3. Semester
- M.Sc. Technikpädagogik, PO 2015, 3. Semester

Stand: 07. Oktober 2015
11. Empfohlene Voraussetzungen:
Grundlegende Kenntnisse in Tragwerkslehre, Technischem Zeichnen, Konstruktion, Planung und Gebäudeentwurf.

12. Lernziele:

13. Inhalt:
Der Schwerpunkt des Studienfachs ist das Gebäude in ganzheitlicher Betrachtung unter Berücksichtigung nicht nur konstruktiver, sondern auch funktionaler und formalästhetischer Gesichtspunkte.

Zu den Inhalten zählt nicht nur die Analyse der relevanten Entwurfsfaktoren beim Konzipieren eines Gebäudes, sondern darüber hinaus das Verdeutlichen der Wechselbeziehungen und gegenseitigen Abhängigkeiten zwischen ihnen. Zum Seminarprogramm gehören Gebäudeanalysen, Stegreifübungen, Vorträge und Bauwerksbesichtigungen.

Das Fach wird in fakultätsübergreifender Form für Architektur-, Bauingenieur- und Technikpädagogikstudenten gelehrt.

14. Literatur:
• Vorlesungsskripte
• Übungsskripte
• Literaturliste

15. Lehrveranstaltungen und -formen:
• 107801 Vorlesung Entwerfen und Konstruieren
• 107802 Übung Entwerfen und Konstruieren

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 h
Selbststudium / Nacharbeitszeit: 138 h
Gesamt: 180 h

17. Prüfungsnr/n und -name:
• 10781 Entwerfen und Konstruieren (PL), schriftlich, eventuell mündlich, Gewichtung: 1,0, 2 Entwurfssübungen (Pläne und Modell) und eine schriftliche Ausarbeitung incl. Vortrag 2 Übungen, 0,40, lehrveranstaltungsbegleitende Prüfung, je 15 min Vortrag, 0,20, lehrveranstaltungsbegleitende Prüfung, 20 min Entwerfen und Konstruieren, 0,40, schriftlich, 75 min Vorleistung (USL-V), schriftlich, eventuell mündlich

18. Grundlage für ...:
10990 Entwurf in Zusammenarbeit mit Architekturstudenten

19. Medienform:
Vortrag mit digitaler Präsentation, Videos, Podcast

20. Angeboten von:
Architektur und Stadtplanung
Modul: 31780 Entwurf Hochbau für Technikpädagogen im Bauwesen

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>0.0</td>
</tr>
<tr>
<td>5. Modulduer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Jose Luis Moro</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td></td>
</tr>
</tbody>
</table>
→ Hauptfach Bautechnik --> Technischer Ausbau --> Pflichtcontainer
→ M.Sc. Technikpädagogik
→ Wahlpflichtfach Bautechnik --> b) Techn. Ausbau --> b) Techn. Ausbau Pflicht
→ M.Sc. Technikpädagogik
→ hochaffines Wahlpflichtfach Bautechnik --> WPF Technischer Ausbau --> Pflichtcontainer
→ M.Sc. Technikpädagogik
→ Hauptfach Bautechnik --> Technischer Ausbau --> Pflichtcontainer
→ M.Sc. Technikpädagogik
→ Wahlpflichtfach Bautechnik --> b) Techn. Ausbau --> b) Techn. Ausbau Pflicht
→ M.Sc. Technikpädagogik
→ hochaffines Wahlpflichtfach Bautechnik --> WPF Technischer Ausbau --> Pflichtcontainer |
| 11. Empfohlene Voraussetzungen: | |
| 12. Lernziele: | |
| 13. Inhalt: | |
| 14. Literatur: | |
| 15. Lehrveranstaltungen und -formen: | 317801 Vorlesung Entwurf Hochbau für Technikpädagogen im Bauwesen |
| 16. Abschätzung Arbeitsaufwand: | |
| 17. Prüfungsnummer/n und -name: | • 31781 Entwurf Hochbau für Technikpädagogen im Bauwesen (USL), schriftliche Prüfung, Gewichtung: 1.0
• 31782 Entwurf Hochbau für Technikpädagogen im Bauwesen (LBP), schriftliche Prüfung, Gewichtung: 1.0 |
| 18. Grundlage für ... : | |
| 19. Medienform: | |
| 20. Angeboten von: | |
Modul: 31770 Gebäudetechnik für Technikpädagogen im Bauwesen

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>0.0</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Reinhold Nickolaus</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td></td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:
- M.Sc. Technikpädagogik
 -> Hauptfach Bautechnik --> Technischer Ausbau --> Pflichtcontainer
- M.Sc. Technikpädagogik
 -> Wahlpflichtfach Bautechnik --> b) Techn. Ausbau --> b) Techn. Ausbau Pflicht
- M.Sc. Technikpädagogik
 -> hochaffines Wahlpflichtfach Bautechnik --> WPF Technischer Ausbau --> Pflichtcontainer
- M.Sc. Technikpädagogik
 -> Hauptfach Bautechnik --> Technischer Ausbau --> Pflichtcontainer
- M.Sc. Technikpädagogik
 -> Wahlpflichtfach Bautechnik --> b) Techn. Ausbau --> b) Techn. Ausbau Pflicht
- M.Sc. Technikpädagogik
 -> hochaffines Wahlpflichtfach Bautechnik --> WPF Technischer Ausbau --> Pflichtcontainer

11. Empfohlene Voraussetzungen:
-

12. Lernziele:
-

13. Inhalt:
-

14. Literatur:
-

15. Lehrveranstaltungen und -formen:
- 317701 Vorlesung Gebäudetechnik für Technikpädagogen im Bauwesen

16. Abschätzung Arbeitsaufwand:
-

17. Prüfungsnummer/n und -name:
- 31771 Gebäudetechnik für Technikpädagogen im Bauwesen (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0

18. Grundlage für ... :
-

19. Medienform:
-

20. Angeboten von:
-

Stand: 07. Oktober 2015 Seite 480 von 1124
Modul: 23030 Sondergebiete der Gebäudetechnik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>010412320</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Jürgen Schreiber</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Armin Kammer
| | • Jürgen Schreiber |
| | → Hauptfach Bautechnik --> Technischer Ausbau --> Pflichtcontainer
| | → M.Sc. Technikpädagogik
| | → Wahlpflichtfach Bautechnik --> b) Techn. Ausbau --> b) Techn. Ausbau Pflicht
| | → M.Sc. Technikpädagogik
| | → hochaffines Wahlpflichtfach Bautechnik --> WPF Technischer Ausbau --> Pflichtcontainer
| | → M.Sc. Technikpädagogik
| | → Hauptfach Bautechnik --> Technischer Ausbau --> Pflichtcontainer
| | → M.Sc. Technikpädagogik
| | → Wahlpflichtfach Bautechnik --> b) Techn. Ausbau --> b) Techn. Ausbau Pflicht
| | → M.Sc. Technikpädagogik
| | → hochaffines Wahlpflichtfach Bautechnik --> WPF Technischer Ausbau --> Pflichtcontainer |
| 11. Empfohlene Voraussetzungen: | • 010220301 Bautechnik
| | • 010220310 B 2 - Integriertes Projekt Bautechnik |
| | 2) Pisthol, W., Handbuch der Gebäudetechnik, Band 2, 6. Auflage, Düsseldorf, Werner, 2007
<p>| | und Veröffentlichungen des IBBTE sowie weitere Literatur, die in der Lehrveranstaltung bekanntgegeben wird. |
| 15. Lehrveranstaltungen und -formen: | 230301 Seminar Sondergebiete der Gebäudetechnik 1 |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>90h (21h Präsenzzeit, 69h Selbststudium)</td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>23031 Sondergebiete der Gebäudetechnik 1 (LBP), schriftlich, eventuell mündlich, Gewichtung: 1.0</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td></td>
</tr>
</tbody>
</table>
5222 b) Techn. Ausbau Wahl

Zugeordnete Module:

- 10720 Schutz, Instandsetzung und Ertüchtigung von Bauwerken
- 22820 Ressourcenorientiertes Entwerfen im Kontext
- 23760 Grundlagen der Befestigungstechnik
Modul: 23760 Grundlagen der Befestigungstechnik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>021500232</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Jan Hofmann</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Jan Hofmann</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- M.Sc. Technikpädagogik
 - Affines Wahlpflichtfach Bautechnik --> Vertiefungsrichtung
 - b) Technischer Ausbau (*Derzeit noch nicht im Angebot*) -- > Technischer Ausbau Wahlfläche
 - M.Sc. Technikpädagogik
 - Hauptfach Bautechnik --> Technischer Ausbau --> Wahlcontainer
 - M.Sc. Technikpädagogik
 - Wahlpflichtfach Bautechnik --> b) Techn. Ausbau --> b) Techn. Ausbau Wahl
 - M.Sc. Technikpädagogik
 - hochaffines Wahlpflichtfach Bautechnik --> WPF Technischer Ausbau --> Wahlcontainer
 - M.Sc. Technikpädagogik
 - Hauptfach Bautechnik --> Technischer Ausbau --> Wahlcontainer
 - M.Sc. Technikpädagogik
 - Wahlpflichtfach Bautechnik --> b) Techn. Ausbau --> b) Techn. Ausbau Wahl
 - M.Sc. Technikpädagogik
 - hochaffines Wahlpflichtfach Bautechnik --> WPF Technischer Ausbau --> Wahlcontainer

11. Empfohlene Voraussetzungen: Keine

13. Inhalt: In den Vorlesungen werden folgende Themen behandelt:

- Übersicht über die Befestigungstechnik mit typischen Anwendungen
- Beschreibung der Befestigungssysteme (Wirkungsweise, Montage)
- Berechnung der Ankerkraft von Einzelbefestigungen
- Berechnung der Ankerkraft von Ankergruppen nach Elastizitätstheorie und nichtlinearen Verfahren
- Verhalten von Beton und Mauerwerk unter Zugbeanspruchung
- Tragverhalten und Bemessung von Befestigungen mit Kopfbolzen, Ankerschienen, Dübeln (Spreiz-, Hinterschnitt-, Verbund-, Verbundspreiz- und Schraubdübel) und Setzbolzen in Beton
- Tragverhalten und Bemessung von Befestigungen mit Verbunddübeln, Kunststoffdübeln und Setzbolzen in Mauerwerk
- Schäden an Befestigungen und Strategien zur Vermeidung von Schäden

14. Literatur:
- Folien.

15. Lehrveranstaltungen und -formen:
- 237601 Vorlesung Grundlagen der Befestigungstechnik
- 237602 Übung Grundlagen der Befestigungstechnik

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 56 h
Selbststudium: 124 h

17. Prüfungsnummer/n und -name:
23761 Grundlagen der Befestigungstechnik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :
17890 Praktische Befestigungstechnik

19. Medienform:
-

20. Angeboten von:
Institut für Werkstoffe im Bauwesen
Modul: 22820 Ressourcenorientiertes Entwerfen im Kontext

2. Modulkürzel: 010410323
5. Modulduer: 1 Semester
3. Leistungspunkte: 3.0 LP
6. Turnus: jedes Semester
4. SWS: 2.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Peter Schürmann

10. Zuordnung zum Curriculum in diesem Studiengang:

M.Sc. Technikpädagogik
→ Affines Wahlpflichtfach Bautechnik -->Vertiefungsrichtung
 b) Technischer Ausbau (*Derzeit noch nicht im Angebot*) -->
 >Technischer Ausbau Wahlfächer
 →
M.Sc. Technikpädagogik
→ Hauptfach Bautechnik -->Technischer Ausbau -->Wahlcontainer
 →
M.Sc. Technikpädagogik
→ Wahlpflichtfach Bautechnik -->b) Techn. Ausbau -->b) Techn.
 Ausbau Wahl
 →
M.Sc. Technikpädagogik
→ hochaffines Wahlpflichtfach Bautechnik -->WPF Technischer
 Ausbau -->Wahlcontainer
 →
M.Sc. Technikpädagogik
→ Hauptfach Bautechnik -->Technischer Ausbau -->Wahlcontainer
 →
M.Sc. Technikpädagogik
→ Wahlpflichtfach Bautechnik -->b) Techn. Ausbau -->b) Techn.
 Ausbau Wahl
 →
M.Sc. Technikpädagogik
→ hochaffines Wahlpflichtfach Bautechnik -->WPF Technischer
 Ausbau -->Wahlcontainer
 →

11. Empfohlene Voraussetzungen:
• 010220310 B 2 - Integriertes Projekt Bautechnik
• 010220301 Bautechnik

12. Lernziele:
Die Studierenden können ressourcenschonende und umweltbewusste in
Bestands situationen erarbeiten.

13. Inhalt:
Entwurfs- und Projektarbeit mit dem Ziel besonders
ressourcenschonende und umweltbewusste Lösungen
insbesondere in schwierigen Bestands situationen er haltenswerter
Gebäude und Ensembles zu erarbeiten.

14. Literatur:
Hegger, H; Fuchs, M.; Stark, T.; Zeumer, M., Energie Atlas: Nachhaltige
Architektur, 1. Auflage, Basel;
Berlin[u.a.], Birkhäuser München, Ed. Detail, 2008 und
Veröffentlichungen des IBBTE sowie weitere Literatur, die in der
Lehrveranstaltung bekanntgegeben
wird.

15. Lehrveranstaltungen und -formen:
228201 Seminar Ressourcenorientiertes Entwerfen im Kontext

Stand: 07. Oktober 2015
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>90h (21h Präsenzzeit, 69h Selbststudium)</td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>22821 Ressourcenorientiertes Entwerfen im Kontext (PL), schriftlich, eventuell mündlich, Gewichtung: 1.0</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td></td>
</tr>
</tbody>
</table>
Modul: 10720 Schutz, Instandsetzung und Ertüchtigung von Bauwerken

2. Modulkürzel: 021500103 5. Modulduerer: 1 Semester
4. SWS: 4.0 7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Jan Hofmann
9. Dozenten: Jan Hofmann
10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technikpädagogik, PO 2011, 6. Semester
 → Vorgezogene Master-Module
 → M.Sc. Technikpädagogik, PO 2009, 6. Semester
 → Hauptfach Bautechnik -->Technischer Ausbau -->Wahlfachfach Bautechnik
 → M.Sc. Technikpädagogik, PO 2009, 6. Semester
 → Studienprofil B - ohne erziehungswissenschaftliche Studien
 im Bachelor-Studiengang -->Wahlpflächfach B -->Affines
 → M.Sc. Technikpädagogik, PO 2009, 6. Semester
 → Wahlpflächfach B -->Wahlpflächfach Bautechnik -->Allgemeine
 → M.Sc. Technikpädagogik, PO 2009, 6. Semester
 → Wahlpflächfach Bautechnik -->b) Techn. Ausbau -->b) Techn.
 → M.Sc. Technikpädagogik, PO 2009, 6. Semester
 → hochaffines Wahlpflächfach Bautechnik -->WPF Technischer
 → M.Sc. Technikpädagogik, PO 2015, 6. Semester
 → Hauptfach Bautechnik -->Technischer Ausbau -->Wahlfachfach Bautechnik
 → M.Sc. Technikpädagogik, PO 2015, 6. Semester
 → Wahlpflächfach B -->Wahlpflächfach Bautechnik -->Allgemeine
 → M.Sc. Technikpädagogik, PO 2015, 6. Semester
 → Wahlpflächfach Bautechnik -->b) Techn. Ausbau -->b) Techn.
 → M.Sc. Technikpädagogik, PO 2015, 6. Semester
 → hochaffines Wahlpflächfach Bautechnik -->WPF Technischer
 → M.Sc. Technikpädagogik, PO 2015, 6. Semester
 → Hauptfach Bautechnik -->Technischer Ausbau -->Wahlfachfach Bautechnik
 → M.Sc. Technikpädagogik, PO 2015, 6. Semester
 → Wahlpflächfach B -->Wahlpflächfach Bautechnik -->Allgemeine
 → M.Sc. Technikpädagogik, PO 2015, 6. Semester
 → hochaffines Wahlpflächfach Bautechnik -->WPF Technischer

11. Empfohlene Voraussetzungen: Werkstoffe I
12. Lernziele: Der/die Studierende kennt Schadensbilder, Schädigungsmechanismen
 und Schadensverläufe in Betontragwerken sowie Verfahren zur
Schadensanalyse. Weiterhin ist er/sie vertraut mit Strategien zur Vermeidung von Schäden und mit Verfahren zur dauerhaften Behebung von Bauschäden sowie zur Verstärkung von Bauwerken.

13. Inhalt: Die Vorlesung ist unterteilt in:

- Denkmalerhaltung
- Schäden und Restaurierung von Naturstein
- Schäden und Instandsetzung von Holzkonstruktionen
- Hochbauten, Parkbauten, Brückenbauwerken, Tief- und Wasserbauwerken, Tunnel- und Sonderbauwerken

Es werden Arbeitsblätter verteilt, die von den Studierenden bearbeitet werden müssen.

14. Literatur:

- Folien.

15. Lehrveranstaltungen und -formen:

- 107201 Vorlesung Schutz, Instandsetzung und Ertüchtigung von Bauwerken
- 107202 Übung Schutz, Instandsetzung und Ertüchtigung von Bauwerken

16. Abschätzung Arbeitsaufwand:

- Präsenzzeit: 56 h
- Selbststudium: 124 h

17. Prüfungsnummer/n und -name:

- 10721 Schutz, Instandsetzung und Ertüchtigung von Bauwerken (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:

-

20. Angeboten von:

- Institut für Werkstoffe im Bauwesen
5230 c) Baubetrieb

Zugeordnete Module:

5231 c) Baubetrieb Pflicht
5232 c) Techn. Ausbau Wahl
5231 c) Baubetrieb Pflicht

Zugeordnete Module:

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
</tr>
</thead>
<tbody>
<tr>
<td>10730</td>
<td>Baubetriebslehre II</td>
</tr>
<tr>
<td>10740</td>
<td>Baubetriebslehre III</td>
</tr>
</tbody>
</table>
Modul: 10730 Baubetriebslehre II

2. Modulkürzel: 020200120
5. Modulduauer: 1 Semester
3. Leistungspunkte: 6.0 LP
6. Turnus: jedes 2. Semester, SoSe
4. SWS: 5.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Fritz Berner
9. Dozenten: Fritz Berner

10. Zuordnung zum Curriculum in diesem Studiengang:

M.Sc. Technikpädagogik, PO 2009, 2. Semester
Affines Wahlpflichtfach Bautechnik --> Vertiefungsrichtung c) Baubetrieb --> Baubetrieb Pflichtfächer

M.Sc. Technikpädagogik, PO 2009, 2. Semester
Hauptfach Bautechnik --> Baubetrieb --> Pflichtcontainer

M.Sc. Technikpädagogik, PO 2009, 2. Semester
Wahlpflichtfach Bautechnik --> c) Baubetrieb --> c) Baubetrieb Pflicht

M.Sc. Technikpädagogik, PO 2009, 2. Semester
hochaffines Wahlpflichtfach Bautechnik --> WPF Baubetrieb --> Pflichtcontainer

M.Sc. Technikpädagogik, PO 2015, 2. Semester
Hauptfach Bautechnik --> Baubetrieb --> Pflichtcontainer

M.Sc. Technikpädagogik, PO 2015, 2. Semester
Wahlpflichtfach Bautechnik --> c) Baubetrieb --> c) Baubetrieb Pflicht

M.Sc. Technikpädagogik, PO 2015, 2. Semester
hochaffines Wahlpflichtfach Bautechnik --> WPF Baubetrieb --> Pflichtcontainer

11. Empfohlene Voraussetzungen: Baubetriebslehre I

12. Lernziele:
Die Studierenden haben das nötige Wissen für eine erfolgreiche Vorbereitung der Bauausführung. Sie kennen die Grundlagen des Bauablaufs und können die Ablaufplanung durchführen. Darüber hinaus haben sie vertiefte Kenntnisse zur Planung der wirtschaftlichen Ausführung einer Baumaßnahme und der Baustelleneinrichungsplanung.

13. Inhalt:

Ablauf- und Terminplanung
- Grundlagen
- Darstellungsformen
- Ebenen
- EDV-Unterstützung bei Ablaufplanung

Netzplantechnik
- Allgemeines
- Methoden
- Aufbau und Berechnung eines Vorgangsknoten-Netzplanes

Kalkulatorischer Verfahrensvergleich
Baustelleneinrichtung und Baustellenlogistik

- Rechtliche und vertragliche Grundlagen
- Elemente der Baustelleneinrichtung
- Grundsätze für den Entwurf
- Phasenorientierte Baustelleneinrichtungsplanung

Unternehmensführung im Bauwesen

- Rechts- und Unternehmensformen
- Arbeitsgemeinschaften
- Personalmanagement und Personalführung

Projektmanagement im Bauwesen

14. Literatur:

- Manuskript: "Unternehmensführung im Bauwesen"
- Manuskript: "Projektmanagement im Bauwesen"
- VOB, HOAI
- AHO-Fachkommission

15. Lehrveranstaltungen und -formen:

- 107301 Vorlesung Baubetriebslehre II
- 107302 Übung Baubetriebslehre II
- 107303 Hausübung und Kolloquium Baubetriebslehre II

16. Abschätzung Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Präsenzzeit:</th>
<th>48 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selbststudium / Nacharbeitszeit:</td>
<td>132 h</td>
</tr>
<tr>
<td>Gesamt:</td>
<td>180 h</td>
</tr>
</tbody>
</table>

17. Prüfungsnummer/n und -name:

- 10731 Baubetriebslehre II (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0, Prüfungsvoraussetzung: 1 Hausübung + 1 Kolloquium
- V Vorleistung (USL-V), schriftlich, eventuell mündlich

18. Grundlage für ... :

- 10740 Baubetriebslehre III

19. Medienform:

20. Angeboten von:

Institut für Baubetriebslehre
Modul: 10740 Baubetriebslehre III

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>020200140</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Moduldaurer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Fritz Berner</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Wolfgang Paul</td>
</tr>
</tbody>
</table>
Affines Wahlpflichtfach Bautechnik --> Vertiefungsrichtung c) Baubetrieb --> Baubetrieb Pflichtfächer

M.Sc. Technikpädagogik, PO 2009, 3. Semester
Hauptfach Bautechnik --> Baubetrieb --> Pflichtcontainer

M.Sc. Technikpädagogik, PO 2009, 3. Semester
Wahlpflichtfach Bautechnik --> c) Baubetrieb --> c) Baubetrieb Pflicht

M.Sc. Technikpädagogik, PO 2009, 3. Semester
hochaffines Wahlpflichtfach Bautechnik --> WPF Baubetrieb --> Pflichtcontainer

M.Sc. Technikpädagogik, PO 2015, 3. Semester
Hauptfach Bautechnik --> Baubetrieb --> Pflichtcontainer

M.Sc. Technikpädagogik, PO 2015, 3. Semester
Wahlpflichtfach Bautechnik --> c) Baubetrieb --> c) Baubetrieb Pflicht

M.Sc. Technikpädagogik, PO 2015, 3. Semester
hochaffines Wahlpflichtfach Bautechnik --> WPF Baubetrieb --> Pflichtcontainer |

<table>
<thead>
<tr>
<th>11. Empfohlene Voraussetzungen:</th>
<th>Baubetriebslehre I (Baubetriebswirtschaft)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Baubetriebslehre II (Baubetriebsplanung)</td>
</tr>
</tbody>
</table>

Zudem sind die Studierenden durch die Lehrform „Lernen durch Lehren“ in der Lage, Aufgaben auch in Gruppenarbeit selbstständig zu lösen und die eigenen Ausarbeitungen zu präsentieren. Die Grundlagen der Kommunikation sind bekannt. |

<table>
<thead>
<tr>
<th>13. Inhalt:</th>
<th>• Kostenschätzung (Kostenermittlung in den verschiedenen Phasen)</th>
</tr>
</thead>
</table>
• Baustellenverordnung
• Aufmaß und Abrechnung
• EDV-Anwendungen
• Ausarbeitung einer Projektstudie mit Präsentation
• Teamarbeit, Zusammenarbeit, Kommunikation, Rollenspiele

14. Literatur:
• Manuskript

15. Lehrveranstaltungen und -formen:
• 107401 Vorlesung Baubetriebslehre III
• 107402 Übung Baubetriebslehre III
• 107403 Hausübung und Kolloquium Baubetriebslehre III

16. Abschätzung Arbeitsaufwand:
<table>
<thead>
<tr>
<th>Tätigkeit</th>
<th>Arbeitszeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzzeit</td>
<td>ca. 20 h</td>
</tr>
<tr>
<td>Ausarbeitung Projektstudie und Präsentation</td>
<td>ca. 130 h</td>
</tr>
<tr>
<td>Nacharbeitszeit</td>
<td>ca. 30 h</td>
</tr>
<tr>
<td>Gesamt</td>
<td>ca. 180 h</td>
</tr>
</tbody>
</table>

17. Prüfungsnr./und -name:
• 10741 Baubetriebslehre III (PL), schriftlich und mündlich, 120 Min., Gewichtung: 1.0, Prüfungsvoraussetzung: 1 Projektstudie + 1 Präsentation (Vortrag) 0.60 benotete Projektstudie 0.40 benoteter Vortrag
• V Vorleistung (USL-V), schriftlich, eventuell mündlich

18. Grundlage für ...:
• 11940 Bauprozessmanagement in der Praxis

19. Medienform:

20. Angeboten von:
• Institut für Baubetriebslehre
5232 c) Techn. Ausbau Wahl

Zugeordnete Module:
- 11370 Ausgewählte Kapitel des Bauprozessmanagements
- 11940 Bauprozessmanagement in der Praxis
- 34840 Workshop Unternehmensgründung
- 37050 Arbeitssicherheit im Baubetrieb
- 37140 Immobilienbewirtschaftung
- 37190 Ausgewählte Kapitel des Projektmanagements
- 37200 Kaufmännisches Facility Management
Modul: 37050 Arbeitssicherheit im Baubetrieb

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>020200540</th>
<th>5. Modulduauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. Modulverantwortlicher:</th>
<th>Univ.-Prof. Fritz Berner</th>
</tr>
</thead>
<tbody>
<tr>
<td>9. Dozenten:</td>
<td>Michael Aldinger</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>→ Vorgezogene Master-Module</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Technikpädagogik</td>
</tr>
<tr>
<td></td>
<td>→ Wahlpflichtfach -->Wahlpflichtfach Bautechnik -->Pflichtcontainer Holzbau</td>
</tr>
<tr>
<td></td>
<td>→ M.Sc. Technikpädagogik</td>
</tr>
<tr>
<td></td>
<td>→ Hauptfach Bautechnik -->Baubetrieb -->Wahlcontainer</td>
</tr>
<tr>
<td></td>
<td>→ M.Sc. Technikpädagogik</td>
</tr>
<tr>
<td></td>
<td>→ Hauptfach Bautechnik -->Holzbau (nur in Kombination mit Tragwerksbemessung und -konstruktion als affines Wahlpflichtfach möglich) -->Pflichtcontainer</td>
</tr>
<tr>
<td></td>
<td>→ M.Sc. Technikpädagogik</td>
</tr>
<tr>
<td></td>
<td>→ Wahlpflichtfach Bautechnik -->c) Baubetrieb -->c) Techn. Ausbau Wahl</td>
</tr>
<tr>
<td></td>
<td>→ M.Sc. Technikpädagogik</td>
</tr>
<tr>
<td></td>
<td>→ Wahlpflichtfach Bautechnik -->f) Holzbau (nur in Kombination mit Tragwerksbemessung und -konstruktion möglich) -->f) Holzbau Pflicht</td>
</tr>
<tr>
<td></td>
<td>→ M.Sc. Technikpädagogik</td>
</tr>
<tr>
<td></td>
<td>→ hochaffines Wahlpflichtfach Bautechnik -->WPF Holzbau (nur in Kombination mit Tragwerksbemessung und -konstruktion als affines Wahlpflichtfach möglich) -->Pflichtcontainer</td>
</tr>
<tr>
<td></td>
<td>→ M.Sc. Technikpädagogik</td>
</tr>
<tr>
<td></td>
<td>→ hochaffines Wahlpflichtfach Bautechnik -->WPF Baubetrieb -->Wahlcontainer</td>
</tr>
<tr>
<td></td>
<td>→ M.Sc. Technikpädagogik</td>
</tr>
<tr>
<td></td>
<td>→ Hauptfach Bautechnik -->Baubetrieb -->Wahlcontainer</td>
</tr>
<tr>
<td></td>
<td>→ M.Sc. Technikpädagogik</td>
</tr>
<tr>
<td></td>
<td>→ Wahlpflichtfach Bautechnik -->c) Baubetrieb -->c) Techn. Ausbau Wahl</td>
</tr>
<tr>
<td></td>
<td>→ M.Sc. Technikpädagogik</td>
</tr>
<tr>
<td></td>
<td>→ Wahlpflichtfach Bautechnik -->f) Holzbau (nur in Kombination mit Tragwerksbemessung und -konstruktion möglich) -->f) Holzbau Pflicht</td>
</tr>
<tr>
<td></td>
<td>→ M.Sc. Technikpädagogik</td>
</tr>
<tr>
<td></td>
<td>→ hochaffines Wahlpflichtfach Bautechnik -->WPF Holzbau (nur in Kombination mit Tragwerksbemessung und -konstruktion als affines Wahlpflichtfach möglich) -->Pflichtcontainer</td>
</tr>
<tr>
<td></td>
<td>→ M.Sc. Technikpädagogik</td>
</tr>
<tr>
<td></td>
<td>→ hochaffines Wahlpflichtfach Bautechnik -->WPF Baubetrieb -->Wahlcontainer</td>
</tr>
<tr>
<td></td>
<td>→ M.Sc. Technikpädagogik</td>
</tr>
<tr>
<td></td>
<td>→ Hauptfach Bautechnik -->Baubetrieb -->Wahlcontainer</td>
</tr>
<tr>
<td></td>
<td>→ M.Sc. Technikpädagogik</td>
</tr>
<tr>
<td></td>
<td>→ Wahlpflichtfach Bautechnik -->c) Baubetrieb -->c) Techn. Ausbau Wahl</td>
</tr>
<tr>
<td></td>
<td>→ M.Sc. Technikpädagogik</td>
</tr>
<tr>
<td></td>
<td>→ Wahlpflichtfach Bautechnik -->f) Holzbau (nur in Kombination mit Tragwerksbemessung und -konstruktion möglich) -->f) Holzbau Pflicht</td>
</tr>
<tr>
<td></td>
<td>→ M.Sc. Technikpädagogik</td>
</tr>
<tr>
<td></td>
<td>→ hochaffines Wahlpflichtfach Bautechnik -->WPF Holzbau (nur in Kombination mit Tragwerksbemessung und -konstruktion als affines Wahlpflichtfach möglich) -->Pflichtcontainer</td>
</tr>
<tr>
<td></td>
<td>→ M.Sc. Technikpädagogik</td>
</tr>
<tr>
<td></td>
<td>→ hochaffines Wahlpflichtfach Bautechnik -->WPF Baubetrieb -->Wahlcontainer</td>
</tr>
<tr>
<td></td>
<td>→ M.Sc. Technikpädagogik</td>
</tr>
<tr>
<td></td>
<td>→ Hauptfach Bautechnik -->Baubetrieb -->Wahlcontainer</td>
</tr>
<tr>
<td></td>
<td>→ M.Sc. Technikpädagogik</td>
</tr>
<tr>
<td></td>
<td>→ Wahlpflichtfach Bautechnik -->c) Baubetrieb -->c) Techn. Ausbau Wahl</td>
</tr>
<tr>
<td></td>
<td>→ M.Sc. Technikpädagogik</td>
</tr>
<tr>
<td></td>
<td>→ Wahlpflichtfach Bautechnik -->f) Holzbau (nur in Kombination mit Tragwerksbemessung und -konstruktion möglich) -->f) Holzbau Pflicht</td>
</tr>
<tr>
<td></td>
<td>→ M.Sc. Technikpädagogik</td>
</tr>
<tr>
<td></td>
<td>→ hochaffines Wahlpflichtfach Bautechnik -->WPF Holzbau (nur in Kombination mit Tragwerksbemessung und -konstruktion als affines Wahlpflichtfach möglich) -->Pflichtcontainer</td>
</tr>
<tr>
<td></td>
<td>→ M.Sc. Technikpädagogik</td>
</tr>
<tr>
<td></td>
<td>→ hochaffines Wahlpflichtfach Bautechnik -->WPF Baubetrieb -->Wahlcontainer</td>
</tr>
</tbody>
</table>
11. Empfohlene Voraussetzungen: keine

12. Lernziele: Die Studierenden besitzen arbeitsschutzfachliche Kenntnisse gemäß Anlage B zur RAB 30 (Regeln für den Arbeitsschutz auf Baustellen). Die arbeitsschutzfachlichen Kenntnisse sind eine wichtige Voraussetzung für die spätere Tätigkeit als Baustellenkoordinator.

14. Literatur:
• Aldinger, Michael: Manuskript Arbeitssicherheit (wird jährlich aktualisiert)
• Info CD der BG BAU

15. Lehrveranstaltungen und -formen: 370501 Vorlesung und Übung Arbeitssicherheit im Baubetrieb

16. Abschätzung Arbeitsaufwand:
• Präsenzzeit: ca. 20 h
• Selbststudium und Exkursion: ca. 40 h
• Vor-/Nachbereitung, Übungen: ca. 30 h

17. Prüfungsnummer/n und -name: 37051 Arbeitssicherheit im Baubetrieb (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Institut für Baubetriebslehre
Modul: 11370 Ausgewählte Kapitel des Bauprozessmanagements

2. Modulkürzel: 020200500
5. Modulduer: 1 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Fritz Berner

9. Dozenten: Fritz Berner

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Technikpädagogik, PO 2009, 3. Semester
 ➔ Affines Wahlpflichtfach Bautechnik --> Vertiefungsrichtung c) Baubetrieb --> Baubetrieb Wahlfächer
 ➔ M.Sc. Technikpädagogik, PO 2009, 3. Semester
 ➔ Hauptfach Bautechnik --> Baubetrieb --> Wahlcontainer
 ➔ M.Sc. Technikpädagogik, PO 2009, 3. Semester
 ➔ Wahlpflichtfach Bautechnik --> c) Baubetrieb --> c) Techn. Ausbau Wahl
 ➔ M.Sc. Technikpädagogik, PO 2009, 3. Semester
 ➔ hochaffines Wahlpflichtfach Bautechnik --> WPF Baubetrieb --> Wahlcontainer
 ➔ M.Sc. Technikpädagogik, PO 2015, 3. Semester
 ➔ Hauptfach Bautechnik --> Baubetrieb --> Wahlcontainer
 ➔ M.Sc. Technikpädagogik, PO 2015, 3. Semester
 ➔ Wahlpflichtfach Bautechnik --> c) Baubetrieb --> c) Techn. Ausbau Wahl
 ➔ M.Sc. Technikpädagogik, PO 2015, 3. Semester
 ➔ hochaffines Wahlpflichtfach Bautechnik --> WPF Baubetrieb --> Wahlcontainer

11. Empfohlene Voraussetzungen: Baubetriebslehre II

13. Inhalt: Baubetriebsführung
 Anlaufphase einer Baustelle
• Projektorganisation
• Aufgaben und Haftung der Bauleitung und des Baustellenpersonals
• Baustellencontrolling
• Feststellung des Bausolls aus dem Bauvertrag
• Arbeitsvorbereitung

Bauprozessmanagement in der Bauphase

• Ressourcenplanung (Personal, Geräte, Baustoffe, etc.)
• Rechtliche Aufgaben
• Termin- und Qualitätsmanagement
• Mengenermittlung / Leistungsmeldung
• Rechnungsstellung
• Nachtragsmanagement
• Finanz- und Liquiditätsplanung

Fertigstellungsphase einer Baustelle

• Abnahme
• Erstellung der Schlussrechnung
• Dokumentation

Gewährleistungsphase

• Mängel- und Gewährleistungsmanagement
• Rechtliche Grundlagen

Persönliche Fähigkeiten eines Bauleiters

• Arbeitsorganisation
• Soziale Kompetenzen
• Kommunikation

14. Literatur:
• Aktuelle Ausgabe der VOB und HOAI.

15. Lehrveranstaltungen und -formen:
• 113701 Vorlesung Ausgewählte Kapitel des Bauprozessmanagements
• 113702 Übung Ausgewählte Kapitel des Bauprozessmanagements

16. Abschätzung Arbeitsaufwand:
• Präsenzzeit: ca. 45 h
• Selbststudium: ca. 97 h
• Hausübung und Kolloquium: ca. 38 h
• Gesamt: ca. 180 h

17. Prüfungsnummer/n und -name:
• 11371 Ausgewählte Kapitel des Bauprozessmanagements (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0
• V Vorleistung (USL-V), schriftlich, eventuell mündlich, Hausübung und Kolloquium

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Institut für Baubetriebslehre
Modul: 37190 Ausgewählte Kapitel des Projektmanagements

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>020200220</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>5. Modulduer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Fritz Berner</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Ralph Scheer</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- **M.Sc. Technikpädagogik**
 - Hauptfach Bautechnik --> Baubetrieb --> Wahlcontainer
 - Wahl
 - Wahl
 - Wahl
 - Wahl

- **M.Sc. Technikpädagogik**
 - Wahlpflichtfach Bautechnik --> c) Baubetrieb --> c) Techn. Ausbau Wahl
 - Wahl

11. Empfohlene Voraussetzungen:

keine

12. Lernziele:

Die Studierenden verstehen die Tätigkeiten eines professionellen Projektmanagements in Anlehnung an die Leistungen der AHO-Kommission. Sie beherrschen die Grundlagen von immer wiederkehrenden Dienstleistungen des Managements wie z.B.

- Organisation und Kommunikation
- Honorarberechnungen
- Bauvergaben und Ablaufstrukturen

13. Inhalt:

Organisationshandbuch

- Projektinformationen
- Aufgabenbeschreibung
- Projekt- und Planungsorganisation
- Ablaufsteuerung
- Kostensteuerung

Ausschreibung und Vergabe

- Privater / Öffentlicher Auftraggeber
- Basisablauf Ausschreibung und Vergabe
- Controlling bei Einzel- / Generalunternehmervergaben

Stand: 07. Oktober 2015 Seite 501 von 1124
Kostenmanagement

- Kostenplanung nach DIN 276
- Kostenüberwachung

Einführung in die HOAI und Leistungsumfang wesentlicher Planungsbeteiligter

- Hinweise zur Anwendung der HOAI
- Definition zur Anwendung der HOAI
- Definition der anrechenbaren Kosten / Honorarberechnung (Beispiele)

Wirtschaftliche Planungsvorgaben für Bürogebäude

- Arbeitsplatztypen
- Büroformen
- Achsraster
- Flächenwirtschaftlichkeit
- Programming

Terminmanagement

- Regelwerke
- Erwartungshaltung der Projektbeteiligten
- Ansprüche und Eigengesetzlichkeiten des Bauwerks
- Werkzeuge
- Terminplanerstellung (Methodik, Kennwerte, Analyse, Kontrolle)

Betreute Projektstudien mit Kurzreferaten

14. Literatur: Manuskript

15. Lehrveranstaltungen und -formen:
- 371901 Vorlesung Ausgewählte Kapitel des Projektmanagements
- 371902 Übung Ausgewählte Kapitel des Projektmanagements

16. Abschätzung Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Aktivität</th>
<th>Zeitdauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzzeit</td>
<td>ca. 21 h</td>
</tr>
<tr>
<td>Selbstatstudiumszeit/Nachbereitungszeit</td>
<td>ca. 39 h</td>
</tr>
<tr>
<td>Hausübung</td>
<td>ca. 30 h</td>
</tr>
<tr>
<td>Gesamt</td>
<td>90 h</td>
</tr>
</tbody>
</table>

17. Prüfungsnummer/n und -name: 37191 Ausgewählte Kapitel des Projektmanagements (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Institut für Baubetriebslehre
Modul: 11940 Bauprozessmanagement in der Praxis

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>020200520</th>
<th>5. Modulduauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Fritz Berner</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Wolfgang Paul</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- M.Sc. Technikpädagogik, PO 2009, 4. Semester
 - Affines Wahlpflichtfach Bautechnik --> Vertiefungsrichtung c) Baubetrieb --> Baubetrieb Wahlfächer
 - M.Sc. Technikpädagogik, PO 2009, 4. Semester
 - Hauptfach Bautechnik --> Baubetrieb --> Wahlcontainer
 - M.Sc. Technikpädagogik, PO 2009, 4. Semester
 - Wahlpflichtfach Bautechnik --> c) Baubetrieb --> c) Techn. Ausbau Wahl
 - M.Sc. Technikpädagogik, PO 2009, 4. Semester
 - hochaffines Wahlpflichtfach Bautechnik --> WPF Baubetrieb --> Wahlcontainer
 - M.Sc. Technikpädagogik, PO 2015, 4. Semester
 - Hauptfach Bautechnik --> Baubetrieb --> Wahlcontainer
 - M.Sc. Technikpädagogik, PO 2015, 4. Semester
 - Wahlpflichtfach Bautechnik --> c) Baubetrieb --> c) Techn. Ausbau Wahl
 - M.Sc. Technikpädagogik, PO 2015, 4. Semester
 - hochaffines Wahlpflichtfach Bautechnik --> WPF Baubetrieb --> Wahlcontainer

11. Empfohlene Voraussetzungen:

Baubetriebslehre I, II und III, Ausgewählte Kapitel des Bauprozessmanagements oder Immobilienplanung und -entwicklung

12. Lernziele:

13. Inhalt:

Projektarbeit

Projekt BIM (Alternative 1)
Pflichtthemen: 5-D-Planung, Ausschreibung, Kalkulation, Bauablauf(Simulation), Baustellenkontrolle, Aufmaß, Abrechnung, Softwareanwendungen Revit, iTWO, Arbeiten in der Cloud.

oder

Projekt Projektentwicklung (Alternative 2)

Pflichtthemen: Grundstücksauswahl, Marktanalyse, Standortanalyse, baurechtliche Grundstücksanalyse, Nutzungskonzept, städtebauliche Analyse, Wirtschaftlichkeitsuntersuchung, Vermarktungskonzept.

14. Literatur:

- VOB/ HOAI

15. Lehrveranstaltungen und -formen: 119401 Vorlesung Bauprozessmanagement in der Praxis

16. Abschätzung Arbeitsaufwand:

- Präsenzzeit einschl. Präsentation: 70 h
- Ausarbeitung Projekt: 110 h
- Gesamt: 180 h

17. Prüfungsnummer/n und -name:

- V Vorleistung (USL-V), schriftlich, eventuell mündlich

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Institut für Baubetriebslehre
Modul: 37140 Immobilienbewirtschaftung

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>020200260</th>
<th>5. Modulduauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Fritz Berner</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Henric Hahr</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>➞ M.Sc. Technikpädagogik</td>
<td>➞ Wahlpflichtfach Bautechnik --> c) Baubetrieb --> c) Techn. Ausbau Wahl</td>
<td></td>
</tr>
<tr>
<td></td>
<td>➞ M.Sc. Technikpädagogik</td>
<td>➞ hochaffinches Wahlpflichtfach Bautechnik --> WPF Baubetrieb --> Wahlcontainer</td>
<td></td>
</tr>
<tr>
<td></td>
<td>➞ M.Sc. Technikpädagogik</td>
<td>➞ Hauptfach Bautechnik --> Baubetrieb --> Wahlcontainer</td>
<td></td>
</tr>
<tr>
<td></td>
<td>➞ M.Sc. Technikpädagogik</td>
<td>➞ Wahlpflichtfach Bautechnik --> c) Baubetrieb --> c) Techn. Ausbau Wahl</td>
<td></td>
</tr>
<tr>
<td></td>
<td>➞ M.Sc. Technikpädagogik</td>
<td>➞ hochaffinches Wahlpflichtfach Bautechnik --> WPF Baubetrieb --> Wahlcontainer</td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>keine</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Definition Facility Management</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Marksegmente des Facility Management</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Moderne und zeitgerechte Bewirtschaftung von Immobilien</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Nutzeranforderungen an das Facility Management</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Dynamische FM-Konzepte</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
• Bewirtschaftungsmodelle
• Chancen und Risiken des Outsourcing
• Beeinflussbarkeit der Betriebskosten
• Kostenbeeinflussung in der Ausführungsphase
• Contracting

14. Literatur: Manuskript zur Vorlesung "Immobilienbewirtschaftung" des Instituts für Baubetriebslehre

15. Lehrveranstaltungen und -formen:
• 371401 Vorlesung Immobilienbewirtschaftung
• 371402 Übung Immobilienbewirtschaftung

16. Abschätzung Arbeitsaufwand:

Präsenzzeit:	21 h
Selbststudiumszeit / Nacharbeitszeit:	69 h
Gesamt:	90 h

17. Prüfungsnummer/n und -name:
37141 Immobilienbewirtschaftung (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Institut für Baubetriebslehre
Modul: 37200 Kaufmännisches Facility Management

2. Modulkürzel: 020200300
5. Modulduauer: 1 Semester
3. Leistungspunkte: 3.0 LP
4. SWS: 2.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Fritz Berner
9. Dozenten: Manfred Sterlepper

10. Zuordnung zum Curriculum in diesem Studiengang:
 M.Sc. Technikpädagogik
 → Hauptfach Bautechnik -->Baubetrieb -->Wahlcontainer
 → M.Sc. Technikpädagogik
 → Wahlpflichtfach Bautechnik -->c) Baubetrieb -->c) Techn. Ausbau
 → Wahl
 → M.Sc. Technikpädagogik
 → hochaffines Wahlpflichtfach Bautechnik -->WPF Baubetrieb -->Wahlcontainer
 → M.Sc. Technikpädagogik
 → Hauptfach Bautechnik -->Baubetrieb -->Wahlcontainer
 → M.Sc. Technikpädagogik
 → Wahlpflichtfach Bautechnik -->c) Baubetrieb -->c) Techn. Ausbau
 → Wahl
 → M.Sc. Technikpädagogik
 → hochaffines Wahlpflichtfach Bautechnik -->WPF Baubetrieb -->Wahlcontainer

11. Empfohlene Voraussetzungen: keine
12. Lernziele:
Die Studierenden kennen die Stellschrauben zur Erreichung der Ziele des kaufmännischen Facility Managements. Die Nutzungsoptimierung bei gleichzeitiger Kostenminimierung ist bekannt. Es ist ein Gefühl für die dahinter stehenden Strukturen vorhanden.

13. Inhalt:
Für den Immobilienwert ist die Ertragskraft wesentlich. Über den Lebenszyklus der Immobilie bieten sich verschiedene Möglichkeiten der aktiven Gestaltung und Beeinflussung, z. B. durch die Ausgestaltung von Miet- und Pachtverträgen, die aufgezeigt werden. Daneben sollen Kostenarten und deren Strukturen sowie Strategien zur Steuerung analysiert werden. Eine große Rolle dabei spielen die Bewirtschaftungskosten, die aufgezeigt und beispielhaft mit Kennzahlen beziffert werden.

Wesentlicher Bestandteil der Bewirtschaftungskosten sind die Betriebskosten, deren Erfassung, Berechnung und rechtliche Handhabung essentiell für die Umlagefähigkeit auf die Mieter sind.

Für eine adäquate Immobiliensteuerung sind Kennzahlen unabdingbar. Im Verlauf der Veranstaltung werden daher verschiedene Kenngrößen sowie Quellen zur Gewinnung benannt. Eine geeignete Objektbuchhaltung zur Verwaltung und Aufbereitung der Daten wird ebenfalls vorgestellt.
Beispiele bestehender Immobilien sollen die Vielfältigkeit der Verzahnung von Einflussfaktoren auf die Wirtschaftlichkeit verdeutlichen.

<table>
<thead>
<tr>
<th>14. Literatur:</th>
<th>Vorlesungsmanuskript</th>
</tr>
</thead>
<tbody>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>372001 Vorlesung Kaufmännisches Facility Management</td>
</tr>
<tr>
<td></td>
<td>372002 Übung Kaufmännisches Facility Management</td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Präsenzzeit: 21 h</td>
</tr>
<tr>
<td></td>
<td>Selbststudiumszeit / Nacharbeitszeit: 69 h</td>
</tr>
<tr>
<td></td>
<td>Gesamt: 90 h</td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>37201 Kaufmännisches Facility Management (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Institut für Baubetriebslehre</td>
</tr>
</tbody>
</table>
Modul: 34840 Workshop Unternehmensgründung

2. Modulkürzel: 020200910
5. Moduldauer: 1 Semester
3. Leistungspunkte: 3.0 LP
6. Turnus: jedes 2. Semester, SoSe
4. SWS: 2.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Fritz Berner
9. Dozenten: Michael Hager

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Technikpädagogik
→ Hauptfach Bautechnik -->Baubetrieb -->Wahlcontainer
→
M.Sc. Technikpädagogik
→ Wahlpflichtfach Bautechnik -->c) Baubetrieb -->c) Techn. Ausbau Wahl
→
M.Sc. Technikpädagogik
→ hochaffines Wahlpflichtfach Bautechnik -->WPF Baubetrieb -->Wahlcontainer
→
M.Sc. Technikpädagogik
→ Hauptfach Bautechnik -->Baubetrieb -->Wahlcontainer
→
M.Sc. Technikpädagogik
→ Wahlpflichtfach Bautechnik -->c) Baubetrieb -->c) Techn. Ausbau Wahl
→
M.Sc. Technikpädagogik
→ hochaffines Wahlpflichtfach Bautechnik -->WPF Baubetrieb -->Wahlcontainer
→

11. Empfohlene Voraussetzungen:
• Immobilientechnik und Immobilienwirtschaft (M.Sc.): keine
• Bauingenieurwesen (M.Sc.):10970 Grundlagen der Betriebswirtschaftslehre für Ingenieure (im B.Sc.) oder Baubetriebslehre III

12. Lernziele:
Die Studierenden haben spezifische Kenntnisse zur Unternehmensgründung, sind in der Lage, einen Business Plan sowie eine Präsentation für die Banken auszuarbeiten.

13. Inhalt:
1) Unternehmensidee und Unternehmensbild: Geschäftsidee und Unternehmenskultur
2) Wesentliche Rahmenpunkte der Unternehmensführung: Produkt, Marketing, Mitarbeiter, Organisation
3) Erstellung eines Business Plans: Ertrag, Kosten, Kapitalbedarf
4) Erstellung einer Bankenpräsentation: Präsentationsstruktur, Präsentationslayout, Präsentationstyp
5) Unternehmensgründung: Informationsgewinnung, Rechtsformen, Gewerberecht, Buchhaltungspflichten und Steuern, Zahlungsverkehr, Risiken

14. Literatur:
• wird von Dozenten bekanntgegeben

15. Lehrveranstaltungen und -formen: 348401 Workshop Unternehmensgründung

16. Abschätzung Arbeitsaufwand:
• Präsenzzeit: ca. 21 h
• Selbststudium: ca. 39 h
• Vor-/Nachbereitung Übungen: 30 h

17. Prüfungsnummer/n und -name: 34841 Workshop Unternehmensgründung (BSL), schriftlich, eventuell mündlich, 60 Min., Gewichtung: 1.0, Workshop Unternehmensgründung (BSL), schriftlich und mündlich, Gewichtung: 1.0: 0.6 schriftlich; 0.4, lehrveranstaltungsbegleitende Hausübung mit Präsentation

18. Grundlage für ...

19. Medienform:

20. Angeboten von: Institut für Baubetriebslehre
5240 d) Tragwerksbemessung und Konstruktion

Zugeordnete Module:
5241 d) Tragwerksbemessung und Konstruktion Pflicht
5242 d) Tragwerksbemessung und Konstruktion Wahl
5241 d) Tragwerksbemessung und Konstruktion Pflicht

Zugeordnete Module:
- 10760 Verbindungen, Anschlüsse
- 10770 Schlanke Tragwerke (Vorspannung und Stabilität)
Modul: 10770 Schlanke Tragwerke (Vorspannung und Stabilität)

4. SWS: 5.0 7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Ulrike Kuhlmann
9. Dozenten: • Ulrike Kuhlmann • Balthasar Novak

10. Zuordnung zum Curriculum in diesem Studiengang:

M.Sc. Technikpädagogik, PO 2009, 2. Semester
➞ Affines Wahlpflichtfach Bautechnik --> Vertiefungsrichtung d) Tragwerksbemessung und Konstruktion --> Tragwerksbemessung und Konstruktion Pflichtfächer

M.Sc. Technikpädagogik, PO 2009, 2. Semester
➞ Hauptfach Bautechnik --> Tragwerksbemessung und Konstruktion --> Pflichtcontainer

M.Sc. Technikpädagogik, PO 2009, 2. Semester
➞ Wahlpflichtfach Bautechnik --> d) Tragwerksbemessung und Konstruktion --> d) Tragwerksbemessung und Konstruktion Pflicht

M.Sc. Technikpädagogik, PO 2009, 2. Semester
➞ hochaffines Wahlpflichtfach Bautechnik --> WPF Tragwerksbemessung und Konstruktion --> Pflichtcontainer

M.Sc. Technikpädagogik, PO 2015, 2. Semester
➞ Hauptfach Bautechnik --> Tragwerksbemessung und Konstruktion --> Pflichtcontainer

M.Sc. Technikpädagogik, PO 2015, 2. Semester
➞ Wahlpflichtfach Bautechnik --> d) Tragwerksbemessung und Konstruktion --> d) Tragwerksbemessung und Konstruktion Pflicht

M.Sc. Technikpädagogik, PO 2015, 2. Semester
➞ hochaffines Wahlpflichtfach Bautechnik --> WPF Tragwerksbemessung und Konstruktion --> Pflichtcontainer

11. Empfohlene Voraussetzungen: 10650 Werkstoffübergreifendes Konstruieren und Entwerfen (P)

12. Lernziele:

Die Studierenden beherrschen die Grundlagen des Entwerfen und Konstruierens von Tragwerken.

Die Studierenden kennen die Möglichkeiten zur Nutzung günstiger Maßnahmen (wie z.B. Vorspannung) und verstehen den Kraftfluss in Bauteilen und Bauwerken nachzuvollziehen.

13. Inhalt:

Folgende Inhalte werden vermittelt:
• Einsatzmöglichkeiten und Auslegung von vorgespannten Elementen und Systemen
• Dimensionierung und Konstruktion von Spannbeton
• Stabwerkmodellierung für die Einleitung von Kräften in D-Bereichen im Spannbetonbau
• Dimensionierung von Stäben aus Stahl/ Holz/ Stahlbeton gegen Stabilitätsversagen
• Ermittlung Knicklängen
• Nachweis Stabknicken (Ersatzstabverfahren / Nachweis Theorie II: Ordnung)
• Biegedrillknicken (Nachweise und konstruktive Maßnahmen)
• Grundlagen der Dimensionierung von dünnen Scheibenelementen (Beulen)

14. Literatur:
• Vorlesungsskript, Übungskript (beides erhältlich im Kopierlädle)
• Leonhardt Vorlesungen über Massivbau
• Petersen Stabilität, Roik Vorlesungen

15. Lehrveranstaltungen und -formen:
• 107701 Vorlesung Schlanke Tragwerke (Vorspannung und Stabilität)
• 107702 Übung Schlanke Tragwerke (Vorspannung und Stabilität)

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 70 h
Hausübung: 20 h
Selbststudium: 105 h
Gesamt: 195 h

17. Prüfungsnummer/n und -name:
• 10771 Schlanke Tragwerke (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0,
• V Vorleistung (USL-V), schriftlich, eventuell mündlich, Prüfungsvorleistung: 2 Hausübungen (1 Hausübung vom ILEK (Teil A und B) und 1 Hausübung vom KE) und 1 Kolloquium (1 Kolloquium gemeinsam vom ILEK und KE). Wichtige Hinweisschreiben bezüglich der Prüfungen.

18. Grundlage für ...:

19. Medienform:

20. Angeboten von:
Modul: 10760 Verbindungen, Anschlüsse

2. Modulkürzel: 020700002
3. Leistungspunkte: 6.0 LP
4. SWS: 5.0
5. Modul: 10760
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Ulrike Kuhlmann
9. Dozenten: • Ulrike Kuhlmann
 • Balthasar Novak
10. Zuordnung zum Curriculum in diesem Studiengang:
 M.Sc. Technikpädagogik, PO 2009, 1. Semester
 ➔ Affines Wahlpflichtfach Bautechnik --> Vertiefungsrichtung d)
 Tragwerksbemessung und Konstruktion --> Tragwerksbemessung
 und Konstruktion Pflichtfächer
 ➔
 M.Sc. Technikpädagogik, PO 2009, 1. Semester
 ➔ Hauptfach Bautechnik --> Tragwerksbemessung und Konstruktion --
 > Pflichtcontainer
 ➔
 M.Sc. Technikpädagogik, PO 2009, 1. Semester
 ➔ Wahlpflichtfach Bautechnik --> d) Tragwerksbemessung und
 Konstruktion --> d) Tragwerksbemessung und Konstruktion Pflicht
 ➔
 M.Sc. Technikpädagogik, PO 2009, 1. Semester
 ➔ hochaffines Wahlpflichtfach Bautechnik --> WPF
 Tragwerksbemessung und Konstruktion --> Pflichtcontainer
 ➔
 M.Sc. Technikpädagogik, PO 2015, 1. Semester
 ➔ Hauptfach Bautechnik --> Tragwerksbemessung und Konstruktion --
 > Pflichtcontainer
 ➔
 M.Sc. Technikpädagogik, PO 2015, 1. Semester
 ➔ Wahlpflichtfach Bautechnik --> d) Tragwerksbemessung und
 Konstruktion --> d) Tragwerksbemessung und Konstruktion Pflicht
 ➔
 M.Sc. Technikpädagogik, PO 2015, 1. Semester
 ➔ hochaffines Wahlpflichtfach Bautechnik --> WPF
 Tragwerksbemessung und Konstruktion --> Pflichtcontainer
 ➔
11. Empfohlene Voraussetzungen: Grundkenntnisse werkstoffübergreifendes Konstruieren und Entwerfen
12. Lernziele: Die Studierenden sind in der Lage, zu konstruieren und insbesondere die
 Schnittstellen zwischen Bauteilen bzw. zwischen Werkstoffen zu planen
 und zu dimensionieren. Sie können statische Modellvorgaben wie Gelenk
 oder Einspannung in reale Konstruktionsdetails umsetzen.
 Die Studenten beherrschen die Grundlagen, die hierzu erforderlich
 sind, wie die Ermittlung des Kraft- und Spannungszustands in den
 zu verbindenden Bauteilen, das Tragverhalten der verschiedenen
 Verbindungsmittel, die Knotenausbildung durch Anschlüsse und die
 Modellierung und Bemessung von Stabwerkmodellen.
13. Inhalt: Folgende Inhalte werden vermittelt:
 Grundlagen
• Mechanische Verbindungsmittel (Schrauben, Dübel, Nägel usw.)
• Flächige Verbindungen (Schweißen, Kleben, Leimen usw.)

Ermittlung von Beanspruchungen im Querschnitt

• Querkraft
• Torsion
• Biegung

Zusammengesetzte Querschnitte / Verbundquerschnitte

• Stahl / Stahl
• Stahl / Stahlbeton
• Holz / Stahlbeton

Knotenausbildung / Anschlüsse im Stahlbau und Holzbau

• Normalkraftanschlüsse / Fachwerkknoten
• Querkraftanschlüsse / Auflager (Gelenkige Anschlüsse)
• Biegesteife Anschlüsse und Stöße

Bemessung und Konstruktion von Detailbereichen im Stahlbetonbau mittels Stabwerksmodellen

• Scheiben- und Plattentragwerke
• Lasteinstrahlung in Auflagerbereichen
• Konsolen / Auflager
• Rahmenecken
• Räumliche Scheibentragwerke

14. **Literatur:**

• Vorlesungsskript, Übungsskript
• Petersen Stahlbau
• Neuhaus Lehrbuch des Ingenieurholzbau
• Leonhardt Vorlesungen über Massivbau

15. **Lehrveranstaltungen und -formen:**

• 107601 Vorlesung Verbindungen, Anschlüsse
• 107602 Übung Verbindungen, Anschlüsse

16. **Abschätzung Arbeitsaufwand:**

Präsenzzeit:	70 h
Hausübung:	20 h
Selbststudium:	105 h
Gesamt:	**195 h**

17. **Prüfungsnummer/n und -name:**

• 10761 Verbindungen, Anschlüsse (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0,
• V Vorleistung (USL-V), schriftlich, eventuell mündlich, Prüfungsvorleistung: 2 Hausübungen (1 Hausübung vom ILEK und 1 Hausübung vom KE) und 1 Kolloquium (1 Kolloquium gemeinsam vom ILEK und KE). Wichtige Hinweisschreiben bezüglich der Prüfungen.

18. **Grundlage für ... :**

19. **Medienform:**

20. **Angeboten von:**

Institut für Konstruktion und Entwurf
5242 d) Tragwerksbemessung und Konstruktion Wahl

<table>
<thead>
<tr>
<th>Zugeordnete Module</th>
<th>Modulebeschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>12540</td>
<td>CAD/CAM im Stahlbau</td>
</tr>
<tr>
<td>12550</td>
<td>Holzbaukonstruktionen</td>
</tr>
<tr>
<td>12560</td>
<td>Ingenieurholzbau</td>
</tr>
<tr>
<td>12570</td>
<td>Temporäre Bauten</td>
</tr>
<tr>
<td>12580</td>
<td>Vortragsseminar Bauwerke und Bauweisen</td>
</tr>
<tr>
<td>12590</td>
<td>Produktionsverfahren im Stahlbau</td>
</tr>
<tr>
<td>12600</td>
<td>Mauerwerksbauten</td>
</tr>
<tr>
<td>12610</td>
<td>Bauen mit Fertigteilen</td>
</tr>
<tr>
<td>12620</td>
<td>CAD im Stahlbetonbau</td>
</tr>
</tbody>
</table>
Modul: 12610 Bauen mit Fertigteilen

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>020900109</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>5. Modul dauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Hubert Bachmann
| | • Herbert Jürgen Kahmer |
| | → Affines Wahlpflichtfach Bautechnik --> Vertiefungsrichtung d) Tragwerksbemessung und Konstruktion --> Tragwerksbemessung und Konstruktion Wahlfächer
| | → M.Sc. Technikpädagogik, PO 2009, 2. Semester
| | → Hauptfach Bautechnik --> Tragwerksbemessung und Konstruktion --> Wahlcontainer
| | → M.Sc. Technikpädagogik, PO 2009, 2. Semester
| | → Wahlpflichtfach Bautechnik --> d) Tragwerksbemessung und Konstruktion --> d) Tragwerksbemessung und Konstruktion Wahl
| | → M.Sc. Technikpädagogik, PO 2009, 2. Semester
| | → hochaffines Wahlpflichtfach Bautechnik --> WPF
| | Tragwerksbemessung und Konstruktion --> Wahlcontainer
| | → M.Sc. Technikpädagogik, PO 2015, 2. Semester
| | → Hauptfach Bautechnik --> Tragwerksbemessung und Konstruktion --> Wahlcontainer
| | → M.Sc. Technikpädagogik, PO 2015, 2. Semester
| | → Wahlpflichtfach Bautechnik --> d) Tragwerksbemessung und Konstruktion --> d) Tragwerksbemessung und Konstruktion Wahl
| | → M.Sc. Technikpädagogik, PO 2015, 2. Semester
| | → hochaffines Wahlpflichtfach Bautechnik --> WPF
| | Tragwerksbemessung und Konstruktion --> Wahlcontainer
| | →
| 11. Empfohlene Voraussetzungen: | keine |
| 12. Lernziele: | Die Studierenden sind für die Spezialitäten beim Bauen mit Fertigteilen sensibilisiert (zusätzliche Nachweise durch Fertigung, Transport und Detailausbildung, Wirtschaftlichkeit), sowie beherrschen das Entwerfen, die Bemessung und Konstruktion von Fertigteilkonstruktionen. |
| 13. Inhalt: | • Entwurf und Gestaltung von Fertigteilkonstruktionen
| | • Planung und Herstellung von Fertigteilen
| | • Fertigteilelemente
| | • Knotenpunkte
| | • Lagerung
| | • Halbfertigteile (Elementdecken, Elementwände)
| | • Ausbildung Weißer Wannen |
| 14. Literatur: | • Skript zur Vorlesung "Bauen mit Fertigteilen" und zur Übung
| | • Beton-Kalender |
| 15. Lehrveranstaltungen und -formen: | 126101 Vorlesung Bauen mit Fertigteilen
| | 126102 Übung Bauen mit Fertigteilen |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: ca. 28 h
| | Selbstdstudium: ca. 56 h
| | Gesamt: ca. 84 h |
| 17. Prüfungsnummer/n und -name: | 12611 Bauen mit Fertigteilen (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0, benotete Studienleistung (BSL): Klausur (60 Minuten) |
| 18. Grundlage für ... : | |
| 19. Medienform: | Tafel, Overhead, PowerPoint |
| 20. Angeboten von: | Institut für Leichtbau, Entwerfen und Konstruieren |
Modul: 12620 CAD im Stahlbetonbau

2. Modulkürzel: 020900110
3. Leistungspunkte: 3.0 LP
4. SWS: 2.0

5. Modul: 12620 CAD im Stahlbetonbau
7. Sprache: Deutsch

9. Dozenten: Balthasar Novak

10. Zuordnung zum Curriculum in diesem Studiengang:

M.Sc. Technikpädagogik, PO 2009, 2. Semester
- Affines Wahlpflichtfach Bautechnik --> Vertiefungsrichtung d)
 Tragwerksbemessung und Konstruktion --> Tragwerksbemessung und Konstruktion Wahlfächer
- M.Sc. Technikpädagogik, PO 2009, 2. Semester
 - Hauptfach Bautechnik --> Tragwerksbemessung und Konstruktion --> Wahlcontainer
- M.Sc. Technikpädagogik, PO 2009, 2. Semester
 - Wahlpflichtfach Bautechnik --> d) Tragwerksbemessung und Konstruktion --> d) Tragwerksbemessung und Konstruktion Wahl
- M.Sc. Technikpädagogik, PO 2009, 2. Semester
 - hochaffines Wahlpflichtfach Bautechnik --> WPF
 Tragwerksbemessung und Konstruktion --> Wahlcontainer
- M.Sc. Technikpädagogik, PO 2015, 2. Semester
 - Hauptfach Bautechnik --> Tragwerksbemessung und Konstruktion --> Wahlcontainer
- M.Sc. Technikpädagogik, PO 2015, 2. Semester
 - Wahlpflichtfach Bautechnik --> d) Tragwerksbemessung und Konstruktion --> d) Tragwerksbemessung und Konstruktion Wahl
- M.Sc. Technikpädagogik, PO 2015, 2. Semester
 - hochaffines Wahlpflichtfach Bautechnik --> WPF
 Tragwerksbemessung und Konstruktion --> Wahlcontainer

11. Empfohlene Voraussetzungen: keine

12. Lernziele:
Die Studierenden werden in die Lage versetzt, die Ergebnisse aus der Bemessung in die für die Ausführung notwendigen baureifen Schal- und Bewehrungspläne umzusetzen. Hierbei beherrscht er insbesondere die richtige Interpretation der Berechnungsergebnisse und die geschickte Wahl der Bewehrung in Bezug auf die konstruktive Durchbildung.

13. Inhalt:
Der Schwerpunkt der Veranstaltung liegt auf dem computergestützten Konstruieren und Bemessen von Stahlbetontragwerken.
- Konstruieren und Bemessen von Stahlbetontragwerken
- Erstellen von Schal- und Bewehrungsplänen
- Programmpaket SOFiCAD/ SOFiPLUS

14. Literatur:
- Skript zur Vorlesung "CAD im Stahlbetonbau"
- Übungsaufgaben zur Bearbeitung
15. Lehrveranstaltungen und -formen:
 - 126201 Vorlesung CAD im Stahlbetonbau
 - 126202 Übung CAD im Stahlbetonbau

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: ca. 28 h
 Selbststudium: ca. 28 h
 Studienarbeit: ca. 34 h
 Gesamt: ca. 90 h

17. Prüfungsnummer/n und -name:
 12621 CAD im Stahlbetonbau (BSL), Sonstiges, Gewichtung: 1.0,
 Benotete Studienleistung (BSL): Studienarbeit mit mündlicher
 Prüfung, ca. 20 Minuten

18. Grundlage für ...:

19. Medienform:
 Tafel, Overhead, PowerPoint

20. Angeboten von:
 Institut für Leichtbau, Entwerfen und Konstruieren
Modul: 12540 CAD/CAM im Stahlbau

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>20700103</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modulduer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Ulrike Kuhlmann</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Ulrike Kuhlmann</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- B.Sc. Technikpädagogik, PO 2011, 3. Semester
 - Vertiefungsrichtung f) Holzbau (*Derzeit noch nicht im Angebot*)
 - Vorgezogene Master-Module
- B.Sc. Technikpädagogik, PO 2011, 3. Semester
- M.Sc. Technikpädagogik
 - Hauptfach Bautechnik --> Holzbau (nur in Kombination mit Tragwerksbemessung und -konstruktion als affines Wahlpflichtfach möglich) --> Pflichtcontainer
- M.Sc. Technikpädagogik
 - Hauptfach Bautechnik --> Tragwerksbemessung und Konstruktion --> Wahlcontainer
- M.Sc. Technikpädagogik
 - Hauptfach Maschinenbau --> Fertigungstechnik --> Pflichtcontainer Fertigungstechnik-Hauptfach
- M.Sc. Technikpädagogik
 - Wahlpflichtfach Bautechnik --> d) Tragwerksbemessung und Konstruktion --> d) Tragwerksbemessung und Konstruktion Wahl
- M.Sc. Technikpädagogik
 - Wahlpflichtfach Bautechnik --> f) Holzbau (nur in Kombination mit Tragwerksbemessung und -konstruktion möglich) --> f) Holzbau Pflicht
- M.Sc. Technikpädagogik
 - Wahlpflichtfach Maschinenbau --> Fertigungstechnik --> Wahlcontainer Fertigungstechnik (Wahl)
- M.Sc. Technikpädagogik
 - Wahlpflichtfach Maschinenbau --> WPF Fertigungstechnik --> Pflichtcontainer Fertigungstechnik
- M.Sc. Technikpädagogik
 - hochaffines Wahlpflichtfach Bautechnik --> WPF Holzbau (nur in Kombination mit Tragwerksbemessung und -konstruktion als affines Wahlpflichtfach möglich) --> Pflichtcontainer
- M.Sc. Technikpädagogik
 - hochaffines Wahlpflichtfach Bautechnik --> WPF Tragwerksbemessung und Konstruktion --> Wahlcontainer
11. Empfohlene Voraussetzungen: Grundkenntnisse werkstoffübergreifendes Konstruieren und Entwerfen

13. Inhalt: Inhalt der Vorlesung
 • Einführung
 • Grundsätze für das Konstruieren mit CAD-Systemen
 • Grundlagen des Renderings
 • Planungs- und Fertigungsablauf im Stahlbauunternehmen
 • Grundlagen der Stahlbau-Modellierung
 • Datenaustausch/Schnittstellen

 Inhalt der Übung
 • Benutzerführung
 • Grundfunktionen von AutoCAD
 • Volumenbearbeitung in AutoCAD
 • Rendering in AutoCAD
14. Literatur: Skript
AutoCAD

15. Lehrveranstaltungen und -formen:
• 125401 Vorlesung CAD/CAM im Stahlbau
• 125402 Übung CAD/CAM im Stahlbau

16. Abschätzung Arbeitsaufwand:
<table>
<thead>
<tr>
<th>Präsenzzeit</th>
<th>Selbststudium</th>
<th>Gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>70 h</td>
<td>120 h</td>
<td>190 h</td>
</tr>
</tbody>
</table>

17. Prüfungsnummer/n und -name:
• 12541 CAD/CAM im Stahlbau (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0, Unbenotete Studienleistung als Vorleistung (USL-V): Hausübung
• V Vorleistung (USL-V), schriftliche Prüfung, 60 Min., Wichtige Hinweisschreiben bezüglich der Prüfungen.

18. Grundlage für ...

19. Medienform: Vorlesung & Übung am PC

20. Angeboten von: Institut für Konstruktion und Entwurf
Modul: 12550 Holzbaukonstruktionen

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>020700104</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Ulrike Kuhlmann</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Ulrike Kuhlmann</td>
</tr>
<tr>
<td>10. Zuordnung zum Curriculum in diesem Studiengang:</td>
<td></td>
</tr>
</tbody>
</table>

- B.Sc. Technikpädagogik, PO 2011, 4. Semester
 - Vertiefungsrichtung f) Holzbau (*Derzeit noch nicht im Angebot*)
- B.Sc. Technikpädagogik, PO 2011, 4. Semester
 - Vorgezogene Master-Module
- B.Sc. Technikpädagogik, PO 2011, 4. Semester
 - Wahlpflichtfach -->Wahlpflichtfach Bautechnik -->Pflichtcontainer
 Holzbau

 - M.Sc. Technikpädagogik, PO 2009, 2. Semester
 - Affines Wahlpflichtfach Bautechnik -->Vertiefungsrichtung d) Tragwerksbemessung und Konstruktion -->Tragwerksbemessung und Konstruktion Wahlfächer

 - M.Sc. Technikpädagogik, PO 2009, 2. Semester
 - Affines Wahlpflichtfach Bautechnik -->Vertiefungsrichtung f) Holzbau (Nur in Kombination mit Tragwerksbemessung und Konstruktion) (*Derzeit noch nicht im Angebot*) -->Holzbau Pflichtfächer

 - M.Sc. Technikpädagogik, PO 2009, 2. Semester
 - Hauptfach Bautechnik -->Holzbau (nur in Kombination mit Tragwerksbemessung und -konstruktion als affines Wahlpflichtfach möglich) -->Pflichtcontainer

 - M.Sc. Technikpädagogik, PO 2009, 2. Semester
 - Hauptfach Bautechnik -->Tragwerksbemessung und Konstruktion -->Wahlcontainer

 - M.Sc. Technikpädagogik, PO 2009, 2. Semester
 - Wahlpflichtfach Bautechnik -->d) Tragwerksbemessung und Konstruktion -->d) Tragwerksbemessung und Konstruktion Wahl

 - M.Sc. Technikpädagogik, PO 2009, 2. Semester
 - Wahlpflichtfach Bautechnik -->f) Holzbau (nur in Kombination mit Tragwerksbemessung und -konstruktion möglich) -->f) Holzbau Pflicht

 - M.Sc. Technikpädagogik, PO 2009, 2. Semester
 - hochaffines Wahlpflichtfach Bautechnik -->WPF Holzbau (nur in Kombination mit Tragwerksbemessung und -konstruktion als affines Wahlpflichtfach möglich) -->Pflichtcontainer

 - M.Sc. Technikpädagogik, PO 2009, 2. Semester
 - hochaffines Wahlpflichtfach Bautechnik -->WPF
 Tragwerksbemessung und Konstruktion -->Wahlcontainer
M.Sc. Technikpädagogik, PO 2015, 2. Semester
→ Hauptfach Bautechnik -->Tragwerksbemessung und Konstruktion --> Wahlcontainer

M.Sc. Technikpädagogik, PO 2015, 2. Semester
→ Wahlpflichtfach Bautechnik -->d) Tragwerksbemessung und Konstruktion -->d) Tragwerksbemessung und Konstruktion Wahl

M.Sc. Technikpädagogik, PO 2015, 2. Semester
→ Wahlpflichtfach Bautechnik -->f) Holzbau (nur in Kombination mit Tragwerksbemessung und -konstruktion möglich) -->f) Holzbau Pflicht

M.Sc. Technikpädagogik, PO 2015, 2. Semester
→ hochaffines Wahlpflichtfach Bautechnik -->WPF Holzbau (nur in Kombination mit Tragwerksbemessung und -konstruktion als affines Wahlpflichtfach möglich) -->Pflichtcontainer

M.Sc. Technikpädagogik, PO 2015, 2. Semester
→ hochaffines Wahlpflichtfach Bautechnik -->WPF Tragwerksbemessung und Konstruktion -->Wahlcontainer

11. Empfohlene Voraussetzungen:
Grundkenntnisse werkstoffübergreifendes Konstruieren und Entwerfen

12. Lernziele:
Mit vertieften Kenntnissen über die Bemessung von Bauteilen und Anschlüssen im Holzbau, ist der Student in der Lage typische Holzbauwerke zu beurteilen und die entsprechenden holzspezifischen Nachweise zu verwenden. Schwerpunkt ist der Holzhausbau: An praxisrelevanten Beispielen über einfache Holztragwerke (Dächer, Decken und Wände) werden die erworbenen Kenntnisse konsolidiert.

13. Inhalt:
• Holz als Werkstoff (Materialaufbau, Anisotropie, Physikalische und Mechanische Eigenschaften, Streuung der Eigenschaften)
• Hygroskopizität und Kriechen des Holzes
• Bemessung von Bauteilen
• Verbindungen im Holzbau (Nachgiebigkeit und Bemessung)
• Zusammengesetzte Holzquerschnitte und Holz-Beton-Verbund
• Bemessung von Scheiben aus HWS für die Aussteifung von Bauwerken
• Auflager, Anschlüsse und Verstärkungen im Holzhausbau
• Baulicher und Chemischer Holzschutz
• Bauphysikalische Besonderheiten des Holzes

14. Literatur:
• Skript zur Vorlesung und zur Übung.

15. Lehrveranstaltungen und -formen:
• 125501 Vorlesung Holzbaukonstruktion
• 125502 Übung Holzbaukonstruktion

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 28 h
Selbststudium: 56 h
Gesamt: 84 h

17. Prüfungsnummer/n und -name:
12551 Holzbaukonstruktionen (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0, Wichtige Hinweisschreiben bezüglich der Prüfungen.
<table>
<thead>
<tr>
<th>18. Grundlage für ...</th>
<th>12560 Ingenieurholzbau</th>
</tr>
</thead>
<tbody>
<tr>
<td>19. Medienform:</td>
<td>Tafel, Overhead, PowerPoint, Film</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Institut für Konstruktion und Entwurf</td>
</tr>
</tbody>
</table>
Modul: 12560 Ingenieurholzbau

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>020700105</th>
<th>5. Modulduauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. Modulverantwortlicher:</th>
<th>Univ.-Prof. Ulrike Kuhlmann</th>
</tr>
</thead>
<tbody>
<tr>
<td>9. Dozenten:</td>
<td>Ulrike Kuhlmann</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10. Zuordnung zum Curriculum in diesem Studiengang:</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.Sc. Technikpädagogik, PO 2011, 5. Semester</td>
</tr>
<tr>
<td>→ Vertiefungsrichtung f) Holzbau (Derzeit noch nicht im Angebot)</td>
</tr>
<tr>
<td>B.Sc. Technikpädagogik, PO 2011, 5. Semester</td>
</tr>
<tr>
<td>→ Vorgezogene Master-Module</td>
</tr>
<tr>
<td>B.Sc. Technikpädagogik, PO 2011, 5. Semester</td>
</tr>
<tr>
<td>→ Wahlpflichtfach -->Wahlpflichtfach Bautechnik -->Pflichtcontainer Holzbau</td>
</tr>
<tr>
<td>→ M.Sc. Technikpädagogik, PO 2009, 3. Semester</td>
</tr>
<tr>
<td>→ Affines Wahlpflichtfach Bautechnik --Vertiefungsrichtung d) Tragwerksbemessung und Konstruktion -->Tragwerksbemessung und Konstruktion Wahlfächer</td>
</tr>
<tr>
<td>→ M.Sc. Technikpädagogik, PO 2009, 3. Semester</td>
</tr>
<tr>
<td>→ Affines Wahlpflichtfach Bautechnik --Vertiefungsrichtung f) Holzbau (Nur in Kombination mit Tragwerksbemessung und Konstruktion) (Derzeit noch nicht im Angebot) -->Holzbau Wahlfächer</td>
</tr>
<tr>
<td>→ M.Sc. Technikpädagogik, PO 2009, 3. Semester</td>
</tr>
<tr>
<td>→ Hauptfach Bautechnik -->Holzbau (nur in Kombination mit Tragwerksbemessung und -konstruktion als affines Wahlpflichtfach möglich) -->Pflichtcontainer</td>
</tr>
<tr>
<td>→ M.Sc. Technikpädagogik, PO 2009, 3. Semester</td>
</tr>
<tr>
<td>→ Hauptfach Bautechnik -->Tragwerksbemessung und Konstruktion -->Wahlcontainer</td>
</tr>
<tr>
<td>→ M.Sc. Technikpädagogik, PO 2009, 3. Semester</td>
</tr>
<tr>
<td>→ Wahlpflichtfach Bautechnik -->d) Tragwerksbemessung und Konstruktion -->d) Tragwerksbemessung und Konstruktion Wahl</td>
</tr>
<tr>
<td>→ M.Sc. Technikpädagogik, PO 2009, 3. Semester</td>
</tr>
<tr>
<td>→ Wahlpflichtfach Bautechnik -->f) Holzbau (nur in Kombination mit Tragwerksbemessung und -konstruktion möglich) -->f) Holzbau Pflicht</td>
</tr>
<tr>
<td>→ M.Sc. Technikpädagogik, PO 2009, 3. Semester</td>
</tr>
<tr>
<td>→ hochaffines Wahlpflichtfach Bautechnik -->WPF Holzbau (nur in Kombination mit Tragwerksbemessung und -konstruktion als affines Wahlpflichtfach möglich) -->Pflichtcontainer</td>
</tr>
<tr>
<td>→ M.Sc. Technikpädagogik, PO 2009, 3. Semester</td>
</tr>
<tr>
<td>→ hochaffines Wahlpflichtfach Bautechnik -->WPF Tragwerksbemessung und Konstruktion -->Wahlcontainer</td>
</tr>
</tbody>
</table>
11. Empfohlene Voraussetzungen: Holzbaukonstruktionen

• Weitgespannte Tragwerke aus Holz
• Fachwerkkonstruktionen
• Aussteifungen, Wind- und Stabilisierungsvorhänge
• Spezielle Stabilitätsprobleme des Ingenieurholzbau
• Auflager, Anschlüsse und Verstärkungen im Ingenieurholzbau
• Holzbrücken inklusive Ermüdungsnachweis
• Transport und Montage von Holzbauwerken
• Brandschutz im Holzbau
• Anwendung von Holz in Erdbebengebiete

14. Literatur:
• Skript zur Vorlesung und zur Übung;

15. Lehrveranstaltungen und -formen:
• 125601 Vorlesung Ingenieurholzbau
• 125602 Übung Ingenieurholzbau

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 28 h
Selbststudium: 56 h
Gesamt: 84 h
<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>12561 Ingenieurholzbau (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0, Wichtige Hinweisschreiben bezüglich der Prüfungen.</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Tafel, Overhead, PowerPoint, Film</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Institut für Konstruktion und Entwurf</td>
</tr>
</tbody>
</table>
Modul: 12600 Mauerwerksbauten

2. Modulkürzel: 020900108 5. Modulduauer: 1 Semester
3. Leistungspunkte: 3.0 LP 6. Turnus: unregelmäßig
4. SWS: 2.0 7. Sprache: Deutsch
9. Dozenten: Balthasar Novak

10. Zuordnung zum Curriculum in diesem Studiengang:
 M.Sc. Technikpädagogik, PO 2009, 2. Semester
 → Affines Wahlpflichtfach Bautechnik -->Vertiefungsrichtung d)
 Tragwerksbemessung und Konstruktion -->Tragwerksbemessung
 und Konstruktion Wahlflächer
 →
 M.Sc. Technikpädagogik, PO 2009, 2. Semester
 → Hauptfach Bautechnik -->Tragwerksbemessung und Konstruktion --
 >Wahlcontainer
 →
 M.Sc. Technikpädagogik, PO 2009, 2. Semester
 → Wahlpflichtfach Bautechnik -->d) Tragwerksbemessung und
 Konstruktion -->d) Tragwerksbemessung und Konstruktion Wahl
 →
 M.Sc. Technikpädagogik, PO 2009, 2. Semester
 → hochaffines Wahlpflichtfach Bautechnik -->WPF
 Tragwerksbemessung und Konstruktion -->Wahlcontainer
 →
 M.Sc. Technikpädagogik, PO 2015, 2. Semester
 → Hauptfach Bautechnik -->Tragwerksbemessung und Konstruktion --
 >Wahlcontainer
 →
 M.Sc. Technikpädagogik, PO 2015, 2. Semester
 → Wahlpflichtfach Bautechnik -->d) Tragwerksbemessung und
 Konstruktion -->d) Tragwerksbemessung und Konstruktion Wahl
 →
 M.Sc. Technikpädagogik, PO 2015, 2. Semester
 → hochaffines Wahlpflichtfach Bautechnik -->WPF
 Tragwerksbemessung und Konstruktion -->Wahlcontainer

11. Empfohlene Voraussetzungen: keine

12. Lernziele: Die Studierenden beherrschen Entwurfsgrundlagen sowie die
 Grundlagen der Bemessung von unbewehrten und bewehrten
 Mauerwerksbauten unter Berücksichtigung von Trag- und
 Gebrauchstauglichkeitskriterien.

13. Inhalt:
 • Baustoffverhalten Stein, Mörtel, Bauteilverhalten Mauerwerk
 • Unbewehrtes Mauerwerk, vereinfachtes und genaueres Verfahren
 nach DIN EN 1996
 • Wandkonstruktionen bei unbewehrtem Mauerwerk
 • Bewehrtes Mauerwerk
 • Konstruktionsdetails
 • Aussteifung von Hochbauten
 • Vorgefertigte Bauteile aus Mauerwerk
 • Schäden im Mauerwerksbau

14. Literatur:
 • Skript zur Vorlesung "Mauerwerksbauten" und zur Übung

Stand: 07. Oktober 2015
| 15. Lehrveranstaltungen und -formen: | 126001 Vorlesung Mauerwerksbauten
| | 126002 Übung Mauerwerksbauten
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: ca. 28 h
| | Selbststudium: ca. 56 h
| | Gesamt: ca. 84 h
| 17. Prüfungsnummer/n und -name: | 12601 Mauerwerksbauten (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0, Benotete Studienleistungen (BSL): Klausur (60 Minuten)
| 18. Grundlage für …: |
| 19. Medienform: | Tafel, Overhead, PowerPoint
| 20. Angeboten von: | Institut für Leichtbau, Entwerfen und Konstruieren

• Mauerwerk-Kalender
• DIN EN 1996
Modul: 12590 Produktionsverfahren im Stahlbau

2. Modulkürzel: 020700111
5. Modulduauer: 1 Semester

3. Leistungspunkte: 3.0 LP
6. Turnus: jedes 2. Semester, SoSe

4. SWS: 2.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Ulrike Kuhlmann
9. Dozenten: Jörg Lange

10. Zuordnung zum Curriculum in diesem Studiengang:

 M.Sc. Technikpädagogik, PO 2009, 1. Semester
 ➝ Affines Wahlpflichtfach Bautechnik --> Vertiefungsrichtung d)
 Tragwerksbemessung und Konstruktion --> Tragwerksbemessung
 und Konstruktion Wahlfläche
 ➝ M.Sc. Technikpädagogik, PO 2009, 1. Semester
 ➝ Hauptfach Bautechnik --> Tragwerksbemessung und Konstruktion
 ➝ Wahlcontainer
 ➝ M.Sc. Technikpädagogik, PO 2009, 1. Semester
 ➝ Wahlpflichtfach Bautechnik --> d) Tragwerksbemessung und
 Konstruktion --> d) Tragwerksbemessung und Konstruktion Wahl
 ➝ M.Sc. Technikpädagogik, PO 2009, 1. Semester
 ➝ hochaffines Wahlpflichtfach Bautechnik --> WPF
 Tragwerksbemessung und Konstruktion --> Wahlcontainer
 ➝ M.Sc. Technikpädagogik, PO 2015, 1. Semester
 ➝ Hauptfach Bautechnik --> Tragwerksbemessung und Konstruktion
 ➝ Wahlcontainer
 ➝ M.Sc. Technikpädagogik, PO 2015, 1. Semester
 ➝ Wahlpflichtfach Bautechnik --> d) Tragwerksbemessung und
 Konstruktion --> d) Tragwerksbemessung und Konstruktion Wahl
 ➝ M.Sc. Technikpädagogik, PO 2015, 1. Semester
 ➝ hochaffines Wahlpflichtfach Bautechnik --> WPF
 Tragwerksbemessung und Konstruktion --> Wahlcontainer

11. Empfohlene Voraussetzungen: keine

12. Lernziele:

 Der/Die Studierende kann den kompletten Bauablauf von der Planung
 über die Herstellung bis zur Fertigstellung im Stahlbau erfassen.
 Damit wird eine integrale Planung ermöglicht, so dass insbesondere
 Probleme an der Schnittstelle zwischen einzelnen Gewerken reduziert
 werden können. Darüber hinaus kann der/die Studierende Auswirkungen
 einzelner Änderungen auf den gesamten Bauablauf abschätzen.

13. Inhalt:

 Planung
 • durch Architekt und Tragwerksplaner des Bauherren
 (Leistungsbeschreibung)
 • Planung in der ausführenden Firma (Zeichnungen, Stücklistenwesen)
 auch unter Berücksichtigung neuerer Organisationsformen in Hinblick
 auf CAD
 • Fertigungs- und montagegerechtes Konstruieren
• Schnittstellen mit anderen Gewerken - Übergabe von Daten an Massivbau oder Fassadenbau
• Materialwirtschaft

Fertigung
• Arbeitsvorbereitung - Leistungsansätze
• Werkstattdurchlauf: Zuschneiden, Zusammenbau, Schweißen, Korrosionsschutz
• Versand/Schwertransport
• Nachunternehmer zwischen Werk und Baustelle: Verzinkerei, Beschichter

Montage
• Montageverfahren und -ablauf
• Hubgeräte/Greifzüge/Hubbühnen/Litzenhub
• Strom- und Kraftquellen, Schweiß- und Schraubgeräte
• Gerüste und Montagehilfen
• Arbeitssicherheit

Kalkulation
• Angebotskalkulation, Einzelbauteil- bzw. Tonnenkalkulation
• Zwischenkalkulation (Ablauforganisation/ Projektmanager)
• Abrechnung, VOB/C-relevantes (Nebenleistungen, etc.) Tabellentext, Benutzerführung

14. Literatur:
Online-Vorlesung der TU Darmstadt
http://www.stahlbau.tu-darmstadt.de/lehre/produktionsverfahrenimstahlbau/torsionundbiegedrillknicken_3.de.jsp

15. Lehrveranstaltungen und -formen:
125901 Vorlesung Produktionsverfahren im Stahlbau

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 28 h
Selbststudium: 56 h
Gesamt: 84 h

17. Prüfungsnummer/n und -name:
12591 Produktionsverfahren im Stahlbau (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0, Wichtige Hinweisschreiben bezüglich der Prüfungen.

18. Grundlage für ...

19. Medienform:
Medienform: Online von der TU Darmstadt

20. Angeboten von:
Institut für Konstruktion und Entwurf
Modul: 12570 Temporäre Bauten

2. Modulkürzel: 020700106
5. Modulsdauer: 1 Semester
3. Leistungspunkte: 3.0 LP
4. SWS: 2.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Ulrike Kuhlmann
9. Dozenten: Ulrike Kuhlmann

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technikpädagogik, PO 2011, 3. Semester
→ Vertiefungsrichtung f) Holzbau (*Derzeit noch nicht im Angebot*)

B.Sc. Technikpädagogik, PO 2011, 3. Semester
→ Vorgezogene Master-Module

B.Sc. Technikpädagogik, PO 2011, 3. Semester
→ Wahlpflichtfach -->Wahlpflichtfach Bautechnik -->Pflichtcontainer Holzbau

M.Sc. Technikpädagogik, PO 2009, 1. Semester
→ Affines Wahlpflichtfach Bautechnik -->Vertiefungsrichtung d)
 Tragwerksbemessung und Konstruktion -->Tragwerksbemessung und Konstruktion Wahlfächer

M.Sc. Technikpädagogik, PO 2009, 1. Semester
→ Affines Wahlpflichtfach Bautechnik -->Vertiefungsrichtung f)
 Holzbau (Nur in Kombination mit Tragwerksbemessung und Konstruktion) (*Derzeit noch nicht im Angebot*) -->Holzbau Wahlfächer

M.Sc. Technikpädagogik, PO 2009, 1. Semester
→ Hauptfach Bautechnik -->Holzbau (nur in Kombination mit Tragwerksbemessung und -konstruktion als affines Wahlpflichtfach möglich) -->Pflichtcontainer

M.Sc. Technikpädagogik, PO 2009, 1. Semester
→ Hauptfach Bautechnik -->Tragwerksbemessung und Konstruktion -->Wahlcontainer

M.Sc. Technikpädagogik, PO 2009, 1. Semester
→ Wahlpflichtfach Bautechnik -->d) Tragwerksbemessung und Konstruktion -->d) Tragwerksbemessung und Konstruktion Wahl

M.Sc. Technikpädagogik, PO 2009, 1. Semester
→ Wahlpflichtfach Bautechnik -->f) Holzbau (nur in Kombination mit Tragwerksbemessung und -konstruktion möglich) -->f) Holzbau Pflicht

M.Sc. Technikpädagogik, PO 2009, 1. Semester
→ hochaffines Wahlpflichtfach Bautechnik -->WPF Holzbau (nur in Kombination mit Tragwerksbemessung und -konstruktion als affines Wahlpflichtfach möglich) -->Pflichtcontainer

M.Sc. Technikpädagogik, PO 2009, 1. Semester
→ hochaffines Wahlpflichtfach Bautechnik -->WPF
 Tragwerksbemessung und Konstruktion -->Wahlcontainer
11. Empfohlene Voraussetzungen: Modul 10650 (Werkstoffübergreifendes Entwerfen und Konstruieren) (Pflicht)
Modul 10770 (hier: Stabilität) (Empfohlen)

12. Lernziele:

13. Inhalt:
Das Fach wird als Seminar angeboten. Die folgenden Themen stehen dabei zur Auswahl:

- Einleitung und Übersicht über unterschiedliche Gerüsttypen
- Baurechtliche Situation
- Arbeits- und Schutzgerüste:
 - Komponenten, Aufbau, bauliche Durchbildung und Aussteifung
 - Lastannahmen
 - Tragfähigkeit und Bemessung inkl. Bemessungsbeispiel
- Gerüstknoten und Kupplungen:
 - Übersicht Knotentypen
 - Tragverhalten und Behandlung nichtlinearer Einzelfedern
- Traggerüste:
 - Aufbau und bauliche Durchbildung
 - Lastannahmen und Bemessung inkl. Bemessungsbeispiel
- Sonderthemen: Fahrgerüste, Hängegerüste, Gitterträger und modulare temporäre Überdachungssysteme

Weitere, eigene Themenvorschläge werden in Absprache mit dem Betreuer gerne akzeptiert.

Anmeldung zur Vorlesung per E-Mail an: adrian.just@ke.uni-stuttgart.de
15. Lehrveranstaltungen und -formen:	125701 Vorlesung Temporäre Bauten
16. Abschätzung Arbeitsaufwand:	Präsenzzeit: 20 h Selbststudium: 64 h Gesamt: 84 h
17. Prüfungsnummer/n und -name:	12571 Temporäre Bauten (BSL), Sonstiges, 30 Min., Gewichtung: 1.0, 25- bis 30-minütige Präsentationsprüfung mit Handout Wichtige Hinweisschreiben bezüglich der Prüfungen.
18. Grundlage für ...:	
19. Medienform:	Tafel, PowerPoint
20. Angeboten von:	Institut für Konstruktion und Entwurf
Modul: 12580 Vortragsseminar Bauwerke und Bauweisen

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>020700108</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Modulduauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Ulrike Kuhlmann</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Ulrike Kuhlmann</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- **B.Sc. Technikpädagogik, PO 2011, 3. Semester**
 - Vertiefungsrichtung f) Holzbau (*Derzeit noch nicht im Angebot*)
 - Vorgezogene Master-Module

- **B.Sc. Technikpädagogik, PO 2011, 3. Semester**
 - Wahlpflichtfach -->Wahlpflichtfach Bautechnik -->Pflichtcontainer Holzbau

- **B.Sc. Technikpädagogik, PO 2011, 3. Semester**
 - Wahlpflichtfach -->Wahlpflichtfach Bautechnik -->Pflichtcontainer Holzbau

- **M.Sc. Technikpädagogik, PO 2009, 1. Semester**
 - Affines Wahlpflichtfach Bautechnik -->Vertiefungsrichtung d) Tragwerksbemessung und Konstruktion -->Tragwerksbemessung und Konstruktion Wahlfächer

- **M.Sc. Technikpädagogik, PO 2009, 1. Semester**
 - Affines Wahlpflichtfach Bautechnik -->Vertiefungsrichtung f) Holzbau (Nur in Kombination mit Tragwerksbemessung und Konstruktion (*Derzeit noch nicht im Angebot*) -->Holzbau Wahlfächer

- **M.Sc. Technikpädagogik, PO 2009, 1. Semester**
 - Hauptfach Bautechnik -->Holzbau (nur in Kombination mit Tragwerksbemessung und -konstruktion als affines Wahlpflichtfach möglich) -->Pflichtcontainer

- **M.Sc. Technikpädagogik, PO 2009, 1. Semester**
 - Hauptfach Bautechnik -->Tragwerksbemessung und Konstruktion -->Wahlcontainer

- **M.Sc. Technikpädagogik, PO 2009, 1. Semester**
 - Wahlpflichtfach Bautechnik -->d) Tragwerksbemessung und Konstruktion -->d) Tragwerksbemessung und Konstruktion Wahl

- **M.Sc. Technikpädagogik, PO 2009, 1. Semester**
 - Wahlpflichtfach Bautechnik -->f) Holzbau (nur in Kombination mit Tragwerksbemessung und -konstruktion möglich) -->f) Holzbau Pflicht

- **M.Sc. Technikpädagogik, PO 2009, 1. Semester**
 - hochaffines Wahlpflichtfach Bautechnik -->WPF Holzbau (nur in Kombination mit Tragwerksbemessung und -konstruktion als affines Wahlpflichtfach möglich) -->Pflichtcontainer

- **M.Sc. Technikpädagogik, PO 2009, 1. Semester**
 - hochaffines Wahlpflichtfach Bautechnik -->WPF
 - Tragwerksbemessung und Konstruktion -->Wahlcontainer
11. Empfohlene Voraussetzungen:

13. Inhalt: Die begleitende Vorlesung vermittelt Grundlagen und gibt Hilfestellung bei der Vorbereitung und Ausarbeitung der schriftlichen Arbeit und des Vortrags. Sie gliedert sich in:

- Einführung in das wissenschaftliche Arbeiten
- Äußere Form der schriftlichen Arbeit
- Vortrag und Rhetorik

Durch den eigenständigen Vortrag und die Diskussion im Seminarkreis wird den Studierenden die Möglichkeit gegeben, das Präsentieren selbst einzuüben.

14. Literatur: Skriptum zum Seminar

15. Lehrveranstaltungen und -formen: 125801 Seminar Bauwerke und Bauweisen

16. Abschätzung Arbeitsaufwand:

Präsenzzzeit:	28h
Selbststudium:	56h
Gesamt:	84h

17. Prüfungsnummer/n und -name: 12581 Vortragsseminar Bauwerke und Bauweisen (BSL), Sonstiges, Gewichtung: 1.0, Studienleistung: Abgabe Seminararbeit und Vortrag Wichtige Hinweisschreiben bezüglich der Prüfungen.

18. Grundlage für ... :

19. Medienform: Tafel, Overhead, Powerpoint

20. Angeboten von: Institut für Konstruktion und Entwurf
5250 e) Geotechnik

Zugeordnete Module:

5251 e) Geotechnik Pflicht
5252 e) Geotechnik Wahl
5251 e) Geotechnik Pflicht

Zugeordnete Module:

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
</tr>
</thead>
<tbody>
<tr>
<td>10750</td>
<td>Geotechnik II: Grundbau</td>
</tr>
<tr>
<td>12630</td>
<td>Geotechnik III</td>
</tr>
<tr>
<td>12640</td>
<td>Geostatik</td>
</tr>
<tr>
<td>12650</td>
<td>Tunnelbau</td>
</tr>
</tbody>
</table>
Modul: 12640 Geostatik

2. Modulkürzel: 020600004
5. Modulduer: 2 Semester
3. Leistungspunkte: 6.0 LP
4. SWS: 5.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Christian Moormann
9. Dozenten: • Hermann Schad
 • Christian Moormann

10. Zuordnung zum Curriculum in diesem Studiengang:

M.Sc. Technikpädagogik, PO 2009, 2. Semester
 ➞ Affines Wahlpflichtfach Bautechnik -->Vertiefungsrziehung e) Geotechnik (*Derzeit noch nicht im Angebot*) -->Geotechnik Pflichtfacher
 ➞
M.Sc. Technikpädagogik, PO 2009, 2. Semester
 ➞ Hauptfach Bautechnik -->Geotechnik -->Pflichtcontainer
 ➞
M.Sc. Technikpädagogik, PO 2009, 2. Semester
 ➞ Wahlpflichtfach Bautechnik -->e) Geotechnik -->e) Geotechnik Pflicht
 ➞
M.Sc. Technikpädagogik, PO 2009, 2. Semester
 ➞ hochaffines Wahlpflichtfach Bautechnik -->WPF Geotechnik -->Pflichtcontainer
 ➞
M.Sc. Technikpädagogik, PO 2015, 2. Semester
 ➞ Hauptfach Bautechnik -->Geotechnik -->Pflichtcontainer
 ➞
M.Sc. Technikpädagogik, PO 2015, 2. Semester
 ➞ Wahlpflichtfach Bautechnik -->e) Geotechnik -->e) Geotechnik Pflicht
 ➞
M.Sc. Technikpädagogik, PO 2015, 2. Semester
 ➞ hochaffines Wahlpflichtfach Bautechnik -->WPF Geotechnik -->Pflichtcontainer
 ➞

11. Empfohlene Voraussetzungen:

Geotechnik I: Bodenmechanik (Modul 10640)
Geotechnik II: Grundbau (Modul 10750)
Geotechnik III (Modul 12630)

12. Lernziele:

In der Lehrveranstaltung „FE-Anwendungen in der Geotechnik“ erhalten die Studierenden Einblicke in die konkrete Anwendung der Methode der Finiten Elemente auf Probleme aus der geotechnischen Praxis.

13. Inhalt:

Schwerpunkte der Lehrveranstaltung „Numerische Verfahren in der Geotechnik“ sind:

- Mathematische und physikalische Grundlagen
- Theorien der Lamellen- und Gleitkörperverfahren
- Aufbereitung der Plastizitätstheorie für das Charakteristikenverfahren und für Finite Elemente
- Grundlagen der FE-Methode
- Anwendung der FE-Methode für lineare und nichtlineare Spannungs-Verformungs-Probleme
- Sickerströmungen und Fragestellungen der Konsolidation

Die Lehrveranstaltung „FE-Anwendungen in der Geotechnik“ bietet aufbauend auf den theoretischen Inhalten der Lehrveranstaltung „Numerische Verfahren in der Geotechnik“ eine intensive Einführung in die Anwendung der Finiten Elemente Methode (FEM) zur Analyse von Verformungs- und Stabilitätsproblemen in der Geotechnik. Folgende Themen stehen im Mittelpunkt:

- Berücksichtigung komplexer Baugrundverhältnisse
- Ermittlung grundlegender Bodenparameter
- Simulation von Bauabläufen
- Verwendung unterschiedlicher Stoffgesetze
- Interpretation der Berechnungsergebnisse

Die Lehrveranstaltung „Stoffgesetze in der Geotechnik“ beschäftigt sich mit der stofflichen Modellierung des Mehrphasenmediums Boden, im einzelnen:

- Bedeutung von Stoffgesetzen für die Geotechnik
- Merkmale des Bodenverhaltens
- Mathematische Struktur von Stoffgesetzen
- Hierarchie und Bestandteil von Stoffgesetzen
- Stoffgesetze in der Praxis: u.a. Mohr-Coulomb Modell, Nichtlineare Stoffgesetze, hyperbolische Spannungs-Dehnungsbeziehungen, deviatorische und volumetrische Verfestigung, Ein- und Mehrflächenfließmodelle, Hypoplastizität

14. Literatur:

Vorlesungs- und Übungsunterlagen werden über ILIAS bereitgestellt, außerdem:
15. Lehrveranstaltungen und -formen:
- 126402 Vorlesung Numerische Verfahren in der Geotechnik
- 126403 Vorlesung FE-Anwendungen in der Geotechnik

16. Abschätzung Arbeitsaufwand:

Numerische Verfahren in der Geotechnik:
- Präsenzzeit (2 SWS): 28 h
- Selbststudium / Nacharbeitszeit (2 h pro Präsenzstunde): ca. 56 h
- Gesamt: ca. 84 h

FE-Anwendungen in der Geotechnik:
- Kursteilnahme (3 Tage a 8 h): 24 h
- Selbststudium / Nacharbeitszeit (3 Tage a 8 h): ca. 24 h
- Gesamt: ca. 48 h

Stoffgesetze in der Geotechnik:
- Präsenzzeit (1 SWS): 14 h
- Selbststudium / Nacharbeitszeit (2 h pro Präsenzstunde): ca. 28 h
- Gesamt: ca. 42 h

insgesamt: ca. 174 h

17. Prüfungsnummer/n und -name:
12641 Geostatik (PL), mündliche Prüfung, 60 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:
Beamerpräsentationen, Tafelaufschriftie
in der Lehrveranstaltung "FE-Anwendungen in der Geotechnik": Übungen am PC

20. Angeboten von:
Institut für Geotechnik
Modul: 10750 Geotechnik II: Grundbau

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>020600002</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>5.0</td>
</tr>
<tr>
<td>5. Modulduar:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Christian Moormann</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Christian Moormann</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- M.Sc. Technikpädagogik, PO 2009, 1. Semester
 - Affines Wahlpflichtfach Bautechnik --> Vertiefungsrichtung e) Geotechnik (*Derzeit noch nicht im Angebot*) --> Geotechnik
 - Pflichtfächer
 - Hauptfach Bautechnik --> Geotechnik --> Pflichtcontainer

- M.Sc. Technikpädagogik, PO 2009, 1. Semester
 - Wahlpflichtfach Bautechnik --> e) Geotechnik --> e) Geotechnik
 - Pflicht

- M.Sc. Technikpädagogik, PO 2009, 1. Semester
 - hochaffines Wahlpflichtfach Bautechnik --> WPF Geotechnik --> Pflichtcontainer

- M.Sc. Technikpädagogik, PO 2015, 1. Semester
 - Hauptfach Bautechnik --> Geotechnik --> Pflichtcontainer

- M.Sc. Technikpädagogik, PO 2015, 1. Semester
 - Wahlpflichtfach Bautechnik --> e) Geotechnik --> e) Geotechnik
 - Pflicht

- M.Sc. Technikpädagogik, PO 2015, 1. Semester
 - hochaffines Wahlpflichtfach Bautechnik --> WPF Geotechnik --> Pflichtcontainer

11. Empfohlene Voraussetzungen:

- Geotechnik I: Bodenmechanik (Modul 10750)

12. Lernziele:

Den Studierenden ist die spezielle Baugrundsituation in Stuttgart bekannt. Sie wissen um die daraus erwachsenden Schwierigkeiten und Herausforderungen bei der Umsetzung von geotechnischen Großprojekten.

Die Studierenden wissen um die Notwendigkeit, strömendes Grundwasser bei der Planung und bei der Bemessung im Grundbau zu berücksichtigen und sind auch in der Lage, dies sachgerecht vorzunehmen.

Den Studierenden sind die bei Flachgründungen grundsätzlich zu führenden Standsicherheitsnachweise geläufig. Sie kennen das
Bettungsmodul- und das Steifezifferverfahren zur Berücksichtigung der Baugrund-Tragwerk-Interaktion und haben die Grundlagen dieser Verfahren verstanden.

Die bei Pfahlgründungen und Kombinierten Pfahl-Plattengründungen (KPP) zum Einsatz kommenden verschiedenen Pfahlsysteme sind den Studierenden im Hinblick auf Herstellungs- und Bemessungsverfahren bekannt. Sie haben die Pfahlprobebelastung als Verfahren zur versuchstechnischen Bestimmung der Pfahltragfähigkeit kennen gelernt.

Sie kennen verschiedene Verbau- und Stützwandsysteme, die bei der Herstellung tiefer Baugruben zum Einsatz kommen und können sowohl einfach, als auch mehrfach gestützte oder verankerte Verbauwände auch unter Berücksichtigung von Wasserdrücken bemessen.

Mit den Typen und Herstellungsverfahren ausgewählter geotechnischer Spezialverfahren wie Verankerungen, Zugpfählen und Injektionen sind Sie vertraut.

Die Studierenden haben vertiefte Kenntnisse in die möglichen Versagenmechanismen bei Böschungen und Geländesprüngen. Sie kennen verschiedene Methoden zur Böschungssicherung.

Die Studierenden sind in der Lage, elementare grundbautechnische Konzepte und Nachweisverfahren problemspezifisch anzuwenden. Die vermittelten Kenntnisse und Fertigkeiten haben bei Ihnen die Grundlagen für das vertiefte Verständnis komplexerer grundbaulicher Konzepte gelegt.

13. Inhalt:

- Baugrundsituation in Stuttgart: Schwierigkeiten und Herausforderung bei geotechnischen Großprojekten
- Entwurf und Berechnung von Stützmauern
- Vernagelung
- Bewehrte Erde, Einsatz von Geokunststoffen
- Berücksichtigung von strömendem Grundwasser bei der Planung und Bemessung
- Flachgründungen: Bettungsmodul-/ Steifezifferverfahren
- Pfahlgründungen I: Systeme, Herstellung
- Pfahlgründungen II: Bemessung, Probebelastung
- Kombinierte Pfahl-Plattengründungen (KPP)
- Baugrundverbesserungsverfahren
- Standsicherheit von Böschungen
- Böschungen II: Methoden der Böschungssicherung
- Erd- und Dammbau
- Tiefe Baugruben I: Verbauwände und Stützsysteme
- Tiefe Baugruben II: Entwurf und Berechnung einfach gestützter Verbauwände
- Tiefe Baugruben III: Entwurf und Berechnung mehrfach gestützter Verbauwände / Unterfangungen
• Verankerungen und Zugpfähle
• Injektionen und geotechnische Spezialverfahren
• Geotechnische Messverfahren, Beobachtungsmethoden
• Numerische Verfahren in der Geotechnik und Sonderthemen, Einführung Master

14. Literatur: Vorlesungs- und Übungsunterlagen werden über ILIAS bereitgestellt, außerdem:

- Witt, K.J. (Hrsg.): Grundbau-Taschenbuch Teil 1 bis 3, 7. Aufl., Ernst & Sohn, Berlin, 2009
- Empfehlungen des Arbeitskreises Baugruben EAB, 5. Aufl., Ernst & Sohn, Berlin, 2011

15. Lehrveranstaltungen und -formen:

- 107501 Vorlesung Geotechnik II: Grundbau
- 107502 Übung Geotechnik II: Grundbau

16. Abschätzung Arbeitsaufwand:

- Präsenzzeit (5 SWS): 70 h
- Selbststudium / Nacharbeitszeit (1,5 h pro Präsenzstunde): ca. 105 h
- Gesamt: ca. 175 h

17. Prüfungsnummer/n und -name:

- 10751 Geotechnik II: Grundbau (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0, Teil 1: 30 Minuten, ohne HilfsmittelTeil 2: 90 Minuten, mit zugelassenen Hilfsmitteln
- V Vorleistung (USL-V), schriftlich, eventuell mündlich, 6 Hausübungen, 2 Kolloquien und die Teilnahme an vier Vorträgen im Rahmen des Geotechnik-Seminars

18. Grundlage für ... :

- 12630 Geotechnik III
- 12640 Geostatik
- 23800 Geotechnische Feld- und Laboruntersuchungen
- 38290 Geotechnischer Entwurf (Projektseminar)
- 12650 Tunnelbau
- 38280 Erd- und Dammbau, Geokunststoffe

19. Medienform:

- Beamerpräsentationen, Tafelaufschriften

20. Angeboten von:

- Institut für Geotechnik
Modul: 12630 Geotechnik III

4. SWS: 4.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Christian Moormann
9. Dozenten: • Christian Moormann • Bernd Zweschper

10. Zuordnung zum Curriculum in diesem Studiengang:

M.Sc. Technikpädagogik, PO 2009, 2. Semester
 ➔ Affines Wahlpflichtfach Bautechnik -->Vertiefungsrichtung e) Geotechnik (*Derzeit noch nicht im Angebot*) -->Geotechnik Pflichtfacher
 ➔
M.Sc. Technikpädagogik, PO 2009, 2. Semester
 ➔ Hauptfach Bautechnik -->Geotechnik -->Pflichtcontainer
 ➔
M.Sc. Technikpädagogik, PO 2009, 2. Semester
 ➔ Wahlpflichtfach Bautechnik -->e) Geotechnik -->e) Geotechnik Pflicht
 ➔
M.Sc. Technikpädagogik, PO 2009, 2. Semester
 ➔ hochaffines Wahlpflichtfach Bautechnik -->WPF Geotechnik -->Pflichtcontainer
 ➔
M.Sc. Technikpädagogik, PO 2015, 2. Semester
 ➔ Hauptfach Bautechnik -->Geotechnik -->Pflichtcontainer
 ➔
M.Sc. Technikpädagogik, PO 2015, 2. Semester
 ➔ Wahlpflichtfach Bautechnik -->e) Geotechnik -->e) Geotechnik Pflicht
 ➔
M.Sc. Technikpädagogik, PO 2015, 2. Semester
 ➔ hochaffines Wahlpflichtfach Bautechnik -->WPF Geotechnik -->Pflichtcontainer
 ➔

11. Empfohlene Voraussetzungen:
Geotechnik I: Bodenmechanik (Modul 10640)
Geotechnik II: Grundbau (Modul 10750)

12. Lernziele:

13. Inhalt:
Bodenmechanik II:
• normal- und überkonsolidierte Böden
• undranierte Scherfestigkeit
• Mechanik von Erdströmen
• Erddruck III
• Kriechen von Böden

Grundbau II:
• Tiefe Baugruben IV
• Pfahlgründungen IV
• Baugrundverbesserungsverfahren II
• Injektionen und geotechnische Spezialverfahren

Felsmechanik:
• Gefügemodelle
• Festigkeitshypothesen
• Stoffgesetze
• Berechnungsverfahren
• Primärspannungen
• hydraulische Probleme im Fels
• Erkundung und Versuchstechnik

14. Literatur:
Vorlesungs- und Übungsunterlagen werden über ILIAS bereitgestellt, außerdem:

• Witt, K.J. (Hrsg.): Grundbau-Taschenbuch Teile 1 bis 3, 7. Aufl., Ernst & Sohn, Berlin, 2009
• Empfehlungen des Arbeitsausschusses Ufereinfassungen EAU 2009, 10. Aufl., Ernst & Sohn, Berlin, 2009
• Empfehlungen des Arbeitskreises Baugruben EAB, 5. Aufl., Ernst & Sohn, Berlin 2011
• Empfehlungen des Arbeitskreises Pfähle EA Pfähle, 2. Aufl., Ernst & Sohn, Berlin, 2012
• Hanisch, J., Katzenbach, R., König, G.: Kombinierte Pfahl-Plattengründungen, Ernst & Sohn, Berlin, 2001

15. Lehrveranstaltungen und -formen:

• 126301 Vorlesung Geotechnik III
• 126302 Vorlesung Bodenmechanik II
• 126303 Übung Bodenmechanik II
• 126304 Vorlesung Felsmechanik
• 126305 Übung Felsmechanik
• 126306 Vorlesung Grundbau II
• 126307 Übung Grundbau II
• 126308 Tutorium Kompaktkurs

16. Abschätzung Arbeitsaufwand:

Bodenmechanik II:
Präsenzzeit (1 SWS): 14 h
Selbststudium / Nacharbeitszeit (2 h pro Präsenzstunde): ca. 28 h
Gesamt: ca. 42 h

Felsmechanik:
Präsenzzeit (2 SWS): 28 h
Selbststudium / Nacharbeitszeit (2 h pro Präsenzstunde): ca. 56 h
Gesamt: ca. 84 h

Grundbau II:
Präsenzzeit (1 SWS): 14 h
Selbststudium / Nacharbeitszeit (2 h pro Präsenzstunde): ca. 28 h
Gesamt: ca. 42 h

insgesamt: ca. 168 h

| 17. Prüfungsnummer/n und -name: | • 12631 Geotechnik III (PL), mündliche Prüfung, 60 Min., Gewichtung: 1,0
• V Vorleistung (USL-V), schriftlich, eventuell mündlich |

| 18. Grundlage für ... : | • 38290 Geotechnischer Entwurf (Projektseminar)
• 12640 Geostatik |

| 19. Medienform: | Beamerpräsentationen, Tafelaufschriebe |

| 20. Angeboten von: | Institut für Geotechnik |
Modul: 12650 Tunnelbau

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>020600006</th>
<th>5. Modulduauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>5.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: | Univ.-Prof. Christian Moormann

9. Dozenten:
- Christian Moormann
- Claus-Dieter Hauck
- Christian Wawrzyniak
- Peter-Michael Mayer

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>M.Sc. Technikpädagogik, PO 2009, 2. Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Affines Wahlpflichtfach Bautechnik --> Vertiefungsrichtung e) Geotechnik ("Derzeit noch nicht im Angebot") --> Geotechnik Pflichtfächter</td>
</tr>
<tr>
<td>Hauptfach Bautechnik --> Geotechnik --> Pflichtcontainer</td>
</tr>
<tr>
<td>Wahlpflichtfach Bautechnik --> e) Geotechnik --> e) Geotechnik Pflicht</td>
</tr>
<tr>
<td>hochaffines Wahlpflichtfach Bautechnik --> WPF Geotechnik --> Pflichtcontainer</td>
</tr>
<tr>
<td>Hauptfach Bautechnik --> Geotechnik --> Pflichtcontainer</td>
</tr>
<tr>
<td>Wahlpflichtfach Bautechnik --> e) Geotechnik --> e) Geotechnik Pflicht</td>
</tr>
<tr>
<td>hochaffines Wahlpflichtfach Bautechnik --> WPF Geotechnik --> Pflichtcontainer</td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen:
- Geotechnik I: Bodenmechanik
- Geotechnik II: Grundbau

12. Lernziele:
Sie wissen um die gängigen Tunnelbauweisen, ihre jeweiligen Besonderheiten und Anwendungsgrenzen und haben verschiedene Sicherungsmaßnahmen kennen gelernt, die beim Auffahren von Tunneln zum Einsatz kommen.

13. Inhalt:

- Grundlagen des Tunnelbaus, Tunnelbauweisen
- Herstellung von Tunneln in offener und in geschlossener Bauweise
- Ausführungsgrundlagen von Tunneln in geschlossener Bauweise,
- Sicherungsverfahren, Ausbau und Auskleidung
- Sprengvortrieb, Spritzbetonbauweise (NÖT), Messervortrieb,
 Tunnelbohrmaschinen, Schildmaschinen, Rohrvortrieb
- Entwurf der Tunnelbauwerke, Auswirkungen des Tunnelbaus
- Tunnelausrüstung
- Tunnelstatik: Ortsbruststabilität, Setzungsmulde, Schnittkräfte in der Tunnelschale
- Messinstrumente und -verfahren:
- Beobachten an Böschungen
- Setzungen und Setzungsunterschiede
- Pfähle und Probelleistungen
- Verdichten im Erdbau
- Erddruckmessungen
- Grundwasserbeobachtungen

14. Literatur:

Skripte und Übungsunterlagen werden in der Vorlesung ausgegeben, außerdem:

- Maidl, B.: Handbuch des Tunnel- und Stollenbaus, Bd. 1, 2. Aufl.,
 Glückauf, Essen, 2004
- DGGT: Taschenbuch für den Tunnelbau (Jahresbände seit 1977),
 Glückauf, Essen
- Kolymbas, D.: Geotechnik - Tunnelbau und Tunnelmechanik, Springer,
 Berlin, 1997
- E DIN 4107-1:2005 Geotechnische Messungen - Teil 1: Grundlagen,
 Deutsches Institut für Normung e.V., Beuth, Berlin, 2005
- Linkwitz, K.: Messtechnische Überwachung von Hängen, Böschungen
 und Stützmauern, in: Grundbau-Taschenbuch Teil 2, 6. Auflage, Ernst
 & Sohn, Berlin, 2001
- Fecker, E.: Geotechnische Messgeräte und Feldversuche im Fels,
 Ferdinand Enke, Stuttgart, 1997
- Hana, T.H.: Field Instrumentation in Geotechnical Engineering,
 Trans Tech Publications, Clausthal-Zellerfeld, 1985
- Deutsche Gesellschaft für Geotechnik, AK 2.1: Empfehlungen für
 statische und dynamische Pfahlprüfungen, 1998

15. Lehrveranstaltungen und -formen:

- 126501 Vorlesung Tunnelbau
- 126502 Vorlesung Entwurf und Ausrüstung von Tunneln
- 126503 Vorlesung Tunnelbaustatik
- 126504 Übung Tunnelbaustatik
- 126505 Vorlesung Maschineller Tunnelbau
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: ca. 52,5 h
Selbststudium: ca. 127,5 h |
| 17. Prüfungsnummer/n und -name: | 12651 Tunnelbau (PL), mündliche Prüfung, 60 Min., Gewichtung: 1.0 |
| 18. Grundlage für ... : | |
| 19. Medienform: | |
| 20. Angeboten von: | |
5252 e) Geotechnik Wahl
5260 f) Holzbau (nur in Kombination mit Tragwerksbemessung und -konstruktion möglich)

Zugeordnete Module: 5261 f) Holzbau Pflicht
5261 f) Holzbau Pflicht

Zugeordnete Module:
- 12540 CAD/CAM im Stahlbau
- 12550 Holzbaukonstruktionen
- 12560 Ingenieurholzbau
- 12570 Temporäre Bauten
- 12580 Vortragsseminar Bauwerke und Bauweisen
- 33520 Grundlagen der Holzbearbeitungstechnologie
- 37050 Arbeitssicherheit im Baubetrieb
Modul: 37050 Arbeitssicherheit im Baubetrieb

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>020200540</th>
<th>5. Modulduauer: 1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
<td>7. Sprache: Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Fritz Berner

9. Dozenten: Michael Aldinger

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technikpädagogik
 → Vorgezogene Master-Module

B.Sc. Technikpädagogik
 → Wahlpflichtfach -->Wahlpflichtfach Bautechnik -->Pflichtcontainer Holzbau
 →

M.Sc. Technikpädagogik
 → Hauptfach Bautechnik -->Baubetrieb -->Wahlcontainer
 →

M.Sc. Technikpädagogik
 → Hauptfach Bautechnik -->Holzbau (nur in Kombination mit Tragwerksbemessung und -konstruktion als affines Wahlpflichtfach möglich) -->Pflichtcontainer
 →

M.Sc. Technikpädagogik
 → Wahlpflichtfach Bautechnik -->c) Baubetrieb -->c) Techn. Ausbau Wahl
 →

M.Sc. Technikpädagogik
 → Wahlpflichtfach Bautechnik -->f) Holzbau (nur in Kombination mit Tragwerksbemessung und -konstruktion möglich) -->f) Holzbau Pflicht
 →

M.Sc. Technikpädagogik
 → hochaffines Wahlpflichtfach Bautechnik -->WPF Holzbau (nur in Kombination mit Tragwerksbemessung und -konstruktion als affines Wahlpflichtfach möglich) -->Pflichtcontainer
 →

M.Sc. Technikpädagogik
 → hochaffines Wahlpflichtfach Bautechnik -->WPF Baubetrieb -->Wahlcontainer
 →

M.Sc. Technikpädagogik
 → Hauptfach Bautechnik -->Baubetrieb -->Wahlcontainer
 →

M.Sc. Technikpädagogik
 → Wahlpflichtfach Bautechnik -->c) Baubetrieb -->c) Techn. Ausbau Wahl
 →

M.Sc. Technikpädagogik
 → Wahlpflichtfach Bautechnik -->f) Holzbau (nur in Kombination mit Tragwerksbemessung und -konstruktion möglich) -->f) Holzbau Pflicht
 →

M.Sc. Technikpädagogik
 → hochaffines Wahlfach Bautechnik -->WPF Holzbau -->Wahlcontainer
 →

M.Sc. Technikpädagogik
 → Hauptfach Bautechnik -->Baubetrieb -->Wahlcontainer
 →

M.Sc. Technikpädagogik
 → Wahlpflichtfach Bautechnik -->c) Baubetrieb -->c) Techn. Ausbau Wahl
 →

M.Sc. Technikpädagogik
 → Wahlpflichtfach Bautechnik -->f) Holzbau (nur in Kombination mit Tragwerksbemessung und -konstruktion möglich) -->f) Holzbau Pflicht
 →

M.Sc. Technikpädagogik
→ hochaffines Wahlpflichtfach Bautechnik --> WPF Holzbau (nur in Kombination mit Tragwerksbemessung und -konstruktion als affines Wahlpflichtfach möglich) --> Pflichtcontainer

→

M.Sc. Technikpädagogik

→ hochaffines Wahlpflichtfach Bautechnik --> WPF Baubetrieb --> Wahlcontainer

11. Empfohlene Voraussetzungen:
keine

12. Lernziele:
Die Studierenden besitzen arbeitsschutzfachliche Kenntnisse gemäß Anlage B zur RAB 30 (Regeln für den Arbeitsschutz auf Baustellen). Die arbeitsschutzfachlichen Kenntnisse sind eine wichtige Voraussetzung für die spätere Tätigkeit als Baustellenkoordinator.

13. Inhalt:

14. Literatur:
• Aldinger, Michael: Manuskript Arbeitssicherheit (wird jährlich aktualisiert)
• Info CD der BG BAU

15. Lehrveranstaltungen und -formen:
370501 Vorlesung und Übung Arbeitssicherheit im Baubetrieb

16. Abschätzung Arbeitsaufwand:
• Präsenzzeit: ca. 20 h
• Selbststudium und Exkursion: ca. 40 h
• Vor-/Nachbereitung, Übungen: ca. 30 h

17. Prüfungsnummer/n und -name:
37051 Arbeitssicherheit im Baubetrieb (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
Institut für Baubetriebslehre
Modul: 12540 CAD/CAM im Stahlbau

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>20700103</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modulduer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Ulrike Kuhlmann</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Ulrike Kuhlmann</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- B.Sc. Technikpädagogik, PO 2011, 3. Semester
 - Vertiefungsrichtung f) Holzbau (*Derzeit noch nicht im Angebot*)
- B.Sc. Technikpädagogik, PO 2011, 3. Semester
 - Vorgezogene Master-Module
- B.Sc. Technikpädagogik, PO 2011, 3. Semester
 - Wahlpflichtfach -->Wahlpflichtfach Bautechnik -->Pflichtcontainer
 - Holzbau
 - M.Sc. Technikpädagogik
 - Hauptfach Bautechnik -->Holzbau (nur in Kombination mit
 - Tragwerksbemessung und -konstruktion als affines Wahlpflichtfach
 - möglich) -->Pflichtcontainer
 - M.Sc. Technikpädagogik
 - Hauptfach Bautechnik -->Tragwerksbemessung und Konstruktion -->Wahlcontainer
- M.Sc. Technikpädagogik
 - Hauptfach Maschinenbau -->Fertigungstechnik -->Wahlcontainer
 - Fertigungstechnik-Hauptfach
 - M.Sc. Technikpädagogik
 - Wahlpflichtfach Bautechnik -->d) Tragwerksbemessung und
 - Konstruktion -->d) Tragwerksbemessung und Konstruktion Wahl
 - M.Sc. Technikpädagogik
 - Wahlpflichtfach Bautechnik -->f) Holzbau (nur in Kombination mit
 - Tragwerksbemessung und -konstruktion möglich) -->f) Holzbau
 - Pflicht
 - M.Sc. Technikpädagogik
 - Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Wahlcontainer
 - Fertigungstechnik (Wahl)
 - M.Sc. Technikpädagogik
 - Wahlpflichtfach Maschinenbau -->WPF Fertigungstechnik -->Pflichtcontainer Fertigungstechnik
 - M.Sc. Technikpädagogik
 - hochaffines Wahlpflichtfach Bautechnik -->WPF Holzbau (nur in
 - Kombination mit Tragwerksbemessung und -konstruktion als affines
 - Wahlpflichtfach möglich) -->Pflichtcontainer
 - M.Sc. Technikpädagogik
 - hochaffines Wahlpflichtfach Bautechnik -->WPF
 - Tragwerksbemessung und Konstruktion -->Wahlcontainer
Modulhandbuch: Master of Science Technikpädagogik

M.Sc. Technikpädagogik
M.Sc. Technikpädagogik
Hauptfach Bautechnik --> Tragwerksbemessung und Konstruktion --> Wahlcontainer

M.Sc. Technikpädagogik
Hauptfach Maschinenbau --> Fertigungstechnik --> Wahlcontainer

Fertigungstechnik-Hauptfach

M.Sc. Technikpädagogik
Wahlpflichtfach Bautechnik --> d) Tragwerksbemessung und Konstruktion --> d) Tragwerksbemessung und Konstruktion Wahl

M.Sc. Technikpädagogik
Wahlpflichtfach Bautechnik --> f) Holzbau (nur in Kombination mit Tragwerksbemessung und -konstruktion möglich) --> f) Holzbau Pflicht

M.Sc. Technikpädagogik
Wahlpflichtfach Maschinenbau --> Fertigungstechnik --> Wahlcontainer

Fertigungstechnik (Wahl)

M.Sc. Technikpädagogik
Wahlpflichtfach Maschinenbau --> WPF Fertigungstechnik --> Pflichtcontainer Fertigungstechnik

M.Sc. Technikpädagogik
hochaffines Wahlpflichtfach Bautechnik --> WPF Holzbau (nur in Kombination mit Tragwerksbemessung und -konstruktion als affines Wahlpflichtfach möglich) --> Pflichtcontainer

11. Empfohlene Voraussetzungen:
Grundkenntnisse werkstoffübergreifendes Konstruieren und Entwerfen

12. Lernziele:

13. Inhalt:
Inhalt der Vorlesung
• Einführung
• Grundsätze für das Konstruieren mit CAD-Systemen
• Grundlagen des Renderings
• Planungs- und Fertigungsablauf im Stahlbauunternehmen
• Grundlagen der Stahlbau-Modellierung
• Datenaustausch/Schnittstellen

Inhalt der Übung
• Benutzerführung
• Grundfunktionen von AutoCAD
• Volumenbearbeitung in AutoCAD
• Rendering in AutoCAD
14. Literatur: Skript
AutoCAD

15. Lehrveranstaltungen und -formen:
• 125401 Vorlesung CAD/CAM im Stahlbau
• 125402 Übung CAD/CAM im Stahlbau

16. Abschätzung Arbeitsaufwand:
| Präsenzzeit: | 70 h | Selbststudium: | 20 h | Gesamt: 190 h |

17. Prüfungsnummer/n und -name:
• 12541 CAD/CAM im Stahlbau (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0, Unbenotete Studienleistung als Vorleistung (USL-V): Hausübung
• V Vorleistung (USL-V), schriftliche Prüfung, 60 Min., Wichtige Hinweisschreiben bezüglich der Prüfungen

18. Grundlage für ...

19. Medienform: Vorlesung & Übung am PC

20. Angeboten von: Institut für Konstruktion und Entwurf
Modul: 33520 Grundlagen der Holzbearbeitungstechnologie

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>073310025</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>0.0</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>2 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

Modulverantwortlicher:
Prof. Uwe Heisel

Dozenten:
- Hans Dietz
- Marco Schneider

Zuordnung zum Curriculum in diesem Studiengang:

- **B.Sc. Technikpädagogik**
 - Vorzeigene Master-Module

- **B.Sc. Technikpädagogik**
 - Wahlpflichtfach --> Wahlpflichtfach Bautechnik --> Pflichtcontainer Holzbau

- **M.Sc. Technikpädagogik**
 - Hauptfach Bautechnik --> Holzbau (nur in Kombination mit Tragwerksbemessung und -konstruktion als affines Wahlpflichtfach möglich) --> Pflichtcontainer

- **M.Sc. Technikpädagogik**
 - Wahlpflichtfach Bautechnik --> f) Holzbau (nur in Kombination mit Tragwerksbemessung und -konstruktion möglich) --> f) Holzbau Pflicht

- **M.Sc. Technikpädagogik**
 - hochaffines Wahlpflichtfach Bautechnik --> WPF Holzbau (nur in Kombination mit Tragwerksbemessung und -konstruktion als affines Wahlpflichtfach möglich) --> Pflichtcontainer

- **M.Sc. Technikpädagogik**
 - Wahlpflichtfach Bautechnik --> f) Holzbau (nur in Kombination mit Tragwerksbemessung und -konstruktion möglich) --> f) Holzbau Pflicht

- **M.Sc. Technikpädagogik**
 - hochaffines Wahlpflichtfach Bautechnik --> WPF Holzbau (nur in Kombination mit Tragwerksbemessung und -konstruktion als affines Wahlpflichtfach möglich) --> Pflichtcontainer

Empfohlene Voraussetzungen:
keine

Lernziele:

Teil 1:

ein Verständnis für den Werkstoff Holz und dessen Zerspanung sowie die eingesetzten Werkzeuge und Maschinen.

Teil 2: Wissen-Verstehen:

13. Inhalt:

Teil 1:

Grundlagen und Verfahren der Holzbearbeitung: Die Vorlesung beinhaltet die Grundzüge der Holzverarbeitung, insbesondere die Eigenschaften des Werkstoffes Holz, die Grundbegriffe und Definitionen, die Besonderheiten des Werkstoffs und seiner Bearbeitung. Kernbestandteile sind die Basisverfahren der spanenden Holzbearbeitung, die Werkzeuge und Maschinen, die auftretenden Kräfte, der Verschleiß und die Qualitätsbildung und -beurteilung.

Teil 2:

14. Literatur:

Skript, alte Prüfungsaufgaben

15. Lehrveranstaltungen und -formen:

335201 Vorlesung Grundlagen der Holzbearbeitungstechnologie

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 46 Stunden
Selbststudium: 134 Stunden
Summe: 180 Stunden

17. Prüfungsnummer/n und -name:

33521 Grundlagen der Holzbearbeitungstechnologie (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

Medienmix, Präsentation, Tafelschrieb, Videoclips

20. Angeboten von:
Modul: 12550 Holzbaukonstruktionen

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>020700104</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>5. Modul:</td>
<td>Holzbaukonstruktionen</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Ulrike Kühlmann</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Ulrike Kühlmann</td>
</tr>
<tr>
<td>10. Zuordnung zum Curriculum in diesem Studiengang:</td>
<td></td>
</tr>
</tbody>
</table>

B.Sc. Technikpädagogik, PO 2011, 4. Semester
- Vertiefungsrichtung f) Holzbau (*Derzeit noch nicht im Angebot*)

B.Sc. Technikpädagogik, PO 2011, 4. Semester
- Vorgezogene Master-Module

B.Sc. Technikpädagogik, PO 2011, 4. Semester
- Wahlpflichtfach ->Wahlpflichtfach Bautechnik -->Pflichtfarben
 Holzbau

M.Sc. Technikpädagogik, PO 2009, 2. Semester
- Affines Wahlpflichtfach Bautechnik -->Vertiefungsrichtung d)
 Tragwerksbemessung und Konstruktion -->Tragwerksbemessung
 und Konstruktion Wahlfächer

M.Sc. Technikpädagogik, PO 2009, 2. Semester
- Affines Wahlpflichtfach Bautechnik -->Vertiefungsrichtung f)
 Holzbau (Nur in Kombination mit Tragwerksbemessung und
 Konstruktion) (*Derzeit noch nicht im Angebot*) -->Holzbau
 Pflichtfächer

M.Sc. Technikpädagogik, PO 2009, 2. Semester
- Hauptfach Bautechnik -->Holzbau (nur in Kombination mit
 Tragwerksbemessung und -konstruktion als affines Wahlpflichtfach
 möglich) -->Pflichtfarben

M.Sc. Technikpädagogik, PO 2009, 2. Semester
- Hauptfach Bautechnik -->Tragwerksbemessung und Konstruktion -->
 Wahlcontainer

M.Sc. Technikpädagogik, PO 2009, 2. Semester
- Wahlpflichtfach Bautechnik -->d) Tragwerksbemessung und
 Konstruktion -->d) Tragwerksbemessung und Konstruktion Wahl

M.Sc. Technikpädagogik, PO 2009, 2. Semester
- Wahlpflichtfach Bautechnik -->f) Holzbau (nur in Kombination mit
 Tragwerksbemessung und -konstruktion möglich) -->f) Holzbau
 Pflicht

M.Sc. Technikpädagogik, PO 2009, 2. Semester
- hochaffines Wahlpflichtfach Bautechnik -->WPF Holzbau (nur in
 Kombination mit Tragwerksbemessung und -konstruktion als affines
 Wahlpflichtfach möglich) -->Pflichtfarben

M.Sc. Technikpädagogik, PO 2009, 2. Semester
- hochaffines Wahlpflichtfach Bautechnik -->WPF
 Tragwerksbemessung und Konstruktion -->Wahlcontainer
M.Sc. Technikpädagogik, PO 2015, 2. Semester
→ Hauptfach Bautechnik -->Tragwerksbemessung und Konstruktion -->
Wahlcontainer

M.Sc. Technikpädagogik, PO 2015, 2. Semester
→ Wahlpflichtfach Bautechnik -->d) Tragwerksbemessung und Konstruktion -->d) Tragwerksbemessung und Konstruktion Wahl

M.Sc. Technikpädagogik, PO 2015, 2. Semester
→ Wahlpflichtfach Bautechnik -->f) Holzbau (nur in Kombination mit Tragwerksbemessung und -konstruktion möglich) -->f) Holzbau Pflicht

M.Sc. Technikpädagogik, PO 2015, 2. Semester
→ hochaffines Wahlpflichtfach Bautechnik -->WPF Holzbau (nur in Kombination mit Tragwerksbemessung und -konstruktion als affines Wahlpflichtfach möglich) -->Pflichtcontainer

M.Sc. Technikpädagogik, PO 2015, 2. Semester
→ hochaffines Wahlpflichtfach Bautechnik -->WPF Tragwerksbemessung und Konstruktion -->Wahlcontainer

11. Empfohlene Voraussetzungen: Grundkenntnisse werkstoffübergreifendes Konstruieren und Entwerfen

13. Inhalt:
• Holz als Werkstoff (Materialaufbau, Anisotropie, Physikalische und Mechanische Eigenschaften, Streuung der Eigenschaften)
• Hygroskopizität und Kriechen des Holzes
• Bemessung von Bauteilen
• Verbindungen im Holzbau (Nachgiebigkeit und Bemessung)
• Zusammengesetzte Holzquerschnitte und Holz-Beton-Verbund
• Bemessung von Scheiben aus HWS für die Aussteifung von Bauwerken
• Auflager, Anschlüsse und Verstärkungen im Holzhausbau
• Baulicher und Chemischer Holzschutz
• Bauphysikalische Besonderheiten des Holzes

14. Literatur:
• Skript zur Vorlesung und zur Übung.

15. Lehrveranstaltungen und -formen:
• 125501 Vorlesung Holzbaukonstruktion
• 125502 Übung Holzbaukonstruktion

16. Abschätzung Arbeitsaufwand:
| Präsenzzeit: | 28 h |
| Selbststudium: | 56 h |
| Gesamt: | 84 h |

17. Prüfungsnummer/n und -name: 12551 Holzbaukonstruktionen (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0, Wichtige Hinweisschreiben bezüglich der Prüfungen.
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td>12560 Ingenieurholzbau</td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Tafel, Overhead, PowerPoint, Film</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Institut für Konstruktion und Entwurf</td>
</tr>
</tbody>
</table>
Modul: 12560 Ingenieurholzbau

2. Modulkürzel: 020700105
3. Leistungspunkte: 3.0 LP
4. SWS: 2.0
5. Moduldauer: 1 Semester
6. Turnus: jedes 2. Semester, SoSe
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Ulrike Kuhlmann
9. Dozenten: Ulrike Kuhlmann

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technikpädagogik, PO 2011, 5. Semester
 → Vertiefungsrichtung f) Holzbau (*Derzeit noch nicht im Angebot*)
 B.Sc. Technikpädagogik, PO 2011, 5. Semester
 → Vorgezogene Master-Module
 B.Sc. Technikpädagogik, PO 2011, 5. Semester
 → Wahlpflichtfach -->Wahlpflichtfach Bautechnik -->Pflichtcontainer
 Holzbau
 →
 M.Sc. Technikpädagogik, PO 2009, 3. Semester
 → Affines Wahlpflichtfach Bautechnik -->Vertiefungsrichtung d)
 Tragwerksbemessung und Konstruktion -->Tragwerksbemessung
 und Konstruktion Wahlfächer
 →
 M.Sc. Technikpädagogik, PO 2009, 3. Semester
 → Affines Wahlpflichtfach Bautechnik -->Vertiefungsrichtung f)
 Holzbau (Nur in Kombination mit Tragwerksbemessung und
 Konstruktion) (*Derzeit noch nicht im Angebot*) -->Holzbau
 Wahlfächer
 →
 M.Sc. Technikpädagogik, PO 2009, 3. Semester
 → Hauptfach Bautechnik -->Holzbau (nur in Kombination mit
 Tragwerksbemessung und -konstruktion als affines Wahlpflichtfach
 möglich) -->Pflichtcontainer
 →
 M.Sc. Technikpädagogik, PO 2009, 3. Semester
 → Hauptfach Bautechnik -->Tragwerksbemessung und Konstruktion --
 >Wahlcontainer
 →
 M.Sc. Technikpädagogik, PO 2009, 3. Semester
 → Wahlpflichtfach Bautechnik -->d) Tragwerksbemessung und
 Konstruktion -->d) Tragwerksbemessung und Konstruktion Wahl
 →
 M.Sc. Technikpädagogik, PO 2009, 3. Semester
 → Wahlpflichtfach Bautechnik -->f) Holzbau (nur in Kombination mit
 Tragwerksbemessung und -konstruktion möglich) -->f) Holzbau
 Pflicht
 →
 M.Sc. Technikpädagogik, PO 2009, 3. Semester
 → hochaffines Wahlpflichtfach Bautechnik -->WPF Holzbau (nur in
 Kombination mit Tragwerksbemessung und -konstruktion als affines
 Wahlpflichtfach möglich) -->Pflichtcontainer
 →
 M.Sc. Technikpädagogik, PO 2009, 3. Semester
 → hochaffines Wahlpflichtfach Bautechnik -->WPF
 → Tragwerksbemessung und Konstruktion -->Wahlcontainer
M.Sc. Technikpädagogik, PO 2015, 3. Semester
→ Hauptfach Bautechnik -->Tragwerksbemessung und Konstruktion -->Wahlcontainer
→

M.Sc. Technikpädagogik, PO 2015, 3. Semester
→ Wahlpﬂichtfach Bautechnik -->d) Tragwerksbemessung und Konstruktion -->d) Tragwerksbemessung und Konstruktion Wahl
→

M.Sc. Technikpädagogik, PO 2015, 3. Semester
→ Wahlpﬂichtfach Bautechnik -->f) Holzbau (nur in Kombination mit Tragwerksbemessung und -konstruktion möglich) -->f) Holzbau Pflicht
→

M.Sc. Technikpädagogik, PO 2015, 3. Semester
→ hochaffines Wahlpﬂichtfach Bautechnik -->WPF Holzbau (nur in Kombination mit Tragwerksbemessung und -konstruktion als affines Wahlpﬂichtfach möglich) -->Pflichtcontainer
→

M.Sc. Technikpädagogik, PO 2015, 3. Semester
→ hochaffines Wahlpﬂichtfach Bautechnik -->WPF Tragwerksbemessung und Konstruktion -->Wahlcontainer
→

<table>
<thead>
<tr>
<th>11. Empfohlene Voraussetzungen:</th>
<th>Holzbaukonstruktionen</th>
</tr>
</thead>
</table>

• Weitgespannte Tragwerke aus Holz
• Fachwerkstruktionen
• Aussteifungs, Wind- und Stabilisierungsvorbänder
• Spezielle Stabilitätsprobleme des Ingenieurholzbau
• Auﬂager, Anschlüsse und Verstärkungen im Ingenieurholzbau
• Holzbrücken inklusive Ermüdungsnachweis
• Transport und Montage von Holzbauwerken
• Brandschutz im Holzbau
• Anwendung von Holz in Erdbebengebiete |

| 14. Literatur: | • Skript zur Vorlesung und zur Übung;

| 15. Lehrveranstaltungen und -formen: | • 125601 Vorlesung Ingenieurholzbau
• 125602 Übung Ingenieurholzbau |

| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 28 h
Selbststudium: 56 h
Gesamt: 84 h |
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>12561 Ingenieurholzbau (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0, Wichtige Hinweisschreiben bezüglich der Prüfungen.</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Tafel, Overhead, PowerPoint, Film</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Institut für Konstruktion und Entwurf</td>
</tr>
</tbody>
</table>
Modul: 12570 Temporäre Bauten

2. Modulkürzel: 020700106 5. Modulsdauer: 1 Semester
4. SWS: 2.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Ulrike Kuhlmann
9. Dozenten: Ulrike Kuhlmann

10. Zuordnung zum Curriculum in diesem Studiengang:

- B.Sc. Technikpädagogik, PO 2011, 3. Semester
 → Vertiefungsrichtung f) Holzbau (*Derzeit noch nicht im Angebot*)

- B.Sc. Technikpädagogik, PO 2011, 3. Semester
 → Vorgezogene Master-Module

- B.Sc. Technikpädagogik, PO 2011, 3. Semester
 → Wahlpflichtfach -->Wahlpflichtfach Bautechnik -->Pflichtcontainer Holzbau
 →

- M.Sc. Technikpädagogik, PO 2009, 1. Semester
 → Affines Wahlpflichtfach Bautechnik -->Vertiefungsrichtung d) Tragwerksbemessung und Konstruktion -->Tragwerksbemessung und Konstruktion Wahlfächer
 →

- M.Sc. Technikpädagogik, PO 2009, 1. Semester
 → Affines Wahlpflichtfach Bautechnik -->Vertiefungsrichtung f) Holzbau (Nur in Kombination mit Tragwerksbemessung und Konstruktion) (*Derzeit noch nicht im Angebot*) -->Holzbau Wahlfächer
 →

- M.Sc. Technikpädagogik, PO 2009, 1. Semester
 → Hauptfach Bautechnik -->Holzbau (nur in Kombination mit Tragwerksbemessung und -konstruktion als affines Wahlpflichtfach möglich) -->Pflichtcontainer
 →

- M.Sc. Technikpädagogik, PO 2009, 1. Semester
 → Hauptfach Bautechnik -->Tragwerksbemessung und Konstruktion -->Wahlcontainer
 →

- M.Sc. Technikpädagogik, PO 2009, 1. Semester
 → Wahlpflichtfach Bautechnik -->d) Tragwerksbemessung und Konstruktion -->d) Tragwerksbemessung und Konstruktion Wahl
 →

- M.Sc. Technikpädagogik, PO 2009, 1. Semester
 → Wahlpflichtfach Bautechnik -->f) Holzbau (nur in Kombination mit Tragwerksbemessung und -konstruktion möglich) -->f) Holzbau Pflicht
 →

- M.Sc. Technikpädagogik, PO 2009, 1. Semester
 → hochaffines Wahlpflichtfach Bautechnik -->WPF Holzbau (nur in Kombination mit Tragwerksbemessung und -konstruktion als affines Wahlpflichtfach möglich) -->Pflichtcontainer
 →

- M.Sc. Technikpädagogik, PO 2009, 1. Semester
 → hochaffines Wahlpflichtfach Bautechnik -->WPF
 → Tragwerksbemessung und Konstruktion -->Wahlcontainer
 →
11. Empfohlene Voraussetzungen:

Modul 10650 (Werkstoffübergreifendes Entwerfen und Konstruieren) (Pflicht)

Modul 10770 (hier: Stabilität) (Empfohlen)

12. Lernziele:

13. Inhalt:

Das Fach wird als Seminar angeboten. Die folgenden Themen stehen dabei zur Auswahl:

- Einleitung und Übersicht über unterschiedliche Gerüsttypen
- Baurechtliche Situation
- Arbeits- und Schutzgerüste:
 - Komponenten, Aufbau, bauliche Durchbildung und Aussteifung
 - Lastannahmen
 - Tragfähigkeit und Bemessung inkl. Bemessungsbeispiel
- Gerüstknoten und Kupplungen:
 - Übersicht Knotentypen
 - Tragverhalten und Behandlung nichtlinearer Einzelfedern
- Traggerüste:
 - Aufbau und bauliche Durchbildung
 - Lastannahmen und Bemessung incl. Bemessungsbeispiel
- Sonderthemen: Fahrgerüste, Hängegerüste, Gitterträger und modulare temporäre Überdachungssysteme

Weitere, eigene Themenvorschläge werden in Absprache mit dem Betreuer gerne akzeptiert.

Anmeldung zur Vorlesung per E-Mail an: adrian.just@ke.uni-stuttgart.de
14. Literatur:
Nather, F., Lindner, J., Hertle, R.: Handbuch des Gerüstbaus
Verfahrenstechnik im Ingenieurbau, Ernst & Sohn Verlag, Berlin,
2005.

15. Lehrveranstaltungen und -formen:
<table>
<thead>
<tr>
<th>Prüfungsnummer/n und -name:</th>
<th>Vorlesung Temporäre Bauten</th>
</tr>
</thead>
</table>

16. Abschätzung Arbeitsaufwand:
| Präsenzzeit: 20 h | Selbststudium 64 h | Gesamt: 84 h |

17. Prüfungsnummer/n und -name:
| Prüfungsnummer 12571: | Temporäre Bauten (BSL), Sonstiges, 30 Min., Gewichtung: 1.0, 25- bis 30-minütige Präsentationsprüfung mit Handout
Wichtige Hinweisschreiben bezüglich der Prüfungen.

18. Grundlage für ... :

19. Medienform:
Tafel, PowerPoint

20. Angeboten von:
Institut für Konstruktion und Entwurf
Modul: 12580 Vortragsseminar Bauwerke und Bauweisen

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>020700108</th>
<th>5. Modulduauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Ulrike Kuhlmann</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Ulrike Kuhlmann</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zuordnung zum Curriculum in diesem Studiengang:

- **B.Sc. Technikpädagogik, PO 2011, 3. Semester**
 → Vertiefungsrichtung f) Holzbau (*Derzeit noch nicht im Angebot*)

- **B.Sc. Technikpädagogik, PO 2011, 3. Semester**
 → Vorgezogene Master-Module

- **B.Sc. Technikpädagogik, PO 2011, 3. Semester**
 → Wahlpflichtfach -->Wahlpflichtfach Bautechnik -->Pflichtcontainer
 Holzbau

- **M.Sc. Technikpädagogik, PO 2009, 1. Semester**
 → Affines Wahlpflichtfach Bautechnik -->Vertiefungsrichtung d)
 Tragwerksbemessung und Konstruktion -->Tragwerksbemessung und Konstruktion Wahlfächer

- **M.Sc. Technikpädagogik, PO 2009, 1. Semester**
 → Affines Wahlpflichtfach Bautechnik -->Vertiefungsrichtung f)
 Holzbau (Nur in Kombination mit Tragwerksbemessung und Konstruktion) (*Derzeit noch nicht im Angebot*) -->Holzbau
 Wahlfächer

- **M.Sc. Technikpädagogik, PO 2009, 1. Semester**
 → Hauptfach Bautechnik -->Holzbau (nur in Kombination mit Tragwerksbemessung und konstruktion als affines Wahlpflichtfach möglich) -->Pflichtcontainer

- **M.Sc. Technikpädagogik, PO 2009, 1. Semester**
 → Hauptfach Bautechnik -->Tragwerksbemessung und Konstruktion -->Wahlcontainer

- **M.Sc. Technikpädagogik, PO 2009, 1. Semester**
 → Wahlpflichtfach Bautechnik -->d) Tragwerksbemessung und Konstruktion -->d) Tragwerksbemessung und Konstruktion Wahl

- **M.Sc. Technikpädagogik, PO 2009, 1. Semester**
 → Wahlpflichtfach Bautechnik -->f) Holzbau (nur in Kombination mit Tragwerksbemessung und konstruktion möglich) -->f) Holzbau
 Pflicht

- **M.Sc. Technikpädagogik, PO 2009, 1. Semester**
 → hochaffines Wahlpflichtfach Bautechnik -->WPF Holzbau (nur in Kombination mit Tragwerksbemessung und konstruktion als affines Wahlpflichtfach möglich) -->Pflichtcontainer

- **M.Sc. Technikpädagogik, PO 2009, 1. Semester**
 → hochaffines Wahlpflichtfach Bautechnik -->WPF
 Tragwerksbemessung und Konstruktion -->Wahlcontainer
M.Sc. Technikpädagogik, PO 2015, 1. Semester
→ Hauptfach Bautechnik -->Tragwerksbemessung und Konstruktion -->Wahlcontainer

→ M.Sc. Technikpädagogik, PO 2015, 1. Semester
→ Wahlpflichtfach Bautechnik -->d) Tragwerksbemessung und Konstruktion -->d) Tragwerksbemessung und Konstruktion Wahl

→ M.Sc. Technikpädagogik, PO 2015, 1. Semester
→ Wahlpflichtfach Bautechnik -->f) Holzbau (nur in Kombination mit Tragwerksbemessung und -konstruktion möglich) -->f) Holzbau Pflicht

→ M.Sc. Technikpädagogik, PO 2015, 1. Semester
→ hochaffines Wahlpflichtfach Bautechnik -->WPF Holzbau (nur in Kombination mit Tragwerksbemessung und -konstruktion als affines Wahlpflichtfach möglich) -->Pflichtcontainer

→ M.Sc. Technikpädagogik, PO 2015, 1. Semester
→ hochaffines Wahlpflichtfach Bautechnik -->WPF Tragwerksbemessung und Konstruktion -->Wahlcontainer

11. Empfohlene Voraussetzungen:

12. Lernziele:

13. Inhalt:
Die begleitende Vorlesung vermittelt Grundlagen und gibt Hilfestellung bei der Vorbereitung und Ausarbeitung der schriftlichen Arbeit und des Vortrags. Sie gliedert sich in:

• Einführung in das wissenschaftliche Arbeiten
• Äußere Form der schriftlichen Arbeit
• Vortrag und Rhetorik

Durch den eigenständigen Vortrag und die Diskussion im Seminarkreis wird den Studierenden die Möglichkeit gegeben, das Präsentieren selbst einzuüben.

14. Literatur:
Skriptum zum Seminar

15. Lehrveranstaltungen und -formen:
125801 Seminar Bauwerke und Bauweisen

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 28h
Selbststudium: 56h
Gesamt: 84h

17. Prüfungsnummer/n und -name:
12581 Vortragsseminar Bauwerke und Bauweisen (BSL), Sonstiges, Gewichtung: 1.0, Studienleistung: Abgabe Seminararbeit und Vortrag Wichtige Hinweisschreiben bezüglich der Prüfungen.

18. Grundlage für ... :

19. Medienform:
Tafel, Overhead, Powerpoint

20. Angeboten von:
Institut für Konstruktion und Entwurf
5270 g) Vermessungswesen

Zugeordnete Module:
5271 g) Vermessungswesen Pflicht
5272 g) Vermessungswesen Wahl
5271 g) Vermessungswesen Pflicht

Zugeordnete Module:
- 10690 Geodäsie im Bauwesen
- 13150 Erfassung und Verwaltung von Planungsdaten und Statistik
- 19810 Statistik und Fehlerlehre
Modul: 13150 Erfassung und Verwaltung von Planungsdaten und Statistik

2. Modulkürzel: 062300066 5. Moduldauer: 1 Semester
4. SWS: 4.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Martin Metzner
9. Dozenten: Martin Metzner

10. Zuordnung zum Curriculum in diesem Studiengang:

M.Sc. Technikpädagogik, PO 2009, 2. Semester
→ Affines Wahlpflichtfach Bautechnik -->Vertiefungsrichtung g)
 Vermessungswesen -->Vermessungswesen Pflichtfacher
 →
M.Sc. Technikpädagogik, PO 2009, 2. Semester
→ Hauptfach Bautechnik -->Vermessungswesen -->Pflichtcontainer
 →
M.Sc. Technikpädagogik, PO 2009, 2. Semester
→ Wahlpflichtfach Bautechnik -->g) Vermessungswesen -->g)
 Vermessungswesen Pflicht
 →
M.Sc. Technikpädagogik, PO 2009, 2. Semester
→ hochaffines Wahlpflichtfach Bautechnik -->WPF
 Vermessungswesen -->Pflichtcontainer
 →
M.Sc. Technikpädagogik, PO 2015, 2. Semester
→ Hauptfach Bautechnik -->Vermessungswesen -->Pflichtcontainer
 →
M.Sc. Technikpädagogik, PO 2015, 2. Semester
→ Wahlpflichtfach Bautechnik -->g) Vermessungswesen -->g)
 Vermessungswesen Pflicht
 →
M.Sc. Technikpädagogik, PO 2015, 2. Semester
→ hochaffines Wahlpflichtfach Bautechnik -->WPF
 Vermessungswesen -->Pflichtcontainer
 →

11. Empfohlene Voraussetzungen: Höhere Mathematik I / II

12. Lernziele:

Erfassung und Verwaltung von Planungsdaten:

Statistik:

Die Studierenden beherrschen die grundlegenden statistischen Werkzeuge und Methoden. Die theoretischen Konzepte von

13. Inhalt:
Erfassung und Verwaltung von Planungsdaten
- Koordinatensysteme und Projektionen: Referenzflächen für die Erde; Koordinatensysteme und Geodätisches Datum;
- Koordinatentransformationen: Umrechnungen zwischen Koordinatensystemen; Transformationen zwischen Koordinatensystemen / Geodätischen Daten
- Primäre Erfassungsmethoden: Terrestrische Vermessung; Satellitengestützte Positionsbestimmung; Erfassung mittels Photogrammetrie, Laserscanner, Fernerkundung; Sekundäre Erfassungsmethoden: Kartographie; Digitalisieren und Datenimport
- Geodaten und GIS: Verarbeitung und -verwaltung; Analyse; Visualisierung; GIS-Anwendungen in Immobilienwirtschaft und Immobilientechnik;
- Geodatenmarkt: Informationskette; Geodateninfrastrukturen; Informationsqualität; Metadaten;
- Datenkosten

Statistik:
- deskriptive Statistik: Mittelwert, Erwartungswert, Standardabweichung, Varianz, Darstellung und Interpretation statistischer Daten
- Varianz-/Kovarianzfortpflanzung: zufällige und systematische Varianzanteile sowie deren Modellierung
- Grundlagen der Wahrscheinlichkeitsrechnung, theoretische Verteilungsfunktionen: Binomialverteilung, hypergeometrische Verteilung, Poisson-, Exponential-, Erlang-k, Normal-, Fisher-, Student- und Chi²-Verteilung
- schließende Statistik: Konfidenzintervalle, Hypothesentests

14. Literatur:
- Witte, Bertold: Vermessungskunde und Grundlagen der Statistik für das Bauwesen, Wichmann, 2006
- Benning, Wilhelm: Statistik in Geodäsie, Geoinformation und Bauwesen, Wichmann, 2002

15. Lehrveranstaltungen und -formen:
- 131501 Vorlesung Erfassung und Verwaltung von Planungsdaten und Statistik
- 131502 Übung Erfassung und Verwaltung von Planungsdaten und Statistik

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 h
Selbststudiumszeit / Nacharbeitszeit: 138 h
Gesamt: 180 h
<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>13151 Erfassung und Verwaltung von Planungsdaten und Statistik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0, Prüfungsvoraussetzung: anerkannte Übungsleistungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Institut für Ingenieurgeodäsie Stuttgart</td>
</tr>
</tbody>
</table>
Modul: 10690 Geodäsie im Bauwesen

2. Modulkürzel: 062300061
5. Moduldauer: 1 Semester
3. Leistungspunkte: 6.0 LP
6. Turnus: jedes 2. Semester, SoSe
4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Martin Metzner
9. Dozenten:
 • Martin Metzner
 • Annette Scheider

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Technikpädagogik, PO 2009, 2. Semester
 → Affines Wahlpflichtfach Bautechnik -->Vertiefungsrichtung g) Vermessungswesen -->Vermessungswesen Pflichtfächer
 → M.Sc. Technikpädagogik, PO 2009, 2. Semester
 → Hauptfach Bautechnik -->Vermessungswesen -->Pflichtcontainer
 → M.Sc. Technikpädagogik, PO 2009, 2. Semester
 → Wahlpflichtfach Bautechnik -->g) Vermessungswesen -->g) Vermessungswesen Pflicht
 → M.Sc. Technikpädagogik, PO 2009, 2. Semester
 → hochaffines Wahlpflichtfach Bautechnik -->WPF Vermessungswesen -->Pflichtcontainer
 → M.Sc. Technikpädagogik, PO 2015, 2. Semester
 → Hauptfach Bautechnik -->Vermessungswesen -->Pflichtcontainer
 → M.Sc. Technikpädagogik, PO 2015, 2. Semester
 → Wahlpflichtfach Bautechnik -->g) Vermessungswesen -->g) Vermessungswesen Pflicht
 → M.Sc. Technikpädagogik, PO 2015, 2. Semester
 → hochaffines Wahlpflichtfach Bautechnik -->WPF Vermessungswesen -->Pflichtcontainer

11. Empfohlene Voraussetzungen: Höhere Mathematik I, II

12. Lernziele:
Die Studierenden haben ein grundlegendes Verständnis über den Aufbau der Geodätischen Koordinatensysteme und Projektionen.
Sie kennen die Möglichkeiten zur Beurteilung der Qualität von Messergebnissen und können grundlegende Methoden zur primären Datenerfassung anwenden. Die Studierenden kennen die Bedeutung der Geometrie im Bauprozess und können die Methoden der Geodätischen Messtechnik und Datenerfassung beurteilen.

13. Inhalt:
 • Koordinatensysteme und Projektionen
 • Koordinatentransformationen und -umrechnungen
 • Zufällige und systematische Fehleranteile
 • Fehlerfortpflanzung
 • Toleranzen und Standardabweichungen
 • Geometriebezogene Qualitätsparameter im Bauprozess
 • Geodätische Messtechnik (primäre Datenerfassung)
 • Erfassung von Punkten:
• Terrestrische Methoden: Lage- und Höhenmessung,
• Berechnungsmethoden
• Satellitengestützte Methoden: GPS und Galileo
• Erfassung von Flächen und 3D-Objekten:
• Laserscanning, Photogrammetrie
• Sekundäre Datenerfassung
• Kartografie als Grundlage
• Digitalisieren
• Datenimport
• Bauprozessbegleitende Informationskette

14. Literatur: Vorlesungsskript ist vorhanden, zusätzliche Lehrveranstaltungsrelevante Fachbücher:

• Witte, Berthold; Schmidt, Huber: Vermessungskunde und Grundlagen der Statistik für das Bauwesen. Wittwer, Stuttgart, 1995.

15. Lehrveranstaltungen und -formen:
• 106901 Vorlesung Geodäsie im Bauwesen
• 106902 Übungen Geodäsie im Bauwesen

16. Abschätzung Arbeitsaufwand:
Präsenszeit: 50h
Selbststudium / Nacharbeitszeit: 130h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
• 10691 Geodäsie im Bauwesen (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0, Prüfungsvorleistung: anerkannte Übungsleistungen in 7 Präsenzübungen inkl. jeweiliger schriftlicher Ausarbeitung
• V Vorleistung (USL-V), schriftlich, eventuell mündlich

18. Grundlage für ...

19. Medienform:

20. Angeboten von: Institut für Ingenieurgeodäsie Stuttgart
Modul: 19810 Statistik und Fehlerlehre

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>062300002</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher:
Univ.-Prof. Volker Schwieger

9. Dozenten:
- Volker Schwieger
- Li Zhang

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>M.Sc. Technikpädagogik, PO 2009, 2. Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>→ Affines Wahlpflichtfach Bautechnik --Vertiefungsrichtung g) Vermessungswesen --Pflichtfächer</td>
</tr>
<tr>
<td>→ Hauptfach Bautechnik --Vermessungswesen --Pflichtcontainer</td>
</tr>
<tr>
<td>→ Wahlpflichtfach Bautechnik --g) Vermessungswesen --g) Vermessungswesen Pflicht</td>
</tr>
<tr>
<td>→ hochaffines Wahlpflichtfach Bautechnik --WPF Vermessungswesen --Pflichtcontainer</td>
</tr>
<tr>
<td>→ Hauptfach Bautechnik --Vermessungswesen --Pflichtcontainer</td>
</tr>
<tr>
<td>→ Wahlpflichtfach Bautechnik --g) Vermessungswesen --g) Vermessungswesen Pflicht</td>
</tr>
<tr>
<td>→ hochaffines Wahlpflichtfach Bautechnik --WPF Vermessungswesen --Pflichtcontainer</td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen:
Höhere Mathematik I

12. Lernziele:
Die Studierenden beherrschen die Grundlagen der Statistik und Fehlerlehre und sind in der Lage sie auf Problemstellungen in der Geodäsie im Allgemeinen sowie in der Messtechnik im Speziellen anzuwenden.

13. Inhalt:
- Diskrete und stetige Zufallsgrößen,
- Häufigkeitsfunktion und Wahrscheinlichkeitsdichte, Summenhäufigkeitsfunktion und Verteilungsfunktion,
- Mittelwert und Erwartungswert, Varianz und Standardabweichung, zwei- und n-dimensionale Zufallsvektoren,
- Kovarianzmatrix und Korrelationskoeffizient,
- Fehlerfortpflanzung, Kovarianzfortpflanzung,
- Anwendung der Kovarianzfortpflanzung auf die Messtechnik
- Normalverteilung, der zentrale Grenzwertsatz,
- synthetische Kovarianzmatrix,
- #2-Verteilung, t-Verteilung, F-Verteilung,
- Konfidenzbereich, Konfidenzellipse und Konfidenzhyperehllipsoid,
• Normalverteilte Zufallsvektor, 2- und n-dimensionale Normalverteilung,
• Statistische Tests, Grundzüge der Testtheorie,
• Signifikanztests für die Differenz zweier Zufallsvariablen,
• Signifikanztests für den Vergleich von Standardabweichungen und Korrelationskoeffizienten,
• Tests auf Normalverteilung, Schiefe und Exzess einer Verteilung,
• Verteilungsunabhängige Testverfahren,
• Anwendung der Testverfahren in der Messtechnik

14. Literatur:

15. Lehrveranstaltungen und -formen:
• 198101 Vorlesung Statistik und Fehlerlehre
• 198102 Übung Statistik und Fehlerlehre

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 h
Selbststudium: 138 h
Gesamtzeit: 180 h

17. Prüfungsnummer/n und -name:
19811 Statistik und Fehlerlehre (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0, Prüfungsvorleistung: Hausübungen

18. Grundlage für ...:
• 19800 Messtechnik II für Geodäsie
• 19820 Ausgleichungsrechnung
• 19830 Grundlagen der Navigation und Fernerkundung
• 19850 Ingenieurgeodäsie
• 19900 Integriertes Projekt

19. Medienform:
Tafel, Laptop + Beamer, Rechenübungen

20. Angeboten von:
5272 g) Vermessungswesen Wahl

Zugeordnete Module:

<table>
<thead>
<tr>
<th>Code</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>12660</td>
<td>Integriertes Projekt für Technikpädagogen</td>
</tr>
<tr>
<td>12670</td>
<td>Ingenieurgeodäsie im Bauprozess</td>
</tr>
<tr>
<td>12680</td>
<td>Ingenieurgeodätische Mess- und Auswertemethoden</td>
</tr>
<tr>
<td>12690</td>
<td>Geoinformatik für Technikpädagogen</td>
</tr>
<tr>
<td>19820</td>
<td>Ausgleichungsrechnung</td>
</tr>
<tr>
<td>19870</td>
<td>Amtliches Vermessungswesen und Neuordnung im ländlichen Raum</td>
</tr>
<tr>
<td>19880</td>
<td>Grundzüge der Rechtswissenschaft</td>
</tr>
</tbody>
</table>
Modul: 19870 Amtliches Vermessungswesen und Neuordnung im ländlichen Raum

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>062000153</th>
<th>5. Modulduer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>3.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Nicolaas Sneeuw</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Günther Steudle
• Christian Helfert |
| 11. Empfohlene Voraussetzungen: | - |
| 13. Inhalt: | • Aufgaben, Bedeutung, Rechtsgrundlagen und Organisation des amtlichen Vermessungswesens
• Zweck, Inhalt und Führung des Liegenschaftskatasters; Liegenschaftsvermessungen, Abmarkung,
• Durchführung von Liegenschaftsvermessungen einschließlich „SAPOS“-Einsatz.
• Grundlagen ALKIS, Grundbuch
• Entstehung und Veränderung der Strukturen im ländlichen Raum, Strukturmängel,
• Verfahrensarten nach dem Flurbereinigungsgesetz,
• Grundzüge des Ablaufs eines Flurneuordnungsverfahrens: Grundlagen der Flurbereinigung, Bestandserhebung/Wertermittlung, Neugestaltung |
des Gebietes, Ausbau der gemeinschaftlichen Anlagen, Abschluss des Verfahrens, Kosten und Finanzierung.

14. Literatur:
• Skripten zu den Vorlesungen

15. Lehrveranstaltungen und -formen:
• 198701 Vorlesung Amtliches Vermessungswesen und Liegenschaftskataster
• 198702 Vorlesung Neuordnung im ländlichen Raum

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 32 h
Selbststudium: 58 h
Gesamtzeit: 90 h

17. Prüfungsnummer/n und -name:
• 19871 Amtliches Vermessungswesen und Liegenschaftskataster (PL), mündliche Prüfung, 20 Min., Gewichtung: 67.0
• 19872 Neuordnung im ländlichen Raum (PL), mündliche Prüfung, 20 Min., Gewichtung: 33.0

18. Grundlage für ... :

19. Medienform:
Tafel, Laptop + Beamer

20. Angeboten von:
Modul: 19820 Ausgleichungsrechnung

2. Modulkürzel: 062200103
5. Modulduer: 2 Semester
3. Leistungspunkte: 9.0 LP
4. SWS: 6.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dieter Fritsch

9. Dozenten: • Dieter Fritsch
• Friedrich Wilhelm Krumm

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Technikpädagogik, PO 2009, 1. Semester
→ Affines Wahlpflichtfach Bautechnik -->Vertiefungsrichtung g)
Vermessungswesen -->Vermessungswesen Wahlfächer
→
M.Sc. Technikpädagogik, PO 2009, 1. Semester
→ Hauptfach Bautechnik -->Vermessungswesen -->Wahlcontainer
→
M.Sc. Technikpädagogik, PO 2009, 1. Semester
→ Wahlpflichtfach Bautechnik -->g) Vermessungswesen -->g)
Vermessungswesen Wahl
→
M.Sc. Technikpädagogik, PO 2009, 1. Semester
→ hochaffines Wahlpflichtfach Bautechnik -->WPF
Vermessungswesen -->Wahlcontainer
→
M.Sc. Technikpädagogik, PO 2015, 1. Semester
→ Hauptfach Bautechnik -->Vermessungswesen -->Wahlcontainer
→
M.Sc. Technikpädagogik, PO 2015, 1. Semester
→ Wahlpflichtfach Bautechnik -->g) Vermessungswesen -->g)
Vermessungswesen Wahl
→
M.Sc. Technikpädagogik, PO 2015, 1. Semester
→ hochaffines Wahlpflichtfach Bautechnik -->WPF
Vermessungswesen -->Wahlcontainer
→

11. Empfohlene Voraussetzungen: Statistik und Fehlerlehre

12. Lernziele: Die Studierenden können selbständig entscheiden, welche funktionalen und stochastischen Modelle zur Ausgleichung/Parametrisierung inkonsistenter Beobachtungen aus den verschiedenen Disziplinen der Geodäsie & Geoinformatik zweckmäßig eingesetzt werden. Sie sind in der Lage, die Qualität des Ausgleichungsergebnisses zu analysieren und zu beschreiben sowie durch statistische Testverfahren zu überwachen.

13. Inhalt: **Ausgleichungsrechnung I**
Grundlagen der linearen Algebra und Matrizenrechnung, direkte und indirekte Gleichungslöser, Einführung in die lineare Schätztheorie, Schätzung nach der Methode der kleinsten Quadrate (ungewichtet und gewichtet) einschließlich geometrischer Interpretation, beste lineare unverzerrte Schätzer, Parametrisches Modell (Gauss-Markoff-Modell, ohne und mit Restriktionen)

Ausgleichungsrechnung II
Gemischtes Modell (Gauss-Helmert Modell), Bedingtes Modell (Spezialfall des Gauss-Helmert-Modells, Ausgleichung nach Bedingungsgleichungen), Linearisierung nicht-linearer Beobachtungs- und Bedingungsgleichungen, Rangdefekte Probleme, Datumsfestlegungen, S-Transformationen, Netzanalyse und Netzentwurf, Einführung in die Theorie der Hypothesentests, Hypothesentests in linearen Modellen, Zuverlässigkeitsanalyse. Anwendungsbeispiele aus Geodäsie & Geoinformatik

14. Literatur:

- Sneeuw, N/Krumm, F (2011): Lecture Notes Adjustment Theory, Skript Universität Stuttgart
- Skripten, e-learning, Matlab

15. Lehrveranstaltungen und -formen:

- 198201 Vorlesung Ausgleichungsrechnung I
- 198202 Übung Ausgleichungsrechnung I
- 198203 Vorlesung Ausgleichungsrechnung II
- 198204 Übung Ausgleichungsrechnung II

16. Abschätzung Arbeitsaufwand:

Präsenzzeit:	63 h
Selbststudium:	207 h
Gesamtzeit:	270 h

17. Prüfungsnummer/n und -name:

19821 Ausgleichungsrechnung (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0, Prüfungsvorleistung Erfolgreiche Teilnahme an den Übungen und korrekte Bearbeitung aller Hausübungen

18. Grundlage für ...

19. Medienform:

Audio podcast, Tafel, Beamer, Overhead

20. Angeboten von:

Höhere Geodäsie
Modul: 12690 Geoinformatik für Technikpädagogen

2. Modulkürzel: 062200302
5. Moduldauer: 2 Semester
3. Leistungspunkte: 9.0 LP
4. SWS: 6.0
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dieter Fritsch
9. Dozenten: • Dieter Fritsch
 • Volker Walter
10. Zuordnung zum Curriculum in diesem Studiengang:

M.Sc. Technikpädagogik, PO 2009, 1. Semester
 ➔ Affines Wahlpflichtfach Bautechnik --> Vertiefungsrichtung g)
 Vermessungswesen --> Vermessungswesen Wahlfächer

M.Sc. Technikpädagogik, PO 2009, 1. Semester
 ➔ Hauptfach Bautechnik --> Vermessungswesen --> Wahlcontainer

M.Sc. Technikpädagogik, PO 2009, 1. Semester
 ➔ Wahlpflichtfach Bautechnik --> g) Vermessungswesen --> g)
 Vermessungswesen Wahl

M.Sc. Technikpädagogik, PO 2009, 1. Semester
 ➔ hochaffines Wahlpflichtfach Bautechnik --> WPF
 Vermessungswesen --> Wahlcontainer

M.Sc. Technikpädagogik, PO 2015, 1. Semester
 ➔ Hauptfach Bautechnik --> Vermessungswesen --> Wahlcontainer

M.Sc. Technikpädagogik, PO 2015, 1. Semester
 ➔ Wahlpflichtfach Bautechnik --> g) Vermessungswesen --> g)
 Vermessungswesen Wahl

M.Sc. Technikpädagogik, PO 2015, 1. Semester
 ➔ hochaffines Wahlpflichtfach Bautechnik --> WPF
 Vermessungswesen --> Wahlcontainer

11. Empfohlene Voraussetzungen: Höhere Mathematik I + II
12. Lernziele:

13. Inhalt:
 Einführung in Geo-Informationssysteme, Anwendungen von Geo-Informationssystemen, Datenerfassung (Methoden, Quellen, Hardware, Interaktion, Datentypen, Datenstrukturen, Bedeutung der einzelnen Datenquellen), Geometrisches Modellieren, Topologisches Modellieren, Thematisches Modellieren, Datenverwaltung (Dateisysteme, Datenbanksysteme, Datenmodelle), Repräsentationsschemata, Statische und dynamische Zugriffs- und Speicherstrukturen für alphanumerische, Raster- und Vektordaten, Geometrische Analysealgorithmen.
14. Literatur:
Norbert Bartelme: Geoinformatik - Modelle, Strukturen, Funktionen. 3. Auflage, Springer Verlag.
Skripte, Übungen mit ArcGIS

15. Lehrveranstaltungen und -formen: 126901 Vorlesung Geoinformatik für Technikpädagogen

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 63 h
Selbststudium: 207 h
Gesamtzeit: 270 h

17. Prüfungsnummer/n und -name:
- 12691 Geoinformatik für Technikpädagogen I (PL), mündliche Prüfung, 20 Min., Gewichtung: 1.0, Prüfungsvorleistung: Hausübung
- 12692 Geoinformatik für Technikpädagogen II (PL), mündliche Prüfung, 20 Min., Gewichtung: 1.0, Prüfungsvorleistung: Hausübung

18. Grundlage für ...

19. Medienform:
Für jede Vorlesung wird ein Audio Podcast erstellt und zusätzlich zu den Präsentationsunterlagen zur Verfügung gestellt

20. Angeboten von:
Modul: 19880 Grundzüge der Rechtswissenschaft

2. Modulkürzel: 062000156
5. Modulduauer: 1 Semester

3. Leistungspunkte: 3.0 LP

4. SWS: 2.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Nicolaas Sneeuw

9. Dozenten: Rainer Lorz

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Technikpädagogik, PO 2009, 1. Semester
 ➔ Affines Wahlpflichtfach Bautechnik -->Vertiefungsrichtung g)
 Vermessungswesen -->Vermessungswesen Wahlfächer

M.Sc. Technikpädagogik, PO 2009, 1. Semester
 ➔ Hauptfach Bautechnik -->Vermessungswesen -->Wahlcontainer

M.Sc. Technikpädagogik, PO 2009, 1. Semester
 ➔ Wahlpflichtfach Bautechnik -->g) Vermessungswesen -->g)
 Vermessungswesen Wahl

M.Sc. Technikpädagogik, PO 2009, 1. Semester
 ➔ hochaffines Wahlpflichtfach Bautechnik -->WPF
 Vermessungswesen -->Wahlcontainer

M.Sc. Technikpädagogik, PO 2015, 1. Semester
 ➔ Hauptfach Bautechnik -->Vermessungswesen -->Wahlcontainer

M.Sc. Technikpädagogik, PO 2015, 1. Semester
 ➔ Wahlpflichtfach Bautechnik -->g) Vermessungswesen -->g)
 Vermessungswesen Wahl

M.Sc. Technikpädagogik, PO 2015, 1. Semester
 ➔ hochaffines Wahlpflichtfach Bautechnik -->WPF
 Vermessungswesen -->Wahlcontainer

11. Empfohlene Voraussetzungen: -

12. Lernziele:
Die Studierenden besitzen nach Abschluss des Moduls fächerübergreifende Privatrechtskenntnisse. Sie sind in der Lage, Sachverhalte des täglichen Leben sowie Vorgänge aus dem Bereich des Wirtschaftslebens in ihrer rechtlichen Bedeutung und Problemstellung zu beurteilen. Sie verfügen über ein geschärftes Problembewusstsein für die Einordnung juristisch relevanter Vorgänge.

13. Inhalt:
Im Rahmen des Moduls werden die Grundzüge des Bürgerlichen Rechts, insbesondere die Grundlagen der Rechtsordnung, die Systematik des Bürgerlichen Rechts, die Entstehung von Rechtsgeschäften sowie insbesondere das vertragliche und außervertragliche Schuldrecht vermittelt. Im Vorlesungsteil Handels- und Gesellschaftsrecht wird zunächst ein Überblick über beide Bereiche gegeben, sodann die Handelsgeschäfte erläutert und die wichtigsten Rechtsformen im Detail erörtert.

14. Literatur:
Literatur

1. Gesetzzestexte
• BGB, dtv 5001, 71. Auflage 2013, Euro 5,

• Wichtige Wirtschaftsgesetze, Verlag NWB (Neue Wirtschaftsbriebe), 26. Auflage 2013, EUR 8,90

• HGB, dtv 5002, 54. Auflage 2013, EUR 6,90

• AktG und GmbHG, dtv 5010, 44. Auflage 2012, EUR 5,90

2. Lehrbücher, Grundrisse etc.

• Ulrich Eisenhardt, Einführung in das Bürgerliche Recht, 6. Aufl. 2010, UTB, Euro 29,90

• Wolfgang B. Schünemann, Wirtschaftsprivatrecht, 6. Auflage März 2011, UTB 1584 (UTB Lucius & Lucius), Euro 34,90

• Peter Bähr, Grundzüge des Bürgerlichen Rechts, 12. Auflage 2013 (erscheint vorauss. im April 2013, Verlag Vahlen, Euro 23,00

• Eugen Klunzinger, Einführung in das Bürgerliche Recht, 16. Auflage 2013, Verlag Vahlen, Euro 27,90

• Jos Mehrings, Grundzüge des Wirtschaftsprivatrechts, 2. Auflage 2010, Beck/Vahlen, Euro 29,80

• Friedrich K. Schade, Wirtschaftsprivatrecht - Grundlagen des

• Bürgerlichen Rechts sowie des Handels- und Wirtschaftsrechts, 2. Auflage 2009, Kohlhammer, Euro 28,80

• Günter Pottschmidt/Ulrich Rohr, Privatrecht für den Kaufmann, 12. Auflage 2003, Verlag Vahlen, EUR 25,00

• Eugen Klunzinger, Grundzüge des Handelsrechts, 14. Auflage 2011, Verlag Vahlen, EUR 19,80

• Knut W. Lange, Basiswissen Ziviles Wirtschaftsrecht - Ein Lehrbuch für Wirtschaftswissenschaftler, 6. Auflage 2012, Verlag Vahlen, EUR 22,90

3. Zur Vorbereitung auf die schriftliche Prüfung (Multiple Choice-Klausur)

• Udo Kornblum/Wolfgang B. Schünemann, Privatrecht für den Bachelor, 12. Auflage 2013 (erscheint vorauss. im April), UTB 1376 (C.F. Müller), EUR 19,95.

15. Lehrveranstaltungen und -formen: 198801 Vorlesung Grundzüge der Rechtswissenschaft

16. Abschätzung Arbeitsaufwand:

Präsenzzeit:	21 h
Selbststudium:	69 h
Gesamtzeit:	90 h

17. Prüfungsnummer/n und -name: 19881 Grundzüge der Rechtswissenschaft (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0, Multiple Choice

18. Grundlage für ... :
19. Medienform:

20. Angeboten von:
Modul: 12670 Ingenieurgeodäsie im Bauprozess

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher:
Univ.-Prof. Volker Schwieger

9. Dozenten:
Volker Schwieger

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Technikpädagogik, PO 2009, 3. Semester
- Affines Wahlpflichtfach Bautechnik --> Verfeinerrichtung g) Vermessungswesen --> Wahlflächer
 - Hauptfach Bautechnik --> Vermessungswesen --> Wahlcontainer
 - Wahlpflichtfach Bautechnik --> Vermessungswesen --> Wahl container
 - hochaffines Wahlpflichtfach Bautechnik --> WPF
- M.Sc. Technikpädagogik, PO 2015, 3. Semester
 - Hauptfach Bautechnik --> Vermessungswesen --> Wahlcontainer
- M.Sc. Technikpädagogik, PO 2015, 3. Semester
 - Wahlpflichtfach Bautechnik --> Vermessungswesen --> Wahl container
- M.Sc. Technikpädagogik, PO 2015, 3. Semester
 - hochaffines Wahlpflichtfach Bautechnik --> WPF

11. Empfohlene Voraussetzungen:
Geodäsie im Bauwesen, Statistik und Fehlerlehre

12. Lernziele:
Die Studierenden können Mess- und Auswerteverfahren bezogen auf ingenieurgeodätische Aufgaben innerhalb von Bauprozessen bewerten und einsetzen.

13. Inhalt:
- Aufgaben und Definitionen der Ingenieurgeodäsie,
- Phasen eines Bauprojektes, bauprozessbegleitende Informationskette
- Genauigkeitsangaben im Baubereich, Toleranz vs. Standardabweichung und Messunsicherheit (GUM)
- Flächen- und Volumenberechnung, Erdmassenberechnung
- Einfache Absteckungsverfahren
- Einrechnung und Absteckung von Bauwerksachsen, Sondernetze
- Trasseneinrechnung (Fahrdynamische Grundlagen Entwurfselemente im Lage- und Höhenplan, Pfeilhöhenverfahren)
- Absteckung für Straßen- und Bahntrassen
- Tunnelabsteckung, Kreiselmessung
- Kalibrierung von Nivellierlatten und -systemen
- Feinnivellement, digitales Nivel und Codelatten,
14. Literatur:

15. Lehrveranstaltungen und -formen:

126701 Vorlesung Ingenieurgeodäsie im Bauprozess

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 42 h
Selbststudium: 138 h
Gesamtzeit: 180 h

17. Prüfungsnummer/n und -name:

12671 Ingenieurgeodäsie im Bauprozess (PL), mündliche Prüfung, 20 Min., Gewichtung: 1.0, Prüfungsvorleistung: Hausübungen

18. Grundlage für ... :

19. Medienform:
Tafel, Laptop + Beamer, Feld- und Rechenübungen

20. Angeboten von:
Modul: 12680 Ingenieurgeodätische Mess- und Auswertemethoden

2. Modulkürzel: 06230052
5. Modulduauer: 2 Semester

3. Leistungspunkte: 6.0 LP
6. Turnus: jedes 2. Semester, SoSe

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Volker Schwieger

9. Dozenten: Volker Schwieger

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Technikpädagogik, PO 2009, 4. Semester
 ➞ Affines Wahlpflichtfach Bautechnik --> Vertiefungsrichtung g)
 Vermessungswesen --> Vermessungswesen Wahlfächer
 ➞
M.Sc. Technikpädagogik, PO 2009, 4. Semester
 ➞ Hauptfach Bautechnik --> Vermessungswesen --> Wahlcontainer
 ➞
M.Sc. Technikpädagogik, PO 2009, 4. Semester
 ➞ Wahlpflichtfach Bautechnik --> g) Vermessungswesen --> Vermessungswesen Wahl
 ➞
M.Sc. Technikpädagogik, PO 2009, 4. Semester
 ➞ hochaffines Wahlpflichtfach Bautechnik --> WPF
 Vermessungswesen --> Wahlcontainer
 ➞
M.Sc. Technikpädagogik, PO 2015, 4. Semester
 ➞ Hauptfach Bautechnik --> Vermessungswesen --> Wahlcontainer
 ➞
M.Sc. Technikpädagogik, PO 2015, 4. Semester
 ➞ Wahlpflichtfach Bautechnik --> g) Vermessungswesen --> Vermessungswesen Wahl
 ➞
M.Sc. Technikpädagogik, PO 2015, 4. Semester
 ➞ hochaffines Wahlpflichtfach Bautechnik --> WPF
 Vermessungswesen --> Wahlcontainer
 ➞

11. Empfohlene Voraussetzungen: Geodäsie im Bauwesen, Statistik und Fehlerlehre

12. Lernziele:
Die Studierenden können weiterführende Mess- und Auswerteverfahren bezogen auf ingenieurgeodätische Projekte bewerten und einsetzen.

13. Inhalt:
1. Kalibrierung elektro-optischer Entfernungsmesser, Frequenzkorrektur, Nullpunktkorrektur, zyklischer Fehler
2. Elektronische Tachymeter, Systembeschreibung, Stehachsneigung, Zielerfassung und -verfolgung, reflektorlose Distanzmessung
3. Terrestrische Laserscanner, Messverfahren, Fehlereinflüsse, Genauigkeiten
4. Anwendungen des GPS in der Ingenieurgeodäsie: Grundprinzip und Beobachtungsverfahren, Differentielles GPS, Post-Processing und Echtzeit Messverfahren, Echtzeitdienste, Restriktionen des GPS in der Ingenieurgeodäsie
5. Netzweise Punktbestimmung: Lagennetze, Höhennetze, Kombination terrestrischer Netze mit Satellitenbeobachtungen,
6. Datumsfestlegung: ingenieurgeodätische Datumsdefinition, Datum und Konfiguration, unter Zwang, zwangsfrei, freies Netz, weiches Datum
7. Gütekriterien ingenieurgeodätischer Netze: Genauigkeit, Zuverlässigkeit, Sensitivität
8. Überwachungsmessungen: Einordnung und Zielsetzung, Aufstellen eines Messprogramms
9. Deformationsanalyse: Überblick über Deformationsmodelle, Grundlagen Zwei- und Dreiepochenvergleich
10. Aufstellen von projektbezogenen Mess- und Auswertekonzepten

14. Literatur:

15. Lehrveranstaltungen und -formen: 126801 Vorlesung Ingenieurgeodätische Mess- und Auswertemethoden

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 h
Selbststudium: 138 h
Gesamtzeit: 180 h

17. Prüfungsnummer/n und -name:
12681 Ingenieurgeodätische Mess- und Auswertemethoden (PL), mündliche Prüfung, 20 Min., Gewichtung: 1.0, Prüfungsvorleistung: Hausübungen

18. Grundlage für ...

19. Medienform: Tafel, Laptop + Beamer, Feld- und Rechenübungen

20. Angeboten von:
Modul: 12660 Integriertes Projekt für Technikpädagogen

2. Modulkürzel: 062300053
5. Moduldauer: 1 Semester
3. Leistungspunkte: 6.0 LP
6. Turnus: jedes 2. Semester, SoSe
4. SWS: 0.0
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Volker Schwieger
9. Dozenten:
 • Wolfgang Keller
 • Alfred Kleusberg
 • Dieter Fritsch
 • Volker Schwieger
 • Nicolaas Sneeuw

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Technikpädagogik, PO 2009, 2. Semester
 ➞ Affines Wahlpflichtfach Bautechnik ---> Vertiefungsrichtung g) Vermessungswesen --> Vermessungswesen Wahlfächer
 ➞
M.Sc. Technikpädagogik, PO 2009, 2. Semester
 ➞ Hauptfach Bautechnik --> Vermessungswesen --> Wahlcontainer
 ➞
M.Sc. Technikpädagogik, PO 2009, 2. Semester
 ➞ Wahlpflichtfach Bautechnik ---> g) Vermessungswesen --> g) Vermessungswesen Wahl
 ➞
M.Sc. Technikpädagogik, PO 2009, 2. Semester
 ➞ hochaffines Wahlpflichtfach Bautechnik --> WPF
 Vermessungswesen --> Wahlcontainer
 ➞
M.Sc. Technikpädagogik, PO 2015, 2. Semester
 ➞ Hauptfach Bautechnik --> Vermessungswesen --> Wahlcontainer
 ➞
M.Sc. Technikpädagogik, PO 2015, 2. Semester
 ➞ Wahlpflichtfach Bautechnik ---> g) Vermessungswesen --> g) Vermessungswesen Wahl
 ➞
M.Sc. Technikpädagogik, PO 2015, 2. Semester
 ➞ hochaffines Wahlpflichtfach Bautechnik --> WPF
 Vermessungswesen --> Wahlcontainer

11. Empfohlene Voraussetzungen: Statistik und Fehlerlehre, Geodäsie im Bauwesen

12. Lernziele:
Die Studierenden können das Wissen der unter Voraussetzungen genannten Module projektbezogen auf wechselnde Themengebiete anwenden. Darüber hinaus können sie fachbezogen Gruppenarbeit, Projektmanagement und Präsentationstechniken umsetzen.

13. Inhalt:
 • Wechselnde Themenschwerpunkte werden in Projektform behandelt. Beispiele für Projekte sind „Geoidbestimmung“, „Aufbau eines touristischen Informationssystems“ oder „Absteckung eines Tunnels“.
 • Die Studierenden arbeiten für 10 Tage an der Umsetzung eines Projektes, welches in unterschiedliche Arbeitspakete gegliedert ist. Die Planung, Messung, Auswertung und Analyse wird in kleinen Arbeitsgruppen umgesetzt.
• Die Studierenden übernehmen Managementfunktionen während der Durchführung des Praktikums. Die Lehrenden stehen in leitender und beratender Funktion zur Verfügung.
• Vor der Feldarbeit hat jeder einzelne der Studierenden jeweils ein Arbeitspaket des Gesamtprojekts vorzubereiten. Diese Vorbereitung umfasst auch eine Präsentation des Arbeitspakettes vor der Projektgruppe bestehend aus Studierenden und Lehrenden.
• Nach der Feldarbeit ist ein gemeinsamer Abschlussbericht zu erstellen und die Ergebnisse der Arbeitspakete sind gleichfalls von den einzelnen Studierenden im Rahmen eines Vortrags vor der Projektgruppe zu präsentieren.

14. Literatur:

15. Lehrveranstaltungen und -formen: 126601 Integriertes Projekt für Technikpädagogen

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 84 h
 Selbststudium: 96 h
 Gesamtzeit: 180 h

17. Prüfungsnummer/n und -name: 12661 Integriertes Projekt für Technikpädagogen (USL), schriftlich, eventuell mündlich, Gewichtung: 1,0, Prüfungsvorleistungen: 2 Vorträge (Arbeitspaketvorstellung und Abschlusspräsentation), 2 Berichte (Arbeitspaketbeschreibung und Abschlussbericht)

18. Grundlage für ... :

19. Medienform: Laptop + Beamer, Praktikum

20. Angeboten von:
5280 h) Straßenbau

Zugeordnete Module:

5281 h) Straßenbau Pflicht
5282 h) Straßenbau Wahl
5281 h) Straßenbau Pflicht

Zugeordnete Module:
10820 Straßenbautechnik I
12700 Straßenbautechnik II
15790 Entwurf, Lärmschutz und Umweltwirkungen von Straßenverkehrsanlagen
Modul: 15790 Entwurf, Lärmschutz und Umweltwirkungen von Straßenverkehrsanlagen

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>02130210</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Moduldaurer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.2</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Wolfram Ressel</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Wolfram Ressel
| | • Stefan Alber
| | • Hans-Georg Schwarz-von Raumer |

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>M.Sc. Technikpädagogik, PO 2009, 1. Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>→ Affines Wahlpflichtfach Bautechnik -->Vertiefungsrichtung h) Straßenbau -->Straßenbau Pflichtfächer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M.Sc. Technikpädagogik, PO 2009, 1. Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>→ Hauptfach Bautechnik -->Straßenbau -->Pflichtcontainer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M.Sc. Technikpädagogik, PO 2009, 1. Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>→ Wahlpllichtfach Bautechnik -->h) Straßenbau -->h) Straßenbau Pflicht</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M.Sc. Technikpädagogik, PO 2009, 1. Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>→ hochaffines Wahlpflichtfach Bautechnik -->WPF Straßenbau -->Pflichtcontainer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M.Sc. Technikpädagogik, PO 2015, 1. Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>→ Hauptfach Bautechnik -->Straßenbau -->Pflichtcontainer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M.Sc. Technikpädagogik, PO 2015, 1. Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>→ Wahlpllichtfach Bautechnik -->h) Straßenbau -->h) Straßenbau Pflicht</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M.Sc. Technikpädagogik, PO 2015, 1. Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>→ hochaffines Wahlpflichtfach Bautechnik -->WPF Straßenbau -->Pflichtcontainer</td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen: keine

12. Lernziele:

Die Hörer der Lehrveranstaltung „Straßenplanung und -entwurf“ können

- fahrdynamische und fahrgemessertische Grundlagen und
- entwurfs-technische Grundlagen für die dreidimensionale Trassierung von Straßenverkehrsanlagen (Autobahnen, Landstraßen, Stadtstraßen, Knotenpunkte) anwenden, Straßen bemessen und die Verkehrsqualität nachweisen sowie
- kinematische Bewegungen im Verkehrsablauf beschreiben.

Die Hörer der Lehrveranstaltung "Lärmschutz und Umweltwirkungen an Straßen" kennen:

- Problematic, Enstehung und grundsätzliche Zusammenhänge von Straßenverkehrslärm
- Straßen- bzw. fahrdynamische Minderungsmöglichkeiten
13. Inhalt: In den Lehrveranstaltung "Straßenplanung und -entwurf" werden folgende Themengebiete behandelt:

- Funktionale Gliederung des Straßennetzes nach Straßenkategorien und Verbindungsfunktionen
- Fahrdynamik (Außerortsentwurf) und Fahrgeometrie (Innerortsentwurf), Bedeutung der Verkehrssicherheit in physikalischen Modellen
- Bemessung und Nachweis der Verkehrsqualität des Straßenentwurfs (Vorplanung) und Querschnittsgestaltung
- Entwurfsparameter und -parameter für die Trassierung von Autobahnen, Landstraßen, Stadtstraßen und Knotenpunkten in Lage- und Höhenplänen und deren Ableitung aus fahrdynamischen Modellen

In der Lehrveranstaltung "Lärmschutz und Umweltwirkungen an Straßen" werden folgende Themen behandelt:

- Straßenverkehrslärm (Problematik, Pegelbegriff, Mittelungspegel, Beurteilungspegel, gesetzliche Regelungen, Strategien der Lärmreduzierung)
- Straßenverkehrslärm Berechnungsvorschriften (Grundzüge des Verfahrens der RLS-90 und VBUS, Ablauf des Berechnungsverfahrens nach RLS-90 und VBUS, Verweise für Immissionsberechnung „Ruhender Verkehr“/Parkplätze)
- Zusammensetzung von Straßenverkehrsgerauschen, Entstehung von Reifen-Fahrbahngeräuschen, akustische Parameter und Optimierung von Fahrbahnoberflächen
- Messmethoden Straßenverkehrslärm und Oberflächeneigenschaften von Straßen (Messmethoden Straßenverkehrslärm, Methode der Statistischen Vorbeifahrt (SPB), Nahfeldmessung/Anhängermessung (CPX), Messmethoden (akustisch relevanter) Oberflächeneigenschaften, Messung der Oberflächentextur, Messung des Strömungswiderstands, Messung des Schallabsorptionsgrads
- Lärmmindernde Deckschichten und Straßenoberflächen - Stand der Technik (Offenporiger Asphalt als lärmmindernde Deckschicht, Lärmmindernde Fahrbahndeckschichten in der Baupraxis, Asphaltbauweisen, Betonbauweisen
- Offenporiger Asphalt als poröser Absorber (Physikalische Grundlagen, Absorptionsdämpfung, Impedanz, Absorberparameter, Absorbermodelle für offenenporigen Asphalt)
- Wirtschaftlichkeitsbetrachtungen im Hinblick auf Lärm
- Forschungsbemühungen und aktuelle Entwicklungen zum Thema „Leise Fahrbahndeckschichten“ sowie Lärmschutz an Straßen
- Luftverschmutzung und Luftreinhaltung an Straßen
- Belange der natürlichen Umwelt und Umgang mit der Thematik in der Straßenplanung und im Straßenbau (Umweltverträglichkeit, Biotope, Wechselwirkungen, Auswirkungen auf Flora und Fauna)

14. Literatur:

- Ressel, W.: Skriptum „Straßenplanung und -entwurf“
- Forschungsgesellschaft für Straßen- und Verkehrswesen (FGSV): Richtlinien für die Anlage von Autobahnen (RAA), Köln 2008
- Forschungsgesellschaft für Straßen- und Verkehrswesen (FGSV): Richtlinien für die Anlage von Landstraßen (RAL), Köln 2012
• Forschungsgesellschaft für Straßen- und Verkehrswesen (FGSV): Richtlinien für die Anlage von Stadtstraßen (RASt), Köln 2006
• Forschungsgesellschaft für Straßen- und Verkehrswesen (FGSV): Merkblatt für Asphaltdeckssichten aus Offenporigem Asphalt (M OPA), Köln 2014
• Forschungsgesellschaft für Straßen- und Verkehrswesen (FGSV): Empfehlungen für die landschaftspflegerische Ausführung im Straßenbau (ELA), Köln 2013
• Forschungsgesellschaft für Straßen- und Verkehrswesen (FGSV): Arbeitspapier "Textureinfluss auf die akustischen Eigenschaften von Fahrbahndecken", Köln 2013
• Forschungsgesellschaft für Straßen- und Verkehrswesen (FGSV): Empfehlungen für die Planung und Ausführung von lärmpflichtig optimierten Asphaltdeckssichten aus AC D LOA und SMA LA (E LA D), Köln 2014
• Bundesminister für Verkehr (1990): Richtlinien für den Lärmschutz an Straßen (RLS-90), Köln 1990
• 34. Verordnung zur Durchführung des Bundes-Immissionsschutzgesetzes (Verordnung über die Lärmkartierung - 34. BImSchV), LärmkartierungsVO v. 6. März 2006 und Bekanntmachung der Vorläufigen Berechnungsverfahren für den Umgebungslärm nach §5 Abs. 1 der 34. BImSchV v. 22. Mai 2006.
• DIN EN ISO 13473, Teile 1 bis 3: Charakterisierung der Textur von Fahrbahnbelägen unter Verwendung von Oberflächenprofilen
• Beckenbauer, T.; Alber, S.; Männel, M.: Lärmmindernde Fahrbahnbeläge: Was war, was ist und was wird sein?, in: Straße und Verkehr (CH), Heft 7/8, 2010

<table>
<thead>
<tr>
<th>15. Lehrveranstaltungen und -formen:</th>
<th>16. Abschätzung Arbeitsaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 157901 Vorlesung Straßenplanung und -entwurf</td>
<td>Präsenzzeit: ca. 55 h</td>
</tr>
<tr>
<td>• 157902 Übung Straßenplanung und -entwurf</td>
<td>Selbststudium: ca. 125 h</td>
</tr>
<tr>
<td>• 157903 Exkursion Straßenplanung und -entwurf</td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td></td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>-----</td>
</tr>
<tr>
<td>• 15791 Straßenplanung und -entwurf (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0</td>
<td></td>
</tr>
<tr>
<td>• 15792 Lärmschutz und Umweltwirkungen an Straßen (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>18. Grundlage für ... :</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>19. Medienform:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>20. Angeboten von:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Straßenplanung und Straßenbau</td>
<td></td>
</tr>
</tbody>
</table>
Modul: 10820 Straßenbautechnik I

2. Modulkürzel: 021310101
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0
5. Modulendauer: 1 Semester
6. Turnus: jedes 2. Semester, SoSe
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Wolfram Ressel
9. Dozenten: • Wolfram Ressel
 • Stefan Alber
10. Zuordnung zum Curriculum in diesem Studiengang:
 M.Sc. Technikpädagogik, PO 2009, 2. Semester
 ➔ Affines Wahlpflichtfach Bautechnik --> Vertiefungsrichtung h)
 Straßenbau --> Straßenbau Pflichtfächer
 ➔
 M.Sc. Technikpädagogik, PO 2009, 2. Semester
 ➔ Hauptfach Bautechnik --> Straßenbau --> Pflichtcontainer
 ➔
 M.Sc. Technikpädagogik, PO 2009, 2. Semester
 ➔ Wahlpflichtfach Bautechnik --> h) Straßenbau --> h) Straßenbau
 Pflicht
 ➔
 M.Sc. Technikpädagogik, PO 2009, 2. Semester
 ➔ hochaffines Wahlpflichtfach Bautechnik --> WPF Straßenbau -->
 Pflichtcontainer
 ➔
 M.Sc. Technikpädagogik, PO 2015, 2. Semester
 ➔ Hauptfach Bautechnik --> Straßenbau --> Pflichtcontainer
 ➔
 M.Sc. Technikpädagogik, PO 2015, 2. Semester
 ➔ Wahlpflichtfach Bautechnik --> h) Straßenbau --> h) Straßenbau
 Pflicht
 ➔
 M.Sc. Technikpädagogik, PO 2015, 2. Semester
 ➔ hochaffines Wahlpflichtfach Bautechnik --> WPF Straßenbau -->
 Pflichtcontainer
 ➔
11. Empfohlene Voraussetzungen: keine

12. Lernziele: Die Studierenden kennen die werkstofflichen Eigenschaften und das
 Tragverhalten eines Straßenunterbaus und -oberbaus und der dabei
 zum Einsatz kommenden Werkstoffe und sind in der Lage, einen
 Straßenoberbau (befestigter Querschnitt) zu dimensionieren. Sie
 können die Anlagen zur Entwässerung entwerfen und bemessen. Die
 Hörer kennen die Grundlagen der Straßenerhaltung von Asphalt- und
 Betonstraßen, sowie Recycling von Asphalt / Baustoffen im Straßenbau.

13. Inhalt: In den Vorlesungen und den zugehörigen Übungen werden folgende
 Themen behandelt:

 Untergrund/Unterbau:
 - Eigenschaften von Böden
 - Tragverhalten und bodenmechanische Eigenschaften
 - Bodenverfestigung und Bodenverbesserung
 - Prüfverfahren von Böden und ungebundenen Schichten
Oberbau:
- Straßenbaustoffe - Prüfungen und Anforderungen
- Dimensionierung des Oberbaues von Verkehrsflächen
- Schichten im Straßenoberbau
- Dimensionierung und Herstellung von Straßendecken und Tragschichten
- Einführung Maschinentechnik im Straßenbau
- Recycling von Straßenbaustoffe

Entwässerung von Straßen:
- Planung, Entwurf und Bemessung von Straßenentwässerungseinrichtungen

Straßenerhaltung:
- Schadensbilder
- Einführung in die Zustandserfassung und -bewertung (ZEB)
- Maßnahmen an Asphalt- und Betonstraßen

14. Literatur:
- Ressel, W.: Skript „Straßenbautechnik I“
- Forschungsgesellschaft für Straßen- und Verkehrswesen (FGSV): Richtlinien für die Standardisierung des Oberbaus (RStO 12), Köln 2012
- Forschungsgesellschaft für Straßen- und Verkehrswesen (FGSV): Richtlinien für die Anlage von Straßen - Teil: Entwässerung (RAS-Ew), Köln 2005
- Bleßmann, W.; Böhм, S.; Rosauer, V.; Schäfer, V.: ZTV BEA-StB - Handbuch und Kommentar, Kirschbaum Verlag, Bonn 2010

15. Lehrveranstaltungen und -formen:
- 108201 Vorlesung Straßenbautechnik
- 108202 Übung Straßenbautechnik

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 h
Selbststudium / Nacharbeitszeit: 138 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
- 10821 Straßenbautechnik I (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0,
- V Vorleistung (USL-V), schriftlich, eventuell mündlich, Prüfungsvoraussetzung: Hausübung

18. Grundlage für ...
12700 Straßenbautechnik II

19. Medienform:

20. Angeboten von:
Straßenplanung und Straßenbau
Modul: 12700 Straßenbautechnik II

2. Modulkürzel: 021310201
5. Moduldauer: 1 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Wolfram Ressel

9. Dozenten:
• Wolfram Ressel
• Stefan Alber

10. Zuordnung zum Curriculum in diesem Studiengang:
 M.Sc. Technikpädagogik, PO 2009, 3. Semester
 ➞ Affines Wahlpflichtfach Bautechnik --> Vertiefungsrichtung h)
 Straßenbau --> Straßenbau Pflichtfärcher
 ➞
 M.Sc. Technikpädagogik, PO 2009, 3. Semester
 ➞ Hauptfach Bautechnik --> Straßenbau --> Pflichtcontainer
 ➞
 M.Sc. Technikpädagogik, PO 2009, 3. Semester
 ➞ Wahlpflichtfach Bautechnik --> h) Straßenbau --> h) Straßenbau Pflicht
 ➞
 M.Sc. Technikpädagogik, PO 2009, 3. Semester
 ➞ hochaffines Wahlpflichtfach Bautechnik --> WPF Straßenbau --> Pflichtcontainer
 ➞
 M.Sc. Technikpädagogik, PO 2015, 3. Semester
 ➞ Hauptfach Bautechnik --> Straßenbau --> Pflichtcontainer
 ➞
 M.Sc. Technikpädagogik, PO 2015, 3. Semester
 ➞ Wahlpflichtfach Bautechnik --> h) Straßenbau --> h) Straßenbau Pflicht
 ➞
 M.Sc. Technikpädagogik, PO 2015, 3. Semester
 ➞ hochaffines Wahlpflichtfach Bautechnik --> WPF Straßenbau --> Pflichtcontainer

11. Empfohlene Voraussetzungen: Modul 10820: Straßenbautechnik I

12. Lernziele:

 Die Studierenden verstehen messtechnische Methoden zur Erfassung des Oberflächenzustandes von Straßen und sind in der Lage die Ergebnisse nach den Grundlagen einer wirtschaftlichen Straßenerhaltung zu bewerten.

 Die Studierenden kennen die wesentlichen funktionalen Oberflächeneigenschaften von Straßen und deren wesentliche Parameter und Anforderungen.
13. Inhalt:

In der Veranstaltung „Freie Oberbaubemessung“ werden folgende Themen behandelt:

Baustoffeigenschaften für oberbaumechanische Dimensionierungen:

- Ungebundene Schichten, Asphaltschichten, hydraulisch gebundene Tragschichten und Betondecken
- Grundlagen der Oberbaumechanik
- Beanspruchungs- und Rechenmodelle
- Schwind- und Temperaturspannungen
- Berechnungsverfahren "Elastisch-isotroper Halbraum" nach Westergaard und
- Berechnungsverfahren für Mehrschichtensysteme

Semiempirische Oberbaudimensionierung:

- AASHO-Road-Test-Bemessungsverfahren
- Dickenbemessung bei Flugplatzbefestigungen (ACN und PCN)
- Rechnerische Dimensionierung des Oberbaus nach RDO Asphalt/Beton 09

In den Laborübungen werden Verfahren zur Bestimmung von Kenngrößen aus dem Erd- und Grundbau und Untersuchungsverfahren für Bitumen und Asphalt vorgestellt.

In der Veranstaltung „Oberflächeneigenschaften von Straßenbefestigungen“ werden folgende Themen behandelt:

Straßenerhaltung, Zustandsmerkmale und Zustandserfassung und -bewertung:

- Ausgewählte Schadensbilder bei Asphalt- und Betondecken
- Maßnahmen der Erneuerung, der Instandsetzung und der Wartung bei Straßen
- Erhaltungsziele
- Normierungs- und Bewertungsverfahren für Einzelzustandsmerkmale
- Elemente einer netzweiten Zustandserfassung und -bewertung
- Substanzbewertung
- Monetäre Bewertung

Oberflächeneigenschaften:

- Textur
- Griffigkeit
- Substanzmerkmale/Oberflächenbild für Asphalt- und Betondecken
- Längs- und Querunebenheit, Schwingungsanregung
- Wasserabfluss (Aaquaplaning)
- Akustik
- Messtechniken und Messfahrzeuge zur Erfassung von Oberflächenmerkmalen
- Reflexion/Helligkeit

14. Literatur:

- Ressel, W.: Skript „Freie Oberbaubemessung“
- Forschungsgesellschaft für das Straßenwesen: Der AASHO-Road-Test. Hauptergebnisse und Folgerungen zum Problem der Bemessung von Fahrbahnbevestigungen, 1968
• Forschungsgesellschaft für Straßen- und Verkehrswesen (FGSV): Richtlinien für die rechnerische Dimensionierung von Betondecken im Oberbau von Verkehrsflächen (RDO Beton), Köln 2010
• Forschungsgesellschaft für Straßen- und Verkehrswesen (FGSV): Richtlinien für die rechnerische Dimensionierung des Oberbaus von Verkehrsflächen mit Asphaltdeckschicht (RDO Asphalt), Köln 2010
• Forschungsgesellschaft für Straßen- und Verkehrswesen (FGSV): Arbeitspapiere zur Systematik der Straßenerhaltung AP 9, Köln 2001-2011
• Forschungsgesellschaft für Straßen- und Verkehrswesen (FGSV): Merkblatt für den Bau griffiger Asphaltdeckschichten (M BgA), Köln 2004
• Forschungsgesellschaft für Straßen- und Verkehrswesen (FGSV): Merkblatt für griffigkeitsverbessernde Maßnahmen an Verkehrsflächen aus Asphalt, Köln 2002
• Forschungsgesellschaft für Straßen- und Verkehrswesen (FGSV): Merkblatt für die Optimierung der Oberflächeneigenschaften von Asphaltdeckschichten (M OOA), Köln 2010
• Forschungsgesellschaft für Straßen- und Verkehrswesen (FGSV): Technische Prüfvorschriften für Griffigkeitsmessungen im Straßenbau - Teil: Messverfahren SRT (TP Griff-StB (SRT)), Köln 2010
• Forschungsgesellschaft für Straßen- und Verkehrswesen (FGSV): Arbeitspapier "Textureinfluss auf die akustischen Eigenschaften von Fahrbahndecken”, Köln 2013
• DIN Deutsches Institut für Normung e. V.: Charakterisierung der Textur von Fahrbahnbelägen unter Verwendung von Oberflächenprofilen - Teil 1: Bestimmung der mittleren Profiltiefe (DIN ISO 13473-1), 2004
• DIN Deutsches Institut für Normung e. V.: Charakterisierung der Textur von Fahrbahnbelägen unter Verwendung von Oberflächenprofilen - Teil 2: Begriffe und grundlegende Anforderungen für die Analyse von Fahrbahntexturprofilen (DIN ISO 13473-2), 2002

15. Lehrveranstaltungen und -formen:
• 127001 Vorlesung Freie Oberbaumbemessung
• 127002 Übung Freie Oberbaumbemessung
• 127003 Vorlesung Oberflächeneigenschaften von Straßenbefestigungen

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: ca. 45 h
Selbststudium: ca. 135 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
• 12701 Freie Oberbaumessung (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0
• 12702 Oberflächeneigenschaften von Straßenbefestigungen (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0
• V Vorleistung (USL-V), schriftlich, eventuell mündlich, 2 Laborübungen

18. Grundlage für ... :
12720 Pavement Management Systeme

19. Medienform:

20. Angeboten von:
Straßenplanung und Straßenbau
5282 h) Straßenbau Wahl

<table>
<thead>
<tr>
<th>Zugeordnete Module</th>
<th>Bezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>12720</td>
<td>Pavement Management Systeme</td>
</tr>
<tr>
<td>12730</td>
<td>Ausgewählte Kapitel der Straßenbautechnik</td>
</tr>
<tr>
<td>12740</td>
<td>Fahrgeometrie</td>
</tr>
<tr>
<td>12750</td>
<td>Straßenplanung</td>
</tr>
<tr>
<td>49000</td>
<td>Straßenentwurf innerorts</td>
</tr>
</tbody>
</table>
Modul: 12730 Ausgewählte Kapitel der Straßenbautechnik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>021310206</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Wolfram Ressel</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Wolfram Ressel</td>
</tr>
</tbody>
</table>
 → Affines Wahlpflichtfach Bautechnik -->Vertiefungsrichtung h) Straßenbau -->Straßenbau Wahlfächere
 → M.Sc. Technikpädagogik, PO 2009, 4. Semester
 → Hauptfach Bautechnik -->Straßenbau -->Wahlcontainer
 → M.Sc. Technikpädagogik, PO 2009, 4. Semester
 → Wahlpflichtfach Bautechnik -->h) Straßenbau -->h) Straßenbau Wahl
 → M.Sc. Technikpädagogik, PO 2009, 4. Semester
 → hochaffines Wahlpflichtfach Bautechnik -->WPF Straßenbau -->Wahlcontainer
 → M.Sc. Technikpädagogik, PO 2015, 4. Semester
 → Hauptfach Bautechnik -->Straßenbau -->Wahlcontainer
 → M.Sc. Technikpädagogik, PO 2015, 4. Semester
 → Wahlpflichtfach Bautechnik -->h) Straßenbau -->h) Straßenbau Wahl
 → M.Sc. Technikpädagogik, PO 2015, 4. Semester
 → hochaffines Wahlpflichtfach Bautechnik -->WPF Straßenbau -->Wahlcontainer |

| 11. Empfohlene Voraussetzungen: | • Modul 10820: Straßenbautechnik I
 • Modul 12700: Straßenbautechnik II |

| 13. Inhalt: | In der Veranstaltung erhalten die Hörer vertiefende Informationen
 • über die lärms- und entwässerungstechnischen Eigenschaften von offenporigen Asphaltschichten (Drainasphalt) mittels simulations- und labortechnischer Auswerteverfahren,
 • zur strukturellen Zustandsbewertung von Asphaltbefestigungen mit Hilfe der Mehrschichtentheorie (numerische Bemessungsverfahren) unter Einbindung von Lebenszyklusbetrachtungen (Life-Cycle-Bewertung) sowie |
• zur fachtechnischen und statistischen Auswertung von Laboruntersuchungen, die zur Beurteilung und Qualitätssicherung von Asphaltdeckschichten wie auch als Eingangsdaten zur Bemessung und strukturellen Zustandsbewertung des Asphaltoberbaus eingesetzt werden.

14. Literatur:
• Ressel, W.; Wellner, F.; Benner, A.: Vergleichende Bewertung der Restsubstanz von Asphaltbefestigungen nach langjähriger Verkehrsnutzung

15. Lehrveranstaltungen und -formen:
<table>
<thead>
<tr>
<th>Prüfungsnummer/n und -name:</th>
<th>127301 Vorlesung Ausgewählte Kapitel der Straßenbautechnik</th>
</tr>
</thead>
</table>

16. Abschätzung Arbeitsaufwand:
| Präsenzzeit: | ca. 25 h |
| Selbststudium: | ca. 65 h |
| Gesamt: | ca. 90 h |

17. Prüfungsnummer/n und -name:
| 12731 Ausgewählte Kapitel der Straßenbautechnik (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0 |

18. Grundlage für ..:

19. Medienform:

20. Angeboten von: Straßenplanung und Straßenbau
Modul: 12740 Fahrgeometrie

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>021310204</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Wolfram Ressel</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Wolfram Ressel</td>
</tr>
</tbody>
</table>

→ Affines Wahlpflichtfach Bautechnik -->Vertiefungsrichtung h) Straßenbau -->Straßenbau Wahl

→ M.Sc. Technikpädagogik, PO 2009, 2. Semester

→ Hauptfach Bautechnik -->Straßenbau -->Wahlcontainer

→ M.Sc. Technikpädagogik, PO 2009, 2. Semester

→ Wahlpflichtfach Bautechnik -->h) Straßenbau -->h) Straßenbau Wahl

→ M.Sc. Technikpädagogik, PO 2009, 2. Semester

→ hochaffines Wahlpflichtfach Bautechnik -->WPF Straßenbau -->Wahlcontainer

→ M.Sc. Technikpädagogik, PO 2015, 2. Semester

→ Hauptfach Bautechnik -->Straßenbau -->Wahlcontainer

→ M.Sc. Technikpädagogik, PO 2015, 2. Semester

→ Wahlpflichtfach Bautechnik -->h) Straßenbau -->h) Straßenbau Wahl

→ M.Sc. Technikpädagogik, PO 2015, 2. Semester

→ hochaffines Wahlpflichtfach Bautechnik -->WPF Straßenbau -->Wahlcontainer

11. Empfohlene Voraussetzungen: | Modul 46290: Entwurf von Verkehrsanlagen

15. Lehrveranstaltungen und -formen: | 127401 Übung Fahrgeometrie
16. Abschätzung Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Zeitangabe</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzzeit</td>
<td>ca. 25 h</td>
</tr>
<tr>
<td>Selbststudium</td>
<td>ca. 65 h</td>
</tr>
<tr>
<td>Gesamt</td>
<td>ca. 90 h</td>
</tr>
</tbody>
</table>

17. Prüfungsnummer/n und -name:

12741 Fahrgeometrie (BSL), mündliche Prüfung, 20 Min., Gewichtung: 1.0, Vorleistung: Praxisübung

18. Grundlage für ...

19. Medienform:

20. Angeboten von:

Straßenplanung und Straßenbau
Modul: 12720 Pavement Management Systeme

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>021310211</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>5. Modulduer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Wolfram Ressel</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>• Wolfram Ressel</td>
</tr>
<tr>
<td></td>
<td>• Stefan Alber</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- M.Sc. Technikpädagogik, PO 2009, 1. Semester
 - Affines Wahlpflichtfach Bautechnik --> Vertiefungsrichtung h)
 - Straßenbau --> Straßenbau Wahl
- M.Sc. Technikpädagogik, PO 2009, 1. Semester
 - Hauptfach Bautechnik --> Straßenbau --> Wahlcontainer
- M.Sc. Technikpädagogik, PO 2009, 1. Semester
 - Wahlpflichtfach Bautechnik --> h) Straßenbau --> h) Straßenbau Wahl
- M.Sc. Technikpädagogik, PO 2009, 1. Semester
 - hochaffines Wahlpflichtfach Bautechnik --> WPF Straßenbau --> Wahlcontainer
- M.Sc. Technikpädagogik, PO 2015, 1. Semester
 - Hauptfach Bautechnik --> Straßenbau --> Wahlcontainer
- M.Sc. Technikpädagogik, PO 2015, 1. Semester
 - Wahlpflichtfach Bautechnik --> h) Straßenbau --> h) Straßenbau Wahl
- M.Sc. Technikpädagogik, PO 2015, 1. Semester
 - hochaffines Wahlpflichtfach Bautechnik --> WPF Straßenbau --> Wahlcontainer

11. Empfohlene Voraussetzungen:

- Lehrveranstaltung: Oberflächeneigenschaften von Straßenbefestigungen (in den Modulen 12700 & 17580)

12. Lernziele:

Die Studierenden kennen Aufgaben und Methoden der systematischen Erhaltungsplanung.

13. Inhalt:

In der Veranstaltung erhalten die Hörer vertiefende Informationen

- zu deterministischen Life-Cycle-Modellen mit den Elementen der baubetrieblichen, bemessungstechnischen und erhaltungstechnischen Strategieplanung.
• zu Verhaltensfunktionen für die Beschreibung der Zustandsentwicklung von Straßenoberflächen und Straßenbefestigungen,
• zu Erhaltungsbauweisen für Asphalt- und Betonfahrbahnen,
• zu Prognoseverfahren mit flexiblen Strategiemodellen für alle Oberbaubefestigungen (Asphalt, Beton) unter Berücksichtigung von Nutzungsdauer, Anteile der Erhaltungsmaßnahmenarten und Maßnahmekosten als stochastische Variablen.

14. Literatur:
• Forschungsgesellschaft für Straßen- und Verkehrswesen (FGSV): Zusätzliche Technische Vertragsbedingungen und Richtlinien für die Bauliche Erhaltung von Verkehrsflächenbefestigungen - Asphaltbauweisen (ZTV BEA-StB), Köln 2011
• Forschungsgesellschaft für Straßen- und Verkehrswesen (FGSV): Zusätzliche Technische Vertragsbedingungen und Richtlinien für die Bauliche Erhaltung von Verkehrsflächen - Betonbauweise (ZTV BEB-StB), Köln 2002
• Bleßmann, W.; Böhm, S.; Rosauer, V.; Schäfer, V.: ZTV BEA-StB - Handbuch und Kommentar, Kirschbaum Verlag, Bonn 2010
• Forschungsgesellschaft für Straßen- und Verkehrswesen (FGSV): Zusätzliche Technische Vertragsbedingungen und Richtlinien zur Zustandserfassung und -bewertung von Straßen (ZTV ZEB-StB), Köln 2011
• Forschungsgesellschaft für Straßen- und Verkehrswesen (FGSV): Richtlinien für die Planung von Erhaltungsmaßnahmen an Straßenbefestigungen (RPE-Str), Köln 2011
• Forschungsgesellschaft für Straßen- und Verkehrswesen (FGSV): Empfehlungen für das Erhaltungsmanagement von Innerortsstraßen (E EMi), Köln 2012

15. Lehrveranstaltungen und -formen:
• 127201 Vorlesung Pavement Management Systeme
• 127202 Übung Pavement Management Systeme

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: ca. 25 h
Selbststudium: ca. 65 h
Gesamt: ca. 90 h

17. Prüfungsnummer/n und -name:
12721 Pavement Management Systeme (BSL), mündliche Prüfung, 20 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Straßenplanung und Straßenbau
Modul: 49000 Straßenentwurf innerorts

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher:
Univ.-Prof. Wolfram Ressel

9. Dozenten:
- Wolfram Ressel
- Stefan Alber

10. Zuordnung zum Curriculum in diesem Studiengang:
- B.Sc. Technikpädagogik
 → Vorgezogene Master-Module
- M.Sc. Technikpädagogik
 → Hauptfach Bautechnik -->Straßenbau -->Wahlcontainer
- M.Sc. Technikpädagogik
 → Wahlpflichtfach Bautechnik -->h) Straßenbau -->h) Straßenbau Wahl
- M.Sc. Technikpädagogik
 → hochaffines Wahlpflichtfach Bautechnik -->WPF Straßenbau -->Wahlcontainer
- M.Sc. Technikpädagogik
 → Hauptfach Bautechnik -->Straßenbau -->Wahlcontainer
- M.Sc. Technikpädagogik
 → Wahlpflichtfach Bautechnik -->h) Straßenbau -->h) Straßenbau Wahl
- M.Sc. Technikpädagogik
 → hochaffines Wahlpflichtfach Bautechnik -->WPF Straßenbau -->Wahlcontainer

11. Empfohlene Voraussetzungen:
- Modul 46290: Entwurf von Verkehrsanlagen

12. Lernziele:
Die Studierenden können
- Grundzusammenhänge, Wechselwirkungen und Einflüsse von Randbedingungen bei der Entstehung und Gestaltung städtischer Straßen- und Wegenetze verstehen und im Straßenentwurf berücksichtigen
- städtische Straßennetze, z.B. Erschließungsnetze, im Neubaugebiet entwerfen oder in Altbaubiogebieten umweltgerecht umwandeln
- Entwurfsmethoden für typische Entwurfssituationen in Stadtstraßen, für Anlagen des fließenden und ruhenden Kraftfahrzeugverkehrs, des nicht motorisierten Verkehrs und des straßengebundenen Öffentlichen Verkehrs anwenden
- neue und künftige Problemschwerpunkte des Stadtverkehrs im Hinblick auf Planung und Entwurf wahrnehmen
- ausgewählte Aspekte von innerörtlichen Straßenverkehrsanlagen hinsichtlich Straßenbautechnik (Bautechniken, spezielle Lösungen, Aufgrabungen) berücksichtigen
13. Inhalt:

- Charakteristika innerörtlicher Straßen im Gegensatz zu außerörtlichen Straßen: Entwurfsvorgehen, Problematik, Entwurfsparameter
- innerörtliche Straßen- und Wegenetze und städtebauliche Strukturen im Wandel der Zeit
- konkurrierende Nutzungsansprüche an innerstädtische Straßenräume
- Ziele, Grundlagen der Entwurfsmethodik und Lösungen für typische Entwurfssituationen für Stadtstraßen
- Planung und Entwurf von Anlagen für den ruhenden Kraftfahrzeugverkehr
- Planung und Entwurf für Anlagen des Fahrradverkehrs
- Planung und Entwurf von Anlagen des Busverkehrs einschließlich Busbahnhöfe
- Berücksichtigung großer Fahrzeuge und deren Schleppkurven beim innerörtlichen Straßenentwurf: u.a. maßgebendes Bemessungsfahrzeug, Eckaus rundungen
- Planung und Entwurf für Anlagen für Fußgänger
- Planung und Entwurf ausgewählter Elemente der Strecken und Knotenpunkte von Stadtstraßen wie z.B. Liefer- und Ladeflächen, Kreisverkehr, Führung und Haltestellen von im Straßenraum verkehrenden Bahnen
- Straßenraum und Stadtbild: Methodik und Elemente der Straßenraumgestaltung, Begrünung, Ausstattung
- Aufgrabungen im Zuge von Kanal- und Rohrleitungsbau als besonderer Aspekt der innerörtlichen Straßenplanung
- Ausgewählte Aspekte von Entwurfslösungen innerorts: z.B. wasserdurchlässige Befestigungen, Pflasterdecken, Belastungsklassen nach RStO

14. Literatur:

- Steierwald/ Künne/ Vogt (Hrsg.): Stadtverkehrsplanung - Grundlagen, Methoden, Ziele. Berlin, Heidelberg 2005
- Forschungsgesellschaft für Straßen- und Verkehrswesen (Hrsg.): Richtlinien für die Anlage von Stadtstraßen (RASt). Köln 2006
- Forschungsgesellschaft für Straßen- und Verkehrswesen (Hrsg.): Empfehlungen zur Straßenraumgestaltung innerhalb bebauter Gebiete (ESG). Köln 2011
- Forschungsgesellschaft für Straßen- und Verkehrswesen (Hrsg.): Empfehlungen für Fußgängerverkehrsanlagen (EFA). Köln 2002
- Forschungsgesellschaft für Straßen- und Verkehrswesen (Hrsg.): Empfehlungen für Radverkehrs anlagen (ERA). Köln 2010
- Forschungsgesellschaft für Straßen- und Verkehrswesen (Hrsg.): Empfehlungen für Anlagen des öffentlichen Personennahverkehrs (EAÖ). Köln 2013
- Forschungsgesellschaft für Straßen- und Verkehrswesen (Hrsg.): Hinweise zu Straßenräumen mit besonderem Querungs bedarf - Anwendungsmöglichkeiten des "Shared Space"-Gedankens, Köln 2014
- Forschungsgesellschaft für Straßen- und Verkehrswesen (Hrsg.): Handbuch für die Bemessung von Straßenverkehrs anlagen (HBS). Köln 2001
- Forschungsgesellschaft für Straßen- und Verkehrswesen (Hrsg.): Zusätzliche Technische Vertragsbedingungen und Richtlinien für Aufgrabungen in Verkehrsflächen (ZTV A-StB), Köln 2012
15. Lehrveranstaltungen und -formen:
- 490001 Vorlesung Straßenentwurf innerorts
- 490002 Übung Straßenentwurf innerorts

16. Abschätzung Arbeitsaufwand:
| Präsenzzeit: | ca. 60 h |
| Selbststudium: | ca. 120 h |
| **Gesamt:** | **ca. 180 h** |

17. Prüfungsnummer/n und -name:
- 49001 Straßenentwurf innerorts (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0
- V Vorleistung (USL-V), schriftlich oder mündlich, Prüfungsvoraussetzung: Innerortsentwurf

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
 Straßenplanung und Straßenbau
Modul: 12750 Straßenplanung

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>021310202</th>
<th>5. Modulsdauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Wolfram Ressel
9. Dozenten: Wolfram Ressel

10. Zuordnung zum Curriculum in diesem Studiengang:

M.Sc. Technikpädagogik, PO 2009, 1. Semester

→ Affines Wahlpflichtfach Bautechnik -->Vertiefungsrichtung h) Straßenbau -->Strassenbau Wahl

→ M.Sc. Technikpädagogik, PO 2009, 1. Semester
 → Hauptfach Bautechnik -->Straßenbau -->Wahlcontainer

→ M.Sc. Technikpädagogik, PO 2009, 1. Semester
 → Wahlpflichtfach Bautechnik -->h) Straßenbau -->h) Straßenbau Wahl

→ M.Sc. Technikpädagogik, PO 2009, 1. Semester
 → hochaffines Wahlpflichtfach Bautechnik -->WPF Straßenbau -->Wahlcontainer

→ M.Sc. Technikpädagogik, PO 2015, 1. Semester
 → Hauptfach Bautechnik -->Straßenbau -->Wahlcontainer

→ M.Sc. Technikpädagogik, PO 2015, 1. Semester
 → Wahlpflichtfach Bautechnik -->h) Straßenbau -->h) Straßenbau Wahl

→ M.Sc. Technikpädagogik, PO 2015, 1. Semester
 → hochaffines Wahlpflichtfach Bautechnik -->WPF Straßenbau -->Wahlcontainer

11. Empfohlene Voraussetzungen:

Modul 46290: Entwurf von Verkehrsanlagen

12. Lernziele:

Die Studierenden sind in der Lage, mit den einschlägigen Regelwerken und auf der Grundlage eines fahrdynamischen Entwurfs eine außerörtliche Straßenplanungsmaßnahme vom Linienentwurf bis zu den baureifen Plänen (Lage- und Höhenpläne, Querschnitt) auszuarbeiten. Sie kennen die Grundlagen des händischen Entwurfs und beherrschen dessen computergestützte Umsetzung als Raummodell.

13. Inhalt:

In Form eines Übungsbeispiels (Entwurf von Hand) werden folgende Themen bearbeitet:

- Linienfindung mittels Freihandlinien im Orthofoto
- Trassierung mittels Zirkelschlagmethode und Relationstrassierung im Lageplan
- Entwurf der Gradiente im Höhenplan und Darstellung des Krümmungs- und Querneigungsbandes
- Wirtschaftlichkeitsuntersuchung und Variantenvergleich

Eine Ortsbesichtigung des Planungsgebiets findet statt.
14. Literatur:

- Forschungsgesellschaft für Straßen- und Verkehrswesen (FGSV): Richtlinien für die Anlage von Landstraßen (RAL), Köln 2012
- Forschungsgesellschaft für Straßen- und Verkehrswesen (FGSV): Richtlinien für die Anlage von Autobahnen (RAA), Köln 2012
- Forschungsgesellschaft für Straßen- und Verkehrswesen (FGSV): Empfehlungen für Wirtschaftlichkeitsuntersuchungen an Straßen (EWS), Köln 1997
- Forschungsgesellschaft für Straßen- und Verkehrswesen (FGSV): Merkblatt für die Anlage von Kreisverkehren, Köln 2006
- Bundesministerium für Verkehr, Bau und Stadtentwicklung (BMVBS): Richtlinien zum Planungsprozess und für die einheitliche Gestaltung von Entwurfsunterlagen im Straßenbau (RE), Berlin 2012
- Ressel, W.: Skript "Straßenentwurf außerorts I"

15. Lehrveranstaltungen und -formen:

- 127501 Straßenentwurf außerorts I, Vorlesung + Übung
- 127502 Straßenentwurf außerorts I, Tutorium

16. Abschätzung Arbeitsaufwand:

Präsenzzeit:	ca. 45 h
Straßentwurf:	ca. 100 h
Selbststudium:	ca. 35 h
Gesamt:	ca. 180 h

17. Prüfungsnummer/n und -name:

- 12751 Straßenplanung (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0
- V Vorleistung (USL-V), schriftliche Prüfung, Straßenentwurf per Hand

18. Grundlage für ... :

46530 Straßenentwurf außerorts II (CAD)

19. Medienform:

20. Angeboten von:

Straßenplanung und Straßenbau
5290 i) Raum und Farbe

Zugeordnete Module: 5291 i) Raum und Farbe Pflicht
5291 i) Raum und Farbe Pflicht

Zugeordnete Module:

34330 Raum - Farbe und Licht
34340 Raum - Farbe und Licht (Wohnen)
34360 Raum - Farbe und Licht (Form, Textur, Material) (Wahlpflichtfach)
Modul: 34330 Raum - Farbe und Licht

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>KunstAkademie</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>12.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>12.0</td>
</tr>
<tr>
<td>5. Modulduer:</td>
<td>2 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.Sc. Technikpädagogik → hochaffines Wahlpflichtfach Bautechnik -->WPF Raum und Farbe -->Pflichtcontainer</td>
</tr>
<tr>
<td></td>
<td>M.Sc. Technikpädagogik → Hauptfach Bautechnik -->Raum und Farbe -->Pflichtcontainer</td>
</tr>
<tr>
<td></td>
<td>M.Sc. Technikpädagogik → hochaffines Wahlpflichtfach Bautechnik -->WPF Raum und Farbe -->Pflichtcontainer</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td></td>
</tr>
<tr>
<td>14. Literatur:</td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 343301 Entwurfsprojekt - Objekt und Raum</td>
</tr>
<tr>
<td></td>
<td>• 343302 Entwurfsprojekt - Farbe und Licht</td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>34331 Raum - Farbe und Licht (PL), schriftlich, eventuell mündlich, Gewichtung: 1.0</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td></td>
</tr>
</tbody>
</table>
Modul: 34360 Raum - Farbe und Licht (Form, Textur, Material)
(Wahlpflichtfach)

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>KunstAkademie</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>9.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>8.0</td>
</tr>
<tr>
<td>5. Modulduer:</td>
<td>2 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher:

9. Dozenten:

10. Zuordnung zum Curriculum in diesem Studiengang:

M.Sc. Technikpädagogik

→ Hauptfach Bautechnik --> Raum und Farbe --> Wahlcontainer

→ hochaffines Wahlpflichtfach Bautechnik --> WPF Raum und Farbe --> Wahlcontainer

→ M.Sc. Technikpädagogik

→ Hauptfach Bautechnik --> Raum und Farbe --> Wahlcontainer

→ hochaffines Wahlpflichtfach Bautechnik --> WPF Raum und Farbe --> Wahlcontainer

11. Empfohlene Voraussetzungen:

12. Lernziele:

13. Inhalt:

14. Literatur:

15. Lehrveranstaltungen und -formen:

• 343601 Vorlesung Raum - Farbe und Licht
• 343602 Übung Raum - Farbe und Licht
• 343603 Referatsreihe Raum - Farbe und Licht
• 343604 Innenarchitektur Bautechnik, Ladenbau, Messebau und Ausstellungsarchitektur

16. Abschätzung Arbeitsaufwand:

17. Prüfungsnummer/n und -name: 34361 Raum - Farbe und Licht (Form, Textur, Material)
(Wahlpflichtfach) (PL), schriftlich, eventuell mündlich, Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 34340 Raum - Farbe und Licht (Wohnen)

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>KunstAkademie</th>
<th>5. Moduldaunger:</th>
<th>2 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>11.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher:

9. Dozenten:

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>M.Sc. Technikpädagogik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauptfach Bautechnik --> Raum und Farbe --> Pflichtcontainer</td>
</tr>
<tr>
<td>hochaffines Wahlpflichtfach Bautechnik --> WPF Raum und Farbe --> Pflichtcontainer</td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen:

12. Lernziele:

13. Inhalt:

14. Literatur:

<table>
<thead>
<tr>
<th>15. Lehrveranstaltungen und -formen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 343401 Vorlesung Raum - Farbe und Licht</td>
</tr>
<tr>
<td>• 343402 Übung Raum - Farbe und Licht</td>
</tr>
<tr>
<td>• 343403 Referatsreihe Raum - Farbe und Licht</td>
</tr>
<tr>
<td>• 343404 Entwurfsprojekt - Wohnen</td>
</tr>
</tbody>
</table>

16. Abschätzung Arbeitsaufwand:

17. Prüfungsnummer/n und -name: 34341 Raum - Farbe und Licht (Wohnen) (PL), schriftlich, eventuell mündlich, Gewichtung: 1.0

18. Grundlage für ...:

19. Medienform:

20. Angeboten von:
5295 j) Holztechnik

Zugeordnete Module: 5296 j) Holztechnik (Pflicht)
5296 j) Holztechnik (Pflicht)

Zugeordnete Module:
- 34200 Möbel und Raum (Möbel/Innenraum und Projekt)
- 34210 Innenraum (Raumbildender Ausbau + Projekt + Werkstoffe 1)
- 34260 Projekt Innenraum + Projekt Möbel und Raum (Wahlpflichtfach)
Modul: 34210 Innenraum (Raumbildender Ausbau+ Projekt + Werkstoffe 1)

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>KunstAkademie</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>9.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>11.0</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>2 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Reinhold Nickolaus</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>• Peter Litzlbauer</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- **B.Sc. Technikpädagogik**
 - Vorgezogene Master-Module

- **M.Sc. Technikpädagogik**
 - Hauptfach Bautechnik --> Holztechnik --> Pflichtcontainer
 - Wahlpflichtfach Bautechnik --> j) Holztechnik --> j) Holztechnik (Pflicht)
 - hochaffines Wahlpflichtfach Bautechnik --> WPF Holztechnik --> Pflichtcontainer

- **M.Sc. Technikpädagogik**
 - Hauptfach Bautechnik --> Holztechnik --> Pflichtcontainer
 - Wahlpflichtfach Bautechnik --> j) Holztechnik --> j) Holztechnik (Pflicht)
 - hochaffines Wahlpflichtfach Bautechnik --> WPF Holztechnik --> Pflichtcontainer

11. Empfohlene Voraussetzungen:

12. Lernziele:

15. Lehrveranstaltungen und -formen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Lehrveranstaltung/Referatsreihe</th>
<th>Ort</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>342101 Vorlesung Innenraum</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>342102 Referatsreihe Innenraum</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>342103 Vorlesung Werkstoffe</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>342104 Entwurfsprojekt - Innenraum</td>
<td></td>
</tr>
</tbody>
</table>

16. Abschätzung Arbeitsaufwand:

Teil A

Präsenzzeit: 31,5 Stunden
Selbststudium: 28,5 Stunden
Summe: 60 Stunden

Teil B

Präsenzzeit: 21 Stunden
Selbststudium: 9 Stunden
Summe: 30 Stunden

Teil C

Präsenzzeit: 63 Stunden
Selbststudium: 117 Stunden
Summe: 180 Stunden

17. Prüfungsnummer/n und -name: 34211 Innenraum (Raumbildender Ausbau + Projekt + Werkstoffe 1) (PL), schriftlich, eventuell mündlich, Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
Modul: 34200 Möbel und Raum (Möbel/Innenraum und Projekt)

2. Modulkürzel: KunstAkademie
5. Modulduauer: 2 Semester
3. Leistungspunkte: 9.0 LP
4. SWS: 10.0
7. Sprache: Deutsch

8. Modulverantwortlicher:

9. Dozenten:

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technikpädagogik
→ Vorgezogene Master-Module
M.Sc. Technikpädagogik
→ Hauptfach Bautechnik -->Holztechnik -->Pflichtcontainer

M.Sc. Technikpädagogik
→ Wahlpflichtfach Bautechnik -->j) Holztechnik -->j) Holztechnik (Pflicht)

M.Sc. Technikpädagogik
→ hochaffines Wahlpflichtfach Bautechnik -->WPF Holztechnik -->Pflichtcontainer

M.Sc. Technikpädagogik
→ Hauptfach Bautechnik -->Holztechnik -->Pflichtcontainer

M.Sc. Technikpädagogik
→ Wahlpflichtfach Bautechnik -->j) Holztechnik -->j) Holztechnik (Pflicht)

M.Sc. Technikpädagogik
→ hochaffines Wahlpflichtfach Bautechnik -->WPF Holztechnik -->Pflichtcontainer

11. Empfohlene Voraussetzungen:

12. Lernziele:

13. Inhalt:

14. Literatur:

15. Lehrveranstaltungen und -formen:
• 342001 Vorlesung Möbel und Raum
• 342002 Übung Möbel und Raum
• 342003 Referatsreihe Möbel und Raum
• 342004 Entwurfsprojekt - Möbel

16. Abschätzung Arbeitsaufwand:

17. Prüfungsnummer/n und -name: 34201 Möbel und Raum (Möbel/Innenraum und Projekt) (PL), schriftlich, eventuell mündlich, Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 34260 Projekt Innenraum + Projekt Möbel und Raum
(Wahlpflichtfach)

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>KunstAkademie</th>
<th>5. Moduldaurer:</th>
<th>2 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>9.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

9. Dozenten:

B.Sc. Technikpädagogik
- Vorgezogene Master-Module

M.Sc. Technikpädagogik
- Hauptfach Bautechnik --> Holztechnik --> Wahlcontainer

M.Sc. Technikpädagogik
- Wahlplflitchacht Bautechnik --> Holztechnik --> Holztechnik (Pflicht)

M.Sc. Technikpädagogik
- hochaffines Wahlplflitchacht Bautechnik --> WPF Holztechnik --> Wahlcontainer

M.Sc. Technikpädagogik
- Hauptfach Bautechnik --> Holztechnik --> Wahlcontainer

M.Sc. Technikpädagogik
- Wahlplflitchacht Bautechnik --> Holztechnik --> Holztechnik (Pflicht)

M.Sc. Technikpädagogik
- hochaffines Wahlplflitchacht Bautechnik --> WPF Holztechnik --> Wahlcontainer

11. Empfohlene Voraussetzungen:

12. Lernziele:

13. Inhalt:

14. Literatur:

15. Lehrveranstaltungen und -formen:

- 342601 Entwurfsprojekt - Innenraum
- 342602 Entwurfsprojekt - Möbel / Möbelsystem

16. Abschätzung Arbeitsaufwand:

17. Prüfungsnummer/n und -name:

- 34261 Projekt Innenraum + Projekt Möbel und Raum (Wahlpflichtfach) (PL), schriftlich, eventuell mündlich, Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
5300 Wahlpflichtfach Elektrotechnik

Zugeordnete Module:

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
</tr>
</thead>
<tbody>
<tr>
<td>5310</td>
<td>Energie- und Automatisierungstechnik</td>
</tr>
<tr>
<td>5320</td>
<td>System- und Informationstechnik</td>
</tr>
</tbody>
</table>
5310 Energie- und Automatisierungstechnik

<table>
<thead>
<tr>
<th>Zugeordnete Module</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>5311</td>
<td>Schwerpunkt Energie- und Automatisierungstechnik (Pflicht)</td>
</tr>
<tr>
<td>5312</td>
<td>Schwerpunkt Energie- und Automatisierungstechnik (Wahl)</td>
</tr>
<tr>
<td>5313</td>
<td>Schwerpunkt Energie- und Automatisierungstechnik (Spezialisierung)</td>
</tr>
<tr>
<td>5314</td>
<td>Praktische Übung im Labor (EAT)</td>
</tr>
<tr>
<td>900</td>
<td>Schlüsselqualifikationen fachübergreifend</td>
</tr>
</tbody>
</table>
5311 Schwerpunkt Energie- und Automatisierungstechnik (Pflicht)

Zugeordnete Module:

- 11500 Elektrische Energietechnik
- 11540 Regelungstechnik I
- 11550 Leistungselektronik I
Modul: 11500 Elektrische Energietechnik

4. SWS: 6.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Jörg Roth-Stielow
9. Dozenten: • Stefan Tenbohlen
 • Jörg Roth-Stielow

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technikpädagogik, PO 2011, 2. Semester
 → Hauptfach Elektrotechnik --> Ergänzungsmodul --> Pflichtcontainer
 Schwerpunkt Energie- und Automatisierungstechnik

 → B.Sc. Technikpädagogik, PO 2011, 2. Semester
 → Vorgezogene Master-Module

 → B.Sc. Technikpädagogik, PO 2011, 2. Semester
 → Wahlpflichtfach Elektrotechnik --> a) Schwerpunkt Energie- und
 Automatisierungstechnik --> Pflichtcontainer Schwerpunkt Energie-
 und Automatisierungstechnik

 → M.Sc. Technikpädagogik, PO 2009, 2. Semester
 → Affines Wahlpflichtfach Elektro- und Informationstechnik -->
 Wahlpflichtfach Energie- und Automatisierungstechnik --> Energie-
 und Automatisierungstechnik Pflichtfächer

 → M.Sc. Technikpädagogik, PO 2009, 2. Semester
 → Auflagenmodule des Masters

 → M.Sc. Technikpädagogik, PO 2009, 2. Semester
 → Wahlpflichtfach Elektrotechnik --> Energie- und
 Automatisierungstechnik --> Schwerpunkt Energie- und
 Automatisierungstechnik (Pflicht)

 → M.Sc. Technikpädagogik, PO 2015, 2. Semester
 → Auflagenmodule des Masters

 → M.Sc. Technikpädagogik, PO 2015, 2. Semester
 → Wahlpflichtfach Elektrotechnik --> Energie- und
 Automatisierungstechnik --> Schwerpunkt Energie- und
 Automatisierungstechnik (Pflicht)

11. Empfohlene Voraussetzungen:

12. Lernziele:

 Studierende...

 - ...kennen die grundlegenden Prinzipien der elektrischen
 Energieerzeugung, -übertragung und -verteilung.
 - ...können einfache Berechnungen von Größen in Systemen der
 elektrischen Energieerzeugung, -übertragung und -verteilung
 vornehmen.
 - ...kennen die grundlegenden Prinzipien der elektrischen Maschinen
 und Transformatoren.
 - ...können einfache Berechnungen von Größen in elektrischen
 Maschinen und Transformatoren vornehmen.

13. Inhalt:

 - Aufgabe und Bedeutung der elektrischen Energieversorgung,
• Energieumwandlung in Kraftwerken,
• Elektrizitätswirtschaft und Investitionstheorie,
• Aufbau von elektrischen Energieversorgungsnetzen und Bordnetzen,
• Lastflüsse, Kurzschlussströme, Überspannungen in elektrischen Versorgungsnetzen,
• Sicherheitstechnik,
• elektrischer Unfall,
• Elektrischer Energiefluss als Informations- und Arbeitsmedium,
• Leistungselektronik u. Regelungstechnik als Teilgebiete der Energietechnik,
• Gleichstrommaschine,
• Transformator,
• Asynchronmaschine, Synchronmaschine

14. Literatur:
• Vorlesungsskripte
• Heuck, Dettmann: Elektrische Energieversorgung, Vieweg, Braunschweig/Wiesbaden, 2005
• Schwab: Elektroenergiesysteme, Springer, 2006
• Heumann, K.: Grundlagen der Leistungselektronik, B. G. Teubner, Stuttgart, 1989

15. Lehrveranstaltungen und -formen:
• 115001 Vorlesung Energietechnik I
• 115002 Übung Energietechnik I
• 115003 Vorlesung Energietechnik II
• 115004 Übung Energietechnik II

16. Abschätzung Arbeitsaufwand:
| Präsenzzeit: | 84 h |
| Selbststudium: | 186 h |
| Gesamt: | 270 h |

17. Prüfungsnummer/n und -name:
• 11501 Elektrische Energietechnik I (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0
• 11502 Elektrische Energietechnik II (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:
Tafel, Folien, Beamer

20. Angeboten von:
Informatik, Elektrotechnik und Informationstechnik
Modul: 11550 Leistungselektronik I

2. Modulkürzel: 051010011
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0
5. Moduldaurer: 1 Semester
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Jörg Roth-Stielow
9. Dozenten: Jörg Roth-Stielow

10. Zuordnung zum Curriculum in diesem Studiengang:
 - B.Sc. Technikpädagogik, PO 2011, 5. Semester
 → Hauptfach Elektrotechnik → Ergänzungsmodul → Pflichtcontainer
 Schwerpunkt Energie- und Automatisierungstechnik
 →
 → B.Sc. Technikpädagogik, PO 2011, 5. Semester
 → Vorgezogene Master-Module
 → B.Sc. Technikpädagogik, PO 2011, 5. Semester
 → Wahlpflichtfach Elektrotechnik → a) Schwerpunkt Energie- und
 Automatisierungstechnik → Pflichtcontainer Schwerpunkt Energie-
 und Automatisierungstechnik
 →
 - M.Sc. Technikpädagogik, PO 2009, 1. Semester
 → Affines Wahlpflichtfach Elektro- und Informationstechnik →
 → Wahlpflichtfach Energie- und Automatisierungstechnik → Energie-
 und Automatisierungstechnik Pflichtfächer
 →
 → M.Sc. Technikpädagogik, PO 2009, 1. Semester
 → Auflagenmodule des Masters
 → M.Sc. Technikpädagogik, PO 2009, 1. Semester
 → Wahlpflichtfach Elektrotechnik → Energie- und
 Automatisierungstechnik → Schwerpunkt Energie- und
 Automatisierungstechnik (Pflicht)
 →
 - M.Sc. Technikpädagogik, PO 2015, 1. Semester
 → Auflagenmodule des Masters
 - M.Sc. Technikpädagogik, PO 2015, 1. Semester
 → Wahlpflichtfach Elektrotechnik → Energie- und
 Automatisierungstechnik → Schwerpunkt Energie- und
 Automatisierungstechnik (Pflicht)
 →

11. Empfohlene Voraussetzungen:

12. Lernziele:
 Studierende...
 - ...kennen die wichtigsten potentialverbindenden und
 potentialtrennenden Schaltungen der Leistungselektronik mit
 abschaltbaren Ventilen und die zugehörigen Modulationsverfahren.
 - ...können diese Anordnungen mathematisch beschreiben und
 Aufgabenstellungen lösen.
 - ...kennen die grundlegenden Prinzipien der Messverfahren für
 Mischströme.

13. Inhalt:
 - Abschaltbare Leistungshalbleiter
 - Schaltungstypologien potentialverbindender Stellglieder
 - Schaltungstypologien potentialtrennender Gleichstromsteller
 - Modulationsverfahren
14. Literatur:

15. Lehrveranstaltungen und -formen:

- 115501 Vorlesung Leistungselectronik I
- 115502 Übung Leistungselectronik I

16. Abschätzung Arbeitsaufwand:

Präsenzzeit:	56 h
Selbststudium:	124 h
Gesamt:	180 h

17. Prüfungsnummer/n und -name:

11551 Leistungselectronik I (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Medienform:

- Tafel, Folien, Beamer

19. Angeboten von:

- Institut für Leistungselectronik und Elektrische Antriebe
Modul: 11540 Regelstechnik I

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>051010012</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Jörg Roth-Stielow</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Jörg Roth-Stielow</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>B.Sc. Technikpädagogik, PO 2011, 4. Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>→ Hauptfach Elektrotechnik -->Ergänzungsmodule -->Pflichtcontainer Schwerpunkt Energie- und Automatisierungstechnik</td>
</tr>
<tr>
<td>→ B.Sc. Technikpädagogik, PO 2011, 4. Semester</td>
</tr>
<tr>
<td>→ Vorgezogene Master-Module</td>
</tr>
<tr>
<td>B.Sc. Technikpädagogik, PO 2011, 4. Semester</td>
</tr>
<tr>
<td>→ Wahlpflichtfach Elektrotechnik -->a) Schwerpunkt Energie- und Automatisierungstechnik -->Pflichtcontainer Schwerpunkt Energie- und Automatisierungstechnik</td>
</tr>
<tr>
<td>→ M.Sc. Technikpädagogik, PO 2009, 2. Semester</td>
</tr>
<tr>
<td>→ Affines Wahlpflichtfach Elektro- und Informationstechnik -- >Wahlpflichtfach Energie- und Automatisierungstechnik -->Energie- und Automatisierungstechnik Pflichtfächer</td>
</tr>
<tr>
<td>→ M.Sc. Technikpädagogik, PO 2009, 2. Semester</td>
</tr>
<tr>
<td>→ Auflagenmodule des Masters</td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik, PO 2009, 2. Semester</td>
</tr>
<tr>
<td>→ Wahlpflichtfach Elektrotechnik -->Energie- und Automatisierungstechnik -->Schwerpunkt Energie- und Automatisierungstechnik (Pflicht)</td>
</tr>
<tr>
<td>→ M.Sc. Technikpädagogik, PO 2015, 2. Semester</td>
</tr>
<tr>
<td>→ Auflagenmodule des Masters</td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik, PO 2015, 2. Semester</td>
</tr>
<tr>
<td>→ Wahlpflichtfach Elektrotechnik -->Energie- und Automatisierungstechnik -->Schwerpunkt Energie- und Automatisierungstechnik (Pflicht)</td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen:

12. Lernziele:

<table>
<thead>
<tr>
<th>Studierende...</th>
</tr>
</thead>
<tbody>
<tr>
<td>• ...können eine Regelstrecke modellieren und kennen die wichtigsten Regelsysteme.</td>
</tr>
<tr>
<td>• ...können diese Anordnungen mathematisch beschreiben, hinsichtlich ihrer Stabilität beurteilen und Aufgabenstellungen lösen.</td>
</tr>
</tbody>
</table>

13. Inhalt:

<table>
<thead>
<tr>
<th>Beschreibung von Übertragungskreisen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stabilität von Regelsystemen</td>
</tr>
<tr>
<td>Herkömmliche Regelsysteme</td>
</tr>
<tr>
<td>Regelsysteme mit Rückführung eines vollständigen Satzes von Zustandsvariablen</td>
</tr>
<tr>
<td>Echtes Integralverhalten</td>
</tr>
<tr>
<td>Beobachter</td>
</tr>
</tbody>
</table>
• Systemführung nach dem Prinzip unterlagerter Schleifen
• Systeme mit einem Wechsel der Regelgröße

14. Literatur:
• Lunze, Jan: Regelungstechnik 1 Springer, Berlin, 1999
• Unbehauen, H.: Regelungstechnik 1, Vieweg, Braunschweig, 1989
• Leonhard, W.: Einführung in die Regelungstechnik, Vieweg, Braunschweig, 1992

15. Lehrveranstaltungen und -formen:
• 115401 Vorlesung Regelungstechnik I
• 115402 Übung Regelungstechnik I

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 56 h
Selbststudium: 124 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
11541 Regelungstechnik I (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ...:

19. Medienform:
Tafel, Folien, Beamer

20. Angeboten von:
Institut für Leistungselektronik und Elektrische Antriebe
5312 Schwerpunkt Energie- und Automatisierungstechnik (Wahl)

<table>
<thead>
<tr>
<th>Zugeordnete Module</th>
<th>Code</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>11560</td>
<td>Elektrische Energienetze I</td>
<td></td>
</tr>
<tr>
<td>11570</td>
<td>Hochspannungstechnik I</td>
<td></td>
</tr>
<tr>
<td>11580</td>
<td>Elektrische Maschinen I</td>
<td></td>
</tr>
<tr>
<td>11590</td>
<td>Photovoltaik I</td>
<td></td>
</tr>
<tr>
<td>11620</td>
<td>Automatisierungstechnik I</td>
<td></td>
</tr>
</tbody>
</table>
Modul: 11620 Automatisierungstechnik I

2. Modulkürzel: 050501003
5. Modulduauer: 1 Semester
3. Leistungspunkte: 6.0 LP
6. Turnus: jedes 2. Semester, SoSe
4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Michael Weyrich
9. Dozenten: Michael Weyrich

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technikpädagogik, PO 2011, 6. Semester
→ Vorgezogene Master-Module
B.Sc. Technikpädagogik, PO 2011, 6. Semester
→ Wahlpflichtfach Elektrotechnik -->a) Schwerpunkt Energie- und Automatisierungstechnik -->Wahlcontainer Energie- und Automatisierungstechnik
→
M.Sc. Technikpädagogik, PO 2009, 2. Semester
→ Affines Wahlpflichtfach Elektro- und Informationstechnik -->Wahlpflichtfach Energie- und Automatisierungstechnik -->Energie- und Automatisierungstechnik Wahlfächer
→
M.Sc. Technikpädagogik, PO 2009, 2. Semester
→ Wahlpflichtfach Elektrotechnik -->Energie- und Automatisierungstechnik -->Schwerpunkt Energie- und Automatisierungstechnik (Wahl)
→
M.Sc. Technikpädagogik, PO 2015, 2. Semester
→ Wahlpflichtfach Elektrotechnik -->Energie- und Automatisierungstechnik -->Schwerpunkt Energie- und Automatisierungstechnik (Wahl)
→

11. Empfohlene Voraussetzungen:
• Grundlagen der Elektrotechnik, Informatik und Mathematik

12. Lernziele:
Die Studierenden
• besitzen grundlegende Kenntnisse über rechnerbasierte Automatisierungssysteme
• setzen sich mit Kommunikationssystemen der Automatisierungstechnik ausseinaner
• wenden grundlegende Methoden und Verfahren der Echtzeit-Programmierung an
• lernen spezifische Programmiersprachen der Automatisierungstechnik kennen

13. Inhalt:
• Grundlegende Begriffe der Prozessautomatisierung
• Automatisierungs- Gerätesysteme und -strukturen
• Prozessperipherie - Schnittstellen zwischen dem Automatisierungssystem und dem technischen Prozess
• Kommunikationssysteme
• Echtzeitprogrammierung (synchron und asynchrone Programmierung, Scheduling-Algorithmen, Synchronisationskonzepte)
• Echtzeitbetriebssysteme, Entwicklung eines Mini-Echtzeit-Betriebssystems
• Programmiersprachen für die Prozessautomatisierung (SPS-Programmierung)
14. Literatur:
 - Vorlesungsskript
 - Lauber, Göhner: Prozessautomatisierung Band 1 (3. Auflage), Springer, 1999
 - Früh, Maier: Handbuch der Prozessautomatisierung (3. Auflage) Oldenbourg Industrieverlag, 2004
 - Wellenreuther Automatisieren mit SPS (3. Auflage), Vieweg, 2005
 - Vorlesungsportal mit Vorlesungsaufzeichnung auf http://www.ias.unistuttgart.de/at1/

15. Lehrveranstaltungen und -formen:
 - 116201 Vorlesung Automatisierungstechnik I
 - 116202 Übung Automatisierungstechnik I

16. Abschätzung Arbeitsaufwand:
 - Präsenzzeit: 56 h
 - Selbststudium: 124 h
 - Gesamt: 180 h

17. Prüfungsnummer/n und -name:
 - 11621 Automatisierungstechnik I (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ...:
 - 21730 Automatisierungstechnik II

19. Medienform:
 - Beamerpräsentation mit Aufzeichnung der Vorlesungen und Übungen

20. Angeboten von:
 - Institut für Automatisierungs- und Softwaretechnik
Modul: 11560 Elektrische Energienetze I

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050310001</th>
<th>5. Modulduer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Stefan Tenbohlen

9. Dozenten: Stefan Tenbohlen

10. Zuordnung zum Curriculum in diesem Studiengang:

- B.Sc. Technikpädagogik, PO 2011, 5. Semester
 → Vorgezogene Master-Module
- B.Sc. Technikpädagogik, PO 2011, 5. Semester
 → Wahlpflichtfach Elektrotechnik →a) Schwerpunkt Energie- und Automatisierungstechnik →Wahlcontainer Energie- und Automatisierungstechnik
- M.Sc. Technikpädagogik, PO 2009, 1. Semester
 → Affines Wahlpflichtfach Elektro- und Informationstechnik →Energie- und Automatisierungstechnik Wahlfächer
- M.Sc. Technikpädagogik, PO 2009, 1. Semester
 → Wahlpflichtfach Elektrotechnik →Energie- und Automatisierungstechnik →Schwerpunkt Energie- und Automatisierungstechnik (Wahl)
- M.Sc. Technikpädagogik, PO 2015, 1. Semester
 → Wahlpflichtfach Elektrotechnik →Energie- und Automatisierungstechnik →Schwerpunkt Energie- und Automatisierungstechnik (Wahl)

11. Empfohlene Voraussetzungen: • Elektrische Energietechnik

13. Inhalt:

- Aufgaben des elektrischen Energienetzes, Smart Grids
- Einpolige Ersatzschaltungen der Betriebselemente für symmetrische Betriebsweise
- Berechnung von Energieübertragungsanlagen und -netzen
- Betrieb elektrischer Energieversorgungsnetze
- Kurzschlussströme bei symmetrischem Kurzschluss
- Symmetrische Komponenten

14. Literatur:

- Oeding, Oswald: Elektrische Kraftwerke und Netze Springer-Verlag, 6. Aufl., 2004
- Heuck, Dettmann: Elektrische Energieversorgung Vieweg, Braunschweig/Wiesbaden, 6. Aufl., 2005
- Schwab: Elektroenergiesysteme, Springer-Verlag, 1. Aufl., 2006

15. Lehrveranstaltungen und -formen:

- 115601 Vorlesung Elektrische Energienetze 1
16. Abschätzung Arbeitsaufwand:
\[\begin{array}{ll}
\text{Präsenzzeit:} & 56 \text{ h} \\
\text{Selbststudium/Nacharbeitszeit:} & 124 \text{ h} \\
\text{Gesamt:} & 180 \text{ h}
\end{array} \]

17. Prüfungsnummer/n und -name: 11561 Elektrische Energienetze I (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... : 21760 Elektrische Energienetze II

19. Medienform: PowerPoint, Tafelanschrieb

20. Angeboten von: Institut für Energieübertragung und Hochspannungstechnik
Modul: 11580 Elektrische Maschinen I

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>052601011</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Moduldauler:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher:
Univ.-Prof. Nejila Parspour

9. Dozenten:
Nejila Parspour

10. Zuordnung zum Curriculum in diesem Studiengang:

- **B.Sc. Technikpädagogik, PO 2011, 5. Semester**
 - Vorgezogene Master-Module

- **B.Sc. Technikpädagogik, PO 2011, 5. Semester**
 - Wahlpflichtfach Elektrotechnik -->a) Schwerpunkt Energie- und Automatisierungstechnik -->Wahlcontainer Energie- und Automatisierungstechnik

- **M.Sc. Technikpädagogik, PO 2009, 1. Semester**
 - Affines Wahlpflichtfach Elektro- und Informationstechnik -->Wahlpflichtfach Energie- und Automatisierungstechnik -->Energie- und Automatisierungstechnik Wahlfächer

- **M.Sc. Technikpädagogik, PO 2009, 1. Semester**
 - Wahlpflichtfach Elektrotechnik -->Energie- und Automatisierungstechnik -->Schwerpunkt Energie- und Automatisierungstechnik (Wahl)

- **M.Sc. Technikpädagogik, PO 2015, 1. Semester**
 - Wahlpflichtfach Elektrotechnik -->Energie- und Automatisierungstechnik -->Schwerpunkt Energie- und Automatisierungstechnik (Wahl)

11. Empfohlene Voraussetzungen:

- Studierende kennen den Aufbau und die Funktionsweise von Gleichstrom-, Synchron und Asynchronmaschine. Sie kennen die Berechnung magnetischer Kreise.

12. Lernziele:

- Magnetismus und Grundlagen der magnetischen Kreise
- Antriebstechnische Zusammenhänge
- Verluste in elektrischen Maschinen
- Behandelte Maschinentypen:

 1. **Synchronmaschine**: Aufbau und Funktion, Ersatzschaltbilder, Energiefluss, mathematische Zusammenhänge, Kennlinien, vollständiges Ersatzschaltbild, Drehzahlstellverfahren, Brems- und Anlaufverfahren, Einführung in das rotorflussorientierte dynamische Model, Bauformen und Einsatzgebiete

 2. **Asynchronmaschine**: Aufbau und Funktion, Ersatzschaltbilder, Energiefluss, mathematische Zusammenhänge, Kennlinien, Drehzahlstellverfahren, Brems- und Anlaufverfahren, Bauformen und Einsatzgebiete

 3. **Gleichstrommaschine**: Aufbau und Funktion, Ersatzschaltbilder, mathematische Zusammenhänge, Kennlinien, Drehzahlstellverfahren, Brems- und Anlaufverfahren, Bauformen und Einsatzgebiete
14. Literatur:

• Kleinrath, Hans: Grundlagen Elektrischer Maschinen; Akad. Verlagsgesellschaft, Wien, 1975
• Seinsch, H. O.: Grundlagen elektrischer Maschinen und Antriebe; B.G. Teubner, Stuttgart, 1988
• Bödefeld/Sequenz: Elektrische Maschinen; Springer, Wien, 1962
• Richter, Rudolf: Elektrische Maschinen; Verlag von Julius Springer, Berlin, 1936

15. Lehrveranstaltungen und -formen:

• 115801 Vorlesung Elektrische Maschinen I
• 115802 Übung Elektrische Maschinen I

16. Abschätzung Arbeitsaufwand:

Präsenzzeit:	56 h
Selbststudium/Nacharbeitszeit:	124 h
Summe:	180 h

17. Prüfungsnummer/n und -name:

11581 Elektrische Maschinen I (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ...:

21690 Elektrische Maschinen II

19. Medienform:

Beamer, Tafel, ILIAS

20. Angeboten von:

Institut für Elektrische Energiewandlung
Modul: 11570 Hochspannungstechnik I

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050310003</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:
- B.Sc. Technikpädagogik, PO 2011, 5. Semester → Vorgezogene Master-Module
 - Wahlpflichtfach Elektrotechnik → a) Schwerpunkt Energie- und Automatisierungstechnik → Wahlcontainer Energie- und Automatisierungstechnik →

11. Empfohlene Voraussetzungen:
- Elektrische Energietechnik

12. Lernziele:
- Studierender hat Kenntnisse der Grundlagen der Versuchs- und Messtechnik für Hochspannungsprüfungen, Verständnis der Zusammenhänge Festigkeit und Beanspruchung eines Isolierstoffsystems und des Aufbaus eines Isolierstoffsystems.

13. Inhalt:
- Auftreten und Anwendung hoher Spannungen bzw. Ströme
- Einführung in die Hochspannungsversuchstechnik
- Berechnung elektrischer Felder
- Grundlagen der Hochspannungsisoliertechnik
- Isolierstoffsysteme in Hochspannungsräumen

14. Literatur:
- Kind, Feser: Hochspannungs-Versuchstechnik Vieweg, Braunschweig, 1995
- Kind, Kärner: Hochspannungs-Isoliertechnik Vieweg, Braunschweig, 1982

15. Lehrveranstaltungen und -formen:
- 115701 Vorlesung Hochspannungstechnik 1
- 115702 Übung Hochspannungstechnik 1

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 56 h
- Selbststudium/Nacharbeitszeit: 124 h

Stand: 07. Oktober 2015
<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>11571 Hochspannungstechnik I (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>PowerPoint, Tafelanschrieb</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Institut für Energieübertragung und Hochspannungstechnik</td>
</tr>
</tbody>
</table>
Modul: 11590 Photovoltaik I

2. Modulkürzel: 050513002 5. Modulduauer: 1 Semester
4. SWS: 4.0 7. Sprache: Englisch
8. Modulverantwortlicher: Univ.-Prof. Jürgen Heinz Werner
9. Dozenten: Jürgen Heinz Werner

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technikpädagogik, PO 2011, 4. Semester
 ➔ Vorgezogene Master-Module
 ➔ B.Sc. Technikpädagogik, PO 2011, 4. Semester
 ➔ Wahlpflichtfach Elektrotechnik -->a) Schwerpunkt Energie- und Automatisierungstechnik -->Wahlcontainer Energie- und Automatisierungstechnik
 ➔ M.Sc. Technikpädagogik, PO 2009, 2. Semester
 ➔ Affines Wahlpflichtfach Elektro- und Informationstechnik -->Wahlpflichtfach Energie- und Automatisierungstechnik -->Energie- und Automatisierungstechnik Wahlfächer
 ➔ M.Sc. Technikpädagogik, PO 2009, 2. Semester
 ➔ Wahlpflichtfach Elektrotechnik -->Energie- und Automatisierungstechnik -->Schwerpunkt Energie- und Automatisierungstechnik (Wahl)
 ➔ M.Sc. Technikpädagogik, PO 2015, 2. Semester
 ➔ Wahlpflichtfach Elektrotechnik -->Energie- und Automatisierungstechnik -->Schwerpunkt Energie- und Automatisierungstechnik (Wahl)

11. Empfohlene Voraussetzungen: Grundkenntnisse über Halbleitermaterialien und Halbleiterdioden, z.B. aus "Mikroelektronik I"

12. Lernziele:
 Die Studierenden kennen
 - das Potential der Sonnenstrahlung
 - die Funktionsweise von Solarzellen
 - die wichtigsten Technologien der Herstellung von Solarmodulen
 - die Grundprinzipien von Wechselrichtern
 - die Energieerträge verschiedener Photovoltaik-Technologien
 - den aktuellen Stand des Photovoltaikmarktes und der Kosten von Photovoltaik-Strom

13. Inhalt:
 - Der photovoltaische Effekt
 - Sonnenleistung und Energieumsätze in Deutschland
 - Maximaler Wirkungsgrad von Solarzellen
 - Grundprinzip von Solarzellen
 - Ersatzschaltbilder von Solarzellen
 - Photovoltaik-Materialien und -technologien
 - Modultechnik- Erträge von Photovoltaik-Systemen
 - Photovoltaik-Markt

14. Literatur:
 • Goetzberger, Voß, Knobloch, Sonnenenergie: Photovoltaik, Teubner, 1994
 • P. Würfel, Physik der Solarzellen, Spektrum, 1995
15. Lehrveranstaltungen und -formen:

- 115901 Vorlesung Photovoltaik I
- 115902 Übungen Photovoltaik I

16. Abschätzung Arbeitsaufwand:

Präsenzzeit:	56 h
Selbststudium/Nacharbeitszeit:	142 h
Gesamt:	180 h

17. Prüfungsnummer/n und -name:

- 11591 Photovoltaik I (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1,0

18. Grundlage für ... : 21930 Photovoltaik II

19. Medienform:

- Powerpoint, Tafel

20. Angeboten von:

- Institut für Photovoltaik
5313 Schwerpunkt Energie- und Automatisierungstechnik (Spezialisierung)

Zugeordnete Module:
17180 Technische Informatik II
21690 Elektrische Maschinen II
21700 Hochspannungstechnik II
21710 Leistungselektronik II
21720 Numerische Feldberechnung II
21730 Automatisierungstechnik II
21740 Regelungstechnik II
21750 Softwaretechnik II
21760 Elektrische Energienetze II
21770 Radio Frequency Technology
21930 Photovoltaik II
Modul: 21730 Automatisierungstechnik II

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050501007</th>
<th>5. Modulduauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Michael Weyrich</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Michael Weyrich</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- M.Sc. Technikpädagogik, PO 2009, 2. Semester
 - Affines Wahlpflichtfach Elektro- und Informationstechnik
 - >Wahlpflichtfach Energie- und Automatisierungstechnik -->Energie- und Automatisierungstechnik Vertiefungsfächer
 -
 - M.Sc. Technikpädagogik, PO 2009, 2. Semester
 - >Hauptfach Elektrotechnik -->Energie- und Automatisierungstechnik
 - -->Spezialisierung Energie und Automatisierungst.
 -
 - M.Sc. Technikpädagogik, PO 2009, 2. Semester
 - >Wahlpflichtfach Elektrotechnik -->Energie- und Automatisierungstechnik
 - -->Schwerpunkt Energie- und Automatisierungstechnik (Spezialisierung)
 -
 - M.Sc. Technikpädagogik, PO 2009, 2. Semester
 - >Wahlpflichtfach Elektrotechnik -->WPF Energie- und Automatisierungstechnik
 - -->VPF Spezialisierung Energie und Automatisierungst.
 -
 - M.Sc. Technikpädagogik, PO 2015, 2. Semester
 - >Hauptfach Elektrotechnik -->Energie- und Automatisierungstechnik
 - -->Spezialisierung Energie und Automatisierungst.
 -
 - M.Sc. Technikpädagogik, PO 2015, 2. Semester
 - >Wahlpflichtfach Elektrotechnik -->Energie- und Automatisierungstechnik
 - -->Schwerpunkt Energie- und Automatisierungstechnik (Spezialisierung)
 -
 - M.Sc. Technikpädagogik, PO 2015, 2. Semester
 - >Wahlpflichtfach Elektrotechnik -->WPF Energie- und Automatisierungstechnik
 - -->VPF Spezialisierung Energie und Automatisierungst.
 -

11. Empfohlene Voraussetzungen:

Grundlagen der Automatisierungstechnik, Informatik und Mathematik, Automatisierungstechnik I

12. Lernziele:

Die Studierenden

- sind in der Lage Automatisierungsprojekte fachgerecht durchzuführen
- beherrschen die dazu benötigten Entwicklungsmethoden
- verwenden die benötigten Automatisierungsverfahren und Rechnerwerkzeuge

13. Inhalt:

- Automatisierungsprojekte
- Automatisierungsverfahren
- Methoden für die Entwicklung von Automatisierungssystemen
- Automatisierung mit qualitativem Modellen
14. Literatur:
- Vorlesungsskript
- Lauber, R.; Göhner, P.: Prozessautomatisierung 1 Springer-Verlag, 1999
- Lauber, R.; Göhner, P.: Prozessautomatisierung 2 Springer-Verlag, 1999
- Litz, L.: Grundlagen der Automatisierungstechnik Oldenbourg Verlag, 2004
- Halang, W.; Konakovsky, R.: Sicherheitsgerichtete Echtzeitsysteme Oldenbourg Verlag, 1999
- Vorlesungsportal mit Vorlesungsaufzeichnung auf http://www.ias.uni-stuttgart.de/at2

15. Lehrveranstaltungen und -formen:
- 217301 Vorlesung Automatisierungstechnik II
- 217302 Übung Automatisierungstechnik II

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 56 h
- Selbststudium: 124 h
- Gesamt: 180 h

17. Prüfungsnummer/n und -name:
- 21731 Automatisierungstechnik II (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :
20. Angeboten von: Institut für Automatisierungs- und Softwaretechnik
Modul: 21760 Elektrische Energienetze II

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050310022</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Stefan Tenbohlen</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Ulrich Schärli
• Krzysztof Rudion
• Stefan Tenbohlen |

10. Zuordnung zum Curriculum in diesem Studiengang:

- **M.Sc. Technikpädagogik, PO 2009, 2. Semester**
 - Affines Wahlpflichtfach Elektro- und Informationstechnik -->
 - Wahlpflichtfach Energie- und Automatisierungstechnik -->Energie- und Automatisierungstechnik Vertiefungsfächer
 - M.Sc. Technikpädagogik, PO 2009, 2. Semester
 - M.Sc. Technikpädagogik, PO 2009, 2. Semester
 - Wahlpflichtfach Elektrotechnik -->Energie- und Automatisierungstechnik -->Schwerpunkt Energie- und Automatisierungstechnik (Spezialisierung)
 - M.Sc. Technikpädagogik, PO 2009, 2. Semester
 - M.Sc. Technikpädagogik, PO 2015, 2. Semester
 - M.Sc. Technikpädagogik, PO 2015, 2. Semester
 - Wahlpflichtfach Elektrotechnik -->Energie- und Automatisierungstechnik -->Schwerpunkt Energie- und Automatisierungstechnik (Spezialisierung)
 - M.Sc. Technikpädagogik, PO 2015, 2. Semester

11. Empfohlene Voraussetzungen:
Elektrische Energienetze I oder vergleichbare externe Vorlesung

12. Lernziele:

- Studierende können die Leitungsbeläge von Drehstrom-Freileitungen und -Kabeln bestimmen.
- Unsymmetrische, insbesondere einpolige Kurzschlüsse bzw. Erdschlüsse können sie berechnen und die dabei auftretenden Vorgänge beurteilen.
- Darauf aufbauend können sie Fragen zur elektromagnetischen Kopplung und Beeinflussung durch Freileitungen beantworten.
Sie können die thermische Belastbarkeit von Kabeln berechnen und kennen wichtige Einflussparameter.

Sie können die Lastflussberechnung nach Newton-Raphson anwenden und deren Ergebnisse beurteilen.

Oberschwingungen und Spannungsschwankungen können sie abschätzen.

Sie kennen die aktuellen HGÜ-Techniken und deren Vor- und Nachteile.

13. Inhalt:
- Kennwerte von Drehstrom-Freileitungen und -Kabeln
- Belastbarkeit von Kabeln
- Vorgänge bei Erdschluss und Erdkurzschluss, Sternpunktbehandlung
- Beeinflussung
- Lastflussberechnung
- Zustandserkennung
- Netzrückwirkungen
- HGÜ-Übertragungstechnik

14. Literatur:
- Oeding, Oswald: Elektrische Kraftwerke und Netze, Springer-Verlag
- Heuck, Dettmann: Elektrische Energieversorgung, Vieweg-Verlag
- Hosemann (Hg.): Hütte Taschenbücher der Technik. Elektrische Energietechnik. Band 3: Netze. Springer-Verlag
- Brakelmann: Belastbarkeiten der Energiekabel. VDE-Verlag

15. Lehrveranstaltungen und -formen:
• 217601 Vorlesung Elektrische Energienetze II
• 217602 Übung Elektrische Energienetze II

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 56 Stunden
Selbststudium: 124 Stunden
Summe: 180 Stunden

17. Prüfungsnummer/n und -name:
21761 Elektrische Energienetze II (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ...:

19. Medienform:
Overhead, Tafelanschrieb, Powerpointpräsentation

20. Angeboten von:
Institut für Energieübertragung und Hochspannungstechnik
Modul: 21690 Elektrische Maschinen II

2. Modulkürzel: 052601021
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0

5. Moduldauer: 1 Semester
6. Turnus: jedes 2. Semester, SoSe
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Nejila Parspour
9. Dozenten: Nejila Parspour

10. Zuordnung zum Curriculum in diesem Studiengang:

M.Sc. Technikpädagogik, PO 2009, 1. Semester
 → Affines Wahlpflichtfach Elektro- und Informationstechnik --
 >Wahlpflichtfach Energie- und Automatisierungstechnik -->Energie-
 - und Automatisierungstechnik Vertiefungsfächer

M.Sc. Technikpädagogik, PO 2009, 1. Semester
 → Hauptfach Elektrotechnik -->Energie- und Automatisierungstechnik
 -->Spezialisierung Energie und Automatisierungst.

M.Sc. Technikpädagogik, PO 2009, 1. Semester
 → Wahlpflichtfach Elektrotechnik -->Energie- und
 Automatisierungstechnik -->Schwerpunkt Energie- und
 Automatisierungstechnik (Spezialisierung)

M.Sc. Technikpädagogik, PO 2009, 1. Semester
 → Wahlpflichtfach Elektrotechnik -->WPF Energie- und
 Automatisierungstechnik -->VPF Spezialisierung Energie und
 Automatisierungst.

M.Sc. Technikpädagogik, PO 2015, 1. Semester
 → Hauptfach Elektrotechnik -->Energie- und Automatisierungstechnik
 -->Spezialisierung Energie und Automatisierungst.

M.Sc. Technikpädagogik, PO 2015, 1. Semester
 → Wahlpflichtfach Elektrotechnik -->Energie- und
 Automatisierungstechnik -->Schwerpunkt Energie- und
 Automatisierungstechnik (Spezialisierung)

M.Sc. Technikpädagogik, PO 2015, 1. Semester
 → Wahlpflichtfach Elektrotechnik -->WPF Energie- und
 Automatisierungstechnik -->VPF Spezialisierung Energie und
 Automatisierungst.

11. Empfohlene Voraussetzungen:

• Grundlagen der Elektrotechnik
• Elektrische Energietechnik
• Elektrische Maschinen I

12. Lernziele:

Studierende vertiefen ihre Kenntnisse über die elektrisch erregte
und permanentmagnetisch erregte Synchronmaschine und
Asynchronmaschine. Sie lernen das dynamische Verhalten dieser
Maschinen kennen. Es werden auch Grundkenntnisse über den Aufbau
und die Funktionsweise von Reluktanzmaschinen erworben.

13. Inhalt:

Drehfeld: Raumzeigertheorie, Stator- und Rotorfestes Koordinatensystem

Synchronmaschine: Vollständiges dynamisches Ersatzschaltbild,
Rotorflussorientiertes Modell

Stand: 07. Oktober 2015
Asynchronmaschine: vollständiges dynamisches Ersatzschaltbild, Rotorflussorientiertes Model

Reluktanzmaschine: Aufbau und Funktion, mathematische Zusammenhänge, Bauformen und Einsatzgebiete

14. Literatur:
- Seinsch, H. O.: Grundlagen elektrischer Maschinen und Antriebe; B.G. Teubner, Stuttgart, 1988
- Richter, Rudolf: Elektrische Maschinen; Verlag von Julius Springer, Berlin, 1936

15. Lehrveranstaltungen und -formen:
- 216901 Vorlesung Elektrische Maschinen II
- 216902 Übung Elektrische Maschinen II

16. Abschätzung Arbeitsaufwand:
| Präsenzzzeit: | 42 Stunden |
| Selbststudium: | 138 Stunden |
| Summe: | 180 Stunden |

17. Prüfungsnummer/n und -name:
- 21691 Elektrische Maschinen II (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:
- Tafel, Smart Board

20. Angeboten von:
- Institut für Elektrische Energiewandlung
Modul: 21700 Hochspannungstechnik II

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050310021</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Stefan Tenbohlen</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Stefan Tenbohlen</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:
- M.Sc. Technikpädagogik, PO 2009, 1. Semester
 → Affines Wahlpflichtfach Elektro- und Informationstechnik →
 Wahlpflichtfach Energie- und Automatisierungstechnik →
 Energie- und Automatisierungstechnik Vertiefungsfächer
 →
- M.Sc. Technikpädagogik, PO 2009, 1. Semester
 → Hauptfach Elektrotechnik → Energie- und Automatisierungstechnik →
 Spezialisierung Energie und Automatisierungst.
 →
- M.Sc. Technikpädagogik, PO 2009, 1. Semester
 → Wahlpflichtfach Elektrotechnik → Energie- und Automatisierungstechnik →
 Schwerpunkt Energie- und Automatisierungstechnik (Spezialisierung)
 →
- M.Sc. Technikpädagogik, PO 2009, 1. Semester
 → Wahlpflichtfach Elektrotechnik → WPF Energie- und Automatisierungstechnik →
 VPF Spezialisierung Energie und Automatisierungst.
 →
- M.Sc. Technikpädagogik, PO 2015, 1. Semester
 → Hauptfach Elektrotechnik → Energie- und Automatisierungstechnik →
 Spezialisierung Energie und Automatisierungst.
 →
- M.Sc. Technikpädagogik, PO 2015, 1. Semester
 → Wahlpflichtfach Elektrotechnik → Energie- und Automatisierungstechnik →
 Schwerpunkt Energie- und Automatisierungstechnik (Spezialisierung)
 →
- M.Sc. Technikpädagogik, PO 2015, 1. Semester
 → Wahlpflichtfach Elektrotechnik → WPF Energie- und Automatisierungstechnik →
 VPF Spezialisierung Energie und Automatisierungst.
 →

11. Empfohlene Voraussetzungen:
- Elektrische Energietechnik

12. Lernziele:
- Studierender kann die Entstehung und Auswirkung von Überspannungen an Komponenten und in elektrischen Netzen abschätzen. Er kann die Isolationsfestigkeit von Komponenten der Energietechnik bemessen und Maßnahmen zur Reduktion von Überspannungen festlegen.

13. Inhalt:
- Schaltvorgänge und Schaltgeräte
- Die Blitzentladung
- Repräsentative Spannungsbeanspruchungen
- Darstellung von Wanderwellenvorgängen
- Begrenzung von Überspannungen
- Isolationsbemessung und Isolationskoordination
14. Literatur:
- Küchler: Hochspannungstechnik, Springer-Verlag, Berlin, 2005
- Hasse, Wiesinger: Handbuch für Blitzschutz und Erdung Pflaum Verlag, München, 1989 - Dorsch Überspannungen und Isolationsbemessung bei Drehstrom
- Hochspannungsanlagen, Siemens AG, Berlin, München, 1981

15. Lehrveranstaltungen und -formen:
- 217001 Vorlesung Hochspannungstechnik II
- 217002 Übung Hochspannungstechnik II

16. Abschätzung Arbeitsaufwand:
- Präsenzzzeit: 54 Stunden
- Selbststudium: 126 Stunden
- Summe: 180 Stunden

17. Prüfungsnummer/n und -name:
- 21701 Hochspannungstechnik II (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:
- PowerPoint, Tafelanschrieb

20. Angeboten von:
- Institut für Energieübertragung und Hochspannungstechnik
Modul: 21710 Leistungselektronik II

2. Modulkürzel:	051010021
5. Modulduer:	1 Semester
3. Leistungspunkte:	6.0 LP
6. Turnus:	jedes 2. Semester, SoSe
4. SWS:	4.0
7. Sprache:	Deutsch

8. Modulverantwortlicher: Univ.-Prof. Jörg Roth-Stielow

9. Dozenten: Jörg Roth-Stielow

10. Zuordnung zum Curriculum in diesem Studiengang:

M.Sc. Technikpädagogik, PO 2009, 1. Semester
 ➔ Affines Wahlpflichtfach Elektro- und Informationstechnik
 ➔ Wahlpflichtfach Energie- und Automatisierungstechnik
 ➔ Energie- und Automatisierungstechnik Vertiefungsfächer

M.Sc. Technikpädagogik, PO 2009, 1. Semester
 ➔ Hauptfach Elektrotechnik
 ➔ Energie- und Automatisierungstechnik
 ➔ Spezialisierung Energie und Automatisierungst.

M.Sc. Technikpädagogik, PO 2009, 1. Semester
 ➔ Wahlpflichtfach Elektrotechnik
 ➔ Energie- und Automatisierungstechnik
 ➔ Schwerpunkt Energie- und Automatisierungstechnik (Spezialisierung)

M.Sc. Technikpädagogik, PO 2009, 1. Semester
 ➔ Wahlpflichtfach Elektrotechnik
 ➔ WPF Energie- und Automatisierungstechnik
 ➔ VPF Spezialisierung Energie und Automatisierungst.

M.Sc. Technikpädagogik, PO 2015, 1. Semester
 ➔ Hauptfach Elektrotechnik
 ➔ Energie- und Automatisierungstechnik
 ➔ Spezialisierung Energie und Automatisierungst.

M.Sc. Technikpädagogik, PO 2015, 1. Semester
 ➔ Wahlpflichtfach Elektrotechnik
 ➔ Energie- und Automatisierungstechnik
 ➔ Schwerpunkt Energie- und Automatisierungstechnik (Spezialisierung)

M.Sc. Technikpädagogik, PO 2015, 1. Semester
 ➔ Wahlpflichtfach Elektrotechnik
 ➔ WPF Energie- und Automatisierungstechnik
 ➔ VPF Spezialisierung Energie und Automatisierungst.

11. Empfohlene Voraussetzungen: Empfohlen werden Kenntnisse vergleichbar Leistungselektronik I

12. Lernziele:
 Studierende...
 - ...kennen die wichtigsten Schaltungen und die Betriebsweisen fremdgeführter Stromrichter und Resonanzkonverter.
 - ...können diese Anordnungen mathematisch beschreiben und Aufgabenstellungen lösen.

13. Inhalt:
 - Fremdgeführte Stromrichter
 - Die Kommutierung und ihre Berechnung
 - Netzrückwirkungen und Leistungsbetrachtung
 - Blindstromsparende Schaltungen
 - Resonant schaltentlastete Wandler
14. Literatur:

15. Lehrveranstaltungen und -formen:
 - 217101 Vorlesung Leistungselektronik II
 - 217102 Übung Leistungselektronik II

16. Abschätzung Arbeitsaufwand:
 - Präsenzzeit: 56 h
 - Selbststudium: 124 h
 - Gesamt: 180 h

17. Prüfungsnummer/n und -name:
 - 21711 Leistungselektronik II (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:
 - Tafel, Folien, Beamer

20. Angeboten von:
 - Institut für Leistungselektronik und Elektrische Antriebe
Modul: 21720 Numerische Feldberechnung II

2. Modulkürzel: 051800004
5. Modulduauer: 1 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Wolfgang Rucker

9. Dozenten: Wolfgang Rucker

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Technikpädagogik, PO 2009, 1. Semester
→ Affines Wahlpflichtfach Elektro- und Informationstechnik
 → Wahlpflichtfach Energie- und Automatisierungstechnik
 → Energie- und Automatisierungstechnik Vertiefungsfächer

→ M.Sc. Technikpädagogik, PO 2009, 1. Semester
 → Hauptfach Elektrotechnik
 → Energie- und Automatisierungstechnik
 → Spezialisierung Energie und Automatisierungst.

→ M.Sc. Technikpädagogik, PO 2009, 1. Semester
 → Wahlpflichtfach Elektrotechnik
 → Energie- und Automatisierungstechnik
 → Schwerpunkt Energie- und Automatisierungstechnik (Spezialisierung)

→ M.Sc. Technikpädagogik, PO 2009, 1. Semester
 → Wahlpflichtfach Elektrotechnik
 → WPF Energie- und Automatisierungstechnik
 → VPF Spezialisierung Energie und Automatisierungst.

→ M.Sc. Technikpädagogik, PO 2015, 1. Semester
 → Hauptfach Elektrotechnik
 → Energie- und Automatisierungstechnik
 → Spezialisierung Energie und Automatisierungst.

→ M.Sc. Technikpädagogik, PO 2015, 1. Semester
 → Wahlpflichtfach Elektrotechnik
 → Energie- und Automatisierungstechnik
 → Schwerpunkt Energie- und Automatisierungstechnik (Spezialisierung)

→ M.Sc. Technikpädagogik, PO 2015, 1. Semester
 → Wahlpflichtfach Elektrotechnik
 → WPF Energie- und Automatisierungstechnik
 → VPF Spezialisierung Energie und Automatisierungst.

12. Lernziele:
Die Studierenden:
 • besitzen die Kenntnisse, die zur Modellierung und numerischen Simulation von dreidimensionalen elektromagnetischen Feldproblemen erforderlich sind,
 • können mit gegebener Simulationssoftware praxisrelevante Feldprobleme lösen.

13. Inhalt:
 • Grundlagen der verwendeten numerischen Verfahren (FEM, BEM)
 • Simulation nicht linearer statischer Feldprobleme (Newton-Raphson-Verfahren)
 • Simulation zeitabhängiger Feldprobleme (implizites Euler-Verfahren)
14. Literatur:

15. Lehrveranstaltungen und -formen:

- 217201 Vorlesung Numerische Feldberechnung II
- 217202 Übung Numerische Feldberechnung II

16. Abschätzung Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Präsenzzzeit</th>
<th>Selbststudium</th>
<th>Summe</th>
</tr>
</thead>
<tbody>
<tr>
<td>56 Stunden</td>
<td>124 Stunden</td>
<td>180 Stunden</td>
</tr>
</tbody>
</table>

17. Prüfungsnummer/n und -name:

| 21721 | Numerische Feldberechnung II (PL), mündliche Prüfung, 45 Min., Gewichtung: 1.0 |

18. Grundlage für ...

19. Medienform:

- Tafel, Beamer

20. Angeboten von:

- Institut für Theorie der Elektrotechnik
Modul: 21930 Photovoltaik II

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050513020</th>
<th>5. Modulduauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Jürgen Heinz Werner</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Jürgen Heinz Werner
• Markus Schubert | |
→ Wahlpflichtfach Elektrotechnik -->Energie- und Automatisierungstechnik -->Schwerpunkt Energie- und Automatisierungstechnik (Spezialisierung)
→ M.Sc. Technikpädagogik
→ Wahlpflichtfach Elektrotechnik -->Energie- und Automatisierungstechnik -->Schwerpunkt Energie- und Automatisierungstechnik (Spezialisierung)
→ | |
| 11. Empfohlene Voraussetzungen: | Photovoltaik I | |
| 12. Lernziele: | Kenntnisse über den Aufbau, die Leistungsfähigkeit, Charakterisierung und Wirtschaftlichkeit von Photovoltaikanlagen | |
| 13. Inhalt: | 1. Solarstrahlung
2. Solarzellen: Alternativen zu konventionellem, kristallinen Silizium
3. Solarmodule: Temperatur, Verschaltung, Schutzdioden
4. Bestandteile von Photovoltaikanlagen
5. Standort und Verschattung
6. Planung und Dimensionierung von Photovoltaik-Anlagen, Elektrische Sicherheit
7. Montagesysteme
8. Simulationswerkzeug für Photovoltaikanlagen
9. Installation und Inbetriebnahme von Photovoltaikanlagen
10. Betrieb, Wartung, Monitoring
11. Photovoltaische Messtechnik
12. Wirtschaftlichkeit von Photovoltaikanlagen | |
- DGS-Leitfaden, Photovoltaische Anlagen (Deutsche Gesellschaft für Sonnenenergie, Berlin, 2012) | |
| 15. Lehrveranstaltungen und -formen: | • 219301 Vorlesung Photovoltaik II
• 219302 Übung Photovoltaik II | |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 56 h
Selbststudium: 124 h
Gesamt: 180 h | |
| 17. Prüfungsnummer/n und -name: | 21931 Photovoltaik II (PL), schriftlich oder mündlich, 90 Min., Gewichtung: 1.0 | |
| 18. Grundlage für ...: | | |
| 19. Medienform: | Powerpoint, Tafel | |
20. Angeboten von: Institut für Photovoltaik
Modul: 21770 Radio Frequency Technology

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Jan Hesselbarth

9. Dozenten: • Wolfgang Mahler • Jan Hesselbarth

10. Zuordnung zum Curriculum in diesem Studiengang:

- M.Sc. Technikpädagogik, PO 2009, 1. Semester
 - Affines Wahlpflichtfach Elektro- und Informationstechnik --
 >Wahlpflichtfach Energie- und Automatisierungstechnik -->Energie-
 und Automatisierungstechnik Vertiefungsfächer

- M.Sc. Technikpädagogik, PO 2009, 1. Semester
 - Affines Wahlpflichtfach Elektro- und Informationstechnik --
 >Wahlpflichtfach System- und Informationstechnik -->System- und
 Informationstechnik Vertiefungsfächer

- M.Sc. Technikpädagogik, PO 2009, 1. Semester
 - Hauptfach Elektrotechnik -->Energie- und Automatisierungstechnik
 -->Spezialisierung Energie und Automatisierungst.

- M.Sc. Technikpädagogik, PO 2009, 1. Semester
 - Hauptfach Elektrotechnik -->System- und Informationstechnik --
 >System- und Informationstechnik

- M.Sc. Technikpädagogik, PO 2009, 1. Semester
 - Wahlpflichtfach Elektrotechnik -->Energie- und
 Automatisierungstechnik -->Scherpunkt Energie- und
 Automatisierungstechnik (Spezialisierung)

- M.Sc. Technikpädagogik, PO 2009, 1. Semester
 - Wahlpflichtfach Elektrotechnik -->System- und Informationstechnik
 -->System- und Informationstechnik (Spezialisierung)

- M.Sc. Technikpädagogik, PO 2009, 1. Semester
 - Wahlpflichtfach Elektrotechnik -->WPF Energie- und
 Automatisierungstechnik -->VPF Spezialisierung Energie und
 Automatisierungst.

- M.Sc. Technikpädagogik, PO 2009, 1. Semester
 - Wahlpflichtfach Elektrotechnik -->WPF System- und
 Informationstechnik -->WPF System- und Informationstechnik

- M.Sc. Technikpädagogik, PO 2015, 1. Semester
 - Hauptfach Elektrotechnik -->Energie- und Automatisierungstechnik
 -->Spezialisierung Energie und Automatisierungst.

- M.Sc. Technikpädagogik, PO 2015, 1. Semester
 - Hauptfach Elektrotechnik -->System- und Informationstechnik --
 >System- und Informationstechnik

- M.Sc. Technikpädagogik, PO 2015, 1. Semester
11. Empfohlene Voraussetzungen: Basic knowledge of microwave techniques and fundamentals of electrodynamics is required.

12. Lernziele: The students acquire knowledge and understanding of various electromagnetic waveguiding phenomena, cavity resonators, RF amplifier techniques, receiver noise phenomena, and fundamentals of RF measurement techniques.

13. Inhalt: Hollow waveguides, dielectric waveguides, cavity resonators, two-port amplifiers, and stability, noise in RF circuits, principles of RF measurements.

14. Literatur:
- Lecture script,
- Collin: Foundation of Microwave Engineering, 2nd Ed., John Wiley & Sons, 2002,
- Marcuvitz, Waveguide Handbook, Inst. of Eng. and Techn., 1986,
- Pozar: Microwave Engineering, 3rd Ed., John Wiley & Sons, 2005,
- Gonzales: Microwave Transistor Amplifiers, Prentice Hall, 1997,

15. Lehrveranstaltungen und -formen:
- 217701 Vorlesung Radio Frequency Technology
- 217702 Übung Radio Frequency Technology

16. Abschätzung Arbeitsaufwand:
- Lecture: 56h
- Self study: 124h
- Overall: 180h

17. Prüfungsnummer/n und -name: 21771 Radio Frequency Technology (PL), schriftlich, eventuell mündlich, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform: Black board, beamer, overhead projector

20. Angeboten von: Institut für Hochfrequenztechnik
Modul: 21740 Regelungstechnik II

<table>
<thead>
<tr>
<th>Modulkürzel:</th>
<th>051010022</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Jörg Roth-Stielow

9. Dozenten: Jörg Roth-Stielow

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>M.Sc. Technikpädagogik, PO 2009, 1. Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Affines Wahlpflichtfach Elektro- und Informationstechnik --> Wahlpflichtfach Energie- und Automatisierungstechnik --> Energiedienstleistungstechnik Vertiefungsfächer</td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik, PO 2009, 1. Semester</td>
</tr>
<tr>
<td>Hauptfach Elektrotechnik --> Energie- und Automatisierungstechnik --> Spezialisierung Energie und Automatisierungstechnik</td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik, PO 2009, 1. Semester</td>
</tr>
<tr>
<td>Wahlpflichtfach Elektrotechnik --> Energie- und Automatisierungstechnik --> Schwerpunkt Energie- und Automatisierungstechnik (Spezialisierung)</td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik, PO 2009, 1. Semester</td>
</tr>
<tr>
<td>Wahlpflichtfach Elektrotechnik --> WPF Energie- und Automatisierungstechnik --> VPF Spezialisierung Energie und Automatisierungstechnik</td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik, PO 2015, 1. Semester</td>
</tr>
<tr>
<td>Hauptfach Elektrotechnik --> Energie- und Automatisierungstechnik --> Spezialisierung Energie und Automatisierungstechnik</td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik, PO 2015, 1. Semester</td>
</tr>
<tr>
<td>Wahlpflichtfach Elektrotechnik --> Energie- und Automatisierungstechnik --> Schwerpunkt Energie- und Automatisierungstechnik (Spezialisierung)</td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik, PO 2015, 1. Semester</td>
</tr>
<tr>
<td>Wahlpflichtfach Elektrotechnik --> WPF Energie- und Automatisierungstechnik --> VPF Spezialisierung Energie und Automatisierungstechnik</td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen: Empfohlen werden Kenntnisse vergleichbar Regelungstechnik I

12. Lernziele:

- ...können mit Störgrößen in Regelsystemen umgehen.
- ...kennen die wichtigsten Merkmale von Regelsystemen mit Zweipunktverhalten und von zeitdiskreten Regelsystemen.
- ...können diese Anordnungen mathematisch beschreiben, hinsichtlich ihrer Stabilität beurteilen und Aufgabenstellungen lösen.
- ...können Regler entwerfen und realisieren.

13. Inhalt:

- Behandlung von Störgrößen in Regelkreisen
- Methoden zur Ermittlung von Störgrößen
- Regelkreise mit Steuergliedern, die Zweipunktverhalten aufweisen
• Realisierung von Reglerkomponenten mit Hilfe von Operationsverstärkern
• Realisierung von Reglern mit Hilfe von Mikroprozessoren
• Beschreibung von Übertragungsstrecken mit Hilfe der z-Transformation

14. Literatur:
• Föllinger, Otto: Regelungstechnik, Hüthig, Heidelberg, 1992
• Unbehauen, H.: Regelungstechnik 1, Vieweg, Braunschweig, 1989
• Föllinger, Otto: Nichtlineare Regelungen I, Oldenbourg, München, 1998

15. Lehrveranstaltungen und -formen:
• 217401 Vorlesung Regelungstechnik II
• 217402 Übung Regelungstechnik II

16. Abschätzung Arbeitsaufwand:

Präsenzzzeit:	56 h
Selbststudium:	124 h
Gesamt:	180 h

17. Prüfungsnummer/n und -name:
21741 Regelungstechnik II (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:
Tafel, Folien, Beamer

20. Angeboten von:
Institut für Leistungselektronik und Elektrische Antriebe
Modul: 21750 Softwaretechnik II

2. Modulkürzel: 050501006
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0
5. Modulduauer: 1 Semester
6. Turnus: jedes 2. Semester, SoSe
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Michael Weyrich

9. Dozenten:
 • Nasser Jazdi-Motlagh
 • Michael Weyrich

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Technikpädagogik, PO 2009, 2. Semester
 ➔ Affines Wahlpflichtfach Elektro- und Informationstechnik
 ➔ Wahlpflichtfach Energie- und Automatisierungstechnik
 ➔ Energie- und Automatisierungstechnik Vertiefungsfächer
 ➔ M.Sc. Technikpädagogik, PO 2009, 2. Semester
 ➔ Hauptfach Elektrotechnik
 ➔ Energie- und Automatisierungstechnik
 ➔ Spezialisierung Energie und Automatisierungst.
 ➔ M.Sc. Technikpädagogik, PO 2009, 2. Semester
 ➔ Wahlpflichtfach Elektrotechnik
 ➔ Energie- und Automatisierungstechnik
 ➔ Schwerpunkt Energie- und Automatisierungstechnik (Spezialisierung)
 ➔ M.Sc. Technikpädagogik, PO 2009, 2. Semester
 ➔ Wahlpflichtfach Elektrotechnik
 ➔ WPF Energie- und Automatisierungstechnik
 ➔ VPF Spezialisierung Energie und Automatisierungst.
 ➔ M.Sc. Technikpädagogik, PO 2015, 2. Semester
 ➔ Hauptfach Elektrotechnik
 ➔ Energie- und Automatisierungstechnik
 ➔ Spezialisierung Energie und Automatisierungst.
 ➔ M.Sc. Technikpädagogik, PO 2015, 2. Semester
 ➔ Wahlpflichtfach Elektrotechnik
 ➔ Energie- und Automatisierungstechnik
 ➔ Schwerpunkt Energie- und Automatisierungstechnik (Spezialisierung)
 ➔ M.Sc. Technikpädagogik, PO 2015, 2. Semester
 ➔ Wahlpflichtfach Elektrotechnik
 ➔ WPF Energie- und Automatisierungstechnik
 ➔ VPF Spezialisierung Energie und Automatisierungst.

11. Empfohlene Voraussetzungen: Softwaretechnik I

12. Lernziele:
 Die Studierenden
 • besitzen vertiefte Kenntnisse über Softwarequalität für technische Systeme
 • wenden Softwaretechniken für bestehende technische Systeme an
 • lernen aktuelle Themen der Softwaretechnik kennen

13. Inhalt:
 • Konfigurationsmanagement
 • Prototyping bei der Softwareentwicklung
 • Metriken
 • Formale Methoden zur Entwicklung qualitativ hochwertiger Software
14. Literatur:

- Vorlesungsskript
- Balzert, H.: Lehrbuch der Software-Technik, Spektrum Akademischer Verlag, 2000
- Sommerville, I.: Software Engineering, Pearson Verlag, 2012
- Wolf, H.: Agile Softwareentwicklung, dpunkt-Verlag, 2010
- Andresen, A.: Komponentenbasierte Softwareentwicklung mit MDA, UML2 und XML, Hanser Fachverlag, 2004
- Choren, R.; et al.: Software Engineering for Multi-Agent Systems III, Springer-Verlag, 2005
- Vorlesungsportal mit Vorlesungsaufzeichnung auf http://www.ias.uni-stuttgart.de/st2

15. Lehrveranstaltungen und -formen:

- 217501 Vorlesung Softwaretechnik II
- 217502 Übung Softwaretechnik II

16. Abschätzung Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Präsenzzeit</th>
<th>Selbststudium</th>
<th>Gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>56 h</td>
<td>124 h</td>
<td>180 h</td>
</tr>
</tbody>
</table>

17. Prüfungsnummer/n und -name:

- 21751 Softwaretechnik II (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:

Beamerpräsentation mit Aufzeichnung der Vorlesungen und Übungen

20. Angeboten von:

Institut für Automatisierungs- und Softwaretechnik
Modul: 17180 Technische Informatik II

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050910002</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Andreas Kirstädter</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Andreas Kirstädter</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- M.Sc. Technikpädagogik, PO 2009, 2. Semester
 → Affines Wahlpflichtfach Elektro- und Informationstechnik
 → Wahlpflichtfach Energie- und Automatisierungstechnik
 → Energie- und Automatisierungstechnik Vertiefungsfächer

- M.Sc. Technikpädagogik, PO 2009, 2. Semester
 → Affines Wahlpflichtfach Elektro- und Informationstechnik
 → Wahlpflichtfach System- und Informationstechnik
 → System- und Informationstechnik Vertiefungsfächer

- M.Sc. Technikpädagogik, PO 2009, 2. Semester
 → Hauptfach Elektrotechnik
 → Energie- und Automatisierungstechnik
 → Spezialisierung Energie und Automatisierungst.

- M.Sc. Technikpädagogik, PO 2009, 2. Semester
 → Hauptfach Elektrotechnik
 → System- und Informationstechnik

- M.Sc. Technikpädagogik, PO 2009, 2. Semester
 → Wahlpflichtfach Elektrotechnik
 → Energie- und Automatisierungstechnik
 → Schwerpunkt Energie- und Automatisierungstechnik (Spezialisierung)

- M.Sc. Technikpädagogik, PO 2009, 2. Semester
 → Wahlpflichtfach Elektrotechnik
 → System- und Informationstechnik (Spezialisierung)

- M.Sc. Technikpädagogik, PO 2009, 2. Semester
 → Wahlpflichtfach Elektrotechnik
 → WPF Energie- und Automatisierungstechnik
 → VPF Spezialisierung Energie und Automatisierungst.

- M.Sc. Technikpädagogik, PO 2009, 2. Semester
 → Wahlpflichtfach Elektrotechnik
 → WPF System- und Informationstechnik
 → WPF System- und Informationstechnik

- M.Sc. Technikpädagogik, PO 2015, 2. Semester
 → Hauptfach Elektrotechnik
 → Energie- und Automatisierungstechnik
 → Spezialisierung Energie und Automatisierungst.

- M.Sc. Technikpädagogik, PO 2015, 2. Semester
 → Hauptfach Elektrotechnik
 → System- und Informationstechnik

- M.Sc. Technikpädagogik, PO 2015, 2. Semester
 → Hauptfach Elektrotechnik
 → System- und Informationstechnik Vertiefungsfächer

- M.Sc. Technikpädagogik, PO 2015, 2. Semester
11. Empfohlene Voraussetzungen:

- Kenntnisse, die in den Modulen "Informatik I" und "Informatik II" vermittelt werden
- Kenntnisse, die im Modul "Technische Informatik I" vermittelt werden

12. Lernziele:

Der Studierende kennt und versteht die Architektur moderner Rechnersysteme, einschl. Rechnerperipherie und Rechnerkommunikation, er besitzt Grundkenntnisse über Betriebssysteme, er kennt Verfahren zur Fehlersicherung in Rechnersystemen und kann Rechnersysteme qualitativ und quantitativ bewerten.

13. Inhalt:

- Rechnerarchitekturen
- Betriebssystemkonzepte
- Rechnerperipherie
- Rechnerkommunikation
- eingebettete Systeme
- Verteilte und parallele Rechnerarchitekturen
- Virtualisierung, Zuverlässigkeit/Verfügbarkeit von Rechnersystemen

Für nähere Informationen, aktuelle Ankündigungen und Material siehe:

http://www.ikr.uni-stuttgart.de/Xref/CC/L_TI_II

14. Literatur:

- Skript "Technische Informatik II"

15. Lehrveranstaltungen und -formen:

- 171801 Vorlesung Technische Informatik II
- 171802 Übung Technische Informatik II

16. Abschätzung Arbeitsaufwand:

Präsenzzeit	56 h
Selbststudium	124 h
Gesamt	180 h

17. Prüfungsnummer/n und -name:

17181 Technische Informatik II (PL), schriftlich, eventuell mündlich, 120 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:

Notebook-Präsentation

20. Angeboten von:

Institut für Kommunikationsnetze und Rechnersysteme
5314 Praktische Übung im Labor (EAT)

Zugeordnete Module:

14520 Praktische Übungen im Labor "Elektromechanische Energiewandlung I"
14530 Praktische Übungen im Labor "Leistungselektronik und Regelungstechnik"
Modul: 14520 Praktische Übungen im Labor "Elektromechanische Energiewandlung I"

2. Modulkürzel: 052601013
5. Moduldaurer: 1 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Nejila Parspou
9. Dozenten: wiss. MA

10. Zuordnung zum Curriculum in diesem Studiengang:
 M.Sc. Technikpädagogik, PO 2009, 5. Semester
 → Hauptfach Elektrotechnik --Energie- und Automatisierungstechnik
 → Praktische Übung im Labor (EAT)
 →
 M.Sc. Technikpädagogik, PO 2009, 5. Semester
 → Wahlpflichtfach Elektrotechnik --Energie- und
 Automatisierungstechnik --Praktische Übung im Labor (EAT)
 →
 M.Sc. Technikpädagogik, PO 2009, 5. Semester
 → Wahlpflichtfach Elektrotechnik --WPF Energie- und
 Automatisierungstechnik --WPF Praktische Übung im Labor (EAT)
 →
 M.Sc. Technikpädagogik, PO 2015, 5. Semester
 → Hauptfach Elektrotechnik --Energie- und Automatisierungstechnik
 → Praktische Übung im Labor (EAT)
 →
 M.Sc. Technikpädagogik, PO 2015, 5. Semester
 → Wahlpflichtfach Elektrotechnik --Energie- und
 Automatisierungstechnik --Praktische Übung im Labor (EAT)
 →
 M.Sc. Technikpädagogik, PO 2015, 5. Semester
 → Wahlpflichtfach Elektrotechnik --WPF Energie- und
 Automatisierungstechnik --WPF Praktische Übung im Labor (EAT)
 →

11. Empfohlene Voraussetzungen:
 Bachelor-Grundstudium
 Elektrische Maschinen I

12. Lernziele:
 Studierende kennen den Aufbau und die Funktion elektrischer
 Maschinen und der berührungslosen Energieübertragung, sie können
 einen elektrischen Antrieb aufbauen und in Betrieb nehmen.
 Studierende können die einzelnen Arbeitsschritte im Team planen
 und organisieren und abschließend über die erreichten Ergebnisse
 berichten.

13. Inhalt:
 • Aufbau und Inbetriebnahme einer Leistungselektronik für die
 Berührungslose Energieübertragung als Projektarbeit
 • Magnetisch gekoppelte Spulen
 • Stationäres und dynamisches Verhalten der elektrisch erregten
 Gleichstrommaschine
 • Stationäres und dynamisches Verhalten der elektrisch erregte
 Synchronmaschine
 • Stationäres und dynamisches Verhalten der permanentmagnetisch
 erregte Synchronmaschine

14. Literatur:
 siehe Modul „Elektrische Maschinen I“

Stand: 07. Oktober 2015
<table>
<thead>
<tr>
<th>15. Lehrveranstaltungen und -formen:</th>
<th>145201 Praktische Übungen im Labor "Elektrische Maschinen"</th>
</tr>
</thead>
<tbody>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>14521 Praktische Übungen im Labor "Elektromechanische Energiewandlung I" (LBP), schriftlich, eventuell mündlich, 60 Min., Gewichtung: 1.0</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Umdrucke zur Versuchsvorbereitung</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Institut für Elektrische Energiewandlung</td>
</tr>
</tbody>
</table>
Modul: 14530 Praktische Übungen im Labor "Leistungselektronik und Regelungstechnik"

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

M.Sc. Technikpädagogik, PO 2009, 5. Semester
→ Hauptfach Elektrotechnik -->Energie- und Automatisierungstechnik
 -->Praktische Übung im Labor (EAT)
→
M.Sc. Technikpädagogik, PO 2009, 5. Semester
→ Wahlpflichtfach Elektrotechnik -->Energie- und Automatisierungstechnik -->Praktische Übung im Labor (EAT)
→
M.Sc. Technikpädagogik, PO 2015, 5. Semester
→ Wahlpflichtfach Elektrotechnik -->WPF Energie- und Automatisierungstechnik -->WPF Praktische Übung im Labor (EAT)
→
M.Sc. Technikpädagogik, PO 2009, 5. Semester
→ Hauptfach Elektrotechnik -->Energie- und Automatisierungstechnik
 -->Praktische Übung im Labor (EAT)
→

11. Empfohlene Voraussetzungen:
Grundkenntnisse der Leistungselektronik und der Regelungstechnik werden empfohlen.

12. Lernziele:
Studierende...

 • ...können eine konkrete Aufgabenstellung aus dem Bereich der Leistungselektronik und Regelungstechnik in einer Kleingruppe strukturieren, Teilaufgaben und Schritte definieren, diese bearbeiten und lösen.
 • ...können die erzielten Ergebnisse wissenschaftlich nachvollziehbar dokumentieren und in einem Kolloquium darüber berichten.

13. Inhalt:

Projekt-Beispiele:

 • Eigenschaften von Leistungshalbleitern
 • Schaltungstopologien und Modulationsverfahren
 • Regelung eines Gleichstromantriebs
 • Regelung einer Schiebetür

Vorgehen:

 • Vorbereitung, Berechnungen
- Strukturierung der Aufgabe; Gliederung in Arbeitspakete; Arbeitsplanung.
- Durchführung der Arbeitsschritte
- Dokumentation der Ergebnisse
- Abschlusskolloquium

14. Literatur:
siehe Module „Leistungselektronik I“ und „Regelungstechnik I“

15. Lehrveranstaltungen und -formen:
145301 Praktische Übungen im Labor "Leistungselektronik und Regelungstechnik"

16. Abschätzung Arbeitsaufwand:
| Präsenzzeit: | 56 h |
| Selbststudium: | 124 h |
| Gesamt: | 180 h |

17. Prüfungsnummer/n und -name:
14531 Praktische Übungen im Labor "Leistungselektronik und Regelungstechnik" (LBP), schriftlich, eventuell mündlich, Gewichtung: 1.0, Aktive Teilnahme und selbständiges Arbeiten Qualität der erzielten Ergebnisse Qualität der Dokumentation Ergebnis der Befragung im Kolloquium

18. Grundlage für ...:

19. Medienform:

20. Angeboten von:
Institut für Leistungselektronik und Elektrische Antriebe
900 Schlüsselqualifikationen fachübergreifend
5320 System- und Informationstechnik

Zugeordnete Module:

- 5321 System- und Informationstechnik (Pflicht)
- 5322 System- und Informationstechnik (Wahl)
- 5323 System- und Informationstechnik (Spezialisierung)
- 5324 Praktische Übung im Labor
- 900 Schlüsselqualifikationen fachübergreifend
5321 System- und Informationstechnik (Pflicht)

Zugeordnete Module:

- 11490 Nachrichtentechnik
- 11610 Technische Informatik I
- 11670 Grundlagen integrierter Schaltungen
Modul: 11670 Grundlagen integrierter Schaltungen

2. Modulkürzel: 050200002
5. Modulduauer: 1 Semester

3. Leistungspunkte: 6.0 LP
6. Turnus: jedes 2. Semester, SoSe

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Manfred Berroth

9. Dozenten: Manfred Berroth

10. Zuordnung zum Curriculum in diesem Studiengang:

 B.Sc. Technikpädagogik, PO 2011, 4. Semester
 → Hauptfach Elektrotechnik --> Ergänzungsmodule --> Pflichtcontainer
 Schwerpunkt System- und Informationstechnik
 →

 B.Sc. Technikpädagogik, PO 2011, 4. Semester
 → Vertiefung System- und Informationstechnik

 B.Sc. Technikpädagogik, PO 2011, 4. Semester
 → Vorgezogene Master-Module

 B.Sc. Technikpädagogik, PO 2011, 4. Semester
 → Wahlpflichtfach Elektrotechnik --> b) Schwerpunkt System- und
 Informationstechnik --> Pflichtcontainer Schwerpunkt System- und
 Informationstechnik
 →

 M.Sc. Technikpädagogik, PO 2009, 2. Semester
 → Affines Wahlpflichtfach Elektro- und Informationstechnik --
 > Wahlpflichtfach System- und Informationstechnik --> System- und
 Informationstechnik Pflichtfächer
 →

 M.Sc. Technikpädagogik, PO 2009, 2. Semester
 → Wahlpflichtfach Elektrotechnik --> System- und Informationstechnik
 --> System- und Informationstechnik (Pflicht)
 →

 M.Sc. Technikpädagogik, PO 2015, 2. Semester
 → Wahlpflichtfach Elektrotechnik --> System- und Informationstechnik
 --> System- und Informationstechnik (Pflicht)
 →

11. Empfohlene Voraussetzungen:

 Kenntnisse in Schaltungstechnik
 Kenntnisse in höherer Mathematik

12. Lernziele:

 Die Studierenden besitzen Grundkenntnisse über integrierte Schaltungen
der Digitaltechnik basierend auf Silizium-MOSFETs

13. Inhalt:

 • Bauelemente der Digitaltechnik
 • Digitale Grundschaltungen
 • CMOS-Logikschatlungen
 • Schaltwerke

14. Literatur:

 • Vorlesungsskript,
 • Klar: Integrierte Digitale Schaltungen MOS/BICMOS, Springer-Verlag,
 Berlin, 1996
 • Hoffmann: VLSI-Entwurf - Modelle und Schaltungen, Oldenbourg
 Verlag, München, 1998

15. Lehrveranstaltungen und -formen:
• 116701 Vorlesung Grundlagen Integrierter Schaltungen
• 116702 Übung Grundlagen Integrierter Schaltungen

16. Abschätzung Arbeitsaufwand:
| Präsenzzeit: | 56 h |
| Selbststudium: | 124 h |
| Gesamt: | 180 h |

17. Prüfungsnummer/n und -name:
11671 Grundlagen integrierter Schaltungen (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform: Tafel, Beamer

20. Angeboten von: Institut für Elektrische und Optische Nachrichtentechnik
Modul: 11490 Nachrichtentechnik

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>6.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

| 8. Modulverantwortlicher: | Univ.-Prof. Stephan Brink |
| 9. Dozenten: | • Jan Hesselbarth • Stephan Brink |

10. Zuordnung zum Curriculum in diesem Studiengang:

- B.Sc. Technikpädagogik, PO 2011, 3. Semester
 - Hauptfach Elektrotechnik --> Ergänzungsmodule --> Pflichtcontainer
 - Schwerpunkt System- und Informationstechnik

- B.Sc. Technikpädagogik, PO 2011, 3. Semester
 - Vertiefung System- und Informationstechnik

- B.Sc. Technikpädagogik, PO 2011, 3. Semester
 - Vorgezogene Master-Module

- B.Sc. Technikpädagogik, PO 2011, 3. Semester
 - Wahlpflichtfach Elektrotechnik --> b) Schwerpunkt System- und Informationstechnik --> Pflichtcontainer Schwerpunkt System- und Informationstechnik

- M.Sc. Technikpädagogik, PO 2009, 1. Semester
 - Affines Wahlpflichtfach Elektro- und Informationstechnik --> Wahlpflichtfach System- und Informationstechnik --> System- und Informationstechnik Pflichtfächer

- M.Sc. Technikpädagogik, PO 2009, 1. Semester
 - Wahlpflichtfach Elektrotechnik --> System- und Informationstechnik (Pflicht)

- M.Sc. Technikpädagogik, PO 2015, 1. Semester
 - Wahlpflichtfach Elektrotechnik --> System- und Informationstechnik --> System- und Informationstechnik (Pflicht)

11. Empfohlene Voraussetzungen:

- Die Studierenden besitzen schaltungstechnische und informations-technische Grundkenntnisse der Nachrichtentechnik. Sie verstehen die grundsätzliche Funktionsweise von nachrichtentechnischen Systemen.

12. Lernziele:

Teil I:

- Schaltungen bei höheren Frequenzen, Grundlagen der Sender- und Empfangstechnik, Leitungen, Einführung in Antennen, Wellenausbreitung und Empfängerrauschen, Übersicht wichtiger Funksysteme

Teil II:

- Grundzüge der Informationstheorie, Codierung und Modulation, Signalübertragung über elektrische Leitungen

14. Literatur:

- Vorlesungsskripte,
- Meinke, Gundlach: Taschenbuch der Hochfrequenztechnik, 5. Auflage, Springer-Verlag, 1992,
• Tietze, Schenk: Halbleiterschaltungstechnik, 12. Auflage, Springer-Verlag, 2002,
• Herter, Lörcher: Nachrichtentechnik, 9. Auflage, Hanser-Verlag, 2004,

15. Lehrveranstaltungen und -formen:
• 114901 Vorlesung Nachrichtentechnik 1
• 114902 Übung Nachrichtentechnik 1
• 114903 Vorlesung Nachrichtentechnik 2
• 114904 Übung Nachrichtentechnik 2

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 84 h
Selbststudium/Nacharbeitszeit: 186 h
Gesamt: 270 h

17. Prüfungsnummer/n und -name:
11491 Nachrichtentechnik (PL), schriftliche Prüfung, 180 Min., Gewichtung: 1.0

18. Grundlage für ...:

19. Medienform:
Skript und Übungsaufgaben in elektronischer Form (ILIAS). Anschrieb auf Tablet-PC mit Projektion.

20. Angeboten von:
Institut für Hochfrequenztechnik
Modul: 11610 Technische Informatik I

2. Modulkürzel: 050901004
5. Modulduauer: 1 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Andreas Kirstädter

9. Dozenten:
• Matthias Meyer
• Andreas Kirstädter

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technikpädagogik, PO 2011, 5. Semester
 → Hauptfach Elektrotechnik -->Ergänzungsmodule -->Pflichtcontainer
 Schwerpunkt System- und Informationstechnik
 → B.Sc. Technikpädagogik, PO 2011, 5. Semester
 → Vertiefung System- und Informationstechnik
 → B.Sc. Technikpädagogik, PO 2011, 5. Semester
 → Vorgezogene Master-Module
 → B.Sc. Technikpädagogik, PO 2011, 5. Semester
 → Wahlpflichtfach Elektrotechnik -->b) Schwerpunkt System- und Informationstechnik -->Pflichtcontainer Schwerpunkt System- und Informationstechnik

M.Sc. Technikpädagogik, PO 2009, 1. Semester
 → Affines Wahlpflichtfach Elektro- und Informationstechnik -->
 >Wahlpflichtfach System- und Informationstechnik -->System- und Informationstechnik Pflichtfächer
 → M.Sc. Technikpädagogik, PO 2009, 1. Semester
 → Wahlpflichtfach Elektrotechnik -->System- und Informationstechnik
 -->System- und Informationstechnik (Pflicht)
 → M.Sc. Technikpädagogik, PO 2015, 1. Semester
 → Wahlpflichtfach Elektrotechnik -->System- und Informationstechnik
 -->System- und Informationstechnik (Pflicht)

11. Empfohlene Voraussetzungen:
Kenntnisse, wie sie in den Modulen "Informatik I" und "Informatik II" vermittelt werden.

12. Lernziele:
Der Studierende kann Schaltungen auf der Register-Transfer-Ebene entwerfen, Mikroprogrammierung anwenden, in Assembler programmieren und versteht moderne Prozessorarchitekturen ebenenübergreifend.

13. Inhalt:
• Einfache Einadressmaschine, Elemente und Mechanismen der Register-Transfer-Ebene
• Prozessorbaugruppen und Mikroprogrammierung, Grundkonzepte von RISC-Prozessoren
• Speicherhierarchie (Caches, virtueller Speicher)
• Fortgeschrittene Konzepte moderner Prozessoren (Sprungvorscheseage, Befehls-Scheduling)

Für nähere Informationen, aktuelle Ankündigungen und Material siehe
http://www.ikr.uni-stuttgart.de/Xref/CC/L_TI_I

14. Literatur:
• Vorlesungsskript
15. Lehrveranstaltungen und -formen:
- 116101 Vorlesung Technische Informatik I
- 116102 Übung zu Technische Informatik I

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 56 h
Selbststudium: 124 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
11611 Technische Informatik I (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ...:
14570 Praktische Übungen im Labor "Rechnerarchitektur und Kommunikationssysteme I"

19. Medienform:
- Notebook-Präsentationen
- Overhead-Projektor
- Tafelanschriebe

20. Angeboten von:
Institut für Kommunikationsnetze und Rechnersysteme
5322 System- und Informationstechnik (Wahl)

Zugeordnete Module:
- 11630 Softwaretechnik I
- 11640 Digitale Signalverarbeitung
- 11650 Hochfrequenztechnik I
- 11660 Übertragungstechnik I
- 11680 Kommunikationsnetze I
Modul: 11640 Digitale Signalverarbeitung

2. Modulkürzel: 051610002
5. Modulduauer: 1 Semester
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Bin Yang
9. Dozenten: Bin Yang

10. Zuordnung zum Curriculum in diesem Studiengang:

 B.Sc. Technikpädagogik, PO 2011, 5. Semester
 → Vorgezogene Master-Module

 → Wahlrichtung Elektrotechnik → b) Schwerpunkt System- und Informationstechnik → Wahlcontainer System- und Informationstechnik

 → Wahlrichtung Elektrotechnik → a) Schwerpunkt System- und Informationstechnik → Wahlcontainer System- und Informationstechnik

 → Wahlrichtung Elektrotechnik → a) Schwerpunkt System- und Informationstechnik

 → Wahlrichtung Elektrotechnik → b) Schwerpunkt System- und Informationstechnik

 → Wahlrichtung Elektrotechnik → a) Schwerpunkt System- und Informationstechnik

 → Wahlrichtung Elektrotechnik → a) Schwerpunkt System- und Informationstechnik

11. Empfohlene Voraussetzungen:
Grundkenntnisse in höherer Mathematik
Grundkenntnisse über Signale und Systeme

12. Lernziele:
Die Studierenden
• beherrschen die grundlegenden Methoden zur digitalen Signalverarbeitung,
• besitzen die notwendigen Grundfertigkeiten zur Analyse von zeitdiskreten Signalen und Systemen,
• können einfache Signale und Systeme selbstständig analysieren,
• können einfache Signalverarbeitungsaufgaben selbstständig lösen.

13. Inhalt:
• A/D- und D/A-Umwandlung, Abtastung, Quantisierung
• Zeitdiskrete Signale und Systeme, Analyse von LTI-Systemen im Zeitbereich, Differenzengleichung
• Analyse von Signalen und LTI-Systemen in der komplexen Ebene, z-Transformation, Übertragungsfunktion, Pole und Nullstellen
• Analyse von Signalen und LTI-Systemen im Frequenzbereich
• Digitale Filter, FIR und IIR, Tiefpass, Hochpass, Bandpass, Oszillator, Kerbbfilter, Kammfilter, linearphasige Filter, Allpass, minimalphasige Filter
• Korrelationsanalyse, Auto- und Kreuzkorrelation, Auto- und Kreuzkorrelationsfunktion
• Diskrete Fourier-Transformation, schnelle Fourier-Transformation (FFT), schnelle Faltung
• Spektralanalyse, Periodogramm, Fenstereffekt, Zeit-Frequenz-Analyse, Spektrogramm
14. Literatur:

- Vorlesungsunterlagen, Videoaufzeichnung der Vorlesung
- M. Mandal and A. Asif, "Continuous and discrete time signals and systems", Cambridge, 2008

15. Lehrveranstaltungen und -formen:

- 116401 Vorlesung Digitale Signalverarbeitung
- 116402 Übung Digitale Signalverarbeitung

16. Abschätzung Arbeitsaufwand:

Präsenzzzeit:	56 h
Selbststudium:	124 h
Gesamt:	180 h

17. Prüfungsnummer/n und -name:

11641 Digitale Signalverarbeitung (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0

18. Grundlage für ...:

Laptop, Beamer, Videoaufzeichnung aller Vorlesungen und Übungen

19. Medienform:

Institut für Signalverarbeitung und Systemtheorie

Stand: 07. Oktober 2015
Modul: 11650 Hochfrequenztechnik I

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050600001</th>
<th>5. Modulduauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. Modulverantwortlicher:</th>
<th>Univ.-Prof. Jan Hesselbarth</th>
</tr>
</thead>
<tbody>
<tr>
<td>9. Dozenten:</td>
<td>Jan Hesselbarth</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10. Zuordnung zum Curriculum in diesem Studiengang:</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.Sc. Technikpädagogik, PO 2011, . Semester</td>
</tr>
<tr>
<td>→ Vorgezogene Master-Module</td>
</tr>
<tr>
<td>B.Sc. Technikpädagogik, PO 2011, . Semester</td>
</tr>
<tr>
<td>→ Wahlpflichtfach Elektrotechnik --b) Schwerpunkt System- und Informationstechnik --Wahlcontainer System- und Informationstechnik</td>
</tr>
<tr>
<td>→</td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik, PO 2009, 1. Semester</td>
</tr>
<tr>
<td>→ Affines Wahlpflichtfach Elektro- und Informationstechnik -- >Wahlpflichtfach System- und Informationstechnik --System- und Informationstechnik Wahlfächer</td>
</tr>
<tr>
<td>→</td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik, PO 2009, 1. Semester</td>
</tr>
<tr>
<td>→ Wahlpflichtfach Elektrotechnik --System- und Informationstechnik --System- und Informationstechnik (Wahl)</td>
</tr>
<tr>
<td>→</td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik, PO 2015, 1. Semester</td>
</tr>
<tr>
<td>→ Wahlpflichtfach Elektrotechnik --System- und Informationstechnik --System- und Informationstechnik (Wahl)</td>
</tr>
<tr>
<td>→</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11. Empfohlene Voraussetzungen:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>12. Lernziele:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>13. Inhalt:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Maxwell'sche Gleichungen, ebene Welle im freien Raum, Leitungswellen, konzentrierte Bauelemente, Resonanzschaltungen, Transformationsschaltungen, Hochfrequenzfilter</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>14. Literatur:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Vorlesungsskript,</td>
</tr>
<tr>
<td>• Detlefsen, Siart: Grundlagen der Hochfrequenztechnik, 3. Auflage, Oldenbourg Verlag, 2009,</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15. Lehrveranstaltungen und -formen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 116501 Vorlesung Hochfrequenztechnik I</td>
</tr>
<tr>
<td>• 116502 Übung Hochfrequenztechnik I</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16. Abschätzung Arbeitsaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzzeit:</td>
</tr>
<tr>
<td>Selbststudium/Nacharbeitszeit:</td>
</tr>
<tr>
<td>Gesamt:</td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
</tr>
<tr>
<td>-------------------------------</td>
</tr>
<tr>
<td>18. Grundlage für ...:</td>
</tr>
<tr>
<td>19. Medienform:</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
</tr>
</tbody>
</table>
Modul: 11680 Kommunikationsnetze I

2. Modulkürzel: 050901005 5. Moduldauer: 1 Semester

4. SWS: 4.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Andreas Kirstädter

9. Dozenten: Andreas Kirstädter

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technikpädagogik, PO 2011, 5. Semester
 ➔ Vorgezogene Master-Module

B.Sc. Technikpädagogik, PO 2011, 5. Semester
 ➔ Wahlpflichtfach Elektrotechnik --b) Schwerpunkt System- und Informationstechnik --Wahlcontainer System- und Informationstechnik

M.Sc. Technikpädagogik, PO 2009, 1. Semester
 ➔ Affines Wahlpflichtfach Elektro- und Informationstechnik --Wahlpflichtfach System- und Informationstechnik --System- und Informationstechnik Wahlfächer

M.Sc. Technikpädagogik, PO 2009, 1. Semester
 ➔ Wahlpflichtfach Elektrotechnik --System- und Informationstechnik --System- und Informationstechnik (Wahl)

M.Sc. Technikpädagogik, PO 2015, 1. Semester
 ➔ Wahlpflichtfach Elektrotechnik --System- und Informationstechnik --System- und Informationstechnik (Wahl)

11. Empfohlene Voraussetzungen:

• Kenntnisse, wie sie in den Modulen "Informatik I" und "Informatik II" vermittelt werden

12. Lernziele:

Verstehen der grundlegenden Architekturprinzipien von Kommunikationsnetzen mit Beispielen aus den Bereichen der Mobilfunknetze, Local Area Networks, Automatisierungsnetze und des Internet; Kenntnis von Aufbau und Funktion ausgewählter Systeme, Protokolle und Dienste. Anwenden der Methoden zur formalen Beschreibung und Bewertung von Kommunikationsnetzen.

13. Inhalt:

Grundprinzipien von Kommunikationsnetzen und -protokollen:

• Übertragung und Multiplextechniken
• Fehlersicherung
• Medienzugriff
• Vermittlung
• Wegesuche
• Transportprotokolle

Spezifikation mit Hilfe der Specification and Description Language (SDL)

Bewertung der Leistungsfähigkeit von Kommunikationsprotokollen

Ausgewählte Dienste und Anwendungen im Internet

Für nähere Informationen, aktuelle Ankündigungen und Material siehe
14. Literatur:
 - Skript zur Vorlesung

15. Lehrveranstaltungen und -formen:
 - 116801 Vorlesung Kommunikationsnetze I
 - 116802 Übung zu Kommunikationsnetze I

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 56 h
 Selbststudium: 124 h
 Gesamt: 180 h

17. Prüfungsnummer/n und -name:
 11681 Kommunikationsnetze I (PL), schriftlich, eventuell mündlich, 120 Min., Gewichtung: 1.0

18. Grundlage für ...:
 - 14570 Praktische Übungen im Labor "Rechnerarchitektur und Kommunikationssysteme I"
 - 21790 Communication Networks II

19. Medienform:
 Notebook-Präsentation

20. Angeboten von:
 Institut für Kommunikationsnetze und Rechnersysteme
Modul: 11630 Softwaretechnik I

2. Modulkürzel: 050501002
5. Moduldauer: 1 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Michael Weyrich

9. Dozenten: Michael Weyrich

10. Zuordnung zum Curriculum in diesem Studiengang:

 B.Sc. Technikpädagogik, PO 2011, 5. Semester
 → Vorgezogene Master-Module
 → Wahlpflichtfach Elektrotechnik -->b) Schwerpunkt System- und Informationstechnik -->Wahlcontainer System- und Informationstechnik
 →
 M.Sc. Technikpädagogik, PO 2009, 1. Semester
 → Affines Wahlpflichtfach Elektro- und Informationstechnik -->Wahlpflichtfach System- und Informationstechnik -->System- und Informationstechnik Wahlfächer
 →
 M.Sc. Technikpädagogik, PO 2009, 1. Semester
 → Wahlpflichtfach Elektrotechnik -->System- und Informationstechnik -->System- und Informationstechnik (Wahl)
 →
 M.Sc. Technikpädagogik, PO 2015, 1. Semester
 → Wahlpflichtfach Elektrotechnik -->System- und Informationstechnik -->System- und Informationstechnik (Wahl)
 →

11. Empfohlene Voraussetzungen: Grundlagen der Softwaretechnik

12. Lernziele:

 Die Studierenden

 • besitzen grundlegende Kenntnisse über Anforderungsanalyse
 • hinterfragen Systemanalysen
 • erstellen Softwareentwürfe
 • wenden grundlegende Softwaretestverfahren an
 • praktizieren grundlegende Projektplanung und nutzen Softwareentwicklungswerkzeuge

13. Inhalt:

 • Grundbegriffe der Softwaretechnik
 • Softwareentwicklungsprozesse und Vorgehensmodelle
 • Requirements Engineering
 • Systemanalyse
 • Softwareentwurf
 • Implementierung
 • Softwareprüfung
 • Projektmanagement
 • Dokumentation

14. Literatur:

 Vorlesungsskript

15. Lehrveranstaltungen und -formen:

 • 116301 Vorlesung Softwaretechnik I
 • 116302 Übung Softwaretechnik I

16. Abschätzung Arbeitsaufwand:

 Präsenzzeit: 56 h
 Selbststudium: 124 h
<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>11631 Softwaretechnik I (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td>21750 Softwaretechnik II</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Institut für Automatisierungs- und Softwaretechnik</td>
</tr>
</tbody>
</table>
Modul: 11660 Übertragungstechnik I

2. Modulkürzel: 051100001
5. Modulduauer: 1 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Stephan Brink

9. Dozenten: Stephan Brink

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technikpädagogik, PO 2011, 4. Semester
 → Vorgezogene Master-Module
 B.Sc. Technikpädagogik, PO 2011, 4. Semester
 → Wahlpflichtfach Elektrotechnik -->b) Schwerpunkt System- und Informationstechnik -->Wahlcontainer System- und Informationstechnik
 →
 M.Sc. Technikpädagogik, PO 2009, 2. Semester
 → Affines Wahlpflichtfach Elektro- und Informationstechnik -->Wahlpflichtfach System- und Informationstechnik -->System- und Informationstechnik Wahlfächer
 →
 M.Sc. Technikpädagogik, PO 2009, 2. Semester
 → Wahlpflichtfach Elektrotechnik -->System- und Informationstechnik -->System- und Informationstechnik (Wahl)
 →
 M.Sc. Technikpädagogik, PO 2015, 2. Semester
 → Wahlpflichtfach Elektrotechnik -->System- und Informationstechnik -->System- und Informationstechnik (Wahl)
 →

11. Empfohlene Voraussetzungen: Grundlagen der Elektrotechnik

12. Lernziele:
 Beherrschung der grundlegenden Zusammenhänge und Verfahren der digitalen Speicherung und Übertragung von analogen und digitalen Signalen.

13. Inhalt:
 A/D- und D/A-Umsetzung, Quantisierung, PCM, Bandbreitenbedarf; digitale Übertragung über Tiefpass- und Bandpasskanäle, Intersymbolinterferenz, Rauschen, Symbol- und Bitfehlerrwahrscheinlichkeit, Digitale Modulationsverfahren, Unzulänglichkeiten digitaler Übertragung, Mehrträgerverfahren (OFDM), Anwendungen
 Übungsaufgaben mit Anwendungen aus der Praxis.

14. Literatur:
 • Vorlesungsbegleitendes Material, Übungsaufgaben
 • Kammeyer, K. D.: Nachrichtenübertragung. Verlag Teubner, Stuttgart
 • Weitere Literaturangaben im vorlesungsbegleitenden Material.

15. Lehrveranstaltungen und -formen:
 • 116601 Vorlesung Übertragungstechnik I
 • 116602 Übungen Übertragungstechnik I

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 56 h, Selbststudium/Nacharbeitszeit: 124 h, Gesamt 180 h

17. Prüfungsnummer/n und -name:
 11661 Übertragungstechnik I (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

Stand: 07. Oktober 2015
Seite 700 von 1124

20. Angeboten von: Institut für Nachrichtenübertragung
5323 System- und Informationstechnik (Spezialisierung)

<table>
<thead>
<tr>
<th>Zugeordnete Module:</th>
<th>Bezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>17180</td>
<td>Technische Informatik II</td>
</tr>
<tr>
<td>21770</td>
<td>Radio Frequency Technology</td>
</tr>
<tr>
<td>21790</td>
<td>Communication Networks II</td>
</tr>
<tr>
<td>21810</td>
<td>Stochastische Signale</td>
</tr>
<tr>
<td>21820</td>
<td>Statistical and Adaptive Signal Processing</td>
</tr>
<tr>
<td>21830</td>
<td>Communications III</td>
</tr>
<tr>
<td>21840</td>
<td>Übertragungstechnik II</td>
</tr>
<tr>
<td>21850</td>
<td>Integrierte Mischsignalschaltungen</td>
</tr>
<tr>
<td>21860</td>
<td>Optical Signal Processing</td>
</tr>
</tbody>
</table>
Modul: 21790 Communication Networks II

2. Modulkürzel: 050910001
5. Moduldauer: 1 Semester

3. Leistungspunkte: 6.0 LP
6. Turnus: jedes 2. Semester, SoSe

4. SWS: 4.0
7. Sprache: Englisch

8. Modulverantwortlicher: Univ.-Prof. Andreas Kirstädter

9. Dozenten: Andreas Kirstädter

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Technikpädagogik, PO 2009, 2. Semester
 ➔ Affines Wahlpflichtfach Elektro- und Informationstechnik --
 ➔ Wahlpflichtfach System- und Informationstechnik --
 ➔ System- und Informationstechnik Vertiefungsfächer
 ➔

M.Sc. Technikpädagogik, PO 2009, 2. Semester
 ➔ Hauptfach Elektrotechnik --
 ➔ System- und Informationstechnik --
 ➔ System- und Informationstechnik
 ➔

M.Sc. Technikpädagogik, PO 2009, 2. Semester
 ➔ Wahlpflichtfach Elektrotechnik --
 ➔ System- und Informationstechnik --
 ➔ System- und Informationstechnik (Spezialisierung)
 ➔

M.Sc. Technikpädagogik, PO 2009, 2. Semester
 ➔ Wahlpflichtfach Elektrotechnik --
 ➔ WPFE-System- und Informationstechnik --
 ➔ WPFE-System- und Informationstechnik
 ➔

M.Sc. Technikpädagogik, PO 2015, 2. Semester
 ➔ Hauptfach Elektrotechnik --
 ➔ System- und Informationstechnik --
 ➔ System- und Informationstechnik
 ➔

M.Sc. Technikpädagogik, PO 2015, 2. Semester
 ➔ Wahlpflichtfach Elektrotechnik --
 ➔ System- und Informationstechnik --
 ➔ System- und Informationstechnik (Spezialisierung)
 ➔

M.Sc. Technikpädagogik, PO 2015, 2. Semester
 ➔ Wahlpflichtfach Elektrotechnik --
 ➔ WPFE-System- und Informationstechnik --
 ➔ WPFE-System- und Informationstechnik
 ➔

11. Empfohlene Voraussetzungen:
Bachelor's degree in electrical engineering or computer science; knowledge about communication networks and protocols and their performance from, i.e., "Kommunikationsnetze I"; basic knowledge about statistics and graph theory;

12. Lernziele:
Understanding of architectures and mechanisms of high-performance communication networks and methods for their analysis and design regarding quality of service and availability.

13. Inhalt:
- Architectures of multi-layer wide-area networks (transport networks and Internet)
- Mechanisms for assuring quality of service and availability
- Analysis and design methods for high-performance networks (traffic theory, performance simulation, graph theory, optimization)

For detailed information, announcements and material see:
/> http://www.ikr.uni-stuttgart.de/Xref/CC/L_CN_II
14. Literatur:
 • Lecture Notes
 • Tanenbaum: "Computer Networks", Prentice-Hall, 2003
 • Stallings: "Local Area Networks", Macmillan Publ., 1987
 • Grover: "Mesh-Based Survivable Networks", Prentice Hall, 2004
 • Robertazzi, "Planning Telecommunication Networks", IEEE Press, 1999

15. Lehrveranstaltungen und -formen:
 • 217901 Vorlesung Communication Networks II
 • 217902 Übung Communication Networks II

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 56 h
 Selbststudium: 124 h
 Gesamt: 180 h

17. Prüfungsnummer/n und -name:
 21791 Communication Networks II (PL), schriftlich, eventuell mündlich, 120 Min., Gewichtung: 1.0

18. Grundlage für ...:

19. Medienform:
 Notebook-Presentation

20. Angeboten von:
 Institut für Kommunikationsnetze und Rechnersysteme
Modul: 21830 Communications III

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050511103</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modulduer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Stephan Brink</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Stephan Brink</td>
</tr>
<tr>
<td></td>
<td>→ Affines Wahlpflichtfach Elektro- und Informationstechnik --</td>
</tr>
<tr>
<td></td>
<td>→ Wahlpflichtfach System- und Informationstechnik -->System- und Informationstechnik Vertiefungsfächer</td>
</tr>
<tr>
<td></td>
<td>→ M.Sc. Technikpädagogik, PO 2009, 2. Semester</td>
</tr>
<tr>
<td></td>
<td>→ Hauptfach Elektrotechnik -->System- und Informationstechnik --</td>
</tr>
<tr>
<td></td>
<td>→ System- und Informationstechnik</td>
</tr>
<tr>
<td></td>
<td>→ M.Sc. Technikpädagogik, PO 2009, 2. Semester</td>
</tr>
<tr>
<td></td>
<td>→ Wahlpflichtfach Elektrotechnik -->System- und Informationstechnik</td>
</tr>
<tr>
<td></td>
<td>→ System- und Informationstechnik (Spezialisierung)</td>
</tr>
<tr>
<td></td>
<td>→ M.Sc. Technikpädagogik, PO 2009, 2. Semester</td>
</tr>
<tr>
<td></td>
<td>→ Wahlpflichtfach Elektrotechnik -->WPF System- und Informationstechnik</td>
</tr>
<tr>
<td></td>
<td>→ WPF System- und Informationstechnik</td>
</tr>
<tr>
<td></td>
<td>→ M.Sc. Technikpädagogik, PO 2015, 2. Semester</td>
</tr>
<tr>
<td></td>
<td>→ Hauptfach Elektrotechnik -->System- und Informationstechnik --</td>
</tr>
<tr>
<td></td>
<td>→ System- und Informationstechnik</td>
</tr>
<tr>
<td></td>
<td>→ M.Sc. Technikpädagogik, PO 2015, 2. Semester</td>
</tr>
<tr>
<td></td>
<td>→ Wahlpflichtfach Elektrotechnik -->System- und Informationstechnik</td>
</tr>
<tr>
<td></td>
<td>→ System- und Informationstechnik (Spezialisierung)</td>
</tr>
<tr>
<td></td>
<td>→ M.Sc. Technikpädagogik, PO 2015, 2. Semester</td>
</tr>
<tr>
<td></td>
<td>→ Wahlpflichtfach Elektrotechnik -->WPF System- und Informationstechnik</td>
</tr>
<tr>
<td></td>
<td>→ WPF System- und Informationstechnik</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Nachrichtentechnik or Communications (INFOTECH)</td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>To be proficient in design and application of advanced digital data transmission for wireless and wire-line networks, and storage devices.</td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>• Indoor and outdoor propagation models (path loss)</td>
</tr>
<tr>
<td></td>
<td>• Wireless link budget and receiver sensitivity</td>
</tr>
<tr>
<td></td>
<td>• Multipath wireless mobile channel</td>
</tr>
<tr>
<td></td>
<td>• Diversity reception</td>
</tr>
<tr>
<td></td>
<td>• Intersymbol interference, discrete time equalizer</td>
</tr>
<tr>
<td></td>
<td>• Maximum a posteriori (MAP) and maximum likelihood (ML) symbol-by-symol detection (soft-demapping)</td>
</tr>
<tr>
<td></td>
<td>• Maximum Likelihood (ML) detection of sequences (Viterbi algorithm, Trellis diagram)</td>
</tr>
<tr>
<td></td>
<td>• Exercises: Theoretical problems and applications from wireless data transmission</td>
</tr>
<tr>
<td>14. Literatur:</td>
<td>• Supplementary lecture notes and exercises</td>
</tr>
</tbody>
</table>
15. Lehrveranstaltungen und -formen:
- 218301 Vorlesung Übertragungstechnik III / Communications III
- 218302 Übung Übertragungstechnik III / Communications III

16. Abschätzung Arbeitsaufwand:
- **Presence**: 56 h
- **Self study**: 124 h
- **Total**: 180 h

17. Prüfungsnummer/n und -name:
- 21831 Communications III (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

19. Medienform:
- Lecture notes and exercises in electronic form (ILIAS), hand-written notes and annotations using tablet PC and projector.

20. Angeboten von:
- Institut für Nachrichtenübertragung
Modul: 21850 Integrierte Mischsignalschaltungen

2. Modulkürzel: 050200005
5. Modulduauer: 1 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Manfred Berroth
9. Dozenten: Manfred Berroth

10. Zuordnung zum Curriculum in diesem Studiengang:

M.Sc. Technikpädagogik, PO 2009, 1. Semester
→ Affines Wahlpflichtfach Elektro- und Informationstechnik --
 → Wahlpflichtfach System- und Informationstechnik --
 → System- und Informationstechnik Vertiefungsfächer

M.Sc. Technikpädagogik, PO 2009, 1. Semester
→ Hauptfach Elektrotechnik --> System- und Informations
 → System- und Informationstechnik

M.Sc. Technikpädagogik, PO 2009, 1. Semester
→ Wahlpflichtfach Elektrotechnik --> System- und Informationstechnik
 --> System- und Informationstechnik (Spezialisierung)

M.Sc. Technikpädagogik, PO 2015, 1. Semester
→ Hauptfach Elektrotechnik --> System- und Informationstechnik
 --> System- und Informationstechnik

M.Sc. Technikpädagogik, PO 2015, 1. Semester
→ Wahlpflichtfach Elektrotechnik --> WPF System- und Informationstechnik
 --> WPF System- und Informationstechnik

M.Sc. Technikpädagogik, PO 2015, 1. Semester
→ Hauptfach Elektrotechnik --> System- und Informationstechnik
 --> System- und Informationstechnik (Spezialisierung)

M.Sc. Technikpädagogik, PO 2015, 1. Semester
→ Wahlpflichtfach Elektrotechnik --> WPF System- und Informationstechnik
 --> WPF System- und Informationstechnik

11. Empfohlene Voraussetzungen:
• Kenntnisse in Elektrotechnik
• Kenntnisse in Schaltungstechnik
• Grundkenntnisse in integrierten Schaltungen

12. Lernziele:
Vertiefung der Grundkenntnisse in Richtung hohe Taktfrequenzen und spezielle Anwendungen

13. Inhalt:
• Bipolartransistor / MESFET / HFET
• Digitale Grundschaltungen für höchste Taktfrequenzen
• Technologievergleich
• Komponenten der digitalen Signalverarbeitung
• Ausgewählte Schaltungen mit nichtlinearen Eigenschaften

14. Literatur:
Skript
Hoffmann: VLSI-Entwurf - Modelle und Schaltungen, Oldenbourg Verlag, München, 1998

15. Lehrveranstaltungen und -formen:
• 218501 Vorlesung Advanced IC-Design
• 218502 Übung Advanced IC-Design

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 56 h
Selbststudium: 124 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
21851 Integrierte Mischsignalschaltungen (PL), schriftliche Prüfung,
90 Min., Gewichtung: 1.0

18. Grundlage für ...:

19. Medienform:
Tafel, Beamer

20. Angeboten von:
Institut für Elektrische und Optische Nachrichtentechnik
Modul: 21860 Optical Signal Processing

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>051620003</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Norbert Frühauf</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- M.Sc. Technikpädagogik, PO 2009, 1. Semester
 - Affines Wahlpflichtfach Elektro- und Informationstechnik --
 - Wahlpflichtfach System- und Informationstechnik -->
 System- und Informationstechnik Vertiefungsfächer
 - M.Sc. Technikpädagogik, PO 2009, 1. Semester
 - Hauptfach Elektrotechnik --> System- und Informationstechnik -->
 System- und Informationstechnik
 - M.Sc. Technikpädagogik, PO 2009, 1. Semester
 - Wahlpflichtfach Elektrotechnik --> System- und Informationstechnik
 --> System- und Informationstechnik (Spezialisierung)
 - M.Sc. Technikpädagogik, PO 2009, 1. Semester
 - Wahlpflichtfach Elektrotechnik --> WPF System- und Informationstechnik
 --> WPF System- und Informationstechnik
 - M.Sc. Technikpädagogik, PO 2015, 1. Semester
 - Hauptfach Elektrotechnik --> System- und Informationstechnik -->
 System- und Informationstechnik
 - M.Sc. Technikpädagogik, PO 2015, 1. Semester
 - Wahlpflichtfach Elektrotechnik --> System- und Informationstechnik
 --> System- und Informationstechnik (Spezialisierung)
 - M.Sc. Technikpädagogik, PO 2015, 1. Semester
 - Wahlpflichtfach Elektrotechnik --> WPF System- und Informationstechnik
 --> WPF System- und Informationstechnik

11. Empfohlene Voraussetzungen:

- Basic knowledge of one dimensional Fourier transforms and signals and systems is recommended

12. Lernziele:

- Students
 - master basic concepts of physical (wave based) optics using systems theory based mathematical descriptions
 - can solve practical problems in optics and evaluate and design diffraction based optical systems
 - master basic concepts of holography and holographic memory systems

13. Inhalt:

- Overview
- Optical Signals, Coherence
- Optical Systems Theory
- Optical Analog Signal Processing, Fourier Optics
- Optical Storage, Holography

14. Literatur:

- Manuscript
• Anthony van der Lugt, Optical Signal Processing, John Wiley & Sons, 1992
• Fred Unterseher et al, Holography Handbook (Making Holograms the Easy Way), Roos Books, 1996
• Lutz, Tröndle, Systemtheorie der optischen Nachrichtentechnik, Oldenburg 1983

15. Lehrveranstaltungen und -formen:
• 218601 Vorlesung Optical Signal Processing
• 218602 Übung Optical Signal Processing

16. Abschätzung Arbeitsaufwand:
Presence 56 h
Self Study 124 h
Total 180 h

17. Prüfungsnummer/n und -name:
21861 Optical Signal Processing (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0, written exam (90 min), two time every year, in case of very low number of attendees, the exam might be held as an oral exam (30 min each), this will be announced at the beginning of the lecture

18. Grundlage für ... :

19. Medienform:
Blackboard, Beamer, Overhead, ILIAS

20. Angeboten von:
Modul: 21770 Radio Frequency Technology

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050600006</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modulduer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Jan Hesselbarth</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Wolfgang Mahler
• Jan Hesselbarth |
➞ Affines Wahlpflichtfach Elektro- und Informationstechnik
➞ >Wahlpflichtfach Energie- und Automatisierungstechnik
➞ -->Energie- und Automatisierungstechnik Vertiefungsfächer

M.Sc. Technikpädagogik, PO 2009, 1. Semester
➞ Affines Wahlpflichtfach Elektro- und Informationstechnik
➞ >Wahlpflichtfach System- und Informationstechnik
➞ -->System- und Informationstechnik Vertiefungsfächer

M.Sc. Technikpädagogik, PO 2009, 1. Semester
➞ Hauptfach Elektrotechnik
➞ -->Energie- und Automatisierungstechnik
➞ -->Spezialisierung Energie und Automatisierungst.

M.Sc. Technikpädagogik, PO 2009, 1. Semester
➞ Hauptfach Elektrotechnik
➞ -->System- und Informationstechnik

M.Sc. Technikpädagogik, PO 2009, 1. Semester
➞ Wahlpflichtfach Elektrotechnik
➞ -->Energie- und Automatisierungstechnik
➞ -->Schwerpunkt Energie- und Automatisierungstechnik (Spezialisierung)

M.Sc. Technikpädagogik, PO 2009, 1. Semester
➞ Wahlpflichtfach Elektrotechnik
➞ -->System- und Informationstechnik (Spezialisierung)

M.Sc. Technikpädagogik, PO 2009, 1. Semester
➞ Wahlpflichtfach Elektrotechnik
➞ -->WPF Energie- und Automatisierungstechnik
➞ -->VPF Spezialisierung Energie und Automatisierungst.

M.Sc. Technikpädagogik, PO 2009, 1. Semester
➞ Wahlpflichtfach Elektrotechnik
➞ -->WPF System- und Informationstechnik

M.Sc. Technikpädagogik, PO 2015, 1. Semester
➞ Hauptfach Elektrotechnik
➞ -->Energie- und Automatisierungstechnik
➞ -->Spezialisierung Energie und Automatisierungst.

M.Sc. Technikpädagogik, PO 2015, 1. Semester
➞ Hauptfach Elektrotechnik
➞ -->System- und Informationstechnik

M.Sc. Technikpädagogik, PO 2015, 1. Semester

Stand: 07. Oktober 2015
11. Empfohlene Voraussetzungen: Basic knowledge of microwave techniques and fundamentals of
electrodynamics is required.

12. Lernziele: The students acquire knowledge and understanding of various
electromagnetic waveguiding phenomena, cavity resonators, RF
amplifier techniques, receiver noise phenomena and fundamentals of RF
measurement techniques.

13. Inhalt: Hollow waveguides, dielectric waveguides, cavity resonators, two-
port amplifiers and stability, noise in RF circuits, principles of RF
measurements.

14. Literatur:
• Lecture script,
• Collin: Foundation of Microwave Engineering, 2nd Ed., John Wiley &
 Sons, 2002,
• Marcuvitz, Waveguide Handbook, Inst. of Eng. and Techn., 1986,
• Pozar: Microwave Engineering, 3rd Ed., John Wiley & Sons, 2005,
• Gonzales: Microwave Transistor Amplifiers, Prentice Hall, 1997,

15. Lehrveranstaltungen und -formen:
• 217701 Vorlesung Radio Frequency Technology
• 217702 Übung Radio Frequency Technology

16. Abschätzung Arbeitsaufwand:

<table>
<thead>
<tr>
<th></th>
<th>Lecture:</th>
<th>Self study:</th>
<th>Overall:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>56h</td>
<td>124h</td>
<td>180h</td>
</tr>
</tbody>
</table>

17. Prüfungsnummer/n und -name: 21771 Radio Frequency Technology (PL), schriftlich, eventuell
mündlich, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform: Black board, beamer, overhead projector

20. Angeboten von: Institut für Hochfrequenztechnik
Modul: 21820 Statistical and Adaptive Signal Processing

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>051610012</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>M.Sc. Technikpädagogik, PO 2009, 2. Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Affines Wahlpflichtfach Elektro- und Informationstechnik --</td>
</tr>
<tr>
<td>>Wahlpflichtfach System- und Informationstechnik --System- und Informationstechnik Verliefungfächer</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik, PO 2009, 2. Semester</td>
</tr>
<tr>
<td>Hauptfach Elektrotechnik -->System- und Informatonstechnik --</td>
</tr>
<tr>
<td>>System- und Informatonstechnik</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik, PO 2009, 2. Semester</td>
</tr>
<tr>
<td>Wahlpflichtfach Elektrotechnik -->System- und Informationstechnik</td>
</tr>
<tr>
<td>-->System- und Informationstechnik (Spezialisierung)</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik, PO 2009, 2. Semester</td>
</tr>
<tr>
<td>Wahlpflichtfach Elektrotechnik -->WPF System- und Informationstechnik</td>
</tr>
<tr>
<td>-->WPF System- und Informationstechnik</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik, PO 2015, 2. Semester</td>
</tr>
<tr>
<td>Hauptfach Elektrotechnik -->System- und Informatonstechnik --</td>
</tr>
<tr>
<td>>System- und Informatonstechnik</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik, PO 2015, 2. Semester</td>
</tr>
<tr>
<td>Wahlpflichtfach Elektrotechnik -->System- und Informationstechnik</td>
</tr>
<tr>
<td>-->System- und Informationstechnik (Spezialisierung)</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik, PO 2015, 2. Semester</td>
</tr>
<tr>
<td>Wahlpflichtfach Elektrotechnik -->WPF System- und Informationstechnik</td>
</tr>
<tr>
<td>-->WPF System- und Informationstechnik</td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen:

Basic knowledges about signals and systems are mandatory. Solid knowledges of probability theory, random variables, and stochastic processes as from the course "Stochastische Signale" are highly recommended.

12. Lernziele:

Students

- master advanced methods for parameter and signal estimation,
- can solve practical problems by using techniques of statistical and adaptive signal processing,
- can estimate the accuracy of parameter and signal estimation in advance.

13. Inhalt:

- Parameter estimation, estimate and estimator, bias, covariance matrix, mean square error (MSE)
- Classical parameter estimation, minimum variance unbiased estimator (MVUE), Cramer-Rao bound (CRB), efficient and consistent estimator,
maximum-likelihood (ML) estimator, least-squares (LS) estimator, transform of parameters

- Bayesian parameter estimation, maximum a posteriori (MAP), minimum mean square error (MMSE), linear MMSE
- System identification, channel equalization, linear prediction, interference cancellation
- Wiener filter, Wiener Hopf equation, method of steepest descent, linear prediction, Levinson-Durbin algorithm, lattice filter
- Kalman filter, innovation approach
- Adaptive filter, block and recursive adaptive filter, least mean square (LMS) algorithm, recursive least square (RLS) algorithm

14. Literatur:

- Lecture slides, video recording of the lecture

15. Lehrveranstaltungen und -formen:

- 218201 Vorlesung Statistical and adaptive signal processing
- 218202 Übung Statistical and adaptive signal processing

16. Abschätzung Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Presence time</th>
<th>56 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self study</td>
<td>124 h</td>
</tr>
<tr>
<td>Total</td>
<td>180 h</td>
</tr>
</tbody>
</table>

17. Prüfungsnummer/n und -name:

- 21821 Statistical and Adaptive Signal Processing (PL), schriftlich, eventuell mündlich, 90 Min., Gewichtung: 1.0. In case of a small number of attending students, the exam can be oral. This will be announced in the lecture.

18. Grundlage für ... :

19. Medienform:

- computer, beamer, video recording of all lectures and exercises

20. Angeboten von:

- Institut für Signalverarbeitung und Systemtheorie
Modul: 21810 Stochastische Signale

2. Modulkürzel: 051610011
5. Modulduer: 1 Semester
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Bin Yang
9. Dozenten: Bin Yang

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Technikpädagogik, PO 2009, 1. Semester
→ Affines Wahlpflichtfach Elektro- und Informationstechnik --
 > Wahlpflichtfach System- und Informationstechnik -->
 System- und Informationstechnik Vertiefungsfächer

→ M.Sc. Technikpädagogik, PO 2009, 1. Semester
→ Hauptfach Elektrotechnik -->System- und Informationstechnik -->
 System- und Informationstechnik

→ M.Sc. Technikpädagogik, PO 2009, 1. Semester
→ Wahlpflichtfach Elektrotechnik -->System- und Informationstechnik -->
 System- und Informationstechnik (Spezialisierung)

→ M.Sc. Technikpädagogik, PO 2009, 1. Semester
→ Wahlpflichtfach Elektrotechnik -->WPF System- und Informationstechnik -->
 WPF System- und Informationstechnik

→ M.Sc. Technikpädagogik, PO 2015, 1. Semester
→ Hauptfach Elektrotechnik -->System- und Informationstechnik -->
 System- und Informationstechnik

→ M.Sc. Technikpädagogik, PO 2015, 1. Semester
→ Wahlpflichtfach Elektrotechnik -->System- und Informationstechnik -->
 System- und Informationstechnik (Spezialisierung)

→ M.Sc. Technikpädagogik, PO 2015, 1. Semester
→ Wahlpflichtfach Elektrotechnik -->WPF System- und Informationstechnik -->
 WPF System- und Informationstechnik

11. Empfohlene Voraussetzungen:
Grundkenntnisse in höherer Mathematik
Grundkenntnisse über Signale und Systeme

12. Lernziele:
Die Studierenden können
• mit Wahrscheinlichkeiten, Zufallsvariablen und stochastischen
 Prozessen sicher umgehen,
• stochastische Signale mit verschiedenen Methoden wie Verteilung,
 Momenten und Spektrum charakterisieren,
• die Auswirkungen von Systemen auf stochastische Signale
 analysieren.

13. Inhalt:
• Zufallsexperiment, Ereignis, Wahrscheinlichkeit, bedingte
 Wahrscheinlichkeit, Bayes-Regel
• Zufallsvariablen, Verteilungsfunktion, Dichte, bedingte Dichte,
 verschiedene Verteilungen
• Momente, Erwartungswert, Varianz, Korrelationsmatrix,
 Kovarianzmatrix, Korrelationskoeffizient

Stand: 07. Oktober 2015 Seite 715 von 1124
• unabhängige/unkorrelierte/orthogonale Zufallsvariablen
• Funktion von Zufallsvariablen, momenterzeugende Funktion
• Konvergenz von Zufallsfolgen, zentraler Grenzwertsatz
• Stochastischer Prozess, Korrelationsfunktion, Kovarianzfunktion, stationärer Prozess, Spektrum
• Gauß-Prozess, weißes Rauschen
• Gedächtnisloses System mit stochastischen Signalen, lineares und zeitinvariantes System mit stochastischen Signalen

14. Literatur:
• Vorlesungsunterlagen, Videoaufzeichnung der Vorlesung
• S. Kay, "Intuitive probability and random processes using MATLAB", Springer, 2005

15. Lehrveranstaltungen und -formen:
• 218101 Vorlesung Stochastische Prozesse
• 218102 Übung Stochastische Prozesse

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 56 h
Selbststudium: 124 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
21811 Stochastische Signale (PL), schriftlich, eventuell mündlich, 90 Min., Gewichtung: 1.0, Bei einer zu geringen Anzahl von Teilnehmern in der Prüfung kann die Prüfung mündlich durchgeführt werden.

18. Grundlage für ... :

19. Medienform:
Laptop, Beamer, Videoaufzeichnung aller Vorlesungen und Übungen

20. Angeboten von:
Institut für Signalverarbeitung und Systemtheorie
Modul: 17180 Technische Informatik II

<table>
<thead>
<tr>
<th>Modulkürzel:</th>
<th>050910002</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Andreas Kirstädter</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Andreas Kirstädter</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- M.Sc. Technikpädagogik, PO 2009, 2. Semester
 - Affines Wahlpflichtfach Elektro- und Informationstechnik
 → Wahlpflichtfach Energie- und Automatisierungstechnik
 → Energie- und Automatisierungstechnik Vertiefungsfächer

- M.Sc. Technikpädagogik, PO 2009, 2. Semester
 - Wahlpflichtfach Elektro- und Informationstechnik
 → Wahlpflichtfach System- und Informationstechnik
 → System- und Informationstechnik Vertiefungsfächer

- M.Sc. Technikpädagogik, PO 2009, 2. Semester
 - Hauptfach Elektrotechnik
 → Energie- und Automatisierungstechnik
 → Spezialisierung Energie und Automatisierungst.

- M.Sc. Technikpädagogik, PO 2009, 2. Semester
 - Hauptfach Elektrotechnik
 → System- und Informationstechnik

- M.Sc. Technikpädagogik, PO 2009, 2. Semester
 - Wahlpflichtfach Elektrotechnik
 → Energie- und Automatisierungstechnik
 → Schwerpunkt Energie- und Automatisierungstechnik (Spezialisierung)

- M.Sc. Technikpädagogik, PO 2009, 2. Semester
 - Wahlpflichtfach Elektrotechnik
 → System- und Informationstechnik (Spezialisierung)

- M.Sc. Technikpädagogik, PO 2009, 2. Semester
 - Wahlpflichtfach Elektrotechnik
 → WPF Energie- und Automatisierungstechnik
 → VPF Spezialisierung Energie und Automatisierungst.

- M.Sc. Technikpädagogik, PO 2009, 2. Semester
 - Wahlpflichtfach Elektrotechnik
 → WPF System- und Informationstechnik

- M.Sc. Technikpädagogik, PO 2015, 2. Semester
 - Hauptfach Elektrotechnik
 → Energie- und Automatisierungstechnik
 → Spezialisierung Energie und Automatisierungst.

- M.Sc. Technikpädagogik, PO 2015, 2. Semester
 - Hauptfach Elektrotechnik
 → System- und Informationstechnik

- M.Sc. Technikpädagogik, PO 2015, 2. Semester
Wahlpflichtfach Elektrotechnik -->Energie- und Automatisierungstechnik -->Schwerpunkt Energie- und Automatisierungstechnik (Spezialisierung)

M.Sc. Technikpädagogik, PO 2015, 2. Semester
Wahlpflichtfach Elektrotechnik -->System- und Informationstechnik -->System- und Informationstechnik (Spezialisierung)

M.Sc. Technikpädagogik, PO 2015, 2. Semester
Wahlpflichtfach Elektrotechnik -->WPF Energie- und Automatisierungstechnik -->VPF Spezialisierung Energie und Automatisierungst.

Wahlpflichtfach Elektrotechnik -->WPF System- und Informationstechnik -->WPF System- und Informationstechnik

11. Empfohlene Voraussetzungen:
• Kenntnisse, die in den Modulen "Informatik I" und "Informatik II" vermittelt werden
• Kenntnisse, die im Modul "Technische Informatik I" vermittelt werden

12. Lernziele:
Der Studierende kennt und versteht die Architektur moderner Rechnersysteme, einschl. Rechnerperipherie und Rechnerkommunikation, er besitzt Grundkenntnisse über Betriebssysteme, er kennt Verfahren zur Fehlersicherung in Rechnersystemen und kann Rechnersysteme qualitativ und quantitativ bewerten.

13. Inhalt:
• Rechnerarchitekturen
• Betriebssystemkonzepte
• Rechnerperipherie
• Rechnerkommunikation
• eingebettete Systeme
• Verteilte und parallele Rechnerarchitekturen
• Virtualisierung, Zuverlässigkeit/Verfügbarkeit von Rechnersystemen

Für nähere Informationen, aktuelle Ankündigungen und Material siehe:
http://www.ikr.uni-stuttgart.de/Xref/CC/L_TI_II

14. Literatur:
• Skript "Technische Informatik II"
• Tanenbaum: "Moderne Betriebssysteme", 3. Auflage, Pearson Studium, 2010

15. Lehrveranstaltungen und -formen:
• 171801 Vorlesung Technische Informatik II
• 171802 Übung Technische Informatik II

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 56 h
Selbststudium: 124 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
17181 Technische Informatik II (PL), schriftlich, eventuell mündlich, 120 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:
Notebook-Präsentation

20. Angeboten von:
Institut für Kommunikationsnetze und Rechnersysteme
Modul: 21840 Übertragungstechnik II

2. Modulkürzel:	050511102
3. Leistungspunkte:	6.0 LP
4. SWS:	4.0
8. Modulverantwortlicher:	Univ.-Prof. Stephan Brink
9. Dozenten:	Stephan Brink
12. Lernziele:	- Optische Übertragungssysteme
	- Entwurf optischer Übertragungssysteme: Signal-Rausch-Verhältnis, Systembandbreite, Entwurf von Empfängern, Leistungs-Budget, Dämpfungs- und Dispersionsgrenzen, Systemoptimierung, Optische Netze, Wellenlängenmultiplex
	- nicht-kohärente und kohärente optische Übertragungssysteme
	- Übungsaufgaben mit Anwendungen aus der Praxis.

Modulhandbuch: Master of Science Technikpädagogik

Stand: 07. Oktober 2015
14. Literatur:
- Vorlesungsbegleitendes Material und Übungsaufgaben werden ausgeteilt
- Weitere Literaturangaben in den Vorlesungsunterlagen

15. Lehrveranstaltungen und -formen:
- 218401 Vorlesung Übertragungstechnik II
- 218402 Übung Übertragungstechnik II

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 56 h, Selbststudium/Nacharbeitszeit: 124 h, Gesamt 180 h

17. Prüfungsnummer/n und -name:
21841 Übertragungstechnik II (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ...:

19. Medienform:
Skript und Übungsaufgaben in elektronischer Form (ILIAS). Anschrieb auf Tablet-PC mit Projektion.

20. Angeboten von:
Institut für Nachrichtenübertragung
5324 Praktische Übung im Labor

Zugeordnete Module:

14570 Praktische Übungen im Labor "Rechnerarchitektur und Kommunikationssysteme I"
14580 Praktische Übungen im Labor "Multimedia Communications"
Modul: 14580 Praktische Übungen im Labor "Multimedia Communications"

<table>
<thead>
<tr>
<th>Modulkürzel:</th>
<th>051100005</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leistungspunkte:</td>
<td>6.0 LP</td>
<td>6. Turnus:</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Nach Ankündigung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. Modulverantwortlicher:</th>
<th>Univ.-Prof. Stephan Brink</th>
</tr>
</thead>
<tbody>
<tr>
<td>9. Dozenten:</td>
<td>Stephan Brink</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- **M.Sc. Technikpädagogik, PO 2009, 5. Semester**
 - Hauptfach Elektrotechnik --> System- und Informationstechnik --> Praktische Übung im Labor (SIT)

- **M.Sc. Technikpädagogik, PO 2009, 5. Semester**
 - Wahlpflichtfach Elektrotechnik --> System- und Informationstechnik --> Praktische Übung im Labor

- **M.Sc. Technikpädagogik, PO 2009, 5. Semester**
 - Wahlpflichtfach Elektrotechnik --> WPF System- und Informationstechnik --> WPF Praktische Übung im Labor (SIT)

- **M.Sc. Technikpädagogik, PO 2015, 5. Semester**
 - Hauptfach Elektrotechnik --> System- und Informationstechnik --> Praktische Übung im Labor (SIT)

- **M.Sc. Technikpädagogik, PO 2015, 5. Semester**
 - Wahlpflichtfach Elektrotechnik --> System- und Informationstechnik --> Praktische Übung im Labor

- **M.Sc. Technikpädagogik, PO 2015, 5. Semester**
 - Wahlpflichtfach Elektrotechnik --> WPF System- und Informationstechnik --> WPF Praktische Übung im Labor (SIT)

11. Empfohlene Voraussetzungen:

- To be proficient in lab experiments using measurement equipment and simulation tools

13. Inhalt:

- Video coding and processing, MPEGx, H.26x
- Optical transmission system
- Digital quadrature amplitude modulation (QAM)
- DVB - Digital Video Broadcast
- Simulation of mobile and fixed communication systems
- ADSL - Asymmetric Digital Subscriber Line

14. Literatur:

- Detailed Description
- Kammeyer, K. D.: Nachrichtenübertragung. Verlag Teubner

15. Lehrveranstaltungen und -formen:

- 145801 Praktische Übungen im Labor "Multimedia Communications"

16. Abschätzung Arbeitsaufwand:

- Presence 42h
- Self study 138h
- Total 180h
<table>
<thead>
<tr>
<th>Nr.</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>Prüfungsnummer/n und -name: 14581 Praktische Übungen im Labor "Multimedia Communications" (LBP), Sonstiges, Gewichtung: 1.0, Test, written report, once per semester</td>
</tr>
<tr>
<td>18</td>
<td>Grundlage für ... :</td>
</tr>
<tr>
<td>19</td>
<td>Medienform: Lab. exercises guided by academic staff</td>
</tr>
<tr>
<td>20</td>
<td>Angeboten von: Institut für Nachrichtenübertragung</td>
</tr>
</tbody>
</table>
Modul: 14570 Praktische Übungen im Labor "Rechnerarchitektur und Kommunikationssysteme I"

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050901007</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher:
Univ.-Prof. Andreas Kirstädter

9. Dozenten:
- Matthias Meyer
- wiss. MA

10. Zuordnung zum Curriculum in diesem Studiengang:

M.Sc. Technikpädagogik, PO 2009, 5. Semester
- Hauptfach Elektrotechnik --> System- und Informatonstechnik --> Praktische Übung im Labor(SIT)
- Wahlpllichtfach Elektrotechnik --> System- und Informationstechnik --> Praktische Übung im Labor

M.Sc. Technikpädagogik, PO 2009, 5. Semester
- Wahlpllichtfach Elektrotechnik --> WPF System- und Informationstechnik --> WPF Praktische Übung im Labor(SIT)

M.Sc. Technikpädagogik, PO 2015, 5. Semester
- Hauptfach Elektrotechnik --> System- und Informatonstechnik --> Praktische Übung im Labor(SIT)
- Wahlpllichtfach Elektrotechnik --> System- und Informationstechnik --> Praktische Übung im Labor
- Wahlpllichtfach Elektrotechnik --> WPF System- und Informationstechnik --> WPF Praktische Übung im Labor(SIT)

11. Empfohlene Voraussetzungen:

12. Lernziele:
Der Studierende vertieft den Stoff der Module "Technische Informatik I" und "Entwurf digitaler Systeme" (Ausprägung Rechnerarchitektur) bzw. "Communication Networks I" (Ausprägung Kommunikationsnetze). Er kann komplexe Systeme verstehen und strukturieren, kann Schnittstellen definieren und Systeme oder Teilsysteme implementieren, aufbauen, konfigurieren und testen, kann im Team arbeiten und die Ergebnisse seiner Arbeit präsentieren ("Soft Skills").

13. Inhalt:
Das Praktikum wird in zwei Ausprägungen angeboten, die bei der Anmeldung ausgewählt werden:
- Die Ausprägung "Rechnerarchitektur" baut auf den Veranstaltungen "Technische Informatik I" und "Entwurf digitaler Systeme" auf
und besteht aus verschiedenen Projekten, in denen umfassende Fragestellungen im Team bearbeitet werden.

- Die Ausprägung "Kommunikationsnetze" baut auf der Veranstaltung "Kommunikationsnetze I" auf und behandelt in mehreren Teilversuchen Aspekte der Kommunikationsnetze.

Für nähere Informationen, aktuelle Ankündigungen und Material siehe http://www.ikr.uni-stuttgart.de/Xref/CC/P_TI (für die Ausprägung "Rechnerarchitektur") und http://www.ikr.uni-stuttgart.de/Xref/CC/P_CN (für die Ausprägung "Kommunikationsnetze").

14. Literatur:

- Manuskripte zu "Technische Informatik I", "Entwurf digitaler Systeme", "Kommunikationsnetze I"
- Versuchsunterlagen
- Selbständige Erschließung von Literatur (Bücher, Zeitschriften, Internet)

15. Lehrveranstaltungen und -formen:

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>145701</td>
<td>Projektpraktikum Rechnerarchitektur und Kommunikationssysteme</td>
</tr>
</tbody>
</table>

16. Abschätzung Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Tätigkeit</th>
<th>Zeit (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzzeit</td>
<td>50</td>
</tr>
<tr>
<td>Selbststudium</td>
<td>130</td>
</tr>
<tr>
<td>Gesamt</td>
<td>180</td>
</tr>
</tbody>
</table>

17. Prüfungsnummer/n und -name:

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>14571</td>
<td>Praktische Übungen im Labor "Rechnerarchitektur und Kommunikationssysteme I" (LBP), Sonstiges, Gewichtung: 1.0, Durchführung, Demonstrator, Vortrag</td>
</tr>
</tbody>
</table>

18. Grundlage für ...:

19. Medienform:

- Software-Werkzeuge (VHDL, Simulation, Protokollanalyse), moderne Messgeräte und Netzkomponenten, Notebook zur Präsentation der Ergebnisse.

20. Angeboten von:

- Institut für Kommunikationsnetze und Rechnersysteme
900 Schlüsselqualifikationen fachübergreifend
5400 Wahlpflichtfach Maschinenbau

Zugeordnete Module:
- 5410 Fahrzeugtechnik
- 5420 Fertigungstechnik
- 5430 Heizungs-, Lüftungs- und Klimatechnik
5410 Fahrzeugtechnik

Zugeordnete Module:

- 5401 Mach-TP
- 5411 Fahrzeugtechnik (Pflicht)
- 5412 Fahrzeugtechnik (Wahl)
5401 Mach-TP

<table>
<thead>
<tr>
<th>Zugeordnete Module</th>
<th>Inhalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>11390</td>
<td>Grundlagen der Verbrennungsmotoren</td>
</tr>
<tr>
<td>12250</td>
<td>Numerische Methoden der Dynamik</td>
</tr>
<tr>
<td>12270</td>
<td>Simulationstechnik</td>
</tr>
<tr>
<td>13040</td>
<td>Fertigungsverfahren Faser- und Schichtverbundwerkstoffe</td>
</tr>
<tr>
<td>13060</td>
<td>Grundlagen der Heiz- und Raumlufttechnik</td>
</tr>
<tr>
<td>13330</td>
<td>Technologiemanagement</td>
</tr>
<tr>
<td>13540</td>
<td>Grundlagen der Mikrotechnik</td>
</tr>
<tr>
<td>13560</td>
<td>Technologien der Nano- und Mikrosystemtechnik I</td>
</tr>
<tr>
<td>13570</td>
<td>Werkzeugmaschinen und Produktionssysteme</td>
</tr>
<tr>
<td>13580</td>
<td>Wissens- und Informationsmanagement in der Produktion</td>
</tr>
<tr>
<td>13590</td>
<td>Kraftfahrzeuge I + II</td>
</tr>
<tr>
<td>13910</td>
<td>Chemische Reaktionstechnik I</td>
</tr>
<tr>
<td>13920</td>
<td>Dichtungstechnik</td>
</tr>
<tr>
<td>13930</td>
<td>Einführung in die effiziente Wärmenutzung</td>
</tr>
<tr>
<td>13940</td>
<td>Energie- und Umwelttechnik</td>
</tr>
<tr>
<td>13970</td>
<td>Gerätekonstruktion und -fertigung in der Feinwerktechnik</td>
</tr>
<tr>
<td>13980</td>
<td>Grundlagen der Faser- und Textiltechnik / Textilmaschinenbau</td>
</tr>
<tr>
<td>14010</td>
<td>Kunststofftechnik - Grundlagen und Einführung</td>
</tr>
<tr>
<td>14020</td>
<td>Grundlagen der Mechanischen Verfahrenstechnik</td>
</tr>
<tr>
<td>14030</td>
<td>Fundamentals of Microelectronics</td>
</tr>
<tr>
<td>14060</td>
<td>Grundlagen der Technischen Optik</td>
</tr>
<tr>
<td>14070</td>
<td>Grundlagen der Thermischen Strömungsmaschinen</td>
</tr>
<tr>
<td>14090</td>
<td>Grundlagen Technischer Verbrennungsvorgänge I + II</td>
</tr>
<tr>
<td>14100</td>
<td>Hydraulische Strömungsmaschinen in der Wasserkraft</td>
</tr>
<tr>
<td>14110</td>
<td>Kerntechnische Anlagen zur Energieerzeugung</td>
</tr>
<tr>
<td>14160</td>
<td>Methodische Produktentwicklung</td>
</tr>
<tr>
<td>14180</td>
<td>Numerische Strömungssimulation</td>
</tr>
<tr>
<td>14190</td>
<td>Regelungstechnik</td>
</tr>
<tr>
<td>14240</td>
<td>Technisches Design</td>
</tr>
<tr>
<td>14310</td>
<td>Zuverlässigkeitstechnik</td>
</tr>
<tr>
<td>15600</td>
<td>Schwingungen und Modalanalyse</td>
</tr>
<tr>
<td>15860</td>
<td>Thermische Verfahrenstechnik I</td>
</tr>
</tbody>
</table>
Modul: 13910 Chemische Reaktionstechnik I

2. Modulkürzel: 041110001 5. Modulduauer: 1 Semester
4. SWS: 4.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Ulrich Nieken
9. Dozenten: Ulrich Nieken

10. Zuordnung zum Curriculum in diesem Studiengang:

- B.Sc. Technikpädagogik
 → Vorgezogene Master-Module
- B.Sc. Technikpädagogik
 → Wahlpflichtfach -->Wahlpflichtfach Maschinenbau -->Modulcontainer Wahlpflichtbereich (Mach-TP)
 →
- M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP
 →
- M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP
 →
- M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik -->Mach-TP
 →
- M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP
 →
- M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP
 →
- M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik -->Mach-TP
 →

11. Empfohlene Voraussetzungen:

- Vorlesung:
 - Grundlagen Thermodynamik
 - Höhere Mathematik
- Übungen: keine

12. Lernziele:

13. Inhalt:

- Globale Wärme- und Stoffbilanz bei chemischen Umsetzungen, Reaktionsgleichgewicht, Quantifizierung von Reaktionsgeschwindigkeiten, Betriebsverhalten idealer
Rührkessel und Rohrreaktoren, Reaktorauslegung, dynamisches Verhalten von technischen Rührkessel- und Festbettreaktoren, Sicherheitsbetrachtungen, reales Durchmischungsverhalten

14. Literatur:
 Skript

empfohlene Literatur:

- Fogler, H. S.: Elements of Chemical Engineering, Prentice Hall, 1999
- Levenspiel, O.: Chemical Reaction Engineering, John Wiley & Sons, 1999

15. Lehrveranstaltungen und -formen:
 - 139101 Vorlesung Chemische Reaktionstechnik I
 - 139102 Übung Chemische Reaktionstechnik I

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 56 h
 Selbststudiumszeit / Nacharbeitszeit: 124 h
 Gesamt: 180 h

17. Prüfungsnummer/n und -name:
 13911 Chemische Reaktionstechnik I (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0

18. Grundlage für ...:
 15570 Chemische Reaktionstechnik II

19. Medienform:
 Vorlesung: Tafelanschrieb, Beamer
 Übungen: Tafelanschrieb, Rechnerübungen

20. Angeboten von:
 Institut für Chemische Verfahrenstechnik
Modul: 13920 Dichtungstechnik

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technikpädagogik

→ Vorgezogene Master-Module

B.Sc. Technikpädagogik

→ Wahlpflichtfach --->Wahlpflichtfach Maschinenbau --
>Modulcontainer Wahlpflichtbereich (Mach-TP)
→

M.Sc. Technikpädagogik

→ Wahlpflichtfach Maschinenbau --->Fahrzeugtechnik --->Mach-TP
→

M.Sc. Technikpädagogik

→ Wahlpflichtfach Maschinenbau --->Fertigungstechnik --->Mach-TP
→

M.Sc. Technikpädagogik

→ Wahlpflichtfach Maschinenbau --->Heizungs-, Lüftungs- und Klimatechnik --->Mach-TP
→

M.Sc. Technikpädagogik

→ Wahlpflichtfach Maschinenbau --->Fahrzeugtechnik --->Mach-TP
→

M.Sc. Technikpädagogik

→ Wahlpflichtfach Maschinenbau --->Fertigungstechnik --->Mach-TP
→

M.Sc. Technikpädagogik

→ Wahlpflichtfach Maschinenbau --->Heizungs-, Lüftungs- und Klimatechnik --->Mach-TP
→

11. Empfohlene Voraussetzungen:
Grundkenntnisse in Konstruktionslehre / Maschinenelemente z.B. durch die Module Konstruktionslehre I - IV oder Grundzüge der Maschinenkonstruktion I + II oder Ähnliches.

12. Lernziele:

- Technische Problemstellungen, am Beispiel von Dichtsystemen, erkennen, analysieren, bewerten und kompetent einer sachgerechten Lösung zuführen.
- Technische Systeme und Maschinenteile zuverlässig abdichten verstehen.
- Komplexe tribologische Systeme ingenieurmäßig beherrschen.
- Physikalische Effekte konstruktiv in technischen Produkten gestaltend umsetzen.
- Interdisziplinäres Vorgehen strategisch anwenden.

13. Inhalt:

- Grundlagen der Tribologie, der Auslegung und der Berechnung sowie Anforderungen, Funktionen und Elemente von Dichtungen.
- Reibung, Verschleiß, Leckage, Konstruktion, Funktion, Anwendung und Berechnung aller wesentlichen Dichtungen für statische und dynamische Dichtstellen um Feststoffe, Paste, Flüssigkeit, Gas, Staub oder Schmutz abzudichten.
• Wann verwende ich welche Dichtung und warum - Situationsanalyse und Lösungsansatz.
• Spezielle Aspekte bei hohem Druck, hoher Geschwindigkeit, hoher Temperatur oder extremer Zuverlässigkeit - was ist machbar, was nicht.
• Beurteilen und untersuchen von Dichtsystemen; wie gehe ich bei der Schadensanalyse vor.
 - Teil 1 der Vorlesung startet im WiSe; Teil 2 wir im SoSe gelesen. Es ist gut möglich Teil 2 vor Teil 1 zu hören, sodass in jedem Semester mit der Vorlesungen begonnen werden kann.

14. Literatur:
• Aktuelles Manuskript
• Heinz K. Müller; Bernhard S. Nau: www.fachwissen-dichtungstechnik.de

15. Lehrveranstaltungen und -formen:
• 139201 Vorlesung und Übung Dichtungstechnik
• 139202 Praktikumsversuch 1, wählbar aus dem Angebot von 5 Versuchen
• 139203 Praktikumsversuch 2, wählbar aus dem Angebot von 5 Versuchen

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 46 h
 Selbststudium / Nacharbeitszeit: 134 h
 Gesamt: 180 h

17. Prüfungsnummer/n und -name: 13921 Dichtungstechnik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ...

20. Angeboten von: Institut für Maschinenelemente
Modul: 13930 Einführung in die effiziente Wärmenutzung

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>042410020</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Modulduauer:</td>
<td>2 Semester</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher:
Apl. Prof. Klaus Spindler

9. Dozenten:
Dan Bauer

10. Zuordnung zum Curriculum in diesem Studiengang:
- B.Sc. Technikpädagogik, PO 2011, 6. Semester
 - Vorgezogene Master-Module
 - M.Sc. Technikpädagogik, PO 2009, 6. Semester
 - Wahlpflichtfach ->Wahlpflichtfach Maschinenbau --
 >Modulcontainer Wahlpflichtbereich (Mach-TP)
 - M.Sc. Technikpädagogik, PO 2009, 6. Semester
 - Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP
 - M.Sc. Technikpädagogik, PO 2009, 6. Semester
 - Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP
 - M.Sc. Technikpädagogik, PO 2009, 6. Semester
 - Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik -->Mach-TP
 - M.Sc. Technikpädagogik, PO 2015, 6. Semester
 - Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP
 - M.Sc. Technikpädagogik, PO 2015, 6. Semester
 - Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP
 - M.Sc. Technikpädagogik, PO 2015, 6. Semester
 - Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik -->Mach-TP

11. Empfohlene Voraussetzungen:
Abgeschlossene Grundlagenausbildung in Technischer Thermodynamik durch Modul Technische Thermodynamik 1 und 2

Vorkenntnisse in Wärmeübertragung durch Besuch der Lehrveranstaltung Grundlagen der Wärmeübertragung

12. Lernziele:
Erworbene Kompetenzen:

- können die grundlegenden Wärmetransportmechanismen zur Bestimmung von Wärmeverlusten von Gebäuden und Bauteilen anwenden,
- können Sonderprobleme der Wärmeübertragung wie Wärmebrücken von Gebäuden numerisch lösen,
- kennen die Grundlagen zur Bemessung von wirtschaftlichen Wärmédämmstärken,
- können die Bedeutung effizienter Wärmeerzeugungssysteme und den Einsatz regenerativer Energien auf die Entwicklung des Energiebedarfs einordnen,
kennen die Grundlagen der Wärmeerzeugung durch Solarthermie, oberflächennahe Geothermie, Kraft-Wärme-Kopplung und Wärmepumpen,
• sind in der Lage, derartige technische Anlagen zur Wärmeversorgung von Gebäuden zu dimensionieren,
• kennen die wesentlichen Methoden der Wärmespeicherung.

14. Literatur: Vorlesungsmanuskripte, Übungsunterlagen

empfohlene Literatur:
• Quaschning, Volker: Regenerative Energiesysteme, Carl Hanser Verlag München, ISBN 978-3-446-43526-1
• Eicker, Ursula: Solare Technologien für Gebäude, Vieweg+Teubner-Verlag, ISBN 978-3-8348-1281-0
• Koenigsdorff, Roland: Oberflächennahe Geothermie für Gebäude, Faunhofer IRB Verlag, ISBN 978-3-8167-8271-1

15. Lehrveranstaltungen und -formen: 139301 Vorlesung und Übung Einführung in effiziente Wärmenutzung

16. Abschätzung Arbeitsaufwand: Präsenzzeit: 56 h + Nacharbeitszeit: 124 h = 180 h

17. Prüfungsnummer/n und -name: 13931 Einführung in die effiziente Wärmenutzung (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform: Beamerpräsentation, Tafel, Overhead-Projektoranschrieb

20. Angeboten von:
Modul: 13940 Energie- und Umwelttechnik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>042510001</th>
<th>5. Modulduauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Günter Scheffknecht</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Günter Scheffknecht</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>B.Sc. Technikpädagogik, PO 2011, . Semester</th>
<th>Vorgezogene Master-Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>→ Wahlpflichtfach →Wahlpflichtfach Maschinenbau → Modulcontainer Wahlpflichtbereich (Mach-TP)</td>
<td></td>
</tr>
<tr>
<td>→ M.Sc. Technikpädagogik, PO 2009, 2. Semester</td>
<td>Wahlpflichtfach Maschinenbau →Fahrzeugtechnik →Mach-TP</td>
</tr>
<tr>
<td>→ M.Sc. Technikpädagogik, PO 2009, 2. Semester</td>
<td>Wahlpflichtfach Maschinenbau →Fertigungstechnik →Mach-TP</td>
</tr>
<tr>
<td>→ M.Sc. Technikpädagogik, PO 2015, 2. Semester</td>
<td>Wahlpflichtfach Maschinenbau →Fahrzeugtechnik →Mach-TP</td>
</tr>
<tr>
<td>→ M.Sc. Technikpädagogik, PO 2015, 2. Semester</td>
<td>Wahlpflichtfach Maschinenbau →Fertigungstechnik →Mach-TP</td>
</tr>
<tr>
<td>→ M.Sc. Technikpädagogik, PO 2015, 2. Semester</td>
<td>Wahlpflichtfach Maschinenbau →Heizungs-, Lüftungs- und Klimatechnik →Mach-TP</td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen:

Die Studierenden des Moduls haben die Prinzipien der Energieumwandlung und Vorräte sowie Eigenschaften verschiedener Primärenergieträger als Grundlagenwissen verstanden und können beurteilen, mit welcher Anlagentechnik eine möglichst hohe Energieausnutzung mit möglichst wenig Schadstoffemissionen erreicht wird. Die Studierenden haben damit für das weitere Studium und für die praktische Anwendung im Berufsfeld Energie und Umwelt die erforderliche Kompetenz zur Anwendung und Beurteilung der relevanten Techniken erworben.

13. Inhalt:

Vorlesung und Übung, 4 SWS

1) Grundlagen zur Energieumwandlung: Einheiten, energetische Eigenschaften, verschiedene Formen von Energie, Transport und Speicherung von Energie, Energiebilanzen verschiedener Systeme

2) Energiebedarf: Statistik, Reserven und Ressourcen, Primärenergieversorgung und Endenergieverbrauch
3) Primärenergieträger: Charakterisierung, Verarbeitung und Verwendung
4) Bereitstellungstechnologien für Wärme, Strom und Kraftstoffe
5) Transport und Speicherung von Energie in unterschiedlichen Formen
6) Energieintensive industrielle Prozesse: Stahlerzeugung, Zementherstellung, Ammoniakherstellung, Papierindustrie
7) Techniken zur Begrenzung der Umweltbeeinflussungen
8) Treibhausgasemissionen
9) Rahmenbedingungen: Emissionsbegrenzung, Klimaschutz, Förderung erneuerbarer Energien

14. Literatur:
- Vorlesungsmanuskript
- Unterlagen zu den Übungen

15. Lehrveranstaltungen und -formen:
139401 Vorlesung und Übung Energie- und Umwelttechnik

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 56 h
Selbststudiumszeit / Nacharbeitszeit: 124 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
13941 Energie- und Umwelttechnik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:
• Skripte zu den Vorlesungen und zu den Übungen
• Tafelanschrieb
• ILIAS

20. Angeboten von:
Institut für Feuerungs- und Kraftwerkstechnik
Modul: 13040 Fertigungsverfahren Faser- und Schichtverbundwerkstoffe

2. Modulkürzel: 072210001
5. Modulduauer: 2 Semester
3. Leistungspunkte: 6.0 LP
6. Turnus: jedes Semester
4. SWS: 4.0
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Rainer Gadow
9. Dozenten: • Rainer Gadow
• Andreas Killinger
10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technikpädagogik
→ Vorgezogene Master-Module
B.Sc. Technikpädagogik
→ Wahlpflichtfach --> Wahlpflichtfach Maschinenbau --> Modulcontainer Wahlpflichtbereich (Mach-TP)
→
M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau --> Fahrzeugtechnik --> Mach-TP
→
M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau --> Fertigungstechnik --> Mach-TP
→
M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau --> Heizungs-, Lüftungs- und Klimatechnik --> Mach-TP
→
M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau --> Fahrzeugtechnik --> Mach-TP
→
M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau --> Fertigungstechnik --> Mach-TP
→
M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau --> Heizungs-, Lüftungs- und Klimatechnik --> Mach-TP
→
M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau --> Fahrzeugtechnik --> Mach-TP
→
M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau --> Fertigungstechnik --> Mach-TP
→

11. Empfohlene Voraussetzungen: abgeschlossene Prüfung in Werkstoffkunde I+II und Konstruktionslehre I + II mit Einführung in die Festigkeitslehre

12. Lernziele: Studierende können nach Besuch dieses Moduls:

• Die Systematik der Faser- und Schichtverbundwerkstoffe und charakteristische Eigenschaften der Werkstoffgruppen unterscheiden, beschreiben und beurteilen.
• Belastungsfälle und Versagensmechanismen (mech., therm., chem.) verstehen und analysieren.
• Verstärkungsmechanismen benennen, erklären und berechnen.
• Hochfeste Fasern und deren textiltechnische Verarbeitung beurteilen.
• Technologien zur Verstärkung von Werkstoffen benennen, vergleichen und auswählen.
• Verfahren und Prozesse zur Herstellung von Verbundwerkstoffen und Schichtverbunden benennen, erklären, bewerten, gegenüberstellen, auswählen und anwenden.
• Herstellungsprozesse hinsichtlich der techn. und wirtschaftl. Herausforderungen bewerten.
• In Produktentwicklung und Konstruktion geeignete Verfahren und Stoffsysteme bzw. Verbundbauweisen identifizieren, planen und auswählen.
• Prozesse abstrahieren sowie Prozessmodelle erstellen und berechnen.
• Werkstoff- und Bauteilcharakterisierung erklären, bewerten, planen und anwenden.

Stichpunkte:
• Grundlagen Festkörper
• Metalle, Polymere und Keramik; Verbundwerkstoffe in Natur und Technik; Trennung von Funktions- und Struktureigenschaften.
• Auswahl von Verstärkungfasern und Faserarchitekturen; Metallische und keramische Matrixwerkstoffe.
• Klassische und polymerabgeleitete Herstellungsverfahren.
• Mechanische, textiltechnische und thermische Verfahrenstechnik.
• Grenzflächensysteme und Haftung.
• Füge- und Verbindungstechnik.
• Grundlagen der Verfahren zur Oberflächen-veredelung, funktionelle Oberflächeneigenschaften.
• Vorbehandlungsverfahren.
• Thermisches Spritzen.
• Vakuumverfahren; Dünnenschichttechnologien PVD, CVD, DLC
• Konversions und Diffusionsschichten.
• Schweiß- und Schmelztauchverfahren
• Industrielle Anwendungen (Überblick).
• Aktuelle Forschungsgebiete.
• Strukturmechanik, Bauteildimensionierung und Bauteilprüfung.
• Grundlagen der Schichtcharakterisierung.

14. Literatur:
• Skript
• Filme
• Normblätter

Literaturempfehlungen:

15. Lehrveranstaltungen und -formen:
• 130401 Vorlesung Verbundwerkstoffe I: Anorganische Faserverbundwerkstoffe
• 130402 Vorlesung Verbundwerkstoffe II: Oberflächentechnik und Schichtverbundwerkstoffe
• 130403 Exkursion Fertigungstechnik Keramik und Verbundwerkstoffe
• 130404 Praktikum Verbundwerkstoffe mit keramischer und metallischer Matrix
• 130405 Praktikum Schichtverbunde durch thermokinetische Beschichtungsverfahren

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 h
Selbststudiumszeit / Nacharbeitszeit: 138 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
13041 Fertigungsverfahren Faser- und Schichtverbundwerkstoffe (PL), schriftlich, eventuell mündlich. 120 Min., Gewichtung: 1.0. Als Kern- oder Ergänzungsfach im Rahmen des Spezialisierungsfachs: mündlich, 40 min Anmeldung zur mündlichen Modulprüfung im LSF und zusätzlich per Email am IFKB beim Ansprechpartner Lehre

18. Grundlage für ...:

19. Medienform:

20. Angeboten von: Institut für Fertigungstechnologie keramischer Bauteile
Modul: 14030 Fundamentals of Microelectronics

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>052110002</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Joachim Burghartz</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Joachim Burghartz</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10. Zuordnung zum Curriculum in diesem Studiengang:</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.Sc. Technikpädagogik</td>
</tr>
<tr>
<td>→ Vorgezogene Master-Module</td>
</tr>
<tr>
<td>B.Sc. Technikpädagogik</td>
</tr>
<tr>
<td>→ Wahlpflichtfach --Wahlpflichtfach Maschinenbau -- >Modulcontainer Wahlpflichtbereich (Mach-TP)</td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik</td>
</tr>
<tr>
<td>→ Wahlpflichtfach Maschinenbau --Fahrzeugtechnik --Mach-TP</td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik</td>
</tr>
<tr>
<td>→ Wahlpflichtfach Maschinenbau --Fertigungstechnik --Mach-TP</td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik</td>
</tr>
<tr>
<td>→ Wahlpflichtfach Maschinenbau --Heizungs-, Lüftungs- und Klimatechnik --Mach-TP</td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik</td>
</tr>
<tr>
<td>→ Wahlpflichtfach Maschinenbau --Fahrzeugtechnik --Mach-TP</td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik</td>
</tr>
<tr>
<td>→ Wahlpflichtfach Maschinenbau --Fertigungstechnik --Mach-TP</td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik</td>
</tr>
<tr>
<td>→ Wahlpflichtfach Maschinenbau --Heizungs-, Lüftungs- und Klimatechnik --Mach-TP</td>
</tr>
</tbody>
</table>

| 11. Empfohlene Voraussetzungen: | keine |
|---------------------------------|

<table>
<thead>
<tr>
<th>12. Lernziele:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studierende kennen wesentliche Grundlagen der Werkstoffe, Prozessschritte, Integrationsprozesse und Volumenproduktionsverfahren in der Silizium-Technologie</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13. Inhalt:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• History and Basics of IC Technology</td>
</tr>
<tr>
<td>• Process Technology I and II</td>
</tr>
<tr>
<td>• Process Modules</td>
</tr>
<tr>
<td>• MOS Capacitor</td>
</tr>
<tr>
<td>• MOS Transistor</td>
</tr>
<tr>
<td>• Non-Ideal MOS Transistor</td>
</tr>
<tr>
<td>• Basics of CMOS Circuit Integration</td>
</tr>
<tr>
<td>• CMOS Device Scaling</td>
</tr>
<tr>
<td>• Metal-Silicon Contact</td>
</tr>
<tr>
<td>• Interconnects</td>
</tr>
<tr>
<td>• Design Metrics</td>
</tr>
<tr>
<td>• Special MOS Devices</td>
</tr>
<tr>
<td>• Future Directions</td>
</tr>
</tbody>
</table>
14. Literatur:

- D. Neamon: Semiconductor Physics and Devices; Mc Graw-Hill, 2002

15. Lehrveranstaltungen und -formen:

<table>
<thead>
<tr>
<th>Kursnummer</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>140301</td>
<td>Vorlesung und Übung Grundlagen der Mikroelektronikfertigung</td>
</tr>
</tbody>
</table>

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 42h + Nacharbeitszeit: 138h = 180h

17. Prüfungsnummer/n und -name:

<table>
<thead>
<tr>
<th>Kursnummer</th>
<th>Kursname</th>
</tr>
</thead>
<tbody>
<tr>
<td>14031</td>
<td>Fundamentals of Microelectronics (PL), schriftlich oder mündlich, 120 Min., Gewichtung: 1.0</td>
</tr>
</tbody>
</table>

18. Grundlage für:

19. Medienform:

Beamer, Tafel, persönliche Interaktion

20. Angeboten von:
Modul: 13970 Gerätekonstruktion und -fertigung in der Feinwerktechnik

2. Modulkürzel: 072510002
5. Modulduer: 1 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Wolfgang Schinköthe

9. Dozenten:
• Wolfgang Schinköthe
• Eberhard Burkard

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technikpädagogik
→ Vorgezogene Master-Module
B.Sc. Technikpädagogik
→ Wahlpflichtfach --> Wahlpflichtfach Maschinenbau -- >Modulcontainer Wahlpflichtbereich (Mach-TP)
 →
M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP
 →
M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP
 →
M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik -->Mach-TP
 →
M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP
 →
M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP
 →
M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik -->Mach-TP
 →

11. Empfohlene Voraussetzungen: Abgeschlossene Grundlagenausbildung in Konstruktionslehre

12. Lernziele:
Fähigkeiten zur Analyse und Lösung von komplexen feinwerktechnischen Aufgabenstellungen im Gerätebau unter Berücksichtigung des Gesamtsystems, insbesondere unter Berücksichtigung von Präzision, Zuverlässigkeit, Sicherheit, Umgebungs- und Toleranzeinflüssen beim Entwurf von Geräten und Systemen

13. Inhalt:
Übungen und in den Praktika „Einführung in die 3D-Messtechnik“, „Zuverlässigkeitsuntersuchungen und Lebensdauertests“

14. Literatur:
- Schinköthe, W.: Grundlagen der Feinwerktechnik - Konstruktion und Fertigung. Skript zur Vorlesung

15. Lehrveranstaltungen und -formen:
- 139701 Vorlesung Gerätekonstruktion und -fertigung in der Feinwerktechnik, 3 SWS
- 139702 Übung Gerätekonstruktion und -fertigung in der Feinwerktechnik (inklusive Praktikum, Einführung in die 3D-Messtechnik, Zuverlässigkeitsuntersuchungen und Lebensdauertests), 1,0 SWS (2x1,5 h)

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 h
Selbststudiumszeit / Nacharbeitszeit: 138 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
13971 Gerätekonstruktion und -fertigung in der Feinwerktechnik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0, bei Kern- oder Ergänzungsfach in Masterstudiengängen mündliche Prüfung

18. Grundlage für ... :

19. Medienform:
- Tafel
- OHP
- Beamer

20. Angeboten von:
Institut für Konstruktion und Fertigung in der Feinwerktechnik
Modul: 14090 Grundlagen Technischer Verbrennungsvorgänge I + II

2. Modulkürzel: 040800010
5. Moduldauer: 1 Semester

3. Leistungspunkte: 6.0 LP
6. Turnus: jedes 2. Semester, SoSe

4. SWS: 5.0
7. Sprache: Nach Ankuendigung

8. Modulverantwortlicher: Univ.-Prof. Andreas Kronenburg

9. Dozenten: Andreas Kronenburg

10. Zuordnung zum Curriculum in diesem Studiengang:

 B.Sc. Technikpädagogik
 → Vorgezogene Master-Module

 B.Sc. Technikpädagogik
 → Wahlpflichtfach -->Wahlpflichtfach Maschinenbau -->
 >Modulcontainer Wahlpflichtbereich (Mach-TP)
 →

 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP
 →

 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP
 →

 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und
 Klimatechnik -->Mach-TP
 →

 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP
 →

 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP
 →

 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und
 Klimatechnik -->Mach-TP
 →

11. Empfohlene Voraussetzungen: Ingenieurwissenschaftliche und naturwissenschaftliche Grundlagen,
Grundlagen in Maschinenbau, Verfahrenstechnik, Thermodynamik,
Reaktionskinetik

12. Lernziele: Die Studenten kennen die physikalisch-chemischen Grundlagen von
Verbrennungsprozessen: Reaktionskinetik von fossilen und biogenen
Brennstoffen, Flammenstrukturen (laminare und turbulente Flammen,
vorgemischte und nicht-vorgemischte Flammen), Turbulenz-Chemie
Wechselwirkungsmechanismen, Schadstoffbildung

13. Inhalt: Gurdg. Technischer Verbrennungsvorgänge I & II (WiSe,
Unterrichtssprache Deutsch):

 • Erhaltungsgleichungen; Thermodynamik; molekularer Transport;
 chemische Reaktion; Reaktionsmechanismen; laminare vorgemischte
 und nicht-vorgemischte Flammen.

 • Gestreckte Flammenstrukturen; Zündprozesse; Flammenstabilität;
 turbulente vorgemischte und nicht-vorgemischte Verbrennung;
 Schadstoffbildung; Spray-Verbrennung
An equivalent course is taught in English:

Combustion Fundamentals I & II (summer term only, taught in English):

- Transport equations; thermodynamics; fluid properties; chemical reactions; reaction mechanisms; laminar premixed and non-premixed combustion.
- Effects of stretch, strain and curvature on flame characteristics; ignition; stability; turbulent reacting flows; pollutants and their formation; spray combustion

14. Literatur:
- Vorlesungsmanuskript
- Warnatz, Maas, Dibble, "Verbrennung", Springer-Verlag
- Warnatz, Maas, Dibble, "Combustion", Springer

15. Lehrveranstaltungen und -formen:
- 140901 Vorlesung Grundlagen Technischer Verbrennungsvorgänge I + II
- 140902 Übung Grundlagen Technischer Verbrennungsvorgänge I + II

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 70 h (4SWS Vorlesung, 1SWS Übung)
- Selbststudiumszeit / Nacharbeitszeit: 110 h

Gesamt: 180 h

17. Prüfungsnummer/n und -name: 14091 Grundlagen Technischer Verbrennungsvorgänge I + II (PL), schriftlich, eventuell mündlich, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:
- Tafelanschrieb
- PPT-Präsentationen
- Skripte zu den Vorlesungen

20. Angeboten von: Institut für Technische Verbrennung
Modul: 13980 Grundlagen der Faser- und Textiltechnik / Textilmaschinenbau

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Hon.-Prof. Michael Doser
9. Dozenten: Heinrich Planck

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>B.Sc. Technikpädagogik, PO 2011, 6. Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>→ Vorgezogene Master-Module</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B.Sc. Technikpädagogik, PO 2011, 6. Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>→ Wahlpflichtfach → Wahlpflichtfach Maschinenbau → Modulcontainer Wahlpflichtbereich (Mach-TP)</td>
</tr>
<tr>
<td>→</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M.Sc. Technikpädagogik, PO 2009, 6. Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>→ Wahlpflichtfach Maschinenbau → Fahrzeugtechnik → Mach-TP</td>
</tr>
<tr>
<td>→</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M.Sc. Technikpädagogik, PO 2009, 6. Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>→ Wahlpflichtfach Maschinenbau → Fertigungstechnik → Mach-TP</td>
</tr>
<tr>
<td>→</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M.Sc. Technikpädagogik, PO 2009, 6. Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>→ Wahlpflichtfach Maschinenbau → Heizungs-, Lüftungs- und Klimatechnik → Mach-TP</td>
</tr>
<tr>
<td>→</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M.Sc. Technikpädagogik, PO 2015, 6. Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>→ Wahlpflichtfach Maschinenbau → Fahrzeugtechnik → Mach-TP</td>
</tr>
<tr>
<td>→</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M.Sc. Technikpädagogik, PO 2015, 6. Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>→ Wahlpflichtfach Maschinenbau → Fertigungstechnik → Mach-TP</td>
</tr>
<tr>
<td>→</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M.Sc. Technikpädagogik, PO 2015, 6. Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>→ Wahlpflichtfach Maschinenbau → Heizungs-, Lüftungs- und Klimatechnik → Mach-TP</td>
</tr>
<tr>
<td>→</td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen: Keine

12. Lernziele:

Die Studierenden können die Grundlagen um die komplexen Prozessabläufe sowie die technologischen Zusammenhänge der Textiltechnik verstehen. Sie kennen die wichtigsten textilen Materialien in ihren Eigenschaften und Möglichkeiten, sowie die grundlegenden Prozessabläufe zur Herstellung von Textilien. Anhand dieser Abläufe kennen sie die wichtigsten textilen Produktionsprozesse, insbesondere die Möglichkeiten der Multiskaligkeit textiler Strukturen und die zur Erzeugung notwendigen Technologien. Durch in die Vorlesung integrierte praktische Demonstrationen an aktuellen Industriemaschinen beherrschen sie die behandelten technologischen Verfahren und Prozessabläufe der Textiltechnik und des Textilmaschinenbaus.

13. Inhalt:

- Überblick über die textilen Fertigungsverfahren sowie Vermittlung der Multiskaligkeit textiler Strukturen und der sich daraus ergebenden Möglichkeiten der Funktionalität.
- Textile Werkstoffkunde

14. Literatur:

Aktuelle Vorlesungsmanuskripte
15. Lehrveranstaltungen und -formen:

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 139801 Vorlesung Einführung Textil- und Faserstoffkunde</td>
</tr>
<tr>
<td>• 139802 Vorlesung Einführung Textiltechnik</td>
</tr>
<tr>
<td>• 139803 Praktikum Einführung in die textile Prüftechnik und Statistik</td>
</tr>
</tbody>
</table>

16. Abschätzung Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Zeit (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzzeit</td>
<td>76</td>
</tr>
<tr>
<td>Selbststudiumszeit / Nacharbeitszeit</td>
<td>104</td>
</tr>
<tr>
<td>Gesamt</td>
<td>180</td>
</tr>
</tbody>
</table>

17. Prüfungsnummer/n und -name:

<table>
<thead>
<tr>
<th>Prüfungsnummer</th>
<th>Prüfungstitel</th>
</tr>
</thead>
<tbody>
<tr>
<td>13981</td>
<td>Grundlagen der Faser- und Textiltechnik / Textilmaschinenbau (PL), mündliche Prüfung, 40 Min., Gewichtung: 1.0</td>
</tr>
</tbody>
</table>

19. Medienform:

<table>
<thead>
<tr>
<th>Medienform</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung:</td>
</tr>
<tr>
<td>• Beamer</td>
</tr>
<tr>
<td>• Exponate</td>
</tr>
<tr>
<td>• aktuelle Maschinen</td>
</tr>
<tr>
<td>• Folienausdrucke</td>
</tr>
<tr>
<td>Praktikum:</td>
</tr>
<tr>
<td>-</td>
</tr>
</tbody>
</table>

20. Angeboten von:
Modul: 13060 Grundlagen der Heiz- und Raumlufttechnik

2. Modulkürzel: 041310001
5. Modulduer: 1 Semester
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0
7. Sprache: Deutsch
8. Modulverantwortlicher: Armin Ruppert
9. Dozenten: Michael Schmidt

10. Zuordnung zum Curriculum in diesem Studiengang:

- B.Sc. Technikpädagogik, PO 2011, 5. Semester
 → Vorgezogene Master-Module
 → B.Sc. Technikpädagogik, PO 2011, 5. Semester
 → Wahlpflichtfach → Wahlpflichtfach Maschinenbau →
 → Modulcontainer Wahlpflichtbereich (Mach-TP)
 → B.Sc. Technikpädagogik, PO 2011, 5. Semester
 → Wahlpflichtfach → Wahlpflichtfach Maschinenbau → c) Heizungs-,
 → Lüftungs-, Klimatechnik Pflichtcontainer Grundlagen Heizungs-
 → Lüftungs- Klimatechnik
 → M.Sc. Technikpädagogik
 → Hauptfach Maschinenbau → Heizungs-, Lüftungs- und Klimatechnik
 → Pflichtcontainer Heizungs-, Lüftungs- und Klimatechnik-
 → Hauptfach
 → M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau → Fahrzeugtechnik → Mach-TP
 → M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau → Fertigungstechnik → Mach-TP
 → M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau → Heizungs-, Lüftungs- und
 → Klimatechnik → Heizungs-, Lüftungs- und Klimatechnik (Pflicht)
 → M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau → Heizungs-, Lüftungs- und
 → Klimatechnik → Mach-TP
 → M.Sc. Technikpädagogik
 → Hauptfach Maschinenbau → Heizungs-, Lüftungs- und Klimatechnik
 → Pflichtcontainer Heizungs-, Lüftungs- und Klimatechnik-
 → Hauptfach
 → M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau → Fahrzeugtechnik → Mach-TP
 → M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau → Fertigungstechnik → Mach-TP
 → M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau → Heizungs-, Lüftungs- und
 → Klimatechnik → Heizungs-, Lüftungs- und Klimatechnik (Pflicht)
11. Empfohlene Voraussetzungen:

- Höhere Mathematik I + II
- Technische Mechanik I + II

12. Lernziele:
Im Modul Grundlagen der Heiz- und Raumlufttechnik haben die Studenten die Anlagen und deren Systematik der Heizung, Lüftung und Klimatisierung von Räumen kennen gelernt und die zugehörigen ingenieurwissenschaftlichen Grundkenntnisse erworben. Auf dieser Basis können Sie grundlegende Auslegungen der Anlagen vornehmen.

Erworbene Kompetenzen:
Die Studenten

- sind mit den grundlegenden Methoden zur Anlagenauslegung vertraut,
- kennen die thermodynamischen Grundoperationen der Behandlung feuchter Luft, der Verbrennung und des Wärme- und Stofftransports
- verstehen den Zusammenhang zwischen Anlagenauslegung und Funktion und den Innenlasten, den meteorologischen Randbedingungen und der thermischen sowie lufthygienischen Behaglichkeit

13. Inhalt:

- Systematik der heiz- und rumlufttechnischen Anlagen
- Strömung in Kanälen und Räumen
- Wärmeübergang durch Konvektion und Temperaturstrahlung
- Wärmeleitung
- Thermodynamik feuchter Luft
- Verbrennung
- meteorologische Grundlagen
- Anlagenauslegung
- thermische und lufthygienische Behaglichkeit

14. Literatur:

15. Lehrveranstaltungen und -formen: 130601 Vorlesung und Übung Grundlagen der Heiz- und Raumlufttechnik

16. Abschätzung Arbeitsaufwand:

Präsenzzeit:	42 h
Selbststudiumszeit / Nacharbeitszeit:	138 h
Gesamt:	180 h

17. Prüfungsnummer/n und -name: 13061 Grundlagen der Heiz- und Raumlufttechnik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0
18. Grundlage für ... :

<table>
<thead>
<tr>
<th>19. Medienform:</th>
<th>Vorlesungsskript</th>
</tr>
</thead>
</table>

20. Angeboten von:
Modul: 14020 Grundlagen der Mechanischen Verfahrenstechnik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>041900002</th>
<th>5. Modulsdauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Manfred Piesche</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Manfred Piesche</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
→ Vorgezogene Master-Module
→ B.Sc. Technikpädagogik
→ Wahlpflichtfach --> Wahlpflichtfach Maschinenbau --> Modulcontainer Wahlpflichtbereich (Mach-TP)
→ M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau --> Fahrzeugtechnik --> Mach-TP
→ M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau --> Fertigungstechnik --> Mach-TP
→ M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau --> Heizungs-, Lüftungs- und Klimatechnik --> Mach-TP
→ M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau --> Fahrzeugtechnik --> Mach-TP
→ M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau --> Fertigungstechnik --> Mach-TP
→ M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau --> Heizungs-, Lüftungs- und Klimatechnik --> Mach-TP |
| 11. Empfohlene Voraussetzungen: | Inhaltlich: Strömungsmechanik
Formal: keine | |
| 13. Inhalt: | • Aufgabengebiete und Grundbegriffe der Mechanischen Verfahrenstechnik
• Grundlagen der Partikeltechnik, Beschreibung von Partikelsystemen
• Einphasenströmungen in Leitungssystemen
• Transportverhalten von Partikeln in Strömungen | |
• Poröse Systeme
• Grundlagen und Anwendungen der mechanischen Trenntechnik
• Beschreibung von Trennvorgängen
• Einteilung von Trennprozessen
• Verfahren zur Fest-Flüssig-Trennung, Sedimentation, Filtration, Zentrifugation
• Verfahren der Fest-Gas-Trennung, Wäscher, Zyklonabscheider
• Grundlagen und Anwendungen der Mischtechnik
• Dimensionslose Kennzahlen in der Mischtechnik
• Bauformen und Funktionsweisen von Mischeinrichtungen
• Leistungs- und Mischzeitcharakteristiken
• Grundlagen und Anwendungen der Zerteiltechnik
• Zerkleinerung von Feststoffen
• Zerteilen von Flüssigkeiten durch Zerstäuben und Emulgieren
• Grundlagen und Anwendungen der Agglomerationstechnik
• Trocken- und Feuchtagglomeration
• Haftkräfte
• Ähnlichkeitstheorie und Übertragungsregeln

14. Literatur:
• Löffler, F.: Grundlagen der mechanischen Verfahrenstechnik, Vieweg, 1992
• Zogg, M.: Einführung in die mechanische Verfahrenstechnik, Teubner, 1993
• Bohnet, M.: Mechanische Verfahrenstechnik, Wiley-VCH-Verlag, 2004
• Schubert, H.: Mechanische Verfahrenstechnik, Dt. Verlag für Grundstoffindustrie, 1997

15. Lehrveranstaltungen und -formen:
• 140201 Vorlesung Grundlagen der Mechanischen Verfahrenstechnik
• 140202 Übung Grundlagen der Mechanischen Verfahrenstechnik

16. Abschätzung Arbeitsaufwand:
Präsenzzeit Vorlesung: 42 h
Präsenzzeit Übung: 14 h
Vor- und Nachbearbeitungszeit: 124 h

Summe: 180 h

17. Prüfungsnummer/n und -name: 14021 Grundlagen der Mechanischen Verfahrenstechnik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für … :

20. Angeboten von:
Modul: 13540 Grundlagen der Mikrotechnik

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. André Zimmermann

9. Dozenten:

• André Zimmermann
• Eugen Ermantraut

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technikpädagogik
 → Vorgezogene Master-Module

B.Sc. Technikpädagogik
 → Wahlpflichtfach -->Wahlpflichtfach Maschinenbau -->
 >Modulcontainer Wahlpflichtbereich (Mach-TP)
 →

M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP
 →

M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP
 →

M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und
 Klimatechnik -->Mach-TP
 →

M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP
 →

M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP
 →

M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und
 Klimatechnik -->Mach-TP
 →

11. Empfohlene Voraussetzungen: keine

13. Inhalt:

• Eigenschaften der wichtigsten Werkstoffe der MST
• Silizium-Mikromechanik
• Einführung in die Vakuumtechnik
• Herstellung und Eigenschaften dünner Schichten (PVD- und CVD-Technik, Thermische Oxidation)
• Lithographie und Maskentechnik
• Ätztchniken zur Strukturierung (Nasschemisches Ätzen, RIE, IE, Plasmaätzen)
• Reinraumtechnik
• Elemente der Aufbau- und Verbindungstechnik für Mikrosysteme (Bondverfahren, Chipgehäusetechniken)
• LiGA-Technik
• Mikrotechnische Bauteile aus Kunststoff (z.B. Mikrospritzguss)
• Mikrobearbeitung von Metallen (z.B. spanende Mikrobearbeitung)
• Messmethoden der Mikrotechnik
• Prozessfolgen der Mikrotechnik

14. Literatur

Vorlesungsmanuskript und Literaturangaben darin

15. Lehrveranstaltungen und -formen

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>135401</td>
<td>Vorlesung Grundlagen der Mikrotechnik</td>
</tr>
<tr>
<td>135402</td>
<td>Freiwillige Übung zur Vorlesung Grundlagen der Mikrotechnik</td>
</tr>
</tbody>
</table>

16. Abschätzung Arbeitsaufwand

<table>
<thead>
<tr>
<th>Tätigkeit</th>
<th>Zeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzzeit</td>
<td>42 h</td>
</tr>
<tr>
<td>Selbststudiumszeit / Nacharbeit</td>
<td>138 h</td>
</tr>
<tr>
<td>Gesamt</td>
<td>180 h</td>
</tr>
</tbody>
</table>

17. Prüfungsnummer/n und -name

<table>
<thead>
<tr>
<th>Prüfungsnummer</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>13541</td>
<td>Grundlagen der Mikrotechnik (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0</td>
</tr>
</tbody>
</table>

18. Grundlage für ...

Beamerpräsentation, Overhead-Projektor-Anschrift, Tafelanschrieb, Demonstrationsobjekte

19. Medienform

Mikrosystemtechnik
Modul: 14060 Grundlagen der Technischen Optik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>073100001</th>
<th>5. Modulsdauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Wolfgang Osten</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Wolfgang Osten
• Christof Pruß
• Erich Steinbeißer
• Alexander Bielke |
→ Vorgezogene Master-Module
B.Sc. Technikpädagogik
→ Wahlpflichtfach -->Wahlpflichtfach Maschinenbau -->Modulcontainer Wahlpflichtbereich (Mach-TP)
M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP
M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP
M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik -->Mach-TP
M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP
M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP
M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik -->Mach-TP |
| 11. Empfohlene Voraussetzungen: | HM 1 - HM 3,
Experimentalphysik |
| 12. Lernziele: | Die Studierenden
• erkennen die Möglichkeiten und Grenzen der abbildenden Optik auf Basis des mathematischen Modells der Kollineation
• sind in der Lage, grundlegende optische Systeme zu klassifizieren und im Rahmen der Gaußschen Optik zu berechnen
• verstehen die Grundzüge der Herleitung der optischen Phänomene „Interferenz“ und „Beugung“ aus den Maxwell-Gleichungen
• können die Grenzen der optischen Auflösung definieren
• können grundlegende optische Systeme (wie z.B. Mikroskop, Messfernrohr und Interferometer) einsetzen und bewerten |
| 13. Inhalt: | • optische Grundgesetze der Reflexion, Refraktion und Dispersion;
• Kollineare (Gaußsche) Optik; |
Lust auf Praktikum?

14. Literatur:

Manuskript aus Powerpointfolien der Vorlesung; Übungsbücher; Formelsammlung; Sammlung von Klausuraufgaben mit ausführlichen Lösungen;

Literatur:

- Haferkorn: Optik, Wiley, 2002
- Hecht: Optik, Oldenbourg, 2014
- Kühlke: Optik, Harri Deutsch, 2011
- Naumann; Schröder; Löffler-Mang: Handbuch Bauelemente der Optik, 2014
- Schröder: Technische Optik, Vogel, 2007

15. Lehrveranstaltungen und -formen:

- 140601 Vorlesung Grundlagen der Technischen Optik
- 140602 Übung Grundlagen der Technischen Optik
- 140603 Praktikum Grundlagen der Technischen Optik

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 42h + Nacharbeitszeit: 138h = 180h

17. Prüfungsnummer/n und -name:

14061 Grundlagen der Technischen Optik (PL), schriftlich, eventuell mündlich, 120 Min., Gewichtung: 1.0, bei einer geringen Anzahl an Prüfungsanmeldungen findet die Prüfung mündlich (40 min.) statt

18. Grundlage für ... :

19. Medienform:

Powerpoint-Vorlesung mit zahlreichen Demonstrations-Versuchen, Übung: Notebook + Beamer, OH-Projektor, Tafel, kleine „Hands-on“ Versuche gehen durch die Reihen

20. Angeboten von:

Technische Optik
Modul: 14070 Grundlagen der Thermischen Strömungsmaschinen

2. Modulkürzel: 042310004 5. Modulduauer: 1 Semester
4. SWS: 4.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Damian Vogt
9. Dozenten: Damian Vogt

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technikpädagogik
 ➞ Vorgezogene Master-Module

B.Sc. Technikpädagogik
 ➞ Wahlpflichtfach --> Wahlpflichtfach Maschinenbau -->
 >Modulcontainer Wahlpflichtbereich (Mach-TP)

M.Sc. Technikpädagogik
 ➞ Wahlpflichtfach Maschinenbau --> Fahrzeugtechnik --> Mach-TP

M.Sc. Technikpädagogik
 ➞ Wahlpflichtfach Maschinenbau --> Fertigungstechnik --> Mach-TP

M.Sc. Technikpädagogik
 ➞ Wahlpflichtfach Maschinenbau --> Heizungs-, Lüftungs- und
 Klimatechnik --> Mach-TP

M.Sc. Technikpädagogik
 ➞ Wahlpflichtfach Maschinenbau --> Fahrzeugtechnik --> Mach-TP

M.Sc. Technikpädagogik
 ➞ Wahlpflichtfach Maschinenbau --> Fertigungstechnik --> Mach-TP

M.Sc. Technikpädagogik
 ➞ Wahlpflichtfach Maschinenbau --> Heizungs-, Lüftungs- und
 Klimatechnik --> Mach-TP

11. Empfohlene Voraussetzungen: • Ingenieurwissenschaftliche Grundlagen
 • Technische Thermodynamik I + II
 • Strömungsmechanik oder Technische Strömungslehre

12. Lernziele: Der Studierende
 • verfügt über vertiefte Kenntnisse in Thermodynamik und
 Strömungsmechanik mit dem Fokus auf der Anwendung bei
 Strömungsmaschinen
 • kennt und versteht die physikalischen und technischen Vorgänge und
 Zusammenhänge in Thermischen Strömungsmaschinen (Turbinen,
 Verdichter, Ventilatoren)
 • beherrscht die eindimensionale Betrachtung von Arbeitsumsetzung,
 Verlusten und Geschwindigkeitsdreiecken bei Turbomaschinen
 • ist in der Lage, aus dieser analytischen Durchdringung die
 Konsequenzen für Auslegung und Konstruktion von axialen und
 radialen Turbomaschinen zu ziehen

13. Inhalt: • Anwendungsgebiete und wirtschaftliche Bedeutung
 • Bauarten
• Thermodynamische Grundlagen
• Fluideigenschaften und Zustandsänderungen
• Strömungsmechanische Grundlagen
• Anwendung auf Gestaltung der Bauteile
• Ähnlichkeitsgesetze
• Turbinen- und Verdichtertheorie
• Verluste und Wirkungsgrade, Möglichkeiten ihrer Beeinflussung
• Maschinenkomponenten
• Betriebsverhalten, Kennfelder, Regelungsverfahren
• Instationäre Phänomene

14. Literatur:
• Vogt, D., Grundlagen der Thermischen Strömungsmaschinen, Vorle-
sungsmanuskript, ITSM Univ. Stuttgart
• Dixon, S.L., Fluid Mechanics and Thermodynamics of Turbomachinery, Elsevier 2005
• Cohen H., Rogers, G.F.C., Saravanamutoo, H.I.H., Gas Turbine Theory, Longman 2000
• Traupel, W., Thermische Turbomaschinen, Band 1, 4. Auflage, Springer 2001

15. Lehrveranstaltungen und -formen: 140701 Vorlesung und Übung Grundlagen der Thermischen Strömungsmaschinen

16. Abschätzung Arbeitsaufwand:

Präsenzzeit:	42 h
Selbststudiumszeit / Nacharbeitszeit:	138 h
Gesamt:	180 h

17. Prüfungsnummer/n und -name: 14071 Grundlagen der Thermischen Strömungsmaschinen (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... : 30820 Thermische Strömungsmaschinen

19. Medienform: Podcasted Whiteboard, Tafelanschrieb, Skript zur Vorlesung

20. Angeboten von: Institut für Thermische Strömungsmaschinen und Maschinenlaboratorium
Modul: 11390 Grundlagen der Verbrennungsmotoren

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>070800003</th>
<th>5. Modulduart:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. Modulverantwortlicher:</th>
<th>Univ.-Prof. Michael Bargende</th>
</tr>
</thead>
<tbody>
<tr>
<td>9. Dozenten:</td>
<td>Michael Bargende</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- B.Sc. Technikpädagogik, PO 2011, 4. Semester
 - Vorgezogene Master-Module
 - B.Sc. Technikpädagogik, PO 2011, 4. Semester
 - Wahlpflichtfach --> Wahlpflichtfach Maschinenbau --> Modulcontainer Wahlpflichtbereich (Mach-TP)
 - B.Sc. Technikpädagogik, PO 2011, 4. Semester
 - Wahlpflichtfach --> Wahlpflichtfach Maschinenbau --> a) Fahrzeugtechnik Pflichtcontainer Grundlagen Fahrzeugtechnik
 - M.Sc. Technikpädagogik
 - Hauptfach Maschinenbau --> Fahrzeugtechnik --> Pflichtcontainer Fahrzeugtechnik-Hauptfach
 - M.Sc. Technikpädagogik
 - Wahlpflichtfach Maschinenbau --> Fahrzeugtechnik --> Pflichtcontainer Fahrzeugtechnik (Pflicht)
 - M.Sc. Technikpädagogik
 - Wahlpflichtfach Maschinenbau --> Fahrzeugtechnik --> Mach-TP
 - M.Sc. Technikpädagogik
 - Wahlpflichtfach Maschinenbau --> Fertigungstechnik --> Mach-TP
 - M.Sc. Technikpädagogik
 - Wahlpflichtfach Maschinenbau --> Heizungs-, Lüftungs- und Klimatechnik --> Mach-TP
 - M.Sc. Technikpädagogik
 - Hauptfach Maschinenbau --> Fahrzeugtechnik --> Pflichtcontainer Fahrzeugtechnik-Hauptfach
 - M.Sc. Technikpädagogik
 - Wahlpflichtfach Maschinenbau --> Fahrzeugtechnik --> Pflichtcontainer Fahrzeugtechnik (Pflicht)
 - M.Sc. Technikpädagogik
 - Wahlpflichtfach Maschinenbau --> Fahrzeugtechnik --> Mach-TP
 - M.Sc. Technikpädagogik
 - Wahlpflichtfach Maschinenbau --> Fertigungstechnik --> Mach-TP
 - M.Sc. Technikpädagogik
 - Wahlpflichtfach Maschinenbau --> Heizungs-, Lüftungs- und Klimatechnik --> Mach-TP
11. Empfohlene Voraussetzungen: Grundkenntnisse aus 1. bis 4. Fachsemester

Informationen zur Prüfung:
Verständnis: keine Hilfsmittel zugelassen
Berechnung: alle Hilfsmittel außer programmierbare Taschenrechner, Laptops, Handy, etc.

14. Literatur:
• Vorlesungsmanuskript

15. Lehrveranstaltungen und -formen: 113901 Grundlagen der Verbrennungsmotoren

16. Abschätzung Arbeitsaufwand:
Preisenzzeit: 42 h
Selbststudiumszeit / Nacharbeitszeit: 138 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name: 11391 Grundlagen der Verbrennungsmotoren (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform: Tafelanschrieb, PPT-Präsentationen, Overheadfolien

20. Angeboten von: Verbrennungsmotoren
Modul: 14100 Hydraulische Strömungsmaschinen in der Wasserkraft

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>042000100</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Modulduauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

| 8. Modulverantwortlicher: | Univ.-Prof. Stefan Riedelbauch |
| 9. Dozenten: | Stefan Riedelbauch |

<table>
<thead>
<tr>
<th>10. Zuordnung zum Curriculum in diesem Studiengang:</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.Sc. Technikpädagogik</td>
</tr>
<tr>
<td>→ Vorgezogene Master-Module</td>
</tr>
<tr>
<td>B.Sc. Technikpädagogik</td>
</tr>
<tr>
<td>→ Wahlpflichtfach -->Wahlpflichtfach Maschinenbau -->Modulcontainer Wahlpflichtbereich (Mach-TP)</td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik</td>
</tr>
<tr>
<td>→ Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP</td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik</td>
</tr>
<tr>
<td>→ Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP</td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik</td>
</tr>
<tr>
<td>→ Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik -->Mach-TP</td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik</td>
</tr>
<tr>
<td>→ Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP</td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik</td>
</tr>
<tr>
<td>→ Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP</td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik</td>
</tr>
<tr>
<td>→ Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik -->Mach-TP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11. Empfohlene Voraussetzungen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Wahlpflichtmodul Gruppe 1 (Strömungsmechanik)</td>
</tr>
<tr>
<td>• Technische Strömungslehre (Fluidmechanik 1) oder Strömungsmechanik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12. Lernziele:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Studierenden kennen die prinzipielle Funktionsweise von Wasserkraftanlagen und die Grundlagen der hydraulischen Strömungsmaschinen. Sie sind in der Lage, grundlegende Vorauslegungen von hydraulischen Strömungsmaschinen in Wasserkraftwerken durchzuführen sowie das Betriebsverhalten zu beurteilen.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13. Inhalt:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Vorlesung vermittelt die Grundlagen von Kraftwerken, Turbinen, Kreiselpumpen und Pumpenturbinen. Dabei werden die verschiedenen Bauarten und deren Kennwerte, Verluste sowie die dort auftretenden Kavitationserscheinungen vorgestellt. Es wird eine Einführung in die Auslegung von hydraulischen Strömungsmaschinen und die damit zusammenhängenden Kennlinien und Betriebsverhalten gegeben. Mit der Berechnung und Konstruktion einzelner Bauteile</td>
</tr>
</tbody>
</table>
von Wasserkraftanlagen wird die Auslegung von hydraulischen Strömungsmaschinen vertieft.

Zusätzlich werden noch weitere Komponenten in Wasserkraftanlagen wie beispielsweise „Hydrodynamische Getriebe und Absperr- und Regelorgane behandelt.

14. Literatur:

• Skript "Hydraulische Strömungsmaschinen in der Wasserkraft"
• C. Pfleiderer, H. Petermann, Strömungsmaschinen, Springer Verlag
• W. Bohl, W. Elmendorf, Strömungsmaschinen 1 & 2, Vogel Buchverlag
• J. Raabe, Hydraulische Maschinen und Anlagen, VDI Verlag
• J. Giesecke, E. Mosonyi, Wasserkraftanlagen, Springer Verlag

15. Lehrveranstaltungen und -formen:

• 141001 Vorlesung Hydraulische Strömungsmaschinen in der Wasserkraft
• 141002 Übung Hydraulische Strömungsmaschinen in der Wasserkraft
• 141003 Seminar Hydraulische Strömungsmaschinen in der Wasserkraft

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 48h + Nacharbeitszeit: 132h = 180h

17. Prüfungsnummer/n und -name:

14101 Hydraulische Strömungsmaschinen in der Wasserkraft (PL), schriftlich, eventuell mündlich, 120 Min., Gewichtung: 1.0,

18. Grundlage für ...:

29210 Transiente Vorgänge und Regelungsaspekte in Wasserkraftanlagen

19. Medienform:

Tafel, Tablet-PC, Powerpoint Präsentation

20. Angeboten von:
Modul: 14110 Kerntechnische Anlagen zur Energieerzeugung

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>041610001</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modulduer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Nach Ankuendigung</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Jörg Starflinger</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Jörg Starflinger</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- **B.Sc. Technikpädagogik**
 - Vorgezogene Master-Module
- **B.Sc. Technikpädagogik**
 - Wahlpflichtfach --> Wahlpflichtfach Maschinenbau --> Modulcontainer Wahlpflichtbereich (Mach-TP)
- **M.Sc. Technikpädagogik**
 - Wahlpflichtfach Maschinenbau --> Fahrzeugtechnik --> Mach-TP
- **M.Sc. Technikpädagogik**
 - Wahlpflichtfach Maschinenbau --> Fertigungstechnik --> Mach-TP
- **M.Sc. Technikpädagogik**
 - Wahlpflichtfach Maschinenbau --> Heizungs-, Lüftungs- und Klimatechnik --> Mach-TP
- **M.Sc. Technikpädagogik**
 - Wahlpflichtfach Maschinenbau --> Fahrzeugtechnik --> Mach-TP
- **M.Sc. Technikpädagogik**
 - Wahlpflichtfach Maschinenbau --> Fertigungstechnik --> Mach-TP
- **M.Sc. Technikpädagogik**
 - Wahlpflichtfach Maschinenbau --> Heizungs-, Lüftungs- und Klimatechnik --> Mach-TP

11. Empfohlene Voraussetzungen:

- Vorlesungen: Experimentalphysik, Thermodynamik, Mathematik, Strömungslehre

12. Lernziele:

Die Studierenden

- können grundsätzlich die Modellvorstellung der Kernspaltung nachvollziehen. Sie kennen die Spaltproduktausbeutekurve, die Energiefreisetzung bei der Spaltung. Sie wissen, was verzögerte Neutronen sind und woher diese stammen.
wissen, was Wirkungsquerschnitte sind. Sie kennen die 4-Faktoren-Formel und können die einzelnen Terme benennen und erläutern.

können eine einfache Neutronenbilanzgleichung aufstellen. Sie wissen, was das der Diffusionsansatz ist und können daraus die Reaktorgleichung ableiten. Für ein einfaches Beispiel können sie die kritische Abmessung berechnen.

verstehen das dynamische verhalten des Reaktors. Sie kennen die Punktkinetik und können Begriffe, wie Reaktivität und Reaktorperiode erläutern. Sie verstehen die Sprungantwort bei einem Reaktivitätseintrag. Sie können das Selbstregelverhalten, insb. die Rückwirkungskoeffizienten (Doppler, Dichte, Void) anschaulich beschreiben.

können den Aufbau eines Brennelements (DWR/SWR) nachvollziehen und Bauteile am BE identifizieren. Sie verstehen den Brennstabaufbau, die Steuerstäbe und dessen Antriebe. Sie können Unterkanalanalysen nachvollziehen und können die Brennstabtemperaturverteilung erläutern. Sie können DNB und Dryout als Gefahr für das Brennelement identifizieren und erläutern und verstehen Heißkanalfaktoren als Auslegungskriterium.

können Kühlkreislauf von Druckwasserreaktoranlagen inkl. aller Komponenten schematisch zeichnen und benennen, Kerneinbauten identifizieren, Aufbau des Dampferzeugers reproduzieren, den Druckhalter schematisch zeichnen und dessen Funktion beschreiben, die Kerninstrumentierung und deren Aufgaben beschreiben können sowie den Sekundärkreislauf zeichnen und benennen.

können Siedewasserreaktoranlagen inkl. aller Komponenten schematisch zeichnen und benennen, Kerneinbauten identifizieren können, den Kühlkreislauf zeichnen und benennen und die SWR-Regelung und das Betriebskennfeld verstehen.

können Hilfs- und Nebenanlagen identifizieren und voneinander unterscheiden, die Aufgaben des Volumenregelsystems verstehen und nachvollziehen, das nuklare Zwischenkühlssystem verstehen und dessen Aufgaben im Normalbetrieb und bei Störungen nachvollziehen, Aufgaben des Zusatzboriersystem beschreiben und die Druckstaffelung in DWR und Inertisierung bei SWR verstehen.

im Bereich der Reaktorsicherheit Gefährdungspotenziale und Schutzziele in der Kerntechnik verstehen sowie die Definition der zwölf Sicherheitsprinzipien nachvollziehen und mit anschaulichen Beispielen erläutern.

die Funktion der Sicherheitssysteme für DWR und SWR nachvollziehen und beschreiben. Sie verstehen die Definition des Risikos, den Unterschied zwischen deterministischer und probabilistischer Sicherheitsanalyse und können die Stufen der probabilistischen Sicherheitsanalyse nachvollziehen. Hierbei können sie Ereignisbaum und Fehlerbaum voneinander unterscheiden und können die INES-Skala erläutern.
- können generell die Reaktorentwicklung (Generationen 1-4) nachvollziehen, die Hauptmerkmale fortschrittlicher Reaktorkonzepte benennen und Beispiele von Gen III Reaktoren angeben.

- verstehen die Ziele von Gen IV Reaktoren, können Hauptmerkmale der Gen IV Konzepte mit Vor- und Nachteilen reproduzieren und Beispiele angeben. Sie verstehen das Konzept und die Idee eines ADS-Reaktors als ein mögliches Konzept zur Verringerung der Radiotoxizität des Abfalls.

- Den Brennstoffkreislauf nachvollziehen, kennen Abbaumethoden (konventionelle, unkonventionelle) und können den ungefähren weltweiten Verbrauch pro Jahr benennen.

- den Anreicherungsgrund nachvollziehen, die Rolle von UF6 erläutern und vier Konversionsverfahren benennen.

- können das Aufkommen von Abfall pro Jahr benennen, die Relevanz verschiedener Abfallarten für Zwischen- und Endlagern erläutern, die Klassifizierung von Abfällen nachvollziehen, die Behandlung von festen und flüssigen Betriebsabfällen erläutern, das Schema der Wiederaufarbeitung zeichnen und insbesondere den PUREX Prozess verstehen. Außerdem sollen sie die Rolle von Glaskokillen für hochradioaktive Abfälle verstehen.

- Das tiefengeologische Konzept verstehen, die Möglichkeiten der Einlagerung erläutern und das Multibarrierenkonzept zur Sicherheit von Endlagern erläutern.

13. Inhalt:

Die o.g. Lernziele werden in 6 Themenkomplexen abgehandelt.

- Kernreaktoren in Deutschland, Europa, weltweit
- Kerntechnische Grundlagen, Radioaktivität, Bindungsenergie, Kernspaltung, Nuclidkarte, kritische Anordnungen
- Druck und Siedewasserreaktoren, Brennelemente, Hilfs- und Nebenanlagen
- Sicherheitseinrichtungen, Reaktorsicherheit, Unfälle
- Fortschrittliche Reaktorkonzepte, neue Reaktoren der Generation 4 (im Ausland)
- Brennstoffkreislauf: Versorgung mit Kernbrennstoff, Entsorgung des radioaktiven Abfalls

pdf der Vorlesung ausschließlich über ILIAS

14. Literatur:

- W. Oldekop: "Druckwasserreaktoren für Kern-Kraftwerke"

15. Lehrveranstaltungen und -formen:

141101 Vorlesung und Übung Kerntechnische Anlagen zur Energieerzeugung

16. Abschätzung Arbeitsaufwand:

45 h Präsenzzeit
45 h Vor-/Nacharbeitungszeit
90 h Prüfungsvorbereitung und Prüfung

17. Prüfungsnummer/n und -name:

14111 Kerntechnische Anlagen zur Energieerzeugung (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0
<table>
<thead>
<tr>
<th>18. Grundlage für ... :</th>
<th>26000 Kernenergietechnik</th>
</tr>
</thead>
<tbody>
<tr>
<td>19. Medienform:</td>
<td>• ppt-Präsentation</td>
</tr>
<tr>
<td></td>
<td>• Manuskripte online</td>
</tr>
<tr>
<td></td>
<td>• Tafel + Kreide</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Institut für Kernenergetik und Energiesysteme</td>
</tr>
</tbody>
</table>
Modul: 13590 Kraftfahrzeuge I + II

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Jochen Wiedemann</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Jochen Wiedemann</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>→ Vorgezogene Master-Module</td>
</tr>
<tr>
<td></td>
<td>→ Wahlpflichtfach -->Wahlpflichtfach Maschinenbau --> Modulcontainer Wahlpflichtbereich (Mach-TP)</td>
</tr>
<tr>
<td></td>
<td>→ B.Sc. Technikpädagogik, PO 2011, 5. Semester</td>
</tr>
<tr>
<td></td>
<td>→ Wahlpflichtfach -->Wahlpflichtfach Maschinenbau --> Fahrzeugtechnik Pflichtcontainer Grundlagen Fahrzeugtechnik</td>
</tr>
<tr>
<td></td>
<td>→ M.Sc. Technikpädagogik, PO 2009, . Semester</td>
</tr>
<tr>
<td></td>
<td>→ Hauptfach Maschinenbau -->Fahrzeugtechnik -->Pflichtcontainer Fahrzeugtechnik-Hauptfach</td>
</tr>
<tr>
<td></td>
<td>→ M.Sc. Technikpädagogik, PO 2009, . Semester</td>
</tr>
<tr>
<td></td>
<td>→ Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik --> Fahrzeugtechnik (Plicht)</td>
</tr>
<tr>
<td></td>
<td>→ M.Sc. Technikpädagogik, PO 2009, . Semester</td>
</tr>
<tr>
<td></td>
<td>→ Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP</td>
</tr>
<tr>
<td></td>
<td>→ M.Sc. Technikpädagogik, PO 2009, . Semester</td>
</tr>
<tr>
<td></td>
<td>→ Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP</td>
</tr>
<tr>
<td></td>
<td>→ M.Sc. Technikpädagogik, PO 2009, . Semester</td>
</tr>
<tr>
<td></td>
<td>→ Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik -->Mach-TP</td>
</tr>
<tr>
<td></td>
<td>→ M.Sc. Technikpädagogik, PO 2015, . Semester</td>
</tr>
<tr>
<td></td>
<td>→ Hauptfach Maschinenbau -->Fahrzeugtechnik -->Pflichtcontainer Fahrzeugtechnik-Hauptfach</td>
</tr>
<tr>
<td></td>
<td>→ M.Sc. Technikpädagogik, PO 2015, . Semester</td>
</tr>
<tr>
<td></td>
<td>→ Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik --> Fahrzeugtechnik (Plicht)</td>
</tr>
<tr>
<td></td>
<td>→ M.Sc. Technikpädagogik, PO 2015, . Semester</td>
</tr>
<tr>
<td></td>
<td>→ Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP</td>
</tr>
<tr>
<td></td>
<td>→ M.Sc. Technikpädagogik, PO 2015, . Semester</td>
</tr>
<tr>
<td></td>
<td>→ Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP</td>
</tr>
<tr>
<td></td>
<td>→ M.Sc. Technikpädagogik, PO 2015, . Semester</td>
</tr>
<tr>
<td></td>
<td>→ Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik -->Mach-TP</td>
</tr>
</tbody>
</table>
11. Empfohlene Voraussetzungen: Kenntnisse aus den Fachsemestern 1 bis 4

Wichtig: Ab WS2015/16 ist die Prüfung ohne Hilfsmittel zu absolvieren.

14. Literatur:
- Wiedemann, J.: Kraftfahrzeuge I+II, Vorlesungsumdruck,
- Reimpell, J.: Fahrwerkstechnik: Grundlagen, Vogel-Fachbuchverlag, 2005

15. Lehrveranstaltungen und -formen:
- 135901 Vorlesung Kraftfahrzeuge I + II
- 135902 Übung Kraftfahrzeuge I + II

16. Abschätzung Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Präsenzzeit</th>
<th>Selbststudiumszeit / Nacharbeitszeit</th>
<th>Gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>42 h</td>
<td>138 h</td>
<td>180 h</td>
</tr>
</tbody>
</table>

17. Prüfungsnummer/n und -name: 13591 Kraftfahrzeuge I + II (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... : 13590 Kraftfahrzeuge I + II

19. Medienform: Beamer, Tafel

20. Angeboten von: Kraftfahrwesen
Modul: 14010 Kunststofftechnik - Grundlagen und Einführung

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>041710001</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Christian Bonten</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Christian Bonten</td>
</tr>
</tbody>
</table>
→ Vorgezogene Master-Module
B.Sc. Technikpädagogik
→ Wahlpflichtfach -->Wahlpflichtfach Maschinenbau -->Modulcontainer Wahlpflichtbereich (Mach-TP)
→
M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP
→
M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP
→
M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik -->Mach-TP
→
M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP
→
M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP
→
M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik -->Mach-TP
→

11. Empfohlene Voraussetzungen:

12. Lernziele:

13. Inhalt:

- Einführung der Grundlagen: Einleitung zur Kunststoffgeschichte, die Unterteilung und wirtschaftliche Bedeutung von Polymerwerkstoffen; chemischer Aufbau und Struktur vom Monomer zu Polymer
- Erstarrung und Kraftübertragung der Kunststoffe
• Rheologie und Rheometrie der Polymerschmelze
• Eigenschaften des Polymerfestkörpers: elastisches, viskoelastisches Verhalten der Kunststoffe; thermische, elektrische und weitere Eigenschaften; Methoden zur Beeinflussung der Polymer Eigenschaften; Alterung der Kunststoffe
• Grundlagen zur analytischen Beschreibung von Fließprozessen: physikalische Grundgleichungen, rheologische und thermische Zustandsgleichungen
• Einführung in die Kunststoffverarbeitung: Extrusion, Spritzgießen und Verarbeitung vernetzender Kunststoffe
• Einführung in die Faser kunststoffverbunde und formlose Formgebungsverfahren
• Einführung der Weiterverarbeitungstechniken: Thermoformen, Beschichten; Fügetechnik
• Nachhaltigkeitsaspekte: Biokunststoffe und Recycling

14. Literatur:
• Präsentation in pdf-Format
• W. Michaeli, E. Haberstroh, E. Schmachtenberg, G. Menges: Werkstoffkunde Kunststoffe, Hanser Verlag
• W. Michaeli: Einführung in die Kunststoffverarbeitung, Hanser Verlag
• G. Ehrenstein: Faserverbundkunststoffe, Werkstoffe - Verarbeitung - Eigenschaften, Hanser Verlag

15. Lehrveranstaltungen und -formen:
140101 Vorlesung Kunststofftechnik - Grundlagen und Einführung

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 56 Stunden
Nachbearbeitungszeit: 124 Stunden
Summe: 180 Stunden

Es gibt keine alten Prüfungsaufgaben

17. Prüfungsnummer/n und -name:
14011 Kunststofftechnik - Grundlagen und Einführung (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :
• 37690 Kunststoff-Konstruktionstechnik
• 37700 Kunststoffverarbeitungstechnik
• 18380 Kunststoffverarbeitung 1
• 39420 Kunststoffverarbeitungstechnik 1
• 18390 Kunststoffverarbeitung 2
• 39430 Kunststoffverarbeitungstechnik 2
• 41150 Kunststoff-Werkstofftechnik
• 18400 Auslegung von Extrusions- und Spritzgießwerkzeugen
• 32690 Auslegung von Extrusions- und Spritzgießwerkzeugen
• 18410 Kunststoffaufbereitung und Kunststoffrecycling
• 39450 Kunststoffaufbereitung und Kunststoffrecycling
• 18420 Rheologie und Rheometrie der Kunststoffe
• 32700 Rheologie und Rheometrie der Kunststoffe

19. Medienform:
• Beamer-Präsentation
• Tafelanschriebe

20. Angeboten von:
Institut für Kunststofftechnik
Modul: 14160 Methodische Produktentwicklung

2. Modulkürzel: 072710010
5. Moduldauer: 2 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Hansgeorg Binz

9. Dozenten: Hansgeorg Binz

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technikpädagogik
 → Vorgezogene Master-Module

B.Sc. Technikpädagogik
 → Wahlpflichtfach → Wahlpflichtfach Maschinenbau → Modulcontainer Wahlpflichtbereich (Mach-TP)
 →

M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau → Fahrzeugtechnik → Mach-TP
 →

M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau → Fertigungstechnik → Mach-TP
 →

M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau → Heizungs-, Lüftungs- und Klimatechnik → Mach-TP
 →

M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau → Fahrzeugtechnik → Mach-TP
 →

M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau → Fertigungstechnik → Mach-TP
 →

M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau → Heizungs-, Lüftungs- und Klimatechnik → Mach-TP
 →

11. Empfohlene Voraussetzungen:
Abgeschlossene Grundlagenausbildung in Konstruktionslehre z. B. durch die Module
 • Konstruktionslehre I - IV oder
 • Grundzüge der Maschinenkonstruktion + Grundlagen der Produktentwicklung bzw.
 • Konstruktion in der Medizingerätetechnik I + II

12. Lernziele:
Im Modul Methodische Produktentwicklung
 • haben die Studierenden die Phasen, Methoden und die Vorgehensweisen innerhalb eines methodischen Produktentwicklungsprozesses kennen gelernt,
 • können die Studierenden wichtige Produktentwicklungsmethoden in kooperativen Lernsituationen (Kleingruppenarbeit) anwenden und präsentieren ihre Ergebnisse.

Erworbene Kompetenzen: Die Studierenden
• können die Stellung des Geschäftsbereichs „Entwicklung/Konstruktion“ im Unternehmen einordnen,
• beherrschen die wesentlichen Grundlagen des methodischen Vorgehens, der technischen Systeme sowie des Elementmodells,
• können allgemein anwendbare Methoden zur Lösungssuche anwenden,
• verstehen einen Lösungsprozess als Informationsumgewandlung,
• kennen die Phasen eines methodischen Produktentwicklungsprozesses,
• sind mit den wichtigsten Methoden zur Produktplanung, zur Klärung der Aufgabenstellung, zum Konzipieren, Entwerfen und zum Ausarbeiten vertraut und können diese zielführend anwenden,
• beherrschen die Baureihenfertigung und Baureihenentwicklung nach unterschiedlichen Ähnlichkeitsgesetzen sowie die Grundlagen der Baukastensystematik.

Der Vorlesungsstoff wird innerhalb eines eintägigen Workshops anhand eines realen Anwendungsbeispiels vertieft.

14. Literatur:
• Binz, H.: Methodische Produktentwicklung I + II. Skript zur Vorlesung

15. Lehrveranstaltungen und -formen:
• 141601 Vorlesung und Übung Methodische Produktentwicklung I
• 141602 Vorlesung und Übung Methodische Produktentwicklung II
• 141603 Workshop Methodeneinsatz im Produktentwicklungsprozess

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 50 h (4 SWS + Workshop)
Selbststudiumszeit / Nacharbeitszeit: 130 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name: 14161 Methodische Produktentwicklung (PL), schriftlich, eventuell mündlich, 120 Min., Gewichtung: 1.0, Prüfung: i. d. R. schriftlich (gesamter Stoff von beiden Semestern), nach jedem
| 18. Grundlage für ... : |
| 19. Medienform: | Beamer-Präsentation, Tafel |
| 20. Angeboten von: | Institut für Konstruktionstechnik und Technisches Design |
Modul: 12250 Numerische Methoden der Dynamik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072810005</th>
<th>5. Modulduer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Peter Eberhard</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Peter Eberhard</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B.Sc. Technikpädagogik, PO 2011, . Semester → Wahlpflichtfach -->Wahlpflichtfach Maschinenbau --> Modulcontainer Wahlpflichtbereich (Mach-TP)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.Sc. Technikpädagogik, PO 2009, . Semester → Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.Sc. Technikpädagogik, PO 2009, . Semester → Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.Sc. Technikpädagogik, PO 2015, . Semester → Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.Sc. Technikpädagogik, PO 2015, . Semester → Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.Sc. Technikpädagogik, PO 2015, . Semester → Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik -->Mach-TP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Grundlagen in Mathematik und Mechanik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>• Einführung in die numerischen Methoden zur Behandlung mechanischer Systeme</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Grundlagen der numerischen Mathematik: Numerische Prinziphe, Maschinenzahlen, Fehleranalyse</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Lineare Gleichungssysteme: Cholesky-Zerlegung, Gauß-Elimination, LR-Zerlegung, QR-Verfahren, iterative Methoden bei quadratischer Koeffizientenmatrix, Lineares Ausgleichsproblem</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
- Eigenwertproblem: Grundlagen, Normalformen, Vektoriteration, Berechnung von Eigenwerten mit dem QR-Verfahren, Berechnung von Eigenvektoren
- Anfangswertproblem bei gewöhnlichen Differentialgleichungen: Grundlagen, Einschrittverfahren (Runge-Kutta Verfahren)
- Werkzeuge und numerische Bibliotheken: für lineare Gleichungssysteme, Eigenwertprobleme und Anfangswertprobleme. Theorie und Numerik in der Anwendung - ein Vergleich

14. Literatur:
- Vorlesungsmitschrieb
- Vorlesungsunterlagen des ITM

15. Lehrveranstaltungen und -formen:
- 122501 Vorlesung Numerische Methoden der Dynamik
- 122502 Übung Numerische Methoden der Dynamik

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 42 h
 Selbstdstudium / Nacharbeitszeit bzw. Versuche: 138 h
 Gesamt: 180 h

17. Prüfungsnummer/n und -name:
 12251 Numerische Methoden der Dynamik (PL), schriftlich oder mündlich, 90 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:
 Beamer, Tablet-PC, Computervorführungen

20. Angeboten von:
 Institut für Technische und Numerische Mechanik
Modul: 14180 Numerische Strömungssimulation

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>041610002</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Eckart Laurien

9. Dozenten: • Eckart Laurien • Albert Ruprecht

10. Zuordnung zum Curriculum in diesem Studiengang:

- B.Sc. Technikpädagogik
 → Vorgezogene Master-Module

- B.Sc. Technikpädagogik
 → Wahlpflichtfach --> Wahlpflichtfach Maschinenbau --> Modulcontainer Wahlpflchtbereich (Mach-TP)
 →

- M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau --> Fahrzeugtechnik --> Mach-TP
 →

- M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau --> Fertigungstechnik --> Mach-TP
 →

- M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau --> Heizungs-, Lüftungs- und Klimatechnik --> Mach-TP
 →

- M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau --> Fahrzeugtechnik --> Mach-TP
 →

- M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau --> Fertigungstechnik --> Mach-TP
 →

- M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau --> Heizungs-, Lüftungs- und Klimatechnik --> Mach-TP
 →

11. Empfohlene Voraussetzungen: Grundlagen der Numerik, Strömungsmechanik oder Technische Strömungslehre

12. Lernziele: Studenten besitzen fundiertes Wissen über die Vorgehensweise, die mathematisch-physikalischen Grundlagen und die Anwendung der numerischen Strömungssimulation (CFD, Computational Fluid Dynamics) einschließlich der Auswahl der Turbulenzmodelle, sie sind in der Lage die fachgerechte Erweiterung, Verifikation und Validierung problemangepasster Simulationsrechnungen vorzunehmen

13. Inhalt:

- 1 Einführung
 - 1.1 Beispiel: Rohrkrümmer
 - 1.1.1 Einführende Demonstration
 - 1.1.2 Modellierung und Simulation in der Strömungsmechanik
 - 1.1.3 Strömungsphänomene in Rohrkrümmern
 - 1.1.4 Vorbereitung und Durchführung
 - 2 Vorgehensweise
 - 2.1 Physikalische Beschreibung
 - 2.1.1 Fluide und ihre Eigenschaften
2.1.2 Kompressibilität einer Gasströmung
2.1.3 Turbulenz
2.1.4 Dimensionsanalyse
2.1.5 Ausgebildete laminare Rohrströmung
2.2 Mathematische Formulierung
2.2.1 Eindimensionale Grundgleichungen der Stromfadentheorie
2.2.2 Ableitung der Navier-Stokes Gleichungen
2.2.3 Randbedingungen
2.2.4 Analytische Lösungen
2.2.5 Navier-Stokes Gleichungen für kompressible Strömung
2.3 Diskretisierung
2.3.1 Finite-Differenzen Methode für die Poissongleichung
2.3.2 Grundlagen der Finite-Volumen Methode
2.4 Koordinatentransformation und Netzgenerierung
2.4.1 Klassifizierung numerischer Netze
2.4.2 Netze für komplexe Geometrien
2.5 Simulationsprogramme
2.5.1 Übersicht
2.5.2 Das Rechenprogramm Ansys-CFX
2.5.3 Das Rechenprogramm Open Foam
3 Grundgleichungen und Modelle
3.1 Beschreibung auf Molekülebene
3.1.1 Gaskinetische Simulationsmethode
3.2 Laminare Strömungen
3.2.1 Hierarchie der Grundgleichungen
3.2.2 Die Euler-Gleichungen der Gasdynamik
3.2.3 Energiegleichung
3.2.4 Navier-Stokes Gleichungen für inkompressible Strömungen
3.3 Turbulente Strömungen
3.3.1 Visualisierung turbulenter Strömungen
3.3.2 Direkte Numerische Simulation
3.3.3 Reynoldsgleichungen für Turbulente Strömungen
3.3.4 Prandt'sches Mischungswegmodell
3.3.5 Algebraische Turbulenzmodelle
3.3.6 Zweigleichungs-Transportmodelle
3.3.7 Sekundärströmungen
3.3.8 Reynoldsspannungsmodele
3.3.9 Klassifikation von Turbulenzmodellen
3.3.10 Grobstruktursimulation
4 Qualität und Genauigkeit
4.1 Anforderungen
4.1.1 Fehler und Genauigkeit
4.1.2 Anforderungen der Strömungsphysik
4.1.3 Anforderungen des Ingenieurwesens
4.2 Numerische Fehler und Verifikation
4.2.1 Rundungsfehler
4.2.2 Numerische Diffusion
4.2.3 Netzabhängigkeit einer Lösung
4.3 Modelfehler und Validierung
4.3.1 Arbeiten mit Wandfunktionen
4.3.2 Beispiel: Rohrabzweig

14. Literatur:
- alle Vorlesungsfolien in ILIAS verfügbar
15. Lehrveranstaltungen und -formen:
 • 141801 Vorlesung und Übung Numerische Strömungssimulation
 • 141802 Praktikum Numerische Strömungssimulation

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 45h + Nacharbeitszeit: 131h + Praktikumszeit: 4 h = 180 h

17. Prüfungsnummer/n und -name:
 14181 Numerische Strömungssimulation (PL), schriftliche Prüfung,
 120 Min., Gewichtung: 1.0, keine Hilfsmittel zugelassen

18. Grundlage für ... :

19. Medienform:
 ppt-Folien (30 %), Tafel und Kreide (65 %), Computerdemonstration (5%)
 Manuskripte online

20. Angeboten von:
 Institut für Kernenergetik und Energiesysteme
Modul: 14190 Regelungstechnik

2. Modulkürzel: 074810060
5. Modulduer: 2 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Frank Allgöwer

9. Dozenten: • Frank Allgöwer
• Matthias Müller

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technikpädagogik, PO 2011, 4. Semester
→ Vorgezogene Master-Module

B.Sc. Technikpädagogik, PO 2011, 4. Semester
→ Wahlpflichtfach -->Wahlpflichtfach Maschinenbau -->
>Modulcontainer Wahlpflichtbereich (Mach-TP)

M.Sc. Technikpädagogik, PO 2009, 4. Semester
→ Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP

M.Sc. Technikpädagogik, PO 2009, 4. Semester
→ Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP

M.Sc. Technikpädagogik, PO 2009, 4. Semester
→ Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und
Klimatechnik -->Mach-TP

M.Sc. Technikpädagogik, PO 2015, 4. Semester
→ Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP

M.Sc. Technikpädagogik, PO 2015, 4. Semester
→ Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP

M.Sc. Technikpädagogik, PO 2015, 4. Semester
→ Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und
Klimatechnik -->Mach-TP

11. Empfohlene Voraussetzungen: • HM I-III
• Systemdynamische Grundlagen der Regelungstechnik

12. Lernziele: Die Studierenden

• haben umfassende Kenntnisse zur Analyse und Synthese linearer Regelkreise im Zeit- und Frequenzbereich,
• können auf Grund theoretischer Überlegungen Regler und Beobachter für dynamische Systeme entwerfen und validieren,
• kennen Methoden zur praktischen Umsetzung regelungstechnischer Methoden,
• können sich mit anderen Ingenieuren über regelungstechnische Methoden austauschen.

13. Inhalt: Vorlesung: „Einführung in die Regelungstechnik“:
Systemtheoretische Konzepte der Regelungstechnik, Stabilität (Nyquist-, Hurwitz- und Small-Gain-Kriterium,...), Beobachtbarkeit, Steuerbarkeit, Robustheit, Reglerentwurfsverfahren im Zeit- und Frequenzbereich (PID, Polvorgabe,Vorfilter,...), Beobachterentwurf
Praktikum: „Einführung in die Regelungstechnik“:
Implementierung der in der Vorlesung Einführung in die
Regelungstechnik erlernten Reglerentwurfsverfahren an praktischen
Laborversuchen

Projektwettbewerb:
Lösen einer konkreten Regelungsaufgabe in einer vorgegebenen Zeit in
Gruppen

Vorlesung „Mehrgrößenregelung“:
Modellierung von Mehrgrößensystemen: Zustandsraumdarstellung,
Übertragungsmatrizen, Analyse von Mehrgrößensystemen: Ausgewählte
mathematische Grundlagen aus der Funktionalanalysis und der Linearen
Algebra, Pole und Nullstellen, Steuerbarkeit und Beobachtbarkeit,
Stabilität von MIMO-Systemen: Small-Gain-Theorem, Nyquisttheorem,
Singulärwertezerlegung, Regelgüte; Reglerentwurfsverfahren:
Relative-Gain-Array-Verfahren, Polvorgabe, Eigenstrukturvorgabe,
Direct/Inverse Nyquist Array, Internal-Model-Principle

Es muss einer der folgenden Blöcke ausgewählt werden:

Block 1
- Vorlesung “Einführung in die Regelungstechnik”, 2 SWS, 5. Semester
- Projektwettbewerb zur Vorlesung “Einführung in die
 Regelungstechnik”, 1 SWS, 5. Semester
- Praktikum “Einführung in die Regelungstechnik”, 1 SWS, 6. Semester

Block 2
- Vorlesung “Einführung in die Regelungstechnik”, 2 SWS, 5. Semester
- Vorlesung “Mehrgrößenregelung”, 2 SWS, 6. Semester

Block 3
- Projektwettbewerb zur Vorlesung “Einführung in die
 Regelungstechnik”, 1 SWS, 5. Semester
- Praktikum “Einführung in die Regelungstechnik”, 1 SWS, 6. Semester
- Vorlesung “Mehrgrößenregelung”, 2 SWS, 6. Semester

Anmerkung: Block 3 muss und kann nur dann gewählt werden, wenn
die Vorlesung “Einführung in die Regelungstechnik” bereits in einem
anderen Modul gewählt wurde.

14. Literatur:
Vorlesung „Einführung in die Regelungstechnik“,
- Praktikum und Projektwettbewerb
- Horn, M. und Dourdoumas, N. Regelungstechnik., Pearson Studium,
 2004.

Vorlesung „Mehrgrößenregelung“ zusätzlich
- Lunze, J.. Regelungstechnik 2, Springer Verlag, 2004
15. Lehrveranstaltungen und -formen:
• 141901 Vorlesung Einführung in die Regelungstechnik
• 141902 Projektwettbewerb Einführung in die Regelungstechnik
• 141903 Praktikum Einführung in die Regelungstechnik
• 141904 Vorlesung Mehrgrößenregelung

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42h
Selbststudiumszeit / Nacharbeitszeit: 138h
Gesamt: 180h

17. Prüfungsnummer/n und -name:
• 14191 Einführung in die Regelungstechnik (PL), schriftlich, eventuell mündlich, 90 Min., Gewichtung: 1.0
• 14192 Mehrgrößenregelung (PL), schriftlich, eventuell mündlich, 60 Min., Gewichtung: 1.0
• 14193 Einführung in die Regelungstechnik Praktikum (USL), Sonstiges, Gewichtung: 1.0
• 14194 Einführung in die Regelungstechnik Projektwettbewerb (USL), Sonstiges, Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 15600 Schwingungen und Modalanalyse

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>074010001</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Apl. Prof. Michael Hanss

9. Dozenten: • Michael Hanss • Pascal Ziegler

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technikpädagogik, PO 2011, 6. Semester
→ Vorgezogene Master-Module

B.Sc. Technikpädagogik, PO 2011, 6. Semester
→ Wahlpflichtfach -->Wahlpflichtfach Maschinenbau -->
>Modulcontainer Wahlpflichtbereich (Mach-TP)

M.Sc. Technikpädagogik, PO 2009, 6. Semester
→ Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP

M.Sc. Technikpädagogik, PO 2009, 6. Semester
→ Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP

M.Sc. Technikpädagogik, PO 2009, 6. Semester
→ Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik -->Mach-TP

M.Sc. Technikpädagogik, PO 2015, 6. Semester
→ Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP

M.Sc. Technikpädagogik, PO 2015, 6. Semester
→ Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP

M.Sc. Technikpädagogik, PO 2015, 6. Semester
→ Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik -->Mach-TP

11. Empfohlene Voraussetzungen: Abgeschlossene Grundlagenausbildung in Technischer Mechanik, z.B. durch die Module TM I, TM II+III sowie TM IV

12. Lernziele:

• Der Studierende ist vertraut mit den Grundlagen von linearen (freien und erzwungenen) Schwingungen mit einem und mehreren Freiheitsgraden sowie den Grundlagen von linearen Schwingungen von Kontinua.

• Der Studierende beherrscht die mathematischen Methoden der Beschreibung von linearen Schwingungssystemen und ist in der Lage, die Schwingungsbeanspruchung von einfachen mechanischen Anordnungen und Strukturen zu berechnen.

• Der Studierende ist vertraut mit der messtechnischen Erfassung von Strukturschwingungen sowie der Aufbereitung der Messsignale im Frequenzbereich.

• Der Studierende ist in der Lage daraus die modalen Kenngrößen zu identifizieren.

13. Inhalt: Die Veranstaltung Technische Schwingungslehre vermittelt die Grundlagen der linearen Schwingungslehre in folgender Gliederung:
• Grundbegriffe und Darstellungsformen von Schwingungen
• Lineare Schwingungen mit einem Freiheitsgrad: konservative und
gedämpfte Eigenschwingungen, erzwungene Schwingungen mit
Beispielen
• Lineare Schwingungen mit endlich vielen Freiheitsgraden:
Eigenschwingungen und erzwungene Schwingungen mit harmonischer
Erregung
• Schwingungen kontinuierlicher Systeme.

Die Veranstaltung **Experimentelle Modalanalyse** vermittelt den Inhalt in
folgender Gliederung:
• Grundlagen und Anwendungen der experimentellen Modalanalyse
• Methoden zur Schwingungsanregung, Messverfahren
• Signalanalyse und -verarbeitung, Zeit- und
Frequenzbereichsdarstellung
• Frequenzgang, Übertragungsfunktion und deren modale Zerlegung
• Bestimmung modaler Kenngrößen, Modenerkennung und -vergleich

Es werden zudem Anwendungen auf Problemstellungen der industriellen
Praxis demonstriert.
Als praktischer Teil werden fachbezogene Versuche zur experimentellen
Modalanalyse angeboten.

14. Literatur:
• Vorlesungsskripte

Weiterführende Literatur für die Technische Schwingungslehre:
• K. Magnus, K. Popp: „Schwingungen“, 7. Aufl., Teubner, Stuttgart,
2005.

Weiterführende Literatur für die Experimentelle Modalanalyse:
• D. J. Ewins: „Modal Testing - theory, practice and application“, 2nd

15. Lehrveranstaltungen und -formen:
• 156001 Vorlesung Technische Schwingungslehre
• 156002 Vorlesung Experimentelle Modalanalyse

16. Abschätzung Arbeitsaufwand:
• Präsenzzzeit: 45h + Nacharbeitszeit: 135h = 180h

17. Prüfungsnummer/n und -name:
• 15601 Technische Schwingungslehre (PL), schriftliche Prüfung, 60
Min., Gewichtung: 1.0
• 15602 Experimentelle Modalanalyse (PL), schriftlich, eventuell
mündlich, 60 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:
• Overhead-Projektor, Tafel, Demonstrationsexperimente

20. Angeboten von:
Modul: 12270 Simulationstechnik

2. Modulkürzel: 074710002
5. Modulduar: 1 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 5.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Oliver Sawodny
9. Dozenten: Oliver Sawodny

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technikpädagogik
→ Vorgezogene Master-Module

B.Sc. Technikpädagogik
→ Wahlpflichtfach -->Wahlpflichtfach Maschinenbau -->
 >Modulcontainer Wahlpflichtbereich (Mach-TP)

M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP

M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP

M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und
 Klimatechnik -->Mach-TP

M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP

M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP

M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und
 Klimatechnik -->Mach-TP

11. Empfohlene Voraussetzungen:
 • Pflichtmodule Mathematik
 • Pflichtmodul Systemdynamik bzw. Teil 1 vom Pflichtmodul Regelungs- und Steuerungstechnik

12. Lernziele:
Die Studierenden kennen die grundlegenden Methoden und Werkzeuge zur Simulation von dynamischen Systemen und beherrschen deren Anwendung. Sie setzen geeignete numerische Integrationsverfahren ein und können das Simulationsprogramm in Abstimmung mit der ihnen gegebenen Simulationsaufgabe parametrisieren.

13. Inhalt:
Stationäre und dynamische Analyse von Simulationsmodellen; numerische Lösungen von gewöhnlichen Differentialgleichungen mit Anfangs- oder Randbedingungen; Stückprozesse als Warte-Bedien-Systeme; Simulationswerkzeug Matlab/Simulink und Arena

14. Literatur:
 • Vorlesungsumdrucke
15. Lehrveranstaltungen und -formen:
 • 122701 Vorlesung mit integrierter Übung Simulationstechnik
 • 122702 Praktikum Simulationstechnik

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 53 h
 Selbststudiumszeit / Nacharbeitszeit: 127 h
 Gesamt: 180 h

17. Prüfungsnummer/n und -name:
 • 12271 Simulationstechnik (PL), schriftliche Prüfung, 120 Min.,
 Gewichtung: 1.0, Hilfsmittel: Taschenrechner (nicht vernetzt,
 nicht programmierbar, nicht grafikfähig) sowie alle nicht
 elektronischen Hilfsmittel
 • 12272 Simulationstechnik: Erfolgreiche Teilnahme am Praktikum
 (USL), schriftlich, eventuell mündlich, Gewichtung: 1.0

18. Grundlage für ... :
 12290 Systemanalyse I

19. Medienform:
 -

20. Angeboten von:
 Institut für Systemdynamik
Modul: 14240 Technisches Design

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072710110</th>
<th>5. Modulduer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

| 8. Modulverantwortlicher: | Univ.-Prof. Thomas Maier |

| 9. Dozenten: | • Thomas Maier
• Markus Schmid |

→ Vorgezogene Master-Module

B.Sc. Technikpädagogik
→ Wahlpflichtfach -->Wahlpflichtfach Maschinenbau --> Modulcontainer Wahlpflichtbereich (Mach-TP)

→ M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP

→ M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP

→ M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik -->Mach-TP

→ M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP

→ M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP

→ M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik -->Mach-TP |

| 11. Empfohlene Voraussetzungen: | Abgeschlossene Grundlagen-ausbildung in Konstruktionslehre z. B. durch die Module Konstruktionslehre I - IV oder Grundzüge der Maschinen-konstruktion I / II |

| 12. Lernziele: | Im Modul Technisches Design
• besitzen die Studierenden nach dem Besuch des Moduls das Wissen über die wesentlichen Grundlagen des technisch orientierten Designs, als integraler Bestandteil der methodischen Produktentwicklung,
• können die Studierenden wichtige Gestaltungsmethoden anwenden und präsentieren ihre Ergebnisse.

Erworbene **Kompetenzen**:

Die Studierenden
• erwerben und besitzen fundierte Designkenntnisse für den Einsatz an der Schnittstelle zwischen Ingenieur und Designer, |
• beherrschen alle relevanten Mensch-Produkt-Anforderungen, wie z.B. demografische/geografische und psychografische Merkmale, relevante Wahrnehmungsarten, typische Erkennungsinhalte sowie ergonomische Grundlagen,
• beherrschen die Vorgehensweise zur Gestaltung eines Produkts, Produktprogramms bzw. Produkt-systems vom Aufbau, über Form-, Farb- und Grafikgestaltung innerhalb der Phasen des Designprozesses,
• können mit Kreativmethoden arbeiten, erste Konzepte erstellen und daraus Designentwürfe ableiten,
• beherrschen die Funktions- und Tragwerkgestaltung sowie die wichtige Mensch-Maschine-Schnittstelle der Interfacegestaltung,
• haben Kenntnis über die wesentlichen Parameter eines guten Corporate Designs.

Form- und Farbgebung mit Oberflächendesign und Grafik von Einzelprodukten. Interior-Design sowie das Design von Produktprogrammen und Produktsystemen mit Corporate-Design.

14. Literatur:
• Maier, T., Schmid, M.: Online-Skript IDeEnKompakt mit SelfStudy-Online-Übungen;
• Seeger, H.: Design technischer Produkte, Produktprogramme und -systeme, Springer-Verlag;
• Lange, W., Windel, A.: Kleine ergonomische Datensammlung, TÜV-Verlag

15. Lehrveranstaltungen und -formen:
• 142401 Vorlesung Technisches Design
• 142402 Übung und Praktikum Technisches Design

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 h
Selbststudiumszeit / Nacharbeitszeit: 138 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
14241 Technisches Design (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:
Vorlesungsskript, kombinierter Einsatz von Präsentationsfolien und Videos, mit Designmodellen und Produkten, Präsentation von Übungen mit Aufgabenstellung und Papiervorlagen

20. Angeboten von:
Modul: 13330 Technologiemanagement

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. Modulverantwortlicher:</th>
<th>Univ.-Prof. Dieter Spath</th>
</tr>
</thead>
</table>
| 9. Dozenten: | • Wilhelm Bauer
• Robert Hämmerl |

→ Vorgezogene Master-Module |
|---|--|
| | B.Sc. Technikpädagogik
→ Wahlpflichtfach -->Wahlpflichtfach Maschinenbau -- >Modulcontainer Wahlpflichtbereich (Mach-TP) |
| | → M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP |
| | → M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP |
| | → M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik -->Mach-TP |
| | → M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP |
| | → M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP |
| | → M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik -->Mach-TP |

| 11. Empfohlene Voraussetzungen: | keine |

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Sie Grenzen die Begriffe Technologiemanagement, Forschungs- und Entwicklungsmanagement und Innovationsmanagement gegeneinander ab und kennen die Bedeutung von Technologien.</td>
</tr>
<tr>
<td></td>
<td>Sie kennen klassische Aufbauorganisationen in Unternehmen sowie die Bedeutung der Ablauforganisation. Sie verstehen, wie Technologien in Unternehmen strategisch geplant und sinnvoll eingesetzt werden und wie sich der Einsatz neuer Technologien auswirkt.</td>
</tr>
<tr>
<td></td>
<td>Die Studierenden kennen die verschiedenen Innovationsgrade und -arten sowie Innovationshindernisse und -beschleuniger. Zudem sind ihnen Ziele und Risiken des Projektmanagements bekannt sowie die Grundzüge der Projektplanung. Die Instrumente des Technologie-</td>
</tr>
</tbody>
</table>
und Innovationsmanagements kennen sie hinsichtlich Effizienz, Finanzierungsmöglichkeiten und Kapazitätsplanung ebenso, wie verschiedene Möglichkeiten der internen und externen Zusammenarbeit.

Erworbene Kompetenzen: Die Studierenden

- können die Bedeutung des Technologiemanagements im Unternehmen einordnen
- kennen die wesentlichen Ansätze und Aufgaben des normativen, strategischen und operativen Technologiemanagements
- verstehen die Handlungsalternativen des Technologiemanagements
- kennen die Phasen eines methodischen Vorgehens im Technologiemanagement
- sind mit den wichtigsten Methoden zur Technologieplanung und -strategie vertraut und können diese zielführend anwenden

13. Inhalt:

Die Vorlesung vermittelt die Grundlagen und das Anwendungswissen zum Technologiemanagement.

Im Einzelnen werden folgende Themen behandelt:

Umfeld des Technologiemanagements, Begriffsklärungen, Organisationsmanagement, Integriertes Technologiemanagement, Normatives Technologiemanagement, Strategisches Technologiemanagement:

- Technologiefrühaufklärung
- Lebenszykluskonzepte
- Portfoliomanagement
- Erfahrungskurvenkonzept
- Technologiemanagement

Fallstudien zum strategischen Technologiemanagement, Operatives Technologiemanagement:

- Innovationsmanagement
- Projektmanagement
- Instrumente des Technologie- und Innovationsmanagements

Fallstudie Netzplantechnik

14. Literatur:

- Bauer, W.; Weber, B.: Skript zur Vorlesung Technologiemanagement

15. Lehrveranstaltungen und -formen:

- 133301 Vorlesung Technologiemanagement I
- 133302 Vorlesung Technologiemanagement II

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 46 Stunden
Selbststudium: 134 Stunden
Summe: 180 Stunden
<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>13331 Technologiemanagement (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Beamer-Präsentation, Videos, Animationen, Praktikum</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td></td>
</tr>
</tbody>
</table>
Modul: 13560 Technologien der Nano- und Mikrosystemtechnik I

2. Modulkürzel: 072420001
5. Modulduauer: 1 Semester

3. Leistungspunkte: 6.0 LP
6. Turnus: jedes Semester

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Hermann Sandmaier
9. Dozenten: Hermann Sandmaier

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technikpädagogik
 → Vorgezogene Master-Module
 B.Sc. Technikpädagogik
 → Wahlpflichtfach -->Wahlpflichtfach Maschinenbau --> Modulcontainer Wahlpflichtbereich (Mach-TP)
 →
 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP
 →
 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP
 →
 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik -->Mach-TP
 →
 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP
 →
 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP
 →
 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik -->Mach-TP
 →

11. Empfohlene Voraussetzungen: keine

12. Lernziele:
 Im Modul Technologien der Nano- und Mikrosystemtechnik I
 • haben die Studierenden die wichtigsten Technologien und Verfahren zur Herstellung von Bauelementen der Mikroelektronik als auch der Nano- und Mikrosystemtechnik kennen gelernt,
 • können die Studierenden einzelne technologische Prozesse bewerten und sind in der Lage Prozessabläufe selbstständig zu entwerfen.

Erworbene Kompetenzen:

 Die Studierenden

 • können die wichtigsten Materialien der Nano- und Mikrosystemtechnik benennen und beschreiben,
 • können die wichtigsten Verfahren der Mikroelektronik sowie der Nano- und Mikrosystemtechnik benennen und mit Hilfe physikalischer Grundlagenkenntnisse erläutern,

14. Literatur:

- Menz, W.; Mohr, J.; Paul, O., Mikrosystemtechnik für Ingenieure, Weinheim: Wiley-VCH, 2005
- Schwesinger N.; Dehne C.; Adler F., Lehrbuch Mikrosystemtechnik, Oldenburg Verlag, 2009

Online-Vorlesungen:

- http://www.sensedu.com
- http://www.ett.bme.hu/memsedu

Lernmaterialien:

- Vorlesungsfolien und -skript auf ILIAS

15. Lehrveranstaltungen und -formen:

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>Lehrveranstaltungsnummer</th>
<th>Formen</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung Technologien der Nano- und Mikrosystemtechnik I</td>
<td>135601</td>
<td>Vorlesung</td>
</tr>
</tbody>
</table>

16. Abschätzung Arbeitsaufwand:

- Präsenzzeit: 42 h
- Selbststudiumszeit / Nacharbeitszeit: 138 h
- Gesamt: 180 h

17. Prüfungsnummer/n und -name:

<table>
<thead>
<tr>
<th>Prüfungsnummer / -name</th>
<th>Prüfungsbereich</th>
<th>Prüfungsdauer</th>
<th>Gewichtung</th>
</tr>
</thead>
<tbody>
<tr>
<td>13561</td>
<td>Technologien der Nano- und Mikrosystemtechnik I (PL), schriftliche Prüfung</td>
<td>120 Min.</td>
<td>1.0</td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Präsentation mit Animationen und Filmen, Beamer, Tafel, Anschauungsmaterial</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Mikrosystemtechnik</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Modul: 15860 Thermische Verfahrenstechnik I

2. Modulkürzel: 042100015
5. Modulduauer: 1 Semester
3. Leistungspunkte: 6.0 LP
6. Turnus: jedes 2. Semester, SoSe
4. SWS: 4.0
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Joachim Groß
9. Dozenten: Joachim Groß
10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technikpädagogik
 → Vorgezogene Master-Module
 B.Sc. Technikpädagogik
 → Wahlpflichtfach -->Wahlpflichtfach Maschinenbau -- >Modulcontainer Wahlpflichtbereich (Mach-TP)
 →
 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP
 →
 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP
 →
 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik -->Mach-TP
 →
 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP
 →
 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP
 →
 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik -->Mach-TP
 →
11. Empfohlene Voraussetzungen: Thermodynamik I + II
 Thermodynamik der Gemische (empfohlen, nicht zwingend)
12. Lernziele:
 Die Studierenden
 • verstehen die Prinzipien zur Auslegung von Apparaten der Thermischen Verfahrenstechnik.
 • können dieses Wissen selbstständig anwenden, um konkrete Fragestellung der Auslegung thermischer Trennoperationen zu lösen, d.h. sie können die für die jeweilige Trennoperation notwendigen Prozessgrößen berechnen und die Apparate dimensionieren.
 • sind in der Lage verallgemeinerte Aussagen über die Wirksamkeit verschiedener Trennoperationen für ein gegebenes Problem zu treffen, bzw. eine geeignete Trennoperation auszuwählen.
 • können das erworbbene Wissen und Verständnis der Modellbildung thermischer Trennapparate weiterführend auch auf spezielle
Sonderprozesse anwenden. Die Studierenden haben das zur weiterführenden, eigenständigen Vertiefung notwendige Fachwissen.

- können durch eingebettete, praktische Übungen an realen Apparaten grundlegende Problematiken der bautechnischen Umsetzung identifizieren.

13. Inhalt:

14. Literatur:
- M. Baerns, Lehrbuch der Technischen Chemie, Band 2, Grundoperationen, Band 3, Chemische Prozesskunde, Thieme, Stuttgart
- R. Goedecke, Fluidverfahrenstechnik, Band 1 & 2, Wiley-VCH, Weinheim
- P. Grassmann, F. Widmer, H. Sinn, Einführung in die Thermische Verfahrenstechnik, de Gruyter, Berlin

15. Lehrveranstaltungen und -formen:
- 158601 Vorlesung Thermische Verfahrenstechnik I
- 158602 Übung Thermische Verfahrenstechnik I

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 56 h
- Selbststudiumszeit / Nacharbeitszeit: 124 h
- Gesamt: 180 h

17. Prüfungsnummer/n und -name:
- 15861 Thermische Verfahrenstechnik I (USL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0
- 15890 Thermische Verfahrenstechnik II

18. Grundlage für ...:
- 15890 Thermische Verfahrenstechnik II

19. Medienform:
- Der Vorlesungsinhalt wird als Tafelanschrieb entwickelt, ergänzt um Präsentationsfolien. Beiblätter werden zur Unterstützung ausgeteilt.

20. Angeboten von:
- Institut für Technische Thermodynamik und Thermische Verfahrenstechnik
Modul: 13570 Werkzeugmaschinen und Produktionssysteme

2. Modulkürzel: 073310001
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0
5. Moduladauer: 1 Semester
7. Sprache: Deutsch
8. Modulverantwortlicher: Prof. Uwe Heisel
9. Dozenten: Uwe Heisel

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technikpädagogik, PO 2011, 5. Semester
→ Vorgezogene Master-Module
B.Sc. Technikpädagogik, PO 2011, 5. Semester
→ Wahlpflichtfach -->Wahlpflichtfach Maschinenbau --> Modulcontainer Wahlpflichtbereich (Mach-TP)
→
B.Sc. Technikpädagogik, PO 2011, 5. Semester
→ Wahlpflichtfach -->Wahlpflichtfach Maschinenbau -->b) Fertigungstechnik Pflichtcontainer Grundlagen Fertigungstechnik
→
M.Sc. Technikpädagogik
→ Hauptfach Maschinenbau -->Fertigungstechnik -->Pflichtcontainer Fertigungstechnik-Hauptfach
→
M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP
→
M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Fertigungstechnik (Pflicht)
→
M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP
→
M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik -->Mach-TP
→
M.Sc. Technikpädagogik
→ Auflagenmodule des Masters
M.Sc. Technikpädagogik
→ Hauptfach Maschinenbau -->Fertigungstechnik -->Pflichtcontainer Fertigungstechnik-Hauptfach
→
M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP
→
M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Fertigungstechnik (Pflicht)
→
M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP
→
M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP
→
M.Sc. Technikpädagogik

12. Lernziele:
Die Studierenden kennen den konstruktiven Aufbau und die Funktionseinheiten von spanenden Werkzeugmaschinen und Produktionssystemen sowie die Formeln zu deren Berechnung, sie wissen, wie Werkzeugmaschinen und deren Funktionseinheiten funktionieren, sie können deren Aufbau und Funktionsweise erklären und die Formeln zur Berechnung von Werkzeugmaschinen anwenden.

13. Inhalt:

14. Literatur:
Skript, Vorlesungsunterlagen im Internet, alte Prüfungsaufgaben

15. Lehrveranstaltungen und -formen: 135701 Vorlesung Werkzeugmaschinen und Produktionssysteme

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 h
Selbststudiumszeit / Nacharbeitszeit: 138 h
Gesamt: 180 h

17. Prüfungssummer/n und -name: 13571 Werkzeugmaschinen und Produktionssysteme (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:
Medienmix: Präsentation, Tafelanschrieb, Videoclips

20. Angeboten von:
Institut für Werkzeugmaschinen
Modul: 13580 Wissens- und Informationsmanagement in der Produktion

2. Modulkürzel: 072410003
3. Leistungspunkte: 6.0 LP
4. SWS: 6.0
5. Modulduauer: 2 Semester
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Thomas Bauernhansl
9. Dozenten: Thomas Bauernhansl

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technikpädagogik
 → Vorgezogene Master-Module
 B.Sc. Technikpädagogik
 → Wahlpflichtfach -->Wahlpflichtfach Maschinenbau -->
 >Modulcontainer Wahlpflichtbereich (Mach-TP)
 →
 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP
 →
 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP
 →
 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und
 Klimatechnik -->Mach-TP
 →
 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP
 →
 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP
 →
 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und
 Klimatechnik -->Mach-TP
 →

11. Empfohlene Voraussetzungen: Fertigungslehre mit Einführung in die Fabrikorganisation. Es wird empfohlen die Vorlesung Fabrikbetriebslehre ergänzend zu belegen

12. Lernziele:

13. Inhalt:
 Moderne Produktionsunternehmen setzen eine Vielzahl an informationstechnischen Werkzeugen ein, um ihre Geschäftsprozesse zu unterstützen. Die Vorlesung vermittelt anhand der Lebenszyklen für Produkt, Technologie, Fabrik und Auftrag welche Methoden im industriellen Produktionsumfeld entlang dieser Lebenszyklen eingesetzt werden und welche IT-Systeme dabei unterstützend zum Einsatz kommen. Dabei geht die Vorlesung auch darauf ein, wie das Wissensmanagement und der Informationsfluss entlang der
Lebenszyklen innerhalb des produzierenden Unternehmens mit Hilfe dieser IT-Werkzeuge unterstützt werden.

<table>
<thead>
<tr>
<th>14. Literatur:</th>
<th>Skript zur Vorlesung</th>
</tr>
</thead>
</table>
| 15. Lehrveranstaltungen und -formen: | • 135801 Vorlesung Wissens- und Informationsmanagement in der Produktion I
• 135802 Übung Wissens- und Informationsmanagement in der Produktion I
• 135803 Vorlesung Wissens- und Informationsmanagement in der Produktion II
• 135804 Übung Wissens- und Informationsmanagement in der Produktion II |
Selbststudium: 117 Stunden |
| 17. Prüfungsnummer/n und -name: | 13581 Wissens- und Informationsmanagement in der Produktion (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0 |
| 18. Grundlage für ...: | |
| 19. Medienform: | Power-Point Präsentationen, Simulationen, Animationen und Filme |
| 20. Angeboten von: | Institut für Industrielle Fertigung und Fabrikbetrieb |
Modul: 14310 Zuverlässigkeitstechnik

4. SWS: 4.0 7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Bernd Bertsche
9. Dozenten: Bernd Bertsche

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technikpädagogik
 → Vorgezogene Master-Module
 B.Sc. Technikpädagogik
 → Wahlpflichtfach -->Wahlpflichtfach Maschinenbau --
 -->Modulcontainer Wahlpflichtbereich (Mach-TP)
 →
 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP
 →
 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP
 →
 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und
 Klimatechnik -->Mach-TP
 →
 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP
 →
 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP
 →
 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und
 Klimatechnik -->Mach-TP
 →

11. Empfohlene Voraussetzungen:
 Höhere Mathematik und abgeschlossene Grundlagenausbildung in
 Konstruktionslehre I-IV oder Grundzüge der Maschinenkonstruktion +
 Grundlagen der Produktentwicklung

12. Lernziele:
 Die Studierenden kennen die statistischen Grundlagen sowie die
 verschiedenen Methoden der Zuverlässigkeitstechnik.
 Sie beherrschen qualitative Methoden (FMEA, FTA, Design Review,
 ABC-Analyse) und quantitative Methoden (Boole, Markov, Monte Carlo
 u.a.) und können diese zur Ermittlung der Zuverlässigkeit technischer
 Systeme anwenden. Sie beherrschen die Testplanung, können
 Zuverlässigkeitsanalysen auswerten und Zuverlässigkeitsprogramme
 aufstellen.

13. Inhalt:
 • Bedeutung und Einordnung der Zuverlässigkeitstechnik
 • Übersicht zu Methoden und Hilfsmittel
 • Behandlung qualitativer Methoden zur systematischen Ermittlung
 von Fehlern bzw. Ausfällen und ihre Auswirkungen, z. B. FMEA (mit
 Übungen), Fehlerbaumanalyse FTA, Design Review (konstruktiv)
- Grundbegriffe der quantitativen Methoden zur Berechnung von Zuverlässigkeits- und Verfügbarkeitswerten, z. B. Boolsche Theorie (mit Übungen), Markov Theorie, Monte Carlo Simulation
- Auswertung von Lebensdauerversuchen (z. B. mit Weibullverteilung)
- Zuverlässigkeitsnachweisverfahren
- Zuverlässigkeitsicherungsprogramme

14. Literatur:
- VDA-Band 3.2: Zuverlässigkeitsicherung bei Automobilherstellern und Lieferanten.

15. Lehrveranstaltungen und -formen:
- 143101 Vorlesung und Übung Zuverlässigkeitechnik
- 143102 Praktikumsversuch FMEA

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 h Vorlesung und 2 h Praktikum
Selbststudiumszeit / Nacharbeitszeit: 136 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
14311 Zuverlässigkeitechnik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ...:

19. Medienform:
Vorlesung: Laptop, Beamer, Overhead

20. Angeboten von:
Institut für Maschinenelemente
5411 Fahrzeugtechnik (Pflicht)

Zugeordnete Module:

- 11390 Grundlagen der Verbrennungsmotoren
- 13280 Messtechnik - Fahrzeugmesstechnik
- 13590 Kraftfahrzeuge I + II
- 14130 Kraftfahrzeugmechatronik I + II
- 33030 Grundlagen der Fahrzeugtechnik
- 37810 Praktikum Kraftfahrzeuge
- 37830 Praktikum Verbrennungsmotoren
Modul: 33030 Grundlagen der Fahrzeugtechnik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>070820102</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>2 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Nach Anmeldung</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Nils Widdecke</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Jochen Wiedemann
• Nils Widdecke |
→ Hauptfach Maschinenbau -->Fahrzeugtechnik -->Pflichtcontainer Fahrzeugtechnik-Hauptfach
→ M.Sc. Technikpädagogik
→ Wahlprüffach Maschinenbau -->Fahrzeugtechnik -->Pflichtcontainer Fahrzeugtechnik
→ M.Sc. Technikpädagogik
→ Wahlprüffach Maschinenbau -->WPF Fahrzeugtechnik -->Pflichtcontainer Fahrzeugtechnik
→ M.Sc. Technikpädagogik
→ Hauptfach Maschinenbau -->Fahrzeugtechnik -->Pflichtcontainer Fahrzeugtechnik-Hauptfach
→ M.Sc. Technikpädagogik
→ Wahlprüffach Maschinenbau -->Fahrzeugtechnik -->Pflichtcontainer Fahrzeugtechnik
→ M.Sc. Technikpädagogik
→ Wahlprüffach Maschinenbau -->WPF Fahrzeugtechnik -->Pflichtcontainer Fahrzeugtechnik |
| 11. Empfohlene Voraussetzungen: | Kraftfahrzeuge I/II |
| 13. Inhalt: | • **Vehicle Aerodynamics I (formerly "Kraftfahrzeug-Aerodynamik I")**: flow equations; numerical flow simulation; flow forces and moments; influence of body design on aerodynamics; design of undercarriage; cooling air flow; incident flow conditions; road simulation; ventilation; engine and brake cooling; windscreenswiper.
* ab WS 14/15 wird diese Vorlesung ausschließlich auf Englisch angeboten
Kraftfahrzeug-Komponenten: Kraftübertragung: Kupplung, Getriebe, Gelenkwelven; automatische/stufenlose Getriebe; Lenkung: Lenkgetriebe, Servolenkungen, Überlagerungslenkung, Elektrische Lenkung; Bremsanlagen: Gesetzliche Vorschriften, theoretische Grundlagen, Komponenten von
Betriebsbremsanlagen, Nutzfahrzeugbremsanlagen; Bremssysteme; Thermokomponenten.

14. Literatur:
• Vorlesungsmanuskripte Kraftfahrzeug- Komponenten, KFZ-Aerodynamik I

15. Lehrveranstaltungen und -formen:
• 330301 Vehicle Aerodynamics I
• 330302 Vorlesung Kraftfahrzeug-Komponenten

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 h,
Selbststudium und Nachbearbeitung: 138 h,
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
33031 Grundlagen der Fahrzeugtechnik (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0

18. Grundlage für ...:

19. Medienform:
Tafelanschrieb, PPT-Präsentationen, Overheadfolien

20. Angeboten von:
Kraftfahrwesen
Modul: 11390 Grundlagen der Verbrennungsmotoren

2. Modulkürzel: 070800003
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0
5. Moduldauer: 1 Semester
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Michael Bargende
9. Dozenten: Michael Bargende
10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technikpädagogik, PO 2011, 4. Semester
 ➔ Vorgezogene Master-Module
 ➔ B.Sc. Technikpädagogik, PO 2011, 4. Semester
 ➔ Wahlpflichtfach -->Wahlpflichtfach Maschinenbau -->
 >Modulcontainer Wahlpflichtbereich (Mach-TP)
 ➔
 ➔ B.Sc. Technikpädagogik, PO 2011, 4. Semester
 ➔ Wahlpflichtfach -->Wahlpflichtfach Maschinenbau -->a)
 Fahrzeugtechnik Pflichtcontainer Grundlagen Fahrzeugtechnik
 ➔
 ➔ M.Sc. Technikpädagogik
 ➔ Hauptfach Maschinenbau -->Fahrzeugtechnik -->Pflichtcontainer
 Fahrzeugtechnik-Hauptfach
 ➔
 ➔ M.Sc. Technikpädagogik
 ➔ Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->
 >Fahrzeugtechnik (Pflicht)
 ➔
 ➔ M.Sc. Technikpädagogik
 ➔ Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP
 ➔
 ➔ M.Sc. Technikpädagogik
 ➔ Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP
 ➔
 ➔ M.Sc. Technikpädagogik
 ➔ Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und
 Klimatechnik -->Mach-TP
 ➔
 ➔ M.Sc. Technikpädagogik
 ➔ Hauptfach Maschinenbau -->Fahrzeugtechnik -->Pflichtcontainer
 Fahrzeugtechnik-Hauptfach
 ➔
 ➔ M.Sc. Technikpädagogik
 ➔ Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->
 >Fahrzeugtechnik (Pflicht)
 ➔
 ➔ M.Sc. Technikpädagogik
 ➔ Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP
 ➔
 ➔ M.Sc. Technikpädagogik
 ➔ Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP
 ➔
 ➔ M.Sc. Technikpädagogik
 ➔ Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und
 Klimatechnik -->Mach-TP

Stand: 07. Oktober 2015
11. Empfohlene Voraussetzungen: Grundkenntnisse aus 1. bis 4. Fachsemester

Informationen zur Prüfung:
Verständnis: keine Hilfsmittel zugelassen
Berechnung: alle Hilfsmittel außer programmierbare Taschenrechner, Lapto, Handy, etc.

14. Literatur:
• Vorlesungsmanuskript

15. Lehrveranstaltungen und -formen: 113901 Grundlagen der Verbrennungsmotoren

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 h
Selbststudiumszeit / Nacharbeitszeit: 138 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name: 11391 Grundlagen der Verbrennungsmotoren (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform: Tafelanschrieb, PPT-Präsentationen, Overheadfolien

20. Angeboten von: Verbrennungsmotoren
Modul: 13590 Kraftfahrzeuge I + II

2. Modulkürzel: 070800001
5. Moduldauer: 1 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Jochen Wiedemann
9. Dozenten: Jochen Wiedemann

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technikpädagogik, PO 2011, 5. Semester
→ Vorgezogene Master-Module

B.Sc. Technikpädagogik, PO 2011, 5. Semester
→ Wahlpflichtfach -->Wahlpflichtfach Maschinenbau -- >Modulcontainer Wahlpflichtbereich (Mach-TP)
→

B.Sc. Technikpädagogik, PO 2011, 5. Semester
→ Wahlpflichtfach -->Wahlpflichtfach Maschinenbau -->a) Fahrzeugtechnik Pflichtcontainer Grundlagen Fahrzeugtechnik
→

M.Sc. Technikpädagogik, PO 2009, . Semester
→ Hauptfach Maschinenbau -->Fahrzeugtechnik -->Pflichtcontainer Fahrzeugtechnik-Hauptfach
→

M.Sc. Technikpädagogik, PO 2009, . Semester
→ Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Fahrzeugtechnik (Pflicht)
→

M.Sc. Technikpädagogik, PO 2009, . Semester
→ Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP
→

M.Sc. Technikpädagogik, PO 2009, . Semester
→ Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP
→

M.Sc. Technikpädagogik, PO 2009, . Semester
→ Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik -->Mach-TP
→

M.Sc. Technikpädagogik, PO 2015, . Semester
→ Hauptfach Maschinenbau -->Fahrzeugtechnik -->Pflichtcontainer Fahrzeugtechnik-Hauptfach
→

M.Sc. Technikpädagogik, PO 2015, . Semester
→ Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Fahrzeugtechnik (Pflicht)
→

M.Sc. Technikpädagogik, PO 2015, . Semester
→ Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP
→

M.Sc. Technikpädagogik, PO 2015, . Semester
→ Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP
→

M.Sc. Technikpädagogik, PO 2015, . Semester
→ Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik -->Mach-TP
11. Empfohlene Voraussetzungen:

Kenntnisse aus den Fachsemestern 1 bis 4

12. Lernziele:

13. Inhalt:

Historie des Automobils, Kfz-Entwicklung, Karosserie, Antriebskonzepte, Fahrlieferungen - und -widerstände, Leistungsangebot, Fahrgrenzen, Räder und Reifen, Bremsen, Kraftübertragung, Fahrwerk, alternative Antriebskonzepte

Wichtig: Ab WS2015/16 ist die Prüfung ohne Hilfsmittel zu absolvieren.

14. Literatur:

- Wiedemann, J.: Kraftfahrzeuge I+II, Vorlesungsumdruck,
- Reimpell, J.: Fahrwerkstechnik: Grundlagen, Vogel-Fachbuchverlag, 2005

15. Lehrveranstaltungen und -formen:

- 135901 Vorlesung Kraftfahrzeuge I + II
- 135902 Übung Kraftfahrzeuge I + II

16. Abschätzung Arbeitsaufwand:

- Präsenzzeit: 42 h
- Selbststudiumszeit / Nacharbeitszeit: 138 h
- Gesamt: 180 h

17. Prüfungsnummer/n und -name:

13591 Kraftfahrzeuge I + II (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

13590 Kraftfahrzeuge I + II

18. Grundlage für ... :

13590 Kraftfahrzeuge I + II

19. Medienform:

Beamer, Tafel

20. Angeboten von:

Kraftfahrwesen
Modul: 14130 Kraftfahrzeugmechatronik I + II

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- **B.Sc. Technikpädagogik**: Vorgezogene Master-Module
- **M.Sc. Technikpädagogik**
 - Hauptfach Maschinenbau --> Fahrzeugtechnik --> Pflichtcontainer Fahrzeugtechnik-Hauptfach
 - Wahlpflichtfach Maschinenbau --> Fahrzeugtechnik --> Fahrzeugtechnik (Pflicht)
 - Wahlpflichtfach Maschinenbau --> WPF Fahrzeugtechnik --> Pflichtcontainer Fahrzeugtechnik
 - Wahlpflichtfach Maschinenbau --> Fahrzeugtechnik --> Fahrzeugtechnik (Pflicht)
 - Wahlpflichtfach Maschinenbau --> WPF Fahrzeugtechnik --> Pflichtcontainer Fahrzeugtechnik

11. Empfohlene Voraussetzungen: Grundkenntnisse aus den Fachsemestern 1 bis 4

12. Lernziele:

Die Studenten kennen mechatronische Komponenten in Automobilen, können Funktionsweisen und Zusammenhänge erklären.

Die Studenten können Entwicklungsmethoden für mechatronische Komponenten im Automobil einordnen und anwenden. Wichtige Entwicklungswerkzeuge können sie nutzen.

13. Inhalt:

VL Kfz-Mech I:

- kraftfahrzeugspezifische Anforderungen an die Elektronik
- Bordnetz (Energiemanagement, Generator, Starter, Batterie, Licht)
- Motorelektronik (Zündung, Einspritzung)
- Getriebelelektronik
- Lenkung
- ABS, ASR, ESP, elektromechanische Bremse, Dämpfungsregelung, Reifendrucküberwachung
- Sicherheitssysteme (Airbag, Gurt, Alarmanlage, Wegfahrsperre)
- Komfortsysteme (Tempomat, Abstandsregelung, Klimaanlage)
VL Kfz-Mech II:

- Grundlagen mechatronischer Systeme (Steuerung/Regelung, diskrete Systeme, Echtzeitsysteme, eingebettete Systeme, vernetzte Systeme)
- Systemarchitektur und Fahrzeugentwicklungsprozesse
- Kernprozess zur Entwicklung von mechatronischen Systemen und Software (Schwerpunkt V-Modell)

Laborübungen Kraftfahrzeugmechatronik

- Rapid Prototyping (Simulink)
- Modellbasierte Funktionsentwicklung mit TargetLink
- Elektronik

14. Literatur:

Vorlesungsumdruck: „Kraftfahrzeugmechatronik I“ (Reuss)

15. Lehrveranstaltungen und -formen:

- 141301 Vorlesung Kraftfahrzeugmechatronik I
- 141302 Vorlesung Kraftfahrzeugmechatronik II
- 141303 Laborübungen Kraftfahrzeugmechatronik

16. Abschätzung Arbeitsaufwand:

- Präsenzzeit: 42 h
- Selbststudiumszeit / Nacharbeitszeit: 138 h
- Gesamt: 180 h

17. Prüfungsnummer/n und -name:

14131 Kraftfahrzeugmechatronik I + II (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ...:

19. Medienform:

Vorlesung (Beamer), Laborübungen (am PC, betreute Zweiergruppen)

20. Angeboten von:

Kraftfahrzeugmechatronik
Modul: 13280 Messtechnik - Fahrzeugmesstechnik

2. Modulkürzel: 070708004
5. Moduldauer: 2 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Jochen Wiedemann

9. Dozenten:
• Gerhard Eyb
• Nils Widdecke
• Hubert Fußhoeller

10. Zuordnung zum Curriculum in diesem Studiengang:

* B.Sc. Technikpädagogik, PO 2011, 5. Semester
 → Hauptfach -->Hauptfach Maschinenbau -->Kernmodule
 → Maschinenbau

* B.Sc. Technikpädagogik, PO 2011, 5. Semester
 → Vorgezogene Master-Module

* M.Sc. Technikpädagogik, PO 2009, 5. Semester
 → Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -- >Fahrzeugtechnik (Pflicht)

* M.Sc. Technikpädagogik, PO 2009, 5. Semester
 → Wahlpflichtfach Maschinenbau -->WPF Fahrzeugtechnik -- >Pflichtcontainer Fahrzeugtechnik

* M.Sc. Technikpädagogik, PO 2015, 5. Semester
 → Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -- >Fahrzeugtechnik (Pflicht)

* M.Sc. Technikpädagogik, PO 2015, 5. Semester
 → Wahlpflichtfach Maschinenbau -->WPF Fahrzeugtechnik -- >Pflichtcontainer Fahrzeugtechnik

11. Empfohlene Voraussetzungen: keine

12. Lernziele:
• Grundkenntnisse der Messtechnik mit Anwendung im Praktikum,
 Umgang mit Messgrößen und Messverfahren, Techniken zur
 Auswertung
• Grundkenntnisse zur fahrzeug- und motorspezifischen Messtechnik

13. Inhalt:

* Teil A (2 SWS)
 • Grundlagen der Messtechnik
 • Messkette
 • Messunsicherheiten
 • Messmethoden
 • Messverfahren für mechanische, thermische, akustische, elektrische
 Größen
 • Strömungs- und Durchflussmessung
 • Schadstoffmassung, Gasanalyse

* Teil B (1 SWS)
 Druck- Kraft- und Geschwindigkeitsmesstechniken in
 Windkanalströmungen und an Fahrzeugen, praxisorientierte Probleme
 beim Aufbau und der Inbetriebnahme von Prüfständen
Teil C: (1 SWS)

Versuch 1: Leistungsmessung, Indizieren
Versuch 2: Kraft, Dehnung (DMS), Schwingungen
Versuch 3: Messung umweltrelevanter Größen
Versuch 4: Druck- und Temperaturmessung
Versuch 5: Durchflussmessung Luft/Wasser

14. Literatur:
- ITSM: Manuskript zur Vorlesung
- IVK: Skripte zur Vorlesung
- u. a. Hofmann: Taschenbuch der Messtechnik
- Profos: Grundlagen der Messtechnik
- Müller: Mechanische Größen elektrisch gemessen
- Bonfig: Durchflussmessung von Flüssigkeiten und Gasen
- Adunka: Messunsicherheiten

15. Lehrveranstaltungen und -formen:
- 132801 Vorlesung Messtechnik - Fahrzeugmesstechnik 1
- 132802 Vorlesung Messtechnik - Fahrzeugmesstechnik 2
- 132803 Praktikum Messtechnik - Fahrzeugmesstechnik

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 57 h
Selbststudiumszeit / Nacharbeitszeit: 123 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name: 13281 Messtechnik - Fahrzeugmesstechnik (USL), schriftliche Prüfung, 60 Min., Und Praktikum mit Testat je Versuch

18. Grundlage für ...

19. Medienform:

20. Angeboten von: Kraftfahrwesen
Modul: 37810 Praktikum Kraftfahrzeuge

2. Modulkürzel: 070820106
5. Moduldauer: 1 Semester
3. Leistungspunkte: 3.0 LP
6. Turnus: jedes Semester
4. SWS: 2.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Nils Widdecke

9. Dozenten:

 ⟸ Wahlpflichtfach Maschinenbau --> Fahrzeugtechnik -- Fahrzeugtechnik (Pflicht)
 ⟸ M.Sc. Technikpädagogik
 ⟸ Wahlpflichtfach Maschinenbau --> Fahrzeugtechnik -- Fahrzeugtechnik (Pflicht)

11. Empfohlene Voraussetzungen: Kraftfahrzeuge I/II

 • kennen die Methoden, Verfahren und Prüfeinrichtungen zur Prüfung von Bauteilen und Baugruppen von Kraftfahrzeugen,
 • können selbständig Prüfungen und Tests konzipieren, erstellen und durchführen,
 • sind in der Lage, die Prüfungen und Tests auszuwerten und die Ergebnisse zu beurteilen.

 • Modellwindkanal: Im Versuch Modellwindkanal werden die Wechselbeziehungen zwischen den wichtigsten Strömungsgleichungen (Kontinuitäts- und Bernoulli-Gleichung) und dimensionslosen Beiwerten und Kennzahlen (Druck-, Auftriebs- und Widerstandsbeiwert, etc., Reynolds- und Machzahl) in der praktischen Versuchsanwendung veranschaulicht. Zur Beurteilung der Güte der experimentellen Simulation der Straßenfahrt im Windkanal wird insbesondere der Einfluss der Grenzschichtkonditionierung sowie die Darstellung der bewegten Fahrbahn und der drehenden Räder auf die Druckverteilung und die daraus resultierenden Kräfte und Momente am Fahrzeugmodell untersucht.
 • Außengeräuschmessung: Der Versuch beinhaltet eine Übersicht über die Anforderungen der ISO362 zur beschleunigten Vorbeifahrt, sowie eine praktische Versuchsdurchführung in einer studentischen Variante.
 • Straßensimulation: Der Versuch gibt einen groben Überblick über die Fahrzeugakustikprüfstände des FKFS. Das Verfahren der Straßensimulation auf einem Hydropulsprüfstand wird erklärt und im Anschluss findet ein "praktisches Erfahren" eines Simulationsergebnisses statt.
 • Aeroakustik: Der Versuch behandelt den 1:1 Fahrzeugwindkanal im Bezug auf die Aeroakustik eines Kraftfahrzeugs. Verantwortliche Mechanismen und Hintergründe werden erklärt und in der Praxis "erhört".
• Kraftfahrzeugprüfstand: Im Rahmen des Versuches werden auf einem Rollenprüfstand an einem Kfz Leistungsmessungen durchgeführt. Die Versuchsdaten werden im Anschluss ausgewertet und diskutiert.

Aus den folgenden Spezialisierungsfachversuchen sind 4 auszuwählen:
- Modellwindkanal
- Außengeräuschmessung
- Kfz-Prüfstand
- Straßensimulation
- Aeroakustik

14. Literatur:
- Umdrucke zu den Laborversuchen und den Praktischen Übungen

15. Lehrveranstaltungen und -formen:
- 378101 Spezialisierungsfachversuch 1
- 378102 Spezialisierungsfachversuch 2
- 378103 Spezialisierungsfachversuch 3
- 378104 Spezialisierungsfachversuch 4
- 378105 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 1
- 378106 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 2
- 378107 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 3
- 378108 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 4

16. Abschätzung Arbeitsaufwand:
Präsenzzeit 28 h, Selbststudium und Nachbearbeitung 62 h, Gesamt 90 h

17. Prüfungsnummer/n und -name:
37811 Praktikum Kraftfahrzeuge (USL), Sonstiges, Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Kraftfahrwesen
Modul: 37830 Praktikum Verbrennungsmotoren

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>070810107</th>
<th>5. Modulduauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
<td>6. Turnus:</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. Modulverantwortlicher:</th>
<th>Bernhard Bäuerle-Hahn</th>
</tr>
</thead>
</table>

12. Lernziele:

Die Studierenden sind in der Lage, theoretische Vorlesungsinhalte anzuwenden und in der Praxis umzusetzen. Die Studierenden

- kennen die Methoden, Verfahren und Prüfeinrichtungen zur Prüfung von Bauteilen und Baugruppen aus Verbrennungsmotoren,
- können selbständig Prüfungen und Tests konzipieren, erstellen und durchführen
- sind in der Lage, die Prüfungen und Tests auszuwerten und die Ergebnisse zu beurteilen.
- kennen Grundlagen von Kommunikation, Diagnose, Energiemanagement und Motorsteuerungssystemen im Kraftfahrzeug

13. Inhalt:

Nähere Informationen zu den Praktischen Übungen: APMB erhalten Sie zudem unter http://www.uni-stuttgart.de/mabau/msc/msc_mach/linksunddownloads.html

- Abgasmessung: Grundlagen der Abgas- und Schadstoffentstehung sowie entsprechender Messverfahren zu ihrer Erfassung.

- Motorindizierung: In diesem Versuch werden die Grundlagen der Motorindizierung vermittelt. Dazu gehört insbesondere der Prüfstandsaufbau mit der dazugehörenden Messtechnik und Vorgehensweise, wobei der Schwerpunkt auf der Messkette für die Druckindizierung liegt. Weiterhin werden die Grundlagen der thermodynamischen Auswertung der Messungen behandelt.

- Schallleistungs messung: Sowohl gesetzliche als auch kundenspezifische Anforderungen machen es notwendig, Geräuschemissionen eines Verbrennungsmotors genau zu
bestimmen. Zur Identifikation dieser kann als Maß die Schallleistung, d.h. die Gesamtenergie, die von der Schallquelle je Zeiteinheit in Form von Luftschall freigesetzt wird, herangezogen werden. Im durchzuführenden Praktikumsversuch wird die Schalleistung eines Verbrennungsmotors im Hallraum bei drei verschiedenen Lastzuständen ermittelt. Dabei muss in experimentellen Untersuchungen der vom Verbrennungsmotor emittierte Schalldruck gemessen werden.

Aus den folgenden Spezialisierungsfachversuchen sind 4 auszuwählen:

- Leistungs- und Verbrauchsmessung
- Abgasmessung
- Motorindizierung
- Schalleistungsmessung

14. Literatur:
- Umdrucke zu den Laborversuchen und den Praktischen Übungen

15. Lehrveranstaltungen und -formen:
- 378301 Spezialisierungsfachversuch 1
- 378302 Spezialisierungsfachversuch 2
- 378303 Spezialisierungsfachversuch 3
- 378304 Spezialisierungsfachversuch 4
- 378305 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 1
- 378306 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 2
- 378307 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 3
- 378308 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 4

16. Abschätzung Arbeitsaufwand:
Präsenzzeit 30 h,
Selbststudium und Nachbearbeitung 60 h
Gesamt: 90 h

17. Prüfungsnummer/n und -name:
37831 Praktikum Verbrennungsmotoren (USL), Sonstiges, Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Verbrennungsmotoren
5412 Fahrzeugtechnik (Wahl)

Zugeordnete Module:

12320 Technische Thermodynamik 1
13290 Automobiltechnisches Fachpraktikum
13750 Technische Strömungslehre
13900 Ackerschlepper und Ölhydraulik
14150 Leichtbau
17170 Elektrische Antriebe
32780 Karosseriebau
33020 Grundlagen der Fahrzeugdynamik
34030 Spezielle Themen bei Verbrennungsmotoren
37760 Fahreigenschaften des Kraftfahrzeugs
67290 Grundlagen Schienenfahrzeugtechnik und -betrieb
Modul: 13900 Ackerschlepper und Ölhydraulik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>070000001</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Stefan Böttinger
9. Dozenten: Stefan Böttinger

10. Zuordnung zum Curriculum in diesem Studiengang:
- M.Sc. Technikpädagogik
 - Hauptfach Maschinenbau -->Fahrzeugtechnik -->Wahlcontainer Fahrzeugtechnik-Hauptfach
 - Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Wahlcontainer Fahrzeugtechnik (Wahl)
- M.Sc. Technikpädagogik
 - Wahlpflichtfach Maschinenbau -->WPF Fahrzeugtechnik -->Wahlcontainer Fahrzeugtechnik
- M.Sc. Technikpädagogik
 - Hauptfach Maschinenbau -->Fahrzeugtechnik -->Wahlcontainer Fahrzeugtechnik-Hauptfach
 - Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Wahlcontainer Fahrzeugtechnik (Wahl)
 - Wahlpflichtfach Maschinenbau -->WPF Fahrzeugtechnik -->Wahlcontainer Fahrzeugtechnik

11. Empfohlene Voraussetzungen:
- Abgeschlossene Grundlagenausbildung durch 4 Fachsemester

12. Lernziele:
Die Studierenden können
- die wesentlichen Anforderungen der Landwirtschaft an landwirtschaftliche Maschinen, insbesondere Ackerschlepper, benennen und erklären
- ölhydraulischen Komponenten bezüglich ihrer Verwendung in Anlagen benennen und erklären
- unterschiedliche technischen Ausprägungen an Maschinen und Geräten und ölhydraulischen Anlagen bewerten

13. Inhalt:
- Entwicklung, Bauarten und Einsatzbereiche von AS
- Stufen-, Lastschalt-, stufenlose und leistungsverzweigte Getriebe
- Motoren und Zusatzaggregate
- Fahrwerke und Fahrkomfort
- Fahrmechanik, Kraftübertragung Rad/Boden
- Fahrzeug und Gerät
- Strömungstechnische Grundlagen
- Energiewandler: Hydropumpen und -motoren, Hydronylinder
- Anlagenelemente: Ventile, Speicher, Wärmetauscher
- Grundschaltungen (Konstantstrom, Konstantdruck, Load Sensing)
- Steuerung und Regelung von ölhydraulischen Anlagen

Stand: 07. Oktober 2015
14. Literatur:
- Skript
- Eichhorn et al: Landtechnik. Ulmer

15. Lehrveranstaltungen und -formen:
- 139001 Vorlesung und Übung Ackerschlepper und Ölhydraulik
- 139002 Praktikumsversuch 1, wählbar aus dem APMB-Angebot des Instituts
- 139003 Praktikumsversuch 2, wählbar aus dem APMB-Angebot des Instituts

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 h
Selbststudiumszeit / Nacharbeitszeit: 138 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
13901 Ackerschlepper und Ölhydraulik (PL), mündliche Prüfung, 40 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:
- Beamer, Tafel, Skript

20. Angeboten von:
Modul: 13290 Automobiltechnisches Fachpraktikum

2. Modulkürzel: 070708005
5. Modulduauer: 1 Semester

3. Leistungspunkte: 3.0 LP
6. Turnus: jedes Semester

4. SWS: 2.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Bernhard Bäuerle-Hahn

9. Dozenten:
• Dietmar Schmidt
• Hubert Fußhoeller
• Werner Krantz
• Markus Pabelick

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Technikpädagogik, PO 2009, 6. Semester
→ Hauptfach Maschinenbau -->Fahrzeugtechnik -->Wahlcontainer
 Fahrzeugtechnik-Hauptfach

M.Sc. Technikpädagogik, PO 2009, 6. Semester
→ Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik --
 >Fahrzeugtechnik (Wahl)

M.Sc. Technikpädagogik, PO 2009, 6. Semester
→ Wahlpflichtfach Maschinenbau -->WPF Fahrzeugtechnik --
 >Wahlcontainer Fahrzeugtechnik

M.Sc. Technikpädagogik, PO 2015, 6. Semester
→ Hauptfach Maschinenbau -->Fahrzeugtechnik -->Wahlcontainer
 Fahrzeugtechnik-Hauptfach

M.Sc. Technikpädagogik, PO 2015, 6. Semester
→ Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik --
 >Fahrzeugtechnik (Wahl)

M.Sc. Technikpädagogik, PO 2015, 6. Semester
→ Wahlpflichtfach Maschinenbau -->WPF Fahrzeugtechnik --
 >Wahlcontainer Fahrzeugtechnik

11. Empfohlene Voraussetzungen: Grundlagen der Semester 1 - 4,
fachspezifische Grundlagen 5. Semester

12. Lernziele:
Die Studierenden
• kennen die Methoden, Verfahren und Prüfeinrichtungen zur
 Prüfung von Bauteilen und Baugruppen aus Kraftfahrzeugen und
 Verbrennungsmotoren,
• kennen die Methoden, Verfahren und Prüfeinrichtungen zur Prüfung
 von Kraftfahrzeugen und Verbrennungsmotoren
• können selbständig Prüfungen und Tests konzipieren, erstellen und
 durchführen
• sind in der Lage, die Prüfungen und Tests auszuwerten und die
 Ergebnisse zu beurteilen.
• kennen Grundlagen von Kommunikation, Diagnose, Energiemanagement und Motorsteuerungssystemen im Kraftfahrzeug
• verstehen die technischen Eigenheiten und Problemfelder moderner Kommunikationssysteme und Bordnetzelektronik
• können elektronische Systeme im Kfz analysieren sowie Fehler identifizieren und beseitigen

13. Inhalt:

• Im Fach Verbrennungsmotoren kann an Stelle der zwei verpflichtenden Versuche sowie eines Wahlversuchs die Lehrveranstaltung "Praktische Übungen an Verbrennungsmotoren" besucht werden (begrenzte Teilnehmerzahl).

• Im Fach Kraftfahrzeuge kann an Stelle der zwei verpflichtenden Versuche sowie eines Wahlversuchs die Lehrveranstaltung "Praktische Übungen an Kraftfahrzeugen" besucht werden (begrenzte Teilnehmerzahl).

• Gilt nur für die B.Sc. FMT PO 2011 und 2013!

Praktische Übungen an Kraftfahrzeug-Prüfständen

• Außengeräuschemessung
• Straßensimulation
• Modellwindkanal
• Kraftfahrzeugprüfstand

Praktische Übungen an Motoren-Prüfständen

• Leistungs- und Verbrauchsmessung
• Abgasmessung
• Druckindizierung
• Schallleistungsmessung

Praktische Übungen an Kraftfahrzeugmechatronik-Prüfständen

• Energiemanagement
• Motormanagement
• CAN-Grundlagen
• Elektromobilität

Praktische Übungen an Kraftfahrzeugen

14. Literatur:

• Umdrucke zu den Laborversuchen und den Praktischen Übungen
15. Lehrveranstaltungen und -formen:

- 132901 Praktische Übungen an Kraftfahrzeug-Prüfständen
- 132902 Praktische Übungen an Motoren-Prüfständen
- 132903 Praktische Übungen an Kraftfahrzeugmechatronik-Prüfständen
- 132904 Praktische Übungen an Verbrennungsmotoren
- 132905 Praktische Übungen an Kraftfahrzeugen

16. Abschätzung Arbeitsaufwand:

- Präsenzzeit: 4 h / Versuch
- Selbststudium und Nacharbeitung: 6 h / Versuch
- Gesamt: 90 h

17. Prüfungsnummer/n und -name:

13291 Automobiltechnisches Fachpraktikum (USL), Sonstiges, Unbewerteter Teilnahmenachweis (Testat)

18. Grundlage für ... :

19. Medienform:

Praktische Versuche und Arbeiten an Prüfständen, Bauteilen, Baugruppen und Verbrennungsmotoren

20. Angeboten von:
Modul: 17170 Elektrische Antriebe

2. Modulkürzel: 051010013
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0
5. Modulduer: 1 Semester
6. Turnus: jedes 2. Semester, SoSe
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Jörg Roth-Stielow
9. Dozenten: Jörg Roth-Stielow
10. Zuordnung zum Curriculum in diesem Studiengang:
 → Wahlpflichtfach Maschinenbau → Fahrzeugtechnik → Fahrzeugtechnik (Wahl)
 → M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau → Fahrzeugtechnik → Fahrzeugtechnik (Wahl)
11. Empfohlene Voraussetzungen:
12. Lernziele:
 • ...kennen den Aufbau, die Komponenten und die Auslegungskriterien von geregelten elektrischen Antrieben.
 • ...können mechanische Antriebsstränge eines elektromechanischen Antriebssystems mathematisch beschreiben und einfache Aufgabenstellungen lösen.
 • ...können leistungselektronische Stellglieder eines elektromechanischen Antriebssystems mathematisch beschreiben und einfache Aufgabenstellungen lösen.
 • ...können elektrische Maschinen eines elektromechanischen Antriebssystems mathematisch beschreiben und einfache Aufgabenstellungen lösen.
13. Inhalt:
 • Grundlagen der Antriebstechnik
 • Elektronische Stellglieder
 • Gleichstrommaschine
 • Drehfeldmaschinen
14. Literatur:
 • Kremser, Andreas: Elektrische Maschinen und Antriebe; B. G. Teubner, Stuttgart, 2004
 • Schröder, Dierk: Elektrische Antriebe 2; Springer, Berlin, 1995
 • Riefenstahl, U.: Elektrische Antriebssysteme; B. G. Teubner, Wiesbaden, 2006
 • Heumann, K.: Grundlagen der LeistungselektronikB. G. Teubner, Stuttgart, 1989
15. Lehrveranstaltungen und -formen:
 • 171701 Vorlesung Elektrische Antriebe
 • 171702 Übung Elektrische Antriebe
16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 56 h
 Selbststudium: 124 h
 Gesamt: 180 h
17. Prüfungsnummer/n und -name:
 17171 Elektrische Antriebe (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0
18. Grundlage für ...:
<table>
<thead>
<tr>
<th>19. Medienform:</th>
<th>Tafel, Folien, Beamer</th>
</tr>
</thead>
<tbody>
<tr>
<td>20. Angeboten von:</td>
<td>Institut für Leistungselektronik und Elektrische Antriebe</td>
</tr>
</tbody>
</table>
Modul: 37760 Fahreigenschaften des Kraftfahrzeugs

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Kraftfahrzeuge I/II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>Die Studierenden kennen die grundlegenden Zusammenhänge und Einflussgrößen, welche die Fahreigenschaften eines Kraftfahrzeugs bestimmen und die Wechselbeziehung zwischen diesen Einflussgrößen. Sie kennen die wesentlichen Methoden zur Bestimmung und Beeinflussung der Fahreigenschaften.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>• Einführung, Eigenschaften der Reifen, Fahrzeug-Querdynamik (Fahrverhalten), Vertikalbewegungen des Fahrzeugs (Federungsverhalten), Fahrdemonstration. • Geeignete Methoden der Mechanik und Mathematik, mathematische Modelle, kombinierte Bewegungen, ausgewählte Einzelprobleme.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>377601 Vorlesung Fahreigenschaften des Kraftfahrzeugs I/II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Präsenzzeit 21 h, Selbststudium und Nachbearbeitung 69 h, Gesamt 90 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>---------------------------------</td>
<td>--</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>37761 Fahreigenschaften des Kraftfahrzeugs (BSL), schriftliche Prüfung, 30 Min., Gewichtung: 1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Tafelanschrieb, PPT-Präsentationen, Overheadfolien</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Kraftfahrwesen</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Modul: 67290 Grundlagen Schienenfahrzeugtechnik und -betrieb

2. Modulkürzel: 072611501
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0
5. Modulduauer: 2 Semester
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Corinna Salander
9. Dozenten: Corinna Salander
10. Zuordnung zum Curriculum in diesem Studiengang:
 M.Sc. Technikpädagogik
 → Hauptfach Maschinenbau -->Fahrzeugtechnik -->Wahlcontainer Fahrzeugtechnik-Hauptfach
 → M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik --> Fahrzeugtechnik (Wahl)
 → M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->WPF Fahrzeugtechnik -->Wahlcontainer Fahrzeugtechnik
 → M.Sc. Technikpädagogik
 → Hauptfach Maschinenbau -->Fahrzeugtechnik -->Wahlcontainer Fahrzeugtechnik-Hauptfach
 → M.Sc. Technikpädagogik
 → Note/Punkte bisher
 → M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik --> Fahrzeugtechnik (Wahl)
 → M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->WPF Fahrzeugtechnik -->Wahlcontainer Fahrzeugtechnik

11. Empfohlene Voraussetzungen: Keine, da das Modul in das Thema einführt

13. Inhalt:
 • Historische, politische und technische Grundlagen des Systems Bahn, insbesondere der Zusammenhang von Fahrzeugen, Infrastruktur und Betrieb
 • Eisenbahninfrastrukturelemente mit Einfluss auf die Konstruktion und Zulassung von Schienenfahrzeugen
 • Grundlagen der Schienenfahrzeugtechnik, d.h. Zugfördertechnik, Spurführung, Akustik, Energieeffizienz, Emissionen sowie Fahrdynamik
 • Auslegung von Schienenfahrzeugen, auf Basis der technischen, betrieblichen und wirtschaftlichen Randbedingungen
• Konstruktion von Schienenfahrzeugen, Erläuterung bestehender Konzepte sowie der Funktionsweise und Eigenschaften von Fahrzeugkomponenten
• Produktion und Zulassung von Schienenfahrzeugen am Beispiel sicherheitsrelevanter Komponenten
• Technische und betriebliche Bedingungen der Instandhaltung
• Grundlagen der Leit- und Sicherungstechnik
• Eisenbahnrelevante Gesetze, Normen und Verbändestruktur
• Künftige Entwicklungen im System Bahn

14. Literatur:
• Skript und Übungsaufgaben
• Pachl, J.: Systemtechnik des Schienenverkehrs, Verlag Springer Vieweg
• Schindler, C. (Hrsg.): Handbuch Schienenfahrzeuge: Entwicklung, Produktion, Instandhaltung, Verlag Eurailpress

15. Lehrveranstaltungen und -formen:
672901 Vorlesung Grundlagen Schienenfahrzeugtechnik und -betrieb

16. Abschätzung Arbeitsaufwand:
Präsenzzeit 56 h
Selbststudiumszeit 96 h
Exkursion (3-tägig, Vor- und Nachbereitung) 28 h

17. Prüfungsnummer/n und -name:
67291 Grundlagen Schienenfahrzeugtechnik und -betrieb (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 33020 Grundlagen der Fahrzeugdynamik

2. Modulkürzel: 070820101
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0
5. Modulduer: 2 Semester
7. Sprache: Deutsch
8. Modulverantwortlicher: Nils Widdecke
9. Dozenten: • Jochen Wiedemann
• Jens Neubeck
• Nils Widdecke
10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Technikpädagogik
➞ Wahlpflichtfach Maschinenbau --> Fahrzeugtechnik --> Fahrzeugtechnik (Wahl)
M.Sc. Technikpädagogik
➞ Wahlpflichtfach Maschinenbau --> Fahrzeugtechnik --> Fahrzeugtechnik (Wahl)
11. Empfohlene Voraussetzungen: Kraftfahrzeuge I/II
12. Lernziele: Die Studierenden kennen die grundlegenden Zusammenhänge und Einflussgrößen, welche die Fahreigenschaften eines Kraftfahrzeugs bestimmen und die Wechselbeziehung zwischen diesen Einflussgrößen. Sie kennen die grundlegenden Beschreibungsgleichungen der Aerodynamik, den Einfluss der Körperform auf die Fahrzeugumströmung und -durchströmung sowie die versuchstechnischen Verfahren zur Simulation der Straßenfahrt im Windkanal und zur Grenzschichtkonditionierung nebst der notwendigen Messverfahren.
13. Inhalt:
• Fahreigenschaften: Eigenschaften der Reifen, Fahrzeug-Querdynamik (Fahrverhalten), Vertikalbewegungen des Fahrzeugs (Federungsverhalten), Fahrdemonstration.
Geeignete Methoden der Mechanik und Mathematik, mathematische Modelle, kombinierte Bewegungen, ausgewählte Einzelprobleme.
• Aerodynamik: Strömungsgleichungen, numerische Strömungssimulation, Einfluss spezieller Fahrzeugkomponenten auf Luftkräfte und -momente, spezielle Anströmbedingungen, Simulation der Straßenfahrt.
• Windkanal-Versuchs- und Messtechnik: Windkanalbauformen und resultierende Unterschiede zwischen Windkanal und Straße, spezielle Windkanalaeffekte, Windkanalmesstechniken.
14. Literatur:
• Vorlesungsmanuskripte Fahreigenschaften, KFZ-Aerodynamik II, Windkanal-Versuchs und Messtechnik
15. Lehrveranstaltungen und -formen:
• 330201 Vorlesung Fahreigenschaften des Kraftfahrzeugs I + II
• 330202 Vorlesung Kfz-Aerodynamik II
• 330203 Vorlesung Windkanal-Versuch- und Messtechnik
16. Abschätzung Arbeitsaufwand:
Präsenzzeit 42 h, Selbststudium und Nachbearbeitung 138 h, Gesamt 180 h
<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>33021 Grundlagen der Fahrzeugdynamik (PL), schriftlich, eventuell mündlich, 60 Min., Gewichtung: 1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Tafelanschrieb, PPT-Präsentationen, Overheadfolien</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Kraftfahrwesen</td>
</tr>
</tbody>
</table>
Modul: 32780 Karosseriebau

4. SWS: 4.0 7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Mathias Liewald
9. Dozenten: Mathias Liewald
10. Zuordnung zum Curriculum in diesem Studiengang:
 M.Sc. Technikpädagogik
 ➔ Wahlpflichtfach Maschinenbau --> Fahrzeugtechnik -->
 > Fahrzeugtechnik (Wahl)
 ➔
 M.Sc. Technikpädagogik
 ➔ Wahlpflichtfach Maschinenbau --> Fahrzeugtechnik -->
 > Fahrzeugtechnik (Wahl)
11. Empfohlene Voraussetzungen: Möglichst Vorlesung „Grundlagen der Umformtechnik 1/2“
14. Literatur: Download: Skript „Karosseriebau 1/2“
 Braess, H.-H., Seiffert: Handbuch Kraftfahrzeugtechnik
15. Lehrveranstaltungen und -formen: 327801 Vorlesung Karosseriebau 1/2
16. Abschätzung Arbeitsaufwand: Präsenzzeit: 42 Stunden
 Selbststudium: 138 Stunden
 Summe: 180 Stunden
17. Prüfungsnummer/n und -name: 32781 Karosseriebau (PL), schriftlich, eventuell mündlich, Gewichtung: 1.0
18. Grundlage für ...:
19. Medienform: Download-Skript, Beamerpräsentation, Tafelaufschrieb
20. Angeboten von:
Modul: 14150 Leichtbau

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>041810002</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Modulduauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Michael Seidenfuß</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Stefan Weihe
• Michael Seidenfuß |
--- Hauptfach Maschinenbau --- Fahrzeugtechnik --- Wahlcontainer Fahrzeugtechnik-Hauptfach
→ M.Sc. Technikpädagogik, PO 2009, 2. Semester
→ Wahlpflichtfach Maschinenbau --- Fahrzeugtechnik --- Fahrzeugtechnik (Wahl)
→ M.Sc. Technikpädagogik, PO 2015, 2. Semester
→ Hauptfach Maschinenbau --- Fahrzeugtechnik --- Wahlcontainer Fahrzeugtechnik-Hauptfach
→ M.Sc. Technikpädagogik, PO 2015, 2. Semester
→ Wahlpflichtfach Maschinenbau --- Fahrzeugtechnik --- Fahrzeugtechnik (Wahl)
→ |
| 11. Empfohlene Voraussetzungen: | • Einführung in die Festigkeitslehre
• Werkstoffkunde I und II |
| 13. Inhalt: | • Werkstoffe im Leichtbau
• Festigkeitsberechnung
• Konstruktionsprinzipien
• Stabilitätsprobleme: Knicken und Beulen
• Verbindungstechnik
• Zuverlässigkeit
• Recycling |
| 14. Literatur: | - Manuskript zur Vorlesung
- Ergänzende Folien (online verfügbar)
- Klein, B.: Leichtbau-Konstruktion, Vieweg Verlagsgesellschaft
- Petersen, C.: Statik und Stabilität der Baukonstruktionen, Vieweg Verlagsgesellschaft |
| 15. Lehrveranstaltungen und -formen: | • 141501 Vorlesung Leichtbau
• 141502 Leichtbau Übung |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 42 h
Selbststudiumszeit / Nacharbeitszeit: 138 h |
<table>
<thead>
<tr>
<th>Nr.</th>
<th>Beschreibung</th>
<th>Präsenz:</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.</td>
<td>Prüfungsnummer/n und -name: 14151 Leichtbau (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0</td>
<td>180 h</td>
</tr>
<tr>
<td>18.</td>
<td>Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19.</td>
<td>Medienform: PPT auf Tablet PC, Animationen u. Simulationen</td>
<td></td>
</tr>
<tr>
<td>20.</td>
<td>Angeboten von: Institut für Materialprüfung, Werkstoffkunde und Festigkeitslehre</td>
<td></td>
</tr>
</tbody>
</table>
Modul: 34030 Spezielle Themen bei Verbrennungsmotoren

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Michael Bargende</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Michael Bargende
• Dietmar Schmidt
• Horst Brand
• Jürgen Hammer
• Wolfgang Thiemann
• Adolf Bauer
• Hartmut Kolb
• Michael Casey
• Hubert Fußhoeller
• Andreas Friedrich
• Donatus Wichelhaus
• Olaf Weber
• Wolfgang Zahn
• Karl-Ernst Noreikat
• Ute Tuttlies |
| 10. Zuordnung zum Curriculum in diesem Studiengang: |

M.Sc. Technikpädagogik

→ Hauptfach Maschinenbau -->Fahrzeugtechnik -->Wahlcontainer
 Fahrzeugtechnik-Hauptfach

M.Sc. Technikpädagogik

→ Wahlplichtfach Maschinenbau -->Fahrzeugtechnik --
 >Fahrzeugtechnik (Wahl)

M.Sc. Technikpädagogik

→ Hauptfach Maschinenbau -->Fahrzeugtechnik -->Wahlcontainer
 Fahrzeugtechnik-Hauptfach

M.Sc. Technikpädagogik

→ Wahlplichtfach Maschinenbau -->Fahrzeugtechnik --
 >Fahrzeugtechnik (Wahl)

<table>
<thead>
<tr>
<th>11. Empfohlene Voraussetzungen:</th>
<th>Grundlagen der Verbrennungsmotoren</th>
</tr>
</thead>
<tbody>
<tr>
<td>12. Lernziele:</td>
<td>Das Gebiet der Verbrennungsmotoren ist extrem interdisziplinär. So spielen strömungsmechanische Probleme eine ebenso große Rolle wie Wärmeübertragung, Verbrennung, Mechanik, etc. Dies zeigt sich in der Vielfalt der im Rahmen des Moduls „Spezielle Themen bei Verbrennungsmotoren“ angebotenen Lehrinhalte, aus welchen insgesamt 4 SWS auszuwählen sind. Dabei spannt sich der Bogen der Lehrveranstaltungen von der Berechnung von Kräften und Momenten im Kurbeltrieb bis hin zur numerischen Strömungs- und Verbrennungssimulation im Brennraum, von der Einspritztechnik bis hin zur Turboladertechnik, von der Entwicklung im Rennsport bis hin zur Dieselmotorentechnik bei Nutzfahrzeugen, oder von der Mess- und Prüfstandstechnik bis hin zu gesetzlichen Regularien, welche bei der Entwicklung neuer Motorenkonzepte Randbedingungen bezüglich Emissionen, Geräusch, etc. vorgeben. Dies alles sind wesentliche</td>
</tr>
</tbody>
</table>
Merkmale in der Entwicklung von Verbrennungsmotoren, welche extrem miteinander verknüpft sind.

Das Modul setzt sich demzufolge aus unterschiedlichen Angeboten zusammen, besetzt z. T. durch Experten aus der Industrie, die die verschiedenen Aspekte gründlich durchleuchten.

Durch die freie Auswahl aus dem großen Pool soll die/der Student/in in die Möglichkeit bekommen, sich in verschiedenen Teilbereiche der Verbrennungsmotorentechnik einzuarbeiten. Die Studenten kennen die grundlegenden Zusammenhänge, wie auch die komplexen Problemstellungen der verschiedenen Teilbereiche, welche sie auf dem aktuellen Stand der Technik vermittelt bekommen.

Sie verfügen in diesen Bereichen fundierte Kenntnisse, die sie in die Lage versetzt, gesamtmotorische Zusammenhänge zu verstehen und auf spezielle Fragestellungen anzuwenden.

13. Inhalt:

Aus den folgenden Lehrveranstaltungen sind 4 SWS auszuwählen und in einem Übersichtsbogen darzustellen.

- **Abgase von Verbrennungsmotoren (1 SWS)**: Mechanismen der Schadstoffbildung, Beeinflussung durch motorische Parameter, Abgasnachbehandlung.

- **Einspritztechnik (2 SWS)**: Einsatzgebiete; Kenndaten; Markt und künftige Anforderungen an Dieselantriebe; Grundlagen Dieseleneinspritzung; Übersicht und Funktionsprinzipien von Dieseleneinspritzsystemen; Verteilereinspritzpumpe; Pumpe-Düse System; Common Rail System; Einspritzfunktionen im elektr. Steuergerät; Numerisch Hydrauliksimulation; elektronische Dieselregelung; Dieselsystemoptimierung; Grundlagen Ottomotor und Benzineinspritzung; Benzinsaugrohreinspritzung.

- **Ausgewählte Kapitel der Dieselmotorentechnik (1 SWS)**: Wirtschaftliche Bedeutung; Arbeitsverfahren; Beispiele ausgeführter Motoren; Entwicklungstendenzen; Kurbelgehäuse; Gestaltung und Lagerung der Kurbelwelle; Pleuelstange; Kolben; Zylinderkopf; Brennraum; Saug- und Abgassysteme; Aufladung; moderne Entwicklungsverfahren.

- **Motorische Verbrennung und Abgase (4 SWS)**: (1) Motorische Verbrennung: Grundlagen Kraftstoffe; Hoch-, Niedertemperaturoxidation (am Beispiel Diesel, HCCI); Zündprozesse, Klopfen; Turbulenz-Chemie-WW (laminare und turbulente Flammengeschwindigkeit), Skalen. (2) Abgase und Abgasnachbehandlung bei Otto- und Dieselmotoren: Bildungsmechanismen; primäre Maßnahmen; Abgasnachbehandlung. (3) Simulationstechniken: quasi-dim. Modellierung; detaillierte Kinetik; chem. Gleichgewichte, 0/1/2-dimensionale Flammen; Turbulenzmodellierung (3D Modellierung mit Star CD/OpenFOAM).

- **Planung und Konzeption von Prüfständen I und II (2 SWS)**: Grundlagen und Definitionen; von der Prüfaufgabe zum Prüfstand; Systematik der Prüfstandsarten; Prüfanlage als Gesamtsystem: Gebäude, technische Versorgungssysteme, Prüftechnik; Planungsprozess; ausgeführte Anlagen; gesetzliche Genehmigungsgrundlagen; Sondergebiete: Arbeitsschutz, Schallschutz, Erschütterungsschutz, Sicherheitstechnik; Kosten von Prüfanlagen.
• **Kleinvolumige Hochleistungsmotoren (1 SWS)**: Anforderungen an die Antriebe von handgehaltenen Arbeitsgeräten, z.B. Motorsägen; kleinvolumiger Hochleistungszweitaktmotor; Bauweisen und Beispiele für konventionelle kleinvolumige Zweitaktmotoren; Bauweisen und Beispiele für niedrig emittierende kleinvolumige Zweitaktmotoren; Gemischaufbereitung und Zündung; der kleinvolumige Hochleistungsviertaktmotor; gemischgeschmierte und getrennt geschmierte kleinvolumige Viertaktmotoren; praktische Anwendungen und Sonderentwicklungen.

• **Turbo-Chargers (2 SWS)**: Introduction to turbochargers, Radial compressors, Axial and radial turbines, Dimensionless performance, Component testing, Mechanical Design, Matching of turbine and compressor, Matching with the Engine, Developments.

• **Sport- und Rennmotorentechnik (1 SWS)**: Überblick über den aktuellen Stand der Motorentechnik in der Formel 3, DTM und Formel 1 sowie bei Dieselmotoren im Rennsport hinsichtlich Auslegung und Entwicklungsprozessen.

• **Interkulturelles Engineering (1 SWS)**: (1) Systeme von Verbrennungsmotoren: Was ist das, warum die Betrachtung, praktische Beispiele, Status und Zukunft. (2) Projektmanagement: Wozu ist dies notwendig, Zusammenarbeit unterschiedlicher Disziplinen und Mentalitäten, Schaffen eines gemeinsamen Verständnisses. (3) Kultur: Einfluss der Mutterkultur von Ingenieuren auf die Denkweise und Zusammenarbeit in multidisziplinären Arbeitsgruppen.

• **Abgasnachbehandlung in Fahrzeugen (2 SWS)**: Grundlagen und Historie der Abgasnachbehandlung, 3-Wege-Katalysatoren, On-Board-Diagnose, Dieselpartikelfilter, Stickoxidminderung (Selektive katalytische Reduktion, NOX-Speicherkatalysatoren), Lambda-Control, Neue Entwicklungen, integrierte Konzepte, Kinetikmessung, Modellbildung und Simulation.

• **Numerische Behandlung motorischer Verbrennungsvorgänge (3 SWS)**: 3D-CFD, mathematische Modelle (z.B. Turbulenz, Chemie-Turbulenz-Wechselwirkung), numerische Methoden, 1- und quasi-dimensionale Modellierung.

• **Motorsteuergeräte Ottomotoren (2 SWS)**: Die Steuerung und Regelung von Ottomotoren wird durch die wachsende Anzahl an CO2 Maßnahmen zunehmend komplexer. Im Rahmen der

14. Literatur:

| • Vorlesungsumdrucke Abgase von Verbrennungsmotoren, Motorische Verbrennung, Einspritztechnik, etc. |
| • Rudolf Pischinger u.a., Thermodynamik der Verbrennungskraftmaschine, Springer-Verlag |

15. Lehrveranstaltungen und -formen:

| 340301 Vorlesung Spezielle Themen bei Verbrennungsmotoren |

16. Abschätzung Arbeitsaufwand:

| Präsenzzeit 42 h, Selbststudium und Nachbearbeitung 138 h Gesamt 180 h |

17. Prüfungsnummer/n und -name:

| 34031 Spezielle Themen bei Verbrennungsmotoren (PL), schriftlich, eventuell mündlich, 60 Min., Gewichtung: 1.0 |

18. Grundlage für ...:

19. Medienform:

| Tafelanschrieb, PPT-Präsentationen, Overheadfolien |

20. Angeboten von:

| Verbrennungsmotoren |
Modul: 13750 Technische Strömungslehre

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>042010001</th>
<th>5. Modulduauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Stefan Riedelbauch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Stefan Riedelbauch</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- **B.Sc. Technikpädagogik, PO 2011, 4. Semester**
 - Pflichtmodule mit Wahlmöglichkeit (6 LP)
- **B.Sc. Technikpädagogik, PO 2011, 4. Semester**
 - Vorgezogene Master-Module
- **B.Sc. Technikpädagogik, PO 2011, 4. Semester**
 - Wahlpflichtfach -->Wahlpflichtfach Maschinenbau -->a) Fahrzeugtechnik Pflichtcontainer Grundlagen Fahrzeugtechnik
 - Wahlpflichtfach -->Wahlpflichtfach Maschinenbau -->b) Fertigungstechnik Pflichtcontainer Grundlagen Fertigungstechnik
- **B.Sc. Technikpädagogik, PO 2011, 4. Semester**
 - Wahlpflichtfach -->Wahlpflichtfach Maschinenbau -->c) Heizungs-, Lüftungs-, Klimatechnik Pflichtcontainer Grundlagen Heizungs-, Lüftungs-, Klimatechnik
- **M.Sc. Technikpädagogik**
 - Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik --> Fahrzeugtechnik (Wahl)
 - Wahlpflichtfach Maschinenbau -->Fertigungstechnik --> Fertigungstechnik (Wahl)
 - Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik -->Heizungs-, Lüftungs- und Klimatechnik (Wahl)
 - Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik --> Fahrzeugtechnik (Wahl)
 - Wahlpflichtfach Maschinenbau -->Fertigungstechnik --> Fertigungstechnik (Wahl)
 - Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik -->Heizungs-, Lüftungs- und Klimatechnik (Wahl)

11. Empfohlene Voraussetzungen:

- Ingenieurwissenschaftliche und naturwissenschaftliche Grundlagen, Höhere Mathematik

13. Inhalt: • Stoffeigenschaften von Fluiden
• Kennzahlen und Ähnlichkeit
• Statik der Fluide (Hydrostatik und Aerostatik)
• Grundgesetze der Fluidmechanik (Erhaltung von Masse, Impuls und Energie)
• Elementare Anwendungen der Erhaltungsgleichungen
• Rohrhydraulik
• Differentialgleichungen für ein Fluidelement

14. Literatur: Vorlesungsmanuskript „Technische Strömungslehre“
E. Truckenbrodt, Fluidmechanik, Springer Verlag
F.M. White, Fluid Mechanics, McGraw - Hill
E. Becker, Technische Strömungslehre, B.G. Teubner Studienbücher

15. Lehrveranstaltungen und -formen: • 137501 Vorlesung Technische Strömungslehre
• 137502 Übung Technische Strömungslehre
• 137503 Seminar Technische Strömungslehre

16. Abschätzung Arbeitsaufwand: Präsenzzeit: 42 h
Selbststudiumszeit / Nacharbeitszeit: 138 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name: 13751 Technische Strömungslehre (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... : 14100 Hydraulische Strömungsmaschinen in der Wasserkraft

19. Medienform: • Tafelanschrieb, Tablet-PC
• PPT-Präsentationen
• Skript zur Vorlesung

20. Angeboten von:
Modul: 12320 Technische Thermodynamik 1

2. Modulkürzel: 042100011 5. Modulduauer: 1 Semester
4. SWS: 4.0 7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Joachim Groß
10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technikpädagogik, PO 2011, 3. Semester
 → Vorgezogene Master-Module
 B.Sc. Technikpädagogik, PO 2011, 3. Semester
 → Wahlpflichtfach →Wahlpflichtfach Maschinenbau →a) Fahrzeugtechnik Pflichtcontainer Grundlagen Fahrzeugtechnik
 →
 B.Sc. Technikpädagogik, PO 2011, 3. Semester
 → Wahlpflichtfach →Wahlpflichtfach Maschinenbau →c) Heizungs-, Lüftungs-, Klimatechnik Pflichtcontainer Grundlagen Heizungs-
 Lüftungs- Klimatechnik
 →
 M.Sc. Technikpädagogik, PO 2009, 3. Semester
 → Wahlpflichtfach Maschinenbau →Fahrzeugtechnik →
 >Fahrzeugtechnik (Wahl)
 →
 M.Sc. Technikpädagogik, PO 2009, 3. Semester
 → Wahlpflichtfach Maschinenbau →Heizungs-, Lüftungs- und
 Klimatechnik →Heizungs-, Lüftungs- und Klimatechnik (Wahl)
 →
 M.Sc. Technikpädagogik, PO 2015, 3. Semester
 → Wahlpflichtfach Maschinenbau →Fahrzeugtechnik →
 >Fahrzeugtechnik (Wahl)
 →
 M.Sc. Technikpädagogik, PO 2015, 3. Semester
 → Wahlpflichtfach Maschinenbau →Heizungs-, Lüftungs- und
 Klimatechnik →Heizungs-, Lüftungs- und Klimatechnik (Wahl)
 →
11. Empfohlene Voraussetzungen: Mathematische Grundkenntnisse in Differential- und Integralrechnung
12. Lernziele:
 Die Studierenden
 • beherrschen die thermodynamischen Grundbegriffe und haben die
 Fähigkeit, praktische Problemstellungen in den thermodynamischen
 Grundgrößen eigenständig zu formulieren.
 • sind in der Lage, Energieumwandlungen in technischen Prozessen
 thermodynamisch zu beurteilen. Diese Beurteilung können die
 Studierenden auf Grundlage einer Systemabstraktion durch die
 Anwendung verschiedener Werkzeuge der thermodynamischen
 Modellbildung wie Bilanzierungen, Zustandsgleichungen und
 Stoffmodellen durchführen.
 • sind in der Lage, die Effizienz unterschiedlicher Prozessführungen zu
 berechnen und den zweiten Hauptsatz für thermodynamische Prozesse
 eigenständig anzuwenden.
 • Die Studierenden sind durch das erworbene Verständnis der
 grundlegenden thermodynamischen Modellierung zu eigenständiger
 Vertiefung in weiterführende Lösungsansätze befähigt.
Thermodynamik ist die allgemeine Theorie energie- undstoffumwandlender Prozesse. Diese Veranstaltung vermittelt die Inhalte
der systemanalytischen Wissenschaft Thermodynamik im Hinblick auftechnische Anwendungsfelder. Im Einzelnen:

• Grundgesetze der Energie- und Stoffumwandlung
• Prinzip der thermodynamischen Modellbildung
• Prozesse und Zustandsänderungen
• Thermische und kalorische Zustandsgrößen
• Zustandsgleichungen und Stoffmodelle
• Bilanzierung der Materie, Energie und Entropie von offenen,
geschlossenen, stationären und instationären Systemen
• Dissipation
• Ausgewählte Modellprozesse: Reversible Prozesse, einfacheKreisprozesse, Gasturbine, Verbrennungsmotoren etc.

14. Literatur:

15. Lehrveranstaltungen und -formen:
• 123201 Vorlesung Technische Thermodynamik 1
• 123202 Übung Technische Thermodynamik 1

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 56 h
Selbststudiumszeit / Nacharbeitszeit: 124 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
• 12321 Technische Thermodynamik 1 (ITT) (PL), schriftliche Prüfung,90 Min., Gewichtung: 1.0, Prüfungsvoraussetzung: USL-V
 (Details hier unten, Punkt V, Vorleistung).
• V Vorleistung (USL-V), schriftlich, eventuell mündlich,

18. Grundlage für ... :

19. Medienform:
Der Veranstaltungsinhalt wird als Tafelanschrieb entwickelt, ergänzt umPräsentationsfolien und Beiblätter.

20. Angeboten von:
Institut für Technische Thermodynamik und ThermischeVerfahrenstechnik
5420 Fertigungstechnik

<table>
<thead>
<tr>
<th>Zugeordnete Module</th>
<th>Nummer</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5401</td>
<td>Mach-TP</td>
</tr>
<tr>
<td></td>
<td>5421</td>
<td>Fertigungstechnik (Pflicht)</td>
</tr>
<tr>
<td></td>
<td>5422</td>
<td>Fertigungstechnik (Wahl)</td>
</tr>
</tbody>
</table>
5401 Mach-TP

<table>
<thead>
<tr>
<th>Zugeordnete Module</th>
<th>Titel</th>
</tr>
</thead>
<tbody>
<tr>
<td>11390</td>
<td>Grundlagen der Verbrennungsmotoren</td>
</tr>
<tr>
<td>12250</td>
<td>Numerische Methoden der Dynamik</td>
</tr>
<tr>
<td>12270</td>
<td>Simulationstechnik</td>
</tr>
<tr>
<td>13040</td>
<td>Fertigungsverfahren Faser- und Schichtverbundwerkstoffe</td>
</tr>
<tr>
<td>13060</td>
<td>Grundlagen der Heiz- und Raumluftechnik</td>
</tr>
<tr>
<td>13330</td>
<td>Technologiemanagement</td>
</tr>
<tr>
<td>13540</td>
<td>Grundlagen der Mikrotechnik</td>
</tr>
<tr>
<td>13560</td>
<td>Technologien der Nano- und Mikrosystemtechnik I</td>
</tr>
<tr>
<td>13570</td>
<td>Werkzeugmaschinen und Produktionssysteme</td>
</tr>
<tr>
<td>13580</td>
<td>Wissens- und Informationsmanagement in der Produktion</td>
</tr>
<tr>
<td>13590</td>
<td>Kraftfahrzeuge I + II</td>
</tr>
<tr>
<td>13910</td>
<td>Chemische Reaktionstechnik I</td>
</tr>
<tr>
<td>13920</td>
<td>Dichtungstechnik</td>
</tr>
<tr>
<td>13930</td>
<td>Einführung in die effiziente Wärmenutzung</td>
</tr>
<tr>
<td>13940</td>
<td>Energie- und Umwelttechnik</td>
</tr>
<tr>
<td>13970</td>
<td>Gerätekonstruktion und -fertigung in der Feinwerktechnik</td>
</tr>
<tr>
<td>13980</td>
<td>Grundlagen der Faser- und Textiltechnik / Textilmaschinenbau</td>
</tr>
<tr>
<td>14010</td>
<td>Kunststofftechnik - Grundlagen und Einführung</td>
</tr>
<tr>
<td>14020</td>
<td>Grundlagen der Mechanischen Verfahrenstechnik</td>
</tr>
<tr>
<td>14030</td>
<td>Fundamentals of Microelectronics</td>
</tr>
<tr>
<td>14060</td>
<td>Grundlagen der Technischen Optik</td>
</tr>
<tr>
<td>14070</td>
<td>Grundlagen der Thermischen Strömungsmaschinen</td>
</tr>
<tr>
<td>14090</td>
<td>Grundlagen Technischer Verbrennungsvorgänge I + II</td>
</tr>
<tr>
<td>14100</td>
<td>Hydraulische Strömungsmaschinen in der Wasserkraft</td>
</tr>
<tr>
<td>14110</td>
<td>Kerntechnische Anlagen zur Energieerzeugung</td>
</tr>
<tr>
<td>14160</td>
<td>Methodische Produktentwicklung</td>
</tr>
<tr>
<td>14180</td>
<td>Numerische Strömungssimulation</td>
</tr>
<tr>
<td>14190</td>
<td>Regelungstechnik</td>
</tr>
<tr>
<td>14240</td>
<td>Technisches Design</td>
</tr>
<tr>
<td>14310</td>
<td>Zuverlässigkeitstechnik</td>
</tr>
<tr>
<td>15600</td>
<td>Schwingungen und Modalanalyse</td>
</tr>
<tr>
<td>15860</td>
<td>Thermische Verfahrenstechnik I</td>
</tr>
</tbody>
</table>
Modul: 13910 Chemische Reaktionstechnik I

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Ulrich Nieken

9. Dozenten: Ulrich Nieken

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technikpädagogik

→ Vorgezogene Master-Module

B.Sc. Technikpädagogik

→ Wahlpflichtfach --> Wahlpflichtfach Maschinenbau --> Modulcontainer Wahlpflichtbereich (Mach-TP)

M.Sc. Technikpädagogik

→ Wahlpflichtfach Maschinenbau --> Fahrzeugtechnik --> Mach-TP

M.Sc. Technikpädagogik

→ Wahlpflichtfach Maschinenbau --> Fertigungstechnik --> Mach-TP

M.Sc. Technikpädagogik

→ Wahlpflichtfach Maschinenbau --> Heizungs-, Lüftungs- und Klimatechnik --> Mach-TP

M.Sc. Technikpädagogik

→ Wahlpflichtfach Maschinenbau --> Fahrzeugtechnik --> Mach-TP

M.Sc. Technikpädagogik

→ Wahlpflichtfach Maschinenbau --> Fertigungstechnik --> Mach-TP

M.Sc. Technikpädagogik

→ Wahlpflichtfach Maschinenbau --> Heizungs-, Lüftungs- und Klimatechnik --> Mach-TP

11. Empfohlene Voraussetzungen:

Vorlesung:

- Grundlagen Thermodynamik
- Höhere Mathematik

Übungen: keine

12. Lernziele:

13. Inhalt:

Globale Wärme- und Stoffbilanz bei chemischen Umsetzungen, Reaktionsgleichgewicht, Quantifizierung von Reaktionsgeschwindigkeiten, Betriebsverhalten idealer
Rührkessel und Rohrreaktoren, Reaktorauslegung, dynamisches Verhalten von technischen Rührkessel- und Festbettreaktoren, Sicherheitsbetrachtungen, reales Durchmischungsverhalten

14. Literatur: Skript

empfohlene Literatur:

• Baerns, M.; Hofmann, H.: Chemische Reaktionstechnik, Band 1, G. Thieme Verlag, Stuttgart, 1987
• Fogler, H. S.: Elements of Chemical Engineering, Prentice Hall, 1999
• Levenspiel, O.: Chemical Reaction Engineering, John Wiley & Sons, 1999

15. Lehrveranstaltungen und -formen:

• 139101 Vorlesung Chemische Reaktionstechnik I
• 139102 Übung Chemische Reaktionstechnik I

16. Abschätzung Arbeitsaufwand:

| Präsenzzeit: | 56 h |
| Selbststudiumszeit / Nacharbeitszeit: | 124 h |
| Gesamt: | 180 h |

17. Prüfungsnummer/n und -name: 13911 Chemische Reaktionstechnik I (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0

18. Grundlage für ... : 15570 Chemische Reaktionstechnik II

19. Medienform: Vorlesung: Tafelanschrieb, Beamer

Übungen: Tafelanschrieb, Rechnerübungen

20. Angeboten von: Institut für Chemische Verfahrenstechnik
Modul: 13920 Dichtungstechnik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072600002</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>2 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Apl. Prof. Werner Haas</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Werner Haas</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>B.Sc. Technikpädagogik</th>
<th>Vorgezogene Master-Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.Sc. Technikpädagogik</td>
<td>Wahlpflichtfach -->Wahlpflichtfach Maschinenbau --> Modulcontainer Wahlpflichtbereich (Mach-TP)</td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik</td>
<td>Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP</td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik</td>
<td>Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP</td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik</td>
<td>Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik -->Mach-TP</td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik</td>
<td>Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP</td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik</td>
<td>Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP</td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik</td>
<td>Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik -->Mach-TP</td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen:

Grundkenntnisse in Konstruktionslehre / Maschinenelemente z.B. durch die Module Konstruktionslehre I - IV oder Grundzüge der Maschinenkonstruktion I + II oder Ähnliches.

12. Lernziele:

- Technische Problemstellungen, am Beispiel von Dichtsystemen, erkennen, analysieren, bewerten und kompetent einer sachgerechten Lösung zuführen.
- Technische Systeme und Maschinenteile zuverlässig abdichten verstehen.
- Komplexe tribologische Systeme ingenieurmäßig beherrschen.
- Physikalische Effekte konstruktiv in technischen Produkten gestaltend umsetzen.
- Interdisziplinäres Vorgehen strategisch anwenden.

13. Inhalt:

- Grundlagen der Tribologie, der Auslegung und der Berechnung sowie Anforderungen, Funktionen und Elemente von Dichtungen.
- Reibung, Verschleiß, Leckage, Konstruktion, Funktion, Anwendung und Berechnung aller wesentlichen Dichtungen für statische und dynamische Dichtstellen um Feststoffe, Paste, Flüssigkeit, Gas, Staub oder Schmutz abzudichten.
- Wann verwende ich welche Dichtung und warum - Situationsanalyse und Lösungsansatz.
- Spezielle Aspekte bei hohem Druck, hoher Geschwindigkeit, hoher Temperatur oder extremer Zuverlässigkeit - was ist machbar, was nicht.
- Beurteilen und untersuchen von Dichtsystemen; wie gehe ich bei der Schadensanalyse vor.

- Teil 1 der Vorlesung startet im WiSe; Teil 2 wir im SoSe gelesen. Es ist gut möglich Teil 2 vor Teil 1 zu hören, sodass in jedem Semester mit der Vorlesungen begonnen werden kann.

14. Literatur:
- Aktuelles Manuskript
- Heinz K. Müller; Bernhard S. Nau: www.fachwissen-dichtungstechnik.de

15. Lehrveranstaltungen und -formen:
- 139201 Vorlesung und Übung Dichtungstechnik
- 139202 Praktikumsversuch 1, wählbar aus dem Angebot von 5 Versuchen
- 139203 Praktikumsversuch 2, wählbar aus dem Angebot von 5 Versuchen

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 46 h
- Selbststudium / Nacharbeitszeit: 134 h
- Gesamt: 180 h

17. Prüfungsnummer/n und -name:
- 13921 Dichtungstechnik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:
- Beamer-Präsentation, Overhead-Folien, Tafelanschrieb, Modelle, Interaktion, (selbst durchgeführte angeleitete Versuche)

20. Angeboten von:
- Institut für Maschinenelemente
Modul: 13930 Einführung in die effiziente Wärmenutzung

2. Modulkürzel: 042410020
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0
5. Modulduauer: 2 Semester
7. Sprache: Deutsch
8. Modulverantwortlicher: Apl. Prof. Klaus Spindler
9. Dozenten: Dan Bauer

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technikpädagogik, PO 2011, 6. Semester → Vorgezogene Master-Module
 B.Sc. Technikpädagogik, PO 2011, 6. Semester → Wahlpflichtfach → Wahlpflichtfach Maschinenbau → Modulcontainer Wahlpflichtbereich (Mach-TP)
 →
 →
 →
 →
 M.Sc. Technikpädagogik, PO 2015, 6. Semester → Wahlpflichtfach Maschinenbau → Fahrzeugtechnik → Mach-TP
 →
 M.Sc. Technikpädagogik, PO 2015, 6. Semester → Wahlpflichtfach Maschinenbau → Fertigungstechnik → Mach-TP
 →
 →

11. Empfohlene Voraussetzungen: Abgeschlossene Grundlagenausbildung in Technischer Thermodynamik durch Modul Technische Thermodynamik 1 und 2
 Vorkenntnisse in Wärmeübertragung durch Besuch der Lehrveranstaltung Grundlagen der Wärmeübertragung

12. Lernziele:
 Erworbbene Kompetenzen:
 Die Studierenden
 • können die grundlegenden Wärmetransportmechanismen zur Bestimmung von Wärmeverlusten von Gebäuden und Bauteilen anwenden,
 • können Sonderprobleme der Wärmeübertragung wie Wärmebrücken von Gebäuden numerisch lösen,
 • kennen die Grundlagen zur Bemessung von wirtschaftlichen Wärmédämmstärken,
 • können die Bedeutung effizienter Wärmeerzeugungssysteme und den Einsatz regenerativer Energien auf die Entwicklung des Energiebedarfs einordnen,
• kennen die Grundlagen der Wärmeerzeugung durch Solarthermie, oberflächennahe Geothermie, Kraft-Wärme-Kopplung und Wärmepumpen,
• sind in der Lage, derartige technische Anlagen zur Wärmeversorgung von Gebäuden zu dimensionieren,
• kennen die wesentlichen Methoden der Wärmespeicherung

13. Inhalt:
Die Vorlesung vermittelt die Grundlagen des energiesparenden und ressourcenschonenden Heizens und der effizienten Wärmenutzung. Die Vorlesung verleiht dabei die Grundlagen der Wärmeübertragung durch anwendungsorientierte Techniken und Übungen.

14. Literatur:
Vorlesungsmanuskripte, Übungsunterlagen
empfohlene Literatur:
• Quaschning, Volker: Regenerative Energiesysteme, Carl Hanser Verlag München, ISBN 978-3-446-43526-1
• Eicker, Ursula: Solare Technologien für Gebäude, Vieweg+Teubner-Verlag, ISBN 978-3-8348-1281-0
• Koenigsdorff, Roland: Oberflächennahe Geothermie für Gebäude, Faunhofer IRB Verlag, ISBN 978-3-8167-8271-1

15. Lehrveranstaltungen und -formen:
139301 Vorlesung und Übung Einführung in effiziente Wärmenutzung

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 56 h + Nacharbeitszeit: 124 h = 180h

17. Prüfungsnummer/n und -name:
13931 Einführung in die effiziente Wärmenutzung (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:
Beamerpräsentation, Tafel, Overhead-Projektoranschrieb

20. Angeboten von:
Modul: 13940 Energie- und Umwelttechnik

2. Modulkürzel: 042510001
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0
5. Modulduauer: 1 Semester
6. Turnus: jedes 2. Semester, SoSe
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Günter Scheffknecht
9. Dozenten: Günter Scheffknecht

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technikpädagogik, PO 2011, . Semester
 → Vorgezogene Master-Module
 B.Sc. Technikpädagogik, PO 2011, . Semester
 → Wahlpflichtfach -->Wahlpflichtfach Maschinenbau -- >Modulcontainer Wahlpflichtfachbereich (Mach-TP)
 →
 M.Sc. Technikpädagogik, PO 2009, 2. Semester
 → Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP
 →
 M.Sc. Technikpädagogik, PO 2009, 2. Semester
 → Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP
 →
 M.Sc. Technikpädagogik, PO 2009, 2. Semester
 → Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik -->Mach-TP
 →
 M.Sc. Technikpädagogik, PO 2015, 2. Semester
 → Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP
 →
 M.Sc. Technikpädagogik, PO 2015, 2. Semester
 → Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP
 →
 M.Sc. Technikpädagogik, PO 2015, 2. Semester
 → Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik -->Mach-TP

11. Empfohlene Voraussetzungen:
13. Inhalt:
 Vorlesung und Übung, 4 SWS
 1) Grundlagen zur Energieumwandlung: Einheiten, energetische Eigenschaften, verschiedene Formen von Energie, Transport und Speicherung von Energie, Energiebilanzen verschiedener Systeme
 2) Energiebedarf: Statistik, Reserven und Ressourcen, Primärenergieversorgung und Endenergieverbrauch
3) Primärenergieträger: Charakterisierung, Verarbeitung und Verwendung
4) Bereitstellungstechnologien für Wärme, Strom und Kraftstoffe
5) Transport und Speicherung von Energie in unterschiedlichen Formen
6) Energieintensive industrielle Prozesse: Stahlerzeugung, Zementherstellung, Ammoniakherstellung, Papierindustrie
7) Techniken zur Begrenzung der Umweltbeeinflussungen
8) Treibhausgasemissionen
9) Rahmenbedingungen: Emissionsbegrenzung, Klimaschutz, Förderung erneuerbarer Energien

14. Literatur:
- Vorlesungsmanuskript
- Unterlagen zu den Übungen

15. Lehrveranstaltungen und -formen:
139401 Vorlesung und Übung Energie- und Umwelttechnik

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 56 h
Selbststudiumszeit / Nacharbeitszeit: 124 h
Gesamt: 180 h

17. Prüfungsnr/n und -name:
13941 Energie- und Umwelttechnik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

19. Medienform:
- Skripte zu den Vorlesungen und zu den Übungen
- Tafelanschrieb
- ILIAS

20. Angeboten von:
Institut für Feuerungs- und Kraftwerkstechnik
Modul: 13040 Fertigungsverfahren Faser- und Schichtverbundwerkstoffe

2. Modulkürzel: 072210001
5. Modulduauer: 2 Semester
3. Leistungspunkte: 6.0 LP
6. Turnus: jedes Semester
4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Rainer Gadow

9. Dozenten: • Rainer Gadow
• Andreas Killinger

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technikpädagogik
 ➞ Vorgezogene Master-Module
 B.Sc. Technikpädagogik
 ➞ Wahlpflichtfach --> Wahlpflichtfach Maschinenbau --
 > Modulcontainer Wahlpflichtbereich (Mach-TP)
 ➞
 M.Sc. Technikpädagogik
 ➞ Wahlpflichtfach Maschinenbau --> Fahrzeugtechnik --> Mach-TP
 ➞
 M.Sc. Technikpädagogik
 ➞ Wahlpflichtfach Maschinenbau --> Fertigungstechnik --> Mach-TP
 ➞
 M.Sc. Technikpädagogik
 ➞ Wahlpflichtfach Maschinenbau --> Heizungs-, Lüftungs- und
 Klimatechnik --> Mach-TP
 ➞
 M.Sc. Technikpädagogik
 ➞ Wahlpflichtfach Maschinenbau --> Fahrzeugtechnik --> Mach-TP
 ➞
 M.Sc. Technikpädagogik
 ➞ Wahlpflichtfach Maschinenbau --> Fertigungstechnik --> Mach-TP
 ➞
 M.Sc. Technikpädagogik
 ➞ Wahlpflichtfach Maschinenbau --> Heizungs-, Lüftungs- und
 Klimatechnik --> Mach-TP
 ➞

11. Empfohlene Voraussetzungen: abgeschlossene Prüfung in Werkstoffkunde I+II und Konstruktionslehre I+II mit Einführung in die Festigkeitslehre

12. Lernziele:
 Studierende können nach Besuch dieses Moduls:
 • Die Systematik der Faser- und Schichtverbundwerkstoffe und
 charakteristische Eigenschaften der Werkstoffgruppen unterscheiden,
 beschreiben und beurteilen.
 • Belastungsfälle und Versagensmechanismen (mech., therm., chem.)
 verstehen und analysieren.
 • Verstärkungsmechanismen benennen, erklären und berechnen.
 • Hochfeste Fasern und deren textile technische Verarbeitung beurteilen.
 • Technologien zur Verstärkung von Werkstoffen benennen, vergleichen
 und auswählen.
 • Verfahren und Prozesse zur Herstellung von Verbundwerkstoffen und
 Schichtverbunden benennen, erklären, bewerten, gegenüberstellen,
 auswählen und anwenden.
 • Herstellungsprozesse hinsichtlich der techn. und wirtschaftl.
 Herausforderungen bewerten.
• In Produktentwicklung und Konstruktion geeignete Verfahren und Stoffsysteme bzw. Verbundbauweisen identifizieren, planen und auswählen.
• Prozesse abstrahieren sowie Prozessmodelle erstellen und berechnen.
• Werkstoff- und Bauteilcharakterisierung erklären, bewerten, planen und anwenden.

13. Inhalt:

Stichpunkte:
• Grundlagen Festkörper
• Metalle, Polymere und Keramik; Verbundwerkstoffe in Natur und Technik; Trennung von Funktions- und Struktureigenschaften.
• Auswahl von Verstärkungfasern und Faserarchitekturen; Metallische und keramische Matrixwerkstoffe.
• Klassische und polymerabgeleitete Herstellungsverfahren.
• Mechanische, textiltechnische und thermische Verfahrenstechnik.
• Grenzflächensysteme und Haftung.
• Füge- und Verbindungstechnik.
• Grundlagen der Verfahren zur Oberflächen-veredelung, funktionelle Oberflächeneigenschaften.
• Vorbehandlungsverfahren.
• Thermisches Spritzen.
• Vakuumverfahren; Dünnschichttechnologien PVD, CVD, DLC
• Konversions und Diffusionsschichten.
• Schweiß- und Schmelztauchverfahren
• Industrielle Anwendungen (Überblick).
• Aktuelle Forschungsgebiete.
• Strukturmechanik, Bauteildimensionierung und Bauteilprüfung.
• Grundlagen der Schichtcharakterisierung.

14. Literatur:
• Skript
• Filme
• Normblätter

Literaturempfehlungen:
15. Lehrveranstaltungen und -formen:

- 130401 Vorlesung Verbundwerkstoffe I: Anorganische Faserverbundwerkstoffe
- 130402 Vorlesung Verbundwerkstoffe II: Oberflächentechnik und Schichtverbundwerkstoffe
- 130403 Exkursion Fertigungstechnik Keramik und Verbundwerkstoffe
- 130404 Praktikum Verbundwerkstoffe mit keramischer und metallischer Matrix
- 130405 Praktikum Schichtverbunde durch thermokinetische Beschichtungsverfahren

16. Abschätzung Arbeitsaufwand:

- Präsenzzeit: 42 h
- Selbststudiumszeit / Nacharbeitszeit: 138 h
- Gesamt: 180 h

17. Prüfungsnummer/n und -name:

13041 Fertigungsverfahren Faser- und Schichtverbundwerkstoffe (PL), schriftlich, eventuell mündlich, 120 Min., Gewichtung: 1.0. Als Kern- oder Ergänzungsfach im Rahmen des Spezialisierungsfachs: mündlich, 40 min Anmeldung zur mündlichen Modulprüfung im LSF und zusätzlich per Email am IFKB beim Ansprechpartner Lehre

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Institut für Fertigungstechnologie keramischer Bauteile
Modul: 14030 Fundamentals of Microelectronics

2. Modulkürzel: 052110002
5. Moduldauer: 1 Semester

3. Leistungspunkte: 6.0 LP
6. Turnus: jedes 2. Semester, SoSe

4. SWS: 4.0
7. Sprache: Englisch

8. Modulverantwortlicher: Univ.-Prof. Joachim Burghartz

9. Dozenten: Joachim Burghartz

10. Zuordnung zum Curriculum in diesem Studiengang:

 B.Sc. Technikpädagogik
 → Vorgezogene Master-Module

 B.Sc. Technikpädagogik
 → Wahlpflichtfach → Wahlpflichtfach Maschinenbau →
 Modulcontainer Wahlpflichtbereich (Mach-TP)
 →

 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau → Fahrzeugtechnik → Mach-TP
 →

 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau → Fertigungstechnik → Mach-TP
 →

 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau → Heizungs-, Lüftungs- und
 Klimatechnik → Mach-TP
 →

 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau → Fahrzeugtechnik → Mach-TP
 →

 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau → Fertigungstechnik → Mach-TP
 →

 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau → Heizungs-, Lüftungs- und
 Klimatechnik → Mach-TP
 →

11. Empfohlene Voraussetzungen: keine

12. Lernziele: Studierende kennen wesentliche Grundlagen der Werkstoffe, Prozessschritte, Integrationsprozesse und Volumenproduktionsverfahren in der Silizium-Technologie

13. Inhalt:

 - History and Basics of IC Technology
 - Process Technology I and II
 - Process Modules
 - MOS Capacitor
 - MOS Transistor
 - Non-Ideal MOS Transistor
 - Basics of CMOS Circuit Integration
 - CMOS Device Scaling
 - Metal-Silicon Contact
 - Interconnects
 - Design Metrics
 - Special MOS Devices
 - Future Directions
14. Literatur:

- D. Neamon: Semiconductor Physics and Devices; Mc Graw-Hill, 2002
- S. Sze: Fundamentals of Semiconductor Fabrication, Wiley InterScience, 2003

15. Lehrveranstaltungen und -formen:

<table>
<thead>
<tr>
<th>Kursnummer</th>
<th>Veranstaltung und Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>140301</td>
<td>Vorlesung und Übung Grundlagen der Mikroelektronikfertigung</td>
</tr>
</tbody>
</table>

16. Abschätzung Arbeitsaufwand:

- Präsentzeit: 42h + Nacharbeitszeit: 138h = 180h

17. Prüfungsnummer/n und -name:

<table>
<thead>
<tr>
<th>Kursnummer</th>
<th>Prüfung und Form</th>
</tr>
</thead>
<tbody>
<tr>
<td>14031</td>
<td>Fundamentals of Microelectronics (PL), schriftlich oder mündlich, 120 Min., Gewichtung: 1.0</td>
</tr>
</tbody>
</table>

18. Grundlage für ...

19. Medienform:

- Beamer, Tafel, persönliche Interaktion

20. Angeboten von:
Modul: 13970 Gerätekonstruktion und -fertigung in der Feinwerktechnik

2. Modulkürzel: 072510002
5. Moduldauer: 1 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Wolfgang Schinköthe

9. Dozenten: • Wolfgang Schinköthe
• Eberhard Burkard

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technikpädagogik
→ Vorgezogene Master-Module

B.Sc. Technikpädagogik
→ Wahlpflichtfach -->Wahlpflichtfach Maschinenbau -->
>Modulcontainer Wahlpflichtbereich (Mach-TP)
→

M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP
→

M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP
→

M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und
Klimatechnik -->Mach-TP
→

M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP
→

M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP
→

M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und
Klimatechnik -->Mach-TP
→

11. Empfohlene Voraussetzungen: Abgeschlossene Grundlagenausbildung in Konstruktionslehre

12. Lernziele:
Fähigkeiten zur Analyse und Lösung von komplexen feinwerktechnischen Aufgabenstellungen im Gerätebau unter Berücksichtigung des Gesamtsystems, insbesondere unter Berücksichtigung von Präzision, Zuverlässigkeit, Sicherheit, Umgebungs- und Toleranzeinflüssen beim Entwurf von Geräten und Systemen

13. Inhalt:
Übungen und in den Praktika „Einführung in die 3D-Messtechnik“, „Zuverlässigkeitsuntersuchungen und Lebensdauertests“

14. Literatur:

- Schinköthe, W.: Grundlagen der Feinwerkechnik - Konstruktion und Fertigung. Skript zur Vorlesung

15. Lehrveranstaltungen und -formen:

- 139701 Vorlesung Gerätekonstruktion und -fertigung in der Feinwerkechnik, 3 SWS
- 139702 Übung Gerätekonstruktion und -fertigung in der Feinwerkechnik (inklusive Praktikum, Einführung in die 3D-Meßtechnik, Zuverlässigkeitsuntersuchungen und Lebensdauertests), 1,0 SWS (2x1,5 h)

16. Abschätzung Arbeitsaufwand:

| Präsenzzeit: | 42 h |
| Selbststudiumszeit / Nacharbeitszeit: | 138 h |
| Gesamt: | 180 h |

17. Prüfungsnummer/n und -name:

13971 Gerätekonstruktion und -fertigung in der Feinwerktechnik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0, bei Kern- oder Ergänzungsfach in Masterstudiengängen mündliche Prüfung

18. Grundlage für ... :

19. Medienform:

- Tafel
- OHP
- Beamer

20. Angeboten von:

Institut für Konstruktion und Fertigung in der Feinwerktechnik
Modul: 14090 Grundlagen Technischer Verbrennungsvorgänge I + II

2. Modulkürzel: 040800010
5. Modulduauer: 1 Semester

3. Leistungspunkte: 6.0 LP
6. Turnus: jedes 2. Semester, SoSe

4. SWS: 5.0
7. Sprache: Nach Ankuendigung

8. Modulverantwortlicher: Univ.-Prof. Andreas Kronenburg
9. Dozenten: Andreas Kronenburg

10. Zuordnung zum Curriculum in diesem Studiengang:

 B.Sc. Technikpädagogik
 → Vorgezogene Master-Module
 B.Sc. Technikpädagogik
 → Wahlpflichtfach -->Wahlpflichtfach Maschinenbau -->
 >Modulcontainer Wahlpflichtbereich (Mach-TP)
 →
 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP
 →
 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP
 →
 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und
 Klimatechnik -->Mach-TP
 →
 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP
 →
 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP
 →
 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und
 Klimatechnik -->Mach-TP
 →

11. Empfohlene Voraussetzungen: Ingenieurwissenschaftliche und naturwissenschaftliche Grundlagen, Grundlagen in Maschinenbau, Verfahrenstechnik, Thermodynamik, Reaktionskinetik

12. Lernziele: Die Studenten kennen die physikalisch-chemischen Grundlagen von Verbrennungsvorgängen: Reaktionskinetik von fossilen und biogenen Brennstoffen, Flammenstrukturen (laminare und turbulente Flammen, vorgemischte und nicht-vorgemischte Flammen), Turbulenz-Chemie Wechselwirkungsmechanismen, Schadstoffbildung

13. Inhalt: Grdlig. Technischer Verbrennungsvorgänge I & II (WiSe, Unterrichtssprache Deutsch):

 • Erhaltungsgleichungen; Thermodynamik; molekularer Transport; chemische Reaktion; Reaktionsmechanismen; laminare vorgemischte und nicht-vorgemischte Flammen.
 • Gestreckte Flammenstrukturen; Zündprozesse; Flammenstabilität; turbulente vorgemischte und nicht-vorgemischte Verbrennung; Schadstoffbildung; Spray-Verbrennung
An equivalent course is taught in English:

Combustion Fundamentals I & II (summer term only, taught in English):

- Transport equations; thermodynamics; fluid properties; chemical reactions; reaction mechanisms; laminar premixed and non-premixed combustion.
- Effects of stretch, strain and curvature on flame characteristics; ignition; stability; turbulent reacting flows; pollutants and their formation; spray combustion.

14. Literatur:
- Vorlesungsmanuskript
- Warnatz, Maas, Dibble, "Verbrennung", Springer-Verlag
- Warnatz, Maas, Dibble, "Combustion", Springer

15. Lehrveranstaltungen und -formen:
- 140901 Vorlesung Grundlagen Technischer Verbrennungsvorgänge I + II
- 140902 Übung Grundlagen Technischer Verbrennungsvorgänge I + II

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 70 h (4SWS Vorlesung, 1SWS Übung)
Selbststudiumszeit / Nacharbeitszeit: 110 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
14091 Grundlagen Technischer Verbrennungsvorgänge I + II (PL), schriftlich, eventuell mündlich, 120 Min., Gewichtung: 1.0

18. Grundlage für ...:

19. Medienform:
- Tafelanschreib
- PPT-Präsentationen
- Skripte zu den Vorlesungen

20. Angeboten von:
Institut für Technische Verbrennung
Modul: 13980 Grundlagen der Faser- und Textiltechnik / Textilmaschinenbau

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Hon.-Prof. Michael Doser</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Heinrich Planck</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Keine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>Die Studierenden können die Grundlagen um die komplexen Prozessabläufe sowie die technologischen Zusammenhänge der Textiltechnik verstehen. Sie kennen die wichtigsten textilen Materialien in ihren Eigenschaften und Möglichkeiten, sowie die grundlegenden Prozessabläufe zur Herstellung von Textilien. Anhand dieser Abläufe kennen sie die wichtigsten textilen Produktionsprozesse, insbesondere die Möglichkeiten der Multiskaligkeit textiler Strukturen und die zur Erzeugung notwendigen Technologien. Durch die Vorlesung integrierte praktische Demonstrationen an aktuellen Industriemaschinen beherrschen sie die behandelten technologischen Verfahren und Prozessabläufe der Textiltechnik und des Textilmaschinenbaus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>• Überblick über die textilen Fertigungsverfahren sowie Vermittlung der Multiskaligkeit textiler Strukturen und der sich daraus ergebenden Möglichkeiten der Funktionalität.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Textile Werkstoffkunde</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Literatur:</td>
<td>Aktuelle Vorlesungsmanuskripte</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
15. Lehrveranstaltungen und -formen:
• 139801 Vorlesung Einführung Textil- und Faserstoffkunde
• 139802 Vorlesung Einführung Textiltechnik
• 139803 Praktikum Einführung in die textile Prüftechnik und Statistik

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 76 h
 Selbststudiumszeit / Nacharbeitszeit: 104h
 Gesamt: 180 h

17. Prüfungsnummer/n und -name:
 13981 Grundlagen der Faser- und Textiltechnik / Textilmaschinenbau (PL), mündliche Prüfung, 40 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:
 Vorlesung:
 • Beamer
 • Exponate
 • aktuelle Maschinen
 • Folienausdrucke
 Praktikum: -

20. Angeboten von:
Modul: 13060 Grundlagen der Heiz- und Raumlufttechnik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>041310001</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Armin Ruppert</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Michael Schmidt</td>
</tr>
</tbody>
</table>
 → Vorgezogene Master-Module

 B.Sc. Technikpädagogik, PO 2011, 5. Semester
 → Wahlpflichtfach -->Wahlpflichtfach Maschinenbau -->Modulcontainer Wahlpflichtbereich (Mach-TP)

 B.Sc. Technikpädagogik, PO 2011, 5. Semester
 → Wahlpflichtfach -->Wahlpflichtfach Maschinenbau -->c) Heizungs-, Lüftungs-, Klimatechnik Pflichtcontainer Grundlagen Heizungs-Lüftungs- Klimatechnik

 M.Sc. Technikpädagogik
 → Hauptfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik -->Pflichtcontainer Heizungs-, Lüftungs- und Klimatechnik- Hauptfach

 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP

 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP

 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik -->Heizungs-, Lüftungs- und Klimatechnik (Pflicht)

 M.Sc. Technikpädagogik
 → Hauptfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik -->Pflichtcontainer Heizungs-, Lüftungs- und Klimatechnik- Hauptfach

 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP

 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP

 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik -->Heizungs-, Lüftungs- und Klimatechnik (Pflicht)

 M.Sc. Technikpädagogik
 → Hauptfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik -->Pflichtcontainer Heizungs-, Lüftungs- und Klimatechnik- Hauptfach

 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP

 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP

 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik -->Heizungs-, Lüftungs- und Klimatechnik (Pflicht)
11. Empfohlene Voraussetzungen:
• Höhere Mathematik I + II
• Technische Mechanik I + II

12. Lernziele:
Im Modul Grundlagen der Heiz- und Raumlufttechnik haben die Studenten die Anlagen und deren Systematik der Heizung, Lüftung und Klimatisierung von Räumen kennen gelernt und die zugehörigen ingenieurwissenschaftlichen Grundkenntnisse erworben. Auf dieser Basis können Sie grundlegende Auslegungen der Anlagen vornehmen.

Erworbene Kompetenzen:
Die Studenten
• sind mit den grundlegenden Methoden zur Anlagenauslegung vertraut,
• kennen die thermodynamischen Grundoperationen der Behandlung feuchter Luft, der Verbrennung und des Wärme- und Stofftransports
• verstehen den Zusammenhang zwischen Anlagenauslegung und funktion und den Innenlasten, den meteorologischen Randbedingungen und der thermischen sowie lufthygienischen Behaglichkeit

13. Inhalt:
• Systematik der heiz- und rumlufttechnischen Anlagen
• Strömung in Kanälen und Räumen
• Wärmeübergang durch Konvektion und Temperaturstrahlung
• Wärmeleitung
• Thermodynamik feuchter Luft
• Verbrennung
• meteorologische Grundlagen
• Anlagenauslegung
• thermische und lufthygienische Behaglichkeit

14. Literatur:
• Rietschel, H.; Raumklimatechnik Band 3: Raumheiztechnik -16. Auflage, Berlin: Springer-Verlag, 2004

15. Lehrveranstaltungen und -formen:
130601 Vorlesung und Übung Grundlagen der Heiz- und Raumlufttechnik

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 h
Selbststudiumszeit / Nacharbeitszeit: 138 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
13061 Grundlagen der Heiz- und Raumlufttechnik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0
18. Grundlage für ... :

19. Medienform: Vorlesungsskript

20. Angeboten von:
Modul: 14020 Grundlagen der Mechanischen Verfahrenstechnik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>041900002</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Manfred Piesche</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Manfred Piesche</td>
</tr>
<tr>
<td></td>
<td>➔ B.Sc. Technikpädagogik ➔ Wahlpflichtfach --> Wahlpflichtfach Maschinenbau --> Modulcontainer Wahlpflichtbereich (Mach-TP) ➔</td>
</tr>
<tr>
<td></td>
<td>➔ M.Sc. Technikpädagogik ➔ Wahlpflichtfach Maschinenbau --> Fahrzeugtechnik --> Mach-TP ➔</td>
</tr>
<tr>
<td></td>
<td>➔ M.Sc. Technikpädagogik ➔ Wahlpflichtfach Maschinenbau --> Fertigungstechnik --> Mach-TP ➔</td>
</tr>
<tr>
<td></td>
<td>➔ M.Sc. Technikpädagogik ➔ Wahlpflichtfach Maschinenbau --> Heizungs-, Lüftungs- und Klimatechnik --> Mach-TP ➔</td>
</tr>
<tr>
<td></td>
<td>➔ M.Sc. Technikpädagogik ➔ Wahlpflichtfach Maschinenbau --> Fahrzeugtechnik --> Mach-TP ➔</td>
</tr>
<tr>
<td></td>
<td>➔ M.Sc. Technikpädagogik ➔ Wahlpflichtfach Maschinenbau --> Fertigungstechnik --> Mach-TP ➔</td>
</tr>
<tr>
<td></td>
<td>➔ M.Sc. Technikpädagogik ➔ Wahlpflichtfach Maschinenbau --> Heizungs-, Lüftungs- und Klimatechnik --> Mach-TP ➔</td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen:
 Inhaltlich: Strömungsmechanik
 Formal: keine

12. Lernziele:

13. Inhalt:
 - Aufgabengebiete und Grundbegriffe der Mechanischen Verfahrenstechnik
 - Grundlagen der Partikeltechnik, Beschreibung von Partikelsystemen
 - Einphasenströmungen in Leitungssystemen
 - Transportverhalten von Partikeln in Strömungen
• Poröse Systeme
• Grundlagen und Anwendungen der mechanischen Trenntechnik
• Beschreibung von Trennvorgängen
• Einteilung von Trennprozessen
• Verfahren zur Fest-Flüssig-Trennung, Sedimentation, Filtration, Zentrifugation
• Verfahren der Fest-Gas-Trennung, Wäscher, Zyklonabscheider
• Grundlagen und Anwendungen der Mischtechnik
• Dimensionslose Kennzahlen in der Mischtechnik
• Bauformen und Funktionsweisen von Mischeinrichtungen
• Leistungs- und Mischzeitcharakteristiken
• Grundlagen und Anwendungen der Zerteiltechnik
• Zerkleinerung von Feststoffen
• Zerteilen von Flüssigkeiten durch Zerstäuben und Emulgieren
• Grundlagen und Anwendungen der Agglomerationstechnik
• Trocken- und Feuchtagglomeration
• Haftkräfte
• Ähnlichkeitstheorie und Übertragungsregeln

14. Literatur:
• Löffler, F.: Grundlagen der mechanischen Verfahrenstechnik, Vieweg, 1992
• Zogg, M.: Einführung in die mechanische Verfahrenstechnik, Teubner, 1993
• Bohnet, M.: Mechanische Verfahrenstechnik, Wiley-VCH-Verlag, 2004
• Schubert, H.: Mechanische Verfahrenstechnik, Dt. Verlag für Grundstoffindustrie, 1997

15. Lehrveranstaltungen und -formen:
• 140201 Vorlesung Grundlagen der Mechanischen Verfahrenstechnik
• 140202 Übung Grundlagen der Mechanischen Verfahrenstechnik

16. Abschätzung Arbeitsaufwand:
Präsenzzeit Vorlesung: 42 h
Präsenzzeit Übung: 14 h
Vor- und Nachbearbeitungszeit: 124 h
Summe: 180 h

17. Prüfungsnummer/n und -name: 14021 Grundlagen der Mechanischen Verfahrenstechnik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:
Vorlesungsskript, Entwicklung der Grundlagen durch kombinierten Einsatz von Tafelanschrieb und Präsentationsfolien, betreute Gruppenübungen

20. Angeboten von:
Modul: 13540 Grundlagen der Mikrotechnik

4. SWS: 4.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. André Zimmermann
9. Dozenten: • André Zimmermann • Eugen Ermantraut

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technikpädagogik
 → Vorgezogene Master-Module
 B.Sc. Technikpädagogik
 → Wahlpflichtfach -->Wahlpflichtfach Maschinenbau -->
 >Modulcontainer Wahlpflichtbereich (Mach-TP)
 →
 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP
 →
 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP
 →
 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und
 Klimatechnik -->Mach-TP
 →
 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP
 →
 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP
 →
 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und
 Klimatechnik -->Mach-TP
 →

11. Empfohlene Voraussetzungen: keine
12. Lernziele: Die Studierenden erwerben Kenntnisse über die wichtigsten
 Werkstoffeigenschaften, sowie Grundlagen der Konstruktion und
 Fertigung von mikrotechnischen Bauteilen und Systemen. Die
 Studierenden sind in der Lage, die Besonderheiten der Konstruktion
 und Fertigung von mikrotechnischen Bauteilen und Systemen in der
 Produktentwicklung und Produktion zu erkennen und sich eigenständig in
 Lösungswege einarbeiten.

13. Inhalt:
 • Eigenschaften der wichtigsten Werkstoffe der MST
 • Silizium-Mikromechanik
 • Einführung in die Vakuumtechnik
 • Herstellung und Eigenschaften dünner Schichten (PVD- und CVD-
 Technik, Thermische Oxidation)
 • Lithographie und Maskentechnik
 • Ätztechniken zur Strukturierung (Nasschemisches Ätzen, RIE, IE,
 Plasmätzen)
 • Reinraumtechnik
• Elemente der Aufbau- und Verbindungstechnik für Mikrosysteme (Bondverfahren, Chipgehäusetechniken)
• LiGA-Technik
• Mikrotechnische Bauteile aus Kunststoff (z.B. Mikrospritzguss)
• Mikrobearbeitung von Metallen (z.B. spanende Mikrobearbeitung)
• Messmethoden der Mikrotechnik
• Prozessfolgen der Mikrotechnik

14. Literatur: Vorlesungsmanuskript und Literaturangaben darin

15. Lehrveranstaltungen und -formen:
• 135401 Vorlesung Grundlagen der Mikrotechnik
• 135402 Freiwillige Übung zur Vorlesung Grundlagen der Mikrotechnik

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 h
Selbststudiumszeit / Nacharbeitszeit: 138 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
13541 Grundlagen der Mikrotechnik (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:
Beamerpräsentation, Overhead-Projektor-Anschrieb, Tafelanschrieb, Demonstrationsobjekte

20. Angeboten von:
Mikrosystemtechnik
Modul: 14060 Grundlagen der Technischen Optik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>073100001</th>
<th>5. Modulduer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Wolfgang Osten</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Wolfgang Osten
• Christof Pruß
• Erich Steinbeißer
• Alexander Bielke |
→ Vorgezogene Master-Module |
| | B.Sc. Technikpädagogik
→ Wahlpflichtfach -->Wahlpflichtfach Maschinenbau -->Modulcontainer Wahlpflichtbereich (Mach-TP) |
| | M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP |
| | M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP |
| | M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik -->Mach-TP |
| | M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP |
| | M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP |
| | M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik -->Mach-TP |
| 11. Empfohlene Voraussetzungen: | HM 1 - HM 3, Experimentalphysik |
| 12. Lernziele: | Die Studierenden
• erkennen die Möglichkeiten und Grenzen der abbildenden Optik auf Basis des mathematischen Modells der Kollineation
• sind in der Lage, grundlegende optische Systeme zu klassifizieren und im Rahmen der Gaußschen Optik zu berechnen
• verstehen die Grundzüge der Herleitung der optischen Phänomene „Interferenz“ und „Beugung“ aus den Maxwell-Gleichungen
• können die Grenzen der optischen Auflösung definieren
• können grundlegende optische Systeme (wie z.B. Mikroskop, Messfernenrohr und Interferometer) einsetzen und bewerten |
| 13. Inhalt: | • optische Grundgesetze der Reflexion, Refraktion und Dispersion;
• Kollineare (Gaußsche) Optik; |
14. Literatur:
Manuskript aus Powerpointfolien der Vorlesung; Übungsbögen; Formelsammlung; Sammlung von Klausuraufgaben mit ausführlichen Lösungen;

Literatur:
- Haferkorn: Optik, Wiley, 2002
- Hecht: Optik, Oldenbourg, 2014
- Kühlke: Optik, Harri Deutsch, 2011
- Naumann; Schröder; Löffler-Mang: Handbuch Bauelemente der Optik, 2014
- Schröder: Technische Optik, Vogel, 2007

15. Lehrveranstaltungen und -formen:
- 140601 Vorlesung Grundlagen der Technischen Optik
- 140602 Übung Grundlagen der Technischen Optik
- 140603 Praktikum Grundlagen der Technischen Optik

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42h + Nacharbeitszeit: 138h = 180

17. Prüfungsnummer/n und -name:
14061 Grundlagen der Technischen Optik (PL), schriftlich, eventuell mündlich, 120 Min., Gewichtung: 1.0, bei einer geringen Anzahl an Prüfungsanmeldungen findet die Prüfung mündlich (40 min.) statt

18. Grundlage für ... :

19. Medienform:
Powerpoint-Vorlesung mit zahlreichen Demonstrations-Versuchen, Übung: Notebook + Beamer, OH-Projektor, Tafel, kleine „Hands-on“ Versuche gehen durch die Reihen

20. Angeboten von:
Technische Optik
Modul: 14070 Grundlagen der Thermischen Strömungsmaschinen

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>042310004</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Damian Vogt</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Damian Vogt</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:
- B.Sc. Technikpädagogik ➔ Vorgezogene Master-Module
- B.Sc. Technikpädagogik ➔ Wahlpflichtfach -->Wahlpflichtfach Maschinenbau --> Modulcontainer Wahlpflichtbereich (Mach-TP)
- M.Sc. Technikpädagogik ➔ Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP
- M.Sc. Technikpädagogik ➔ Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP
- M.Sc. Technikpädagogik ➔ Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik -->Mach-TP
- M.Sc. Technikpädagogik ➔ Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP
- M.Sc. Technikpädagogik ➔ Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP
- M.Sc. Technikpädagogik ➔ Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik -->Mach-TP

11. Empfohlene Voraussetzungen:
- Ingenieurwissenschaftliche Grundlagen
- Technische Thermodynamik I + II
- Strömungsmechanik oder Technische Strömungslehre

12. Lernziele:
Der Studierende
- verfügt über vertiefte Kenntnisse in Thermodynamik und Strömungsmechanik mit dem Fokus auf der Anwendung bei Strömungsmaschinen
- kennt und versteht die physikalischen und technischen Vorgänge und Zusammenhänge in Thermischen Strömungsmaschinen (Turbinen, Verdichter, Ventilatoren)
- beherrscht die eindimensionale Betrachtung von Arbeitsumsetzung, Verlusten und Geschwindigkeitsdreiecken bei Turbomaschinen
- ist in der Lage, aus dieser analytischen Durchdringung die Konsequenzen für Auslegung und Konstruktion von axialen und radialen Turbomaschinen zu ziehen

13. Inhalt:
- Anwendungsgebiete und wirtschaftliche Bedeutung
- Bauarten
• Thermodynamische Grundlagen
• Fluideigenschaften und Zustandsänderungen
• Strömungsmechanische Grundlagen
• Anwendung auf Gestaltung der Bauteile
• Ähnlichkeitsgesetze
• Turbinen- und Verdichtertheorie
• Verluste und Wirkungsgrade, Möglichkeiten ihrer Beeinflussung
• Maschinenkomponenten
• Betriebsverhalten, Kennfelder, Regelungsverfahren
• Instationäre Phänomene

14. Literatur:
• Vogt, D., Grundlagen der Thermischen Strömungsmaschinen, Vorlesungsmanuskript, ITSM Univ. Stuttgart
• Dixon, S.L., Fluid Mechanics and Thermodynamics of Turbomachinery, Elsevier 2005
• Cohen H., Rogers, G.F.C., Saravanamuttoo, H.I.H., Gas Turbine Theory, Longman 2000
• Traupel, W., Thermische Turbomaschinen, Band 1, 4. Auflage, Springer 2001

15. Lehrveranstaltungen und -formen:
140701 Vorlesung und Übung Grundlagen der Thermischen Strömungsmaschinen

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 h
Selbststudiumszeit / Nacharbeitszeit: 138 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
14071 Grundlagen der Thermischen Strömungsmaschinen (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :
30820 Thermische Strömungsmaschinen

19. Medienform:
Podcasted Whiteboard, Tafelanschrieb, Skript zur Vorlesung

20. Angeboten von:
Institut für Thermische Strömungsmaschinen und Maschinenlaboratorium
Modul: 11390 Grundlagen der Verbrennungsmotoren

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>070800003</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modulduer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Michael Bargende</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Michael Bargende</td>
</tr>
</tbody>
</table>

| 10. Zuordnung zum Curriculum in diesem Studiengang: |

- **B.Sc. Technikpädagogik, PO 2011, 4. Semester**
 - Vorgezogene Master-Module
 - **Wahlpflichtfach -->Wahlpflichtfach Maschinenbau -->Modulcontainer Wahlpflichtbereich (Mach-TP)**

- **B.Sc. Technikpädagogik, PO 2011, 4. Semester**
 - Wahlpflichtfach -->Wahlpflichtfach Maschinenbau -->a) Fahrzeugtechnik Pflichtcontainer Grundlagen Fahrzeugtechnik

- **M.Sc. Technikpädagogik**
 - Hauptfach Maschinenbau -->Fahrzeugtechnik -->Pflichtcontainer Fahrzeugtechnik-Hauptfach

- **M.Sc. Technikpädagogik**
 - Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Fahrzeugtechnik (Pflicht)

- **M.Sc. Technikpädagogik**
 - Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP

- **M.Sc. Technikpädagogik**
 - Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP

- **M.Sc. Technikpädagogik**
 - Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik -->Mach-TP

- **M.Sc. Technikpädagogik**
 - Hauptfach Maschinenbau -->Fahrzeugtechnik -->Pflichtcontainer Fahrzeugtechnik-Hauptfach

- **M.Sc. Technikpädagogik**
 - Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Fahrzeugtechnik (Pflicht)

- **M.Sc. Technikpädagogik**
 - Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP

- **M.Sc. Technikpädagogik**
 - Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP

- **M.Sc. Technikpädagogik**
 - Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik -->Mach-TP
11. Empfohlene Voraussetzungen: Grundkenntnisse aus 1. bis 4. Fachsemester

Informationen zur Prüfung:
Verständnis: keine Hilfsmittel zugelassen
Berechnung: alle Hilfsmittel außer programmierbare Taschenrechner, Laptops, Handy, etc.

14. Literatur:
• Vorlesungsmanuskript

15. Lehrveranstaltungen und -formen: 113901 Grundlagen der Verbrennungsmotoren

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 h
Selbststudium / Nacharbeitszeit: 138 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name: 11391 Grundlagen der Verbrennungsmotoren (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform: Tafelanschrieb, PPT-Präsentationen, Overheadfolien

20. Angeboten von: Verbrennungsmotoren
Modul: 14100 Hydraulische Strömungsmaschinen in der Wasserkraft

2. Modulkürzel: 042000100
5. Moduldauer: 1 Semester
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Stefan Riedelbauch
9. Dozenten: Stefan Riedelbauch

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technikpädagogik
 → Vorgezogene Master-Module
 B.Sc. Technikpädagogik
 → Wahlpflichtfach -->Wahlpflichtfach Maschinenbau -->
 >Modulcontainer Wahlpflichtbereich (Mach-TP)
 →
 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP
 →
 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP
 →
 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und
 Klimatechnik -->Mach-TP
 →
 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP
 →
 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP
 →
 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und
 Klimatechnik -->Mach-TP
 →

11. Empfohlene Voraussetzungen:
 • Wahlpflichtmodul Gruppe 1 (Strömungsmechanik)
 • Technische Strömungslehre (Fluidmechanik 1) oder
 Strömungsmechanik

12. Lernziele:
 Die Studierenden kennen die prinzipielle Funktionsweise von
 Wasserkraftanlagen und die Grundlagen der hydraulischen
 Strömungsmaschinen. Sie sind in der Lage, grundlegende
 Vorauslegungen von hydraulischen Strömungsmaschinen in
 Wasserkraftwerken durchzuführen sowie das Betriebsverhalten zu
 beurteilen.

13. Inhalt:
 Die Vorlesung vermittelt die Grundlagen von Kraftwerken, Turbinen,
 Kreiselpumpen und Pumpenturbinen. Dabei werden die verschiedenen
 Bauarten und deren Kennwerte, Verluste sowie die dort auftretenden
 Kavitationserscheinungen vorgestellt. Es wird eine Einführung in
 die Auslegung von hydraulischen Strömungsmaschinen und die
 damit zusammenhängenden Kennlinien und Betriebsverhalten
 gegeben. Mit der Berechnung und Konstruktion einzelner Bauteile
von Wasserkraftanlagen wird die Auslegung von hydraulischen Strömungsmaschinen vertieft.

Zusätzlich werden noch weitere Komponenten in Wasserkraftanlagen wie beispielsweise „Hydodynamiche Getriebe und Absperr- und Regelorgane behandelt.

14. Literatur:

• Skript ‚Hydraulische Strömungsmaschinen in der Wasserkraft‘
• C. Pfleiderer, H. Petermann, Strömungsmaschinen, Springer Verlag
• W. Bohl, W. Elmendorf, Strömungsmaschinen 1 & 2, Vogel Buchverlag
• J. Raabe, Hydraulische Maschinen und Anlagen, VDI Verlag
• J. Giesecke, E. Mosonyi, Wasserkraftanlagen, Springer Verlag

15. Lehrveranstaltungen und -formen:

• 141001 Vorlesung Hydraulische Strömungsmaschinen in der Wasserkraft
• 141002 Übung Hydraulische Strömungsmaschinen in der Wasserkraft
• 141003 Seminar Hydraulische Strömungsmaschinen in der Wasserkraft

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 48h + Nacharbeitszeit: 132h = 180h

17. Prüfungsnummer/n und -name:

14101 Hydraulische Strömungsmaschinen in der Wasserkraft (PL), schriftlich, eventuell mündlich, 120 Min., Gewichtung: 1.0,

18. Grundlage für ... :

29210 Transiente Vorgänge und Regelungsaspekte in Wasserkraftanlagen

19. Medienform:

Tafel, Tablet-PC, Powerpoint Präsentation

20. Angeboten von:
Modul: 14110 Kerntechnische Anlagen zur Energieerzeugung

2. Modulkürzel: 041610001
5. Moduldauer: 1 Semester

3. Leistungspunkte: 6.0 LP
6. Turnus: jedes Semester

4. SWS: 4.0
7. Sprache: Nach Ankuendigung

8. Modulverantwortlicher: Univ.-Prof. Jörg Starflinger

9. Dozenten: Jörg Starflinger

10. Zuordnung zum Curriculum in diesem Studiengang:

 B.Sc. Technikpädagogik
 → Vorgezogene Master-Module

 B.Sc. Technikpädagogik
 → Wahlpflichtfach -->Wahlpflichtfach Maschinenbau --> >Modulcontainer Wahlpflichtbereich (Mach-TP)
 →

 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP
 →

 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP
 →

 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik -->Mach-TP
 →

 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP
 →

 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP
 →

 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik -->Mach-TP
 →

11. Empfohlene Voraussetzungen:
 Vorlesungen: Experimentalphysik, Thermodynamik, Mathematik, Strömungslehre

12. Lernziele:

 Die Studierenden

 - können grundsätzlich die Modellvorstellung der Kernspaltung nachvollziehen. Sie kennen die Spaltproduktausbeutekurve, die Energiefreisetzung bei der Spaltung. Sie wissen, was verzögerte Neutronen sind und woher diese stammen.
- wissen, was Wirkungsquerschnitte sind. Sie kennen die 4-Faktoren-Formel und können die einzelnen Termen benennen und erläutern.

- können eine einfache Neutronenbilanzgleichung aufstellen. Sie wissen, was das der Diffusionsansatz ist und können daraus die Reaktorgleichung ableiten. Für ein einfaches Beispiel können sie die kritische Abmessung berechnen.

- verstehen das dynamische verhalten des Reaktors. Sie kennen die Punktkinetik und können Begriffe, wie Reaktivität und Reaktorperiode erläutern. Sie verstehen die Sprungantwort bei einem Reaktivitätseintrag. Sie können das Selbstregelverhalten, insb. die Rückwirkungskoeffizienten (Doppler, Dichte, Void) anschaulich beschreiben.

- können den Aufbau eines Brennelements (DWR/SWR) nachvollziehen und Bauteile am BE identifizieren. Sie verstehen den Brennstabaufbau, die Steuerstäbe und dessen Antriebe. Sie können Unterkanalanalysen nachvollziehen und können die Brennstabtemperaturverteilung erläutern. Sie können DNB und Dryout als Gefahr für das Brennelement identifizieren und erläutern und verstehen Heißkanalfaktoren als Auslegungskriterium.

- können Kühlkreislauf von Druckwasserreaktoranlagen inkl. aller Komponenten schematisch zeichnen und benennen, Kerneinbauten identifizieren, Aufbau des Dampferzeugers reproduzieren, den Druckhalter schematisch zeichnen und dessen Funktion beschreiben, die Kerninstrumentierung und deren Aufgaben beschreiben können sowie den Sekundärkreislauf zeichnen und benennen.

- können Siedewasserreaktoranlagen inkl. aller Komponenten schematisch zeichnen und benennen, Kerneinbauten identifizieren können, den Kühlkreislauf zeichnen und benennen und die SWR-Regelung und das Betriebskennfeld verstehen.

- können Hilfs- und Nebenanlagen identifizieren und voneinander unterscheiden, die Aufgaben des Volumenregelsystems verstehen und nachvollziehen, das nukleare Zwischenkühlsystem verstehen und dessen Aufgaben im Normalbetrieb und bei Störungen nachvollziehen, Aufgaben des Zusatzzboriersystem beschreiben und die Druckstaffelung in DWR und Inertisierung bei SWR verstehen.

- im Bereich der Reaktorsicherheit Gefährdungspotenziale und Schutzziele in der Kerntechnik verstehen sowie die Definition der zwölf Sicherheitsprinzipien nachvollziehen und mit anschaulichen Beispielen erläutern.

- die Funktion der Sicherheitssysteme für DWR und SWR nachvollziehen und beschreiben. Sie verstehen die Definition des Risikos, den Unterschied zwischen deterministischer und probabilistischer Sicherheitsanalyse und können die Stufen der probabilistischen Sicherheitsanalyse nachvollziehen. Hierbei können sie Ereignisbaum und Fehlerbaum voneinander unterscheiden und können die INES-Skala erläutern.
- können generell die Reaktorentwicklung (Generationen 1-4) nachvollziehen, die Hauptmerkmale fortschrittlicher Reaktorkonzepte benennen und Beispiele von Gen III Reaktoren angeben.

- Den Brennstoffkreislauf nachvollziehen, kennen Abbaumethoden (konventionelle, unkonventionelle) und können den ungefähren weltweiten Verbrauch pro Jahr benennen.

- den Anreicherungsgrund nachvollziehen, die Rolle von UF6 erläutern und vier Konversionsverfahren benennen.

- können das Aufkommen von Abfall pro Jahr benennen, die Relevanz verschiedener Abfallarten für Zwischen- und Endlagern erläutern, die Klassifizierung von Abfällen nachvollziehen, die Behandlung von festen und flüssigen Betriebsabfällen erläutern, das Schema der Wiederaufarbeitung zeichnen und insbesondere den PUREX Prozess verstehen. Außerdem sollen sie die Rolle von Glaskokillen für hochradioaktive Abfälle verstehen.

- Das tiefengeologische Konzept verstehen, die Möglichkeiten der Einlagerung erläutern und das Multibarrierekonzept zur Sicherheit von Endlagern erläutern.

13. Inhalt: Die o.g. Lernziele werden in 6 Themenkomplexen abgehandelt.

- Kernreaktoren in Deutschland, Europa, weltweit
- Kerntechnische Grundlagen, Radioaktivität, Bindungsenergie, Kernspaltung, Nuklidkarte, kritische Anordnungen
- Druck und Siedewasserreaktoren, Brennelemente, Hilfs- und Nebenanlagen
- Sicherheitseinrichtungen, Reaktorsicherheit, Unfälle
- Fortschrittliche Reaktorkonzepte, neue Reaktoren der Generation 4 (im Ausland)
- Brennstoffkreislauf: Versorgung mit Kernbrennstoff, Entsorgung des radioaktiven Abfalls

pdf der Vorlesung ausschließlich über ILLIAS

14. Literatur: • W. Oldekop: "Druckwasserreaktoren für Kern-Kraftwerke"

15. Lehrveranstaltungen und -formen: 141101 Vorlesung und Übung Kerntechnische Anlagen zur Energieerzeugung

16. Abschätzung Arbeitsaufwand: 45 h Präsenzzeit

45 h Vor-/Nacharbeitszeit
90 h Prüfungsvorbereitung und Prüfung

17. Prüfungsnummer/n und -name: 14111 Kerntechnische Anlagen zur Energieerzeugung (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0
<table>
<thead>
<tr>
<th>18. Grundlage für ...</th>
<th>26000 Kernenergieotechnik</th>
</tr>
</thead>
<tbody>
<tr>
<td>19. Medienform:</td>
<td>• ppt-Präsentation</td>
</tr>
<tr>
<td></td>
<td>• Manuskripte online</td>
</tr>
<tr>
<td></td>
<td>• Tafel + Kreide</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Institut für Kernenergetik und Energiesysteme</td>
</tr>
</tbody>
</table>
Modul: 13590 Kraftfahrzeuge I + II

2. Modulkürzel: 070800001
5. Moduldauer: 1 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Jochen Wiedemann
9. Dozenten: Jochen Wiedemann

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technikpädagogik, PO 2011, 5. Semester
→ Vorgezogene Master-Module
→ B.Sc. Technikpädagogik, PO 2011, 5. Semester
→ Wahlpflichtfach → Wahlpflichtfach Maschinenbau →
> Modulcontainer Wahlpflichtbereich (Mach-TP)
→
→ B.Sc. Technikpädagogik, PO 2011, 5. Semester
→ Wahlpflichtfach → Wahlpflichtfach Maschinenbau → a)
> Fahrzeugtechnik Pflichtcontainer Grundlagen Fahrzeugtechnik
→
→ M.Sc. Technikpädagogik, PO 2009, . Semester
→ Hauptfach Maschinenbau → Fahrzeugtechnik → Pflichtcontainer
> Fahrzeugtechnik-Hauptfach
→
→ M.Sc. Technikpädagogik, PO 2009, . Semester
→ Wahlpflichtfach Maschinenbau → Fahrzeugtechnik →
> Fahrzeugtechnik (Pflicht)
→
→ M.Sc. Technikpädagogik, PO 2009, . Semester
→ Wahlpflichtfach Maschinenbau → Fahrzeugtechnik → Mach-TP
→
→ M.Sc. Technikpädagogik, PO 2009, . Semester
→ Wahlpflichtfach Maschinenbau → Fertigungstechnik → Mach-TP
→
→ M.Sc. Technikpädagogik, PO 2009, . Semester
→ Wahlpflichtfach Maschinenbau → Heizungs-, Lüftungs- und
> Klimatechnik → Mach-TP
→
→ M.Sc. Technikpädagogik, PO 2015, . Semester
→ Hauptfach Maschinenbau → Fahrzeugtechnik → Pflichtcontainer
> Fahrzeugtechnik-Hauptfach
→
→ M.Sc. Technikpädagogik, PO 2015, . Semester
→ Wahlpflichtfach Maschinenbau → Fahrzeugtechnik →
> Fahrzeugtechnik (Pflicht)
→
→ M.Sc. Technikpädagogik, PO 2015, . Semester
→ Wahlpflichtfach Maschinenbau → Fahrzeugtechnik → Mach-TP
→
→ M.Sc. Technikpädagogik, PO 2015, . Semester
→ Wahlpflichtfach Maschinenbau → Fertigungstechnik → Mach-TP
→
→ M.Sc. Technikpädagogik, PO 2015, . Semester
→ Wahlpflichtfach Maschinenbau → Heizungs-, Lüftungs- und
> Klimatechnik → Mach-TP
11. Empfohlene Voraussetzungen: Kenntnisse aus den Fachsemestern 1 bis 4

Wichtig: Ab WS2015/16 ist die Prüfung ohne Hilfsmittel zu absolvieren.

14. Literatur:
• Wiedemann, J.: Kraftfahrzeuge I+II, Vorlesungsumdruck,
• Reimpell, J.: Fahrwerkstechnik: Grundlagen, Vogel-Fachbuchverlag, 2005

15. Lehrveranstaltungen und -formen:
• 135901 Vorlesung Kraftfahrzeuge I + II
• 135902 Übung Kraftfahrzeuge I + II

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 h
Selbststudiumszeit / Nacharbeitszeit: 138 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
13591 Kraftfahrzeuge I + II (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ...
13590 Kraftfahrzeuge I + II

19. Medienform:
Beamer, Tafel

20. Angeboten von:
Kraftfahrwesen
Modul: 14010 Kunststofftechnik - Grundlagen und Einführung

2. Modulkürzel: 041710001
5. Moduldauer: 1 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Christian Bonten

9. Dozenter: Christian Bonten

 → Vorgezogene Master-Module

 B.Sc. Technikpädagogik

 → Wahlpflichtfach -->Wahlpflichtfach Maschinenbau --
 >Modulcontainer Wahlpflichtbereich (Mach-TP)

 M.Sc. Technikpädagogik

 → Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP

 →

 M.Sc. Technikpädagogik

 → Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP

 →

 M.Sc. Technikpädagogik

 → Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und
 Klimatechnik -->Mach-TP

 →

 M.Sc. Technikpädagogik

 → Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP

 →

 M.Sc. Technikpädagogik

 → Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP

 →

 M.Sc. Technikpädagogik

 → Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und
 Klimatechnik -->Mach-TP

11. Empfohlene Voraussetzungen:

13. Inhalt:

 • Einführung der Grundlagen: Einleitung zur Kunststoffgeschichte, die Unterteilung und wirtschaftliche Bedeutung von Polymerwerkstoffen; chemischer Aufbau und Struktur vom Monomer zu Polymer
 • Erstarrung und Kraftübertragung der Kunststoffe
• Rheologie und Rheometrie der Polymerschmelze
• Eigenschaften des Polymerfestkörpers: elastisches, viskoelastisches Verhalten der Kunststoffe; thermische, elektrische und weitere Eigenschaften; Methoden zur Beeinflussung der Polymereigenschaften; Alterung der Kunststoffe
• Grundlagen zur analytischen Beschreibung von Fließprozessen: physikalische Grundgleichungen, rheologische und thermische Zustandsgleichungen
• Einführung in die Kunststoffverarbeitung: Extrusion, Spritzgießen und Verarbeitung vernetzender Kunststoffe
• Einführung in die Faserkunststoffverbunde und formlose Formungsverfahren
• Einführung der Weiterverarbeitungstechniken: Thermoformen, Beschichten; Fügetechnik
• Nachhaltigkeitsaspekte: Biokunststoffe und Recycling

14. Literatur:
• Präsentation in pdf-Format
• W. Michaeli, E. Haberstroh, E. Schmachtenberg, G. Menges: Werkstoffkunde Kunststoffe, Hanser Verlag
• W. Michaeli: Einführung in die Kunststoffverarbeitung, Hanser Verlag
• G. Ehrenstein: Faserverbundkunststoffe, Werkstoffe - Verarbeitung - Eigenschaften, Hanser Verlag

15. Lehrveranstaltungen und -formen: 140101 Vorlesung Kunststofftechnik - Grundlagen und Einführung

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 56 Stunden
Nachbearbeitungszeit: 124 Stunden
Summe: 180 Stunden
Es gibt keine alten Prüfungsaufgaben

17. Prüfungsnummer/n und -name: 14011 Kunststofftechnik - Grundlagen und Einführung (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :
• 37690 Kunststoff-Konstruktionstechnik
• 37700 Kunststoffverarbeitungstechnik
• 18380 Kunststoffverarbeitung 1
• 39420 Kunststoffverarbeitungstechnik 1
• 18390 Kunststoffverarbeitung 2
• 39430 Kunststoffverarbeitungstechnik 2
• 41150 Kunststoff-Werkstofftechnik
• 18400 Auslegung von Extrusions- und Spritzgießwerkzeugen
• 32690 Auslegung von Extrusions- und Spritzgießwerkzeugen
• 18410 Kunststoffaufbereitung und Kunststoffrecycling
• 39450 Kunststoffaufbereitung und Kunststoffrecycling
• 18420 Rheologie und Rheometrie der Kunststoffe
• 32700 Rheologie und Rheometrie der Kunststoffe

19. Medienform:
• Beamer-Präsentation
• Tafelanschriebe

20. Angeboten von: Institut für Kunststofftechnik
Modul: 14160 Methodische Produktentwicklung

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072710010</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Moduldaurer:</td>
<td>2 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

Modulverantwortlicher:
Univ.-Prof. Hansgeorg Binz

Dozenten:
Hansgeorg Binz

Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>B.Sc. Technikpädagogik</th>
<th>Vorgezogene Master-Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wahlplichtfach --> Wahlpflichtfach Maschinenbau --> Modulcontainer Wahlpflichtbereich (Mach-TP)</td>
<td></td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik</td>
<td>Wahlplichtfach Maschinenbau --> Fahrzeugtechnik --> Mach-TP</td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik</td>
<td>Wahlplichtfach Maschinenbau --> Fertigungstechnik --> Mach-TP</td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik</td>
<td>Wahlplichtfach Maschinenbau --> Heizungs-, Lüftungs- und Klimatechnik --> Mach-TP</td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik</td>
<td>Wahlplichtfach Maschinenbau --> Fahrzeugtechnik --> Mach-TP</td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik</td>
<td>Wahlplichtfach Maschinenbau --> Fertigungstechnik --> Mach-TP</td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik</td>
<td>Wahlplichtfach Maschinenbau --> Heizungs-, Lüftungs- und Klimatechnik --> Mach-TP</td>
</tr>
</tbody>
</table>

Empfohlene Voraussetzungen:
Abgeschlossene Grundlagenausbildung in Konstruktionslehre z. B. durch die Module

- Konstruktionslehre I - IV oder
- Grundzüge der Maschinenkonstruktion + Grundlagen der Produktentwicklung bzw.
- Konstruktion in der Medizingerätetechnik I + II

Lernziele:
Im Modul Methodische Produktentwicklung

- haben die Studierenden die Phasen, Methoden und die Vorgehensweisen innerhalb eines methodischen Produktentwicklungsprozesses kennen gelernt,
- können die Studierenden wichtige Produktentwicklungsmethoden in kooperativen Lernsituationen (Kleingruppenarbeit) anwenden und präsentieren ihre Ergebnisse.

Erworbene Kompetenzen: Die Studierenden
• können die Stellung des Geschäftsbereichs „Entwicklung/Konstruktion“ im Unternehmen einordnen,
• beherrschen die wesentlichen Grundlagen des methodischen Vorgehens, der technischen Systeme sowie des Elementmodells,
• können allgemein anwendbare Methoden zur Lösungssuche anwenden,
• verstehen einen Lösungsprozess als Informationsumsatz,
• kennen die Phasen eines methodischen Produktentwicklungsprozesses,
• sind mit den wichtigsten Methoden zur Produktplanung, zur Klärung der Aufgabenstellung, zum Konzipieren, Entwerfen und zum Ausarbeiten vertraut und können diese zielführend anwenden,
• beherrschen die Baureihenentwicklung nach unterschiedlichen Ähnlichkeitsgesetzen sowie die Grundlagen der Baukastensystematik.

Der Vorlesungsstoff wird innerhalb eines eintägigen Workshops anhand eines realen Anwendungsbeispiels vertieft.

14. Literatur:
• Binz, H.: Methodische Produktentwicklung I + II. Skript zur Vorlesung

15. Lehrveranstaltungen und -formen:
• 141601 Vorlesung und Übung Methodische Produktentwicklung I
• 141602 Vorlesung und Übung Methodische Produktentwicklung II
• 141603 Workshop Methodeneinsatz im Produktentwicklungsprozess

16. Abschätzung Arbeitsaufwand:
• Präsenzzeit: 50 h (4 SWS + Workshop)
• Selbststudiumszeit / Nacharbeitszeit: 130 h
• Gesamt: 180 h

17. Prüfungsnummer/n und -name: 14161 Methodische Produktentwicklung (PL), schriftlich, eventuell mündlich, 120 Min., Gewichtung: 1.0, Prüfung: i. d. R. schriftlich (gesamter Stoff von beiden Semestern), nach jedem
Semester angeboten, Dauer 120 min; bei weniger als 10 Kandidaten: mündlich, Dauer 40 min

<table>
<thead>
<tr>
<th>18. Grundlage für ...</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>19. Medienform:</td>
<td>Beamer-Präsentation, Tafel</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Institut für Konstruktionstechnik und Technisches Design</td>
</tr>
</tbody>
</table>
Modul: 12250 Numerische Methoden der Dynamik

2. Modulkürzel: 072810005
5. Modulduer: 1 Semester

3. Leistungspunkte: 6.0 LP
6. Turnus: jedes 2. Semester, SoSe

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Peter Eberhard
9. Dozenten: Peter Eberhard

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technikpädagogik, PO 2011, . Semester
→ Vorgezogene Master-Module

B.Sc. Technikpädagogik, PO 2011, . Semester
→ Wahlpflichtfach -->Wahlpflichtfach Maschinenbau -->
>Modulcontainer Wahlpflichtbereich (Mach-TP)
→

M.Sc. Technikpädagogik, PO 2009, . Semester
→ Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP
→

M.Sc. Technikpädagogik, PO 2009, . Semester
→ Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP
→

M.Sc. Technikpädagogik, PO 2009, . Semester
→ Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik -->Mach-TP
→

M.Sc. Technikpädagogik, PO 2015, . Semester
→ Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP
→

M.Sc. Technikpädagogik, PO 2015, . Semester
→ Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP
→

M.Sc. Technikpädagogik, PO 2015, . Semester
→ Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik -->Mach-TP
→

11. Empfohlene Voraussetzungen: Grundlagen in Mathematik und Mechanik

12. Lernziele:

13. Inhalt:
• Einführung in die numerischen Methoden zur Behandlung mechanischer Systeme
• Grundlagen der numerischen Mathematik: Numerische Prinzipien, Maschinenzahlen, Fehleranalyse
• Lineare Gleichungssysteme: Cholesky-Zerlegung, Gauß-Elimination, LR-Zerlegung, QR-Verfahren, iterative Methoden bei quadratischer Koeffizientenmatrix, Lineares Ausgleichsproblem
• Eigenwertproblem: Grundlagen, Normalformen, Vektoriteration, Berechnung von Eigenwerten mit dem QR-Verfahren, Berechnung von Eigenvektoren
• Anfangswertproblem bei gewöhnlichen Differentialgleichungen: Grundlagen, Einschrittverfahren (Runge-Kutta Verfahren)
• Werkzeuge und numerische Bibliotheken: für lineare Gleichungssysteme, Eigenwertprobleme und Anfangswertprobleme. Theorie und Numerik in der Anwendung - ein Vergleich
• 2 Versuche aus dem Angebot des Instituts (u.a. Virtual Reality, Hardware-in-the-loop, Schwingungsmessung): Pflicht falls als Kompetenzfeld gewählt, ansonsten freiwillige Teilnahme

14. Literatur:
• Vorlesungsmitschrieb
• Vorlesungsunterlagen des ITM

15. Lehrveranstaltungen und -formen:
• 122501 Vorlesung Numerische Methoden der Dynamik
• 122502 Übung Numerische Methoden der Dynamik

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 h
Selbststudiumszeit / Nacharbeitszeit bzw. Versuche: 138 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
12251 Numerische Methoden der Dynamik (PL), schriftlich oder mündlich, 90 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:
Beamer, Tablet-PC, Computervorführungen

20. Angeboten von:
Institut für Technische und Numerische Mechanik
Modul: 14180 Numerische Strömungssimulation

2. Modulkürzel: 041610002
5. Modulduauer: 1 Semester
3. Leistungspunkte: 6.0 LP
6. Turnus: jedes 2. Semester, SoSe
4. SWS: 4.0
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Eckart Laurien
9. Dozenten: • Eckart Laurien
 • Albert Ruprecht
10. Zuordnung zum Curriculum in diesem
 Studiengang:
 B.Sc. Technikpädagogik
 → Vorgezogene Master-Module
 B.Sc. Technikpädagogik
 → Wahlpflichtfach -->Wahlpflichtfach Maschinenbau -->
 >Modulcontainer Wahlpflichtbereich (Mach-TP)
 →
 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP
 →
 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP
 →
 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und
 Klimatechnik -->Mach-TP
 →
 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP
 →
 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP
 →
 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und
 Klimatechnik -->Mach-TP
 →
11. Empfohlene Voraussetzungen: Grundlagen der Numerik, Strömungsmechanik oder Technische
 Strömungslehre
12. Lernziele: Studenten besitzen fundiertes Wissen über die Vorgehensweise, die
 mathematisch/physikalischen Grundlagen und die Anwendung
 der numerischen Strömungssimulation (CFD, Computational Fluid
 Dynamics) einschließlich der Auswahl der Turbulenzmodelle, sie sind
 in der Lage die fachgerechte Erweiterung, Verifikation und Validierung
 problemangepasster Simulationsrechnungen vorzunehmen
13. Inhalt:
 1 Einführung
 1.1 Beispiel: Rohrkrümmer
 1.1.1 Einführende Demonstration
 1.1.2 Modellierung und Simulation in der Strömungsmechanik
 1.1.3 Strömungsphasenomene in Rohrkrümmern
 1.1.4 Vorbereitung und Durchführung
 2 Vorgehensweise
 2.1 Physikalische Beschreibung
 2.1.1 Fluide und ihre Eigenschaften
2.1.2 Kompressibilität einer Gasströmung
2.1.3 Turbulenz
2.1.4 Dimensionsanalyse
2.1.5 Ausgebildete laminare Rohrströmung
2.2 Mathematische Formulierung
2.2.1 Eindimensionale Grundgleichungen der Stromfadentheorie
2.2.2 Ableitung der Navier-Stokes Gleichungen
2.2.3 Randbedingungen
2.2.4 Analytische Lösungen
2.2.5 Navier-Stokes Gleichungen für kompressible Strömung
2.3 Diskretisierung
2.3.1 Finite-Differenzen Methode für die Poissongleichung
2.3.2 Grundlagen der Finite-Volumen Methode
2.4 Koordinatentransformation und Netzgenerierung
2.4.1 Klassifizierung numerischer Netze
2.4.2 Netze für komplexe Geometrien
2.5 Simulationsprogramme
2.5.1 Übersicht
2.5.2 Das Rechenprogramm Ansys-CFX
2.5.3 Das Rechenprogramm Open Foam
3 Grundgleichungen und Modelle
3.1 Beschreibung auf Molekülebene
3.1.1 Gaskinetische Simulationsmethode
3.2 Laminare Strömungen
3.2.1 Hierarchie der Grundgleichungen
3.2.2 Die Euler-Gleichungen der Gasdynamik
3.2.3 Energiegleichung
3.2.4 Navier-Stokes Gleichungen für inkompressible Strömungen
3.3 Turbulente Strömungen
3.3.1 Visualisierung turbulenter Strömungen
3.3.2 Direkte Numerische Simulation
3.3.3 Reynoldsgleichungen für Turbulente Strömungen
3.3.4 Prandtl'sches Mischungswegrmodell
3.3.5 Algebraische Turbulenzmodelle
3.3.6 Zweigleichungs-Transportmodelle
3.3.7 Sekundärströmungen
3.3.8 Reynoldsspannungsmode
3.3.9 Klassifikation von Turbulenzmodellen
3.3.10 Grobstruktursimulation
4 Qualität und Genauigkeit
4.1 Anforderungen
4.1.1 Fehler und Genauigkeit
4.1.2 Anforderungen der Strömungsphysik
4.1.3 Anforderungen des Ingenieurwesens
4.2 Numerische Fehler und Verifikation
4.2.1 Rundungsfehler
4.2.2 Numerische Diffusion
4.2.3 Netzabhängigkeit einer Lösung
4.3 Modellfehler und Validierung
4.3.1 Arbeiten mit Wandfunktionen
4.3.2 Beispiel: Rohrabzweig

14. Literatur:
• alle Vorlesungsfolien in ILLIAS verfügbar
15. Lehrveranstaltungen und -formen:
 - 141801 Vorlesung und Übung Numerische Strömungssimulation
 - 141802 Praktikum Numerische Strömungssimulation

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 45h + Nacharbeitszeit: 131h + Praktikumszeit: 4 h = 180 h

17. Prüfungsnummer/n und -name:
 14181 Numerische Strömungssimulation (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0, keine Hilfsmittel zugelassen

18. Grundlage für ...

19. Medienform:
 ppt-Folien (30 %), Tafel und Kreide (65 %), Computerdemonstration (5 %)
 Manuskripte online

20. Angeboten von:
 Institut für Kernenergetik und Energiesysteme
Modul: 14190 Regelungstechnik

4. SWS: 4.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Frank Allgöwer
9. Dozenten: • Frank Allgöwer
 • Matthias Müller

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technikpädagogik, PO 2011, 4. Semester
 → Vorgezogene Master-Module
 → Wahlpflichtfach -->Wahlpflichtfach Maschinenbau -->
 →Modulcontainer Wahlpflichtbereich (Mach-TP)
 B.Sc. Technikpädagogik, PO 2011, 4. Semester
 → Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP
 M.Sc. Technikpädagogik, PO 2009, 4. Semester
 → Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP
 M.Sc. Technikpädagogik, PO 2009, 4. Semester
 → Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und
 Klimatechnik -->Mach-TP
 M.Sc. Technikpädagogik, PO 2015, 4. Semester
 → Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP
 M.Sc. Technikpädagogik, PO 2015, 4. Semester
 → Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP
 M.Sc. Technikpädagogik, PO 2015, 4. Semester
 → Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und
 Klimatechnik -->Mach-TP

11. Empfohlene Voraussetzungen: • HM I-III
 • Systemdynamische Grundlagen der Regelungstechnik

12. Lernziele:
 Die Studierenden
 • haben umfassende Kenntnisse zur Analyse und Synthese linearer
 Regelkreise im Zeit- und Frequenzbereich,
 • können auf Grund theoretischer Überlegungen Regler und Beobachter
 für dynamische Systeme entwerfen und validieren,
 • kennen Methoden zur praktischen Umsetzung regelungstechnischer
 Methoden,
 • können sich mit anderen Ingenieuren über regelungstechnische
 Methoden austauschen.

13. Inhalt: Vorlesung: „Einführung in die Regelungstechnik“:
 Systemtheoretische Konzepte der Regelungstechnik, Stabilität (Nyquist-,
 Hurwitz- und Small-Gain-Kriterium,...), Beobachtbarkeit, Steuerbarkeit,
 Robustheit, Reglerentwurfsverfahren im Zeit- und Frequenzbereich (PID,
 Polvorgabe,Vorfilter,...), Beobachterentwurf
Praktikum: „Einführung in die Regelungstechnik“:
Implementierung der in der Vorlesung Einführung in die Regelungstechnik erlernten Reglerentwurfsverfahren an praktischen Laborversuchen

Projektwettbewerb:
Lösen einer konkreten Regelungsaufgabe in einer vorgegebenen Zeit in Gruppen

Vorlesung „Mehrgrößenregelung“:

Es muss einer der folgenden Blöcke ausgewählt werden:

Block 1

- Vorlesung „Einführung in die Regelungstechnik“, 2 SWS, 5. Semester
- Projektwettbewerb zur Vorlesung „Einführung in die Regelungstechnik“, 1 SWS, 5. Semester
- Praktikum „Einführung in die Regelungstechnik“, 1 SWS, 6. Semester

Block 2

- Vorlesung „Einführung in die Regelungstechnik“, 2 SWS, 5. Semester
- Vorlesung „Mehrgrößenregelung“, 2 SWS, 6. Semester

Block 3

- Projektwettbewerb zur Vorlesung „Einführung in die Regelungstechnik“, 1 SWS, 5. Semester
- Praktikum „Einführung in die Regelungstechnik“, 1 SWS, 6. Semester
- Vorlesung „Mehrgrößenregelung“, 2 SWS, 6. Semester

Anmerkung: Block 3 muss und kann nur dann gewählt werden, wenn die Vorlesung „Einführung in die Regelungstechnik“ bereits in einem anderen Modul gewählt wurde.

14. Literatur:

- Vorlesung „Einführung in die Regelungstechnik“, Praktikum und Projektwettbewerb
 Lunze, J.. Regelungstechnik 1. Springer Verlag, 2004

- Vorlesung „Mehrgrößenregelung“ zusätzlich
 Lunze, J.. Regelungstechnik 2, Springer Verlag, 2004
15. Lehrveranstaltungen und -formen:
- 141901 Vorlesung Einführung in die Regelungstechnik
- 141902 Projektwettbewerb Einführung in die Regelungstechnik
- 141903 Praktikum Einführung in die Regelungstechnik
- 141904 Vorlesung Mehrgrößenregelung

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42h
Selbststudiumszeit / Nacharbeitszeit: 138h
Gesamt: 180h

17. Prüfungsnummer/n und -name:
- 14191 Einführung in die Regelungstechnik (PL), schriftlich, eventuell mündlich, 90 Min., Gewichtung: 1.0
- 14192 Mehrgrößenregelung (PL), schriftlich, eventuell mündlich, 60 Min., Gewichtung: 1.0
- 14193 Einführung in die Regelungstechnik Praktikum (USL), Sonstiges, Gewichtung: 1.0
- 14194 Einführung in die Regelungstechnik Projektwettbewerb (USL), Sonstiges, Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 15600 Schwingungen und Modalanalyse

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>074010001</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Apl. Prof. Michael Hanss</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Michael Hanss
• Pascal Ziegler |
→ Vorgezogene Master-Module
B.Sc. Technikpädagogik, PO 2011, 6. Semester
→ Wahlpflichtfach -->Wahlpflichtfach Maschinenbau -->
>Modulcontainer Wahlpflichtbereich (Mach-TP)
→
M.Sc. Technikpädagogik, PO 2009, 6. Semester
→ Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP
→
M.Sc. Technikpädagogik, PO 2009, 6. Semester
→ Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP
→
M.Sc. Technikpädagogik, PO 2009, 6. Semester
→ Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik -->Mach-TP
→
M.Sc. Technikpädagogik, PO 2015, 6. Semester
→ Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP
→
M.Sc. Technikpädagogik, PO 2015, 6. Semester
→ Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP
→
M.Sc. Technikpädagogik, PO 2015, 6. Semester
→ Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik -->Mach-TP |
| 11. Empfohlene Voraussetzungen: | Abgeschlossene Grundlagenausbildung in Technischer Mechanik, z.B. durch die Module TM I, TM II+III sowie TM IV |
• Der Studierende beherrscht die mathematischen Methoden der Beschreibung von linearen Schwingungssystemen und ist in der Lage, die Schwingungsbeanspruchung von einfachen mechanischen Anordnungen und Strukturen zu berechnen.
• Der Studierende ist vertraut mit der messtechnischen Erfassung von Strukturschwingungen sowie der Aufbereitung der Messsignale im Frequenzbereich.
• Der Studierende ist in der Lage daraus die modalen Kenngrößen zu identifizieren. |
| 13. Inhalt: | Die Veranstaltung **Technische Schwingungslehre** vermittelt die Grundlagen der linearen Schwingungslehre in folgender Gliederung: |
• Grundbegriffe und Darstellungsformen von Schwingungen
• Lineare Schwingungen mit einem Freiheitsgrad: konservative und
gedämpfte Eigenschwingungen, erzwungene Schwingungen mit
Beispielen
• Lineare Schwingungen mit endlich vielen Freiheitsgraden:
Eigenschwingungen und erzwungene Schwingungen mit harmonischer
Erregung
• Schwingungen kontinuierlicher Systeme.

Die Veranstaltung **Experimentelle Modalanalyse** vermittelt den Inhalt in
folgender Gliederung:

• Grundlagen und Anwendungen der experimentellen Modalanalyse
• Methoden zur Schwingungsanregung, Messverfahren
• Signalanalyse und -verarbeitung, Zeit- und
Frequenzbereichsdarstellung
• Frequenzgang, Übertragungsfunktion und deren modale Zerlegung
• Bestimmung modaler Kenngrößen, Modenerkennung und -vergleich

Es werden zudem Anwendungen auf Problemstellungen der industriellen
Praxis demonstriert.
Als praktischer Teil werden fachbezogene Versuche zur experimentellen
Modalanalyse angeboten.

14. Literatur:

• Vorlesungsskripte

Weiterführende Literatur für die Technische Schwingungslehre:

• K. Magnus, K. Popp: „Schwingungen“, 7. Aufl., Teubner, Stuttgart,
2005.

Weiterführende Literatur für die Experimentelle Modalanalyse:

• D. J. Ewins: „Modal Testing - theory, practice and application“, 2nd

15. Lehrveranstaltungen und -formen:

• 156001 Vorlesung Technische Schwingungslehre
• 156002 Vorlesung Experimentelle Modalanalyse

16. Abschätzung Arbeitsaufwand:

Präsentzeit: 45h + Nacharbbeitszeit: 135h = 180h

17. Prüfungsnummer/n und -name:

• 15601 Technische Schwingungslehre (PL), schriftliche Prüfung, 60
Min., Gewichtung: 1.0
• 15602 Experimentelle Modalanalyse (PL), schriftlich, eventuell
mündlich, 60 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:

Overhead-Projektor, Tafel, Demonstrationsexperimente

20. Angeboten von:
Modul: 12270 Simulationstechnik

2. Modulkürzel: 074710002 5. Modulsdauer: 1 Semester
4. SWS: 5.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Oliver Sawodny
9. Dozenten: Oliver Sawodny

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technikpädagogik
→ Vorgezogene Master-Module

B.Sc. Technikpädagogik
→ Wahlpflichtfach -->Wahlpflichtfach Maschinenbau --
 >Modulcontainer Wahlpflichtbereich (Mach-TP)
 →

M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP
 →

M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP
 →

M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und
 Klimatechnik -->Mach-TP
 →

M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP
 →

M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP
 →

M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und
 Klimatechnik -->Mach-TP
 →

11. Empfohlene Voraussetzungen:
 • Pflichtmodule Mathematik
 • Pflichtmodul Systemdynamik bzw. Teil 1 vom Pflichtmodul Regelungs-
 und Steuerungstechnik

13. Inhalt:

Stationäre und dynamische Analyse von Simulationsmodellen; numerische Lösungen von gewöhnlichen Differentialgleichungen mit Anfangs- oder Randbedingungen; Stückprozesse als Warte-Bedien-
Systeme; Simulationswerkzeug Matlab/Simulink und Arena

14. Literatur:

• Vorlesungsumdrucke

15. Lehrveranstaltungen und -formen:
- 122701 Vorlesung mit integrierter Übung Simulationstechnik
- 122702 Praktikum Simulationstechnik

16. Abschätzung Arbeitsaufwand:
Preisenzzeit: 53 h
Selbststudium / Nacharbeitszeit: 127 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
- 12271 Simulationstechnik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0, Hilfsmittel: Taschenrechner (nicht vernetzt, nicht programmierbar, nicht grafikfähig) sowie alle nicht elektronischen Hilfsmittel
- 12272 Simulationstechnik: Erfolgreiche Teilnahme am Praktikum (USL), schriftlich, eventuell mündlich, Gewichtung: 1.0

18. Grundlage für ...
12290 Systemanalyse I

19. Medienform:
-

20. Angeboten von:
Institut für Systemdynamik
Modul: 14240 Technisches Design

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072710110</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Thomas Maier</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Thomas Maier
• Markus Schmid |
→ Vorgezogene Master-Module
→ B.Sc. Technikpädagogik
→ Wahlpflichtfach -->Wahlpflichtfach Maschinenbau -->Modulcontainer Wahlpflichtbereich (Mach-TP)
→ M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP
→ M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP
→ M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik -->Mach-TP
→ M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP
→ M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP
→ M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik -->Mach-TP |
| 11. Empfohlene Voraussetzungen: | Abgeschlossene Grundlagen-ausbildung in Konstruktionslehre z. B. durch die Module Konstruktionslehre I - IV oder
Grundzüge der Maschinen-konstruktion I / II |
| 12. Lernziele: | Im Modul Technisches Design
• besitzen die Studierenden nach dem Besuch des Moduls das Wissen über die wesentlichen Grundlagen des technisch orientierten Designs, als integraler Bestandteil der methodischen Produktentwicklung,
• können die Studierenden wichtige Gestaltungsmethoden anwenden und präsentieren ihre Ergebnisse.
Erworbene Kompetenzen:
Die Studierenden
• erwerben und besitzen fundierte Designkenntnisse für den Einsatz an der Schnittstelle zwischen Ingenieur und Designer, |
• beherrschen alle relevanten Mensch-Produkt-Anforderungen, wie z.B. demografische/geografische und psychografische Merkmale, relevante Wahrnehmungsarten, typische Erkennungsinhalte sowie ergonomische Grundlagen,
• beherrschen die Vorgehensweise zur Gestaltung eines Produkts, Produktprogramms bzw. Produkt-systems vom Aufbau, über Form-, Farb- und Grafikgestaltung innerhalb der Phasen des Designprozesses,
• können mit Kreativmethoden arbeiten, erste Konzepte erstellen und daraus Designentwürfe ableiten,
• beherrschen die Funktions- und Tragwerkgestaltung sowie die wichtige Mensch-Maschine-Schnittstelle der Interfacegestaltung,
• haben Kenntnis über die wesentlichen Parameter eines guten Corporate Designs.

13. Inhalt:

Form- und Farbgebung mit Oberflächendesign und Grafik von Einzelprodukten. Interior-Design sowie das Design von Produktprogrammen und Produktsystemen mit Corporate-Design.

14. Literatur:
• Maier, T., Schmid, M.: Online-Skript IDEnKompakt mit SelfStudy-Online-Übungen;
• Seeger, H.: Design technischer Produkte, Produktprogramme und -systeme, Springer-Verlag;
• Lange, W., Windel, A.: Kleine ergonomische Datensammlung, TÜV-Verlag

15. Lehrveranstaltungen und -formen:
• 142401 Vorlesung Technisches Design
• 142402 Übung und Praktikum Technisches Design

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 h
Selbststudiumszeit / Nacharbeitzeit: 138 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
14241 Technisches Design (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:
Vorlesungsskript, kombinierter Einsatz von Präsentationsfolien und Videos, mit Designmodellen und Produkten, Präsentation von Übungen mit Aufgabenstellung und Papiervorlagen

20. Angeboten von:
Modul: 13330 Technologiemanagement

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072010002</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Moduldauer:</td>
<td>2 Semester</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Dieter Spath

9. Dozenten: • Wilhelm Bauer • Robert Hämmerl

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technikpädagogik → Vorgezogene Master-Module
 B.Sc. Technikpädagogik → Wahlpflichtfach Wahlpflichtfach Maschinenbau --> Modulcontainer Wahlpflichtbereich (Mach-TP)
 M.Sc. Technikpädagogik → Wahlpflichtfach Maschinenbau --> Fahrzeugtechnik --> Mach-TP
 M.Sc. Technikpädagogik → Wahlpflichtfach Maschinenbau --> Fertigungstechnik --> Mach-TP
 M.Sc. Technikpädagogik → Wahlpflichtfach Maschinenbau --> Heizungs-, Lüftungs- und Klimatechnik --> Mach-TP
 M.Sc. Technikpädagogik → Wahlpflichtfach Maschinenbau --> Fahrzeugtechnik --> Mach-TP
 M.Sc. Technikpädagogik → Wahlpflichtfach Maschinenbau --> Fertigungstechnik --> Mach-TP
 M.Sc. Technikpädagogik → Wahlpflichtfach Maschinenbau --> Heizungs-, Lüftungs- und Klimatechnik --> Mach-TP

11. Empfohlene Voraussetzungen: keine

12. Lernziele:

 Die Studierenden haben Kenntnis von den theoretischen Ansätzen des Technologiemanagements in Unternehmen und können normatives, strategisches und operatives Technologiemanagement unterscheiden.

 Sie Grenzen die Begriffe Technologiemanagement, Forschungs- und Entwicklungsmanagement und Innovationsmanagement gegeneinander ab und kennen die Bedeutung von Technologien.

 Sie kennen klassische Aufbauorganisationen in Unternehmen sowie die Bedeutung der Ablauforganisation. Sie verstehen, wie Technologien in Unternehmen strategisch geplant und sinnvoll eingesetzt werden und wie sich der Einsatz neuer Technologien auswirkt.

 Die Studierenden kennen die verschiedenen Innovationsgrade und -arten sowie Innovationshindernisse und -beschleuniger. Zudem sind ihnen Ziele und Risiken des Projektmanagements bekannt sowie die Grundzüge der Projektplanung. Die Instrumente des Technologie-
und Innovationsmanagements kennen sie hinsichtlich Effizienz, Finanzierungsmöglichkeiten und Kapazitätsplanung ebenso, wie verschiedene Möglichkeiten der internen und externen Zusammenarbeit.

Erworbene Kompetenzen: Die Studierenden

- können die Bedeutung des Technologiemanagements im Unternehmen einordnen
- kennen die wesentlichen Ansätze und Aufgaben des normativen, strategischen und operativen Technologiemanagements
- verstehen die Handlungsalternativen des Technologiemanagements
- kennen die Phasen eines methodischen Vorgehens im Technologiemanagement
- sind mit den wichtigsten Methoden zur Technologieplanung und - strategie vertraut und können diese zielführend anwenden

13. Inhalt:
Die Vorlesung vermittelt die Grundlagen und das Anwendungswissen zum Technologiemanagement.

Im Einzelnen werden folgende Themen behandelt:

Umfeld des Technologiemanagements, Begriffsklärungen, Organisationsmanagement, Integriertes Technologiemanagement, Normatives Technologiemanagement, Strategisches Technologiemanagement:

- Technologiefrühaufklärung
- Lebenszykluskonzepte
- Portfoliomethodik
- Erfahrungskurvenkonzept
- Technologiestrategien

Fallstudien zum strategischen Technologiemanagement, Operatives Technologiemanagement:

- Innovationsmanagement
- Projektmanagement
- Instrumente des Technologie- und Innovationsmanagements

Fallstudie Netzplantechnik

14. Literatur:
- Bauer, W.; Weber, B.: Skript zur Vorlesung Technologiemanagement

15. Lehrveranstaltungen und -formen:
- 133301 Vorlesung Technologiemanagement I
- 133302 Vorlesung Technologiemanagement II

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 46 Stunden
Selbststudium: 134 Stunden
Summe: 180 Stunden
<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>13331 Technologiemanagement (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ...</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Beamer-Präsentation, Videos, Animationen, Praktikum</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td></td>
</tr>
</tbody>
</table>
Modul: 13560 Technologien der Nano- und Mikrosystemtechnik I

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072420001</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. Modulverantwortlicher:</th>
<th>Univ.-Prof. Hermann Sandmaier</th>
</tr>
</thead>
<tbody>
<tr>
<td>9. Dozenten:</td>
<td>Hermann Sandmaier</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- B.Sc. Technikpädagogik
 - Vorgezogene Master-Module
- B.Sc. Technikpädagogik
 - Wahlpflichtfach --> Wahlpflichtfach Maschinenbau --> Modulcontainer Wahlpflichtbereich (Mach-TP)
- M.Sc. Technikpädagogik
 - Wahlpflichtfach Maschinenbau --> Fahrzeugtechnik --> Mach-TP
- M.Sc. Technikpädagogik
 - Wahlpflichtfach Maschinenbau --> Fertigungstechnik --> Mach-TP
- M.Sc. Technikpädagogik
 - Wahlpflichtfach Maschinenbau --> Heizungs-, Lüftungs- und Klimatechnik --> Mach-TP
- M.Sc. Technikpädagogik
 - Wahlpflichtfach Maschinenbau --> Fahrzeugtechnik --> Mach-TP
- M.Sc. Technikpädagogik
 - Wahlpflichtfach Maschinenbau --> Fertigungstechnik --> Mach-TP
- M.Sc. Technikpädagogik
 - Wahlpflichtfach Maschinenbau --> Heizungs-, Lüftungs- und Klimatechnik --> Mach-TP

11. Empfohlene Voraussetzungen: keine

12. Lernziele:

Im Modul Technologien der Nano- und Mikrosystemtechnik I

- haben die Studierenden die wichtigsten Technologien und Verfahren zur Herstellung von Bauelementen der Mikroelektronik als auch der Nano- und Mikrosystemtechnik kennen gelernt,
- können die Studierenden einzelne technologische Prozesse bewerten und sind in der Lage Prozessabläufe selbstständig zu entwerfen.

Erworbene Kompetenzen:

Die Studierenden

- können die wichtigsten Materialien der Nano- und Mikrosystemtechnik benennen und beschreiben,
- können die wichtigsten Verfahren der Mikroelektronik sowie der Nano- und Mikrosystemtechnik benennen und mit Hilfe physikalischer Grundlagenkenntnisse erläutern,
13. Inhalt:

14. Literatur:

- Menz, W.; Mohr, J.; Paul, O., Mikrosystemtechnik für Ingenieure, Weinheim: Wiley-VCH, 2005
- Schwesinger N.; Dehne C.; Adler F., Lehrbuch Mikrosystemtechnik, Oldenburg Verlag, 2009

Online-Vorlesungen:

- http://www.sensedu.com
- http://www.ett.bme.hu/memsedu

Lernmaterialien:

- Vorlesungsfolien und -skript auf ILIAS

15. Lehrveranstaltungen und -formen:

- 135601 Vorlesung Technologien der Nano- und Mikrosystemtechnik I

16. Abschätzung Arbeitsaufwand:

- Präsenzzeit: 42 h
- Selbststudiumszeit / Nacharbeitszeit: 138 h
- Gesamt: 180 h

17. Prüfungsnummer/n und -name:

- 13561 Technologien der Nano- und Mikrosystemtechnik I (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ...:
<table>
<thead>
<tr>
<th>19. Medienform:</th>
<th>Präsentation mit Animationen und Filmen, Beamer, Tafel, Anschauungsmaterial</th>
</tr>
</thead>
<tbody>
<tr>
<td>20. Angeboten von:</td>
<td>Mikrosystemtechnik</td>
</tr>
</tbody>
</table>
Modul: 15860 Thermische Verfahrenstechnik I

2. Modulkürzel: 042100015
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0
5. Modulduauer: 1 Semester
6. Turnus: jedes 2. Semester, SoSe
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Joachim Groß
9. Dozenten: Joachim Groß
10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technikpädagogik
 ➔ Vorgezogene Master-Module
 B.Sc. Technikpädagogik
 ➔ Wahlpflichtfach --> Wahlpflichtfach Maschinenbau --> Modulcontainer Wahlpflichtbereich (Mach-TP)
 ➔
 M.Sc. Technikpädagogik
 ➔ Wahlpflichtfach Maschinenbau --> Fahrzeugtechnik --> Mach-TP
 ➔
 M.Sc. Technikpädagogik
 ➔ Wahlpflichtfach Maschinenbau --> Fertigungstechnik --> Mach-TP
 ➔
 M.Sc. Technikpädagogik
 ➔ Wahlpflichtfach Maschinenbau --> Heizungs-, Lüftungs- und Klimatechnik --> Mach-TP
 ➔
 M.Sc. Technikpädagogik
 ➔ Wahlpflichtfach Maschinenbau --> Fahrzeugtechnik --> Mach-TP
 ➔
 M.Sc. Technikpädagogik
 ➔ Wahlpflichtfach Maschinenbau --> Fertigungstechnik --> Mach-TP
 ➔
 M.Sc. Technikpädagogik
 ➔ Wahlpflichtfach Maschinenbau --> Heizungs-, Lüftungs- und Klimatechnik --> Mach-TP
 ➔
11. Empfohlene Voraussetzungen:
 Thermodynamik I + II
 Thermodynamik der Gemische (empfohlen, nicht zwingend)
12. Lernziele:
 Die Studierenden
 • verstehen die Prinzipien zur Auslegung von Apparaten der Thermischen Verfahrenstechnik.
 • können dieses Wissen selbstständig anwenden, um konkrete Fragestellung der Auslegung thermischer Trennoperationen zu lösen, d.h. sie können die für die jeweilige Trennoperation notwendigen Prozessgrößen berechnen und die Apparate dimensionieren.
 • sind in der Lage verallgemeinerte Aussagen über die Wirksamkeit verschiedener Trennoperationen für ein gegebenes Problem zu treffen, bzw. eine geeignete Trennoperation auszuwählen.
 • können das erworben Wissen und Verständnis der Modellbildung thermischer Trennapparate weiterführend auch auf spezielle
Sonderprozesse anwenden. Die Studierenden haben das zur weiterführenden, eigenständigen Vertiefung notwendige Fachwissen.

- können durch eingebettete, praktische Übungen an realen Apparaten grundlegende Problematiken der bautechnischen Umsetzung identifizieren.

13. Inhalt:

14. Literatur:

- M. Baerns, Lehrbuch der Technischen Chemie, Band 2, Grundoperationen, Band 3, Chemische Prozesskunde, Thieme, Stuttgart
- R. Goedecke, Fluidverfahrenstechnik, Band 1 & 2, Wiley-VCH, Weinheim
- P. Grassmann, F. Widmer, H. Sinn, Einführung in die Thermische Verfahrenstechnik, de Gruyter, Berlin

15. Lehrveranstaltungen und -formen:

- 158601 Vorlesung Thermische Verfahrenstechnik I
- 158602 Übung Thermische Verfahrenstechnik I

16. Abschätzung Arbeitsaufwand:

| Präsenzzeit: | 56 h |
| Selbststudiumszeit / Nacharbeitszeit: | 124 h |

Gesamt: 180 h

17. Prüfungsnummer/n und -name:

15861 Thermische Verfahrenstechnik I (USL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ...:

15890 Thermische Verfahrenstechnik II

19. Medienform:

Der Vorlesungsinhalt wird als Tafelanschrieb entwickelt, ergänzt um Präsentationsfolien. Beiblätter werden zur Unterstützung ausgeteilt.

20. Angeboten von:

Institut für Technische Thermodynamik und Thermische Verfahrenstechnik
Modul: 13570 Werkzeugmaschinen und Produktionssysteme

2. Modulkürzel: 073310001
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0
5. Modulduer: 1 Semester
7. Sprache: Deutsch
8. Modulverantwortlicher: Prof. Uwe Heisel
9. Dozenten: Uwe Heisel

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technikpädagogik, PO 2011, 5. Semester
→ Vorgezogene Master-Module
→ B.Sc. Technikpädagogik, PO 2011, 5. Semester
→ Wahlleistungsfach -->Wahlleistungsfach Maschinenbau -->
 Modulcontainer Wahlleistungsbereich (Mach-TP)
→
→ B.Sc. Technikpädagogik, PO 2011, 5. Semester
→ Wahlleistungsfach -->Wahlleistungsfach Maschinenbau -->b)
 Fertigungstechnik Pflichtcontainer Grundlagen Fertigungstechnik
→
→ M.Sc. Technikpädagogik
→ Hauptfach Maschinenbau -->Fertigungstechnik -->Pflichtcontainer
 Fertigungstechnik-Hauptfach
→
→ M.Sc. Technikpädagogik
→ Wahlleistungsfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP
→
→ M.Sc. Technikpädagogik
→ Wahlleistungsfach Maschinenbau -->Fertigungstechnik -->
 Fertigungstechnik (Pflicht)
→
→ M.Sc. Technikpädagogik
→ Wahlleistungsfach Maschinenbau -->Fertigungstechnik -->Mach-TP
→
→ M.Sc. Technikpädagogik
→ Wahlleistungsfach Maschinenbau -->Heizungs-, Lüftungs- und
 Klimatechnik -->Mach-TP
→
→ M.Sc. Technikpädagogik
→ Auflagenmodule des Masters
→ M.Sc. Technikpädagogik
→ Hauptfach Maschinenbau -->Fertigungstechnik -->Pflichtcontainer
 Fertigungstechnik-Hauptfach
→
→ M.Sc. Technikpädagogik
→ Wahlleistungsfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP
→
→ M.Sc. Technikpädagogik
→ Wahlleistungsfach Maschinenbau -->Fertigungstechnik -->
 Fertigungstechnik (Pflicht)
→
→ M.Sc. Technikpädagogik
→ Wahlleistungsfach Maschinenbau -->Fertigungstechnik -->Mach-TP
→
→ M.Sc. Technikpädagogik
→ Wahlleistungsfach Maschinenbau -->Fertigungstechnik -->Mach-TP
→
→ M.Sc. Technikpädagogik
11. Empfohlene Voraussetzungen:

TM I - III, KL I - IV, Fertigungslehre

12. Lernziele:

Die Studierenden kennen den konstruktiven Aufbau und die Funktionseinheiten von spanenden Werkzeugmaschinen und Produktionssystemen sowie die Formeln zu deren Berechnung, sie wissen, wie Werkzeugmaschinen und deren Funktionseinheiten funktionieren, sie können deren Aufbau und Funktionsweise erklären und die Formeln zur Berechnung von Werkzeugmaschinen anwenden.

13. Inhalt:

14. Literatur:

Skript, Vorlesungsunterlagen im Internet, alte Prüfungsaufgaben

15. Lehrveranstaltungen und -formen:

135701 Vorlesung Werkzeugmaschinen und Produktionssysteme

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 42 h
Selbststudiumszeit / Nacharbeitszeit: 138 h
Gesamt: 180 h

17. Prüfungsnr/n und -name:

13571 Werkzeugmaschinen und Produktionssysteme (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:

Medienmix: Präsentation, Tafelanschrieb, Videoclips

20. Angeboten von:

Institut für Werkzeugmaschinen
Modul: 13580 Wissens- und Informationsmanagement in der Produktion

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072410003</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>6.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>5. Moduldauer:</th>
<th>2 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. Modulverantwortlicher:</th>
<th>Univ.-Prof. Thomas Bauernhansl</th>
</tr>
</thead>
<tbody>
<tr>
<td>9. Dozenten:</td>
<td>Thomas Bauernhansl</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10. Zuordnung zum Curriculum in diesem Studiengang:</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.Sc. Technikpädagogik</td>
</tr>
<tr>
<td>B.Sc. Technikpädagogik</td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik</td>
</tr>
</tbody>
</table>

| 11. Empfohlene Voraussetzungen: | Fertigungslehre mit Einführung in die Fabrikorganisation. Es wird empfohlen die Vorlesung Fabrikbetriebslehre ergänzend zu belegen |

Lebenszyklen innerhalb des produzierenden Unternehmens mit Hilfe dieser IT-Werkzeuge unterstützt werden.

14. Literatur: Skript zur Vorlesung

15. Lehrveranstaltungen und -formen:
 • 135801 Vorlesung Wissens- und Informationsmanagement in der Produktion I
 • 135802 Übung Wissens- und Informationsmanagement in der Produktion I
 • 135803 Vorlesung Wissens- und Informationsmanagement in der Produktion II
 • 135804 Übung Wissens- und Informationsmanagement in der Produktion II

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 63 Stunden
 Selbststudium: 117 Stunden

17. Prüfungsnummer/n und -name: 13581 Wissens- und Informationsmanagement in der Produktion (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ...:

19. Medienform: Power-Point Präsentationen, Simulationen, Animationen und Filme

20. Angeboten von: Institut für Industrielle Fertigung und Fabrikbetrieb
Modul: 14310 Zuverlässigkeitsstechnik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072600003</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>2 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Bernd Bertsche</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Bernd Bertsche</td>
</tr>
</tbody>
</table>
B.Sc. Technikpädagogik ➔ Wahlpflichtfach −→ Wahlpflichtfach Maschinenbau −→ Modulcontainer Wahlpflichtbereich (Mach-TP) ➔
M.Sc. Technikpädagogik ➔ Wahlpflichtfach Maschinenbau −→ Fahrzeugtechnik −→ Mach-TP ➔
M.Sc. Technikpädagogik ➔ Wahlpflichtfach Maschinenbau −→ Fertigungstechnik −→ Mach-TP ➔
M.Sc. Technikpädagogik ➔ Wahlpflichtfach Maschinenbau −→ Heizungs-, Lüftungs- und Klimatechnik −→ Mach-TP ➔
M.Sc. Technikpädagogik ➔ Wahlpflichtfach Maschinenbau −→ Fahrzeugtechnik −→ Mach-TP ➔
M.Sc. Technikpädagogik ➔ Wahlpflichtfach Maschinenbau −→ Fertigungstechnik −→ Mach-TP ➔
M.Sc. Technikpädagogik ➔ Wahlpflichtfach Maschinenbau −→ Heizungs-, Lüftungs- und Klimatechnik −→ Mach-TP ➔ |
| 12. Lernziele: | Die Studierenden kennen die statistischen Grundlagen sowie die verschiedenen Methoden der Zuverlässigkeitsstechnik. Sie beherrschen qualitative Methoden (FMEA, FTA, Design Review, ABC-Analyse) und quantitative Methoden (Boole, Markov, Monte Carlo u.a.) und können diese zur Ermittlung der Zuverlässigkeit technischer Systeme anwenden. Sie beherrschen die Testplanung, können Zuverlässigkeitsanalysen auswerten und Zuverlässigkeitsprogramme aufstellen. |
| 13. Inhalt: | • Bedeutung und Einordnung der Zuverlässigkeitsstechnik
• Übersicht zu Methoden und Hilfsmittel
• Behandlung qualitativer Methoden zur systematischen Ermittlung von Fehlern bzw. Ausfällen und ihre Auswirkungen, z. B. FMEA (mit Übungen), Fehlerbaumanalyse FTA, Design Review (konstruktiv) |
• Grundbegriffe der quantitativen Methoden zur Berechnung von Zuverlässigkeits- und Verfügbarkeitswerten, z. B. Boolsche Theorie (mit Übungen), Markov Theorie, Monte Carlo Simulation
• Auswertung von Lebensdauerversuchen (z. B. mit Weibullverteilung)
• Zuverlässigkeitsnachweisverfahren
• Zuverlässigkeits sicherungsprogramme

14. Literatur:
• VDA-Band 3.2: Zuverlässigkeits sicherung bei Automobilherstellern und Lieferanten.

15. Lehrveranstaltungen und -formen:
• 143101 Vorlesung und Übung Zuverlässigkeitstechnik
• 143102 Praktikumsversuch FMEA

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 h Vorlesung und 2 h Praktikum
Selbststudiumszeit / Nacharbeitszeit: 136 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
14311 Zuverlässigkeitstechnik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:
Vorlesung: Laptop, Beamer, Overhead

20. Angeboten von:
Institut für Maschinenelemente
5421 Fertigungstechnik (Pflicht)

Zugeordnete Module:

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
</tr>
</thead>
<tbody>
<tr>
<td>13550</td>
<td>Grundlagen der Umformtechnik</td>
</tr>
<tr>
<td>13570</td>
<td>Werkzeugmaschinen und Produktionssysteme</td>
</tr>
<tr>
<td>14230</td>
<td>Steuerungstechnik der Werkzeugmaschinen und Industrieroboter</td>
</tr>
</tbody>
</table>
Modul: 13550 Grundlagen der Umformtechnik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>073210001</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Moduldaurer:</td>
<td>2 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Mathias Liewald</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Mathias Liewald</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>B.Sc. Technikpädagogik</th>
<th>→ Vorgezogene Master-Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>M.Sc. Technikpädagogik</td>
<td>→ Hauptfach Maschinenbau -->Fertigungstechnik -->Pflichtcontainer Fertigungstechnik-Hauptfach</td>
</tr>
<tr>
<td></td>
<td>→</td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik</td>
<td>→ Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Fertigungstechnik (Pflicht)</td>
</tr>
<tr>
<td></td>
<td>→</td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik</td>
<td>→ Wahlpflichtfach Maschinenbau -->WPF Fertigungstechnik -->Pflichtcontainer Fertigungstechnik</td>
</tr>
<tr>
<td></td>
<td>→</td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik</td>
<td>→ Auflagenmodule des Masters</td>
</tr>
<tr>
<td></td>
<td>→</td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik</td>
<td>→ Hauptfach Maschinenbau -->Fertigungstechnik -->Pflichtcontainer Fertigungstechnik-Hauptfach</td>
</tr>
<tr>
<td></td>
<td>→</td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik</td>
<td>→ Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Fertigungstechnik (Pflicht)</td>
</tr>
<tr>
<td></td>
<td>→</td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik</td>
<td>→ Wahlpflichtfach Maschinenbau -->WPF Fertigungstechnik -->Pflichtcontainer Fertigungstechnik</td>
</tr>
<tr>
<td></td>
<td>→</td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen:

Ingenieurwissenschaftliche Grundlagen: vor allem Werkstoffkunde, aber auch Technische Mechanik und Konstruktionslehre

12. Lernziele:

Erworbene Kompetenzen: Die Studierenden

- kennen die Grundlagen und Verfahren der spanlosen Formgebung von Metallen in der Blech- und Massivumformung
- können teilespezifisch die zur Herstellung optimalen Verfahren auswählen
- kennen die Möglichkeiten und Grenzen einzelner Verfahren, sowie ihre stückzahlabhängige Wirtschaftlichkeit
- können die zur Formgebung notwendigen Kräfte und Leistungen abschätzen
- sind mit dem Aufbau und der Herstellung von Werkzeugen vertraut

13. Inhalt:

Grundlagen:

Freiwillige Exkursionen: 1 Tag im WS, 1 Woche im SS, jeweils zu Firmen und Forschungseinrichtungen.

14. Literatur:
- Download: Folien „Einführung in die Umformtechnik 1/2“
- K. Lange: Umformtechnik, Band 1 - 3
- K. Siegert: Strangpressen
- H. Kugler: Umformtechnik
- K. Lange, H. Meyer-Nolkemper: Gesenkschmieden
- Schuler: Handbuch der Umformtechnik
- G. Oehler/F. Kaiser: Schneid-, Stanz- und Ziehwerkzeuge
- R. Neugebauer: Umform- und Zerteiltechnik

15. Lehrveranstaltungen und -formen:
- 135501 Vorlesung Grundlagen der Umformtechnik I
- 135502 Vorlesung Grundlagen der Umformtechnik II

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 h
Selbststudium / Nacharbeitszeit: 138 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
13551 Grundlagen der Umformtechnik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:
Download-Skript, Beamerpräsentation, Tafelaufschrieb

20. Angeboten von:
Institut für Umformtechnik
Modul: 14230 Steuerungstechnik der Werkzeugmaschinen und Industrieroboter

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072910003</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Moduldaurer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Andreas Pott

9. Dozenten: Armin Lechler, Andreas Pott

10. Zuordnung zum Curriculum in diesem Studiengang:

M.Sc. Technikpädagogik
→ Auflagenmodule des Masters

M.Sc. Technikpädagogik
→ Hauptfach Maschinenbau --Fertigungstechnik --Wahlcontainer
Fertigungstechnik-Hauptfach

→

M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau --Fertigungstechnik --
> Fertigungstechnik (Pflicht)

→

M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau --WPF Fertigungstechnik --
> Pflichtcontainer Fertigungstechnik

→

M.Sc. Technikpädagogik
→ Auflagenmodule des Masters

M.Sc. Technikpädagogik
→ Hauptfach Maschinenbau -->Fertigungstechnik -->Wahlcontainer
Fertigungstechnik-Hauptfach

→

M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Fertigungstechnik --
> Fertigungstechnik (Pflicht)

→

M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->WPF Fertigungstechnik --
> Pflichtcontainer Fertigungstechnik

→

11. Empfohlene Voraussetzungen:
Vorlesung „Steuerungstechnik mit Antriebstechnik“ (Modul Regelung- und Steuerungstechnik)

12. Lernziele:
Die Studierenden können erkennen, wie die Kinematik und Dynamik von Robotern und Parallelkinematiken beschrieben, gelöst und steuerungstechnisch integriert werden kann.

13. Inhalt:

- Steuerungsarten (mechanisch, fluidisch, Numerische Steuerung, Robotersteuerung): Aufbau, Architektur, Funktionsweise.
- Mess-, Antriebs-, Regelungstechnik für Werkzeugmaschinen und Industrieroboter
- Kinematische und Dynamische Modellierung von Robotern und Parallelkinematiken.
- Praktikum zur Inbetriebnahme von Antriebssystemen und regelungstechnischer Einstellung.

14. Literatur:

Pritschow, G.: Einführung in die Steuerungstechnik, Carl Hanser Verlag, München, 2006

15. Lehrveranstaltungen und -formen:

- 142301 Vorlesung Steuerungstechnik der Werkzeugmaschinen und Industrieroboter
- 142302 Übung Steuerungstechnik der Werkzeugmaschinen und Industrieroboter

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 42h
Nacharbeitszeit: 138h
Gesamt: 180h

17. Prüfungsnummer/n und -name:

14231 Steuerungstechnik der Werkzeugmaschinen und Industrieroboter (PL), schriftlich, eventuell mündlich, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

Beamer, Overhead, Tafel

20. Angeboten von:

Institut für Steuerungstechnik der Werkzeugmaschinen und Fertigungseinrichtungen
Modul: 13570 Werkzeugmaschinen und Produktionssysteme

2. Modulkürzel: 073310001
5. Moduldauer: 1 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Prof. Uwe Heisel

9. Dozenten: Uwe Heisel

10. Zuordnung zum Curriculum in diesem Studiengang:

 B.Sc. Technikpädagogik, PO 2011, 5. Semester
 → Vorgezogene Master-Module

 B.Sc. Technikpädagogik, PO 2011, 5. Semester
 → Wahlpflichtfach → Wahlpflichtfach Maschinenbau →
 Modulcontainer Wahlpflichtbereich (Mach-TP)
 →

 B.Sc. Technikpädagogik, PO 2011, 5. Semester
 → Wahlpflichtfach → Wahlpflichtfach Maschinenbau →b) Fertigungstechnik Pflichtcontainer Grundlagen Fertigungstechnik
 →

 M.Sc. Technikpädagogik
 → Hauptfach Maschinenbau → Fertigungstechnik → Pflichtcontainer
 Fertigungstechnik-Hauptfach
 →

 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau → Fahrzeugtechnik → Mach-TP
 →

 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau → Fertigungstechnik → Pflicht
 →

 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau → Fertigungstechnik → Mach-TP
 →

 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau → Heizungs-, Lüftungs- und
 Klimatechnik → Mach-TP
 →

 M.Sc. Technikpädagogik
 → Auflagenmodule des Masters

 M.Sc. Technikpädagogik
 → Hauptfach Maschinenbau → Fertigungstechnik → Pflichtcontainer
 Fertigungstechnik-Hauptfach
 →

 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau → Fahrzeugtechnik → Mach-TP
 →

 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau → Fertigungstechnik → Pflicht
 →

 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau → Fertigungstechnik → Mach-TP
 →

 M.Sc. Technikpädagogik

Stand: 07. Oktober 2015

12. Lernziele:
Die Studierenden kennen den konstruktiven Aufbau und die Funktionseinheiten von spanenden Werkzeugmaschinen und Produktionssystemen sowie die Formeln zu deren Berechnung, sie wissen, wie Werkzeugmaschinen und deren Funktionseinheiten funktionieren, sie können deren Aufbau und Funktionsweise erklären und die Formeln zur Berechnung von Werkzeugmaschinen anwenden.

13. Inhalt:

14. Literatur:
Skript, Vorlesungsunterlagen im Internet, alte Prüfungsaufgaben

15. Lehrveranstaltungen und -formen: 135701 Vorlesung Werkzeugmaschinen und Produktionssysteme

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 h
Selbststudiumszeit / Nacharbeitszeit: 138 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name: 13571 Werkzeugmaschinen und Produktionssysteme (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:
Medienmix: Präsentation, Tafelanschrieb, Videoclips

20. Angeboten von:
Institut für Werkzeugmaschinen
5422 Fertigungstechnik (Wahl)

<table>
<thead>
<tr>
<th>Zugeordnete Module</th>
<th>Bezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>12540</td>
<td>CAD/CAM im Stahlbau</td>
</tr>
<tr>
<td>13750</td>
<td>Technische Strömungslehre</td>
</tr>
<tr>
<td>13840</td>
<td>Fabrikbetriebslehre</td>
</tr>
<tr>
<td>13990</td>
<td>Grundlagen der Fördertechnik</td>
</tr>
<tr>
<td>14140</td>
<td>Materialbearbeitung mit Lasern</td>
</tr>
<tr>
<td>14280</td>
<td>Werkstofftechnik und -simulation</td>
</tr>
<tr>
<td>16260</td>
<td>Maschinendynamik</td>
</tr>
<tr>
<td>30940</td>
<td>Industriegetriebe</td>
</tr>
<tr>
<td>32360</td>
<td>Grundlagen der Wälzlagertechnik</td>
</tr>
<tr>
<td>32820</td>
<td>Werkzeuge der Blechumformung 1</td>
</tr>
<tr>
<td>33670</td>
<td>Rechnergestützte Konstruktion von Werkzeugmaschinen</td>
</tr>
<tr>
<td>33700</td>
<td>Ölhydraulik und Pneumatik in der Steuerungstechnik</td>
</tr>
<tr>
<td>36360</td>
<td>Qualitätsmanagement</td>
</tr>
</tbody>
</table>
Modul: 12540 CAD/CAM im Stahlbau

2. Modulkürzel: 20700103
5. Moduldauer: 1 Semester

3. Leistungspunkte: 6.0 LP
6. Turnus: jedes 2. Semester, SoSe

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Ulrike Kuhlmann

9. Dozenten: Ulrike Kuhlmann

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technikpädagogik, PO 2011, 3. Semester
→ Vertiefungsrichtung f) Holzbau (*Derzeit noch nicht im Angebot*)

B.Sc. Technikpädagogik, PO 2011, 3. Semester
→ Vorgezogene Master-Module

B.Sc. Technikpädagogik, PO 2011, 3. Semester
→ Wahlpﬂichtfach -->Wahlpﬂichtfach Bautechnik -->Pflichtcontainer Holzbau

→

M.Sc. Technikpädagogik
→ Hauptfach Bautechnik -->Holzbau (nur in Kombination mit Tragwerksbemessung und -konstruktion als affines Wahlpﬂichtfach möglich) -->Pflichtcontainer

→

M.Sc. Technikpädagogik
→ Hauptfach Bautechnik -->Tragwerksbemessung und Konstruktion -->Wahliccontainer

→

M.Sc. Technikpädagogik
→ Hauptfach Maschinenbau -->Fertigungstechnik -->Wahliccontainer Fertigungstechnik-Hauptfach

→

M.Sc. Technikpädagogik
→ Wahlpﬂichtfach Bautechnik -->d) Tragwerksbemessung und Konstruktion -->d) Tragwerksbemessung und Konstruktion Wahl

→

M.Sc. Technikpädagogik
→ Wahlpﬂichtfach Bautechnik -->f) Holzbau (nur in Kombination mit Tragwerksbemessung und -konstruktion möglich) -->f) Holzbau Pflicht

→

M.Sc. Technikpädagogik
→ Wahlpﬂichtfach Maschinenbau -->Fertigungstechnik -->Fertigungstechnik (Wahl)

→

M.Sc. Technikpädagogik
→ Wahlpﬂichtfach Maschinenbau -->WPF Fertigungstechnik -->Pflichtcontainer Fertigungstechnik

→

M.Sc. Technikpädagogik
→ hochaffines Wahlpﬂichtfach Bautechnik -->WPF Holzbau (nur in Kombination mit Tragwerksbemessung und -konstruktion als affines Wahlpﬂichtfach möglich) -->Pflichtcontainer

→

M.Sc. Technikpädagogik
→ hochaffines Wahlpﬂichtfach Bautechnik -->WPF Tragwerksbemessung und Konstruktion -->Wahliccontainer
11. Empfohlene Voraussetzungen:
Grundkenntnisse werkstoffübergreifendes Konstruieren und Entwerfen

12. Lernziele:

13. Inhalt:
Inhalt der Vorlesung
• Einführung
• Grundsätze für das Konstruieren mit CAD-Systemen
• Grundlagen des Renderings
• Planungs- und Fertigungsablauf im Stahlbauunternehmen
• Grundlagen der Stahlbau-Modellierung
• Datenaustausch/Schnittstellen

Inhalt der Übung
• Benutzerführung
• Grundfunktionen von AutoCAD
• Volumenbearbeitung in AutoCAD
• Rendering in AutoCAD
14. Literatur:
| Skript | AutoCAD |

15. Lehrveranstaltungen und -formen:
- 125401 Vorlesung CAD/CAM im Stahlbau
- 125402 Übung CAD/CAM im Stahlbau

16. Abschätzung Arbeitsaufwand:
| Präsenzzeit:70 h | Selbststudium:20 h | Gesamt: 190 h |

17. Prüfungsnummer/n und -name:
- 12541 CAD/CAM im Stahlbau (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0, Unbenotete Studienleistung als Vorleistung (USL-V): Hausübung
- V Vorleistung (USL-V), schriftliche Prüfung, 60 Min., Wichtige Hinweisschreiben bezüglich der Prüfungen.

18. Grundlage für ... :

19. Medienform:
| Vorlesung & Übung am PC |

20. Angeboten von:
| Institut für Konstruktion und Entwurf |
Modul: 13840 Fabrikbetriebslehre

2. Modulkürzel: 072410002
5. Moduldauer: 2 Semester

3. Leistungspunkte: 6.0 LP
6. Turnus: jedes 2. Semester, SoSe

4. SWS: 6.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Thomas Bauernhansl

9. Dozenten: Thomas Bauernhansl

10. Zuordnung zum Curriculum in diesem Studiengang:

 B.Sc. Technikpädagogik, PO 2011, 4. Semester
 → Pflichtmodule mit Wahlmöglichkeit (6 LP)
 → Vorgezogene Master-Module

 B.Sc. Technikpädagogik, PO 2011, 4. Semester
 → Wahlpflichtfach -->Wahlpflichtfach Maschinenbau -->b)
 Fertigungstechnik Pflichtcontainer Grundlagen Fertigungstechnik
 →

 M.Sc. Technikpädagogik, PO 2009, 2. Semester
 → Studienprofil C - betriebliche Bildungsarbeit --
 >Spezialisierungsbereich
 →

 M.Sc. Technikpädagogik, PO 2009, 2. Semester
 → Wahlpflichtfach Maschinenbau -->Fertigungstechnik --
 >Fertigungstechnik (Wahl)
 →

 M.Sc. Technikpädagogik, PO 2015, 2. Semester
 → Studienprofil C - betriebliche Bildungsarbeit --
 >Spezialisierungsbereich
 →

 M.Sc. Technikpädagogik, PO 2015, 2. Semester
 → Wahlpflichtfach Maschinenbau -->Fertigungstechnik --
 >Fertigungstechnik (Wahl)
 →

11. Empfohlene Voraussetzungen:

 Kernmodul „Fertigungslehre mit Einführung in die Fabrikorganisation“

12. Lernziele:

 Fabrikbetriebslehre - Management in der Produktion
 (Fabrikbetriebslehre I): Der Studierende kennt die einzelnen Unternehmensbereiche und beherrscht Methodenwissen in den einzelnen Bereichen um diese von der Produktentwicklung bis zum Fabrikbetrieb optimal zu gestalten.

 Fabrikbetriebslehre - Kosten- und Leistungsrechnung

13. Inhalt:

 Fabrikbetriebslehre - Management in der Produktion
 (Fabrikbetriebslehre I): Ausgehend von der Bedeutung, den Treibern und den Optimierungspositionen der Produktion werden im Verlauf der Vorlesung die einzelnen Elemente von produzierenden Unternehmen erläutert, wobei der Schwerpunkt auf den eingesetzten Methoden liegt. Nach der Produktentwicklung (Innovation und Entwicklung) werden die Arbeitsplanung, die Fertigungs- und Montagesystemplanung, die Fabrikplanung, das Auftragsmanagement sowie das Supply
Chain Management betrachtet. Abschließend werden zum Thema Produktionsmanagement die Grundlagen von ganzheitlichen Produktionssystemen, die Wertstrommethode sowie Methoden zur Prozessoptimierung und Führungsinstrumente erläutert.

14. Literatur:
 - Vorlesungsskript als PDF-Dokument online bereitgestellt,
 - Wandlungsfähige Unternehmensstrukturen
 - Das Stuttgarter Unternehmensmodell, Westkämper Engelbert, Berlin Springer 2007,

15. Lehrveranstaltungen und -formen:
 - 138401 Vorlesung Fabrikbetriebslehre Management in der Produktion (Fabrikbetriebslehre I)
 - 138402 Übung Fabrikbetriebslehre Management in der Produktion (Fabrikbetriebslehre I)
 - 138403 Vorlesung Fabrikbetriebslehre Kosten- und Leistungsrechnung (Fabrikbetriebslehre II)
 - 138404 Übung Fabrikbetriebslehre Kosten- und Leistungsrechnung (Fabrikbetriebslehre II)

16. Abschätzung Arbeitsaufwand:
 - Präsenzzeit: 63 Stunden
 - Selbststudium: 117 Stunden

17. Prüfungsnummer/n und -name:
 - 13841 Fabrikbetriebslehre (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:
 - PowerPoint, Folien (Overhead), Video, Animation

20. Angeboten von:
 - Institut für Industrielle Fertigung und Fabrikbetrieb
Modul: 13990 Grundlagen der Fördertechnik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072100001</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Tobias Weber
• Markus Schröppel |
→ Wahlpflichtfach Maschinenbau -->Fertigungstechnik -- >Fertigungstechnik (Wahl)
→ M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->WPF Fertigungstechnik -->Wahlcontainer Fertigungstechnik
→ M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Fertigungstechnik -- >Fertigungstechnik (Wahl)
→ M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->WPF Fertigungstechnik -->Wahlcontainer Fertigungstechnik |
| 12. Lernziele: | **Im Modul Grundlagen der Fördertechnik**
• haben die Studierenden die Systematisierung verschiedenartiger Fördermittel in unterschiedlichen
Anwendungsfällen und die Basiselemente für deren Konstruktion und Entwicklung kennen gelernt,
können die Studierenden wichtige Aufgaben der Betriebsführung von fördertechnischen, materialflusstechnischen oder logistischen Einrichtungen durchführen.
Erworben Kompetenzen: Die Studierenden
• sind mit den wichtigsten Methoden zur Planung der Gegebenheiten des jeweiligen Wirtschaftsbereiches und seiner zu fördernden Güter unter betriebswirtschaftlichen Gesichtspunkten vertraut,
können die fördertechnischen Basiselemente für die Konstruktion und Entwicklung von Materialflusssystemen,
verstehen den Vorgang der Entwicklung, Planung, Betrieb und der Instandhaltung von fördertechnischen, materialflusstechnischen oder logistischen Komponenten, |
• können die richtigen technischen Basiselemente Ihrer Art und Form entsprechend unter Berücksichtigung der Vor- und Nachteile für die klassischen Aufgaben der Fördertechnik (Fördern, Verteilen, Sammeln und Lagern) zuordnen und auswählen

• verstehen Materialfluss als Verkettung aller Vorgänge beim Gewinnen, Be- und Verarbeiten sowie bei der Verteilung von Gütern innerhalb festgelegter Bereiche.

13. Inhalt:
Die Vorlesung vermittelt die Grundlagen der Fördertechnik.

14. Literatur:
• Martin, H.; Römisch, P.; Weidlich, A.: Materialflusstechnik, 8. Auflage, Vieweg Verlag, 2004

• Scheffler, M.: Grundlagen der Fördertechnik, Elemente und Trieberwerke, 1. Auflage, Vieweg Verlag, 1994

15. Lehrveranstaltungen und -formen:
• 139901 Vorlesung und Übung Grundlagen der Materialflusstechnik
• 139902 Vorlesung und Übung Konstruktionselemente der Fördertechnik

16. Abschätzung Arbeitsaufwand:
42 Std. Präsenz
48 Std. Vor-/Nachbearbeitung
90 Std. Prüfungsvorbereitung und Prüfung

Summe: 180 Stunden

17. Prüfungsnummer/n und -name:
• 13991 Grundlagen der Materialflusstechnik (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0
• 13992 Konstruktionselemente (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0
<table>
<thead>
<tr>
<th>18. Grundlage für ... :</th>
</tr>
</thead>
<tbody>
<tr>
<td>19. Medienform:</td>
</tr>
<tr>
<td>Beamer-Präsentation, Overhead-Projektor</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
</tr>
</tbody>
</table>

Stand: 07. Oktober 2015

Seite 933 von 1124
Modul: 32360 Grundlagen der Wälzlagertechnik

2. Modulkürzel: 072600006
3. Leistungspunkte: 3.0 LP
4. SWS: 2.0
5. Moduldauer: 1 Semester
6. Turnus: jedes 2. Semester, SoSe
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Bernd Bertsche
9. Dozenten: Arbogast Grunau
10. Zuordnung zum Curriculum in diesem Studiengang:
 M.Sc. Technikpädagogik
 → Wahlfächern Maschinenbau -->Fertigungstechnik --> Fertigungstechnik (Wahl)
11. Empfohlene Voraussetzungen:
12. Lernziele:
13. Inhalt:
 • Bedeutung der Wälzlager in der Technik
 • Grundlagen und Bauformen von Wälzlagern
 • Tragfähigkeit und Lebensdauer
 • Schmierung und Dichtung
 • Konstruieren mit Wälzlagern
 • Online-Wellenberechnung
14. Literatur:
 Grunau, A.: Grundlagen der Wälzlagertechnik, Skript zur Vorlesung
15. Lehrveranstaltungen und -formen: 323601 Vorlesung Wälzlagertechnik
16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 21 Stunden
 Selbststudium: 69 Stunden
 Summe: 90 Stunden
17. Prüfungsnr/n und -name: 32361 Grundlagen der Wälzlagertechnik (BSL), schriftlich, eventuell mündlich, Gewichtung: 1.0
18. Grundlage für ... :
19. Medienform:
 Beamer-Präsentation, Overhead-Projektor
20. Angeboten von:
 Institut für Maschinenelemente
Modul: 30940 Industriegetriebe

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072710070</th>
<th>5. Modulduauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Matthias Bachmann</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Matthias Bachmann</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
 → Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->
 >Fertigungstechnik (Wahl)
 → M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->
 >Fertigungstechnik (Wahl)
 → |
| 11. Empfohlene Voraussetzungen: | Abgeschlossene Grundlagenausbildung in Konstruktionslehre z. B. durch die Module Konstruktionslehre I - IV |
| 12. Lernziele: | Im Modul Industriegetriebe
 - haben die Studierenden Anwendungen und Besonderheiten von Industriegetrieben kennen gelernt,
 - können die Studierenden die in Konstruktionslehre erworbenen Grundlagen vertiefen und gezielt einsetzen.
 Erworbene Kompetenzen: Die Studierenden
 - können Industriegetriebe einordnen,
 - können im Industriegetriebebau übliche Werkstoffe und Maschinenelemente benennen und auswählen,
 - können Verzahnungen für industrielle Anwendungen geometrisch und hinsichtlich Tragfähigkeit auslegen,
 - können die Ansätze zur Systematik der Übersetzungs- und Drehmomentgerüste zur Baukastengetriebekonzeption nutzen,
 - können Übersetzungen, Drehzahlen und Drehmomente von Umlaufgetrieben bestimmen.
 Die Vorlesung vermittelt die Grundlagen von Industriegetrieben.
 Literatur:
 - Bachmann, M.: Industriegetriebe. Skript zur Vorlesung
 - Schlecht, B.: Maschinenelemente 2. 1. Auflage, Pearson Studium München, 2010
 Lehrveranstaltungen und -formen:
 309401 Vorlesung mit integrierten Übungen : Industriegetriebe |
Selbststudium: 69 Stunden
Summe: 90 Stunden

17. Prüfungsnummer/n und -name: 30941 Industriegetriebe (BSL), schriftlich, eventuell mündlich, 60 Min., Gewichtung: 1.0, bei weniger als 10 Kandidaten:mündlich, 20 min

18. Grundlage für ... :

19. Medienform: Beamer-Präsentation, Tafel

20. Angeboten von:
Modul: 16260 Maschinendynamik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072810004</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modulduer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Peter Eberhard</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Peter Eberhard</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:
- B.Sc. Technikpädagogik, PO 2011, 5. Semester
 - Pflichtmodule mit Wahlsmöglichkeit (6 LP)
- B.Sc. Technikpädagogik, PO 2011, 5. Semester
 - Vorgezogene Master-Module
- B.Sc. Technikpädagogik, PO 2011, 5. Semester
 - Wahlpflichtfach --> Wahlpflichtfach Maschinenbau --> b) Fertigungstechnik Pflichtcontainer Grundlagen Fertigungstechnik
- M.Sc. Technikpädagogik, PO 2009, 1. Semester
 - Wahlpflichtfach Maschinenbau --> Fertigungstechnik --> Fertigungstechnik (Wahl)
- M.Sc. Technikpädagogik, PO 2015, 1. Semester
 - Wahlpflichtfach Maschinenbau --> Fertigungstechnik --> Fertigungstechnik (Wahl)

11. Empfohlene Voraussetzungen:
- Grundlagen in Technischer Mechanik I-III

12. Lernziele:
Die Studierenden besitzen nach erfolgreichem Besuch des Moduls Maschinendynamik grundlegende Kenntnisse über die wichtigsten Methoden der Dynamik und haben ein gutes Verständnis der wichtigsten Zusammenhänge in der Maschinendynamik. Sie können grundlegende Problemstellungen aus der Maschinendynamik selbständig, sicher, kritisch und bedarfsgerecht analysieren und lösen.

13. Inhalt:

14. Literatur:
- Vorlesungsmitschrieb
- Vorlesungsunterlagen des ITM
- Schiehlen, W. und Eberhard, P.: Technische Dynamik. 2. Aufl., Teubner, Wiesbaden
| 15. Lehrveranstaltungen und -formen: | • 162601 Vorlesung Maschinendynamik
| | • 162602 Übung Maschinendynamik |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 42 h
| | Selbststudiumszeit / Nacharbeitszeit: 138 h
| | Gesamt: 180 h |
| 17. Prüfungsnummer/n und -name: | 16261 Maschinendynamik (PL), schriftlich oder mündlich, 90 Min., Gewichtung: 1.0 |
| 18. Grundlage für ... : | |
| 20. Angeboten von: | Institut für Technische und Numerische Mechanik |
Modul: 14140 Materialbearbeitung mit Lasern

2. Modulkürzel: 073010001 5. Moduldauer: 1 Semester
4. SWS: 4.0 7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Thomas Graf
9. Dozenten: Thomas Graf
10. Zuordnung zum Curriculum in diesem Studiengang:

 M.Sc. Technikpädagogik, PO 2009, . Semester
 → Hauptfach Maschinenbau --> Fertigungstechnik --> Wahlcontainer
 Fertigungstechnik-Hauptfach
 →
 M.Sc. Technikpädagogik, PO 2009, . Semester
 → Wahlpflichtfach Maschinenbau --> Fertigungstechnik -->
 Fertigungstechnik (Wahl)
 →
 M.Sc. Technikpädagogik, PO 2015, . Semester
 → Hauptfach Maschinenbau --> Fertigungstechnik --> Wahlcontainer
 Fertigungstechnik-Hauptfach
 →
 M.Sc. Technikpädagogik, PO 2015, . Semester
 → Wahlpflichtfach Maschinenbau --> Fertigungstechnik -->
 Fertigungstechnik (Wahl)
 →

13. Inhalt:
 • Laser und die Auswirkung ihrer Strahleigenschaften (Wellenlänge, Intensität, Polarisation, etc.) auf die Fertigung,
 • Komponenten und Systeme zur Strahlformung und Stahlführung, Werkstückhandhabung,
 • Wechselwirkung Laserstrahl-Werkstück
 • physikalische und technologische Grundlagen zum Schneiden, Bohren und Abtragen, Schweißen und Oberflächenbehandeln, Prozeßkontrolle, Sicherheitsaspekte, Wirtschaftlichkeitsbetrachtungen
14. Literatur:
 ISBN 978-3-8351-0005-3
15. Lehrveranstaltungen und -formen: 141401 Vorlesung mit integrierter Übung Materialbearbeitung mit Lasern
17. Prüfungsnummer/n und -name: 14141 Materialbearbeitung mit Lasern (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0
18. Grundlage für ... :
19. Medienform:

20. Angeboten von: Institut für Strahlwerkzeuge
Modul: 36360 Qualitätsmanagement

2. Modulkürzel: 072410009
5. Moduldauer: 1 Semester
3. Leistungspunkte: 6.0 LP
6. Turnus: jedes Semester
4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Thomas Bauernhansl
9. Dozenten: Alexander Schloske

10. Zuordnung zum Curriculum in diesem Studiengang:
 M.Sc. Technikpädagogik
 ➞ Hauptfach Maschinenbau -->Fertigungstechnik -->Wahlcontainer
 Fertigungstechnik-Hauptfach
 ➞
 M.Sc. Technikpädagogik
 ➞ Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->
 Fertigungstechnik (Wahl)
 ➞
 M.Sc. Technikpädagogik
 ➞ Wahlpflichtfach Maschinenbau -->WPF Fertigungstechnik -->
 Wahlcontainer Fertigungstechnik
 ➞
 M.Sc. Technikpädagogik
 ➞ Hauptfach Maschinenbau -->Fertigungstechnik -->Wahlcontainer
 Fertigungstechnik-Hauptfach
 ➞
 M.Sc. Technikpädagogik
 ➞ Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->
 Fertigungstechnik (Wahl)
 ➞
 M.Sc. Technikpädagogik
 ➞ Wahlpflichtfach Maschinenbau -->WPF Fertigungstechnik -->
 Wahlcontainer Fertigungstechnik
 ➞

11. Empfohlene Voraussetzungen:

12. Lernziele: Die Studierenden kennen die modernen Qualitätsmanagement-Systeme
 und Qualitätsmanagement-Methoden und können diese beurteilen sowie
 deren Anwendungsbereiche entlang des Produktlebenslaufes aufzeigen.

13. Inhalt: In der Vorlesung werden Methoden für die Regelung und Optimierung
 betrieblicher Abläufe in zeitgemäßen Produktionsbetrieben behandelt
 wie Quality Function Deployment (QFD), Fehlermöglichkeits- und
 Einflussanalyse (FMEA), Statistische Prozessregelung (SPC) und an
 Fällen aus der industriellen Praxis vertieft. Die Vorlesung gibt einen
 Überblick über die Aufgaben und die organisatorischen Maßnahmen
 für ein umfassendes Qualitätsmanagement. In die Betrachtung sind
 alle Phasen im Produktlebenszyklus, vom Marketing bis zur Nutzung
 einbezogen: Qualitätsphilosophie, Entwicklung von der Qualitätskontrolle
 zu TQM, Benchmarking, Aufbau und Einführung eines QM-Systems,
 Aufbau- und Ablauforganisation, QM-Normen, QMHandbuch,
 Auditierung, Aufgaben der Qualitätsplanung, Prüfmittelüberwachung, Q-
 Lenkung, u.a. Die Themen werden mit Beispielen und Erfahrungen aus
 der industriellen Praxis belegt.
Übung: 7 Qualitätsmanagement-Tools, 7 Management-Tools, Quality Function Deployment (QFD), Fehlermöglichkeits- und Einflussanalyse (FMEA), Stichprobenprüfung, Statistische Prozessregelung (SPC)

14. Literatur:
- Folien und Skriptum der Vorlesung

Standardliteratur zum Thema Qualitätsmanagement:

15. Lehrveranstaltungen und -formen:
- 363601 Vorlesung Qualitätsmanagement

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 42Stunden
- Selbststudium: 138 Stunden
- Summe: 180 Stunden

17. Prüfungsnummer/n und -name:
- 36361 Qualitätsmanagement (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0, Die Teilnahme an den Übungen ist verpflichtend

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
- Institut für Industrielle Fertigung und Fabrikbetrieb
Modul: 33670 Rechnergestützte Konstruktion von Werkzeugmaschinen

2. Modulkürzel: 073310007
5. Modulduauer: 1 Semester

3. Leistungspunkte: 3.0 LP
6. Turnus: jedes Semester

4. SWS: 2.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Prof. Uwe Heisel

9. Dozenten: Uwe Heisel

10. Zuordnung zum Curriculum in diesem Studiengang:
 M.Sc. Technikpädagogik
 → Hauptfach Maschinenbau -->Fertigungstechnik -->Wahlcontainer
 → Fertigungstechnik-Hauptfach
 → M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Fertigungstechnik (Wahl)
 → M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->WPF Fertigungstechnik -->Wahlcontainer Fertigungstechnik
 → M.Sc. Technikpädagogik
 → Hauptfach Maschinenbau -->Fertigungstechnik -->Wahlcontainer
 → Fertigungstechnik-Hauptfach
 → M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Fertigungstechnik (Wahl)
 → M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->WPF Fertigungstechnik -->Wahlcontainer Fertigungstechnik

11. Empfohlene Voraussetzungen: Werkzeugmaschinen und Produktionssysteme

12. Lernziele:

13. Inhalt:
Einführung - Übersicht über computergestützte Hilfsmittel - Einführung in CAD - Einführung in die Teilekonstruktion mit freien Übungen - Erstellung von Zeichnungen - Einführung in FEM mit Praxisbeispiel, freies Üben - Baugruppenkonstruktion - CAD-FEM-Kopplung, Preprocessing

14. Literatur:

15. Lehrveranstaltungen und -formen:

<table>
<thead>
<tr>
<th>Kurscode</th>
<th>Kursbeschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>336701</td>
<td>Vorlesung (inkl. Praxisarbeit) Rechnergestützte Konstruktion von Werkzeugmaschinen</td>
</tr>
</tbody>
</table>

16. Abschätzung Arbeitsaufwand:

- Präsenzzeit: 21 Stunden
- Selbststudium: 69 Stunden
- Summe: 90 Stunden

17. Prüfungsnummer/n und -name:

<table>
<thead>
<tr>
<th>Prüfungsnummer/n</th>
<th>Kursbeschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>33671</td>
<td>Rechnergestützte Konstruktion von Werkzeugmaschinen (BSL), schriftlich, eventuell mündlich, Gewichtung: 1.0</td>
</tr>
</tbody>
</table>

18. Grundlage für ... :

19. Medienform:

Medienmix: Präsentation, Tafelanschrieb, interaktive Programme am Rechner

20. Angeboten von:

Institut für Werkzeugmaschinen
Modul: 13750 Technische Strömungslehre

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>042010001</th>
<th>5. Modulduer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. Modulverantwortlicher:</th>
<th>Univ.-Prof. Stefan Riedelbauch</th>
</tr>
</thead>
<tbody>
<tr>
<td>9. Dozenten:</td>
<td>Stefan Riedelbauch</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:
- B.Sc. Technikpädagogik, PO 2011, 4. Semester
 - Pflichtmodule mit Wahlmöglichkeit (6 LP)
 - Vorgezogene Master-Module
 - Wahlrichtung Maschinenbau
 - Fahrzeugtechnik
 - Pflichtmodule
 - Wissenschaftliche Grundlagen
 - Fertigungs- und Fertigungstechnik
 - Heizungs-, Lüftungs- und Klimatechnik
- B.Sc. Technikpädagogik, PO 2011, 4. Semester
 - Wahlrichtung Maschinenbau
 - Fahrzeugtechnik
 - Pflichtmodule
 - Wissenschaftliche Grundlagen
 - Fertigungs- und Fertigungstechnik
 - Heizungs-, Lüftungs- und Klimatechnik
- B.Sc. Technikpädagogik, PO 2011, 4. Semester
 - Wahlrichtung Maschinenbau
 - Fahrzeugtechnik
 - Pflichtmodule
 - Wissenschaftliche Grundlagen
 - Fertigungs- und Fertigungstechnik
 - Heizungs-, Lüftungs- und Klimatechnik

11. Empfohlene Voraussetzungen:
Ingenieurwissenschaftliche und naturwissenschaftliche Grundlagen, Höhere Mathematik

13. Inhalt:
- Stoffeigenschaften von Fluiden
- Kennzahlen und Ähnlichkeit
- Statik der Fluide (Hydrostatik und Aerostatik)
- Grundgesetze der Fluidmechanik (Erhaltung von Masse, Impuls und Energie)
- Elementare Anwendungen der Erhaltungsgleichungen
- Rohrhydraulik
- Differentialgleichungen für ein Fluidelement

14. Literatur:
- Vorlesungsmanuskript „Technische Strömungslehre“
- E. Truckenbrodt, Fluidmechanik, Springer Verlag
- F.M. White, Fluid Mechanics, McGraw - Hill
- E. Becker, Technische Strömungslehre, B.G. Teubner Studienbücher

15. Lehrveranstaltungen und -formen:
- 137501 Vorlesung Technische Strömungslehre
- 137502 Übung Technische Strömungslehre
- 137503 Seminar Technische Strömungslehre

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 42 h
- Selbststudiumszeit / Nacharbeitszeit: 138 h
- Gesamt: 180 h

17. Prüfungsnummer/n und -name:
- 13751 Technische Strömungslehre (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ...:
- 14100 Hydraulische Strömungsmaschinen in der Wasserkraft

19. Medienform:
- Tafelanschrieb, Tablet-PC
- PPT-Präsentationen
- Skript zur Vorlesung

20. Angeboten von:
Modul: 14280 Werkstofftechnik und -simulation

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>041810003</th>
<th>5. Modulduer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Univ.-Prof. Siegfried Schmauder</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Siegfried Schmauder</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>← Wahlpflichtfach Maschinenbau -->Fertigungstechnik --</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>← Fertigungstechnik (Wahl)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>← Wahlpflichtfach Maschinenbau -->WPF Fertigungstechnik --</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>← Wahlcontainer Fertigungstechnik</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>← Wahlpflichtfach Maschinenbau -->Fertigungstechnik --</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>← Fertigungstechnik (Wahl)</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>← Wahlpflichtfach Maschinenbau -->WPF Fertigungstechnik --</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>← Wahlcontainer Fertigungstechnik</td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Werkstoffkunde I und II; Einführung in die Festigkeitslehre; Grundlagen der Numerik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>I. Werkstofftechnik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grundlagen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Versetzungstheorie</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Plastizität</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Festigkeitssteigerung</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Mechanisches Verhalten</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• statische Beanspruchung</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• schwingende Beanspruchung</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Zeitstandverhalten</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Stoffgesetze</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Mathematische Grundlagen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Elastisch-plastisches Werkstoffverhalten</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Viskoelastisches Werkstoffverhalten</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Neue Werkstoffe</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Keramiken</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
• Polymere
• Verbundwerkstoffe

II. Werkstoffsimulation

Was ist ein Modell?

Betrachtung vor dem Hintergrund der Größenordnung (von der atomistischen Ebene bis zum makroskopischen Bauteil)

Modellierung auf unterschiedlichen Skalen

Anwendung materialwissenschaftlicher Modelle auf unterschiedlichen Zeit- und Längenskalen

Monte Carlo Methode

Molekular dynamik Methode

Kristallplastizität und Versetzungstheorie

Mikro-/Meso-/Makromechanik

Finite Elemente Methode

Bruch- und Schädigungsmechanik

14. Literatur:
- Manuskript zur Vorlesung

15. Lehrveranstaltungen und -formen:
• 142801 Vorlesung Werkstofftechnik und -simulation
• 142802 Werkstofftechnik und -simulation Übung

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 h
Selbststudiumszeit / Nacharbeitszeit: 138 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
14281 Werkstofftechnik und -simulation (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:
PPT auf Tablet-PC, Folien, Animationen

20. Angeboten von:
Institut für Materialprüfung, Werkstoffkunde und Festigkeitslehre
Modul: 32820 Werkzeuge der Blechumformung 1

2. Modulkürzel: 073200401
5. Modulduauer: 1 Semester
3. Leistungspunkte: 3.0 LP
4. SWS: 2.0
7. Sprache: Deutsch
8. Modulverantwortlicher: Stefan Wagner
9. Dozenten: Stefan Wagner
 ➞ Wahlpflichtfach Maschinenbau --> Fertigungstechnik -->
 >Fertigungstechnik (Wahl)
 ➞ M.Sc. Technikpädagogik
 ➞ Wahlpflichtfach Maschinenbau --> Fertigungstechnik -->
 >Fertigungstechnik (Wahl)
11. Empfohlene Voraussetzungen: Möglichst Grundkenntnisse Vorlesung „Grundlagen der Umformtechnik 1/2“
14. Literatur:
 Download Folien „Werkzeuge der Blechumformung 1“
 Skript „Werkzeuge der Blechumformung 1“
15. Lehrveranstaltungen und -formen: 328201 Vorlesung Werkzeuge der Blechumformung 1
 des Selbststudium: 69 Stunden
 Summe: 90 Stunden
17. Prüfungsnummer/n und -name: 32821 Werkzeuge der Blechumformung 1 (BSL), mündliche Prüfung, 30 Min., Gewichtung: 1.0
18. Grundlage für ... :
19. Medienform: Folien-Download, Skript, Beamerpräsentation
20. Angeboten von: Institut für Umformtechnik
Modul: 33700 Ölhydraulik und Pneumatik in der Steuerungstechnik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072910031</th>
<th>5. Modulduer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Michael Seyfarth</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Michael Seyfarth</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- M.Sc. Technikpädagogik
 - Hauptfach Maschinenbau --> Fertigungstechnik --> Wahlcontainer Fertigungstechnik-Hauptfach
 - M.Sc. Technikpädagogik
 - Wahlpflichtfach Maschinenbau --> Fertigungstechnik --> Wahlcontainer Fertigungstechnik (Wahl)
 - M.Sc. Technikpädagogik
 - Wahlpflichtfach Maschinenbau --> WPF Fertigungstechnik --> Wahlcontainer Fertigungstechnik
 - M.Sc. Technikpädagogik
 - Hauptfach Maschinenbau --> Fertigungstechnik --> Wahlcontainer Fertigungstechnik-Hauptfach
 - M.Sc. Technikpädagogik
 - Wahlpflichtfach Maschinenbau --> Fertigungstechnik --> Wahlcontainer Fertigungstechnik (Wahl)
 - M.Sc. Technikpädagogik
 - Wahlpflichtfach Maschinenbau --> WPF Fertigungstechnik --> Wahlcontainer Fertigungstechnik

11. Empfohlene Voraussetzungen:

- keine

12. Lernziele:

Die Studierenden kennen die Gesetzmäßigkeiten und Elemente hydraulischer und pneumatischer Systeme. Sie können diese in fluidischen Schaltplänen erkennen und eigene fluidische Schaltungen entwerfen.

13. Inhalt:

- Grundlagen fluidischer Systeme.
- Elemente fluidischer Systeme (Pumpen, Motoren, Ventile).
- Schaltungen fluidischer Systeme.

14. Literatur:

- Matthies: Einführung in die Ölhydraulik, Teubner, Wiesbaden, 2006

15. Lehrveranstaltungen und -formen:

| 337001 Vorlesung Ölhydraulik und Pneumatik in der Steuerungstechnik |

16. Abschätzung Arbeitsaufwand:

- Präsenzzeit: 21 Stunden
- Selbststudium: 69 Stunden
- Summe: 90 Stunden

17. Prüfungsnummer/n und -name:

| 33701 Ölhydraulik und Pneumatik in der Steuerungstechnik (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0 |
18. Grundlage für ...

19. Medienform:

20. Angeboten von:
5430 Heizungs-, Lüftungs- und Klimatechnik

Zugeordnete Module: 5401 Mach-TP
5431 Heizungs-, Lüftungs- und Klimatechnik (Pflicht)
5432 Heizungs-, Lüftungs- und Klimatechnik (Wahl)
5401 Mach-TP

<table>
<thead>
<tr>
<th>Zugeordnete Module</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>11390</td>
<td>Grundlagen der Verbrennungsmotoren</td>
</tr>
<tr>
<td>12250</td>
<td>Numerische Methoden der Dynamik</td>
</tr>
<tr>
<td>12270</td>
<td>Simulationstechnik</td>
</tr>
<tr>
<td>13040</td>
<td>Fertigungsverfahren Faser- und Schichtverbundwerkstoffe</td>
</tr>
<tr>
<td>13060</td>
<td>Grundlagen der Heiz- und Raumlufttechnik</td>
</tr>
<tr>
<td>13330</td>
<td>Technologiemanagement</td>
</tr>
<tr>
<td>13540</td>
<td>Grundlagen der Mikrotechnik</td>
</tr>
<tr>
<td>13560</td>
<td>Technologien der Nano- und Mikrosystemtechnik I</td>
</tr>
<tr>
<td>13570</td>
<td>Werkzeugmaschinen und Produktionssysteme</td>
</tr>
<tr>
<td>13580</td>
<td>Wissens- und Informationsmanagement in der Produktion</td>
</tr>
<tr>
<td>13590</td>
<td>Kraftfahrzeuge I + II</td>
</tr>
<tr>
<td>13910</td>
<td>Chemische Reaktionstechnik I</td>
</tr>
<tr>
<td>13920</td>
<td>Dichtungstechnik</td>
</tr>
<tr>
<td>13930</td>
<td>Einführung in die effiziente Wärmenutzung</td>
</tr>
<tr>
<td>13940</td>
<td>Energie- und Umwelttechnik</td>
</tr>
<tr>
<td>13970</td>
<td>Gerätekonstruktion und -fertigung in der Feinwerktechnik</td>
</tr>
<tr>
<td>13980</td>
<td>Grundlagen der Faser- und Textiltechnik / Textilmaschinenbau</td>
</tr>
<tr>
<td>14010</td>
<td>Kunststofftechnik - Grundlagen und Einführung</td>
</tr>
<tr>
<td>14020</td>
<td>Grundlagen der Mechanischen Verfahrenstechnik</td>
</tr>
<tr>
<td>14030</td>
<td>Fundamentals of Microelectronics</td>
</tr>
<tr>
<td>14060</td>
<td>Grundlagen der Technischen Optik</td>
</tr>
<tr>
<td>14070</td>
<td>Grundlagen der Thermischen Strömungsmaschinen</td>
</tr>
<tr>
<td>14090</td>
<td>Grundlagen Technischer Verbrennungsvorgänge I + II</td>
</tr>
<tr>
<td>14100</td>
<td>Hydraulische Strömungsmaschinen in der Wasserkraft</td>
</tr>
<tr>
<td>14110</td>
<td>Kerntechnische Anlagen zur Energieerzeugung</td>
</tr>
<tr>
<td>14160</td>
<td>Methodische Produktentwicklung</td>
</tr>
<tr>
<td>14180</td>
<td>Numerische Strömungssimulation</td>
</tr>
<tr>
<td>14190</td>
<td>Regelungstechnik</td>
</tr>
<tr>
<td>14240</td>
<td>Technisches Design</td>
</tr>
<tr>
<td>14310</td>
<td>Zuverlässigkeitstechnik</td>
</tr>
<tr>
<td>15600</td>
<td>Schwingungen und Modalanalyse</td>
</tr>
<tr>
<td>15860</td>
<td>Thermische Verfahrenstechnik I</td>
</tr>
</tbody>
</table>
Modul: 13910 Chemische Reaktionstechnik I

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>041110001</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Ulrich Nieken</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Ulrich Nieken</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- **B.Sc. Technikpädagogik**
 - Vorgezogene Master-Module
 - Wahlpflichtfach --> Wahlpflichtfach Maschinenbau -- > Modulcontainer Wahlpflichtbereich (Mach-TP)
 - Wahlpflichtfach Maschinenbau --> Fahrzeugtechnik --> Mach-TP

- **M.Sc. Technikpädagogik**
 - Wahlpflichtfach Maschinenbau --> Fertigungstechnik --> Mach-TP
 - Wahlpflichtfach Maschinenbau --> Heizungs-, Lüftungs- und Klimatechnik --> Mach-TP

- **M.Sc. Technikpädagogik**
 - Wahlpflichtfach Maschinenbau --> Fahrzeugtechnik --> Mach-TP
 - Wahlpflichtfach Maschinenbau --> Fertigungstechnik --> Mach-TP

- **M.Sc. Technikpädagogik**
 - Wahlpflichtfach Maschinenbau --> Heizungs-, Lüftungs- und Klimatechnik --> Mach-TP

11. Empfohlene Voraussetzungen:

- Vorlesung:
 - Grundlagen Thermodynamik
 - Höhere Mathematik

- Übungen: keine

12. Lernziele:

13. Inhalt:

Globale Wärme- und Stoffbilanz bei chemischen Umsetzungen, Reaktionsgleichgewicht, Quantifizierung von Reaktionsgeschwindigkeiten, Betriebsverhalten idealer...
Rührkessel und Rohrreaktoren, Reaktorauslegung, dynamisches Verhalten von technischen Rührkessel- und Festbettreaktoren, Sicherheitsbetrachtungen, reales Durchmischungsverhalten

14. Literatur:

| Skript |

empfohlene Literatur:

- Fogler, H. S.: Elements of Chemical Engineering, Prentice Hall, 1999
- Levenspiel, O.: Chemical Reaction Engineering, John Wiley & Sons, 1999

15. Lehrveranstaltungen und -formen:

| 139101 Vorlesung Chemische Reaktionstechnik I |
| 139102 Übung Chemische Reaktionstechnik I |

16. Abschätzung Arbeitsaufwand:

| Präsenzeit: | 56 h |
| Selbststudienzeit / Nacharbeitszeit: | 124 h |
| Gesamt: | 180 h |

17. Prüfungsnummer/n und -name:

| 13911 Chemische Reaktionstechnik I (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0 |

18. Grundlage für ... : 15570 Chemische Reaktionstechnik II

19. Medienform:

| Vorlesung: Tafelanschrieb, Beamer |
| Übungen: Tafelanschrieb, Rechnerübungen |

20. Angeboten von: Institut für Chemische Verfahrenstechnik
Modul: 13920 Dichtungstechnik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072600002</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modulduer:</td>
<td>2 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Apl. Prof. Werner Haas</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Werner Haas</td>
</tr>
</tbody>
</table>

→ Vorgezogene Master-Module

→ Wahlpflichtfach --> Wahlpflichtfach Maschinenbau -->

> Modulcontainer Wahlpflichtbereich (Mach-TP)

→

M.Sc. Technikpädagogik

→ Wahlpflichtfach Maschinenbau --> Fahrzeugtechnik --> Mach-TP

→

M.Sc. Technikpädagogik

→ Wahlpflichtfach Maschinenbau --> Fertigungstechnik --> Mach-TP

→

M.Sc. Technikpädagogik

→ Wahlpflichtfach Maschinenbau --> Heizungs-, Lüftungs- und Klimatechnik --> Mach-TP

→

M.Sc. Technikpädagogik

→ Wahlpflichtfach Maschinenbau --> Fahrzeugtechnik --> Mach-TP

→

M.Sc. Technikpädagogik

→ Wahlpflichtfach Maschinenbau --> Fertigungstechnik --> Mach-TP

→

M.Sc. Technikpädagogik

→ Wahlpflichtfach Maschinenbau --> Heizungs-, Lüftungs- und Klimatechnik --> Mach-TP

→

12. Lernziele:

• Technische Problemstellungen, am Beispiel von Dichtsystemen, erkennen, analysieren, bewerten und kompetent einer sachgerechten Lösung zuführen.

• Technische Systeme und Maschinenteile zuverlässig abdichten verstehen.

• Komplexe tribologische Systeme ingenieurmäßig beherrschen.

• Physikalische Effekte konstruktiv in technischen Produkten gestaltend umsetzen.

• Interdisziplinäres Vorgehen strategisch anwenden.

13. Inhalt:

• Grundlagen der Tribologie, der Auslegung und der Berechnung sowie Anforderungen, Funktionen und Elemente von Dichtungen.

• Reibung, Verschleiß, Leckage, Konstruktion, Funktion, Anwendung und Berechnung aller wesentlichen Dichtungen für statische und dynamische Dichtstellen um Feststoffe, Paste, Flüssigkeit, Gas, Staub oder Schmutz abzudichten.
- Wann verwende ich welche Dichtung und warum - Situationsanalyse und Lösungsansatz.
- Spezielle Aspekte bei hohem Druck, hoher Geschwindigkeit, hoher Temperatur oder extremer Zuverlässigkeit - was ist machbar, was nicht.
- Beurteilen und untersuchen von Dichtsystemen; wie gehe ich bei der Schadensanalyse vor.
- Teil 1 der Vorlesung startet im WiSe; Teil 2 wir im SoSe gelesen. Es ist gut möglich Teil 2 vor Teil 1 zu hören, sodass in jedem Semester mit der Vorlesungen begonnen werden kann.

14. Literatur:
- Aktuelles Manuskript
- Heinz K. Müller; Bernhard S. Nau: www.fachwissen-dichtungstechnik.de

15. Lehrveranstaltungen und -formen:
- 139201 Vorlesung und Übung Dichtungstechnik
- 139202 Praktikumsversuch 1, wählbar aus dem Angebot von 5 Versuchen
- 139203 Praktikumsversuch 2, wählbar aus dem Angebot von 5 Versuchen

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 46 h
- Selbststudiumszeit / Nacharbeitszeit: 134 h
- Gesamt: 180 h

17. Prüfungsnummer/n und -name:
- 13921 Dichtungstechnik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:
- Beamer-Präsentation, Overhead-Folien, Tafelanschrieb, Modelle, Interaktion, (selbst durchgeführte angeleitete Versuche)

20. Angeboten von:
- Institut für Maschinenelemente
Modul: 13930 Einführung in die effiziente Wärmenutzung

2. Modulkürzel: 042410020
5. Modulduauer: 2 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Apl. Prof. Klaus Spindler

9. Dozenten: Dan Bauer

10. Zuordnung zum Curriculum in diesem Studiengang:

 B.Sc. Technikpädagogik, PO 2011, 6. Semester
 ➔ Vorgezogene Master-Module
 ➔ B.Sc. Technikpädagogik, PO 2011, 6. Semester
 ➔ Wahlpflichtfach →Wahlpflichtfach Maschinenbau →
 >Modulcontainer Wahlpflichtbereich (Mach-TP)
 ➔
 ➔ M.Sc. Technikpädagogik, PO 2009, 6. Semester
 ➔ Wahlpflichtfach Maschinenbau →Fahrzeugtechnik →Mach-TP
 ➔
 ➔ M.Sc. Technikpädagogik, PO 2009, 6. Semester
 ➔ Wahlpflichtfach Maschinenbau →Fertigungstechnik →Mach-TP
 ➔
 ➔ M.Sc. Technikpädagogik, PO 2009, 6. Semester
 ➔ Wahlpflichtfach Maschinenbau →Heizungs-, Lüftungs- und
 >Klimatechnik →Mach-TP
 ➔
 ➔ M.Sc. Technikpädagogik, PO 2015, 6. Semester
 ➔ Wahlpflichtfach Maschinenbau →Fahrzeugtechnik →Mach-TP
 ➔
 ➔ M.Sc. Technikpädagogik, PO 2015, 6. Semester
 ➔ Wahlpflichtfach Maschinenbau →Fertigungstechnik →Mach-TP
 ➔
 ➔ M.Sc. Technikpädagogik, PO 2015, 6. Semester
 ➔ Wahlpflichtfach Maschinenbau →Heizungs-, Lüftungs- und
 >Klimatechnik →Mach-TP

11. Empfohlene Voraussetzungen:

Abgeschlossene Grundlagenausbildung in Technischer Thermodynamik
durch Modul Technische Thermodynamik 1 und 2
Vorkenntnisse in Wärmeübertragung durch Besuch der Lehrveranstaltung Grundlagen der Wärmeübertragung

12. Lernziele:

Erworbbene Kompetenzen:

Die Studierenden

- können die grundlegenden Wärmemtransportmechanismen zur
 Bestimmung von Wärmeverlusten von Gebäuden und Bauteilen
 anwenden,
- können Sonderprobleme der Wärmeübertragung wie Wärmebrücken
 von Gebäuden numerisch lösen,
- kennen die Grundlagen zur Bemessung von wirtschaftlichen
 Wärmédämmstärken,
- können die Bedeutung effizienter Wärmeerzeugungssysteme und den
 Einsatz regenerativer Energien auf die Entwicklung des Energiebedarfs
einordnen,

14. Literatur: Vorlesungsmanuskripte, Übungsunterlagen

empfohlene Literatur:

- Quaschning, Volker: Regenerative Energiesysteme, Carl Hanser Verlag München, ISBN 978-3-446-43526-1
- Eicker, Ursula: Solare Technologien für Gebäude, Vieweg+Teubner-Verlag, ISBN 978-3-8348-1281-0

15. Lehrveranstaltungen und -formen: 139301 Vorlesung und Übung Einführung in effiziente Wärmenutzung

16. Abschätzung Arbeitsaufwand: Präsenzzeit: 56 h + Nacharbeitszeit: 124 h = 180h

17. Prüfungsnummer/n und -name: 13931 Einführung in die effiziente Wärmenutzung (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform: Beamerpräsentation, Tafel, Overhead-Projektoranschrieb

20. Angeboten von:
Modul: 13940 Energie- und Umwelttechnik

2. Modulkürzel: 042510001 5. Modulsdauer: 1 Semester
4. SWS: 4.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Günter Scheffknecht
9. Dozenten: Günter Scheffknecht

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technikpädagogik, PO 2011, . Semester
 → Vorgezogene Master-Module
 B.Sc. Technikpädagogik, PO 2011, . Semester
 → Wahlpflichtfach -->Wahlpflichtfach Maschinenbau -->
 >Modulcontainer Wahlpflichtbereich (Mach-TP)
 →
 M.Sc. Technikpädagogik, PO 2009, 2. Semester
 → Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP
 →
 M.Sc. Technikpädagogik, PO 2009, 2. Semester
 → Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP
 →
 M.Sc. Technikpädagogik, PO 2009, 2. Semester
 → Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und
 Klimatechnik -->Mach-TP
 →
 M.Sc. Technikpädagogik, PO 2015, 2. Semester
 → Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP
 →
 M.Sc. Technikpädagogik, PO 2015, 2. Semester
 → Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP
 →
 M.Sc. Technikpädagogik, PO 2015, 2. Semester
 → Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und
 Klimatechnik -->Mach-TP

11. Empfohlene Voraussetzungen:

12. Lernziele:

Die Studierenden des Moduls haben die Prinzipien der Energieumwandlung und Vorräte sowie Eigenschaften verschiedener Primärenergieträger als Grundlagen verstanden und können beurteilen, mit welcher Anlagentechnik eine möglichst hohe Energieausnutzung mit möglichst wenig Schadstoffemissionen erreicht wird. Die Studierenden haben damit für das weitere Studium und für die praktische Anwendung im Berufsfeld Energie und Umwelt die erforderliche Kompetenz zur Anwendung und Beurteilung der relevanten Techniken erworben.

13. Inhalt:

Vorlesung und Übung, 4 SWS

1) Grundlagen zur Energieumwandlung: Einheiten, energetische Eigenschaften, verschiedene Formen von Energie, Transport und Speicherung von Energie, Energiebilanzen verschiedener Systeme
2) Energiebedarf: Statistik, Reserven und Ressourcen, Primärenergieversorgung und Endenergieverbrauch
3) Primärenergieträger: Charakterisierung, Verarbeitung und Verwendung
4) Bereitstellungstechnologien für Wärme, Strom und Kraftstoffe
5) Transport und Speicherung von Energie in unterschiedlichen Formen
6) Energieintensive industrielle Prozesse: Stahlerzeugung, Zementherstellung, Ammoniakherstellung, Papierindustrie
7) Techniken zur Begrenzung der Umweltbeeinflussungen
8) Treibhausgasemissionen
9) Rahmenbedingungen: Emissionsbegrenzung, Klimaschutz, Förderung erneuerbarer Energien

14. Literatur:
 - Vorlesungsmanuskript
 - Unterlagen zu den Übungen

15. Lehrveranstaltungen und -formen:
139401 Vorlesung und Übung Energie- und Umwelttechnik

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 56 h
 Selbststudiumszeit / Nacharbeit: 124 h
 Gesamt: 180 h

17. Prüfungsnummer/n und -name:
13941 Energie- und Umwelttechnik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ...:

19. Medienform:
 • Skripte zu den Vorlesungen und zu den Übungen
 • Tafelanschrieb
 • ILIAS

20. Angeboten von:
 Institut für Feuerungs- und Kraftwerkstechnik
Modul: 13040 Fertigungsverfahren Faser- und Schichtverbundwerkstoffe

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher:
Univ.-Prof. Rainer Gadow

9. Dozenten:
• Rainer Gadow
• Andreas Killinger

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technikpädagogik
→ Vorgezogene Master-Module
B.Sc. Technikpädagogik
→ Wahlpflichtfach -->Wahlpflichtfach Maschinenbau --> >Modulcontainer Wahlpflichtbereich (Mach-TP)
→
M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP
→
M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP
→
M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik -->Mach-TP
→
M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP
→
M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP
→
M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik -->Mach-TP
→

11. Empfohlene Voraussetzungen:
abgeschlossene Prüfung in Werkstoffkunde I+II und Konstruktionslehre I +II mit Einführung in die Festigkeitslehre

12. Lernziele:
Studierende können nach Besuch dieses Moduls:
• Die Systematik der Faser- und Schichtverbundwerkstoffe und charakteristische Eigenschaften der Werkstoffgruppen unterscheiden, beschreiben und beurteilen.
• Belastungsfälle und Versagensmechanismen (mech., therm., chem.) verstehen und analysieren.
• Verstärkungsmechanismen benennen, erklären und berechnen.
• Hochfeste Fasern und deren textiletechnische Verarbeitung beurteilen.
• Technologien zur Verstärkung von Werkstoffen benennen, vergleichen und auswählen.
• Verfahren und Prozesse zur Herstellung von Verbundwerkstoffen und Schichtverbunden benennen, erklären, bewerten, gegenüberstellen, auswählen und anwenden.
• Herstellungsprozesse hinsichtlich der techn. und wirtschaftl. Herausforderungen bewerten.
• In Produktentwicklung und Konstruktion geeignete Verfahren und Stoffsyste me bzw. Verbundbauweisen identifizieren, planen und auswählen.
• Prozesse abstrahieren sowie Prozessmodelle erstellen und berechnen.
• Werkstoff- und Bauteilcharakterisierung erklären, bewerten, planen und anwenden.

13. Inhalt:

Stichpunkte:
• Grundlagen Festkörper
• Metalle, Polymere und Keramik; Verbundwerkstoffe in Natur und Technik; Trennung von Funktions- und Struktureigenschaften.
• Auswahl von Verstärkungsfasern und Faserarchitekturen; Metallische und keramische Matrixwerkstoffe.
• Klassische und polymerabgeleitete Herstellungsverfahren.
• Mechanische, textiltechnische und thermische Verfahrenstechnik.
• Grenzflächensysteme und Haftung.
• Füge- und Verbindungstechnik.
• Grundlagen der Verfahren zur Oberflächen-veredelung, funktionelle Oberflächeneigenschaften.
• Vorbehandlungsverfahren.
• Thermisches Spritzen.
• Vakuumverfahren; Dünnschichttechnologien PVD, CVD, DLC
• Konversions und Diffusionsschichten.
• Schweiß- und Schmelzttauchverfahren
• Industrielle Anwendungen (Überblick).
• Aktuelle Forschungsgebiete.
• Strukturmechanik, Bauteildimensionierung und Bauteilprüfung.
• Grundlagen der Schichtcharakterisierung.

14. Literatur:
• Skript
• Filme
• Normblätter

Literaturempfehlungen:

15. Lehrveranstaltungen und -formen:
• 130401 Vorlesung Verbundwerkstoffe I: Anorganische Faserverbundwerkstoffe
• 130402 Vorlesung Verbundwerkstoffe II: Oberflächentechnik und Schichtverbundwerkstoffe
• 130403 Exkursion Fertigungstechnik Keramik und Verbundwerkstoffe
• 130404 Praktikum Verbundwerkstoffe mit keramischer und metallischer Matrix
• 130405 Praktikum Schichtverbunde durch thermokinetische Beschichtungsverfahren

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 h
Selbststudiumszeit / Nacharbeitszeit: 138 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
13041 Fertigungsverfahren Faser- und Schichtverbundwerkstoffe (PL), schriftlich, eventuell mündlich, 120 Min., Gewichtung: 1.0. Als Kern- oder Ergänzungsfach im Rahmen des Spezialisierungsfachs: mündlich, 40 min Anmeldung zur mündlichen Modulprüfung im LSF und zusätzlich per Email am IFKB beim Ansprechpartner Lehre

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Institut für Fertigungstechnologie keramischer Bauteile
Modul: 14030 Fundamentals of Microelectronics

2. Modulkürzel: 052110002
5. Moduldauer: 1 Semester

3. Leistungspunkte: 6.0 LP
6. Turnus: jedes 2. Semester, SoSe

4. SWS: 4.0
7. Sprache: Englisch

8. Modulverantwortlicher: Univ.-Prof. Joachim Burghartz

9. Dozenten: Joachim Burghartz

10. Zuordnung zum Curriculum in diesem Studiengang:

 B.Sc. Technikpädagogik
 ➔ Vorgezogene Master-Module
 B.Sc. Technikpädagogik
 ➔ Wahlpflichtfach --> Wahlpflichtfach Maschinenbau --
 > Modulcontainer Wahlpflichtbereich (Mach-TP)
 ➔
 M.Sc. Technikpädagogik
 ➔ Wahlpflichtfach Maschinenbau --> Fahrzeugtechnik --> Mach-TP
 ➔
 M.Sc. Technikpädagogik
 ➔ Wahlpflichtfach Maschinenbau --> Fertigungstechnik --> Mach-TP
 ➔
 M.Sc. Technikpädagogik
 ➔ Wahlpflichtfach Maschinenbau --> Heizungs-, Lüftungs- und
 Klimatechnik --> Mach-TP
 ➔
 M.Sc. Technikpädagogik
 ➔ Wahlpflichtfach Maschinenbau --> Fahrzeugtechnik --> Mach-TP
 ➔
 M.Sc. Technikpädagogik
 ➔ Wahlpflichtfach Maschinenbau --> Fertigungstechnik --> Mach-TP
 ➔
 M.Sc. Technikpädagogik
 ➔ Wahlpflichtfach Maschinenbau --> Heizungs-, Lüftungs- und
 Klimatechnik --> Mach-TP

11. Empfohlene Voraussetzungen: keine

12. Lernziele:
 Studierende kennen wesentliche Grundlagen der Werkstoffe,
 Prozessschritte, Integrationsprozesse und Volumenproduktionsverfahren
 in der Silizium-Technologie

13. Inhalt:
 • History and Basics of IC Technology
 • Process Technology I and II
 • Process Modules
 • MOS Capacitor
 • MOS Transistor
 • Non-Ideal MOS Transistor
 • Basics of CMOS Circuit Integration
 • CMOS Device Scaling
 • Metal-Silicon Contact
 • Interconnects
 • Design Metrics
 • Special MOS Devices
 • Future Directions
14. Literatur:
- D. Neamon: Semiconductor Physics and Devices; Mc Graw-Hill, 2002

15. Lehrveranstaltungen und -formen:
<table>
<thead>
<tr>
<th>Kursnummer</th>
<th>Veranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>140301</td>
<td>Vorlesung und Übung Grundlagen der Mikroelektronikfertigung</td>
</tr>
</tbody>
</table>

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42h + Nacharbeitszeit: 138h = 180h

17. Prüfungsnummer/n und -name:
14031 Fundamentals of Microelectronics (PL), schriftlich oder mündlich, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:
Beamer, Tafel, persönliche Interaktion

20. Angeboten von:
Modul: 13970 Gerätekonstruktion und -fertigung in der Feinwerktechnik

2. Modulkürzel: 072510002
5. Modulsdauer: 1 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Wolfgang Schinköthe

9. Dozenten:
• Wolfgang Schinköthe
• Eberhard Burkard

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technikpädagogik
→ Vorgezogene Master-Module
B.Sc. Technikpädagogik
→ Wahlpflichtfach → Wahlpflichtfach Maschinenbau → Modulcontainer Wahlpflichtbereich (Mach-TP)
→
M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau → Fahrzeugtechnik → Mach-TP
→
M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau → Fertigungstechnik → Mach-TP
→
M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau → Heizungs-, Lüftungs- und Klimatechnik → Mach-TP
→
M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau → Fahrzeugtechnik → Mach-TP
→
M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau → Fertigungstechnik → Mach-TP
→
M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau → Heizungs-, Lüftungs- und Klimatechnik → Mach-TP

11. Empfohlene Voraussetzungen: Abgeschlossene Grundlagenausbildung in Konstruktionslehre

12. Lernziele:
Fähigkeiten zur Analyse und Lösung von komplexen feinwerktechnischen Aufgabenstellungen im Gerätebau unter Berücksichtigung des Gesamtsystems, insbesondere unter Berücksichtigung von Präzision, Zuverlässigkeit, Sicherheit, Umgebungs- und Toleranzeinflüssen beim Entwurf von Geräten und Systemen

13. Inhalt:
14. Literatur:
- Schinköthe, W.: Grundlagen der Feinwerktechnik - Konstruktion und Fertigung. Skript zur Vorlesung

15. Lehrveranstaltungen und -formen:
- 139701 Vorlesung Gerätekonstruktion und -fertigung in der Feinwerktechnik, 3 SWS
- 139702 Übung Gerätekonstruktion und -fertigung in der Feinwerktechnik (inklusive Praktikum, Einführung in die 3D-Meßtechnik, Zuverlässigkeitsuntersuchungen und Lebensdauertests), 1,0 SWS (2x1,5 h)

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 42 h
- Selbststudiumszeit / Nacharbeitszeit: 138 h
- Gesamt: 180 h

17. Prüfungsnummer/n und -name: 13971 Gerätekonstruktion und -fertigung in der Feinwerktechnik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0, bei Kern- oder Ergänzungsfach in Masterstudiengängen mündliche Prüfung

19. Medienform:
- Tafel
- OHP
- Beamer

20. Angeboten von: Institut für Konstruktion und Fertigung in der Feinwerktechnik
Modul: 14090 Grundlagen Technischer Verbrennungsvorgänge I + II

2. Modulkürzel: 040800010
5. Modulduauer: 1 Semester

3. Leistungspunkte: 6.0 LP
6. Turnus: jedes 2. Semester, SoSe

4. SWS: 5.0
7. Sprache: Nach Ankuendigung

8. Modulverantwortlicher: Univ.-Prof. Andreas Kronenburg
9. Dozenten: Andreas Kronenburg

10. Zuordnung zum Curriculum in diesem Studiengang:

 B.Sc. Technikpädagogik
 → Vorgezogene Master-Module

 B.Sc. Technikpädagogik
 → Wahlpflichtfach -->Wahlpflichtfach Maschinenbau --
 >Modulcontainer Wahlpflichtbereich (Mach-TP)
 →

 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP
 →

 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP
 →

 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und
 Klimatechnik -->Mach-TP
 →

 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP
 →

 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP
 →

 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und
 Klimatechnik -->Mach-TP
 →

11. Empfohlene Voraussetzungen:
Ingenieurwissenschaftliche und naturwissenschaftliche Grundlagen,
Grundlagen in Maschinenbau, Verfahrenstechnik, Thermodynamik,
Reaktionskinetik

12. Lernziele:
Die Studenten kennen die physikalisch-chemischen Grundlagen von
Verbrennungsprozessen: Reaktionskinetik von fossilen und biogenen
Brennstoffen, Flammenstrukturen (laminare und turbulente Flammen,
vorgemischte und nicht-vorgemischte Flammen), Turbulenz-Chemie
Wechselwirkungsmechanismen, Schadstoffbildung

13. Inhalt:
Grdlg. Technischer Verbrennungsvorgänge I & II (WiSe,
Unterrichtssprache Deutsch):

• Erhaltungsgleichungen; Thermodynamik; molekularer Transport;
 chemische Reaktion; Reaktionsmechanismen; laminare vorgemischte
 und nicht-vorgemischte Flammen.
• Gestreckte Flammenstrukturen; Zündprozesse; Flammenstabilität;
 turbulente vorgemischte und nicht-vorgemischte Verbrennung;
 Schadstoffbildung; Spray-Verbrennung
An equivalent course is taught in English:

Combustion Fundamentals I & II (summer term only, taught in English):

- Transport equations; thermodynamics; fluid properties; chemical reactions; reaction mechanisms; laminar premixed and non-premixed combustion.
- Effects of stretch, strain and curvature on flame characteristics; ignition; stability; turbulent reacting flows; pollutants and their formation; spray combustion

14. Literatur:
- Vorlesungsmanuskript
- Warnatz, Maas, Dibble, "Verbrennung", Springer-Verlag
- Warnatz, Maas, Dibble, "Combustion", Springer

15. Lehrveranstaltungen und -formen:
- 140901 Vorlesung Grundlagen Technischer Verbrennungsvorgänge I + II
- 140902 Übung Grundlagen Technischer Verbrennungsvorgänge I + II

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 70 h (4SWS Vorlesung, 1SWS Übung)
- Selbststudiumszeit / Nacharbeitszeit: 110 h

Gesamt: 180 h

17. Prüfungsnummer/n und -name:
- 14091 Grundlagen Technischer Verbrennungsvorgänge I + II (PL), schriftlich, eventuell mündlich, 120 Min., Gewichtung: 1.0

18. Grundlege für ...

19. Medienform:
- Tafelanschrieb
- PPT-Präsentationen
- Skripte zu den Vorlesungen

20. Angeboten von:
- Institut für Technische Verbrennung
Modul: 13980 Grundlagen der Faser- und Textiltechnik / Textilmaschinenbau

2. Modulkürzel: 049910001
5. Modulduauer: 2 Semester

3. Leistungspunkte: 6.0 LP
6. Turnus: unregelmäßig

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Hon.-Prof. Michael Doser

9. Dozenten: Heinrich Planck

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technikpädagogik, PO 2011, 6. Semester
 → Vorgezogene Master-Module
 B.Sc. Technikpädagogik, PO 2011, 6. Semester
 → Wahlpflichtfach -->Wahlpflichtfach Maschinenbau -->
 >Modulcontainer Wahlpflichtbereich (Mach-TP)
 →
 M.Sc. Technikpädagogik, PO 2009, 6. Semester
 → Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP
 →
 M.Sc. Technikpädagogik, PO 2009, 6. Semester
 → Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP
 →
 M.Sc. Technikpädagogik, PO 2009, 6. Semester
 → Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und
 Klimatechnik -->Mach-TP
 →
 M.Sc. Technikpädagogik, PO 2015, 6. Semester
 → Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP
 →
 M.Sc. Technikpädagogik, PO 2015, 6. Semester
 → Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP
 →
 M.Sc. Technikpädagogik, PO 2015, 6. Semester
 → Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und
 Klimatechnik -->Mach-TP
 →

11. Empfohlene Voraussetzungen: Keine

12. Lernziele:
 Die Studierenden können die Grundlagen um die komplexen
 Prozessabläufe sowie die technologischen Zusammenhänge der
 Textiltechnik verstehen. Sie kennen die wichtigsten textilen Materialien
 in ihren Eigenschaften und Möglichkeiten, sowie die grundlegenden
 Prozessabläufe zur Herstellung von Textilien. Anhand dieser Abläufe
 kennen sie die wichtigsten textilen Produktionsprozesse, insbesondere
 die Möglichkeiten der Multiskaligkeit textiler Strukturen und die zur
 Erzeugung notwendigen Technologien. Durch in die Vorlesung
 integrierte praktische Demonstrationen an aktuellen Industriemaschinen
 beherrschen sie die behandelten technologischen Verfahren und
 Prozessabläufe der Textiltechnik und des Textilmaschinenbaus

13. Inhalt:
 • Überblick über die textilen Fertigungsverfahren sowie Vermittlung der
 Multiskaligkeit textiler Strukturen und der sich daraus ergebenden
 Möglichkeiten der Funktionalität.
 • Textile Werkstoffkunde

14. Literatur:
 Aktuelle Vorlesungsmanuskripte
15. Lehrveranstaltungen und -formen:

- 139801 Vorlesung Einführung Textil- und Faserstoffkunde
- 139802 Vorlesung Einführung Textiltechnik
- 139803 Praktikum Einführung in die textile Prüftechnik und Statistik

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 76 h
Selbststudiumszeit / Nacharbeitszeit: 104 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:

13981 Grundlagen der Faser- und Textiltechnik / Textilmaschinenbau (PL), mündliche Prüfung, 40 Min., Gewichtung: 1.0

19. Medienform:

Vorlesung:

- Beamer
- Exponate
- aktuelle Maschinen
- Folienausdrucke

Praktikum: -

20. Angeboten von:
Modul: 13060 Grundlagen der Heiz- und Raumlufttechnik

2. Modulkürzel: 041310001
5. Modulduauer: 1 Semester
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0
7. Sprache: Deutsch
8. Modulverantwortlicher: Armin Ruppert
9. Dozenten: Michael Schmidt

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technikpädagogik, PO 2011, 5. Semester
→ Vorgezogene Master-Module

B.Sc. Technikpädagogik, PO 2011, 5. Semester
→ Wahlpflichtfach -->Wahlpflichtfach Maschinenbau -->
>Modulcontainer Wahlpflichtbereich (Mach-TP)

B.Sc. Technikpädagogik, PO 2011, 5. Semester
→ Wahlpflichtfach -->Wahlpflichtfach Maschinenbau -->c) Heizungs-, Lüftungs-, Klimatechnik Pflichtcontainer Grundlagen Heizungs-
Lüftungs- Klimatechnik

M.Sc. Technikpädagogik
→ Hauptfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik
--Pflichtcontainer Heizungs-, Lüftungs- und Klimatechnik-
Hauptfach

M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP

M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP

M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und
Klimatechnik -->Heizungs-, Lüftungs- und Klimatechnik (Pflicht)

M.Sc. Technikpädagogik
→ Hauptfach Maschinenbau -->Heizungs-, Lüftungs- und
Klimatechnik -->Heizungs-, Lüftungs- und Klimatechnik

M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP

M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP

M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und
Klimatechnik -->Heizungs-, Lüftungs- und Klimatechnik (Pflicht)
11. Empfohlene Voraussetzungen:

- Höhere Mathematik I + II
- Technische Mechanik I + II

12. Lernziele:

Im Modul Grundlagen der Heiz- und Raumlufttechnik haben die Studenten die Anlagen und deren Systematik der Heizung, Lüftung und Klimatisierung von Räumen kennen gelernt und die zugehörigen ingenieurwissenschaftlichen Grundkenntnisse erworben. Auf dieser Basis können Sie grundlegende Auslegungen der Anlagen vornehmen.

Erworbene Kompetenzen:

Die Studenten

- sind mit den grundlegenden Methoden zur Anlagenauslegung vertraut,
- kennen die thermodynamischen Grundoperationen der Behandlung feuchter Luft, der Verbrennung und des Wärme- und Stofftransports
- verstehen den Zusammenhang zwischen Anlagenauslegung und Funktion und den Innenlasten, den meteorologischen Randbedingungen und der thermischen sowie lufthygienischen Behaglichkeit

13. Inhalt:

- Systematik der heiz- und rumlufttechnischen Anlagen
- Strömung in Kanälen und Räumen
- Wärmeübergang durch Konvektion und Temperaturstrahlung
- Wärmeleitung
- Thermodynamik feuchter Luft
- Verbrennung
- meteorologische Grundlagen
- Anlagenauslegung
- thermische und lufthygienische Behaglichkeit

14. Literatur:

15. Lehrveranstaltungen und -formen:

130601 Vorlesung und Übung Grundlagen der Heiz- und Raumlufttechnik

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 42 h
Selbststudiumszeit / Nacharbeitszeit: 138 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:

13061 Grundlagen der Heiz- und Raumlufttechnik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0
18. Grundlage für ... :

19. Medienform: Vorlesungsskript

20. Angeboten von:
Modul: 14020 Grundlagen der Mechanischen Verfahrenstechnik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>041900002</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modulduer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Manfred Piesche</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Manfred Piesche</td>
</tr>
</tbody>
</table>
→ Vorgezogene Master-Module
B.Sc. Technikpädagogik
→ Wahlpflichtfach -->Wahlpflichtfach Maschinenbau --
 >Modulcontainer Wahlpflichtbereich (Mach-TP)
→
M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP
→
M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP
→
M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik -->Mach-TP
→
M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP
→
M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP
→
M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik -->Mach-TP
→

11. Empfohlene Voraussetzungen: | Inhaltlich: Strömungsmechanik |
| Formal: | keine |

12. Lernziele:

13. Inhalt:
- Aufgabengebiete und Grundbegriffe der Mechanischen Verfahrenstechnik
- Grundlagen der Partikeltechnik, Beschreibung von Partikelsystemen
- Einphasenströmungen in Leitungssystemen
- Transportverhalten von Partikeln in Strömungen
• Poröse Systeme
• Grundlagen und Anwendungen der mechanischen Trenntechnik
• Beschreibung von Trennvorgängen
• Einteilung von Trennprozessen
• Verfahren zur Fest-Flüssig-Trennung, Sedimentation, Filtration, Zentrifugation
• Verfahren der Fest-Gas-Trennung, Wäscher, Zyklonabscheider
• Grundlagen und Anwendungen der Mischtechnik
• Dimensionslose Kennzahlen in der Mischtechnik
• Bauformen und Funktionsweisen von Mischeinrichtungen
• Leistungs- und Mischzeitcharakteristiken
• Grundlagen und Anwendungen der Zerteiltechnik
• Zerkleinerung von Feststoffen
• Zerteilen von Flüssigkeiten durch Zerstäuben und Emulgieren
• Grundlagen und Anwendungen der Agglomerationstechnik
• Trocken- und Feuchtagglomeration
• Haftkräfte
• Ähnlichkeitstheorie und Übertragungsregeln

14. Literatur:
• Löffler, F.: Grundlagen der mechanischen Verfahrenstechnik, Vieweg, 1992
• Zogg, M.: Einführung in die mechanische Verfahrenstechnik, Teubner, 1993
• Bohnet, M.: Mechanische Verfahrenstechnik, Wiley-VCH-Verlag, 2004
• Schubert, H.: Mechanische Verfahrenstechnik, Dt. Verlag für Grundstoffindustrie, 1997

15. Lehrveranstaltungen und -formen:
• 140201 Vorlesung Grundlagen der Mechanischen Verfahrenstechnik
• 140202 Übung Grundlagen der Mechanischen Verfahrenstechnik

16. Abschätzung Arbeitsaufwand:
Präsenzzeit Vorlesung: 42 h
Präsenzzeit Übung: 14 h
Vor- und Nachbearbeitungszeit: 124 h

Summe: 180 h

17. Prüfungsnummer/n und -name: 14021 Grundlagen der Mechanischen Verfahrenstechnik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ...:

19. Medienform:
Vorlesungsskript, Entwicklung der Grundlagen durch kombinierten Einsatz von Tafelschrieb und Präsentationsfolien, betreute Gruppenübungen

20. Angeboten von:
Modul: 13540 Grundlagen der Mikrotechnik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>073400001</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. André Zimmermann</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • André Zimmermann
| | • Eugen Ermantraut |

10. Zuordnung zum Curriculum in diesem Studiengang:

- B.Sc. Technikpädagogik
 - Vorgezogene Master-Module
- B.Sc. Technikpädagogik
 - Wahlpflichtfach -->Wahlpflichtfach Maschinenbau -->Modulcontainer Wahlpflichtbereich (Mach-TP)
 - M.Sc. Technikpädagogik
 - Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP
 - M.Sc. Technikpädagogik
 - Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP
 - M.Sc. Technikpädagogik
 - Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik -->Mach-TP
- M.Sc. Technikpädagogik
 - Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP
- M.Sc. Technikpädagogik
 - Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP
- M.Sc. Technikpädagogik
 - Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik -->Mach-TP

11. Empfohlene Voraussetzungen: keine

12. Lernziele:

13. Inhalt:

- Eigenschaften der wichtigsten Werkstoffe der MST
- Silizium-Mikromechanik
- Einführung in die Vakuumtechnik
- Herstellung und Eigenschaften dünner Schichten (PVD- und CVD-Technik, Thermische Oxidation)
- Lithographie und Maskentechnik
- Ätztechniken zur Strukturierung (Nasschemisches Ätzen, RIE, IE, Plasmaätzen)
- Reinraumtechnik
• Elemente der Aufbau- und Verbindungstechnik für Mikrosysteme (Bondverfahren, Chipgehäusetechniken)
• LIGA-Technik
• Mikrotechnische Bauteile aus Kunststoff (z.B. Mikrospritzguss)
• Mikrobearbeitung von Metallen (z.B. spanende Mikrobearbeitung)
• Messmethoden der Mikrotechnik
• Prozessfolgen der Mikrotechnik

14. Literatur: Vorlesungsmanuskript und Literaturangaben darin

15. Lehrveranstaltungen und -formen:
• 135401 Vorlesung Grundlagen der Mikrotechnik
• 135402 Freiwillige Übung zur Vorlesung Grundlagen der Mikrotechnik

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 h
Selbststudiumszeit / Nacharbeitszeit: 138 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
13541 Grundlagen der Mikrotechnik (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:
Beamerpräsentation, Overhead-Projektor-Anschrieb, Tafelanschrieb, Demonstrationsobjekte

20. Angeboten von: Mikrosystemtechnik
Modul: 14060 Grundlagen der Technischen Optik

2. Modulkürzel: 073100001
5. Modulduer: 1 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Wolfgang Osten

9. Dozenten:
• Wolfgang Osten
• Christof Pruß
• Erich Steinbeißer
• Alexander Bielke

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technikpädagogik
→ Vorgezogene Master-Module

B.Sc. Technikpädagogik
→ Wahlpflichtfach -->Wahlpflichtfach Maschinenbau -->Modulcontainer Wahlpflichtbereich (Mach-TP)
→

M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP
→

M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP
→

M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik -->Mach-TP
→

M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP
→

M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP
→

M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik -->Mach-TP
→

11. Empfohlene Voraussetzungen: HM 1 - HM 3, Experimentalphysik

12. Lernziele: Die Studierenden
• erkennen die Möglichkeiten und Grenzen der abbildenden Optik auf Basis des mathematischen Modells der Kollineation
• sind in der Lage, grundlegende optische Systeme zu klassifizieren und im Rahmen der Gaußschen Optik zu berechnen
• verstehen die Grundzüge der Herleitung der optischen Phänomene „Interferenz“ und „Beugung“ aus den Maxwell-Gleichungen
• können die Grenzen der optischen Auflösung definieren
• können grundlegende optische Systeme (wie z.B. Mikroskop, Messfernrohr und Interferometer) einsetzen und bewerten

13. Inhalt:
• optische Grundgesetze der Reflexion, Refraktion und Dispersion;
• Kollineare (Gaußsche) Optik;
14. Literatur:
Manuskript aus Powerpointfolien der Vorlesung; Übungsblätter;
Formelsammlung;
Sammlung von Klausuraufgaben mit ausführlichen Lösungen;

Literatur:
• Fleisch: A Student’s Guide to Waves, 2015
• Haferkorn: Optik, Wiley, 2002
• Hecht: Optik, Oldenbourg, 2014
• Kühlke: Optik, Harri Deutsch, 2011
• Naumann; Schröder; Löffler-Mang: Handbuch Bauelemente der Optik, 2014
• Pedrotti: Optik für Ingenieure, Springer, 2007
• Schröder: Technische Optik, Vogel, 2007

15. Lehrveranstaltungen und -formen:
• 140601 Vorlesung Grundlagen der Technischen Optik
• 140602 Übung Grundlagen der Technischen Optik
• 140603 Praktikum Grundlagen der Technischen Optik

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42h + Nacharbeitszeit: 138h = 180

17. Prüfungsnummer/n und -name:
14061 Grundlagen der Technischen Optik (PL), schriftlich, eventuell mündlich, 120 Min., Gewichtung: 1.0, bei einer geringen Anzahl an Prüfungsanmeldungen findet die Prüfung mündlich (40 min.) statt

18. Grundlage für ... :

19. Medienform:
Powerpoint-Vorlesung mit zahlreichen Demonstrations-Versuchen,
Übung: Notebook + Beamer,
OH-Projektor, Tafel, kleine „Hands-on“ Versuche gehen durch die Reihen

20. Angeboten von:
Technische Optik
Modul: 14070 Grundlagen der Thermischen Strömungsmaschinen

2. Modulkürzel: 042310004
5. Modulduauer: 1 Semester
3. Leistungspunkte: 6.0 LP
6. Turnus: jedes 2. Semester, SoSe
4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Damian Vogt
9. Dozenten: Damian Vogt

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technikpädagogik
→ Vorgezogene Master-Module
B.Sc. Technikpädagogik
→ Wahlpflichtfach -->Wahlpflichtfach Maschinenbau --
>Modulcontainer Wahlpflichtbereich (Mach-TP)
→
M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP
→
M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP
→
M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik -->Mach-TP
→
M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP
→
M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP
→
M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik -->Mach-TP
→

11. Empfohlene Voraussetzungen:
- Ingenieurwissenschaftliche Grundlagen
- Technische Thermodynamik I + II
- Strömungsmechanik oder Technische Strömungslehre

12. Lernziele:
Der Studierende
- verfügt über vertiefte Kenntnisse in Thermodynamik und Strömungsmechanik mit dem Fokus auf der Anwendung bei Strömungsmaschinen
- kennt und versteht die physikalischen und technischen Vorgänge und Zusammenhänge in Thermischen Strömungsmaschinen (Turbinen, Verdichter, Ventilatoren)
- beherrscht die eindimensionale Betrachtung von Arbeitsumsetzung, Verlusten und Geschwindigkeitsdreiecken bei Turbomaschinen
- ist in der Lage, aus dieser analytischen Durchdringung die Konsequenzen für Auslegung und Konstruktion von axialen und radialem Turbomaschinen zu ziehen

13. Inhalt:
- Anwendungsgebiete und wirtschaftliche Bedeutung
- Bauarten
• Thermodynamische Grundlagen
• Fluideigenschaften und Zustandsänderungen
• Strömungsmechanische Grundlagen
• Anwendung auf Gestaltung der Bauteile
• Ähnlichkeitsgesetze
• Turbinen- und Verdichtertheorie
• Verluste und Wirkungsgrade, Möglichkeiten ihrer Beeinflussung
• Maschinenkomponenten
• Betriebsverhalten, Kennfelder, Regelungsverfahren
• Instationäre Phänomene

14. Literatur:
• Vogt, D., Grundlagen der Thermischen Strömungsmaschinen, Vorlesungsmanuskript, ITSM Univ. Stuttgart
• Dixon, S.L., Fluid Mechanics and Thermodynamics of Turbomachinery, Elsevier 2005
• Cohen H., Rogers, G.F.C., Saravanamuttoo, H.I.H., Gas Turbine Theory, Longman 2000
• Traupel, W., Thermische Turbomaschinen, Band 1, 4. Auflage, Springer 2001

15. Lehrveranstaltungen und -formen:
140701 Vorlesung und Übung Grundlagen der Thermischen Strömungsmaschinen

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 h
Selbststudiumszeit / Nacharbeitszeit: 138 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
14071 Grundlagen der Thermischen Strömungsmaschinen (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :
30820 Thermische Strömungsmaschinen

19. Medienform:
Podcasted Whiteboard, Tafelanschrieb, Skript zur Vorlesung

20. Angeboten von:
Institut für Thermische Strömungsmaschinen und Maschinenlaboratorium
Modul: 11390 Grundlagen der Verbrennungsmotoren

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>070800003</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Michael Bargende</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Michael Bargende</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- B.Sc. Technikpädagogik, PO 2011, 4. Semester
 - Vorgezogene Master-Module
 - B.Sc. Technikpädagogik, PO 2011, 4. Semester
 - Wahlpflichtfach -->Wahlpflichtfach Maschinenbau --> Modulcontainer Wahlpflichtbereich (Mach-TP)
 - B.Sc. Technikpädagogik, PO 2011, 4. Semester
 - Wahlpflichtfach -->Wahlpflichtfach Maschinenbau -->a) Fahrzeugtechnik Pflichtcontainer Grundlagen Fahrzeugtechnik
 - M.Sc. Technikpädagogik
 - Hauptfach Maschinenbau -->Fahrzeugtechnik -->Pflichtcontainer Fahrzeugtechnik-Hauptfach
 - M.Sc. Technikpädagogik
 - Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Fahrzeugtechnik (Pflicht)
 - M.Sc. Technikpädagogik
 - Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP
 - M.Sc. Technikpädagogik
 - Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP
 - M.Sc. Technikpädagogik
 - Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik -->Mach-TP
 - M.Sc. Technikpädagogik
 - Hauptfach Maschinenbau -->Fahrzeugtechnik -->Pflichtcontainer Fahrzeugtechnik-Hauptfach
 - M.Sc. Technikpädagogik
 - Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Fahrzeugtechnik (Pflicht)
 - M.Sc. Technikpädagogik
 - Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP
 - M.Sc. Technikpädagogik
 - Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik -->Mach-TP
11. Empfohlene Voraussetzungen:
Grundkenntnisse aus 1. bis 4. Fachsemester

12. Lernziele:

13. Inhalt:

Informationen zur Prüfung:
Verständnis: keine Hilfsmittel zugelassen
Berechnung: alle Hilfsmittel außer programmierbare Taschenrechner, Laptos, Handy, etc.

14. Literatur:
- Vorlesungsmanuskript

15. Lehrveranstaltungen und -formen:
113901 Grundlagen der Verbrennungsmotoren

16. Abschätzung Arbeitsaufwand:
| Präsenzzeit: | 42 h |
| Selbststudiumszeit / Nacharbeitszeit: | 138 h |
| Gesamt: | 180 h |

17. Prüfungsnummer/n und -name:
11391 Grundlagen der Verbrennungsmotoren (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:
Tafelanschrieb, PPT-Präsentationen, Overheadfotien

20. Angeboten von:
Verbrennungsmotoren
Modul: 14100 Hydraulische Strömungsmaschinen in der Wasserkraft

2. Modulkürzel: 042000100
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0
5. Modulbauer: 1 Semester
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Stefan Riedelbauch
9. Dozenten: Stefan Riedelbauch
10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technikpädagogik
 → Vorgezogene Master-Module
 B.Sc. Technikpädagogik
 → Wahlpflichtfach -->Wahlpflichtfach Maschinenbau --
 >Modulcontainer Wahlpflichtbereich (Mach-TP)
 →
 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP
 →
 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP
 →
 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und
 Klimatechnik -->Mach-TP
 →
 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP
 →
 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP
 →
 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und
 Klimatechnik -->Mach-TP
 →
11. Empfohlene Voraussetzungen:
 • Wahlpflichtmodul Gruppe 1 (Strömungsmechanik)
 • Technische Strömungslehre (Fluidmechanik 1) oder
 Strömungsmechanik
12. Lernziele:
 Die Studierenden kennen die prinzipielle Funktionsweise von
 Wasserkraftanlagen und die Grundlagen der hydraulischen
 Strömungsmaschinen. Sie sind in der Lage, grundlegende
 Vorauslegungen von hydraulischen Strömungsmaschinen in
 Wasserkraftwerken durchzuführen sowie das Betriebsverhalten zu
 beurteilen.
13. Inhalt:
 Die Vorlesung vermittelt die Grundlagen von Kraftwerken, Turbinen,
 Kreiselpumpen und Pumpenturbinen. Dabei werden die verschiedenen
 Bauarten und deren Kennwerte, Verluste sowie die dort auftretenden
 Kavitationserscheinungen vorgestellt. Es wird eine Einführung in
 die Auslegung von hydraulischen Strömungsmaschinen und die
 damit zusammenhängenden Kennlinien und Betriebsverhalten
 gegeben. Mit der Berechnung und Konstruktion einzelner Bauteile
von Wasserkraftanlagen wird die Auslegung von hydraulischen Strömungsmaschinen vertieft.

Zusätzlich werden noch weitere Komponenten in Wasserkraftanlagen wie beispielsweise „Hydrodynamische Getriebe und Absperr- und Regelorgane behandelt.

14. Literatur:
• Skript "Hydraulische Strömungsmaschinen in der Wasserkraft"
• C. Pfleiderer, H. Petermann, Strömungsmaschinen, Springer Verlag
• W. Bohl, W. Elmendorf, Strömungsmaschinen 1 & 2, Vogel Buchverlag
• J. Raabe, Hydraulische Maschinen und Anlagen, VDI Verlag
• J. Giesecke, E. Mosonyi, Wasserkraftanlagen, Springer Verlag

15. Lehrveranstaltungen und -formen:
• 141001 Vorlesung Hydraulische Strömungsmaschinen in der Wasserkraft
• 141002 Übung Hydraulische Strömungsmaschinen in der Wasserkraft
• 141003 Seminar Hydraulische Strömungsmaschinen in der Wasserkraft

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 48h + Nacharbeitszeit: 132h = 180h

17. Prüfungsnummer/n und -name:
14101 Hydraulische Strömungsmaschinen in der Wasserkraft (PL), schriftlich, eventuell mündlich, 120 Min., Gewichtung: 1.0,

18. Grundlage für ... :
29210 Transiente Vorgänge und Regelungsaspekte in Wasserkraftanlagen

19. Medienform:
Tafel, Tablet-PC, Powerpoint Präsentation

20. Angeboten von:
Modul: 14110 Kerntechnische Anlagen zur Energieerzeugung

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>041610001</th>
<th>5. Modulduauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Nach Ankündigung</td>
</tr>
</tbody>
</table>

| 8. Modulverantwortlicher: | Univ.-Prof. Jörg Starflinger |
| 9. Dozenten: | Jörg Starflinger |

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>B.Sc. Technikpädagogik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorgezogene Master-Module</td>
</tr>
<tr>
<td>Wahlpflichtfach --> Wahlpflichtfach Maschinenbau --> Modulcontainer Wahlpflichtbereich (Mach-TP)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M.Sc. Technikpädagogik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wahlpflichtfach Maschinenbau --> Fahrzeugtechnik --> Mach-TP</td>
</tr>
<tr>
<td>Wahlpflichtfach Maschinenbau --> Fertigungs-technik --> Mach-TP</td>
</tr>
<tr>
<td>Wahlpflichtfach Maschinenbau --> Heizungs-, Lüftungs- und Klimatechnik --> Mach-TP</td>
</tr>
<tr>
<td>Wahlpflichtfach Maschinenbau --> Fahrzeugtechnik --> Mach-TP</td>
</tr>
<tr>
<td>Wahlpflichtfach Maschinenbau --> Fertigungs-technik --> Mach-TP</td>
</tr>
<tr>
<td>Wahlpflichtfach Maschinenbau --> Heizungs-, Lüftungs- und Klimatechnik --> Mach-TP</td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen:

| Vorlesungen: Experimentalphysik, Thermodynamik, Mathematik, Strömungslehre |

12. Lernziele:

- Sie können grundsätzlich die Modellvorstellung der Kernspaltung nachvollziehen. Sie kennen die Spaltproduktausbeutekurve, die Energiefreisetzung bei der Spaltung. Sie wissen, was verzögerte Neutronen sind und woher diese stammen.
- wissen, was Wirkungsquerschnitte sind. Sie kennen die 4-Faktoren-Formel und können die einzelnen Terme benennen und erläutern.

- können eine einfache Neutronenbilanzgleichung aufstellen. Sie wissen, was das der Diffusionsansatz ist und können daraus die Reaktorgleichung ableiten. Für ein einfaches Beispiel können sie die kritische Abmessung berechnen.

- verstehen das dynamische verhalten des Reaktors. Sie kennen die Punktkinetik und können Begriffe, wie Reaktivität und Reaktorperioden, erläutern. Sie verstehen die Sprungantwort bei einem Reaktivitätseintrag. Sie können das Selbstregelverhalten, insb. die Rückwirkungskoeffizienten (Doppler, Dichte, Void) anschaulich beschreiben.

- können den Aufbau eines Brennelements (DWR/SWR) nachvollziehen und Bauteile am BE identifizieren. Sie verstehen den Brennstabauaufbau, die Steuerstäbe und dessen Antriebe. Sie können Unterkanalanalysen nachvollziehen und können die Brennstabtemperaturverteilung erläutern. Sie können DNB und Dryout als Gefahr für das Brennelement identifizieren und erläutern und verstehen Heißkanalfaktoren als Auslegungskriterium.

- können Kühlkreislauf von Druckwasserreaktoranlagen inkl. aller Komponenten schematisch zeichnen und benennen, Kerneinbauten identifizieren, Aufbau des Dampferzeugers reproduzieren, den Druckhalter schematisch zeichnen und dessen Funktion beschreiben, die Kerninstrumentierung und deren Aufgaben beschreiben können sowie den Sekundärkreislauf zeichnen und benennen.

- können Siedewasserreaktoranlagen inkl. aller Komponenten schematisch zeichnen und benennen, Kerneinbauten identifizieren können, den Kühlkreislauf zeichnen und benennen und die SWR-Regelung und das Betriebskennfeld verstehen.

- können Hilfs- und Nebenanlagen identifizieren und voneinander unterscheiden, die Aufgaben des Volumenregelsystems verstehen und nachvollziehen, das nukleare Zwischenkühlsystem verstehen und dessen Aufgaben im Normalbetrieb und bei Störungen nachvollziehen, Aufgaben des Zusatzerhörsystems beschreiben und die Druckstaffelung in DWR und Inertisierung bei SWR verstehen.

- im Bereich der Reaktorsicherheit Gefährdungspotenziale und Schutzziele in der Kerntechnik verstehen sowie die Definition der zwölf Sicherheitsprinzipien nachvollziehen und mit anschaulichen Beispielen erläutern.

- die Funktion der Sicherheitssysteme für DWR und SWR nachvollziehen und beschreiben. Sie verstehen die Definition des Risikos, den Unterschied zwischen deterministischer und probabilistischer Sicherheitsanalyse und können die Stufen der probabilistischen Sicherheitsanalyse nachvollziehen. Hierbei können sie Ereignisbaum und Fehlerbaum voneinander unterscheiden und können die INES-Skala erläutern.
können generell die Reaktorentwicklung (Generatoren 1-4) nachvollziehen, die Hauptmerkmale fortschrittlicher Reaktorkonzepte benennen und Beispiele von Gen III Reaktoren angeben.

-verstehen die Ziele von Gen IV Reaktoren, können Hauptmerkmale der Gen IV Konzepte mit Vor- und Nachteilen reproduzieren und Beispiele angeben. Sie verstehen das Konzept und die Idee eines ADS-Reaktors als ein mögliches Konzept zur Verringerung der Radiotoxizität des Abfalls.

-Den Brennstoffkreislauf nachvollziehen, kennen Abbaumethoden (konventionelle, unkonventionelle) und können den ungefähren weltweiten Verbrauch pro Jahr benennen.

-den Anreicherungsgrund nachvollziehen, die Rolle von UF6 erläutern und vier Konversionsverfahren benennen.

-können das Aufkommen von Abfall pro Jahr benennen, die Relevanz verschiedener Abfallarten für Zwischen- und Endlagern erläutern, die Klassifizierung von Abfällen nachvollziehen, die Behandlung von festen und flüssigen Betriebsabfällen erläutern, das Schema der Wiederaufarbeitung zeichnen und insbesondere den PUREX Prozess verstehen. Außerdem sollen sie die Rolle von Glaskokillen für hochradioaktive Abfälle verstehen.

-Das tiefengeologische Konzept verstehen, die Möglichkeiten der Einlagerung erläutern und das Multibarrienkonzept zur Sicherheit von Endlagern erläutern.

13. Inhalt: Die o.g. Lernziele werden in 6 Themenkomplexen abgehandelt.

-Kernreaktoren in Deutschland, Europa, weltweit

-Kerntechnische Grundlagen, Radioaktivität, Bindungsenergie, Kernspaltung, Nuclidkarte, kritische Anordnungen

-Druck und Siedewasserreaktoren, Brennelemente, Hilfs- und Nebenanlagen

-Sicherheitseinrichtungen, Reactorsicherheit, Unfälle

-Fortschrittliche Reaktorkonzepte, neue Reaktoren der Generation 4 (im Ausland)

-Brennstoffkreislauf: Versorgung mit Kernbrennstoff, Entsorgung des radioaktiven Abfalls

pdf der Vorlesung ausschließlich über ILIAS

14. Literatur: • W. Oldekop: "Druckwasserreaktoren für Kern-Kraftwerke"

15. Lehrveranstaltungen und -formen: 141101 Vorlesung und Übung Kerntechnische Anlagen zur Energieerzeugung

16. Abschätzung Arbeitsaufwand: 45 h Präsenzzeit

45 h Vor-/Nacharbeitszeit

90 h Prüfungsvorbereitung und Prüfung

17. Prüfungsnummer/n und -name: 14111 Kerntechnische Anlagen zur Energieerzeugung (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0
<table>
<thead>
<tr>
<th>18. Grundlage für ...</th>
<th>26000 Kernenergietechnik</th>
</tr>
</thead>
<tbody>
<tr>
<td>19. Medienform:</td>
<td>• ppt-Präsentation</td>
</tr>
<tr>
<td></td>
<td>• Manuskripte online</td>
</tr>
<tr>
<td></td>
<td>• Tafel + Kreide</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Institut für Kernenergetik und Energiesysteme</td>
</tr>
</tbody>
</table>
Modul: 13590 Kraftfahrzeuge I + II

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>070800001</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Modulduer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. Modulverantwortlicher:</th>
<th>Univ.-Prof. Jochen Wiedemann</th>
</tr>
</thead>
<tbody>
<tr>
<td>9. Dozenten:</td>
<td>Jochen Wiedemann</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10. Zuordnung zum Curriculum in diesem Studiengang:</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.Sc. Technikpädagogik, PO 2011, 5. Semester</td>
</tr>
<tr>
<td>→ Vorgezogene Master-Module</td>
</tr>
<tr>
<td>B.Sc. Technikpädagogik, PO 2011, 5. Semester</td>
</tr>
<tr>
<td>→ Wahlpflichtfach --> Wahlpflichtfach Maschinenbau</td>
</tr>
<tr>
<td>--> Modulcontainer Wahlpflichtbereich (Mach-TP)</td>
</tr>
<tr>
<td>--></td>
</tr>
<tr>
<td>B.Sc. Technikpädagogik, PO 2011, 5. Semester</td>
</tr>
<tr>
<td>→ Wahlpflichtfach --> Wahlpflichtfach Maschinenbau</td>
</tr>
<tr>
<td>--> Fahrzeugtechnik Pflichtcontainer Grundlagen Fahrzeugtechnik</td>
</tr>
<tr>
<td>--></td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik, PO 2009, . Semester</td>
</tr>
<tr>
<td>→ Hauptfach Maschinenbau --> Fahrzeugtechnik</td>
</tr>
<tr>
<td>--> Pflichtcontainer Fahrzeugtechnik-Hauptfach</td>
</tr>
<tr>
<td>--></td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik, PO 2009, . Semester</td>
</tr>
<tr>
<td>→ Wahlpflichtfach Maschinenbau --> Fahrzeugtechnik</td>
</tr>
<tr>
<td>--> Fahrzeugtechnik (Pflicht)</td>
</tr>
<tr>
<td>--></td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik, PO 2015, . Semester</td>
</tr>
<tr>
<td>→ Hauptfach Maschinenbau --> Fahrzeugtechnik</td>
</tr>
<tr>
<td>--> Pflichtcontainer Fahrzeugtechnik-Hauptfach</td>
</tr>
<tr>
<td>--></td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik, PO 2015, . Semester</td>
</tr>
<tr>
<td>→ Wahlpflichtfach Maschinenbau --> Fahrzeugtechnik</td>
</tr>
<tr>
<td>--> Fahrzeugtechnik (Pflicht)</td>
</tr>
<tr>
<td>--></td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik, PO 2015, . Semester</td>
</tr>
<tr>
<td>→ Wahlpflichtfach Maschinenbau --> Fahrzeugtechnik</td>
</tr>
<tr>
<td>--> Fahrzeugtechnik --> Mach-TP</td>
</tr>
<tr>
<td>--></td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik, PO 2015, . Semester</td>
</tr>
<tr>
<td>→ Wahlpflichtfach Maschinenbau --> Fertigungstechnik</td>
</tr>
<tr>
<td>--> Mach-TP</td>
</tr>
<tr>
<td>--></td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik, PO 2015, . Semester</td>
</tr>
<tr>
<td>→ Wahlpflichtfach Maschinenbau --> Heizungs-, Lüftungs- und Klimatechnik --> Mach-TP</td>
</tr>
<tr>
<td>--></td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik, PO 2015, . Semester</td>
</tr>
<tr>
<td>→ Hauptfach Maschinenbau --> Fahrzeugtechnik</td>
</tr>
<tr>
<td>--> Pflichtcontainer Fahrzeugtechnik-Hauptfach</td>
</tr>
<tr>
<td>--></td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik, PO 2015, . Semester</td>
</tr>
<tr>
<td>→ Wahlpflichtfach Maschinenbau --> Fahrzeugtechnik</td>
</tr>
<tr>
<td>--> Fahrzeugtechnik (Pflicht)</td>
</tr>
<tr>
<td>--></td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik, PO 2015, . Semester</td>
</tr>
<tr>
<td>→ Wahlpflichtfach Maschinenbau --> Fahrzeugtechnik</td>
</tr>
<tr>
<td>--> Fahrzeugtechnik --> Mach-TP</td>
</tr>
<tr>
<td>--></td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik, PO 2015, . Semester</td>
</tr>
<tr>
<td>→ Wahlpflichtfach Maschinenbau --> Fertigungstechnik --> Mach-TP</td>
</tr>
<tr>
<td>--></td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik, PO 2015, . Semester</td>
</tr>
<tr>
<td>→ Wahlpflichtfach Maschinenbau --> Heizungs-, Lüftungs- und Klimatechnik --> Mach-TP</td>
</tr>
<tr>
<td>--></td>
</tr>
</tbody>
</table>
11. Empfohlene Voraussetzungen: Kenntnisse aus den Fachsemestern 1 bis 4

Wichtig: Ab WS2015/16 ist die Prüfung ohne Hilfsmittel zu absolvieren.

14. Literatur:
- Wiedemann, J.: Kraftfahrzeuge I+II, Vorlesungsumdruck,
- Reimpell, J.: Fahrwerkstechnik: Grundlagen, Vogel-Fachbuchverlag, 2005

15. Lehrveranstaltungen und -formen:
- 135901 Vorlesung Kraftfahrzeuge I + II
- 135902 Übung Kraftfahrzeuge I + II

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 h
Selbststudiumszeit / Nacharbeitszeit: 138 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name: 13591 Kraftfahrzeuge I + II (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... : 13590 Kraftfahrzeuge I + II

19. Medienform: Beamer, Tafel

20. Angeboten von: Kraftfahrwesen
Modul: 14010 Kunststofftechnik - Grundlagen und Einführung

2. Modulkürzel: 041710001 5. Moduldaauer: 1 Semester
4. SWS: 4.0 7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Christian Bonten
9. Dozenten: Christian Bonten

12. Lernziele:

13. Inhalt:

- Einführung der Grundlagen: Einleitung zur Kunststoffgeschichte, die Unterteilung und wirtschaftliche Bedeutung von Polymerwerkstoffen; chemischer Aufbau und Struktur vom Monomer zu Polymer
- Erstarrung und Kraftübertragung der Kunststoffe
• Rheologie und Rheometrie der Polymerschmelze
• Eigenschaften des Polymerfestkörpers: elastisches, viskoelastisches Verhalten der Kunststoffe; thermische, elektrische und weitere Eigenschaften; Methoden zur Beeinflussung der Polymereigenschaften; Alterung der Kunststoffe
• Grundlagen zur analytischen Beschreibung von Fließprozessen: physikalische Grundgleichungen, rheologische und thermische Zustandsgleichungen
• Einführung in die Kunststoffverarbeitung: Extrusion, Spritzgießen und Verarbeitung vernetzender Kunststoffe
• Einführung in die Faserkunststoffverbunde und formlose Formgebungsverfahren
• Einführung der Weiterverarbeitungstechniken: Thermoformen, Beschichten; Fügetechnik
• Nachhaltigkeitsaspekte: Biokunststoffe und Recycling

14. Literatur:
• Präsentation in pdf-Format
 • W. Michaeli, E. Haberstroh, E. Schmachtenberg, G. Menges: Werkstoffkunde Kunststoffe, Hanser Verlag
 • W. Michaeli: Einführung in die Kunststoffverarbeitung, Hanser Verlag
 • G. Ehrenstein: Faserverbundkunststoffe, Werkstoffe - Verarbeitung - Eigenschaften, Hanser Verlag

15. Lehrveranstaltungen und -formen:

| 140101 | Vorlesung Kunststofftechnik - Grundlagen und Einführung |

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 56 Stunden
Nachbearbeitungszeit: 124 Stunden
Summe: 180 Stunden

Es gibt keine alten Prüfungsaufgaben

17. Prüfungsnummer/n und -name:

| 14011 | Kunststofftechnik - Grundlagen und Einführung (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0 |

18. Grundlage für ... :

| 37690 | Kunststoff-Konstruktionstechnik |
| 37700 | Kunststoffverarbeitungstechnik |
| 18380 | Kunststoffverarbeitung 1 |
| 39420 | Kunststoffverarbeitungstechnik 1 |
| 18390 | Kunststoffverarbeitung 2 |
| 39430 | Kunststoffverarbeitungstechnik 2 |
| 41150 | Kunststoff-Werkstofftechnik |
| 18400 | Auslegung von Extrusions- und Spritzgießwerkzeugen |
| 32690 | Auslegung von Extrusions- und Spritzgießwerkzeugen |
| 18410 | Kunststoffaufbereitung und Kunststoffrecycling |
| 39450 | Kunststoffaufbereitung und Kunststoffrecycling |
| 18420 | Rheologie und Rheometrie der Kunststoffe |
| 32700 | Rheologie und Rheometrie der Kunststoffe |

19. Medienform:
• Beamer-Präsentation
• Tafelanschriebe

20. Angeboten von:
Institut für Kunststofftechnik
Modul: 14160 Methodische Produktentwicklung

4. SWS: 4.0 7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Hansgeorg Binz
9. Dozenten: Hansgeorg Binz

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technikpädagogik
→ Vorgezogene Master-Module

B.Sc. Technikpädagogik
→ Wahlpflichtfach →Wahlpflichtfach Maschinenbau →
 >Modulcontainer Wahlpflichtbereich (Mach-TP)
 →

M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau →Fahrzeugtechnik →Mach-TP
 →

M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau →Fertigungstechnik →Mach-TP
 →

M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau →Heizungs-, Lüftungs- und
 Klimatechnik →Mach-TP
 →

M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau →Fahrzeugtechnik →Mach-TP
 →

M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau →Fertigungstechnik →Mach-TP
 →

M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau →Heizungs-, Lüftungs- und
 Klimatechnik →Mach-TP
 →

11. Empfohlene Voraussetzungen: Abgeschlossene Grundlagenausbildung in Konstruktionslehre z. B. durch
 die Module
 • Konstruktionslehre I - IV oder
 • Grundzüge der Maschinenkonstruktion + Grundlagen der
 Produktentwicklung bzw.
 • Konstruktion in der Medizingerätetechnik I + II

12. Lernziele: Im Modul Methodische Produktentwicklung
 • haben die Studierenden die Phasen, Methoden und
 die Vorgehensweisen innerhalb eines methodischen
 Produktentwicklungsprozesses kennen gelernt,
 • können die Studierenden wichtige Produktentwicklungsmethoden in
 kooperativen Lernsituationen (Kleingruppenarbeit) anwenden und
 präsentieren ihre Ergebnisse.

Erworbene Kompetenzen: Die Studierenden
können die Stellung des Geschäftsbereichs „Entwicklung/Konstruktion“ im Unternehmen einordnen,
beherrschen die wesentlichen Grundlagen des methodischen Vorgehens, der technischen Systeme sowie des Elementmodells,
können allgemein anwendbare Methoden zur Lösungssuche anwenden,
verstehen einen Lösungsprozess als Informationsumsatz,
können die Phasen eines methodischen Produktentwicklungsprozesses,
sind mit den wichtigsten Methoden zur Produktplanung, zur Klärung der Aufgabenstellung, zum Konzipieren, Entwerfen und zum Ausarbeiten vertraut und können diese zielführend anwenden,
beherrschen die Baureihenentwicklung nach unterschiedlichen Ähnlichkeitsgesetzen sowie die Grundlagen der Baukastensystematik.

13. Inhalt:

Der Vorlesungsstoff wird innerhalb eines eintägigen Workshops anhand eines realen Anwendungsbeispiels vertieft.

14. Literatur:
- Binz, H.: Methodische Produktentwicklung I + II. Skript zur Vorlesung

15. Lehrveranstaltungen und -formen:
- 141601 Vorlesung und Übung Methodische Produktentwicklung I
- 141602 Vorlesung und Übung Methodische Produktentwicklung II
- 141603 Workshop Methodeneinsatz im Produktentwicklungsprozess

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 50 h (4 SWS + Workshop)
Selbststudiumszeit / Nacharbeitszeit: 130 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
14161 Methodische Produktentwicklung (PL), schriftlich, eventuell mündlich, 120 Min., Gewichtung: 1.0, Prüfung: i. d. R. schriftlich (gesamter Stoff von beiden Semestern), nach jedem
<table>
<thead>
<tr>
<th>18. Grundlage für ... :</th>
</tr>
</thead>
<tbody>
<tr>
<td>19. Medienform:</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
</tr>
</tbody>
</table>

Semester angeboten, Dauer 120 min; bei weniger als 10 Kandidaten: mündlich, Dauer 40 min
Modul: 12250 Numerische Methoden der Dynamik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072810005</th>
<th>5. Modulduer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. Modulverantwortlicher:</th>
<th>Univ.-Prof. Peter Eberhard</th>
</tr>
</thead>
<tbody>
<tr>
<td>9. Dozenten:</td>
<td>Peter Eberhard</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- B.Sc. Technikpädagogik, PO 2011, . Semester
 - Vorgezogene Master-Module
 - B.Sc. Technikpädagogik, PO 2011, . Semester
 - Wahlpflichtfach ->Wahlpflichtfach Maschinenbau -->Modulcontainer Wahlpflichtbereich (Mach-TP)
 - M.Sc. Technikpädagogik, PO 2009, . Semester
 - Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP
 - M.Sc. Technikpädagogik, PO 2009, . Semester
 - Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP
 - M.Sc. Technikpädagogik, PO 2015, . Semester
 - Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP

11. Empfohlene Voraussetzungen:

- Grundlagen in Mathematik und Mechanik

12. Lernziele:

13. Inhalt:

- Einführung in die numerischen Methoden zur Behandlung mechanischer Systeme
- Grundlagen der numerischen Mathematik: Numerische Prinzip, Maschinenzahlen, Fehleranalyse
- Lineare Gleichungssysteme: Cholesky-Zerlegung, Gauß-Elimination, LR-Zerlegung, QR-Verfahren, iterative Methoden bei quadratischer Koeffizientenmatrix, Lineares Ausgleichsproblem
• Eigenwertproblem: Grundlagen, Normalformen, Vektoriteration, Berechnung von Eigenwerten mit dem QR-Verfahren, Berechnung von Eigenvektoren
• Anfangswertproblem bei gewöhnlichen Differentialgleichungen: Grundlagen, Einschrittverfahren (Runge-Kutta Verfahren)
• Werkzeuge und numerische Bibliotheken: für lineare Gleichungssysteme, Eigenwertprobleme und Anfangswertprobleme. Theorie und Numerik in der Anwendung - ein Vergleich
• 2 Versuche aus dem Angebot des Instituts (u.a. Virtual Reality, Hardware-in-the-loop, Schwingungsmessung): Pflicht falls als Kompetenzfeld gewählt, ansonsten freiwillige Teilnahme

14. Literatur:
• Vorlesungsmitschrieb
• Vorlesungsunterlagen des ITM

15. Lehrveranstaltungen und -formen:
• 122501 Vorlesung Numerische Methoden der Dynamik
• 122502 Übung Numerische Methoden der Dynamik

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 h
Selbststudiumszeit / Nacharbeitszeit bzw. Versuche: 138 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
12251 Numerische Methoden der Dynamik (PL), schriftlich oder mündlich, 90 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:
Beamer, Tablet-PC, Computervorführungen

20. Angeboten von:
Institut für Technische und Numerische Mechanik
Modul: 14180 Numerische Strömungssimulation

2. Modulkürzel: 041610002
5. Moduldauer: 1 Semester

3. Leistungspunkte: 6.0 LP
6. Turnus: jedes 2. Semester, SoSe

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Eckart Laurien

9. Dozenten:
• Eckart Laurien
• Albert Ruprecht

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>B.Sc. Technikpädagogik</th>
<th>Vorgezogene Master-Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>M.Sc. Technikpädagogik</td>
<td>Wahlpflichtfach Maschinenbau -- Modulcontainer Wahlpflichtbereich (Mach-TP)</td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik</td>
<td>Wahlpflichtfach Maschinenbau -- Fahrzeugtechnik -- Mach-TP</td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik</td>
<td>Wahlpflichtfach Maschinenbau -- Fertigungstechnik -- Mach-TP</td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik</td>
<td>Wahlpflichtfach Maschinenbau -- Heizungs-, Lüftungs- und Klimatechnik -- Mach-TP</td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik</td>
<td>Wahlpflichtfach Maschinenbau -- Fahrzeugtechnik -- Mach-TP</td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik</td>
<td>Wahlpflichtfach Maschinenbau -- Fertigungstechnik -- Mach-TP</td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik</td>
<td>Wahlpflichtfach Maschinenbau -- Heizungs-, Lüftungs- und Klimatechnik -- Mach-TP</td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen:
Grundlagen der Numerik, Strömungsmechanik oder Technische Strömungslehre

12. Lernziele:
Studenten besitzen fundiertes Wissen über die Vorgehensweise, die mathematisch/physikalischen Grundlagen und die Anwendung der numerischen Strömungssimulation (CFD, Computational Fluid Dynamics) einschließlich der Auswahl der Turbulenzmodelle, sie sind in der Lage die fachgerechte Erweiterung, Verifikation und Validierung problemangepasster Simulationsrechnungen vorzunehmen

13. Inhalt:
1 Einführung
1.1 Beispiel: Rohrkrümmer
1.1.1 Einführende Demonstration
1.1.2 Modellierung und Simulation in der Strömungsmechanik
1.1.3 Strömungsphänomene in Rohrkrümmern
1.1.4 Vorbereitung und Durchführung
2 Vorgehensweise
2.1 Physikalische Beschreibung
2.1.1 Fluide und ihre Eigenschaften
2.1.2 Kompressibilität einer Gasströmung
2.1.3 Turbulenz
2.1.4 Dimensionsanalyse
2.1.5 Ausgebildete laminare Rohrströmung
2.2 Mathematische Formulierung
2.2.1 Eindimensionale Grundgleichungen der Stromfadentheorie
2.2.2 Ableitung der Navier-Stokes Gleichungen
2.2.3 Randbedingungen
2.2.4 Analytische Lösungen
2.2.5 Navier-Stokes Gleichungen für kompressible Strömung
2.3 Diskretisierung
2.3.1 Finite-Differenzen Methode für die Poissongleichung
2.3.2 Grundlagen der Finite-Volumen Methode
2.4 Koordinatentransformation und Netzgenerierung
2.4.1 Klassifizierung numerischer Netze
2.4.2 Netze für komplexe Geometrien
2.5 Simulationsprogramme
2.5.1 Übersicht
2.5.2 Das Rechenprogramm Ansys-CFX
2.5.3 Das Rechenprogramm Open Foam
3 Grundgleichungen und Modelle
3.1 Beschreibung auf Molekülebene
3.1.1 Gaskinetische Simulationsmethode
3.2 Laminare Strömungen
3.2.1 Hierarchie der Grundgleichungen
3.2.2 Die Euler-Gleichungen der Gasdynamik
3.2.3 Energiegleichung
3.2.4 Navier-Stokes Gleichungen für inkompressible Strömungen
3.3 Turbulente Strömungen
3.3.1 Visualisierung turbulenter Strömungen
3.3.2 Direkte Numerische Simulation
3.3.3 Reynoldsgleichungen für turbulente Strömungen
3.3.4 Prandtl'sches Mischungswege-Modell
3.3.5 Algebraische Turbulenzmodelle
3.3.6 Zweigleichungs-Transportmodelle
3.3.7 Sekundärströmungen
3.3.8 Reynoldsspannungmodelle
3.3.9 Klassifikation von Turbulenzmodellen
3.3.10 Grobstruktursimulation
4 Qualität und Genauigkeit
4.1 Anforderungen
4.1.1 Fehler und Genauigkeit
4.1.2 Anforderungen der Strömungsphysik
4.1.3 Anforderungen des Ingenieurwesens
4.2 Numerische Fehler und Verifikation
4.2.1 Rundungsfehler
4.2.2 Numerische Diffusion
4.2.3 Netzabhängigkeit einer Lösung
4.3 Modellfehler und Validierung
4.3.1 Arbeiten mit Wandfunktionen
4.3.2 Beispiel: Rohrabzweig

14. Literatur:
• alle Vorlesungsfolien in ILLIAS verfügbar
15. Lehrveranstaltungen und -formen:
• 141801 Vorlesung und Übung Numerische Strömungssimulation
• 141802 Praktikum Numerische Strömungssimulation

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 45h + Nacharbeitszeit: 131h + Praktikumszeit: 4 h = 180 h

17. Prüfungsnummer/n und -name:
14181 Numerische Strömungssimulation (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0, keine Hilfsmittel zugelassen

18. Grundlage für ... :

19. Medienform:
ppt-Folien (30 %), Tafel und Kreide (65 %), Computerdemonstration (5%)
Manuskripte online

20. Angeboten von:
Institut für Kernenergetik und Energiesysteme
Modul: 14190 Regelungstechnik

2. Modulkürzel: 074810060
5. Modulduauer: 2 Semester
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Frank Allgöwer
9. Dozenten: • Frank Allgöwer
 • Matthias Müller

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technikpädagogik, PO 2011, 4. Semester
 ➔ Vorgezogene Master-Module
 ➔ Wahlpflichtfach -->Wahlpflichtfach Maschinenbau -->
 >Modulcontainer Wahlpflichtbereich (Mach-TP)

B.Sc. Technikpädagogik, PO 2011, 4. Semester
 ➔ Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP

M.Sc. Technikpädagogik, PO 2009, 4. Semester
 ➔ Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP

M.Sc. Technikpädagogik, PO 2009, 4. Semester
 ➔ Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und
 Klimatechnik -->Mach-TP

M.Sc. Technikpädagogik, PO 2015, 4. Semester
 ➔ Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP

M.Sc. Technikpädagogik, PO 2015, 4. Semester
 ➔ Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP

M.Sc. Technikpädagogik, PO 2015, 4. Semester
 ➔ Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und
 Klimatechnik -->Mach-TP

11. Empfohlene Voraussetzungen:
 • HM I-III
 • Systemdynamische Grundlagen der Regelungstechnik

12. Lernziele:

Die Studierenden
 • haben umfassende Kenntnisse zur Analyse und Synthese linearer
 Regelkreise im Zeit- und Frequenzbereich,
 • können auf Grund theoretischer Überlegungen Regler und Beobachter
 für dynamische Systeme entwerfen und validieren,
 • kennen Methoden zur praktischen Umsetzung regelungstechnischer
 Methoden,
 • können sich mit anderen Ingenieuren über regelungstechnische
 Methoden austauschen.

13. Inhalt:

Vorlesung: „Einführung in die Regelungstechnik“:
Systemtheoretische Konzepte der Regelungstechnik, Stabilität (Nyquist-, Hurwitz- und Small-Gain-Kriterium,...), Beobachtbarkeit, Steuerbarkeit, Robustheit, Reglerentwurfsverfahren im Zeit- und Frequenzbereich (PID, Polvorgabe,Vorfilter,...), Beobachterentwurf
Praktikum: „Einführung in die Regelungstechnik“:
Implementierung der in der Vorlesung Einführung in die Regelungstechnik erlernten Reglerentwurfsverfahren an praktischen Laborversuchen

Projektwettbewerb:
Lösen einer konkreten Regelungsaufgabe in einer vorgegebenen Zeit in Gruppen

Vorlesung „Mehrgrößenregelung“:

Es muss einer der folgenden Blöcke ausgewählt werden:

Block 1
- Vorlesung „Einführung in die Regelungstechnik“, 2 SWS, 5. Semester
- Projektwettbewerb zur Vorlesung „Einführung in die Regelungstechnik“, 1 SWS, 5. Semester
- Praktikum „Einführung in die Regelungstechnik“, 1 SWS, 6. Semester

Block 2
- Vorlesung „Einführung in die Regelungstechnik“, 2 SWS, 5. Semester
- Vorlesung „Mehrgrößenregelung“, 2 SWS, 6. Semester

Block 3
- Projektwettbewerb zur Vorlesung „Einführung in die Regelungstechnik“, 1 SWS, 5. Semester
- Praktikum „Einführung in die Regelungstechnik“, 1 SWS, 6. Semester
- Vorlesung „Mehrgrößenregelung“, 2 SWS, 6. Semester

Anmerkung: Block 3 muss und kann nur dann gewählt werden, wenn die Vorlesung „Einführung in die Regelungstechnik“ bereits in einem anderen Modul gewählt wurde.

14. Literatur:

Vorlesung „Einführung in die Regelungstechnik“,
- Praktikum und Projektwettbewerb

Vorlesung „Mehrgrößenregelung“ zusätzlich
- Lunze, J.. Regelungstechnik 2, Springer Verlag, 2004
15. Lehrveranstaltungen und -formen:

• 141901 Vorlesung Einführung in die Regelungstechnik
• 141902 Projektwettbewerb Einführung in die Regelungstechnik
• 141903 Praktikum Einführung in die Regelungstechnik
• 141904 Vorlesung Mehrgrößenregelung

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 42h
Selbststudiumszeit / Nacharbeitszeit: 138h
Gesamt: 180h

17. Prüfungsnummer/n und -name:

• 14191 Einführung in die Regelungstechnik (PL), schriftlich, eventuell mündlich, 90 Min., Gewichtung: 1.0
• 14192 Mehrgrößenregelung (PL), schriftlich, eventuell mündlich, 60 Min., Gewichtung: 1.0
• 14193 Einführung in die Regelungstechnik Praktikum (USL), Sonstiges, Gewichtung: 1.0
• 14194 Einführung in die Regelungstechnik Projektwettbewerb (USL), Sonstiges, Gewichtung: 1.0

18. Grundlage für ...:

19. Medienform:

20. Angeboten von:
Modul: 15600 Schwingungen und Modalanalyse

2. Modulkürzel: 074010001 5. Modulduauer: 1 Semester
4. SWS: 4.0 7. Sprache: Deutsch
8. Modulverantwortlicher: Apl. Prof. Michael Hanss
9. Dozenten: • Michael Hanss • Pascal Ziegler

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technikpädagogik, PO 2011, 6. Semester
—> Vorgezogene Master-Module
B.Sc. Technikpädagogik, PO 2011, 6. Semester
—> Wahlpflichtfach --> Wahlpflichtfach Maschinenbau -->
> Modulcontainer Wahlpflichtbereich (Mach-TP)
—> M.Sc. Technikpädagogik, PO 2009, 6. Semester
—> Wahlpflichtfach Maschinenbau --> Fahrzeugtechnik --> Mach-TP
—> M.Sc. Technikpädagogik, PO 2009, 6. Semester
—> Wahlpflichtfach Maschinenbau --> Fertigungstechnik --> Mach-TP
—> M.Sc. Technikpädagogik, PO 2009, 6. Semester
—> Wahlpflichtfach Maschinenbau --> Heizungs-, Lüftungs- und Klimatechnik --> Mach-TP
—> M.Sc. Technikpädagogik, PO 2015, 6. Semester
—> Wahlpflichtfach Maschinenbau --> Fahrzeugtechnik --> Mach-TP
—> M.Sc. Technikpädagogik, PO 2015, 6. Semester
—> Wahlpflichtfach Maschinenbau --> Fertigungstechnik --> Mach-TP
—> M.Sc. Technikpädagogik, PO 2015, 6. Semester
—> Wahlpflichtfach Maschinenbau --> Heizungs-, Lüftungs- und Klimatechnik --> Mach-TP

11. Empfohlene Voraussetzungen: Abgeschlossene Grundlagenausbildung in Technischer Mechanik, z.B. durch die Module TM I, TM II+III sowie TM IV

12. Lernziele:
• Der Studierende ist vertraut mit den Grundlagen von linearen (freien und erzwungenen) Schwingungen mit einem und mehreren Freiheitsgraden sowie den Grundlagen von linearen Schwingungen von Kontinua.
• Der Studierende beherrscht die mathematischen Methoden der Beschreibung von linearen Schwingungssystemen und ist in der Lage, die Schwingungsbeanspruchung von einfachen mechanischen Anordnungen und Strukturen zu berechnen.
• Der Studierende ist vertraut mit der messtechnischen Erfassung von Strukturschwingungen sowie der Aufbereitung der Messsignale im Frequenzbereich.
• Der Studierende ist in der Lage daraus die modalen Kenngrößen zu identifizieren.

13. Inhalt:
Die Veranstaltung **Technische Schwingungslehre** vermittelt die Grundlagen der linearen Schwingungslehre in folgender Gliederung:
• Grundbegriffe und Darstellungsformen von Schwingungen
• Lineare Schwingungen mit einem Freiheitsgrad: konservative und gedämpfte Eigenschwingungen, erzwungene Schwingungen mit Beispielen
• Lineare Schwingungen mit endlich vielen Freiheitsgraden: Eigenschwingungen und erzwungene Schwingungen mit harmonischer Erregung
• Schwingungen kontinuierlicher Systeme.

Die Veranstaltung **Experimentelle Modalanalyse** vermittelt den Inhalt in folgender Gliederung:

• Grundlagen und Anwendungen der experimentellen Modalanalyse
• Methoden zur Schwingungsanregung, Messverfahren
• Signalanalyse und -verarbeitung, Zeit- und Frequenzbereichsdarstellung
• Frequenzgang, Übertragungsfunktion und deren modale Zerlegung
• Bestimmung modaler Kenngrößen, Modenerkennung und -vergleich

Es werden zudem Anwendungen auf Problemstellungen der industriellen Praxis demonstriert. Als praktischer Teil werden fachbezogene Versuche zur experimentellen Modalanalyse angeboten.

14. Literatur: • Vorlesungsskripte

Weiterführende Literatur für die Technische Schwingungslehre:

Weiterführende Literatur für die Experimentelle Modalanalyse:

15. Lehrveranstaltungen und -formen:
• 156001 Vorlesung Technische Schwingungslehre
• 156002 Vorlesung Experimentelle Modalanalyse

16. Abschätzung Arbeitsaufwand:
Präsenzzzeit: 45h + Nacharbeitszeit: 135h = 180h

17. Prüfungsnummer/n und -name:
• 15601 Technische Schwingungslehre (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0
• 15602 Experimentelle Modalanalyse (PL), schriftlich, eventuell mündlich, 60 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:
Overhead-Projektor, Tafel, Demonstrationsexperimente

20. Angeboten von:
Modul: 12270 Simulationstechnik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>074710002</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>5.0</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Oliver Sawodny</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Oliver Sawodny</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- **B.Sc. Technikpädagogik**
 - Vorgezogene Master-Module
- **B.Sc. Technikpädagogik**
 - Wahlpflichtfach -> Wahlpflichtfach Maschinenbau -> Modulcontainer Wahlpflichtbereich (Mach-TP)
- **M.Sc. Technikpädagogik**
 - Wahlpflichtfach Maschinenbau -> Fahrzeugtechnik -> Mach-TP
- **M.Sc. Technikpädagogik**
 - Wahlpflichtfach Maschinenbau -> Fertigungstechnik -> Mach-TP
- **M.Sc. Technikpädagogik**
 - Wahlpflichtfach Maschinenbau -> Heizungs-, Lüftungs- und Klimatechnik -> Mach-TP
- **M.Sc. Technikpädagogik**
 - Wahlpflichtfach Maschinenbau -> Fahrzeugtechnik -> Mach-TP
- **M.Sc. Technikpädagogik**
 - Wahlpflichtfach Maschinenbau -> Fertigungstechnik -> Mach-TP
- **M.Sc. Technikpädagogik**
 - Wahlpflichtfach Maschinenbau -> Heizungs-, Lüftungs- und Klimatechnik -> Mach-TP

11. Empfohlene Voraussetzungen:

- Pflichtmodule Mathematik
- Pflichtmodul Systemdynamik bzw. Teil 1 vom Pflichtmodul Regelungs- und Steuerungstechnik

12. Lernziele:

Die Studierenden kennen die grundlegenden Methoden und Werkzeuge zur Simulation von dynamischen Systemen und beherrschen deren Anwendung. Sie setzen geeignete numerische Integrationsverfahren ein und können das Simulationsprogramm in Abstimmung mit der ihnen gegebenen Simulationsaufgabe parametrisieren.

13. Inhalt:

- Stationäre und dynamische Analyse von Simulationsmodellen;
- numerische Lösungen von gewöhnlichen Differentialgleichungen mit Anfangs- oder Randbedingungen; Stückprozesse als Warte-Bedien-Systeme; Simulationswerkzeug Matlab/Simulink und Arena

14. Literatur:

- Vorlesungsumdrucke

15. Lehrveranstaltungen und -formen:

• 122701 Vorlesung mit integrierter Übung Simulationstechnik
• 122702 Praktikum Simulationstechnik

16. Abschätzung Arbeitsaufwand:

| Präsenzzeit: 53 h |
| Selbststudiumszeit / Nacharbeitszeit: 127 h |
| Gesamt: 180 h |

17. Prüfungsnummer/n und -name:

• 12271 Simulationstechnik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0, Hilfsmittel: Taschenrechner (nicht vernetzt, nicht programmierbar, nicht grafikfähig) sowie alle nicht elektronischen Hilfsmittel
• 12272 Simulationstechnik: Erfolgreiche Teilnahme am Praktikum (USL), schriftlich, eventuell mündlich, Gewichtung: 1.0

18. Grundlage für ... :

12290 Systemanalyse I

19. Medienform:

-

20. Angeboten von:

Institut für Systemdynamik
Modul: 14240 Technisches Design

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072710110</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Modulduauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher:
Univ.-Prof. Thomas Maier

9. Dozenten:
- Thomas Maier
- Markus Schmid

10. Zuordnung zum Curriculum in diesem Studiengang:
- B.Sc. Technikpädagogik ➔ Vorgezogene Master-Module
 - B.Sc. Technikpädagogik ➔ Wahlpflichtfach ➔ Wahlpflichtfach Maschinenbau ➔ Modulcontainer Wahlpflichtbereich (Mach-TP)
 - M.Sc. Technikpädagogik ➔ Wahlpflichtfach Maschinenbau ➔ Fahrzeugtechnik ➔ Mach-TP
 - M.Sc. Technikpädagogik ➔ Wahlpflichtfach Maschinenbau ➔ Fertigungstechnik ➔ Mach-TP
 - M.Sc. Technikpädagogik ➔ Wahlpflichtfach Maschinenbau ➔ Heizungs-, Lüftungs- und Klimatechnik ➔ Mach-TP
 - M.Sc. Technikpädagogik ➔ Wahlpflichtfach Maschinenbau ➔ Fahrzeugtechnik ➔ Mach-TP
 - M.Sc. Technikpädagogik ➔ Wahlpflichtfach Maschinenbau ➔ Fertigungstechnik ➔ Mach-TP
 - M.Sc. Technikpädagogik ➔ Wahlpflichtfach Maschinenbau ➔ Heizungs-, Lüftungs- und Klimatechnik ➔ Mach-TP

11. Empfohlene Voraussetzungen:
Abgeschlossene Grundlagen-ausbildung in Konstruktionslehre z. B. durch die Module Konstruktionslehre I - IV oder Grundzüge der Maschinen-konstruktion I / II

12. Lernziele:
Im Modul Technisches Design
- besitzen die Studierenden nach dem Besuch des Moduls das Wissen über die wesentlichen Grundlagen des technisch orientierten Designs, als integraler Bestandteil der methodischen Produktentwicklung,
- können die Studierenden wichtige Gestaltungsmethoden anwenden und präsentieren ihre Ergebnisse.

Erworbene **Kompetenzen**:

Die Studierenden
- erwerben und besitzen fundierte Designkenntnisse für den Einsatz an der Schnittstelle zwischen Ingenieur und Designer,
13. Inhalt:

Form- und Farbgebung mit Oberflächendesign und Grafik von Einzelprodukten. Interior-Design sowie das Design von Produktprogrammen und Produktsystemen mit Corporate-Design.

14. Literatur:
- Maier, T., Schmid, M.: Online-Skript IDeEnKompakt mit SelfStudy-Online-Übungen;
- Seeger, H.: Design technischer Produkte, Produktprogramme und -systeme, Springer-Verlag;
- Lange, W., Windel, A.: Kleine ergonomische Datensammlung, TÜV-Verlag

15. Lehrveranstaltungen und -formen:
- 142401 Vorlesung Technisches Design
- 142402 Übung und Praktikum Technisches Design

16. Abschätzung Arbeitsaufwand:
Präsenzzzeit: 42 h
Selbststudium / Nacharbeitszeit: 138 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
14241 Technisches Design (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:
Vorlesungsskript, kombinierter Einsatz von Präsentationsfolien und Videos, mit Designmodellen und Produkten, Präsentation von Übungen mit Aufgabenstellung und Papiervorlagen

20. Angeboten von:
Modul: 13330 Technologiemanagement

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072010002</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>2 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dieter Spath</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Wilhelm Bauer
| | • Robert Hämmerl |
| | → Vorgezogene Master-Module |
| | B.Sc. Technikpädagogik
| | → Wahlpflichtfach -->Wahlpflichtfach Maschinenbau -->Modulcontainer Wahlpflichtbereich (Mach-TP)
| | M.Sc. Technikpädagogik
| | → Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP
| | M.Sc. Technikpädagogik
| | → Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP
| | M.Sc. Technikpädagogik
| | → Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik -->Mach-TP
| | M.Sc. Technikpädagogik
| | → Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP
| | M.Sc. Technikpädagogik
| | → Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP
| | M.Sc. Technikpädagogik
| | → Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik -->Mach-TP

11. Empfohlene Voraussetzungen: keine

Sie Grenzen die Begriffe Technologiemanagement, Forschungs- und Entwicklungsmanagement und Innovationsmanagement gegeneinander ab und kennen die Bedeutung von Technologien.

Sie kennen klassische Aufbauorganisationen in Unternehmen sowie die Bedeutung der Ablauforganisation. Sie verstehen, wie Technologien in Unternehmen strategisch geplant und sinnvoll eingesetzt werden und wie sich der Einsatz neuer Technologien auswirkt.

Die Studierenden kennen die verschiedenen Innovationsgrade und -arten sowie Innovationshindernisse und -beschleuniger. Zudem sind ihnen Ziele und Risiken des Projektmanagements bekannt sowie die Grundzüge der Projektplanung. Die Instrumente des Technologie-
und Innovationsmanagements kennen sie hinsichtlich Effizienz, Finanzierungsmöglichkeiten und Kapazitätsplanung ebenso, wie verschiedene Möglichkeiten der internen und externen Zusammenarbeit.

Erworbene Kompetenzen: Die Studierenden

- können die Bedeutung des Technologiemanagements im Unternehmen einordnen
- kennen die wesentlichen Ansätze und Aufgaben des normativen, strategischen und operativen Technologiemanagements
- verstehen die Handlungsalternativen des Technologiemanagements
- kennen die Phasen eines methodischen Vorgehens im Technologiemanagement
- sind mit den wichtigsten Methoden zur Technologieplanung und -strategie vertraut und können diese zielführend anwenden

13. Inhalt:

Die Vorlesung vermittelt die Grundlagen und das Anwendungswissen zum Technologiemanagement.

Im Einzelnen werden folgende Themen behandelt:

Umfeld des Technologiemanagements, Begriffsklärungen, Organisationsmanagement, Integriertes Technologiemanagement, Normatives Technologiemanagement, Strategisches Technologiemanagement:

- Technologiefrühaufklärung
- Lebenszykluskonzepte
- Portfoliomanagement
- Erfahrungskurvenkonzept
- Technologiemanagement

Fallstudien zum strategischen Technologiemanagement, Operatives Technologiemanagement:

- Innovationsmanagement
- Projektmanagement
- Instrumente des Technologie- und Innovationsmanagements

Fallstudie Netzplantechnik

14. Literatur:

- Bauer, W.; Weber, B.: Skript zur Vorlesung Technologiemanagement

15. Lehrveranstaltungen und -formen:
- 133301 Vorlesung Technologiemanagement I
- 133302 Vorlesung Technologiemanagement II

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 46 Stunden
Selbststudium: 134 Stunden
Summe: 180 Stunden
<table>
<thead>
<tr>
<th>Frage</th>
<th>Antwort</th>
</tr>
</thead>
<tbody>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>13331 Technologiemanagement (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Beamer-Präsentation, Videos, Animationen, Praktikum</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td></td>
</tr>
</tbody>
</table>
Modul: Technologien der Nano- und Mikrosystemtechnik I

2. Modulkürzel: 072420001
5. Modulduauer: 1 Semester

3. Leistungspunkte: 6.0 LP
6. Turnus: jedes Semester

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Hermann Sandmaier

9. Dozenten: Hermann Sandmaier

10. Zuordnung zum Curriculum in diesem Studiengang:

 B.Sc. Technikpädagogik
 → Vorgezogene Master-Module

 B.Sc. Technikpädagogik
 → Wahlpflichtfach → Wahlpflichtfach Maschinenbau →
 → Modulcontainer Wahlpflichtbereich (Mach-TP)
 →

 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau → Fahrzeugtechnik → Mach-TP
 →

 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau → Fertigungstechnik → Mach-TP
 →

 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau → Heizungs-, Lüftungs- und
 → Klimatechnik → Mach-TP
 →

 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau → Fahrzeugtechnik → Mach-TP
 →

 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau → Fertigungstechnik → Mach-TP
 →

 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau → Heizungs-, Lüftungs- und
 → Klimatechnik → Mach-TP
 →

11. Empfohlene Voraussetzungen: keine

12. Lernziele: Im Modul Technologien der Nano- und Mikrosystemtechnik I

 • haben die Studierenden die wichtigsten Technologien und Verfahren
 zur Herstellung von Bauelementen der Mikroelektronik als auch der
 Nano- und Mikrosystemtechnik kennen gelernt,
 • können die Studierenden einzelne technologische Prozesse bewerten
 und sind in der Lage Prozessabläufe selbstständig zu entwerfen.

 Erworbene Kompetenzen:

 Die Studierenden

 • können die wichtigsten Materialien der Nano- und Mikrosystemtechnik
 benennen und beschreiben,
 • können die wichtigsten Verfahren der Mikroelektronik sowie der Nano-
 und Mikrosystemtechnik benennen und mit Hilfe physikalischer
 Grundlagenkenntnisse erläutern,
• beherrschen die wesentlichen Grundlagen des methodischen Vorgehens zur Herstellung von mikrotechnischen Bauelementen,
• haben ein Gefühl für den Aufwand einzelner Verfahren entwickeln können,
• sind mit den technologischen Grenzen der Verfahren vertraut und können diese bewerten,
• sind in der Lage, auf der Basis gegebener technischer und wirtschaftlicher Randbedingungen, die optimalen Prozessverfahren auszuwählen und einen kompletten Prozessablauf für die Herstellung von mikrotechnischen Bauelementen zu entwerfen.

14. Literatur:
• Korvink, J. G.; Paul O., MEMS - A practical guide to design, analysis and applications, Springer, 2006
• Menz, W.; Mohr, J.; Paul, O., Mikrosystemtechnik für Ingenieure, Weinheim: Wiley-VCH, 2005
• Schwesinger N.; Dehne C.; Adler F., Lehrbuch Mikrosystemtechnik, Oldenbourg Verlag, 2009

Online-Vorlesungen:
• http://www.sensedu.com
• http://www.ett.bme.hu/memsedu

Lernmaterialien:
• Vorlesungsfolien und -skript auf ILIAS

15. Lehrveranstaltungen und -formen: 135601 Vorlesung Technologien der Nano- und Mikrosystemtechnik I

16. Abschätzung Arbeitsaufwand: Präsenzzeit: 42 h
Selbststudiumszeit / Nacharbeit: 138 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name: 13561 Technologien der Nano- und Mikrosystemtechnik I (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :
<table>
<thead>
<tr>
<th>19. Medienform:</th>
<th>Präsentation mit Animationen und Filmen, Beamer, Tafel, Anschauungsmaterial</th>
</tr>
</thead>
<tbody>
<tr>
<td>20. Angeboten von:</td>
<td>Mikrosystemtechnik</td>
</tr>
</tbody>
</table>
Modul: 15860 Thermische Verfahrenstechnik I

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>042100015</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Joachim Groß</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Joachim Groß</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Technikpädagogik → Wahlpflichtfach -->Wahlpflichtfach Maschinenbau -- >Modulcontainer Wahlpflichtbereich (Mach-TP) →</td>
</tr>
<tr>
<td></td>
<td>M.Sc. Technikpädagogik → Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP →</td>
</tr>
<tr>
<td></td>
<td>M.Sc. Technikpädagogik → Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP →</td>
</tr>
<tr>
<td></td>
<td>M.Sc. Technikpädagogik → Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik -->Mach-TP →</td>
</tr>
<tr>
<td></td>
<td>M.Sc. Technikpädagogik → Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP →</td>
</tr>
<tr>
<td></td>
<td>M.Sc. Technikpädagogik → Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP →</td>
</tr>
<tr>
<td></td>
<td>M.Sc. Technikpädagogik → Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik -->Mach-TP →</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Thermodynamik I + II</td>
</tr>
<tr>
<td></td>
<td>Thermodynamik der Gemische (empfohlen, nicht zwingend)</td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>Die Studierenden</td>
</tr>
<tr>
<td></td>
<td>• verstehen die Prinzipien zur Auslegung von Apparaten der Thermischen Verfahrenstechnik.</td>
</tr>
<tr>
<td></td>
<td>• können dieses Wissen selbstständig anwenden, um konkrete Fragestellung der Auslegung thermischer Trennoperationen zu lösen, d.h. sie können die für die jeweilige Trennoperation notwendigen Prozessgrößen berechnen und die Apparate dimensionieren.</td>
</tr>
<tr>
<td></td>
<td>• sind in der Lage verallgemeinerte Aussagen über die Wirksamkeit verschiedener Trennoperationen für ein gegebenes Problem zu treffen, bzw. eine geeignete Trennoperation auszuwählen.</td>
</tr>
<tr>
<td></td>
<td>• können das erworbene Wissen und Verständnis der Modellbildung thermischer Trennapparate weiterführend auch auf spezielle</td>
</tr>
</tbody>
</table>
Sonderprozesse anwenden. Die Studierenden haben das zur weiterführenden, eigenständigen Vertiefung notwendige Fachwissen.

- können durch eingebettete, praktische Übungen an realen Apparaten grundlegende Problematiken der bautechnischen Umsetzung identifizieren.

13. Inhalt:

14. Literatur:
- M. Baerns, Lehrbuch der Technischen Chemie, Band 2, Grundoperationen, Band 3, Chemische Prozesskunde, Thieme, Stuttgart
- R. Goedecke, Fluidverfahrenstechnik, Band 1 & 2, Wiley-VCH, Weinheim
- P. Grassmann, F. Widmer, H. Sinn, Einführung in die Thermische Verfahrenstechnik, de Gruyter, Berlin

15. Lehrveranstaltungen und -formen:
- 158601 Vorlesung Thermische Verfahrenstechnik I
- 158602 Übung Thermische Verfahrenstechnik I

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 56 h
Selbststudiumszeit / Nacharbeitszeit: 124 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
15861 Thermische Verfahrenstechnik I (USL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ...:
15890 Thermische Verfahrenstechnik II

19. Medienform:
Der Vorlesungsinhalt wird als Tafelanschrieb entwickelt, ergänzt um Präsentationsfolien. Beiblätter werden zur Unterstützung ausgeteilt.

20. Angeboten von:
Institut für Technische Thermodynamik und Thermische Verfahrenstechnik
Modul: 13570 Werkzeugmaschinen und Produktionssysteme

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>073310001</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Prof. Uwe Heisel</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Uwe Heisel</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technikpädagogik, PO 2011, 5. Semester
→ Vorgezogene Master-Module

B.Sc. Technikpädagogik, PO 2011, 5. Semester
→ Wahlpflichtfach →Wahlpflichtfach Maschinenbau -->
>Modulcontainer Wahlpflichtbereich (Mach-TP)
→

B.Sc. Technikpädagogik, PO 2011, 5. Semester
→ Wahlpflichtfach →Wahlpflichtfach Maschinenbau -->b)
Fertigungstechnik Pflichtcontainer Grundlagen Fertigungstechnik
→

M.Sc. Technikpädagogik
→ Hauptfach Maschinenbau -->Fertigungstechnik -->Pflichtcontainer
Fertigungstechnik-Hauptfach
→

M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP
→

M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Fertigungstechnik (Pflicht)
→

M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP
→

M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik -->Mach-TP
→

M.Sc. Technikpädagogik
→ Auflagenmodule des Masters

M.Sc. Technikpädagogik
→ Hauptfach Maschinenbau -->Fertigungstechnik -->Pflichtcontainer
Fertigungstechnik-Hauptfach
→

M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik -->Mach-TP
→

M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Fertigungstechnik (Pflicht)
→

M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP
→

M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Fertigungstechnik -->Mach-TP
→

M.Sc. Technikpädagogik

12. Lernziele: Die Studierenden kennen den konstruktiven Aufbau und die Funktionseinheiten von spanenden Werkzeugmaschinen und Produktionssystemen sowie die Formeln zu deren Berechnung, sie wissen, wie Werkzeugmaschinen und deren Funktionseinheiten funktionieren, sie können deren Aufbau und Funktionsweise erklären und die Formeln zur Berechnung von Werkzeugmaschinen anwenden.

14. Literatur: Skript, Vorlesungsunterlagen im Internet, alte Prüfungsaufgaben

15. Lehrveranstaltungen und -formen: 135701 Vorlesung Werkzeugmaschinen und Produktionssysteme

16. Abschätzung Arbeitsaufwand: Präsenzzeit: 42 h
 Selbststudiumszeit / Nacharbeitszeit: 138 h
 Gesamt: 180 h

17. Prüfungsnummer/n und -name: 13571 Werkzeugmaschinen und Produktionssysteme (PL)
 schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform: Medienmix: Präsentation, Tafelanschrieb, Videoclips

20. Angeboten von: Institut für Werkzeugmaschinen
Modul: 13580 Wissens- und Informationsmanagement in der Produktion

2. Modulkürzel: 072410003
5. Modulduauer: 2 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 6.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Thomas Bauernhansl

9. Dozenten: Thomas Bauernhansl

10. Zuordnung zum Curriculum in diesem Studiengang:

 B.Sc. Technikpädagogik
 → Vorgezogene Master-Module

 B.Sc. Technikpädagogik
 → Wahlpflichtfach --> Wahlpflichtfach Maschinenbau -->
 > Modulcontainer Wahlpflichtbereich (Mach-TP)
 →

 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau --> Fahrzeugtechnik --> Mach-TP
 →

 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau --> Fertigungstechnik --> Mach-TP
 →

 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau --> Heizungs-, Lüftungs- und
 Klimatechnik --> Mach-TP
 →

 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau --> Fahrzeugtechnik --> Mach-TP
 →

 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau --> Fertigungstechnik --> Mach-TP
 →

 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau --> Heizungs-, Lüftungs- und
 Klimatechnik --> Mach-TP
 →

11. Empfohlene Voraussetzungen:

 Fertigungslehre mit Einführung in die Fabrikorganisation. Es wird
 empfohlen die Vorlesung Fabrikbetriebslehre ergänzend zu belegen

12. Lernziele:

 In der industriellen Produktion sind nahezu alle Arbeitsplätze
 in unternehmensinternen und externen Informations- und
 Kommunikationssystemen vernetzt. Die Studierenden beherrschen
 nach Besuch der Vorlesung die Grundlagen, Methoden und
 Zusammenhänge des Managements von Informationen und Prozessen
 in der Produktion. Sie können diese in operativer als auch planerischer
 Ebene innerhalb der Industrie anwenden und bewerten und diese
 entsprechend der jeweiligen Aufgaben modifizieren.

13. Inhalt:

 Moderne Produktionsunternehmen setzen eine Vielzahl an
 informationstechnischen Werkzeugen ein, um ihre Geschäftsprozesse
 zu unterstützen. Die Vorlesung vermittelt anhand der Lebenszyklen
 für Produkt, Technologie, Fabrik und Auftrag welche Methoden
 im industriellen Produktionsumfeld entlang dieser Lebenszyklen
 eingesetzt werden und welche IT-Systeme dabei unterstützend zum
 Einsatz kommen. Dabei geht die Vorlesung auch darauf ein, wie
 das Wissensmanagement und der Informationsfluss entlang der
Lebenszyklen innerhalb des produzierenden Unternehmens mit Hilfe dieser IT-Werkzeuge unterstützt werden.

14. Literatur: Skript zur Vorlesung

15. Lehrveranstaltungen und -formen:
 - 135801 Vorlesung Wissens- und Informationsmanagement in der Produktion I
 - 135802 Übung Wissens- und Informationsmanagement in der Produktion I
 - 135803 Vorlesung Wissens- und Informationsmanagement in der Produktion II
 - 135804 Übung Wissens- und Informationsmanagement in der Produktion II

16. Abschätzung Arbeitsaufwand:
 - Präsenzzeit: 63 Stunden
 - Selbststudium: 117 Stunden

17. Prüfungsnummer/n und -name: 13581 Wissens- und Informationsmanagement in der Produktion (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform: Power-Point Präsentationen, Simulationen, Animationen und Filme

20. Angeboten von: Institut für Industrielle Fertigung und Fabrikbetrieb
Modul: 14310 Zuverlässigkeitstechnik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072600003</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>2 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Bernd Bertsche</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Bernd Bertsche</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technikpädagogik
→ Vorgezogene Master-Module

B.Sc. Technikpädagogik
→ Wahlpflichtfach --> Wahlpflichtfach Maschinenbau --> Modulcontainer Wahlpflichtbereich (Mach-TP)

M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau --> Fahrzeugtechnik --> Mach-TP

M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau --> Fertigungstechnik --> Mach-TP

M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau --> Heizungs-, Lüftungs- und Klimatechnik --> Mach-TP

M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau --> Fahrzeugtechnik --> Mach-TP

M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau --> Fertigungstechnik --> Mach-TP

M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau --> Heizungs-, Lüftungs- und Klimatechnik --> Mach-TP

11. Empfohlene Voraussetzungen:
Höhere Mathematik und abgeschlossene Grundlagenausbildung in Konstruktionslehre I-IV oder Grundzüge der Maschinenkonstruktion + Grundlagen der Produktentwicklung

12. Lernziele:
Die Studierenden kennen die statistischen Grundlagen sowie die verschiedenen Methoden der Zuverlässigkeitstechnik.

Sie beherrschen qualitative Methoden (FMEA, FTA, Design Review, ABC-Analyse) und quantitative Methoden (Boole, Markov, Monte Carlo u.a.) und können diese zur Ermittlung der Zuverlässigkeit technischer Systeme anwenden. Sie beherrschen die Testplanung, können Zuverlässigkeitsanalysen auswerten und Zuverlässigkeitsprogramme aufstellen.

13. Inhalt:
- Bedeutung und Einordnung der Zuverlässigkeitstechnik
- Übersicht zu Methoden und Hilfsmitteln
- Behandlung qualitativer Methoden zur systematischen Ermittlung von Fehlern bzw. Ausfällen und ihre Auswirkungen, z. B. FMEA (mit Übungen), Fehlerbaumanalyse FTA, Design Review (konstruktiv)
- Grundbegriffe der quantitativen Methoden zur Berechnung von Zuverlässigkeits- und Verfügbarkeitswerten, z. B. Boolesche Theorie (mit Übungen), Markov Theorie, Monte Carlo Simulation
- Auswertung von Lebensdauerversuchen (z. B. mit Weibullverteilung)
- Zuverlässigkeitsnachweisverfahren
- Zuverlässigkeitsicherungsprogramme

14. Literatur:
- VDA-Band 3.2: Zuverlässigkeitsicherung bei Automobilherstellern und Lieferanten.

15. Lehrveranstaltungen und -formen:
- 143101 Vorlesung und Übung Zuverlässigkeitstechnik
- 143102 Praktikumsversuch FMEA

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 42 h Vorlesung und 2 h Praktikum
- Selbststudiumszeit / Nacharbeitszeit: 136 h
- Gesamt: 180 h

17. Prüfungsnummer/n und -name:
- 14311 Zuverlässigkeitstechnik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:
- Vorlesung: Laptop, Beamer, Overhead

20. Angeboten von:
- Institut für Maschinenelemente
5431 Heizungs-, Lüftungs- und Klimatechnik (Pflicht)

Zugeordnete Module:

- 13060 Grundlagen der Heiz- und Raumlufttechnik
- 13950 Energiewirtschaft und Energieversorgung
- 30630 Heiz- und Raumlufttechnik
- 30670 Simulation in der Gebäudeenergetik
- 30680 Praktikum Gebäudeenergetik
- 33160 Planung von Anlagen der Heiz- und Raumlufttechnik
Modul: 13950 Energiewirtschaft und Energieversorgung

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>041210001</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Kai Hufendiek</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Kai Hufendiek</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Technikpädagogik, PO 2011, 5. Semester → Vorgezogene Master-Module</td>
</tr>
<tr>
<td></td>
<td>M.Sc. Technikpädagogik → Wahlpflichtfach Maschinenbau → Heizungs-, Lüftungs- und Klimatechnik → Heizungs-, Lüftungs- und Klimatechnik (Pflicht)</td>
</tr>
<tr>
<td></td>
<td>M.Sc. Technikpädagogik → Wahlpflichtfach Maschinenbau → Heizungs-, Lüftungs- und Klimatechnik → Heizungs-, Lüftungs- und Klimatechnik (Pflicht)</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>• Grundlagen der Thermodynamik (Zustandsänderungen, Kreisprozesse, 1. und 2. Hauptsatz)</td>
</tr>
<tr>
<td></td>
<td>• Kenntnisse in Physik und Chemie</td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>Die Studierenden kennen die physikalisch-technischen Grundlagen der Energiewandlung und können diese im Hinblick auf die Bereitstellung von Energieträgern und die Energienutzung anwenden. Sie verstehen die komplexen Zusammenhänge der Energiewirtschaft und Energieversorgung, d.h. ihre technischen, wirtschaftlichen und umweltseitigen Dimensionen und können diese analysieren. Sie haben die Fähigkeit, die Methoden der Bilanzierung und der Wirtschaftlichkeitsrechnung zur Analyse und Beurteilung von Energiesystemen einschließlich ihrer umweltseitigen Effekte einzusetzen.</td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>• Energie und ihre volkswirtschaftliche sowie gesellschaftliche Bedeutung</td>
</tr>
<tr>
<td></td>
<td>• Energiennachfrage und die Entwicklung der Energiewirtschaftsstrukturren</td>
</tr>
<tr>
<td></td>
<td>• Energieressourcen</td>
</tr>
<tr>
<td></td>
<td>• Techniken zur Umwandlung und Nutzung von Mineralöl, Erdgas, Kohle, Kernenergie und erneuerbaren Energienquellen</td>
</tr>
<tr>
<td></td>
<td>• Methoden der Bilanzierung und Wirtschaftlichkeitsrechnung</td>
</tr>
<tr>
<td></td>
<td>• Organisation und Struktur der Energiewirtschaft und von Energiemärkten</td>
</tr>
<tr>
<td></td>
<td>• Umwelteffekte und -wirkungen der Energienutzung</td>
</tr>
<tr>
<td></td>
<td>• Techniken zur Reduktion energiebedingter Umweltbelastungen</td>
</tr>
</tbody>
</table>

Empfehlung (fakultativ): IER-Exkursion Energiewirtschaft / Energietechnik

| 14. Literatur: | Online-Manuskript |
15. Lehrveranstaltungen und -formen: | 139501 | Vorlesung Energiewirtschaft und Energieversorgung |
16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 56 h |
| Selbststudiumszeit / Nacharbeitszeit: 124 h |
| Gesamt: 180 h |
17. Prüfungsnummer/n und -name: | 13951 | Energiewirtschaft und Energieversorgung (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0 |
18. Grundlage für ...: |
19. Medienform: | • Beamergestützte Vorlesung |
| • teilweise Tafelanschrieb |
| • Lehrfilme |
| • begleitendes Manuskript |
20. Angeboten von: | Institut für Energiewirtschaft und Rationelle Energieanwendung |
Modul: 13060 Grundlagen der Heiz- und Raumlufttechnik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>041310001</th>
<th>5. Modulduer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Armin Ruppert</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Michael Schmidt</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zuordnung zum Curriculum in diesem Studiengang:

- **B.Sc. Technikpädagogik, PO 2011, 5. Semester**
 - Vorgezogene Master-Module
 - Wahlwissenschaft --> Wahlwissenschaft Maschinenbau --> Modulcontainer Wahlwissenschaftsbereich (Mach-TP)

- **B.Sc. Technikpädagogik, PO 2011, 5. Semester**
 - Wahlwissenschaft --> Wahlwissenschaft Maschinenbau --> Wahlwissenschaft Heizungs-, Lüftungs-, Klimatechnik Pflichtcontainer Grundlagen Heizungs-, Lüftungs-, Klimatechnik

- **M.Sc. Technikpädagogik**

- **M.Sc. Technikpädagogik**
 - Wahlwissenschaft Maschinenbau --> Fahrzeugtechnik --> Mach-TP

- **M.Sc. Technikpädagogik**
 - Wahlwissenschaft Maschinenbau --> Fertigungstechnik --> Mach-TP

- **M.Sc. Technikpädagogik**
 - Wahlwissenschaft Maschinenbau --> Heizungs-, Lüftungs- und Klimatechnik --> Pflichtcontainer Heizungs-, Lüftungs- und Klimatechnik (Pflicht)

- **M.Sc. Technikpädagogik**
 - Hauptfach Maschinenbau --> Heizungs-, Lüftungs- und Klimatechnik --> Pflichtcontainer Heizungs-, Lüftungs- und Klimatechnik-Hauptfach

- **M.Sc. Technikpädagogik**
 - Wahlwissenschaft Maschinenbau --> Fahrzeugtechnik --> Mach-TP

- **M.Sc. Technikpädagogik**
 - Wahlwissenschaft Maschinenbau --> Fertigungstechnik --> Mach-TP

- **M.Sc. Technikpädagogik**
 - Wahlwissenschaft Maschinenbau --> Heizungs-, Lüftungs- und Klimatechnik --> Mach-TP

- **M.Sc. Technikpädagogik**
 - Hauptfach Maschinenbau --> Heizungs-, Lüftungs- und Klimatechnik --> Pflichtcontainer Heizungs-, Lüftungs- und Klimatechnik-Hauptfach

- **M.Sc. Technikpädagogik**
 - Wahlwissenschaft Maschinenbau --> Fahrzeugtechnik --> Mach-TP

- **M.Sc. Technikpädagogik**
 - Wahlwissenschaft Maschinenbau --> Fertigungstechnik --> Mach-TP

- **M.Sc. Technikpädagogik**
 - Wahlwissenschaft Maschinenbau --> Heizungs-, Lüftungs- und Klimatechnik --> Heizungs-, Lüftungs- und Klimatechnik (Pflicht)
M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik -->Mach-TP

11. Empfohlene Voraussetzungen:
• Höhere Mathematik I + II
• Technische Mechanik I + II

12. Lernziele:
Im Modul Grundlagen der Heiz- und Raumlufttechnik haben die Studenten die Anlagen und deren Systematik der Heizung, Lüftung und Klimatisierung von Räumen kennen gelernt und die zugehörigen ingenieurwissenschaftlichen Grundkenntnisse erworben. Auf dieser Basis können Sie grundlegende Auslegungen der Anlagen vornehmen.

Erworbene Kompetenzen:
Die Studenten
• sind mit den grundlegenden Methoden zur Anlagenauslegung vertraut,
• kennen die thermodynamischen Grundoperationen der Behandlung feuchter Luft, der Verbrennung und des Wärme- und Stofftransports
• verstehen den Zusammenhang zwischen Anlagenauslegung und
funktion und den Innenlasten, den meteorologischen Randbedingungen und der thermischen sowie lufthygienischen Behaglichkeit

13. Inhalt:
• Systematik der heiz- und rumlufttechnischen Anlagen
• Strömung in Kanälen und Räumen
• Wärmeübergang durch Konvektion und Temperaturstrahlung
• Wärmeleitung
• Thermodynamik feuchter Luft
• Verbrennung
• meteorologische Grundlagen
• Anlagenauslegung
• thermische und lufthygienische Behaglichkeit

14. Literatur:
• Rietschel, H.; Raumklimatechnik Band 3: Raumheiztechnik -16. Auflage, Berlin: Springer-Verlag, 2004

15. Lehrveranstaltungen und -formen: 130601 Vorlesung und Übung Grundlagen der Heiz- und Raumlufttechnik

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 h
Selfstudiumszeit / Nacharbeitszeit: 138 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name: 13061 Grundlagen der Heiz- und Raumlufttechnik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0
<table>
<thead>
<tr>
<th>18. Grundlage für ... :</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>19. Medienform:</th>
<th>Vorlesungsskript</th>
</tr>
</thead>
</table>

| 20. Angeboten von: |
Modul: 30630 Heiz- und Raumlufttechnik

2. Modulkürzel: 041310003
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0
5. Modulduauer: 1 Semester
6. Turnus: jedes 2. Semester, SoSe
7. Sprache: Deutsch
8. Modulverantwortlicher: Armin Ruppert
9. Dozenten: Michael Schmidt
10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>Master of Science Technikpädagogik</th>
<th>M.Sc. Technikpädagogik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Auflagenmodule des Masters</td>
<td>Auflagenmodule des Masters</td>
</tr>
<tr>
<td>Hauptfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik</td>
<td>Hauptfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik</td>
</tr>
<tr>
<td>Wahlcontainer Heizungs-, Lüftungs- und Klimatechnik-Hauptfach</td>
<td>Wahlcontainer Heizungs-, Lüftungs- und Klimatechnik-Hauptfach</td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik</td>
<td>M.Sc. Technikpädagogik</td>
</tr>
<tr>
<td>Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik</td>
<td>Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik</td>
</tr>
<tr>
<td>-->Heizungs-, Lüftungs- und Klimatechnik (Pflicht)</td>
<td>-->Heizungs-, Lüftungs- und Klimatechnik (Pflicht)</td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik</td>
<td>M.Sc. Technikpädagogik</td>
</tr>
<tr>
<td>Wahlpflichtfach Maschinenbau -->WPF Heizungs-, Lüftungs- und Klimatechnik</td>
<td>Wahlpflichtfach Maschinenbau -->WPF Heizungs-, Lüftungs- und Klimatechnik</td>
</tr>
<tr>
<td>-->Pflichtcontainer Heizungs-, Lüftungs- und Klimatechnik</td>
<td>-->Pflichtcontainer Heizungs-, Lüftungs- und Klimatechnik</td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik</td>
<td>M.Sc. Technikpädagogik</td>
</tr>
<tr>
<td>Wahlpflichtfach Maschinenbau -->WPF Heizungs-, Lüftungs- und Klimatechnik</td>
<td>Wahlpflichtfach Maschinenbau -->WPF Heizungs-, Lüftungs- und Klimatechnik</td>
</tr>
<tr>
<td>-->Pflichtcontainer Heizungs-, Lüftungs- und Klimatechnik</td>
<td>-->Pflichtcontainer Heizungs-, Lüftungs- und Klimatechnik</td>
</tr>
<tr>
<td>Grundlagen der Heiz- und Raumlufttechnik</td>
<td>Grundlagen der Heiz- und Raumlufttechnik</td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen:

<table>
<thead>
<tr>
<th>Erworbene Kompetenzen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Studenten</td>
</tr>
<tr>
<td>• Sind mit den Systemlösungen und Auslegungen der Komponenten vertraut</td>
</tr>
<tr>
<td>• Können für gegebene Anforderungen die Systemlösung konzipieren, die Anlagenkomponenten auswählen und auslegen</td>
</tr>
</tbody>
</table>

Stand: 07. Oktober 2015
13. Inhalt:

- Berechnung, Konstruktion und Betriebsverhalten von Anlagenelementen
- Raumheiz- und -kühlflächen
- Luftdurchlässe, Luftkanäle
- Apparate zur Luftbehandlung
- Rohrnetz, Armaturen, Pumpen
- Kessel, Wärmepumpe, Kältemaschine
- Aufbau, Betriebsverhalten und Energiebedarf von Heiz- und RLT-Anlagen sowie Solarsystemen
- Abnahme von Leitungsmessungen

14. Literatur:

15. Lehrveranstaltungen und -formen:

- 306301 Vorlesung Heiz- und Raumlufttechnik
- 306302 Praktikum Heiz- und Raumlufttechnik

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 42 Stunden
Selbststudium: 138 Stunden
Summe: 180 Stunden

17. Prüfungsnummer/n und -name:

30632 Heiz- und Raumlufttechnik mündlich (PL), mündliche Prüfung, 30 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

Vorlesungsskript

20. Angeboten von:
Modul: 33160 Planung von Anlagen der Heiz- und Raumlufttechnik

2. Modulkürzel: 041310011
5. Modulduauer: 1 Semester
3. Leistungspunkte: 3.0 LP
6. Turnus: jedes 2. Semester, SoSe
4. SWS: 2.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Armin Ruppert

9. Dozenten: Michael Schmidt

10. Zuordnung zum Curriculum in diesem Studiengang:

 M.Sc. Technikpädagogik
 → Auflagenmodule des Masters
 M.Sc. Technikpädagogik
 → Hauptfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik
 →Pflichtcontainer Heizungs-, Lüftungs- und Klimatechnik-
 Hauptfach
 →
 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und
 Klimatechnik -->Heizungs-, Lüftungs- und Klimatechnik (Pflicht)
 →
 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->WPF Heizungs-, Lüftungs-
 und Klimatechnik -->Pflichtcontainer Heizungs-, Lüftungs- und
 Klimatechnik
 →
 M.Sc. Technikpädagogik
 → Auflagenmodule des Masters
 M.Sc. Technikpädagogik
 → Hauptfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik
 →Pflichtcontainer Heizungs-, Lüftungs- und Klimatechnik-
 Hauptfach
 →
 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und
 Klimatechnik -->Heizungs-, Lüftungs- und Klimatechnik (Pflicht)
 →
 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->WPF Heizungs-, Lüftungs-
 und Klimatechnik -->Pflichtcontainer Heizungs-, Lüftungs- und
 Klimatechnik
 →

11. Empfohlene Voraussetzungen: Grundlagen der Heiz- und Raumlufttechnik

12. Lernziele:

Erworbene Kompetenzen:
Die Studenten
• sind mit der praktischen Anwendung der Anlagenauslegung vertraut,
• kennen die Grundzüge der Heizlastberechnung
• können Heizflächen, Rohnetze, Wärmeerzeuger und Wärmespeicher dimensionieren und auswählen

13. Inhalt:
• Pflichtenhefterstellung
• Heizlastberechnung
• Heizflächendimensionierung
• Rohrnetzberechnung
• Wärmeerzeugerdimensionierung
• Wärmespeicherdimensionierung
• Auswahl geeigneter Komponenten auf Basis der Berechnungen
• Anfertigen von Skizzen und Zeichnungen der heiz- und raumlufttechnischen Anlagen

14. Literatur:
• Rietschel, H.; Raumklimatechnik Band 3: Raumheiztechnik -16. Auflage, Berlin: Springer-Verlag, 2004
• Arbeitskreis der Dozenten für Klimatechnik: Lehrbuch der Klimatechnik, Bd.1-Grundlagen, Bd.2-Berechnung und Regelung, Bd.3- Bauelemente. Karlsruhe: C.F. Müller-Verlag, 1974-1977

15. Lehrveranstaltungen und -formen:
• 331601 Vorlesung Planung von Anlagen der Heiz- und Raumlufttechnik
• 331602 Übung Planung von Anlagen der Heiz- und Raumlufttechnik

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 21 Stunden
Selbststudium: 69 Stunden
Summe: 90 Stunden

17. Prüfungsnummer/n und -name:
33161 Planung von Anlagen der Heiz- und Raumlufttechnik (BSL), mündliche Prüfung, 20 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:
Tafelaufschrieb, Handout, Overheadfolien

20. Angeboten von:
Modul: 30680 Praktikum Gebäudeenergetik

2. Modulkürzel: 041310009
5. Modulduauer: 1 Semester
3. Leistungspunkte: 3.0 LP
6. Turnus: jedes Semester
4. SWS: 0.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Armin Ruppert
9. Dozenten: Michael Schmidt

10. Zuordnung zum Curriculum in diesem Studiengang:

M.Sc. Technikpädagogik
→ Auflagenmodule des Masters
M.Sc. Technikpädagogik
→ Hauptfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik
→ Pflichtcontainer Heizungs-, Lüftungs- und Klimatechnik-Hauptfach
→
M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik -->Heizungs-, Lüftungs- und Klimatechnik (Pflicht)
→
M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->WPF Heizungs-, Lüftungs- und Klimatechnik -->Pflichtcontainer Heizungs-, Lüftungs- und Klimatechnik
→
M.Sc. Technikpädagogik
→ Auflagenmodule des Masters
M.Sc. Technikpädagogik
→ Hauptfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik
→ Pflichtcontainer Heizungs-, Lüftungs- und Klimatechnik-Hauptfach
→
M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik -->Heizungs-, Lüftungs- und Klimatechnik (Pflicht)
→
M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->WPF Heizungs-, Lüftungs- und Klimatechnik -->Pflichtcontainer Heizungs-, Lüftungs- und Klimatechnik
→

11. Empfohlene Voraussetzungen: Spezialisierungsfach Gebäudeenergetik

Aus den folgenden Spezialisierungsfachversuchen sind 4 auszuwählen dazu ist jeweils eine Ausarbeitung anzufertigen:

- Wärmeerzeuger
- Simulation
• Thermostatventile
• Heizkörper
• Rohrhydraulik
• Thermokamera
• Maschinelle Lüftung
• Freie Lüftung

Beispiele:

1. Versuch "Wärmeerzeuger":

2. Versuch "Maschinelle Lüftung":

4 weitere Versuche sind aus dem Angebot des Allgemeinen Praktikums Maschinenbau (APMB) zu absolvieren:

• APMB 1
• APMB 2
• APMB 3
• APMB 4

14. Literatur:
Praktikums - Unterlagen

15. Lehrveranstaltungen und -formen:

• 306801 Spezialisierungsfachversuch 1
• 306802 Spezialisierungsfachversuch 2
• 306803 Spezialisierungsfachversuch 3
• 306804 Spezialisierungsfachversuch 4
• 306805 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 1
• 306806 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 2
• 306808 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 4

16. Abschätzung Arbeitsaufwand:
30 Std. Präsenz
Selbststudiumszeit/ Nacharbeitszeit: 60 Stunden
Gesamt: 90 Stunden

17. Prüfungsnummer/n und -name:
30681 Praktikum Gebäudeenergetik (USL), schriftlich, eventuell mündlich, Gewichtung: 1.0, USL. Art und Umfang der USL werden jeweils zu Beginn des Praktikums bekannt gegeben
18. Grundlage für ... :

19. Medienform: Handout

20. Angeboten von:
Modul: 30670 Simulation in der Gebäudeenergetik

2. Modulkürzel: 041310006
3. Leistungspunkte: 3.0 LP
4. SWS: 2.0
5. Moduldauler: 1 Semester
7. Sprache: Deutsch
8. Modulverantwortlicher: Armin Ruppert
9. Dozenten: Michael Bauer
10. Zuordnung zum Curriculum in diesem Studiengang:
 M.Sc. Technikpädagogik
 → Hauptfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik
 → Pflichtcontainer Heizungs-, Lüftungs- und Klimatechnik-
 → Hauptfach
 →
 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs-
 und Klimatechnik -->Heizungs-, Lüftungs- und Klimatechnik (Pflicht)
 →
 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->WPF Heizungs-, Lüftungs-
 und Klimatechnik -->Wahlcontainer Heizungs-, Lüftungs- und
 Klimatechnik
 →
 M.Sc. Technikpädagogik
 → Hauptfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik
 → Pflichtcontainer Heizungs-, Lüftungs- und Klimatechnik-
 → Hauptfach
 →
 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs-
 und Klimatechnik -->Heizungs-, Lüftungs- und Klimatechnik (Pflicht)
 →
 M.Sc. Technikpädagogik
 → Wahlpflichtfach Maschinenbau -->WPF Heizungs-, Lüftungs-
 und Klimatechnik -->Wahlcontainer Heizungs-, Lüftungs- und
 Klimatechnik
 →
11. Empfohlene Voraussetzungen: Heiz- und Raumlufttechnik
12. Lernziele:
 Im Modul Simulation der Gebäudeenergetik haben die Studenten die
 Simulationsansätze der Gebäude-
 und Anlagensimulation - sowohl gekoppelt als auch entkoppelt - sowie
 die Simulation von Gebäudedurchströmung und von Raumströmung
 kennen gelernt und die dazu notwendigen Kenntnisse
 der Modellierungsmethoden erworben.
 Erworbene Kompetenzen:
 Die Studenten
 • sind mit den Simulationsmethoden vertraut,
 • können grundlegende Fragen zum Gebäude und Anlagenverhalten
 sowie zur Gebäude und Raumdurchströmung per Simulation lösen.
13. Inhalt:
 • Simulationsmodelle
 • notwendige Eingabedaten
 • Anwendungsfälle
 • thermisch-energetische Simulation von Gebäuden und Anlagen

Stand: 07. Oktober 2015
14. Literatur:

15. Lehrveranstaltungen und -formen:
 306701 Vorlesung Simulation in der Gebäudeenergetik

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 21 Stunden
 Selbstdstudium: 69 Stunden
 Summe: 90 Stunden

17. Prüfungsnummer/n und -name:
 30671 Simulation in der Gebäudeenergetik (BSL), mündliche Prüfung, 30 Min., Gewichtung: 1.0

18. Grundlage für ...:

19. Medienform:
 Präsentation

20. Angeboten von:
5432 Heizungs-, Lüftungs- und Klimatechnik (Wahl)

<table>
<thead>
<tr>
<th>Zugeordnete Module</th>
<th>Modulnummer</th>
<th>Bezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>12040</td>
<td>Einführung in die Regelungstechnik</td>
</tr>
<tr>
<td></td>
<td>12320</td>
<td>Technische Thermodynamik 1</td>
</tr>
<tr>
<td></td>
<td>12430</td>
<td>Solarthermie</td>
</tr>
<tr>
<td></td>
<td>13750</td>
<td>Technische Strömungslehre</td>
</tr>
<tr>
<td></td>
<td>15930</td>
<td>Prozess- und Anlagentechnik</td>
</tr>
<tr>
<td></td>
<td>16000</td>
<td>Erneuerbare Energien</td>
</tr>
<tr>
<td></td>
<td>18360</td>
<td>Rationelle WärmeverSORGUNG</td>
</tr>
<tr>
<td></td>
<td>30520</td>
<td>Sonderprobleme der Gebäudeenergetik</td>
</tr>
<tr>
<td></td>
<td>30640</td>
<td>Energetische Anlagenbewertung und Lüftungskonzepte</td>
</tr>
</tbody>
</table>
Modul: 12040 Einführung in die Regelungstechnik

4. SWS: 6.0 7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Frank Allgöwer
9. Dozenten: • Frank Allgöwer
 • Matthias Müller
11. Empfohlene Voraussetzungen: HM I-III, Grundlagen der Systemdynamik
12. Lernziele: Die Studierenden
 • haben umfassende Kenntnisse zur Analyse und Synthese
 einschleifiger linearer Regelkreise im Zeit- und Frequenzbereich
 • können auf Grund theoretischer Überlegungen Regler und Beobachter
 für dynamische Systeme entwerfen und validieren
 • können entworbene Regler und Beobachter an praktischen
 Laborversuchen implementieren
13. Inhalt: Vorlesung:
 Systemtheoretische Konzepte der Regelungstechnik, Stabilität,
 Beobachtbarkeit, Steuerbarkeit, Robustheit, Reglerentwurfsverfahren im
 Zeit- und Frequenzbereich, Beobachterentwurf
Praktikum:
 Implementierung der in der Vorlesung Einführung in die
 Regelungstechnik erlernten
 Reglerentwurfsverfahren an praktischen Laborversuchen
Projektwettbewerb:
 Lösen einer konkreten Regelungsaufgabe in einer vorgegebenen Zeit in
 Gruppen
14. Literatur:
 • Lunze, J.. Regelungstechnik 1. Springer Verlag, 2004
 • Horn, M. und Dourdoumas, N. Regelungstechnik., Pearson Studium,
 2004.
15. Lehrveranstaltungen und -formen:
- 120401 Vorlesung Einführung in die Regelungstechnik
- 120402 Gruppenübung Einführung in die Regelungstechnik
- 120403 Praktikum Einführung in die Regelungstechnik
- 120404 Projektwettbewerb Einführung in die Regelungstechnik

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 63h
Selbststudiumszeit / Nacharbeitszeit: 117h
Gesamt: 180h

17. Prüfungsnummer/n und -name:
- 12041 Einführung in die Regelungstechnik (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0
- 12042 Einführung in die Regelungstechnik - Praktikum: Anwesenheit mit Kurztest (USL), schriftlich, eventuell mündlich, Gewichtung: 1.0
- 12043 Einführung in die Regelungstechnik - Projektwettbewerb: erfolgreiche Teilnahme (USL), schriftlich, eventuell mündlich, Gewichtung: 1.0

18. Grundlage für ... :
12260 Mehrgrößenregelung

19. Medienform:

20. Angeboten von:
Modul: 30640 Energetische Anlagenbewertung und Lüftungskonzepte

2. Modulkürzel: 041310008
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0
5. Moduldauer: 1 Semester
6. Turnus: jedes 2. Semester, SoSe
7. Sprache: Deutsch
8. Modulverantwortlicher: Armin Ruppert
9. Dozenten: Michael Schmidt
10. Zuordnung zum Curriculum in diesem Studiengang:

M.Sc. Technikpädagogik
→ Hauptfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik
→ Wahlcontainer Heizungs-, Lüftungs- und Klimatechnik-Hauptfach

M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik -->Heizungs-, Lüftungs- und Klimatechnik (Wahl)

M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->WPF Heizungs-, Lüftungs- und Klimatechnik -->Pflichtcontainer Heizungs-, Lüftungs- und Klimatechnik

M.Sc. Technikpädagogik
→ Hauptfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik
→ Wahlcontainer Heizungs-, Lüftungs- und Klimatechnik-Hauptfach

M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik -->Heizungs-, Lüftungs- und Klimatechnik (Wahl)

M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->WPF Heizungs-, Lüftungs- und Klimatechnik -->Pflichtcontainer Heizungs-, Lüftungs- und Klimatechnik

11. Empfohlene Voraussetzungen:

12. Lernziele:

Im Modul Energetische Anlagenbewertung und Lüftungskonzepte haben die Studenten im Teil 1
die Systematik energetischer Anlagen differenziert nach Ein- und Mehrwegeprozesse und die Methoden
tzu deren energetischer Bewertung kennen gelernt. Im Teil 2 die
Systematik der Lösungen zur
Luftreinhaltung am Arbeitsplatz sowie dazu erforderlichen Anlagen
kennen gelernt und die zugehörigen ingenieurwissenschaftlichen Grundlagen erworben.

Erworbene Kompetenzen:
Die Studenten
• sind mit den Anlagen der Energiewandlung vertraut,
• beherrschen die Methoden zur Bewertung
• kennen die Einbettung in übergeordnete gekoppelte und entkoppelte Versorgungssysteme
• sind mit den Methoden zur Luftreinhaltung am Arbeitsplatz vertraut,
können für die jeweiligen Anforderungen die technischen Lösungen konzipieren,
können die notwendigen Anlagen auslegene

13. Inhalt:
- Energietechnische Begriffe
- Energietechnische Bewertungsverfahren
- Einwegprozess zur Wärme- und Stromerzeugung
- Mehrwegprozesse zur gekoppelten Erzeugung und zur Nutzung von Umweltenergien
- Arten, Ausbreitung und Grenzwerte von Luftfremdstoffen
- Bewertung der Schadstofferfassung
- Luftströmung an Erfassungseinrichtungen
- Luftführung, Luftdurchlässe
- Auslegung nach Wärme- und Stofflasten
- Bewertung der Luftführung

14. Literatur:

15. Lehrveranstaltungen und -formen:
- 306401 Vorlesung Ausgewählte Energiesysteme und Anlagen
- 306402 Vorlesung Luftreinhaltung am Arbeitsplatz

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 Stunden
Selbststudium: 138 Stunden
Summe: 180 Stunden

17. Prüfungsnummer/n und -name:
30641 Energetische Anlagenbewertung und Lüftungskonzepte (PL), mündliche Prüfung, 60 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:
Vorlesungsskript

20. Angeboten von:
Modul: 16000 Erneuerbare Energien

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>5.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher:
Univ.-Prof. Kai Hufendiek

9. Dozenten:
- Kai Hufendiek
- Ludger Eltrop

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>M.Sc. Technikpädagogik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauptfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik</td>
</tr>
<tr>
<td>-->Wahlcontainer Heizungs-, Lüftungs- und Klimatechnik-Hauptfach</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M.Sc. Technikpädagogik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wahlfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik</td>
</tr>
<tr>
<td>-->Heizungs-, Lüftungs- und Klimatechnik (Wahl)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M.Sc. Technikpädagogik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wahlfach Maschinenbau -->WPF Heizungs-, Lüftungs- und Klimatechnik</td>
</tr>
<tr>
<td>-->Wahlcontainer Heizungs-, Lüftungs- und Klimatechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M.Sc. Technikpädagogik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hauptfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik</td>
</tr>
<tr>
<td>-->Wahlcontainer Heizungs-, Lüftungs- und Klimatechnik-Hauptfach</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M.Sc. Technikpädagogik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wahlfach Maschinenbau -->WPF Heizungs-, Lüftungs- und Klimatechnik</td>
</tr>
<tr>
<td>-->Wahlcontainer Heizungs-, Lüftungs- und Klimatechnik</td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen:
Grundkenntnisse der Energiewirtschaft
Ingenieurwissenschaftliche Grundlagen

12. Lernziele:

13. Inhalt:
- Die physikalischen und meteorologischen Zusammenhänge der Sonnenenergie und ihre technischen Nutzungsmöglichkeiten
- Wasserangebot und Nutzungstechniken
- Windangebot (räumlich und zeitlich) und technische Nutzung
- Geothermie
- Speichertechnologien
- energetische Nutzung von Biomasse
- Potentiale, Möglichkeiten und Grenzen des Einsatzes erneuerbarer Energieträger in Deutschland.
Empfehlung (fakultativ): IER-Exkursion Energiewirtschaft / Energietechnik

14. Literatur:
- Online-Manuskript

15. Lehrveranstaltungen und -formen:
- 160001 Vorlesung Grundlagen der Nutzung erneuerbarer Energien I
- 160002 Vorlesung Grundlagen der Nutzung erneuerbarer Energien II
- 160003 Seminar Erneuerbare Energien

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 70 h
Selbststudium: 110 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:

18. Grundlage für ...

19. Medienform:
Beamergestützte Vorlesung und teilweise Tafelanstrich, begleitendes Manuskript
Primär Powerpoint-Präsentation

20. Angeboten von:
Institut für Energiewirtschaft und Rationelle Energieanwendung
Modul: 15930 Prozess- und Anlagentechnik

2. Modulkürzel: 041111015
5. Modulduauer: 1 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Clemens Merten

9. Dozenten: Clemens Merten

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik -->Heizungs-, Lüftungs- und Klimatechnik (Wahl)
→
M.Sc. Technikpädagogik
→ Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik -->Heizungs-, Lüftungs- und Klimatechnik (Wahl)

11. Empfohlene Voraussetzungen:
Verfahrenstechnisches Grundwissen (Chemische Reaktionstechnik, Mechanische und Thermische Verfahrenstechnik)

12. Lernziele:
Die Studierenden
• können die Aufgaben des Bereiches „Prozess- und Anlagentechnik“ in Unternehmen definieren, identifizieren und analysieren,
• verstehen und erkennen die Ablaufphasen und Methoden bei der Entwicklung und Planung verfahrenstechnischer Prozesse und Anlagen,
• verstehen die Grundlagen des Managements für die Abwicklung eines Anlagenprojektes und können diese anwenden,
• können die Hauptvorgänge (Machbarkeitsstudie, Ermittlung der Grundlagen, Vor-, Entwurfs- und Detailplanung) der Anlagenplanung anwenden,
• verstehen die grundlegenden Wirkungsweisen verfahrenstechnischer (mechanischer, thermischer und reaktionstechnischer) Prozessstufen oder Apparate und können das Wissen anwenden, um Verfahren oder Anlagen in ihrer Komplexität zu analysieren, zu synthetisieren und zu bewerten,
• können Stoff-, Energie- und Informationsflüsse im technischen System Anlage grundlegend beschreiben, bestimmen, kombinieren und beurteilen,
• sind mit wichtigen Methoden der Anlagenplanung vertraut und können diese in Projekten zielführend anwenden,
• können verfahrenstechnische Planungsaufgaben definieren, analysieren, lösen und dokumentieren,
• können wichtige Entwicklungsmethoden in kooperativen Lernsituationen (in Gruppenarbeit) anwenden und ihre Entwicklungsergebnisse beurteilen, präsentieren und zusammenfügen,
• können die Life Cycle Engineering Software COMOS für die Lösung und Dokumentation einer komplexen Planungsaufgabe anwenden.

13. Inhalt:
Systematische Übersicht zur Prozesstechnik:
• Wirkprinzipien, Auslegung und anwendungsbezogene Auswahl von Prozessen, Apparaten und Maschinen
• Prozessanalyse und -synthese
Aufgaben und Ablauf der Anlagenplanung:

- Aufgaben der Anlagentechnik,
- Ablaufphasen der Anlagenplanung,
- Projektmanagement, Methodik der Projektführung,
- Kommunikation und Technische Dokumentation in der Anlagenplanung (Verfahrensbeschreibung, Fließbilder),
- Auswahl und Einbindung von Prozessen und Ausrüstungen in eine Anlage,
- Auslegung von Pumpen- und Verdichteranlagen, Rohrleitungen und Armaturen,
- Räumliche Gestaltung: Bauweise, Lageplan, Aufstellungsplan, Rohrleitungsplanung,

Behandlung von Planungsbeispielen ausgewählter Anlagen:

- thematische Übungsaufgaben,
- komplexe Planungsaufgabe mit Anwendung der Life Cycle Engineering Software COMOS

14. Literatur:

- Merten, C.: Skript zur Vorlesung, Übungsunterlagen
- Nutzerhandbuch COMOS

Ergänzende Lehrbücher:

- Bernecker, G.: Planung und Bau verfahrenstechnischer Anlagen. Springer-Verlag

15. Lehrveranstaltungen und -formen:

- 159301 Vorlesung Prozess- und Anlagentechnik
- 159302 Übung Prozess- und Anlagentechnik
- 159303 Exkursion Prozess- und Anlagentechnik

16. Abschätzung Arbeitsaufwand:

| Präsenzzeit: | 56 h |
| Selbststudiumszeit / Nacharbeitszeit: | 124 h |
| Gesamt: | 180 h |

17. Prüfungsnummer/n und -name:

- 15931 Prozess- und Anlagentechnik schriftlich (PL), schriftliche Prüfung, 120 Min., Gewichtung: 75.0
- 15932 Prozess- und Anlagentechnik mündlich (PL), mündliche Prüfung, 20 Min., Gewichtung: 25.0

18. Grundlage für ...:

19. Medienform:

- Vorlesungsskript
- Übungsunterlagen
- kombinierter Einsatz von Tafelanschrieb und Präsentationsfolien

20. Angeboten von:
Modul: 18360 Rationelle Wärmeversorgung

2. Modulkürzel: 042410031
5. Modulduauer: 1 Semester
3. Leistungspunkte: 3.0 LP
6. Turnus: jedes 2. Semester, SoSe
4. SWS: 2.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Apl. Prof. Klaus Spindler
9. Dozenten: Klaus Spindler

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Technikpädagogik, PO 2009, 2. Semester
→ Wahlpflichtfach Maschinenbau --> Heizungs-, Lüftungs- und Klimatechnik --> Heizungs-, Lüftungs- und Klimatechnik (Wahl)
→
M.Sc. Technikpädagogik, PO 2015, 2. Semester
→ Wahlpflichtfach Maschinenbau --> Heizungs-, Lüftungs- und Klimatechnik --> Heizungs-, Lüftungs- und Klimatechnik (Wahl)
→

11. Empfohlene Voraussetzungen:
• Technische Thermodynamik I/II
• Wärmeübertragung

12. Lernziele:

13. Inhalt:
| 15. Lehrveranstaltungen und -formen: | 183601 Vorlesung Rationelle Wärmeversorgung |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 28 h |
| | Selbststudiumszeit / Nacharbeitszeit: 62 h |
| | Gesamt: 90h |
| 17. Prüfungsnummer/n und -name: | 18361 Rationelle Wärmeversorgung (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0 |
| 18. Grundlage für ... : | |
| 20. Angeboten von: | |
Modul: 12430 Solarthermie

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>042410022</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Harald Drück</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Harald Drück</td>
</tr>
</tbody>
</table>
→ Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik -->Heizungs-, Lüftungs- und Klimatechnik (Wahl)
→ M.Sc. Technikpädagogik, PO 2015, 6. Semester
→ Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik -->Heizungs-, Lüftungs- und Klimatechnik (Wahl) |
| 11. Empfohlene Voraussetzungen: | Grundkenntnisse in Mathematik und Thermodynamik |
| 12. Lernziele: | Erworbene Kompetenzen: Die Studierenden können
• die auf unterschiedlich orientierte Flächen auf der Erdoberfläche auftreffende Solarstrahlung berechnen
• kennen Methoden zur aktiven und passiven thermischen Solarenergienutzung im Niedertemperaturbereich
• kennen Anlagen und deren Komponenten zur Trinkwassererwärmung, Raumheizung und für industrielle Prozesswärme mittels Solarenergie
• kennen unterschiedliche Technologien zur Speicherung von Solarwärme. |
| 15. Lehrveranstaltungen und -formen: | • 124301 Vorlesung Solarthermie I
• 124302 Übungen mit Workshop Solarthermie I |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 48 h
Selbststudiumszeit / Nacharbeitszeit: 132 h
Gesamt: 180 h |
| 17. Prüfungsnummer/n und -name: | 12431 Solarthermie (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0 |
| 18. Grundlage für ...: |
Stand: 07. Oktober 2015
Seite 1053 von 1124 |
19. Medienform: Vorlesung Powerpoint-Präsentation mit ergänzendem Tafel Anschrieb

20. Angeboten von:
Modul: 30520 Sonderprobleme der Gebäudeenergetik

2. Modulkürzel: 041310005 5. Modulduauer: 1 Semester
4. SWS: 2.0 7. Sprache: Deutsch
8. Modulverantwortlicher: Armin Ruppert
9. Dozenten: Michael Schmidt

10. Zuordnung zum Curriculum in diesem Studiengang:

 M.Sc. Technikpädagogik
 ➔ Hauptfach Maschinenbau --> Heizungs-, Lüftungs- und Klimatechnik
 ➔ --> Wahlcontainer Heizungs-, Lüftungs- und Klimatechnik-Hauptfach

 M.Sc. Technikpädagogik
 ➔ Wahlpflichtfach Maschinenbau --> Heizungs-, Lüftungs- und Klimatechnik
 ➔ --> Heizungs-, Lüftungs- und Klimatechnik (Wahl)

 M.Sc. Technikpädagogik
 ➔ Wahlpflichtfach Maschinenbau --> WPF Heizungs-, Lüftungs- und Klimatechnik
 ➔ --> Wahlcontainer Heizungs-, Lüftungs- und Klimatechnik

 M.Sc. Technikpädagogik
 ➔ Hauptfach Maschinenbau --> Heizungs-, Lüftungs- und Klimatechnik
 ➔ --> Wahlcontainer Heizungs-, Lüftungs- und Klimatechnik-Hauptfach

 M.Sc. Technikpädagogik
 ➔ Wahlpflichtfach Maschinenbau --> Heizungs-, Lüftungs- und Klimatechnik
 ➔ --> Heizungs-, Lüftungs- und Klimatechnik (Wahl)

 M.Sc. Technikpädagogik
 ➔ Wahlpflichtfach Maschinenbau --> WPF Heizungs-, Lüftungs- und Klimatechnik
 ➔ --> Wahlcontainer Heizungs-, Lüftungs- und Klimatechnik

11. Empfohlene Voraussetzungen: Heiz- und Raumlufttechnik

12. Lernziele:

 Im Modul Sonderprobleme der Gebäudeenergetik haben die Studenten die Lösung gebäudetechnischer Aufgaben speziell im Hinblick auf Sonder- und Spezialräume bzw. -gebäude gelernt. Auf dieser Basis können sie Sonderlösungen konzipieren, schreiben und grundlegend auslegen.

 Erworbene Kompetenzen:

 Die Studenten
 • sind mit Lösungen für Spezial- und Sonderfälle vertraut
 • können methodisch Lösungen für solche Fälle entwickeln und auslegen

13. Inhalt:

 • Sonderräume in der Heiz- und Raumlufttechnik
 • spezielle technische Lösungen in der Anlagentechnik
 • alternative und regenerative Energien
 • energieeinsparendes Bauen
14. Literatur:

15. Lehrveranstaltungen und -formen:

305201 Vorlesung Sonderprobleme der Gebäudeenergetik

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 21 Stunden
Selbststudium: 69 Stunden
Summe: 90 Stunden

17. Prüfungsnummer/n und -name:

30521 Sonderprobleme der Gebäudeenergetik (BSL), mündliche Prüfung, 30 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
Modul: 13750 Technische Strömungslehre

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>042010001</th>
<th>5. Modulduer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Stefan Riedelbauch

9. Dozenten: Stefan Riedelbauch

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>B.Sc. Technikpädagogik, PO 2011, 4. Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pflichtmodule mit Wahlmöglichkeit (6 LP)</td>
</tr>
<tr>
<td>Vorgezogene Master-Module</td>
</tr>
<tr>
<td>Wahlpflichtfach -->Wahlpflichtfach Maschinenbau -->a) Fahrzeugtechnik Pflichtcontainer Grundlagen Fahrzeugtechnik</td>
</tr>
<tr>
<td>Wahlpflichtfach -->Wahlpflichtfach Maschinenbau -->b) Fertigungstechnik Pflichtcontainer Grundlagen Fertigungstechnik</td>
</tr>
<tr>
<td>Wahlpflichtfach -->Wahlpflichtfach Maschinenbau -->c) Heizungs-, Lüftungs-, Klimatechnik Pflichtcontainer Grundlagen Heizungs-, Lüftungs- Klimatechnik</td>
</tr>
<tr>
<td>Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik --> Fahrzeugtechnik (Wahl)</td>
</tr>
<tr>
<td>Wahlpflichtfach Maschinenbau -->Fertigungstechnik --> Fertigungstechnik (Wahl)</td>
</tr>
<tr>
<td>Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik -->Heizungs-, Lüftungs- und Klimatechnik (Wahl)</td>
</tr>
<tr>
<td>Wahlpflichtfach Maschinenbau -->Fahrzeugtechnik --> Fahrzeugtechnik (Wahl)</td>
</tr>
<tr>
<td>Wahlpflichtfach Maschinenbau -->Fertigungstechnik --> Fertigungstechnik (Wahl)</td>
</tr>
<tr>
<td>Wahlpflichtfach Maschinenbau -->Heizungs-, Lüftungs- und Klimatechnik -->Heizungs-, Lüftungs- und Klimatechnik (Wahl)</td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen: Ingenieurwissenschaftliche und naturwissenschaftliche Grundlagen, Höhere Mathematik
12. Lernziele:

13. Inhalt:

- Stoffeigenschaften von Fluiden
- Kennzahlen und Ähnlichkeit
- Statik der Fluide (Hydrostatik und Aerostatik)
- Grundgesetze der Fluidmechanik (Erhaltung von Masse, Impuls und Energie)
- Elementare Anwendungen der Erhaltungsgleichungen
- Rohrhydraulik
- Differentialgleichungen für ein Fluidelement

14. Literatur:

Vorlesungsmanuskript „Technische Strömungslehre"

E. Truckenbrodt, Fluidmechanik, Springer Verlag

F.M. White, Fluid Mechanics, McGraw - Hill

E. Becker, Technische Strömungslehre, B.G. Teubner Studienbücher

15. Lehrveranstaltungen und -formen:

- 137501 Vorlesung Technische Strömungslehre
- 137502 Übung Technische Strömungslehre
- 137503 Seminar Technische Strömungslehre

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 42 h
Selbststudiumszeit / Nacharbeitszeit: 138 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name: 13751 Technische Strömungslehre (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ...: 14100 Hydraulische Strömungsmaschinen in der Wasserkraft

19. Medienform:

- Tafelanschrieb, Tablet-PC
- PPT-Präsentationen
- Skript zur Vorlesung

20. Angeboten von:
Modul: 12320 Technische Thermodynamik 1

2. Modulkürzel: 042100011
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0
5. Modulduauer: 1 Semester
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Joachim Groß
9. Dozenten: Joachim Groß

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technikpädagogik, PO 2011, 3. Semester
 → Vorgezogene Master-Module
 B.Sc. Technikpädagogik, PO 2011, 3. Semester
 → Wahlpflichtfach --> Wahlpflichtfach Maschinenbau --> a) Fahrzeugtechnik Pflichtcontainer Grundlagen Fahrzeugtechnik
 B.Sc. Technikpädagogik, PO 2011, 3. Semester
 → Wahlpflichtfach --> Wahlpflichtfach Maschinenbau --> c) Heizungs-, Lüftungs-, Klimatechnik Pflichtcontainer Grundlagen Heizungs- Lüftungs- Klimatechnik
 M.Sc. Technikpädagogik, PO 2009, 3. Semester
 → Wahlpflichtfach Maschinenbau --> Fahrzeugtechnik --> Fahrzeugtechnik (Wahl)
 M.Sc. Technikpädagogik, PO 2009, 3. Semester
 → Wahlpflichtfach Maschinenbau --> Heizungs-, Lüftungs- und Klimatechnik --> Heizungs-, Lüftungs- und Klimatechnik (Wahl)
 M.Sc. Technikpädagogik, PO 2015, 3. Semester
 → Wahlpflichtfach Maschinenbau --> Fahrzeugtechnik --> Fahrzeugtechnik (Wahl)
 M.Sc. Technikpädagogik, PO 2015, 3. Semester
 → Wahlpflichtfach Maschinenbau --> Heizungs-, Lüftungs- und Klimatechnik --> Heizungs-, Lüftungs- und Klimatechnik (Wahl)

11. Empfohlene Voraussetzungen: Mathematische Grundkenntnisse in Differential- und Integralrechnung

12. Lernziele:
 Die Studierenden
 • beherrschen die thermodynamischen Grundbegriffe und haben die Fähigkeit, praktische Problemstellungen in den thermodynamischen Grundgrößen eigenständig zu formulieren.
 • sind in der Lage, Energieumwandlungen in technischen Prozessen thermodynamisch zu beurteilen. Diese Beurteilung können die Studierenden auf Grundlage einer Systemabstraktion durch die Anwendung verschiedener Werkzeuge der thermodynamischen Modellbildung wie Bilanzierungen, Zustandsgleichungen und Stoffmodellen durchführen.
 • sind in der Lage, die Effizienz unterschiedlicher Prozessführungen zu berechnen und den zweiten Hauptsatz für thermodynamische Prozesse eigenständig anzuwenden.
 • Die Studierenden sind durch das erworbene Verständnis der grundlegenden thermodynamischen Modellierung zu eigenständiger Vertiefung in weiterführende Lösungsansätze befähigt.
13. Inhalt: Thermodynamik ist die allgemeine Theorie energie- und stoffumwandelter Prozesse. Diese Veranstaltung vermittelt die Inhalte der systemanalytischen Wissenschaft Thermodynamik im Hinblick auf technische Anwendungsfelder. Im Einzelnen:

- Grundgesetze der Energie- und Stoffumwandlung
- Prinzip der thermodynamischen Modellbildung
- Prozesse und Zustandsänderungen
- Thermische und kalorische Zustandsgrößen
- Zustandsgleichungen und Stoffmodelle
- Bilanzierung der Materie, Energie und Entropie von offenen, geschlossenen, stationären und instationären Systemen
- Dissipation
- Ausgewählte Modellprozesse: Reversible Prozesse, einfache Kreisprozesse, Gasturbine, Verbrennungsmotoren etc.

14. Literatur:

15. Lehrveranstaltungen und -formen:

- 123201 Vorlesung Technische Thermodynamik 1
- 123202 Übung Technische Thermodynamik 1

16. Abschätzung Arbeitsaufwand:

| Präsenzzeit: | 56 h |
| Selbststudiumszeit / Nacharbeitszeit: | 124 h |
| Gesamt: | 180 h |

17. Prüfungsnummer/n und -name:

- 12321 Technische Thermodynamik 1 (ITT) (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0, Prüfungsvoraussetzung: USL-V (Details hier unten, Punkt V, Vorleistung).
- V Vorleistung (USL-V), schriftlich, eventuell mündlich,

18. Grundlage für ...

19. Medienform:

Der Veranstaltungsinhalt wird als Tafelanschrieb entwickelt, ergänzt um Präsentationsfolien und Beiblätter.

20. Angeboten von:

Institut für Technische Thermodynamik und Thermische Verfahrenstechnik
Modul: 80570 Masterarbeit Technikpädagogik (Studienprofil B)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>18.0 LP</td>
<td>6. Turnus:</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>0.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Reinhold Nickolaus

9. Dozenten: • Martin Kenner
 • Reinhold Nickolaus
 • Bernd Zinn

10. Zuordnung zum Curriculum in diesem Studiengang:
 - M.Sc. Technikpädagogik
 ➔ Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang
 - M.Sc. Technikpädagogik
 ➔ Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang

11. Empfohlene Voraussetzungen: Erfolgreicher Abschluss aller Pflichtveranstaltungen des Fachstudiums des für die Masterarbeit gewählten Faches bis zum 3. Fachsemester

12. Lernziele: Kompetenz zur selbstständigen Bearbeitung einer wissenschaftlichen Aufgabenstellung Angemessene Präsentation in schriftlicher Form

13. Inhalt: Nach Absprache mit dem Betreuer

14. Literatur: Nach Absprache mit dem Betreuer

15. Lehrveranstaltungen und -formen:

16. Abschätzung Arbeitsaufwand: 6 Monate; insg. ca. 630 Stunden.

17. Prüfungsnummer/n und -name:

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
40 Studienprofil C - betriebliche Bildungsarbeit

Zugeordnete Module:
28870 Praktikum
41 Vertiefungsbereich 1
42 Vertiefungsbereich 2
43 Spezialisierungsbereich
80470 Masterarbeit Technikpädagogik (Studienprofil C)
41 Vertiefungsbereich 1

Zugeordnete Module:

- 33550 Hauptseminar Didaktik II
- 51430 Hauptseminar Berufsbildungsforschung
- 51440 Hauptseminar Didaktik
- 51450 Hauptseminar Organisation beruflicher Bildung
- 61090 Historisch-politische Aspekte beruflicher Bildung und berufliche Sozialisation
- 61100 Diagnostik und Evaluation
Modul: 61100 Diagnostik und Evaluation

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>101010304</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>5. Modulduer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Reinhold Nickolaus</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Martin Kenner
• Stephan Abele
• Anke Treutlein
• Daniel Schweyer |
→ Studienprofil C - betriebliche Bildungsarbeit --> Vertiefungsbereich 1 |
| 11. Empfohlene Voraussetzungen: | Grundlegende Kompetenzen in Forschungsmethoden, wie sie im Bachelor-Studiengang Technikpädagogik erworben werden. |
| 15. Lehrveranstaltungen und -formen: | 611001 Seminar Diagnostik und Evaluation |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit der Seminare: 28h,
Selbststudium Seminar: 152h
Gesamtzeit = 180h |
| 17. Prüfungsnummer/n und -name: | • 61101 Diagnostik und Evaluation (PL), Sonstiges, Gewichtung: 1.0, Klausur (90 Min) oder Hausarbeit zu Evaluation und Diagnostik
• V Vorleistung (USL-V), schriftlich, eventuell mündlich |
| 18. Grundlage für ... : | |
| 19. Medienform: | |
20. Angeboten von:
Modul: 51430 Hauptseminar Berufsbildungsforschung

2. Modulkürzel: 101010013 5. Moduldauer: 1 Semester
4. SWS: 2.0 7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Reinhold Nickolaus
9. Dozenten: • Martin Kenner • Reinhold Nickolaus • Bernd Zinn
10. Zuordnung zum Curriculum in diesem Studiengang: M.Sc. Technikpädagogik → Studienprofil C - betriebliche Bildungsarbeit --> Vertiefungsbereich 1
11. Empfohlene Voraussetzungen: Grundkenntnisse in Forschungsmethoden
12. Lernziele: Die Studierenden sind fähig Beiträge zur Berufsbildungsforschung zu analysieren und Forschungsergebnisse im Hinblick auf ihren Geltungsanspruch zu bewerten
13. Inhalt: Aktuelle Beiträge aus der Berufsbildungsforschung
15. Lehrveranstaltungen und -formen: 514301 Seminar Berufsbildungsforschung
16. Abschätzung Arbeitsaufwand: Präsenzzeit: 21 h Vor- und Nachbereitungszeit: 159 h Gesamtzeit: 180 h
17. Prüfungsnummer/n und -name: • 51431 Hauptseminar Berufsbildungsforschung (PL), schriftlich, eventuell mündlich, Gewichtung: 1.0 • V Vorleistung (USL-V), schriftlich, eventuell mündlich
18. Grundlage für ...
19. Medienform:
20. Angeboten von:
Modul: 51440 Hauptseminar Didaktik

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Bernd Zinn

9. Dozenten: • Stephan Abele • Bernd Zinn

10. Zuordnung zum Curriculum in diesem Studiengang: M.Sc. Technikpädagogik ➞ Studienprofil C - betriebliche Bildungsarbeit -->Vertiefungsbereich 1

11. Empfohlene Voraussetzungen: Grundkenntnisse in Didaktik beruflicher Bildung

12. Lernziele: In einem ausgewählten Themenfeld der Didaktik planen und analysieren die Studierenden im Rückgriff auf wissenschaftliche Erkenntnisse Lehr-Lernprozesse und erwerben dabei die Fähigkeit die Kriterienauswahl zu begründen und kriterienorientiert komplexere didaktische Handlungssituationen zu bewältigen.

15. Lehrveranstaltungen und -formen: 514401 Seminar Didaktik

16. Abschätzung Arbeitsaufwand: Präsenzzeit: 21 h Vor- und Nachbereitungszeit: 159 h Gesamtzeit: 180 h

17. Prüfungsnummer/n und -name: • 51441 Hauptseminar Didaktik (PL), schriftlich, eventuell mündlich, Gewichtung: 1.0 • V Vorleistung (USL-V), schriftlich, eventuell mündlich

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 33550 Hauptseminar Didaktik II

| 2. Modulkürzel: | 101010115 | 5. Modulduauer: | 1 Semester |
| 4. SWS: | 2.0 | 7. Sprache: | Deutsch |

| 8. Modulverantwortlicher: | Univ.-Prof. Bernd Zinn |
| 9. Dozenten: | • Stephan Abele
• Bernd Zinn |

10. Zuordnung zum Curriculum in diesem Studiengang:
- M.Sc. Technikpädagogik, PO 2009, 3. Semester → Studienprofil C - betriebliche Bildungsarbeit → Vertiefungsbereich 1
- M.Sc. Technikpädagogik, PO 2015, 3. Semester → Studienprofil C - betriebliche Bildungsarbeit → Vertiefungsbereich 1

11. Empfohlene Voraussetzungen: Grundkenntnisse in Didaktik beruflicher Bildung

12. Lernziele: In einem ausgewählten Themenfeld der Didaktik planen und analysieren die Studierenden im Rückgriff auf wissenschaftliche Erkenntnisse Lehr-Lernprozesse und erwerben dabei die Fähigkeit die Kriterienauswahl zu begründen und kriterienorientiert komplexere didaktische Handlungs situationen zu bewältigen.

14. Literatur:

15. Lehrveranstaltungen und -formen: 335501 Hauptseminar: Didaktik II

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 21h
- Selbststudium: 159h
- Gesamtzeit: 180h

17. Prüfungsnummer/n und -name:
- 33551 Hauptseminar Didaktik II, Hausarbeit (PL), schriftlich, eventuell mündlich, Gewichtung: 1.0
- V Vorleistung (USL-V), schriftlich, eventuell mündlich

18. Grundlage für ...:

19. Medienform: Texte, Präsentationen, Diskussionen

20. Angeboten von:
Modul: 51450 Hauptseminar Organisation beruflicher Bildung

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>101010015</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Reinhold Nickolaus</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Martin Kenner
• Reinhold Nickolaus
• Bernd Zinn |
➞ Studienprofil C - betriebliche Bildungsarbeit --> Vertiefungsbereich 1 |
| 11. Empfohlene Voraussetzungen: |
| 12. Lernziele: | Die Studierenden besitzen die Fähigkeit organisationale Entwicklungen und Probleme im Rückgriff auf relevante Theorieausschnitte zu analysieren und Geltungsansprüche einschlägiger Aussagesysteme zu beurteilen. |
| 13. Inhalt: | Organisationsentwicklung in der beruflichen Bildung und einschlägige Theorieansätze, aktuelle Entwicklungsprozesse |
| 14. Literatur: | Literaturinformation zur beruflichen Bildung |
| 15. Lehrveranstaltungen und -formen: | 514501 Seminar Organisation beruflicher Bildung |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 21 h
Vor- und Nachbereitungszeit: 159 h
Gesamtzeit: 180 h |
| 17. Prüfungsnummer/n und -name: | • 51451 Hauptseminar Organisation beruflicher Bildung (PL), schriftlich, eventuell mündlich, Gewichtung: 1.0
• V Vorleistung (USL-V), schriftlich, eventuell mündlich |

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 61090 Historisch-politische Aspekte beruflicher Bildung und berufliche Sozialisation

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>101010309</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Moduldauer:</td>
<td>2 Semester</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>9.0 LP</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Reinhold Nickolaus</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Martin Kenner
• Reinhold Nickolaus |
➞ Studienprofil C - betriebliche Bildungsarbeit
➞ Vertiefungsbereich 1 |
| 11. Empfohlene Voraussetzungen: | Grundkenntnisse zu Organisation beruflicher Bildung |
| 13. Inhalt: | Historische Entwicklung des beruflichen Bildungssystems und relevante Entwicklungsbedingungen; Aktuelle Entwicklungsprozesse, Innovationsansätze, Transferproblematik pädagogischer Handlungsprogramme, Theorien beruflicher Sozialisation; Ergebnisse zentraler empirischer Studien zur beruflichen Sozialisation und deren praktische Implikationen |
| 14. Literatur: | Die Literatur wird in den Veranstaltungen bekannt gegeben: |
| Quellenbände und Dokumente zur Geschichte der Berufsbildung in Deutschland |
| Nickolaus, R./Gräsel, C (Hg.) (2006): Innovation und Transfer. Baltmannsweiler |
| 15. Lehrveranstaltungen und -formen: | • 610901 Seminar Berufliche Sozialisation
• 610902 Seminar Geschichte beruflicher Bildung |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 2x 28h
Vor- und Nachbereitung: 2x 107 h
Gesamt: 270 h |
| 17. Prüfungsnummer/n und -name: | • 61091 Historisch-politische Aspekte beruflicher Bildung und berufliche Sozialisation (PL), schriftliche Prüfung, Gewichtung: 1.0, Klausur oder Hausarbeit in der Vorlesung „Geschichte beruflicher Bildung“, 90 Min. bzw. mind. 20 Seiten
• 61092 Historisch-politische Aspekte beruflicher Bildung und berufliche Sozialisation (USL), Sonstiges, Gewichtung: 1.0, Referat und schriftliche Ausarbeitung zum Seminar: Berufliche Sozialisation |

18. Grundlage für ... |

19. Medienform: |

20. Angeboten von: |
42 Vertiefungsbereich 2

Zugeordnete Module:

- 26300 Grundlagen der Fachdidaktik NwT (Hauptfach)
- 28840 Soziale Kompetenz
- 37540 Berufspädagogisches Projekt (Master)
- 37550 Berufspädagogisches Tutorenprogramm
- 51490 Personal- und Organisationsentwicklung in Unternehmen
- 51500 Berufsbildungs- und Arbeitsrecht
- 61020 Digitale Medien in der beruflichen Aus- und Weiterbildung
- 61040 Bildungscontrolling in der Personalarbeit
- 61050 Berufspädagogische Vertiefung
- 61060 Berufspädagogische Vertiefung II
Modul: 51500 Berufsbildungs- und Arbeitsrecht

2. Modulkürzel: 101010119
5. Modulduauer: 2 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Reinhold Nickolaus

9. Dozenten:
 • Martin Wesch
 • Ulrike Schweizer

10. Zuordnung zum Curriculum in diesem Studiengang:
 M.Sc. Technikpädagogik, PO 2009, 3. Semester
 ➞ Studienprofil C - betriebliche Bildungsarbeit --> Vertiefungsbereich 2
 ➞ M.Sc. Technikpädagogik, PO 2015, 3. Semester
 ➞ Studienprofil C - betriebliche Bildungsarbeit --> Vertiefungsbereich 2

11. Empfohlene Voraussetzungen:

12. Lernziele:
 Die Studierenden kennen die rechtlichen Grundlagen, die im Kontext der Personalentwicklung und beruflichen Bildungsarbeit besonders bedeutsam sind, wie z.B. Arbeitsrecht, Mitbestimmungsrechte, Berufsbildungsrecht, Jugendarbeitsschutzgesetz und relevante Ausschnitte aus dem Sozialgesetz und sind in der Lage, die rechtlichen Bestimmungen situationsbezogen anzuwenden.

13. Inhalt:
 Arbeitsrecht, Betriebsverfassungsgesetz, Mitbestimmungsrechte, Berufsbildungsrecht, Jugendarbeitsschutzgesetz und relevante Ausschnitte aus dem Sozialgesetz sowie deren Anwendung im Berufsbildungsbereich

14. Literatur:
 Die Literatur wird in den Veranstaltungen bekannt gegeben.
 • Als Grundlage dienen u.a. „Arbeitsgesetze“ dtv. 82. Auflage, 2013

15. Lehrveranstaltungen und -formen:
 • 515001 Vorlesung Arbeitsrecht I
 • 515002 Seminar Berufsbildungsrecht

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: je Veranstaltung 28h = 56 h
 Vor- und Nachbereitung: je Veranstaltung 62h = 124 h
 Gesamt: 180 h

17. Prüfungsnummer/n und -name:
 • 51501 Arbeitsrecht I (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0
 • 51502 Berufsbildungsrecht (USL), schriftlich, eventuell mündlich, Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 61050 Berufspädagogische Vertiefung

2. Modulkürzel: 101010303
3. Leistungspunkte: 6.0 LP
4. SWS: 2.0

5. Modul dauer: 1 Semester
6. Turnus: jedes Semester
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Reinhold Nickolaus
9. Dozenten: • Annika Boltze • Cordula Petsch
11. Empfohlene Voraussetzungen: Einführung in die Berufs- und Wirtschaftspädagogik Grundkenntnisse in Didaktik Grundkenntnisse in Organisation beruflicher Bildung
15. Lehrveranstaltungen und -formen: 610501 Seminar Berufspädagogische Vertiefung
16. Abschätzung Arbeitsaufwand: Präsenzzeit: 28h Vor- und Nachbereitung: 152h Gesamtzeit = 180h
17. Prüfungsnummer/n und -name: • 61051 Berufspädagogische Vertiefung (PL), schriftliche Prüfung, Gewichtung: 1.0, Hausarbeit oder Klausur zur berufspädagogischen Vertiefung, mind. 20 Seiten bzw. 90 Min. (PL) • V Vorleistung (USL-V), schriftlich, eventuell mündlich
18. Grundlage für ...
19. Medienform:
20. Angeboten von:
Modul: 61060 Berufspädagogische Vertiefung II

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>101010309</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Reinhold Nickolaus

9. Dozenten: • Annika Boltze
 • Cordula Petsch

 ➞ Studienprofil C - betriebliche Bildungsarbeit --> Vertiefungsbereich 2

11. Empfohlene Voraussetzungen:
 Einführung in die Berufs- und Wirtschaftspädagogik
 Grundkenntnisse in Didaktik
 Grundkenntnisse in Organisation beruflicher Bildung

12. Lernziele:
 Die Studierenden erwerben vertieftes Wissen zu spezifischen Bereichen der beruflichen Bildung.
 Sie können komplexe Zusammenhänge zwischen unterschiedlichen Handlungsfeldern beruflicher Bildung verstehen und analysieren.
 Sie sind in der Lage, sich ein Themengebiet selbstständig zu erarbeiten.

13. Inhalt:
 Ausgewählte aktuelle Themen bspw. zur Didaktik beruflicher Bildung, zu Interkultureller Kompetenz, zu Institutionellen Entwicklungen, zur Aus- und Weiterbildung.

14. Literatur:
 Wird in der Veranstaltung bekannt gegeben.
 Basisliteratur:
 Nickolaus, R (u.a.) (2010): Handbuch der Berufs- und Wirtschaftspädagogik
 Frey/Lismann/Schwarz (Hrsg.) (2013): Handbuch Berufspädagogische Diagnostik

15. Lehrveranstaltungen und -formen:
 610601 Seminar Berufspädagogische Vertiefung II

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 28h
 Vor- und Nachbereitung: 152h
 Gesamtzeit = 180h

17. Prüfungsnummer/n und -name:
 • 61061 Berufspädagogische Vertiefung II (PL), schriftliche Prüfung, Gewichtung: 1.0, Hausarbeit oder Klausur zur berufspädagogischen Vertiefung II, mind. 20 Seiten bzw. 90 Min. (PL)
 • V Vorleistung (USL-V), schriftlich, eventuell mündlich

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 37540 Berufspädagogisches Projekt (Master)

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>101010116</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>12.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Bernd Zinn</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Anke Treutlein
• Bernd Zinn |
⇒ Studienprofil C - betriebliche Bildungsarbeit
⇒ Vertiefungsbereich 2
⇒ M.Sc. Technikpädagogik, PO 2015, 4. Semester
⇒ Studienprofil C - betriebliche Bildungsarbeit
⇒ Spezialisierungsbereich
⇒ M.Sc. Technikpädagogik, PO 2015, 4. Semester
⇒ Studienprofil C - betriebliche Bildungsarbeit
⇒ Vertiefungsbereich 2
⇒ M.Sc. Technikpädagogik, PO 2015, 4. Semester
⇒ Studienprofil C - betriebliche Bildungsarbeit
⇒ Spezialisierungsbereich
⇒ M.Sc. Technikpädagogik, PO 2015, 4. Semester
⇒ Studienprofil C - betriebliche Bildungsarbeit
⇒ Vertiefungsbereich 2 |
| 11. Empfohlene Voraussetzungen: | Didaktik beruflicher Bildung II |
| 12. Lernziele: | Die Studierenden erwerben die Fähigkeit wissenschaftliches Wissen in ausgewählten Anwendungsfeldern an komplexen Aufgabenstellungen anzuwenden und sind in der Lage bezogen auf die verarbeiteten Quellen und die eigenen Projektergebnisse die Geltungsansprüche der Aussagen abzuschätzen. |
| 14. Literatur: | Literaturinformation zur beruflichen Bildung (wird von den Studierenden selbst eruiert,
Grundlagenliteratur:
Opladen: Leske + Budrich
| 15. Lehrveranstaltungen und -formen: | 375401 Projektseminar |
| 16. Abschätzung Arbeitsaufwand: | 21 Std. Präsenzzeit
339 Std. Selbststudium
Gesamtzeit 360 Std. |
| 17. Prüfungsnummer/n und -name: | • 37541 Berufspädagogisches Projekt (Master) - Projektpräsentation (USL), schriftlich, eventuell mündlich, Gewichtung: 1.0
• 37542 Berufspädagogisches Projekt (Master) - Projektbericht (PL), schriftlich, eventuell mündlich, Gewichtung: 1.0 |
| 18. Grundlage für ... : | |
| 19. Medienform: | |
| 20. Angeboten von: | |
Modul: 37550 Berufspädagogisches Tutorenprogramm

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>101010114</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>3.0</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher:
Univ.-Prof. Reinhold Nickolaus

9. Dozenten:
- Martin Kenner
- Annika Boltze
- Cordula Petsch

10. Zuordnung zum Curriculum in diesem Studiengang:
- M.Sc. Technikpädagogik, PO 2009, 2. Semester
 - Studienprofil C - betriebliche Bildungsarbeit → Spezialisierungsbereich
 - M.Sc. Technikpädagogik, PO 2009, 2. Semester
 - Studienprofil C - betriebliche Bildungsarbeit --> Vertiefungsbereich 2
- M.Sc. Technikpädagogik, PO 2015, 2. Semester
 - Studienprofil C - betriebliche Bildungsarbeit → Spezialisierungsbereich
 - M.Sc. Technikpädagogik, PO 2015, 2. Semester
 - Studienprofil C - betriebliche Bildungsarbeit --> Vertiefungsbereich 2

11. Empfohlene Voraussetzungen:
Die Module "Einführung in die Berufspädagogik", "Organisation beruflicher Bildung" und "Didaktik beruflicher Bildung" müssen zwingend erfolgreich absolviert sein!

12. Lernziele:
Die Studierenden erwerben vertiefte Kenntnisse in der dem Tutorium zugrunde liegenden Lehrveranstaltung. Sie sind fähig, diese Kenntnisse zu reflektieren und an andere Studierende weiter zu geben und einschlägige Beiträge von anderen Studierenden kriteriengeleitet zu beurteilen.

13. Inhalt:
Die der Basisveranstaltung zugrunde liegenden Fachinhalte, Grundwissen zur Hochschuldidaktik und deren praktische Umsetzung im Tutorium.

14. Literatur:

15. Lehrveranstaltungen und -formen:
- 375501 Seminar Vorbereitung zum Tutorium
- 375502 Tutorium Techniken wissenschaftlichen Arbeitens
- 375503 Tutorium Übung zur Vorlesung "Organisation beruflicher Bildung"

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 1x 21h und 1x 10,5h = 31,5h,
- Selbststudium: 148,5h
- Gesamtzeit: 180 h
<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>37551 Konzept einer Tutoriumssitzung (LBP), schriftliche Prüfung, Gewichtung: 1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td></td>
</tr>
</tbody>
</table>
Modul: 61040 Bildungscontrolling in der Personalarbeit

2. Modulkürzel: 101040013
3. Leistungspunkte: 6.0 LP
4. SWS: 2.0
5. Modulduauer: 1 Semester
6. Turnus: jedes 2. Semester, SoSe
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Reinhold Nickolaus
9. Dozenten: Svitlana Mokhonko
 ➞ Studienprofil C - betriebliche Bildungsarbeit -->Vertiefungsbereich 2
11. Empfohlene Voraussetzungen: Organisation beruflicher Bildung; Forschungsmethoden
 Einstiegsliteratur:
15. Lehrveranstaltungen und -formen: 610401 Seminar Bildungscontrolling in der Personalarbeit
16. Abschätzung Arbeitsaufwand: Präsenzzeit: Seminar 28 h
 Vor- und Nachbereitung: Seminar 152 h
 Gesamt: 180 h
17. Prüfungsnummer/n und -name:
 • 61041 Bildungscontrolling in der Personalarbeit (PL), schriftliche Prüfung, Gewichtung: 1.0, Klausur (90 min.) oder Hausarbeit zum Seminar „Bildungscontrolling in der Personalarbeit“
 • V Vorleistung (USL-V), schriftlich, eventuell mündlich
18. Grundlage für …:
19. Medienform:

20. Angeboten von:
Modul: 61020 Digitale Medien in der beruflichen Aus- und Weiterbildung

2. Modulkürzel: 101040011
5. Moduldauer: 1 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 2.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Bernd Zinn
9. Dozenten: Bernd Zinn

10. Zuordnung zum Curriculum in diesem Studiengang:
 ➞ Studienprofil C - betriebliche Bildungsarbeit -->Vertiefungsbereich 2

11. Empfohlene Voraussetzungen:

12. Lernziele:

13. Inhalt:
Lehren und Lernen mit digitalen Medien, IT-basierte Lehr-Lernprozesse, Empirische Untersuchungen zu IT-basierten Lehr-Lernprozessen, Didaktische Arrangements unter Nutzung moderner Technologien

14. Literatur:

15. Lehrveranstaltungen und -formen: 610201 Seminar Digitale Medien in der beruflichen Aus- und Weiterbildung

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: im Seminar = 28 h
Vor- und Nachbereitung im Seminar = 152 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
• 61021 Digitale Medien in der beruflichen Aus- und Weiterbildung (PL), schriftliche Prüfung, Gewichtung: 1.0, Klausur (90 Minuten) oder Hausarbeit zum Seminar „Digitale Medien in der beruflichen Aus- und Weiterbildung”
• V Vorleistung (USL-V), schriftlich, eventuell mündlich

18. Grundlage für ...

19. Medienform:
20. Angeboten von:
Modul: Grundlagen der Fachdidaktik NwT (Hauptfach)

1. Modulkürzel: 101010060
2. Modul: 26300
3. Leistungsschwere: 6.0 LP
4. SWS: 4.0
5. Modul: 26300
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Bernd Zinn
9. Dozenten: Bernd Geißel
10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technikpädagogik
 → Vorgezogene Master-Module
 M.Sc. Technikpädagogik, PO 2009, 3. Semester
 → Studienprofil A - konsekutiver Studiengang
 → Erziehungswissenschaft mit dem Schwerpunkt Berufspädagogik
 → Fachdidaktik Wahlpflichtfach
 M.Sc. Technikpädagogik, PO 2009, 3. Semester
 → Studienprofil B - ohne erziehungswissenschaftliche Studien
 → im Bachelor-Studiengang
 → Erziehungswissenschaft mit dem Schwerpunkt Berufspädagogik
 → Fachdidaktik des Wahlpflichtfaches
 M.Sc. Technikpädagogik, PO 2009, 3. Semester
 → Studienprofil C - betriebliche Bildungsarbeit
 → Vertiefungsbereich 2
 M.Sc. Technikpädagogik, PO 2015, 3. Semester
 → Studienprofil A - konsekutiver Studiengang
 → Erziehungswissenschaft mit dem Schwerpunkt Berufspädagogik
 → Fachdidaktik Wahlpflichtfach
 M.Sc. Technikpädagogik, PO 2015, 3. Semester
 → Studienprofil B - ohne erziehungswissenschaftliche Studien
 → im Bachelor-Studiengang
 → Erziehungswissenschaft mit dem Schwerpunkt Berufspädagogik
 → Fachdidaktik des Wahlpflichtfaches
 M.Sc. Technikpädagogik, PO 2015, 3. Semester
 → Studienprofil C - betriebliche Bildungsarbeit
 → Vertiefungsbereich 2

11. Empfohlene Voraussetzungen:
 keine, allgemeine didaktische Grundkenntnisse sind vorteilhaft
12. Lernziele:
 Die Studierenden erwerben die Fähigkeit auf der Basis grundlegenden
 Wissens zur Technikdidaktik Entscheidungen zur Gestaltung von Lehr-
 Lernprozessen zu reflektieren und zu begründen. Sie sind insbesondere
 in der Lage Lehr-Lernziele und Lehrverfahren unter Berücksichtigung
 relevanter Bedingungen zu planen und Lehr-Lernprozesse zu beurteilen.
13. Inhalt:
 Konzepte und curriculare Grundlagen der Didaktik der Naturwissenschaft
 und Technik; Gestaltung von Lehr-Lernprozessen; Ausgewählte
 Ergebnisse der bereichsspezifischen Lehr-Lernforschung; Kompetenzmodelle
 und Kompetenzentwicklung
14. Literatur:
 • Bonz, B./Ott, B. (Hrsg.): Allgemeine Technikdidaktik - Theorieansätze
 und Praxisbezüge. Hohengehren 2003;
 • Wagener, W./Haupt, W.: Technikdidaktik als Fach in der gymnasialen
 Oberstufe. In: Bader, R./Jenewein, K. (Hrsg.): Didaktik der Technik
• Nickolaus, R.: Didaktik beruflicher Bildung. 3. Aufl. Hohengehren 2008

15. Lehrveranstaltungen und -formen:
• 263001 Vorlesung Einführung in die Technikdidaktik
• 263002 Seminar Vertiefung zur Einführung in die Technikdidaktik

16. Abschätzung Arbeitsaufwand:
In beiden Veranstaltungen sind jeweils 21 h Präsenzzeit und 69 h Vor- und
Nachbearbeitungszeit vorgesehen (Gesamtzeit 180 h)

17. Prüfungsnummer/n und -name:
• 26301 Grundlagen der Fachdidaktik NwT (Hauptfach) (PL),
schriftliche Prüfung, 60 Min., Gewichtung: 1.0
• 26302 Grundlagen der Fachdidaktik NwT (Hauptfach), Ausarbeitung
 incl. Präsentation (USL), schriftlich, eventuell mündlich,
 Gewichtung: 1.0

19. Medienform:
Vorträge, Präsentationen, Diskussionen

20. Angeboten von:
Modul: 51490 Personal- und Organisationsentwicklung in Unternehmen

2. Modulkürzel: 101010120
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0
5. Modulduauer: 1 Semester
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Reinhold Nickolaus
9. Dozenten: Svitlana Mokhonko
10. Zuordnung zum Curriculum in diesem Studiengang:
 M.Sc. Technikpädagogik, PO 2009, 2. Semester ➔ Studienprofil C - betriebliche Bildungsarbeit --> Vertiefungsbereich 2
 M.Sc. Technikpädagogik, PO 2015, 2. Semester ➔ Studienprofil C - betriebliche Bildungsarbeit --> Vertiefungsbereich 2
11. Empfohlene Voraussetzungen:
12. Lernziele: Die Studierenden erwerben Kenntnisse über die Arbeitsbereiche der Personal- und Organisationsentwicklung und sind in der Lage, selbstständig Personalentwicklungsmassnahmen zu planen, zu konzipieren, durchzuführen und zu bewerten.
14. Literatur:
 • Jahrbuch Personalentwicklung und Weiterbildung. - Neuwied; Kriftel: Luchterhand;
15. Lehrveranstaltungen und -formen:
 • 514901 Personal- und Organisationsentwicklung
 • 514902 Seminar Bildungscontrolling in der Personalarbeit
16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: je Seminar 28h = 56 h
 Vor- und Nachbereitung: je Seminar 62h = 124 h
 Gesamt: 180 h
17. Prüfungsnummer/n und -name:
 • 51491 Personal- und Organisationsentwicklung und Bildungscontrolling in der Personalarbeit (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0
 • V Vorleistung (USL-V), schriftlich und mündlich
18. Grundlage für ...
19. Medienform:
20. Angeboten von:
Modul: 28840 Soziale Kompetenz

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>101010108</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Modulduauer:</td>
<td>2 Semester</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Reinhold Nickolaus

9. Dozenten: Kerstin Norwig

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>M.Sc. Technikpädagogik, PO 2009, 2. Semester</th>
<th>Studienprofil C - betriebliche Bildungsarbeit -->Vertiefungsbereich 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>M.Sc. Technikpädagogik, PO 2015, 2. Semester</td>
<td>Studienprofil C - betriebliche Bildungsarbeit -->Vertiefungsbereich 2</td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen: Basis- und Kernmodule zur Didaktik beruflicher Bildung

12. Lernziele:

13. Inhalt:

Struktur- und Niveaumodelle sozialer Kompetenz; Förderansätze; Empirische Untersuchungen zu ausgewählten Bereichen sozialer Kompetenzentwicklung wie z.B. Moralische Urteilsfähigkeit, Teamfähigkeit, Kommunikationsfähigkeit, interkulturelle Kompetenz

14. Literatur:

15. Lehrveranstaltungen und -formen:

- 288401 Seminar Modelle und Förderansätze sozialer Kompetenz
- 288402 Seminar Ergebnisse empirischer Untersuchungen zur Entwicklung sozialer Kompetenz

16. Abschätzung Arbeitsaufwand:

| Präsenzzeit: | 42 h |
| Vor- und Nachbereitung: | 138 h |
| Gesamt: | 180 h |
17. Prüfungsnummer/n und -name:

• 28841 Soziale Kompetenz - Hausarbeit (LBP), schriftliche Prüfung, 60 Min., Gewichtung: 1.0, schriftliche Hausarbeit in einem der beiden Seminare (frei wählbar)
• 28842 Soziale Kompetenz Referat 1 (USL), schriftlich, eventuell mündlich, 60 Min., Gewichtung: 1.0
• 28843 Soziale Kompetenz Referat 2 (USL), schriftlich, eventuell mündlich, 60 Min., Gewichtung: 1.0

18. Grundlage für ...:

19. Medienform:

20. Angeboten von:
43 Spezialisierungsbereich

Zugeordnete Module:
12090 BWL I: Produktion, Organisation, Personal
13530 Arbeitswissenschaft
13840 Fabrikbetriebslehre
16490 Grundlagen der Betriebswirtschaftslehre
16570 Forschungsmethoden
37540 Berufspädagogisches Projekt (Master)
37550 Berufspädagogisches Tutorenprogramm
38030 Arbeit, Organisation und Innovation
38080 Konflikttheorien und Konfliktenschlichtung
42280 Grundlagen des Internationalen Managements
42290 Interculturelles Management
48900 Konfliktbearbeitung
58240 Berufspädagogisches Tutorenprogramm II
58250 Erkundungen zu Bedingungen und Strukturen betrieblicher Bildung
58360 Anwendungsbezogene Ethik - Technikpädagogik
900 Schlüsselqualifikationen fachübergreifend
900 Schlüsselqualifikationen fachübergreifend
Modul: 58360 Anwendungsbezogene Ethik - Technikpädagogik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>091320194</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>12.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modul:</td>
<td>091320194</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td></td>
</tr>
<tr>
<td>14. Literatur:</td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 583601 Integrierte Veranstaltung zu Themen der Anwendungsbezogenen Ethik 1 • 583602 Integrierte Veranstaltung zu Themen der Anwendungsbezogenen Ethik 2</td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>58361 Hausarbeit (PL), Sonstiges, Gewichtung: 1.0</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td></td>
</tr>
<tr>
<td>Nummer</td>
<td>Inhalt</td>
</tr>
<tr>
<td>--------</td>
<td>--------</td>
</tr>
<tr>
<td>2.</td>
<td>Modulkürzel: 100200508</td>
</tr>
<tr>
<td>3.</td>
<td>Leistungspunkte: 12.0 LP</td>
</tr>
<tr>
<td>4.</td>
<td>SWS: 4.0</td>
</tr>
<tr>
<td>5.</td>
<td>Modulduer: 1 Semester</td>
</tr>
<tr>
<td>6.</td>
<td>Turnus: jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7.</td>
<td>Sprache: Deutsch</td>
</tr>
<tr>
<td>8.</td>
<td>Modulverantwortlicher: Univ.-Prof. Ulrich Dolata</td>
</tr>
<tr>
<td>9.</td>
<td>Dozenten: • Gerhard Fuchs • Ulrich Dolata</td>
</tr>
<tr>
<td>11.</td>
<td>Empfohlene Voraussetzungen: Keine</td>
</tr>
<tr>
<td>12.</td>
<td>Lernziele: • Die Studierenden kennen das analytische Instrumentarium, das in der Soziologie benutzt wird, um die Sachverhalte Arbeit, Organisation und Innovation zu erfassen. • Sie sind mit den wichtigsten empirischen Befunden vertraut. • Sie sind in der Lage, mit Hilfe des analytischen Instrumentariums konkrete empirische Phänomene zu analysieren. • Sie kennen die wichtigsten Theorien und Forschungsmethoden einer institutionalistisch orientierten Soziologie.</td>
</tr>
</tbody>
</table>
15. Lehrveranstaltungen und -formen:

- 380301 Vorlesung Organisation und Innovation
- 380302 Seminar Organisierung und Organisation von Arbeit

16. Abschätzung Arbeitsaufwand:

Organisation und Innovation, Vorlesung
Präsenzzeit: 28 Stunden
Selbststudium: 152 Stunden

Organisierung und Organisation von Arbeit, Seminar
Präsenzzeit: 28 Stunden
Selbststudium: 152 Stunden

Summe: 360 Stunden

17. Prüfungsnummer/n und -name:

- 38031 Arbeit, Organisation und Innovation (PL), schriftliche Prüfung, 180 Min., Gewichtung: 1.0
- V Vorleistung (USL-V), schriftlich, eventuell mündlich

18. Grundlage für ...:

- 38090 Netzwerke in Wirtschaft, Politik und Gesellschaft

19. Medienform:

20. Angeboten von:
Modul: 13530 Arbeitswissenschaft

2. Modulkürzel: 072010001
5. Moduldaurer: 2 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dieter Spath

9. Dozenten:
• Wilhelm Bauer
• Oliver Rüssel

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technikpädagogik, PO 2011, 5. Semester
→ Pflichtmodule mit Wahlmöglichkeit (6 LP)
B.Sc. Technikpädagogik, PO 2011, 5. Semester
→ Vorgezogene Master-Module
M.Sc. Technikpädagogik, PO 2009, 3. Semester
→ Studienprofil C - betriebliche Bildungsarbeit --
 → Spezialisierungsbereich
M.Sc. Technikpädagogik, PO 2015, 3. Semester
→ Studienprofil C - betriebliche Bildungsarbeit --
 → Spezialisierungsbereich

11. Empfohlene Voraussetzungen: keine

12. Lernziele:

13. Inhalt:

Die Anwendungsbeispiele werden durch eine freiwillige Exkursion (1 x im Semester) zu einem Unternehmen verdeutlicht.

Beide Vorlesungen werden durch einen jeweils 2-stündigen Praktikumsversuch abgerundet (für B.Sc.-Studierende verpflichtend!).

14. Literatur:
• Bauer, W.; Rüssel, O.: Skript zur Vorlesung Arbeitswissenschaft

15. Lehrveranstaltungen und -formen:
- 135301 Vorlesung Arbeitswissenschaft I
- 135302 Vorlesung Arbeitswissenschaft II

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 46 h
- Selbststudiumszeit / Nacharbeitszeit: 134 h
- Gesamt: 180 h

17. Prüfungsnummer/n und -name:
- 13531 Arbeitswissenschaft (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1,0. Hinweis: Die Note der Modulfachprüfung wird dem Prüfungsamt erst nach Teilnahme an den beiden Praktika übermittelt! (gilt nur für B.Sc.-Studierende!)

18. Grundlage für ... :

19. Medienform:
- Beamer-Präsentation, Videos, Animationen, Demonstrationsobjekte

20. Angeboten von:
- Institut für Arbeitswissenschaft und Technologiemanagement
Modul: 12090 BWL I: Produktion, Organisation, Personal

2. Modulkürzel: 100120001
5. Modulduer: 1 Semester
3. Leistungspunkte: 9.0 LP
4. SWS: 6.0
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Birgit Renzl
9. Dozenten: • Michael Reiß
• Rudolf Large
 → Vorgezogene Master-Module
 B.Sc. Technikpädagogik, PO 2011, 5. Semester
 → Wahlpflichtfach -->Wahlpflichtfach Wirtschaftswissenschaften
 → M.Sc. Technikpädagogik, PO 2009, 1. Semester
 → Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang -->Wahlpflichtfach B -->Wahlpflichtfach Wirtschaftswissenschaften
 → M.Sc. Technikpädagogik, PO 2009, 1. Semester
 → Studienprofil C - betriebliche Bildungsarbeit --
 →Spezialisierungsbereich
 → M.Sc. Technikpädagogik, PO 2009, 1. Semester
 → Wahlpflichtfach B -->Wahlpflichtfach Wirtschaftswissenschaft --
 →Grundlagen Wirtschaftswissenschaft (TP)
 → M.Sc. Technikpädagogik, PO 2015, 1. Semester
 → Studienprofil C - betriebliche Bildungsarbeit --
 →Spezialisierungsbereich
 → M.Sc. Technikpädagogik, PO 2015, 1. Semester
 → Wahlpflichtfach B -->Wahlpflichtfach Wirtschaftswissenschaft --
 →Grundlagen Wirtschaftswissenschaft (TP)

11. Empfohlene Voraussetzungen: Grundlagen der BWL
12. Lernziele: Veranstaltung "Produktionsmanagement":
 Die Studierenden sind am Ende der Veranstaltung in der Lage,
 • Produktionssysteme mit Hilfe von Produktions- und Kostenfunktionen abzubilden,
 • produktionswirtschaftliche Fragestellungen in Planungsmodellen abzubilden,
 • grundlegende Planungsmethoden der Produktion anzuwenden.

Veranstaltung "Organisation und Personalführung":
 Die Studierenden verfügen über Grundkenntnisse zum Aufbau und zum Prozess der Gestaltung von Produktionssystemen für Sach- und Dienstleistungen sowie von Führungssystemen (Kenntnisse der zentralen Führungsaufgaben auf den Gebieten der Organisationsgestaltung,
Personalentwicklung, Personalbeschaffung, Personalbindung und Personalfreisetzung und des Aufbaus von Anreizsystemen).

Die Studierenden sind in der Lage, ausgewählte Führungsmethoden anzuwenden.

13. Inhalt:

Veranstaltung "Produktionsmanagement":

Veranstaltung "Organisation und Personalführung":

Funktionelle, institutionelle, personelle und instrumentelle Zugänge zu Führungssystemen; Führungsstile und Führungsmodelle; Dezentralisierung der Personalführung; interaktionelle und infrastrukturelle Führung; Grundlagen der Qualifizierung, Rekrutierung und Motivierung (Aufbau von Anreizsystemen); Eingliederung und Aufgliederung der Organisationsgestaltung; Organisationsstrukturen; Organisationsprozesse; Projektorganisation; Center-Konzepte; Matrixorganisation; Koordinationsorgane; Kontextfaktoren: Strategie, Personal und Technologie; Organisationsstrukturen für das internationale und das Produktgeschäft.

14. Literatur:

- Skript Produktionsmanagement
- Skript Organisation und Personalführung

Veranstaltung "Produktionsmanagement":

15. Lehrveranstaltungen und -formen:

- 120901 Vorlesung BWL I: Produktionsmanagement
- 120902 Übung BWL I: Produktionsmanagement
- 120903 Vorlesung BWL I: Organisation und Personalführung
- 120904 Übung BWL I: Organisation und Personalführung

16. Abschätzung Arbeitsaufwand:

Vorlesung BWL I: Produktionsmanagement
- Präsenzzeit: 28 h
- Selbststudium: ca. 40 h

Übung BWL I: Produktionsmanagement
- Präsenzzeit: 14 h
- Selbststudium: ca. 54 h

Vorlesung BWL I: Organisation und Personalführung
- Präsenzzeit: 28 h
- Selbststudium: ca. 40 h
Übung BWL I: Organisation und Personalführung
- Präsenzzeit: 14 h
- Selbststudium: ca. 54 h

Gesamt: 270 h

17. Prüfungsnummer/n und -name: 12091 BWL I: Produktion, Organisation, Personal (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Betriebswirtschaftliches Institut
Modul: 37540 Berufspädagogisches Projekt (Master)

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>101010116</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>12.0 LP</td>
<td>6. Turnus:</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Bernd Zinn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>• Anke Treutlein</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Bernd Zinn</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10. Zuordnung zum Curriculum in diesem Studiengang:</th>
</tr>
</thead>
<tbody>
<tr>
<td>M.Sc. Technikpädagogik, PO 2009, 4. Semester</td>
</tr>
<tr>
<td>→ Studienprofil C - betriebliche Bildungsarbeit --→Vertiefungsbereich 2</td>
</tr>
<tr>
<td>→ M.Sc. Technikpädagogik, PO 2015, 4. Semester</td>
</tr>
<tr>
<td>→ Studienprofil C - betriebliche Bildungsarbeit --→Spezialisierungsbereich</td>
</tr>
<tr>
<td>→ M.Sc. Technikpädagogik, PO 2015, 4. Semester</td>
</tr>
<tr>
<td>→ Studienprofil C - betriebliche Bildungsarbeit --→Vertiefungsbereich 2</td>
</tr>
</tbody>
</table>

| 11. Empfohlene Voraussetzungen: | Didaktik beruflicher Bildung II |

| 12. Lernziele: | Die Studierenden erwerben die Fähigkeit wissenschaftliches Wissen in ausgewählten Anwendungsfeldern an komplexen Aufgabenstellungen anzuwenden und sind in der Lage bezogen auf die verarbeiteten Quellen und die eigenen Projektergebnisse die Geltungsansprüche der Aussagen abzuschätzen. |

<table>
<thead>
<tr>
<th>14. Literatur:</th>
</tr>
</thead>
</table>

| 15. Lehrveranstaltungen und -formen: | 375401 Projektseminar |
|-----------------------------|
| 16. Abschätzung Arbeitsaufwand: |
| 21 Std. Präsenzzeit |
| 339 Std. Selbststudium |
| Gesamtzeit 360 Std. |
| 17. Prüfungsnummer/n und -name: |
| • 37541 Berufspädagogisches Projekt (Master) - Projektpräsentation (USL), schriftlich, eventuell mündlich, Gewichtung: 1.0 |
| • 37542 Berufspädagogisches Projekt (Master) - Projektbericht (PL), schriftlich, eventuell mündlich, Gewichtung: 1.0 |

| 18. Grundlage für ...: |

| 19. Medienform: |

| 20. Angeboten von: |
Modul: 37550 Berufspädagogisches Tutorenprogramm

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>101010114</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>3.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Reinhold Nickolaus</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Martin Kenner
• Annika Boltze
• Cordula Petsch |
→ Studienprofil C - betriebliche Bildungsarbeit
→ Spezialisierungsbereich
M.Sc. Technikpädagogik, PO 2009, 2. Semester
→ Studienprofil C - betriebliche Bildungsarbeit
→ Vertiefungsbereich 2
M.Sc. Technikpädagogik, PO 2015, 2. Semester
→ Studienprofil C - betriebliche Bildungsarbeit
→ Spezialisierungsbereich
M.Sc. Technikpädagogik, PO 2015, 2. Semester
→ Studienprofil C - betriebliche Bildungsarbeit
→ Vertiefungsbereich 2 |
| 11. Empfohlene Voraussetzungen: | Die Module "Einführung in die Berufspädagogik", "Organisation beruflicher Bildung" und "Didaktik beruflicher Bildung" müssen zwingend erfolgreich absolviert sein! |
| 13. Inhalt: | Die der Basisveranstaltung zugrunde liegenden Fachinhalte, Grundwissen zur Hochschuldidaktik und deren praktische Umsetzung im Tutorium. |
• Schelten, A. (2004): Einführung in die Berufspädagogik. 3. Auflage, Stuttgart: Steiner
| 15. Lehrveranstaltungen und -formen: | • 375501 Seminar Vorbereitung zum Tutorium
• 375502 Tutorium Techniken wissenschaftlichen Arbeitens
• 375503 Tutorium Übung zur Vorlesung "Organisation beruflicher Bildung" |
<p>| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 1x 21h und 1x 10,5h = 31,5h, Selbststudium: 148,5h, Gesamtzeit: 180 h |</p>
<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>37551</th>
<th>Konzept einer Tutoriumssitzung (LBP), schriftliche Prüfung, Gewichtung: 1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Module: 58240 Berufspädagogisches Tutorenprogramm II

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>101010120</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>3.0</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Reinhold Nickolaus</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Martin Kenner, Annika Boltze, Cordula Petsch</td>
</tr>
<tr>
<td></td>
<td>M.Sc. Technikpädagogik → Studienprofil C - betriebliche Bildungsarbeit -- >Spezialisierungsbereich</td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>Die der Basisveranstaltung zugrunde liegenden Fachinhalte, Grundwissen zur Hochschuldidaktik und deren praktische Umsetzung im Tutorium.</td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td></td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Präsenzzeit:42h</td>
</tr>
<tr>
<td></td>
<td>Vor- und Nachbereitung: 138 h</td>
</tr>
<tr>
<td></td>
<td>Gesamt: 180 h</td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>58241 Berufspädagogisches Tutorenprogramm II (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td></td>
</tr>
</tbody>
</table>
Modul: 58250 Erkundungen zu Bedingungen und Strukturen betrieblicher Bildung

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>101010011</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>5. Modulduer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Reinhold Nickolaus</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Hanspeter Erne</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>• Innovative Entwicklungen in der technischen und kaufmännischen Ausbildung und in der betrieblichen Weiterbildung. • Modellversuche und ESF-Projekte für unterschiedliche Zielgruppen und Handlungsfelder (z.B. Lernschwache und leistungsstarke Auszubildende, Mädchen), Berufsorientierung, neue Lernformen und Methoden, Kompetenzerweiterungen bei An- und Ungelernten • Bildungspartnerschaften zwischen Wirtschaft und Schulen, • Außerbetriebliche Angebote • Übergangsmanagement Schule-Beruf</td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>582501 Seminar Erkundungen zu Bedingungen und Strukturen betrieblicher Bildung</td>
</tr>
</tbody>
</table>
16. Abschätzung Arbeitsaufwand:

Präsenzzeit:
28 h
Selbststudiumszeit:
152 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:

• 58251 Erkundungen zu Bedingungen und Strukturen betrieblicher Bildung (USL), Sonstiges, Gewichtung: 1.0, Hausarbeit, 20 Seiten
• V Vorleistung (USL-V), Sonstiges, Referat

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 13840 Fabrikbetriebslehre

2. Modulkürzel: 072410002
5. Moduldauer: 2 Semester
3. Leistungspunkte: 6.0 LP
6. Turnus: jedes 2. Semester, SoSe
4. SWS: 6.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Thomas Bauernhansl
9. Dozenten: Thomas Bauernhansl

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technikpädagogik, PO 2011, 4. Semester
 → Pflichtmodule mit Wahlmöglichkeit (6 LP)
 → Vorgezogene Master-Module
B.Sc. Technikpädagogik, PO 2011, 4. Semester
 → Wahlpflichtfach -->Wahlpflichtfach Maschinenbau -->b)
 Fertigungstechnik Pflichtcontainer Grundlagen Fertigungstechnik
 →
M.Sc. Technikpädagogik, PO 2009, 2. Semester
 → Studienprofil C - betriebliche Bildungsarbeit --
 >Spezialisierungsbereich
 →
M.Sc. Technikpädagogik, PO 2009, 2. Semester
 → Wahlpflichtfach Maschinenbau -->Fertigungstechnik --
 >Fertigungstechnik (Wahl)
 →
M.Sc. Technikpädagogik, PO 2015, 2. Semester
 → Studienprofil C - betriebliche Bildungsarbeit --
 >Spezialisierungsbereich
 →
M.Sc. Technikpädagogik, PO 2015, 2. Semester
 → Wahlpflichtfach Maschinenbau -->Fertigungstechnik --
 >Fertigungstechnik (Wahl)
 →

11. Empfohlene Voraussetzungen:
Kernmodul „Fertigungslehre mit Einführung in die Fabrikorganisation“

12. Lernziele:
Fabrikbetriebslehre - Management in der Produktion (Fabrikbetriebslehre I): Der Studierende kennt die einzelnen Unternehmensbereiche und beherrscht Methodenwissen in den einzelnen Bereichen um diese von der Produktentwicklung bis zum Fabrikbetrieb optimal zu gestalten.

13. Inhalt:
Fabrikbetriebslehre - Management in der Produktion (Fabrikbetriebslehre I): Ausgehend von der Bedeutung, den Treibern und den Optimierungskonzeptionen der Produktion werden im Verlauf der Vorlesung die einzelnen Elemente von produzierenden Unternehmen erläutert, wobei der Schwerpunkt auf den eingesetzten Methoden liegt. Nach der Produktentwicklung (Innovation und Entwicklung) werden die Arbeitsplanung, die Fertigungs- und Montagesystemplanung, die Fabrikplanung, das Auftragsmanagement sowie das Supply
Chain Management betrachtet. Abschließend werden zum Thema Produktionsmanagement die Grundlagen von ganzheitlichen Produktionssystemen, die Wertstrommethode sowie Methoden zur Prozessoptimierung und Führungsinstrumente erläutert.

14. Literatur:
- Vorlesungsskript als PDF-Dokument online bereitgestellt,
- Wandlungsfähige Unternehmensstrukturen
- Das Stuttgarter Unternehmensmodell, Westkämper Engelbert, Berlin Springer 2007,

15. Lehrveranstaltungen und -formen:
- 138401 Vorlesung Fabrikbetriebslehre Management in der Produktion (Fabrikbetriebslehre I)
- 138402 Übung Fabrikbetriebslehre Management in der Produktion (Fabrikbetriebslehre I)
- 138403 Vorlesung Fabrikbetriebslehre Kosten- und Leistungsrechnung (Fabrikbetriebslehre II)
- 138404 Übung Fabrikbetriebslehre Kosten- und Leistungsrechnung (Fabrikbetriebslehre II)

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 63 Stunden
- Selbststudium: 117 Stunden

17. Prüfungsnummer/n und -name:
- 13841 Fabrikbetriebslehre (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ...:

19. Medienform:
- PowerPoint, Folien (Overhead), Video, Animation

20. Angeboten von:
- Institut für Industrielle Fertigung und Fabrikbetrieb
Modul: 16570 Forschungsmethoden

2. Modulkürzel: 101010005 5. Modulduauer: 1 Semester
4. SWS: 0.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Reinhold Nickolaus
9. Dozenten:
- Martin Kenner
- Florina Stefanica
- Matthias Wyrwal

10. Zuordnung zum Curriculum in diesem Studiengang:

| M.Sc. Technikpädagogik, PO 2009, 1. Semester |
| Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang -->Berufspädagogik (Zulassung zum Schuldienst) |
| M.Sc. Technikpädagogik, PO 2009, 1. Semester |
| Studienprofil C - betriebliche Bildungsarbeit -->Spezialisierungsbereich |
| M.Sc. Technikpädagogik, PO 2015, 1. Semester |
| Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang -->Berufspädagogik (Zulassung zum Schuldienst) |
| M.Sc. Technikpädagogik, PO 2015, 1. Semester |
| Studienprofil C - betriebliche Bildungsarbeit -->Spezialisierungsbereich |

11. Empfohlene Voraussetzungen: keine

12. Lernziele:
- Kenntnisse über empirische Forschungsmethoden in der Erziehungswissenschaft
- Statistische Grundkenntnisse
- Fähigkeit, die erworbenen Kenntnisse anÜbungsprojekten eigenständig anzuwenden
- Fähigkeit, Befunde aus veröffentlichten Untersuchungen und deren Entstehungskontext einzuordnen und zu bewerten (z.B. PISA-Studie)
- Positive Haltung zur empirischen Forschungsmethodik entwickeln (emotionales Lernziel)

13. Inhalt:
- Methodologie Quantitativer und Qualitativer Forschungsparadigmen
- Phasen des Forschungsprozesses (Theoretische Aufarbeitung, Forschungsdesigns, Operationalisierung, Datensammlung, Auswertung)
- Grundkurs Deskriptive- und Interferenz-Statistik

14. Literatur:
- Kenner, Martin: Einführung in die Statistik (Studienskript)
<table>
<thead>
<tr>
<th>15. Lehrveranstaltungen und -formen:</th>
<th>165701 Vorlesung Forschungsmethoden</th>
</tr>
</thead>
</table>
| 16. Abschätzung Arbeitsaufwand: | Vorlesung (incl. Statistikklausur): Präsenzzeit 22 h, Vor- und Nachbereitungszeit 68 h
| | Projektseminar: Präsenzzeit 22 h, Vor- und Nachbereitungszeit 68 h
| | Gesamtzeit: 180 h |
| 17. Prüfungsnummer/n und -name: | • 16571 Forschungsmethoden I (PL), schriftlich, eventuell mündlich, 90 Min., Gewichtung: 1.0, Klausur in Statistik: 0.3 Gruppenarbeit / Projektpräsentation: 0.3 Projektdokumentation: 0.4
| | • 16572 Forschungsmethoden II (LBP), schriftlich, eventuell mündlich, Gewichtung: 1.0, Klausur in Statistik: 0.3 Gruppenarbeit / Projektpräsentation: 0.3 Projektdokumentation: 0.4 |
| 18. Grundlage für ... : | |
| 19. Medienform: | OHP, PP, Tafel, Skripte |
| 20. Angeboten von: | |
Modul: 16490 Grundlagen der Betriebswirtschaftslehre

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>100110001</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>3.0</td>
</tr>
<tr>
<td>5. Modulduer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Wolfgang Burr</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Wolfgang Burr
• Manuel Bail |

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>B.Sc. Technikpädagogik, PO 2011, 1. Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorgezogene Master-Module</td>
</tr>
<tr>
<td>B.Sc. Technikpädagogik, PO 2011, 1. Semester</td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik, PO 2009, 1. Semester</td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik, PO 2009, 1. Semester</td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik, PO 2015, 1. Semester</td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik, PO 2015, 1. Semester</td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen: Keine

12. Lernziele:

• Die Studierenden sind mit dem betriebswirtschaftlichen Vokabular vertraut und lernen auf der Basis der zentralen betriebswirtschaftlichen Begrifflichkeiten und Konzepte zu argumentieren.
• Die Studierenden kennen nach Abschluss des Moduls die verschiedenen betriebswirtschaftlichen Teilbereiche und die dortigen Problemstellungen und eingesetzte Instrumente. Sie sind in der Lage die wichtigsten betriebswirtschaftlichen Theorien zu erklären und anzuwenden.
• Die Studierenden lernen die vielfältigen Beziehungen zwischen ausgewählten betriebswirtschaftlichen Teilbereichen kennen. Sie können die Grundlagen der thematisierten betriebswirtschaftlichen Teildisziplinen darstellen und in den betriebswirtschaftlichen Gesamtkontext einordnen.
• Die Studierenden erwerben ein Wissensfundament für nachfolgende vertiefende Veranstaltungen.

Weiterhin werden entscheidungstheoretische Grundlagen und Modelle diskutiert. Anhand praxisorientierter Aufgaben wird die Entscheidungsproblematik innerhalb der Betriebswirtschaftslehre begreiflich gemacht.

Anschließend werden die grundlegenden Theorien der Unternehmensführung betrachtet. Im Einzelnen werden Anwendungsbereiche, Grundannahmen, Grundelemente und Untersuchungseinheiten erläutert und innerhalb praxisorientierter Aufgaben angewendet.

14. Literatur:

- Ergänzende Folien zu Vorlesungen und Übungen
- Übungsaufgaben und Lösungen stehen zum Download zur Verfügung.

Die Basisliteratur umfasst die folgenden Werke:

15. Lehrveranstaltungen und -formen:

- 164901 Vorlesung Grundlagen der Betriebswirtschaftslehre
- 164902 Übung Grundlagen der Betriebswirtschaftslehre

16. Abschätzung Arbeitsaufwand:

- Vorlesung
 - Präsenzzeit: 28 h
 - Selbststudium: 32 h
Übung

- Präsenzzeit: 14 h
- Selbststudium: 16 h

Gesamt: 90 h

<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>16491 Grundlagen der Betriebswirtschaftslehre (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>18. Grundlage für ... :</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>19. Medienform:</th>
<th>Tafel, Beamer, Overhead-Projektor</th>
</tr>
</thead>
</table>

| 20. Angeboten von: | ABWL, Forschungs-, Entwicklungs- und Innovationsmanagement |
Modul: 42280 Grundlagen des Internationalen Managements

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>100180006</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modul:</td>
<td>Grundlagen des Internationalen Managements</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>6. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

2. Modulkürzel: 100180006

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0

5. Modul: Grundlagen des Internationalen Managements

6. Turnus: jedes 2. Semester, SoSe

7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Michael-Jörg Oesterle

9. Dozenten: Michael-Jörg Oesterle

10. Zuordnung zum Curriculum in diesem Studiengang:

M.Sc. Technikpädagogik

→ Studienprofil C - betriebliche Bildungsarbeit --

→ Spezialisierungsbereich

M.Sc. Technikpädagogik

→ Studienprofil C - betriebliche Bildungsarbeit --

→ Spezialisierungsbereich

11. Empfohlene Voraussetzungen: BWL I: Produktion, Organisation, Personalführung und Strategisches Management

13. Inhalt: Kernaufgaben und Bedeutung des Internationalen Managements; Institutionelle und rechtliche Rahmenbedingungen internationaler Geschäftstätigkeit; Markteintrittsformen im Ausland; Internationalisierungsprozessforschung; Strategisches Internationales Management; Koordinationsmuster international tätiger Unternehmen: Strukturelle, technokratische und personenorientierte Mechanismen.

Außerdem findet im Rahmen der Veranstaltung eine Exkursion zu einem Unternehmen statt.

14. Literatur:

Skript

15. Lehrveranstaltungen und -formen:

- 422801 Vorlesung Grundlagen des Internationalen Managements
- 422802 Übung Grundlagen des Internationalen Managements

16. Abschätzung Arbeitsaufwand: Gesamtaufwand: 180h
Präsenzzeit: 56h (Vorlesung: 28h; Übung 28h)
Selbststudium: 124h (Vorlesung: 62h; Übung 62h)

<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>42281 Grundlagen des Internationalen Managements (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Beamer Präsentation, Tafel</td>
</tr>
</tbody>
</table>
Modul: 42290 Interkulturelles Management

2. Modulkürzel: 100180007 5. Moduldauer: 1 Semester
4. SWS: 4.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Michael-Jörg Oesterle
9. Dozenten: Michael-Jörg Oesterle

10. Zuordnung zum Curriculum in diesem Studiengang:
 M.Sc. Technikpädagogik
 ➔ Studienprofil C - betriebliche Bildungsarbeit --
 ➔ Spezialisierungsbereich
 ➔ M.Sc. Technikpädagogik
 ➔ Studienprofil C - betriebliche Bildungsarbeit --
 ➔ Spezialisierungsbereich

11. Empfohlene Voraussetzungen: Internationales Management I

12. Lernziele:
 Die Studierenden sollen Kulturunterschiede als erfolgskritische Einflussgröße internationaler Geschäftstätigkeit erkennen und Probleme sowie Ergebnisse der betriebswirtschaftliche relevanten kulturvergleichenden Forschung verstehen bzw. auf besonders interaktionsrelevante Handlungsfelder von Unternehmen übertragen können.

13. Inhalt:
 Wesen von Kultur
 Probleme betriebswirtschaftlich relevanter kulturvergleichender Forschung
 Konzeption, Methode und Ergebnisse kulturvergleichender Studien
 Bedeutung und Folgen interkultureller Differenzen in interaktionsrelevanten Unternehmensfunktionen
 Möglichkeiten des Trainings interkultureller Handlungskompetenz

14. Literatur:
 Skript
 Schneider, S. C., Barsoux, J.-L., Managing across Cultures, Harlow et al., neueste Auflage.

15. Lehrveranstaltungen und -formen:
 • 422901 Vorlesung Interkulturelles Management
 • 422902 Übung Interkulturelles Management

16. Abschätzung Arbeitsaufwand:
 Gesamtaufwand: 180 h
Präsenzzeit: Vorlesung 28h; Übung 28h
Selbststudium: Vorlesung 62h; Übung 62h

17. Prüfungsnummer/n und -name: 42291 Interkulturelles Management (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform: Beamer Präsentation, Tafel

Modul: 48900 Konfliktbearbeitung

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>100200901</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. Modulverantwortlicher:</th>
<th>Univ.-Prof. Ortwin Renn</th>
</tr>
</thead>
<tbody>
<tr>
<td>9. Dozenten:</td>
<td>• Ortwin Renn</td>
</tr>
<tr>
<td></td>
<td>•</td>
</tr>
<tr>
<td></td>
<td>•</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10. Zuordnung zum Curriculum in diesem Studiengang:</th>
</tr>
</thead>
<tbody>
<tr>
<td>M.Sc. Technikpädagogik → Studienprofil C - betriebliche Bildungsarbeit -- → Spezialisierungsbereich</td>
</tr>
<tr>
<td>M.Sc. Technikpädagogik → Studienprofil C - betriebliche Bildungsarbeit -- → Spezialisierungsbereich</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11. Empfohlene Voraussetzungen:</th>
<th>Kenntnisse der Grundlagen der Sozialwissenschaften</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>12. Lernziele:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Studierenden haben vertiefte Kenntnis der wichtigsten sozialwissenschaftlichen Konflikttheorien.</td>
</tr>
<tr>
<td>Sie können diese Konflikttheorien zur Analyse von Umwelt- und Technikkonflikten anwenden.</td>
</tr>
<tr>
<td>Sie kennen die theoretischen Hintergründe sowie die praktische Anwendung von Verfahren der Konfliktlösung, auf der Basis von rationalen Wahltheorien, der Theorie des kommunikativen Verhaltens und der Diskurstheorie.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13. Inhalt:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Studierenden lernen die sozialwissenschaftlichen Theorien zur Entstehung und zur Behandlung von Konflikten kennen. Sie erfahren, wie diese Theorien zur praktischen Konfliktanalyse und Konfliktlösung genutzt werden können. Sie sind in der Lage, die Eignung dieser theoretischen Modelle für die praktische Umsetzung zur Konfliktbearbeitung auf der Basis von empirischen Untersuchungen zu beurteilen.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>14. Literatur:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>15. Lehrveranstaltungen und -formen:</th>
<th>489001 Seminar Konfliktbearbeitung</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>16. Abschätzung Arbeitsaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzzeit: 28 Stunden</td>
</tr>
<tr>
<td>Selbststudium: 152 Stunden</td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
</tr>
<tr>
<td>19. Medienform:</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
</tr>
</tbody>
</table>
Modul: 38080 Konflikttheorien und Konfliktenschlichtung

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>100200513</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>12.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modulduer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Ortwin Renn</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Ortwin Renn
• Volker Haug
• Jürgen Hampel
• Michael Zwick |
➞ Studienprofil C - betriebliche Bildungsarbeit --
 ➔ Spezialisierungsbereich
 ➔ M.Sc. Technikpädagogik
 ➔ Studienprofil C - betriebliche Bildungsarbeit --
 ➔ Spezialisierungsbereich |
| 11. Empfohlene Voraussetzungen: | Modul 100200507: Umweltsoziologie und Technikfolgenabschätzung |
| 12. Lernziele: | • Die Studierenden haben vertiefte Kenntnis der wichtigsten sozialwissenschaftlichen Konflikttheorien.
• Sie können diese Konflikttheorie zur Analyse von Technikkonflikten anwenden.
• Sie kennen die theoretischen Hintergründe sowie die praktische Anwendung von Verfahren der Konfliktenschlichtung, insbesondere von Partizipationsverfahren. |
| 15. Lehrveranstaltungen und -formen: | • 380801 Seminar Konflikttheorien und Konfliktenschlichtung 1
• 380802 Seminar Konflikttheorien und Konfliktenschlichtung 2 |
| 16. Abschätzung Arbeitsaufwand: | **Seminar 1**
Präsenzzeit: 28 Stunden
Selbststudium: 152 Stunden
Seminar 2
Präsenzzeit: 28 Stunden
Selbststudium: 152 Stunden
Summe: 360 Stunden |
<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 38081 Konflikttheorien und Konfliktenschlichtung (PL), Sonstiges, Gewichtung: 1.0</td>
</tr>
<tr>
<td>• V Vorleistung (USL-V), schriftlich, eventuell mündlich</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>18. Grundlage für ... :</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>19. Medienform:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>20. Angeboten von:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Soziologie mit Schwerpunkt sozialwissenschaftliche Risiko- und Technikforschung</td>
</tr>
</tbody>
</table>
Modul: 80470 Masterarbeit Technikpädagogik (Studienprofil C)

2. Modulkürzel: [pord.modulcode]
5. Moduldauer: 1 Semester
3. Leistungspunkte: 21.0 LP
6. Turnus: jedes Semester
4. SWS: 0.0
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Reinhold Nickolaus
9. Dozenten:
 - Martin Kenner
 - Reinhold Nickolaus
 - Bernd Zinn
10. Zuordnung zum Curriculum in diesem Studiengang:
 M.Sc. Technikpädagogik
 ➞ Studienprofil C - betriebliche Bildungsarbeit
 M.Sc. Technikpädagogik
 ➞ Studienprofil C - betriebliche Bildungsarbeit
11. Empfohlene Voraussetzungen: Erfolgreicher Abschluss aller Pflichtveranstaltungen des Fachstudiums des für die Masterarbeit gewählten Faches bis zum 3. Fachsemester
12. Lernziele: Kompetenz zur selbstständigen Bearbeitung einer wissenschaftlichen Aufgabenstellung; Angemessene Präsentation in schriftlicher Form
13. Inhalt: nach Absprache mit dem Betreuer
14. Literatur: nach Absprache mit dem Betreuer
15. Lehrveranstaltungen und -formen:
16. Abschätzung Arbeitsaufwand: Bearbeitungszeit: 6 Monate
 ca. 630 Std.
17. Prüfungsnummer/n und -name:
18. Grundlage für ... :
19. Medienform:
20. Angeboten von:
Modul: 28870 Praktikum

<table>
<thead>
<tr>
<th>2. Modulkürzel</th>
<th>101010111</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte</td>
<td>12.0 LP</td>
</tr>
<tr>
<td>4. SWS</td>
<td>0.0</td>
</tr>
<tr>
<td>5. Modulduer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher</td>
<td>Univ.-Prof. Reinhold Nickolaus</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Annika Boltze</td>
</tr>
</tbody>
</table>
M.Sc. Technikpädagogik, PO 2015, 4. Semester → Studienprofil C - betriebliche Bildungsarbeit |
| 11. Empfohlene Voraussetzungen: | keine |
| 14. Literatur: | für hilfreiche Hinweise und Vorbereitung:
Bloss, Michael (2014): Praktika als Karrieresprungbrett, UVK Lucius: Konstanz/München |
| 15. Lehrveranstaltungen und -formen: |
| 16. Abschätzung Arbeitsaufwand: | ca. 360h (12 Wochen Praktikum inklusive Erstellung des Praktikumsberichts) |
| 17. Prüfungsnummer/n und -name: | 28871 Praktikum (USL), schriftliche Prüfung, Gewichtung: 1.0, Erstellung eines Praktikumsberichts Das Betriebspraktikum ist bis zur Ausgabe des Themas für die Bachelorarbeit |
Der Abschluss einer einschlägigen Berufsausbildung gilt als Nachweis für das Betriebspraktikum.
Modul: 80470 Masterarbeit Technikpädagogik (Studienprofil C)

2. Modulkürzel: [pord.modulcode]
5. Moduldauer: 1 Semester
3. Leistungspunkte: 21.0 LP
6. Turnus: jedes Semester
4. SWS: 0.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Reinhold Nickolaus

9. Dozenten:
• Martin Kenner
• Reinhold Nickolaus
• Bernd Zinn

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. Technikpädagogik
→ Studienprofil C - betriebliche Bildungsarbeit
M.Sc. Technikpädagogik
→ Studienprofil C - betriebliche Bildungsarbeit

11. Empfohlene Voraussetzungen: Erfolgreicher Abschluss aller Pflichtveranstaltungen des Fachstudiums des für die Masterarbeit gewählten Faches bis zum 3. Fachsemester

12. Lernziele: Kompetenz zur selbstständigen Bearbeitung einer wissenschaftlichen Aufgabenstellung; Angemessene Präsentation in schriftlicher Form

13. Inhalt: nach Absprache mit dem Betreuer

14. Literatur: nach Absprache mit dem Betreuer

15. Lehrveranstaltungen und -formen:

16. Abschätzung Arbeitsaufwand: Bearbeitungszeit: 6 Monate
ca. 630 Std.

17. Prüfungsnummer/n und -name:

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 80570 Masterarbeit Technikpädagogik (Studienprofil B)

2. Modulkürzel: [pord.modulcode] 5. Moduldauer: 1 Semester
3. Leistungspunkte: 18.0 LP 6. Turnus: jedes Semester
4. SWS: 0.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Reinhold Nickolaus
9. Dozenten: • Martin Kenner
 • Reinhold Nickolaus
 • Bernd Zinn

10. Zuordnung zum Curriculum in diesem Studiengang:
 M.Sc. Technikpädagogik
 ➞ Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang
 M.Sc. Technikpädagogik
 ➞ Studienprofil B - ohne erziehungswissenschaftliche Studien im Bachelor-Studiengang

11. Empfohlene Voraussetzungen: Erfolgreicher Abschluss aller Pflichtveranstaltungen des Fachstudiums des für die Masterarbeit gewählten Faches bis zum 3. Fachsemester

12. Lernziele: Kompetenz zur selbstständigen Bearbeitung einer wissenschaftlichen Aufgabenstellung Angemessene Präsentation in schriftlicher Form

13. Inhalt: Nach Absprache mit dem Betreuer

14. Literatur: Nach Absprache mit dem Betreuer

15. Lehrveranstaltungen und -formen:

16. Abschätzung Arbeitsaufwand: 6 Monate; insg. ca. 630 Stunden.

17. Prüfungsnummer/n und -name:

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
Modul: 80590 Masterarbeit Technikpädagogik (Studienprofil A)

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>[pord.modulcode]</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>18.0 LP</td>
<td>6. Turnus:</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>0.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Reinhold Nickolaus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>• Martin Kenner, • Reinhold Nickolaus, • Bernd Zinn</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen:

12. Lernziele:
Kompetenz zur selbstständigen Bearbeitung einer wissenschaftlichen Aufgabenstellung; Angemessene Präsentation in schriftlicher Form

13. Inhalt:
nach Absprache mit dem Betreuer

14. Literatur:
nach Absprache mit dem Betreuer

15. Lehrveranstaltungen und -formen:

16. Abschätzung Arbeitsaufwand:
Bearbeitungszeit: 6 Monate, ca. 630 Std.

17. Prüfungsnummer/n und -name:

18. Grundlage für ...:

19. Medienform:

20. Angeboten von: