Kontaktpersonen:

<table>
<thead>
<tr>
<th>Position</th>
<th>Person</th>
<th>Institut</th>
<th>Tel.</th>
<th>E-Mail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studiendekan/in</td>
<td>Univ.-Prof. Stefan Tenbohlen</td>
<td>Institut für Energieübertragung und Hochspannungstechnik</td>
<td></td>
<td>stefan.tenbohlen@ieh.uni-stuttgart.de</td>
</tr>
<tr>
<td>Studiengangsmanager/in</td>
<td>Univ.-Prof. Stefan Tenbohlen</td>
<td>Institut für Energieübertragung und Hochspannungstechnik</td>
<td></td>
<td>stefan.tenbohlen@ieh.uni-stuttgart.de</td>
</tr>
<tr>
<td>Prüfungsausschussvorsitzende/r</td>
<td>Univ.-Prof. Günter Scheffknecht</td>
<td>Institut für Feuerungs- und Kraftwerkstechnik</td>
<td>685-68913</td>
<td>guenter.scheffknecht@ifk.uni-stuttgart.de</td>
</tr>
<tr>
<td>Fachstudienberater/in</td>
<td>Ulrich Schärli</td>
<td>Institut für Energieübertragung und Hochspannungstechnik</td>
<td></td>
<td>ulrich.schaerli@ieh.uni-stuttgart.de</td>
</tr>
</tbody>
</table>
Inhaltsverzeichnis

Präambel

- Qualifikationsziele

100 Basismodule

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
</tr>
</thead>
<tbody>
<tr>
<td>11150</td>
<td>Experimentalphysik mit Praktikum</td>
</tr>
<tr>
<td>45810</td>
<td>Höhere Mathematik 1 / 2 für Ingenieurstudiengänge</td>
</tr>
<tr>
<td>13650</td>
<td>Höhere Mathematik 3 für Ingenieurstudiengänge</td>
</tr>
<tr>
<td>31740</td>
<td>Numerische Grundlagen</td>
</tr>
<tr>
<td>16770</td>
<td>Werkstoffmechanik</td>
</tr>
</tbody>
</table>

200 Kernmodule

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
</tr>
</thead>
<tbody>
<tr>
<td>201</td>
<td>Elektrische Energiesysteme</td>
</tr>
<tr>
<td>11560</td>
<td>Elektrische Energienetze I</td>
</tr>
<tr>
<td>11580</td>
<td>Elektrische Maschinen I</td>
</tr>
<tr>
<td>11550</td>
<td>Leistungselektronik I</td>
</tr>
<tr>
<td>11590</td>
<td>Photovoltaik I</td>
</tr>
<tr>
<td>11540</td>
<td>Regelungstechnik I</td>
</tr>
<tr>
<td>12420</td>
<td>Windenergie 1 - Grundlagen Windenergie</td>
</tr>
<tr>
<td>202</td>
<td>Thermische Energiesysteme</td>
</tr>
<tr>
<td>12440</td>
<td>Einführung in die energetische Nutzung von Biomasse</td>
</tr>
<tr>
<td>14080</td>
<td>Grundlagen Technischer Verbrennungsvorgänge I + II</td>
</tr>
<tr>
<td>13830</td>
<td>Grundlagen der Wärmeübertragung</td>
</tr>
<tr>
<td>13780</td>
<td>Regelungs- und Steuerungstechnik</td>
</tr>
<tr>
<td>12430</td>
<td>Solarthermie</td>
</tr>
<tr>
<td>13750</td>
<td>Technische Strömungslehre</td>
</tr>
<tr>
<td>203</td>
<td>Kinetische Energiesysteme</td>
</tr>
<tr>
<td>11580</td>
<td>Elektrische Maschinen I</td>
</tr>
<tr>
<td>12460</td>
<td>Konstruktionslehre II (EE)</td>
</tr>
<tr>
<td>13780</td>
<td>Regelungs- und Steuerungstechnik</td>
</tr>
<tr>
<td>13750</td>
<td>Technische Strömungslehre</td>
</tr>
<tr>
<td>12450</td>
<td>Wasserkraft und Wasserbau</td>
</tr>
<tr>
<td>12420</td>
<td>Windenergie 1 - Grundlagen Windenergie</td>
</tr>
<tr>
<td>11530</td>
<td>Einführung Erneuerbare Energien</td>
</tr>
<tr>
<td>12210</td>
<td>Einführung in die Elektrotechnik</td>
</tr>
<tr>
<td>11500</td>
<td>Elektrische Energietechnik</td>
</tr>
<tr>
<td>11140</td>
<td>Konstruktionslehre I (EE)</td>
</tr>
<tr>
<td>11600</td>
<td>Praktikum Erneuerbare Energien</td>
</tr>
<tr>
<td>19430</td>
<td>Technische Mechanik 1 (LRT, EE)</td>
</tr>
<tr>
<td>39670</td>
<td>Technische Mechanik 2 (EE)</td>
</tr>
<tr>
<td>38540</td>
<td>Technische Thermodynamik I + II</td>
</tr>
</tbody>
</table>

300 Ergänzungsmodule

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
</tr>
</thead>
<tbody>
<tr>
<td>310</td>
<td>Energiewandlung und -anwendung</td>
</tr>
<tr>
<td>12440</td>
<td>Einführung in die energetische Nutzung von Biomasse</td>
</tr>
<tr>
<td>38860</td>
<td>Energie und Umwelt</td>
</tr>
<tr>
<td>13940</td>
<td>Energie- und Umwelttechnik</td>
</tr>
<tr>
<td>13950</td>
<td>Energiewirtschaft und Energieversorgung</td>
</tr>
<tr>
<td>13060</td>
<td>Grundlagen der Heiz- und Raumlufttechnik</td>
</tr>
<tr>
<td>14070</td>
<td>Grundlagen der Thermischen Strömungsmaschinen</td>
</tr>
<tr>
<td>14100</td>
<td>Hydraulische Strömungsmaschinen in der Wasserkraft</td>
</tr>
<tr>
<td>Code</td>
<td>Module</td>
</tr>
<tr>
<td>--------------------</td>
<td>--</td>
</tr>
<tr>
<td>11590</td>
<td>Photovoltaik I</td>
</tr>
<tr>
<td>36750</td>
<td>Rationelle Wärmeversorgung</td>
</tr>
<tr>
<td>12430</td>
<td>Solarthermie</td>
</tr>
<tr>
<td>12450</td>
<td>Wasserkraft und Wasserbau</td>
</tr>
<tr>
<td>12420</td>
<td>Windenergie 1 - Grundlagen Windenergie</td>
</tr>
<tr>
<td>320</td>
<td>Erweiterte Grundlagen</td>
</tr>
<tr>
<td>11620</td>
<td>Automatisierungstechnik I</td>
</tr>
<tr>
<td>11640</td>
<td>Digitale Signalverarbeitung</td>
</tr>
<tr>
<td>11560</td>
<td>Elektrische Energienetze I</td>
</tr>
<tr>
<td>11580</td>
<td>Elektrische Maschinen I</td>
</tr>
<tr>
<td>12330</td>
<td>Elektrische Signalverarbeitung</td>
</tr>
<tr>
<td>38840</td>
<td>Fertigungslehre mit Einführung in die Fabrikorganisation</td>
</tr>
<tr>
<td>14090</td>
<td>Grundlagen Technischer Verbrennungsvorgänge I + II</td>
</tr>
<tr>
<td>39160</td>
<td>Grundlagen der Betriebswirtschaftslehre</td>
</tr>
<tr>
<td>38790</td>
<td>Grundlagen der Wirtschaftswissenschaften</td>
</tr>
<tr>
<td>41450</td>
<td>Grundzüge der Angewandten Chemie</td>
</tr>
<tr>
<td>11700</td>
<td>Halbleitertechnik I</td>
</tr>
<tr>
<td>11570</td>
<td>Hochspannungstechnik I</td>
</tr>
<tr>
<td>12460</td>
<td>Konstruktionslehre II (EE)</td>
</tr>
<tr>
<td>14150</td>
<td>Leichtbau</td>
</tr>
<tr>
<td>11550</td>
<td>Leistungselektronik I</td>
</tr>
<tr>
<td>38720</td>
<td>Meteorologie</td>
</tr>
<tr>
<td>28560</td>
<td>Mikroelektronik I</td>
</tr>
<tr>
<td>28550</td>
<td>Regelung von Kraftwerken und Netzen</td>
</tr>
<tr>
<td>46340</td>
<td>Signale und Systeme</td>
</tr>
<tr>
<td>41170</td>
<td>Speichertechnik für elektrische Energie I</td>
</tr>
<tr>
<td>20930</td>
<td>Technische Mechanik 3 (EE)</td>
</tr>
<tr>
<td>14920</td>
<td>Technische Mechanik IV für Mathematiker</td>
</tr>
<tr>
<td>13750</td>
<td>Technische Strömungslehre</td>
</tr>
<tr>
<td>38770</td>
<td>Umweltsoziologie</td>
</tr>
<tr>
<td>11550</td>
<td>Photovoltaik I</td>
</tr>
<tr>
<td>11570</td>
<td>Hochspannungstechnik I</td>
</tr>
<tr>
<td>12460</td>
<td>Konstruktionslehre II (EE)</td>
</tr>
<tr>
<td>14150</td>
<td>Leichtbau</td>
</tr>
<tr>
<td>11550</td>
<td>Leistungselektronik I</td>
</tr>
<tr>
<td>38720</td>
<td>Meteorologie</td>
</tr>
<tr>
<td>28560</td>
<td>Mikroelektronik I</td>
</tr>
<tr>
<td>28550</td>
<td>Regelung von Kraftwerken und Netzen</td>
</tr>
<tr>
<td>46340</td>
<td>Signale und Systeme</td>
</tr>
<tr>
<td>41170</td>
<td>Speichertechnik für elektrische Energie I</td>
</tr>
<tr>
<td>20930</td>
<td>Technische Mechanik 3 (EE)</td>
</tr>
<tr>
<td>14920</td>
<td>Technische Mechanik IV für Mathematiker</td>
</tr>
<tr>
<td>13750</td>
<td>Technische Strömungslehre</td>
</tr>
<tr>
<td>38770</td>
<td>Umweltsoziologie</td>
</tr>
<tr>
<td>600</td>
<td>Schlüsselqualifikationen</td>
</tr>
<tr>
<td>900</td>
<td>Schlüsselqualifikationen fachübergreifend</td>
</tr>
<tr>
<td>31820</td>
<td>Informatik I für Geodäsie und Geoinformatik, Umweltschutztechnik und Erneuerbare Energien</td>
</tr>
<tr>
<td>12400</td>
<td>Informatik II (Programmierung) für Geodäsie und Geoinformatik, Umweltschutztechnik und Erneuerbare Energien</td>
</tr>
<tr>
<td>12410</td>
<td>Projektarbeit Erneuerbare Energien</td>
</tr>
<tr>
<td>80930</td>
<td>Bachelorarbeit Erneuerbare Energien</td>
</tr>
</tbody>
</table>

Stand: 06. Oktober 2015
Präambel

1. Präambel

Der Einsatz von Erneuerbaren Energien umfasst verschiedenste Technologien, denn jede Form von Energiewandlung z.B. durch einen Solarkollektor oder ein Windrad, unterliegt spezifischen physikalisch-technischen Prinzipien. Diese technologische Vielfalt spiegelt sich im interdisziplinären Aufbau des Bachelorstudiengangs wider. So sind 21 Institute aus sieben Fakultäten am Studiengang beteiligt. Das Studium besteht aus einem Grund- und Fachstudium, in dem die Studierenden zwischen drei Wahlbereichen ihren Interessenschwerpunkt festlegen können:

1. Elektrische Energiesysteme: Photovoltaik, Windenergie plus Zusatzfächer
2. Thermische Energiesysteme: Biomasse, Solarthermie plus Zusatzfächer

M.Sc. Energietechnik
M.Sc. Nachhaltige Elektrische Energieversorgung
Weiter bieten die vielfältigen Forschungsgebiete der beteiligten Institute exzellente Möglichkeiten zur Promotion.

Qualifikationsziele

Ziele des Studiengangs
Die umweltverträgliche, wirtschaftliche und sichere Bereitstellung von Energie in Form von Elektrizität, Wärme und Transportenergieträgern stellen eine weltumspannende Problematik mit zunehmender politischer und gesellschaftlicher Brisanz dar, welche sowohl die Industrie- als auch die Schwellen- und Entwicklungsländer betrifft und nur noch innerhalb des internationalen Energieversorgungssystems gelöst werden kann.

Die Absolventinnen und Absolventen des Bachelorstudiengangs Erneuerbare Energien verstehen die natur- und ingenieurwissenschaftlichen Zusammenhänge und Konzepte der Energiewandlung Erneuerbarer Energien und verfügen über grundlegendes Fachwissen auf den Gebieten Energiewandlung und -anwendung,

können die Bedeutung, die Potenziale und die Wirtschaftlichkeit verschiedener Erneuerbarer Energien (Solarthermie, Photovoltaik, Windenergie, Wasserkraft, Biomasse) und deren Integration in das Energiesystem quantitativ einschätzen (auf Basis eines Überblicks des gesamten Bereichs der Erneuerbaren Energien und einer vertieften Einführung in zwei Formen der Erneuerbaren Energien aus dem Bereich der elektrischen, thermischen oder kinetischen Energiesysteme),

können verschiedene Anlagen- und Nutzungskonzepte der erneuerbaren und konventionellen Energietechnik in konstruktiver, energetischer und wirtschaftlicher Hinsicht analysieren und bewerten sowie analytische und modellhafte Untersuchungen planen und durchführen,

können mit Spezialisten verschiedener Disziplinen kommunizieren und zusammenarbeiten, verfügen über eine verantwortliche und selbständige wissenschaftliche Arbeitsweise.

Darstellung der durch das Studium zu erreichenden Lernergebnisse (Kenntnisse, Fertigkeiten, Kompetenzen)
Die im Bachelorstudiengang Erneuerbare Energien ausgebildeten Ingenieurinnen und Ingenieure haben Kenntnisse in den Grundlagen der maschinenbaulichen, verfahrenstechnischen und elektrotechnischen Ingenieurwissenschaften insbesondere hinsichtlich der Energiewandlung und -anwendung beim Einsatz erneuerbarer Energien und verstehen die dabei grundlegenden natur- und ingenieurwissenschaftlichen Zusammenhänge,

sind in der Lage ingenieurwissenschaftliche Methodiken auf Problemstellungen aus dem Bereich der Erneuerbaren Energien anzuwenden und kennen die geeigneten Modellierungs-, Simulations- und Optimierungsmethoden verschiedener erneuerbarer Energien,

können verschiedene Anlagen- und Nutzungskonzepte der erneuerbaren und konventionellen Energietechnik in konstruktiver, energetischer und wirtschaftlicher Hinsicht analysieren und bewerten sowie analytische und modellhafte Untersuchungen planen und durchführen,

verfugen über grundlegende ingenieurwissenschaftliche Fertigkeiten zur Planung und zum Betrieb von Anlagen zur Nutzung von erneuerbaren Energien,

verfugen über die Kompetenzen zur organisatorischen und verwaltungsmäßigen Umsetzung bei der Planung von Anlagen zur Nutzung von zwei Arten von erneuerbaren Energien,

können Aufgaben mit interdisziplinärem und internationalen Charakter vor dem Hintergrund wirtschaftlicher und politischer Rahmenbedingungen im Team bearbeiten,

verfugen über eine grundlegende wissenschaftliche Qualifikation.

Im folgenden Kapitel ist die Ziele-Matrix für den Bachelorstudiengang Erneuerbare Energien mit den Zusammenhängen zwischen übergeordneten Studienzielen, Lernergebnissen und zugeordneten Modulen
dargestellt. Die Lernziele der einzelnen Module sind den Modulbeschreibungen in den nächsten Kapiteln zu entnehmen.

Darstellung der Zusammenhänge: Ziele-Matrix
Übergeordnete Studienziele Lernergebnisse: Kenntnisse, Fertigkeiten, Kompetenzen zugeordnete Module
Die Absolventinnen und Absolventen verstehen die natur- und ingenieurwissenschaftlichen Zusammenhänge ...
... und Konzepte der Energiewandlung und -anwendung erneuerbarer Energien und verfügen über grundlegendes Fachwissen auf den Gebieten Energiewandlung und anwendung
3.-6. Pflichtmodul des Wahlbereichs (weitgehend aus dem Bereich Erweiterte Grundlagen) ...
... können die Bedeutung, die Potenziale und die Wirtschaft-lichkeit verschiedener Erneuerbarer Energien (Solarthermie, Photovoltaik, Windenergie, Wasserkraft, Biomasse) und deren Integration in das Energiesystem quantitativ einschätzen,auf Basis eines Überblicks des gesamten Bereichs der En. Energien und einer vertieften Einführung in zwei Formen der En. Energien aus dem Bereich der elektr., therm. oder kinet. Energiesysteme
Die Studierenden sind in der Lage ingenieurwissenschaftliche Methodiken auf Problemstellungen aus dem Bereich der Ern. Energien anzuwenden und kennen die geeigneten Modellierungs-, Simulations- und Optimierungs- methoden - Einführung Erneuerbare Energien - Informatik I & II
Pflichtmodule mit Wahlmöglichkeit aus dem Bereich 1: Energiewandlung & -anwendung
1. & 2. Pflichtmodul des Wahlbereichs (Photovoltaik & Windenergie od. Solarthermie & Biomasse od. Windenergie & Wasserkraft- & bau)
... können zwei verschiedene Anlagen- und Nutzungskonzepte der erneuerbaren Energietechnik in konstruktiver, energetischer und wirtschaftlicher Hinsicht analysieren und bewerten sowie analytische und modellhafte Untersuchungen planen und durchführen,
Die Studierenden verfügen über grundlegende ingenieurwissenschaftliche Fertigkeiten zur Planung und zum Betrieb von Anlagen zur Nutzung von erneuerbaren Energien und kennen dabei die nicht-technischen Auswirkungen ihrer Tätigkeit,
Sie verfügen über die Kompetenzen zur organisatorischen und verwaltungsmäßigen Umsetzung bei der Planung von Anlagen zur Nutzung von zwei Arten von erneuerbaren Energien. - Pflichtmodule des Wahlbereich
Grundlagen z.B. Energie & Umwelt, Energiewirtschaft und -versorgung
Praktikum Erneuerbare Energien
... können mit Spezialisten verschiedener Disziplinen kommunizieren und zusammenarbeiten Die Studierenden können Aufgaben mit interdisziplinärem Charakter unter Einbezug der relevanten Akteure bearbeiten und lösen. Sie bearbeiten Fragestellungen unter Einbezug wirtschaftlicher und politischer Rahmenbedingungen. Sie können Ergebnisse zusammenfassen, deutschsprachige Texte und Berichte erarbeiten sowie in deutscher Sprache präsentieren und kommunizieren. - Praktikum Erneuerbare Energien - Fachübergreifende Projektarbeit - Fachübergreifendes, nichttechnisches Wahlfach
Pflichtmodule mit Wahlmöglichkeit z.B. Energie & Umwelt, Energiewirtschaft und -versorgung ...
... verfügen über Grundlagen einer verantwortliche und selbständige wissenschaftliche Arbeitsweise Die Studierenden können eigenverantwortlich anspruchsvolle Fragestellungen bearbeiten und auf andere Bereiche übertragen. Sie verfügen über grundlegende wissenschaftliche Methoden bei der grundlagenorientierten Problemlösung - Praktikum Erneuerbare Energien - Fachübergreifende Projektarbeit Bachelorarbeit einschl. Seminarvortrag
100 Basismodule

Zugeordnete Module:

11150 Experimentalphysik mit Praktikum
13650 Höhere Mathematik 3 für Ingenieurstudiengänge
16770 Werkstoffmechanik
31740 Numerische Grundlagen
45810 Höhere Mathematik 1 / 2 für Ingenieurstudiengänge
Modul: 11150 Experimentalphysik mit Praktikum

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>081700010</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>5.0</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>2 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Michael Jetter</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Arthur Grupp
• Michael Jetter |
➞ Basismodule
B.Sc. Erneuerbare Energien, PO 2011, 1. Semester
➞ Basismodule |
| 11. Empfohlene Voraussetzungen: | Vorlesung: -
Praktikum: bestandene Scheinklausur der Vorlesung |
Praktikum: Anwendung physikalischer Grundgesetze auf einfache experimentelle Problemstellungen |
| 13. Inhalt: | Vorlesung
• Mechanik: Newtonsche Mechanik, Bezugssysteme, Erhaltungssätze, Dynamik starrer Körper, Strömungsmechanik
• Schwingungen und Wellen: Frei, gekoppelte, gedämpfte und erzwungene Schwingungen, mechanische, akustische und elektromagnetische Wellen
• Elektrodynamik: Grundbegriffe der Elektro- und Magnetostatik, Elektrischer Strom, Induktion, Kräfte und Momente in elektrischen und magnetischen Feldern
• Optik: Strahlenoptik und Grundzüge der Wellenoptik
Praktikum: Grundbegriffe, translatorische Dynamik starrer Körper, Erhaltungssätze, Bezugssysteme
• Elektrodynamik: Grundbegriffe der Elektrik, Kräfte und Drehmomente in elektrischen und magnetischen Feldern, Induktion, Gleich- und Wechselströme und deren Beschreibung in Schaltkreisen
• Schwingungen und Wellen: Freie, gekoppelte und erzwungene Schwingungen, mechanische, akustische und elektromagnetische Wellen
• Wellenoptik: Lichtwellen und deren Wechselwirkung mit Materie
• Strahlenoptik: Bauelemente und optische Geräte |
| 14. Literatur: | • Dobrinski, Krakau, Vogel; Physik für Ingenieure; Teubner Verlag
• Demtröder, Wolfgang; Experimentalphysik Bände 1 und 2; Springer Verlag
• Paus, Hans J.; Physik in Experimenten und Beispielen; Hanser Verlag
• Halliday, Resnick, Walker; Physik; Wiley-VCH
• Bergmann-Schaefer; Lehrbuch der Experimentalphysik; De Gruyter |
15. Lehrveranstaltungen und -formen:
• 111501 Vorlesung Experimentalphysik mit Physikpraktikum
• 111502 Praktikum Experimentalphysik mit Physikpraktikum

16. Abschätzung Arbeitsaufwand:

<table>
<thead>
<tr>
<th></th>
<th>Vorlesung:</th>
<th>Praktikum:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzzeit:</td>
<td>2 h x 14 Wochen</td>
<td>3 Versuche x 3 h</td>
</tr>
<tr>
<td>Abschlussklausur inkl. Vorbereitung:</td>
<td>28 h</td>
<td>9 h</td>
</tr>
<tr>
<td>Vor- und Nachbereitung:</td>
<td>32 h</td>
<td>21 h</td>
</tr>
</tbody>
</table>

Gesamt: 90 h

17. Prüfungsnummer/n und -name:
• 11151 Experimentalphysik (Klausur) (USL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0
• 11152 Experimentalphysik (Praktikum) (USL), Sonstiges, bestandene Klausur ist Zulassungsvoraussetzung
• V Vorleistung (USL-V), schriftlich, eventuell mündlich

18. Grundlage für ...:

19. Medienform:
Vorlesung: Tablet-PC, Beamer,
Praktikum: -

20. Angeboten von:
Modul: 45810 Höhere Mathematik 1 / 2 für Ingenieurstudiengänge

2. Modulkürzel: 080410501x
3. Leistungspunkte: 18.0 LP
4. SWS: 14.0
5. Moduldauer: 2 Semester
7. Sprache: Deutsch
8. Modulverantwortlicher: Apl. Prof. Markus Stroppel
9. Dozenten: Markus Stroppel
10. Zuordnung zum Curriculum in diesem Studiengang:
 - B.Sc. Erneuerbare Energien, PO 2009 ➔ Basismodule
 - B.Sc. Erneuerbare Energien, PO 2011 ➔ Basismodule
11. Empfohlene Voraussetzungen: Hochschulreife, Schulstoff in Mathematik
12. Lernziele:
 - verfügen über grundlegende Kenntnisse der Linearen Algebra, der Differential- und Integralrechnung für Funktionen einer reellen Veränderlichen und der Differentialrechnung für Funktionen mehrerer Veränderlicher,
 - sind in der Lage, die behandelten Methoden selbstständig sicher, kritisch und kreativ anzuwenden
 - besitzen die mathematische Grundlage für das Verständnis quantitativer Modelle aus den Ingenieurwissenschaften.
 - können sich mit Spezialisten aus dem ingenieurs- und naturwissenschaftlichen Umfeld über die benutzten mathematischen Methoden verständigen.
13. Inhalt:
 Lineare Algebra:
 Vektorrechnung, komplexe Zahlen, Matrizenalgebra, lineare Abbildungen, Bewegungen, Determinanten, Eigenwerttheorie, Quadriken

 Differential- und Integralrechnung für Funktionen einer Veränderlichen:
 Konvergenz, Reihen, Potenzreihen, Stetigkeit, Differenzierbarkeit, höhere Ableitungen, Taylor-Formel, Extremwerte, Kurvendiskussion, Stammfunktion, partielle Integration, Substitution, Integration rationaler Funktionen, bestimmtes (Riemann-)Integral, uneigentliche Integrale.

 Differentialrechnung
 Folgen/Stetigkeit in reellen Vektorräumen, partielle Ableitungen, Kettenregel, Gradient und Richtungsableitungen, Tangentialebene, Taylor-Formel, Extrema (auch unter Nebenbedingungen), Sattelpunkte, Vektorfelder, Rotation, Divergenz.

 Kurvenintegrale:
 Bogenlänge, Arbeitsintegral, Potential

14. Literatur:
 - A. Hoffmann, B. Marx, W. Vogt: Mathematik
15. Lehrveranstaltungen und -formen:
- 458101 Vorlesung HM 1/2 für Ingenieurstudiengänge
- 458102 Gruppenübungen HM 1/2 für Ingenieurstudiengänge
- 458103 Vortragsübungen HM 1/2 für Ingenieurstudiengänge

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 196 h
Selbststudiumszeit / Nacharbeitszeit: 344 h
Gesamt: 540 h

17. Prüfungsnummer/n und -name:
- 45811 Höhere Mathematik 1 / 2 für Ingenieurstudiengänge (PL), schriftliche Prüfung, 180 Min., Gewichtung: 1.0
- **V** Vorleistung (USL-V), schriftlich, eventuell mündlich, unbenotete Prüfungsverleistungen:HM 1/2 für Ingenieurstudiengänge: schriftliche Hausaufgaben, Scheinklausuren Für Studierende, in deren Studiengang die HM 1/2 für Ingenieurstudiengänge die Orientierungsprüfung darstellt, genügt ein Schein aus einem der beiden Semester, wenn im 3. Fachsemester keine Möglichkeit zum Nachholen des fehlenden Scheins bestand.

18. **Grundlage für ...:**

19. Medienform:
Beamer, Tafel, persönliche Interaktion

20. Angeboten von:
Mathematik und Physik
Modul: 13650 Höhere Mathematik 3 für Ingenieurstudiengänge

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>080410503</th>
<th>5. Modulduauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>6.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Apl. Prof. Markus Stroppel

9. Dozenten:

10. Zuordnung zum Curriculum in diesem Studiengang:

| → Basismodule | → Basismodule |

11. Empfohlene Voraussetzungen: HM 1 / 2

12. Lernziele:

Die Studierenden

- verfügen über grundlegende Kenntnisse der Integralrechnung für Funktionen mehrerer Veränderlicher, Gewöhnliche Differentialgleichungen, Fourierreihen.
- sind in der Lage, die behandelten Methoden selbständig, sicher, kritisch und kreativ anzuwenden.
- besitzen die mathematische Grundlage für das Verständnis quantitativer Modelle aus den Ingenieurwissenschaften.
- können sich mit Spezialisten aus dem ingenieurs- und naturwissenschaftlichen Umfeld über die benutzten mathematischen Methoden verständigen.

13. Inhalt:

- **Integralrechnung für Funktionen von mehreren Veränderlichen:** Gebietsintegrale, iterierte Integrale, Transformationssätze, Guldinsche Regeln, Integralätze von Stokes und Gauß
- **Lineare Differentialgleichungen beliebiger Ordnung und Systeme linearer Differentialgleichungen 1. Ordnung (jeweils mit konstanten Koeffizienten):** Fundamentalsystem, spezielle und allgemeine Lösung.
- **Gewöhnliche Differentialgleichungen:** Existenz- und Eindeutigkeitssätze, einige integrierbare Typen, lineare Differentialgleichungen beliebiger Ordnung (mit konstanten Koeffizienten), Anwendungen.
- **Aspekte der Fourierreihen und der partiellen Differentialgleichungen:** Darstellung von Funktionen durch Fourierreihen, Klassifikation partieller Differentialgleichungen, Beispiele, Lösungsansätze (Separation).

14. Literatur:

- K. Meyberg, P. Vachenauer: Höhere Mathematik 1, 2. Springer.

Mathematik Online:

www.mathematik-online.org
15. Lehrveranstaltungen und -formen:
• 136501 Vorlesung HM 3 f. Bau etc.
• 136502 Gruppenübungen HM3 für bau etc.
• 136503 Vortragsübungen HM 3 für bau etc.

16. Abschätzung Arbeitsaufwand:
| Präsenzzzeit: 84 h |
| Selbststudiumszeit / Nacharbeitszeit: 96 h |
| **Gesamt:** 180 h |

17. Prüfungsnummer/n und -name:
• 13651 Höhere Mathematik 3 für Ingenieurstudiengänge (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0, unbenotete Prüfungsvorleistung: schriftliche Hausaufgaben/ Scheinklausuren,
• V Vorleistung (USL-V), schriftlich, eventuell mündlich

18. Grundlage für ... :

19. Medienform:
Beamer, Tafel, persönliche Interaktion

20. Angeboten von:
Mathematik und Physik
Modul: 31740 Numerische Grundlagen

2. Modulkürzel: 080310505
5. Modulduer: 1 Semester
3. Leistungspunkte: 3.0 LP
6. Turnus: jedes 2. Semester, SoSe
4. SWS: 3.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Christian Rohde

9. Dozenten:
- Christian Rohde
- Bernard Haasdonk
- Kunibert Gregor Siebert
- Klaus Höllig

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Erneuerbare Energien, PO 2011, 4. Semester → Basismodule

11. Empfohlene Voraussetzungen:
Höhere Mathematik 1-3

12. Lernziele:
- Die Studierenden haben Kenntnisse über die wesentlichen Grundlagen der numerischen Mathematik erworben.
- Sie sind in der Lage, die erlernten Grundlagen selbständig anzuwenden (z.B. durch rechnergestützte Lösung numerischer Problemstellungen).
- Sie besitzen die notwendigen Grundlagen zur Anwendung quantitativer ingenieurwissenschaftlicher Modelle.

13. Inhalt:
Numerische Lösung linearer Gleichungssysteme mit direkten und iterativen Methoden, numerische Lösung nichtlinearer Gleichungssysteme, Quadraturverfahren, approximative Lösung gewöhnlicher Anfangswertprobleme. Wahlweise: Approximation und Interpolation, Finite-Differenzen Methode und/oder Finite-Element Methode

14. Literatur:
- MATLAB/Simulink-Skript, RRZN Hannover.

Mathematik Online:
- www.mathematik-online.org

15. Lehrveranstaltungen und -formen:
- 317401 Vorlesung Numerische Grundlagen
- 317402 Vortragsübung Numerische Grundlagen

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 31,5 h
- Selbststudium / Nacharbeitszeit: 58,5 h
- Gesamt: 90 h

17. Prüfungsnummer/n und -name:
31741 Numerische Grundlagen (BSL), Sonstiges, 90 Min., Gewichtung: 1,0, Während der Vorlesungszeit finden Online-Tests statt. In der vorlesungsfreien Zeit findet eine 90 Min. schriftliche Prüfung statt. Die BSL setzt aus 10% Testnote und 90% Prüfungsnote zusammen.

18. Grundlage für ...

19. Medienform:
- Beamer, Tafel, persönliche Interaktion, ILIAS, ViPLab

20. Angeboten von:
- Mathematik und Physik
Modul: 16770 Werkstoffmechanik

4. SWS: 4.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Michael Seidenfuß
9. Dozenten: Michael Seidenfuß

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Erneuerbare Energien, PO 2009, 1. Semester → Basismodule
 B.Sc. Erneuerbare Energien, PO 2011, 1. Semester → Basismodule

11. Empfohlene Voraussetzungen: Keine

12. Lernziele:

13. Inhalt:
 1. Werkstoffkundliche Grundlagen
 • Aufbau kristalliner Festkörper
 • Legierungsbildung
 • Thermisch aktivierte Vorgänge
 • Verfestigungsmechanismen
 2. Werkstoffprüfung
 • Zugversuch, Härteprüfung, Wöhlerversuch, Kriechversuch, Kerbschlagbiegeversuch, Metallographie
 3. Werkstoffgruppen
 • Metalle
 • Polymere
 • Keramiken
 • Verbundwerkstoffe
 • Funktionswerkstoffe
 4. Umgebungseinflüsse
 5. Festigkeitsberechnung und Werkstoffgesetze
 • Spannungszustand
 • Verformungszustand
 • Grundbelastungsfälle
 • Festigkeitshypothesen
 • Nicht-linearelastisches Werkstoffverhalten
 • Sicherheitsnachweis

14. Literatur:
 I: Lehrbuch “Werkstoffkunde für Ingenieure” (Roos Eberhard, Maile Karl, Springer Verlag)
II: Lehrbuch "Einführung in die Festigkeitslehre" (Herbert Dietmann, Alfred Kröner Verlag),

III: Manuskript zur Vorlesung und ergänzende Folien im Internet

| 15. Lehrveranstaltungen und -formen: | • 167701 Vorlesung Werkstoffmechanik I
| | • 167702 Vorlesung Werkstoffmechanik II |

| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 42 h
| | Selbststudiumszeit / Nacharbeitszeit: 138 h
| | Gesamt: 180 h

| 17. Prüfungsnummer/n und -name: | 16771 Werkstoffmechanik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0 |

| 18. Grundlage für ... : |

| 19. Medienform: | • Lehrbuch und Manuskript
| | • PPT-Präsentationen
| | • Interaktive Medien
| | • Online verfügbare Zusatzmaterialien

| 20. Angeboten von: | Institut für Materialprüfung, Werkstoffkunde und Festigkeitslehre |
200 Kernmodule

Zugeordnete Module:

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
</tr>
</thead>
<tbody>
<tr>
<td>11140</td>
<td>Konstruktionslehre I (EE)</td>
</tr>
<tr>
<td>11500</td>
<td>Elektrische Energietechnik</td>
</tr>
<tr>
<td>11530</td>
<td>Einführung Erneuerbare Energien</td>
</tr>
<tr>
<td>11600</td>
<td>Praktikum Erneuerbare Energien</td>
</tr>
<tr>
<td>12210</td>
<td>Einführung in die Elektrotechnik</td>
</tr>
<tr>
<td>19430</td>
<td>Technische Mechanik 1 (LRT, EE)</td>
</tr>
<tr>
<td>201</td>
<td>Elektrische Energiesysteme</td>
</tr>
<tr>
<td>202</td>
<td>Thermische Energiesysteme</td>
</tr>
<tr>
<td>203</td>
<td>Kinetische Energiesysteme</td>
</tr>
<tr>
<td>38540</td>
<td>Technische Thermodynamik I + II</td>
</tr>
<tr>
<td>39670</td>
<td>Technische Mechanik 2 (EE)</td>
</tr>
</tbody>
</table>
201 Elektrische Energiesysteme

Zugeordnete Module:

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
</tr>
</thead>
<tbody>
<tr>
<td>11540</td>
<td>Regelungstechnik I</td>
</tr>
<tr>
<td>11550</td>
<td>Leistungselektronik I</td>
</tr>
<tr>
<td>11560</td>
<td>Elektrische Energienetze I</td>
</tr>
<tr>
<td>11580</td>
<td>Elektrische Maschinen I</td>
</tr>
<tr>
<td>11590</td>
<td>Photovoltaik I</td>
</tr>
<tr>
<td>12420</td>
<td>Windenergie 1 - Grundlagen Windenergie</td>
</tr>
</tbody>
</table>
Modul: 11560 Elektrische Energienetze I

2. Modulkürzel: 050310001

5. Moduldauer: 1 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0

7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Stefan Tenbohlen

9. Dozenten: Stefan Tenbohlen

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Erneuerbare Energien, PO 2009, 5. Semester
→ Ergänzungsmodule -->Erweiterte Grundlagen

B.Sc. Erneuerbare Energien, PO 2009, 5. Semester
→ Kernmodule -->Elektrische Energiesysteme

B.Sc. Erneuerbare Energien, PO 2011, 5. Semester
→ Ergänzungsmodule -->Erweiterte Grundlagen

B.Sc. Erneuerbare Energien, PO 2011, 5. Semester
→ Kernmodule -->Elektrische Energiesysteme

B.Sc. Erneuerbare Energien, PO 2011, 5. Semester
→ Vorgezogene Master-Module

11. Empfohlene Voraussetzungen:
• Elektrische Energietechnik

12. Lernziele:

13. Inhalt:
• Aufgaben des elektrischen Energienetzes, Smart Grids
• Einpolige Ersatzschaltungen der Betriebselemente für symmetrische Betriebsweise
• Berechnung von Energieübertragungsanlagen und -netzen
• Betrieb elektrischer Energieversorgungsnetze
• Kurzschlussströme bei symmetrischem Kurzschluss
• Symmetrische Komponenten

14. Literatur:
• Oeding, Oswald: Elektrische Kraftwerke und Netze Springer-Verlag, 6. Aufl., 2004
• Heuck, Dettmann: Elektrische Energieversorgung Vieweg, Braunschweig/Wiesbaden, 6. Aufl., 2005
• Schwab: Elektroenergiesysteme, Springer-Verlag, 1. Aufl., 2006

15. Lehrveranstaltungen und -formen:
• 115601 Vorlesung Elektrische Energienetze 1
• 115602 Übung Elektrische Energienetze 1

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 56 h
Selbststudium/Nacharbeitszeit: 124 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
11561 Elektrische Energienetze I (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0
<table>
<thead>
<tr>
<th>18. Grundlage für ... :</th>
<th>21760 Elektrische Energienetze II</th>
</tr>
</thead>
<tbody>
<tr>
<td>19. Medienform:</td>
<td>PowerPoint, Tafelanschrieb</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Institut für Energieübertragung und Hochspannungstechnik</td>
</tr>
</tbody>
</table>
Modul: 11580 Elektrische Maschinen I

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>052601011</th>
<th>5. Modulduer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Nejila Parspour</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Nejila Parspour</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- B.Sc. Erneuerbare Energien, PO 2009, 5. Semester
 - Ergänzungsmodule --> Erweiterte Grundlagen

- B.Sc. Erneuerbare Energien, PO 2009, 5. Semester
 - Kernmodule --> Elektrische Energiesysteme

- B.Sc. Erneuerbare Energien, PO 2009, 5. Semester
 - Kernmodule --> Kinetische Energiesysteme

- B.Sc. Erneuerbare Energien, PO 2011, 5. Semester
 - Ergänzungsmodule --> Erweiterte Grundlagen

- B.Sc. Erneuerbare Energien, PO 2011, 5. Semester
 - Kernmodule --> Elektrische Energiesysteme

- B.Sc. Erneuerbare Energien, PO 2011, 5. Semester
 - Kernmodule --> Kinetische Energiesysteme

- B.Sc. Erneuerbare Energien, PO 2011, 5. Semester
 - Vorgezogene Master-Module

11. Empfohlene Voraussetzungen:

- Studierende kennen den Aufbau und die Funktionsweise von Gleichstrom-, Synchron und Asynchronmaschine. Sie kennen die Berechnung magnetischer Kreise.

13. Inhalt:

- Magnetismus und Grundlagen der magnetischen Kreise
- Antriebstechnische Zusammenhänge
- Verluste in elektrischen Maschinen
- Behandelte Maschinentypen:

 1) **Synchronmaschine**: Aufbau und Funktion, Ersatzschaltbilder, Energiefluss, mathematische Zusammenhänge, Kennlinien, vollständiges Ersatzschaltbild, Drehzahlstellverfahren, Brems- und Anlaufverfahren, Einführung in das rotorfussorientierte dynamische Model, Bauformen und Einsatzgebiete

 2) **Asynchronmaschine**: Aufbau und Funktion, Ersatzschaltbild, Energiefluss, mathematische Zusammenhänge, Kennlinien, Drehzahlstellverfahren, Brems- und Anlaufverfahren, Bauformen und Einsatzgebiete

 3) **Gleichstrommaschine**: Aufbau und Funktion, Ersatzschaltbilder, mathematische Zusammenhänge, Kennlinien, Drehzahlstellverfahren, Brems- und Anlaufverfahren, Bauformen und Einsatzgebiete
14. Literatur:

- Seinsch, H. O.: Grundlagen elektrischer Maschinen und Antriebe; B.G. Teubner, Stuttgart, 1988
- Richter, Rudolf: Elektrische Maschinen; Verlag von Julius Springer, Berlin, 1936

15. Lehrveranstaltungen und -formen:

- 115801 Vorlesung Elektrische Maschinen I
- 115802 Übung Elektrische Maschinen I

16. Abschätzung Arbeitsaufwand:

Präsenzzeit:	56 h
Selbststudium/Nacharbeitszeit:	124 h
Summe:	180 h

17. Prüfungsnummer/n und -name:

- 11581 Elektrische Maschinen I (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

- 21690 Elektrische Maschinen II

19. Medienform:

- Beamer, Tafel, ILIAS

20. Angeboten von:

- Institut für Elektrische Energiewandlung
Modul: 11550 Leistungselektronik I

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>051010011</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modulduer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Jörg Roth-Stielow</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Jörg Roth-Stielow</td>
</tr>
</tbody>
</table>
B.Sc. Erneuerbare Energien, PO 2009, 5. Semester → Kernmodule --> Elektrische Energiesysteme
B.Sc. Erneuerbare Energien, PO 2011, 5. Semester → Ergänzungsmodule --> Erweiterte Grundlagen
B.Sc. Erneuerbare Energien, PO 2011, 5. Semester → Kernmodule --> Elektrische Energiesysteme
B.Sc. Erneuerbare Energien, PO 2011, 5. Semester → Vorgezogene Master-Module |
| 11. Empfohlene Voraussetzungen: | Studierende... |
| 12. Lernziele: | • ...kennen die wichtigsten potentialverbindenden und potentialtrennenden Schaltungen der Leistungselektronik mit abschaltbaren Ventilen und die zugehörigen Modulationsverfahren.
• ...können diese Anordnungen mathematisch beschreiben und Aufgabenstellungen lösen.
• ...kennen die grundlegenden Prinzipien der Meßverfahren für Mischströme. |
| 13. Inhalt: | • Abschaltbare Leistungshalbleiter
• Schaltungstypologien potentialverbindender Stellglieder
• Schaltungstypologien potentialtrennender Gleichstromsteller
• Modulationsverfahren
• Strommeßtechnik in der Leistungselektronik |
• Mohan, Ned: Power Electronics, John Wiley & Sons, Inc., 2003 |
| 15. Lehrveranstaltungen und -formen: | • 115501 Vorlesung Leistungselektronik I
• 115502 Übung Leistungselektronik I |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 56 h
Selbststudium: 124 h
Gesamt: 180 h |
| 17. Prüfungsnummer/n und -name: | 11551 Leistungselektronik I (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0 |
| 18. Grundlage für ...: | }
19. Medienform: Tafel, Folien, Beamer

20. Angeboten von: Institut für Leistungselektronik und Elektrische Antriebe
Modul: 11590 Photovoltaik I

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050513002</th>
<th>5. Modulduauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Jürgen Heinz Werner
9. Dozenten: Jürgen Heinz Werner

10. Zuordnung zum Curriculum in diesem Studiengang:

| B.Sc. Erneuerbare Energien, PO 2009, 4. Semester |
| Kernmodule --> Elektrische Energiesysteme |
| Kernmodule --> Energiewandlung und -anwendung |
| Kernmodule --> Elektrische Energiesysteme |

| B.Sc. Erneuerbare Energien, PO 2011, 4. Semester |
| Kernmodule --> Energiewandlung und -anwendung |

| B.Sc. Erneuerbare Energien, PO 2011, 4. Semester |
| Kernmodule --> Elektrische Energiesysteme |

| B.Sc. Erneuerbare Energien, PO 2011, 4. Semester |
| Vorgezogene Master-Module |

11. Empfohlene Voraussetzungen: Grundkenntnisse über Halbleitermaterialien und Halbleiterdioden, z.B. aus "Mikroelektronik I"

12. Lernziele:

- das Potential der Sonnenstrahlung
- die Funktionsweise von Solarzellen
- die wichtigsten Technologien der Herstellung von Solarmodulen
- die Grundprinzipien von Wechselrichtern
- die Energieerträge verschiedener Photovoltaik-Technologien
- den aktuellen Stand des Photovoltaikmarktes und der Kosten von Photovoltaik-Strom

13. Inhalt:

- Der photovoltaische Effekt
- Sonnenleistung und Energieumsätze in Deutschland
- Maximaler Wirkungsgrad von Solarzellen
- Grundprinzip von Solarzellen
- Ersatzschaltbilder von Solarzellen
- Photovoltaik-Materialien und -technologien
- Modultechnik- Erträge von Photovoltaik-Systemen
- Photovoltaik-Markt

14. Literatur:

- Goetzberger, Voß, Knobloch, Sonnenenergie: Photovoltaik, Teubner, 1994
- P. Würfel, Physik der Solarzellen, Spektrum, 1995
- M. A. Green, Solar Cells - Operating Principles, Technology and System Applications, Centre for Photovoltaic Devices and Systems, Sydney, 1986
- F. Staiß, Photovoltaik - Technik, Potentiale und Perspektiven der solaren Stromerzeugung, Vieweg, 1996

15. Lehrveranstaltungen und -formen:

- 115901 Vorlesung Photovoltaik I
- 115902 Übungen Photovoltaik I
16. Abschätzung Arbeitsaufwand: Präsenzzeit: 56 h
Selbststudium/Nacharbeitszeit: 142 h
Gesamt: 180 h

17. Prüfungsziffer/n und -name: 11591 Photovoltaik I (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0

18. Grundlage für ... : 21930 Photovoltaik II

19. Medienform: Powerpoint, Tafel

20. Angeboten von: Institut für Photovoltaik
Modul: 11540 Regelungstechnik I

2. Modulkürzel: 051010012
5. Moduldauer: 1 Semester

3. Leistungspunkte: 6.0 LP
6. Turnus: jedes 2. Semester, SoSe

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Jörg Roth-Stielow
9. Dozenten: Jörg Roth-Stielow

10. Zuordnung zum Curriculum in diesem Studiengang:

 B.Sc. Erneuerbare Energien, PO 2009, 6. Semester
 → Ergänzungsmodule --> Erweiterte Grundlagen
 →

 B.Sc. Erneuerbare Energien, PO 2009, 6. Semester
 → Kernmodule --> Elektrische Energiesysteme
 →

 B.Sc. Erneuerbare Energien, PO 2009, 6. Semester
 → Kernmodule --> Kinetische Energiesysteme
 →

 B.Sc. Erneuerbare Energien, PO 2011, 6. Semester
 → Kernmodule --> Elektrische Energiesysteme
 →

11. Empfohlene Voraussetzungen:

12. Lernziele:

 Studierende...
 • ...können eine Regelstrecke modellieren und kennen die wichtigsten Regelsysteme.
 • ...können diese Anordnungen mathematisch beschreiben, hinsichtlich ihrer Stabilität beurteilen und Aufgabenstellungen lösen.

13. Inhalt:

 • Beschreibung von Übertragungsstrecken
 • Stabilität von Regelsystemen
 • Herkömmliche Regelsysteme
 • Regelsysteme mit Rückführung eines vollständigen Satzes von Zustandsvariablen
 • Echtes Integralverhalten
 • Beobachter
 • Systemführung nach dem Prinzip unterlagerter Schleifen
 • Systeme mit einem Wechsel der Regelgröße

14. Literatur:

 • Lunze, Jan: Regelungstechnik 1 Springer, Berlin, 1999
 • Unbehauen, H.: Regelungstechnik 1, Vieweg, Braunschweig, 1989
 • Leonhard, W.: Einführung in die Regelungstechnik, Vieweg, Braunschweig, 1992

15. Lehrveranstaltungen und -formen:

 • 115401 Vorlesung Regelungstechnik I
 • 115402 Übung Regelungstechnik I

16. Abschätzung Arbeitsaufwand:

 Präsenzzeit: 56 h
 Selbststudium: 124 h

 Gesamt: 180 h

17. Prüfungsnummer/n und -name:

 11541 Regelungstechnik I (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0
<table>
<thead>
<tr>
<th>18. Grundlage für ...</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>19. Medienform:</td>
<td>Tafel, Folien, Beamer</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Institut für Leistungselektronik und Elektrische Antriebe</td>
</tr>
</tbody>
</table>
Modul: 12420 Windenergie 1 - Grundlagen Windenergie

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>060320011</th>
<th>5. Modulduauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Po Wen Cheng

9. Dozenten: Po Wen Cheng

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>B.Sc. Erneuerbare Energien, PO 2009, 4. Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>→ Ergänzungsmodule -->Energiewandlung und -anwendung</td>
</tr>
<tr>
<td>→ B.Sc. Erneuerbare Energien, PO 2009, 4. Semester</td>
</tr>
<tr>
<td>→ Kernmodule -->Elektrische Energiesysteme</td>
</tr>
<tr>
<td>→ B.Sc. Erneuerbare Energien, PO 2009, 4. Semester</td>
</tr>
<tr>
<td>→ Kernmodule -->Kinetische Energiesysteme</td>
</tr>
<tr>
<td>→ B.Sc. Erneuerbare Energien, PO 2011, 4. Semester</td>
</tr>
<tr>
<td>→ Ergänzungsmodule -->Energiewandlung und -anwendung</td>
</tr>
<tr>
<td>→ B.Sc. Erneuerbare Energien, PO 2011, 4. Semester</td>
</tr>
<tr>
<td>→ Kernmodule -->Elektrische Energiesysteme</td>
</tr>
<tr>
<td>→ B.Sc. Erneuerbare Energien, PO 2011, 4. Semester</td>
</tr>
<tr>
<td>→ Kernmodule -->Kinetische Energiesysteme</td>
</tr>
<tr>
<td>→ B.Sc. Erneuerbare Energien, PO 2011, 4. Semester</td>
</tr>
<tr>
<td>→ Vorgezogene Master-Module</td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen: Technische Mechanik I

12. Lernziele:

- Die Studierenden erlangen Kenntnisse über die Grundlagen der Windenergie, insbesondere über die physikalischen und technischen Prinzipien bei modernen Windenergieanlagen.
- Die Studierenden sind dabei in der Lage einfache physikalische Grundgleichungen und Zusammenhänge herzuleiten und ihre Bedeutung in Bezug auf die Nutzung von Windenergie zu verstehen sowie zu erklären.
- Ausgehend vom Verständnis der einzelnen Teildisziplinen (Aerodynamik, Strukturdynamik, Elektrotechnik etc.) können die Studierenden den Aufbau und die Funktionsweise des Gesamtsystems Windenergieanlage erläutern und auf ausgewählten Gebieten elementare Auslegungs- und Entwurfsberechnungen durchführen.
- Nach Abschluss der Lehrveranstaltung haben die Studierenden die wesentlichen Kompetenzen aufgebaut, die sie befähigen sich in Spezialgebiete im Bereich Windenergie (Komponentenauslegung, Modellierung und Simulation, Windparkplanung etc.) einzuarbeiten.

13. Inhalt:

- **Vorlesung**
 Einleitung, Historie und Potenziale; Beschreibung und Charakterisierung des Windes; Ertragsberechnung; Windmessung; Aerodynamische Grundlagen: Impulsstheorie, Tragflügeltheorie, Blattauslegung nach Betz und Schmitz; Kennlinien; Typologien; Modellgesetze und Ähnlichkeitsregeln; Struktur dynamik; Konstruktiver Aufbau; Elektrisches System; Betriebsführung und Regelungstechnik.
14. Literatur:
- Vorlesungsunterlagen des Lehrstuhls (PowerPoint-Folien)
- R. Gasch und J. Twele, "Windkraftanlagen"

15. Lehrveranstaltungen und -formen:
- 124201 Vorlesung Windenergienutzung I
- 124202 Übung Windenergienutzung I

16. Abschätzung Arbeitsaufwand:
- Vorlesung: Präsenzzeit 28 Stunden, Selbststudium 62 Stunden
- Übung: Präsenzzeit 8 Stunden, Selbststudium 74 Stunden
- Windkanalversuch: Präsenzzeit 3 Stunden, Versuchsauwertung 5 Stunden

Summe: 180 Stunden

17. Prüfungsnummer/n und -name:
12421 Windenergie 1 - Grundlagen Windenergie (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0, Das Versuchsprotokoll während des Semesters ist Voraussetzung für die Teilnahme an der Prüfung. Die Prüfung umfasst einen Fragenteil (20min) und einen Rechenteil (70min).

18. Grundlage für ...:
- 30880 Windenergie 3 - Entwurf von Windenergieanlagen
- 30890 Windenergie 4 - Windenergie-Projekt

19. Medienform:
- PowerPoint, Tafelanschrieb

20. Angeboten von:
- Lehrstuhl Windenergie
202 Thermische Energiesysteme

Zugeordnete Module:
12430 Solarthermie
12440 Einführung in die energetische Nutzung von Biomasse
13750 Technische Strömungslehre
13780 Regelungs- und Steuerungstechnik
13830 Grundlagen der Wärmeübertragung
14090 Grundlagen Technischer Verbrennungsvorgänge I + II
Modul: 12440 Einführung in die energetische Nutzung von Biomasse

2. Modulkürzel: 042500002
5. Moduldauer: 1 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Günter Scheffknecht

9. Dozenten: • Günter Scheffknecht
• Ludger Eltrop
• Uwe Schnell

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Erneuerbare Energien, PO 2009, 5. Semester
→ Ergänzungsmodule -->Energiewandlung und -anwendung

B.Sc. Erneuerbare Energien, PO 2009, 5. Semester
→ Kernmodule -->Thermische Energiesysteme

B.Sc. Erneuerbare Energien, PO 2011, 5. Semester
→ Ergänzungsmodule -->Energiewandlung und -anwendung

B.Sc. Erneuerbare Energien, PO 2011, 5. Semester
→ Kernmodule -->Thermische Energiesysteme

B.Sc. Erneuerbare Energien, PO 2011, 5. Semester
→ Vorgezogene Master-Module

11. Empfohlene Voraussetzungen:

12. Lernziele:

13. Inhalt:

I: Bereitstellung von biogenen Energieträgern

• Biologische und verfahrenstechnische Grundlagen zur Produktion und Bereitstellung von Biomasse als Brennstoff zur energetischen Nutzung,

• technisch-wirtschaftliche Entwicklungsperspektiven und ökologische Auswirkungen

• Einordnung der systemanalytischen und energiewirtschaftlichen Zusammenhänge

• Rahmenbedingungen einer Nutzung in Energiesystem

• Einführung in physikalisch-chemische und biochemische Umwandlungsverfahren

II: Energetische Nutzung von Biomasse

• Brennstofftechnische Charakterisierung von Biomasse
• Einführung in Verbrennungs- und Vergasungstechnologien sowie die Fermentation
• Emissionsverhalten und Einführung in die Abgasreinigung
• Einführung in die Umwandlungsverfahren zur Erzeugung von Strom und/oder Wärme

14. Literatur:
• Vorlesungsmanuskript

15. Lehrveranstaltungen und -formen: 124401 Vorlesung und Übung Einführung in die energetische Nutzung von Biomasse

16. Abschätzung Arbeitsaufwand: Präsenzzeit: 56 h
Selbststudiumszeit / Nacharbeitszeit: 124 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name: 12441 Einführung in die energetische Nutzung von Biomasse (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform: PPT-Präsentationen, Skripte zu den Vorlesungen, Tafelanschrieb, ILIAS

20. Angeboten von: Institut für Feuerungs- und Kraftwerkstechnik
Modul: 14090 Grundlagen Technischer Verbrennungsvorgänge I + II

2. Modulkürzel: 040800010
5. Moduldaurer: 1 Semester

3. Leistungspunkte: 6.0 LP
6. Turnus: jedes 2. Semester, SoSe

4. SWS: 5.0
7. Sprache: Nach Ankuendigung

8. Modulverantwortlicher: Univ.-Prof. Andreas Kronenburg
9. Dozenten: Andreas Kronenburg

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Erneuerbare Energien, PO 2009, 5. Semester
➞ Ergänzungsmodul --> Erweiterte Grundlagen

B.Sc. Erneuerbare Energien, PO 2009, 5. Semester
➞ Kernmodule --> Thermische Energiesysteme

B.Sc. Erneuerbare Energien, PO 2011, 5. Semester
➞ Ergänzungsmodul --> Erweiterte Grundlagen

B.Sc. Erneuerbare Energien, PO 2011, 5. Semester
➞ Kernmodule --> Thermische Energiesysteme

B.Sc. Erneuerbare Energien, PO 2011, 5. Semester
➞ Vorgezogene Master-Module

11. Empfohlene Voraussetzungen:
Ingenieurwissenschaftliche und naturwissenschaftliche Grundlagen, Grundlagen in Maschinenbau, Verfahrenstechnik, Thermodynamik, Reaktionskinetik

12. Lernziele:
Die Studenten kennen die physikalisch-chemischen Grundlagen von Verbrennungsprozessen: Reaktionskinetik von fossilen und biogenen Brennstoffen, Flamenstrukturen (laminare und turbulente Flammen, vorgemischte und nicht-vorgemischte Flammen), Turbulenz-Chemie Wechselwirkungsmechanismen, Schadstoffbildung

13. Inhalt:
Grdlig. Technischer Verbrennungsvorgänge I & II (WiSe, Unterrichtssprache Deutsch):

• Erhaltungsgleichungen; Thermodynamik; molekularer Transport; chemische Reaktion; Reaktionsmechanismen; laminare vorgemischte und nicht-vorgemischte Flammen.
• Gestreckte Flamenstrukturen; Zündprozesse; Flamenstabilität; turbulente vorgemischte und nicht-vorgemischte Verbrennung; Schadstoffbildung; Spray-Verbrennung

An equivalent course is taught in English:

Combustion Fundamentals I & II (summer term only, taught in English):

• Transport equations; thermodynamics; fluid properties; chemical reactions; reaction mechanisms; laminar premixed and non-premixed combustion.
• Effects of stretch, strain and curvature on flame characteristics; ignition; stability; turbulent reacting flows; pollutants and their formation; spray combustion

14. Literatur:
• Vorlesungsmanuskript
15. Lehrveranstaltungen und -formen:

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung Grundlagen Technischer Verbrennungsvorgänge I + II</td>
<td>140901</td>
</tr>
<tr>
<td>Übung Grundlagen Technischer Verbrennungsvorgänge I + II</td>
<td>140902</td>
</tr>
</tbody>
</table>

16. Abschätzung Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Zeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzzeit</td>
<td>70 h</td>
</tr>
<tr>
<td>Selbststudiumszeit / Nacharbeitszeit</td>
<td>110 h</td>
</tr>
</tbody>
</table>

Gesamt: 180 h

17. Prüfungsnummer/n und -name:

<table>
<thead>
<tr>
<th>Prüfungsnummer/n</th>
<th>Name / Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>14091</td>
<td>Grundlagen Technischer Verbrennungsvorgänge I + II (PL), schriftlich, eventuell mündlich, 120 Min., Gewichtung: 1.0</td>
</tr>
</tbody>
</table>

19. Medienform:

- Tafelanschrieb
- PPT-Präsentationen
- Skripte zu den Vorlesungen

20. Angeboten von:

Institut für Technische Verbrennung
Modul: 13830 Grundlagen der Wärmeübertragung

2. Modulkürzel: 042410010 5. Moduldauer: 1 Semester
4. SWS: 4.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Apl. Prof. Klaus Spindler
9. Dozenten: Klaus Spindler

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Erneuerbare Energien, PO 2009, 5. Semester
 → Ergänzungs module --> Erweiterte Grundlagen
 →
 B.Sc. Erneuerbare Energien, PO 2009, 5. Semester
 → Kernmodule --> Thermische Energiesysteme
 →
 B.Sc. Erneuerbare Energien, PO 2011, 5. Semester
 → Ergänzungs module --> Erweiterte Grundlagen
 →
 B.Sc. Erneuerbare Energien, PO 2011, 5. Semester
 → Kernmodule --> Thermische Energiesysteme
 →

11. Empfohlene Voraussetzungen:
 • Technische Thermodynamik I/II
 • 1. u. 2 Hauptsatz, Bilanzierungen, Zustandsgrößen und Zustandsverhalten
 • Integral- und Differentialrechnung
 • Strömungslehre

12. Lernziele:

13. Inhalt:

14. Literatur:
15. Lehrveranstaltungen und -formen:
- 138301 Vorlesung Grundlagen der Wärmeübertragung
- 138302 Übung Grundlagen der Wärmeübertragung

16. Abschätzung Arbeitsaufwand:
| Präsenzeit: | 56 h |
| Selbststudium / Nacharbeitszeit: | 124 h |
| Gesamt: | 180 h |

17. Prüfungsnummer/n und -name:
- 13831 Grundlagen der Wärmeübertragung (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:
- Vorlesung als Powerpoint-Präsentation mit kleinen Beispielen zur Anwendung des Stoffes
- Folien auf Homepage verfügbar
- Übungen als Vortragsübungen mit Overhead-Anschrieb

20. Angeboten von:
Modul: 13780 Regelungs- und Steuerungstechnik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>074810070</th>
<th>5. Moduldaurer:</th>
<th>2 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Frank Allgöwer</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Frank Allgöwer
 • Christian Ebenbauer
 • Oliver Sawodny
 • Matthias Müller
 • Armin Lechler |
→ Ergänzungsmodule --> Erweiterte Grundlagen
→ B.Sc. Erneuerbare Energien, PO 2009, 4. Semester
→ Kernmodule --> Thermische Energiesysteme
→ B.Sc. Erneuerbare Energien, PO 2011, 4. Semester
→ Kernmodule --> Kinetische Energiesysteme
→ B.Sc. Erneuerbare Energien, PO 2011, 4. Semester
→ Kernmodule --> Thermische Energiesysteme
→ |
| 11. Empfohlene Voraussetzungen: | HM I-III |
| 12. Lernziele: | Die Studierenden
• können lineare dynamische Systeme analysieren,
• können lineare dynamische Systeme auf deren Struktureigenschaften untersuchen und Aussagen über mögliche Regelungs- und Steuerungskonzepte treffen,
• können einfache Regelungs- und Steuerungsaufgaben für lineare Systeme lösen. |
| 13. Inhalt: | Vorlesung „Systemdynamische Grundlagen der Regelungstechnik“:
Fourier-Reihe, Fourier-Transformation, Laplace-Transformation, Testsignale, Blockdiagramme, Zustandsraumdarstellung
Vorlesung „Einführung in die Regelungstechnik“:
Systemtheoretische Konzepte der Regelungstechnik, Stabilität (Nyquist-, Hurwitz- und Small-Gain-Kriterium,...), Beobachtbarkeit, Steuerbarkeit, Robustheit, Reglerentwurfsverfahren im Zeit- und Frequenzbereich (PID, Polvorgabe, Vorfilter,...), Beobachterentwurf
Vorlesung „Steuerungstechnik mit Antriebstechnik“:
Steuerungskonzepte (mechanisch, fluidisch, Kontaktsteuerung, SPS, Motion Control, Numerische Steuerung, Robotersteuerung, Leitsteuerung): Aufbau, Architektur, Funktionsweise, Programmierung, Darstellung und Lösung steuerungstechnischer Problemstellungen. Grundlagen der in der Automatisierungstechnik verwendeten Antriebssysteme |
Bemerkung 1: Es ist einer der beiden folgenden Blöcke zu wählen:

Block 1: "Systemdynamische Grundlagen der Regelungstechnik" und "Einführung in die Regelungstechnik"

Block 2: "Systemdynamische Grundlagen der Regelungstechnik" und "Steuerungstechnik mit Antriebstechnik"

Bemerkung 2 (Prüfungsanmeldung):

- Studierende der Erneuerbaren Energien müssen die Prüfung "Systemdynamische Grundlagen der Regelungstechnik" bei Univ.-Prof. Oliver Sawodny ablegen.
- Studierende anderer Studiengänge müssen die Prüfung "Systemdynamische Grundlagen der Regelungstechnik" bei Univ.-Prof. Christian Ebenbauer ablegen.

14. Literatur:

Vorlesung „Systemdynamische Grundlagen der Regelungstechnik“

- Föllinger, O.: Laplace-, Fourier- und z-Transformation. 7. Aufl., Hüthig Verlag 1999

Vorlesung „Einführung in die Regelungstechnik“

Vorlesung „Steuerungstechnik mit Antriebstechnik“

- Pritschow, G.: Einführung in die Steuerungstechnik, Carl Hanser Verlag, München, 2006

15. Lehrveranstaltungen und -formen:

- 137801 Vorlesung Systemdynamische Grundlagen der Regelungstechnik
- 137802 Vorlesung Einführung in die Regelungstechnik
- 137803 Vorlesung Steuerungstechnik mit Antriebstechnik

16. Abschätzung Arbeitsaufwand:

- Präsenzeit: 42h
- Selbststudium: 138h
- Gesamt: 180h

17. Prüfungsnummer/n und -name:

- 13781 Systemdynamische Grundlagen der Regelungstechnik (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0
- 13782 Einführung in die Regelungstechnik (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0
- 13783 Steuerungstechnik mit Antriebstechnik (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0, Ermittlung der Modulnote: Block 1: Systemdynamische Grundlagen der
Regelungstechnik 50% Einführung in die Regelungstechnik
50% Block 2: Systemdynamische Grundlagen der
Regelungstechnik 50% Steuerungstechnik mit Antriebstechnik
50%

18. Grundlage für ...:

19. Medienform:

20. Angeboten von:
Modul: 12430 Solarthermie

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>042410022</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Moduldauser:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Harald Drück</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Harald Drück</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Grundkenntnisse in Mathematik und Thermodynamik</td>
</tr>
</tbody>
</table>
| 12. Lernziele: | Erworbene Kompetenzen: Die Studierenden können
• die auf unterschiedlich orientierte Flächen auf der Erdoberfläche auftreffende Solarstrahlung berechnen
• kennen Methoden zur aktiven und passiven thermischen Solarenergienutzung im Niedertemperaturbereich
• kennen Anlagen und deren Komponenten zur Trinkwassererwärmung, Raumheizung und für industrielle Prozesswärme mittels Solarenergie
• kennen unterschiedliche Technologien zur Speicherung von Solarwärme. |
| 15. Lehrveranstaltungen und -formen: | • 124301 Vorlesung Solarthermie I
• 124302 Übungen mit Workshop Solarthermie I |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 48 h
Selbststudiumszeit / Nacharbeitzeit: 132 h
Gesamt: 180 h |
<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>12431 Solarthermie (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Vorlesung Powerpoint-Präsentation mit ergänzendem Tafel Anschrieb</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td></td>
</tr>
</tbody>
</table>
Modul: 13750 Technische Strömungslehre

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>042010001</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher:
Univ.-Prof. Stefan Riedelbauch

10. Zuordnung zum Curriculum in diesem Studiengang:
- B.Sc. Erneuerbare Energien, PO 2009, 4. Semester
 → Ergänzungsmodule -->Erweiterte Grundlagen
 → Kernmodule -->Kinetische Energiesysteme
- B.Sc. Erneuerbare Energien, PO 2009, 4. Semester
 → Kernmodule -->Thermische Energiesysteme
- B.Sc. Erneuerbare Energien, PO 2011, 4. Semester
 → Ergänzungsmodule -->Erweiterte Grundlagen
- B.Sc. Erneuerbare Energien, PO 2011, 4. Semester
 → Kernmodule -->Kinetische Energiesysteme
- B.Sc. Erneuerbare Energien, PO 2011, 4. Semester
 → Kernmodule -->Thermische Energiesysteme
- B.Sc. Erneuerbare Energien, PO 2011, 4. Semester
 → Vorgezogene Master-Module

11. Empfohlene Voraussetzungen:
Ingenieurwissenschaftliche und naturwissenschaftliche Grundlagen, Höhere Mathematik

12. Lernziele:

13. Inhalt:
- Stoffeigenschaften von Fluiden
- Kennzahlen und Ähnlichkeit
- Statik der Fluide (Hydrostatik und Aerostatik)
- Grundgesetze der Fluidmechanik (Erhaltung von Masse, Impuls und Energie)
- Elementare Anwendungen der Erhaltungsgleichungen
- Rohrhydraulik
- Differentialgleichungen für ein Fluidelement

14. Literatur:
- Vorlesungsmanuskript „Technische Strömungslehre"
 - E. Truckenbrodt, Fluidmechanik, Springer Verlag
 - F.M. White, Fluid Mechanics, McGraw - Hill
 - E. Becker, Technische Strömungslehre, B.G. Teubner Studienbücher

15. Lehrveranstaltungen und -formen:
- 137501 Vorlesung Technische Strömungslehre
<table>
<thead>
<tr>
<th>16. Abschätzung Arbeitsaufwand:</th>
<th>Präsenzzeit: 42 h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Selbststudiumszeit / Nacharbeitszeit: 138 h</td>
</tr>
<tr>
<td></td>
<td>Gesamt: 180 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>13751 Technische Strömungslehre (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>18. Grundlage für ... :</th>
<th>14100 Hydraulische Strömungsmaschinen in der Wasserkraft</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>19. Medienform:</th>
<th>Tafelanschrieb, Tablet-PC</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PPT-Präsentationen</td>
</tr>
<tr>
<td></td>
<td>Skript zur Vorlesung</td>
</tr>
</tbody>
</table>

| 20. Angeboten von: |
203 Kinetische Energiesysteme

Zugeordnete Module:

- 11580 Elektrische Maschinen I
- 12420 Windenergie 1 - Grundlagen Windenergie
- 12450 Wasserkraft und Wasserbau
- 12460 Konstruktionslehre II (EE)
- 13750 Technische Strömungslehre
- 13780 Regelungs- und Steuerungstechnik
Modul: 11580 Elektrische Maschinen I

2. Modulkürzel: 052601011
5. Moduldauer: 1 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Nejila Parspour

9. Dozenten: Nejila Parspour

10. Zuordnung zum Curriculum in diesem Studiengang:

 B.Sc. Erneuerbare Energien, PO 2009, 5. Semester
 ➞ Ergänzungsmodule --> Erweiterte Grundlagen
 ➞ B.Sc. Erneuerbare Energien, PO 2009, 5. Semester
 ➞ Kernmodule --> Elektrische Energiesysteme
 ➞ B.Sc. Erneuerbare Energien, PO 2009, 5. Semester
 ➞ Kernmodule --> Kinetische Energiesysteme
 ➞ B.Sc. Erneuerbare Energien, PO 2011, 5. Semester
 ➞ Ergänzungsmodule --> Erweiterte Grundlagen
 ➞ B.Sc. Erneuerbare Energien, PO 2011, 5. Semester
 ➞ Kernmodule --> Elektrische Energiesysteme
 ➞ B.Sc. Erneuerbare Energien, PO 2011, 5. Semester
 ➞ Kernmodule --> Kinetische Energiesysteme
 ➞ B.Sc. Erneuerbare Energien, PO 2011, 5. Semester
 ➞ Vorgezogene Master-Module

11. Empfohlene Voraussetzungen:

12. Lernziele:

 Studierende kennen den Aufbau und die Funktionsweise von Gleichstrom-, Synchron und Asynchronmaschine. Sie kennen die Berechnung magnetischer Kreise.

13. Inhalt:

 • Magnetismus und Grundlagen der magnetischen Kreise
 • Antriebstechnische Zusammenhänge
 • Verluste in elektrischen Maschinen
 • Behandelte Maschinentypen:

 1) **Synchronmaschine**: Aufbau und Funktion, Ersatzschaltbilder, Energiefluss, mathematische Zusammenhänge, Kennlinien, vollständiges Ersatzschaltbild, Drehzahlstellverfahren, Brems- und Anlaufverfahren, Einführung in das rotorflussorientierte dynamische Model, Bauformen und Einsatzgebiete

 2) **Asynchronmaschine**: Aufbau und Funktion, Ersatzschaltbild, Energiefluss, mathematische Zusammenhänge, Kennlinien, Drehzahlstellverfahren, Brems- und Anlaufverfahren, Bauformen und Einsatzgebiete

 3) **Gleichstrommaschine**: Aufbau und Funktion, Ersatzschaltbild, mathematische Zusammenhänge, Kennlinien, Drehzahlstellverfahren, Brems- und Anlaufverfahren, Bauformen und Einsatzgebiete
14. Literatur:
• Kleinrath, Hans: Grundlagen Elektrischer Maschinen; Akad. Verlagsgesellschaft, Wien, 1975
• Seinsch, H. O.: Grundlagen elektrischer Maschinen und Antriebe; B. G. Teubner, Stuttgart, 1988
• Bödefeld/Sequenz: Elektrische Maschinen; Springer, Wien, 1962
• Richter, Rudolf: Elektrische Maschinen; Verlag von Julius Springer, Berlin, 1936

15. Lehrveranstaltungen und -formen:
• 115801 Vorlesung Elektrische Maschinen I
• 115802 Übung Elektrische Maschinen I

16. Abschätzung Arbeitsaufwand:
| Präsenzzeit: | 56 h |
| Selbststudium/Nacharbeitszeit: | 124 h |
| Summe: | 180 h |

17. Prüfungsnummer/n und -name:
11581 Elektrische Maschinen I (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :
21690 Elektrische Maschinen II

19. Medienform:
Beamer, Tafel, ILIAS

20. Angeboten von:
Institut für Elektrische Energiewandlung
Modul: 12460 Konstruktionslehre II (EE)

<table>
<thead>
<tr>
<th>Modulkürzel:</th>
<th>060320002</th>
<th>5. Modul:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Stefan Baehr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Stephan Staudacher, Stefan Baehr, Joachim Greiner</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
 ➔ Ergänzungsmodule -->Erweiterte Grundlagen
 ➔ B.Sc. Erneuerbare Energien, PO 2009, 5. Semester
 ➔ Kernmodule -->Kinetische Energiesysteme
 ➔ B.Sc. Erneuerbare Energien, PO 2011, 5. Semester
 ➔ Ergänzungsmodule -->Erweiterte Grundlagen
 ➔ B.Sc. Erneuerbare Energien, PO 2011, 5. Semester
 ➔ Kernmodule -->Kinetische Energiesysteme
 ➔ B.Sc. Erneuerbare Energien, PO 2011, 5. Semester
 ➔ Vorgezogene Master-Module

11. Empfohlene Voraussetzungen: Erneuerbare Energien Bachelor 060320003 „Konstruktionslehre I (EE)“

12. Lernziele:
- Die Studierenden sind in der Lage
- Funktionsanforderungen an Komponenten durch Konstruktionselemente zu verwirklichen und Bauausführungen zu begründen
- eine Konstruktion aus verschiedenen Konstruktionselementen zu erstellen, zu berechnen, nachzuweisen, zu dokumentieren (Stückliste) und darzustellen
- Konstruktionselemente und deren Einsatz anhand widersprüchlicher Kriterien (z.B. Kosten, Qualität) zu beurteilen

13. Inhalt:
- **Konstruktionselemente II**
 Bauweisen, Gestaltung und Auslegung von Gleit- und Wälzlager, Welle-Nabe-Verbindungen, Kupplungen und Zahnradgetriebe; Entwicklungsprozesse, Korrosion und Korrosionsschutz

- **Konstruktionsseminar**
 Erlernen und Umsetzen von Konstruktionsweisen im Flugzeugbauund/oder Energiewandlern anhand von komplexen wie auch individuellen Konstruktionen, die über das gesamte Semester hinweg betreut und ausgearbeitet werden. Die Lehrveranstaltung kann alternativ am IFB oder ILA belegt werden.

14. Literatur:
- Vorlesungs-Manuskript zum Herunterladen
- Übungs-Manuskript zum Herunterladen
- Lehrbuch: Roloff/Matek, Maschinenelemente, Viehweg-Verlag
- Arbeitsblätter für Gruppen- / Einzelarbeit

15. Lehrveranstaltungen und -formen:
- 124601 Vorlesung Konstruktionselemente II
- 124602 Übung Konstruktionselemente II
- 124603 Seminar Konstruktionspraktikum
16. Abschätzung Arbeitsaufwand:

Präsenzzeit:	42 h
Selbststudiumszeit / Nacharbeitszeit:	138 h
Gesamt:	180 h

17. Prüfungsnummer/n und -name:

- 12461 Konstruktionslehre II (EE) (PL), schriftliche Prüfung, 90 Min., Gewichtung: 33.0, Fragenteil 30 min (ohne Hilfsmittel), Rechenteil 60 min (zugel. Hilfsmittel: Literatur, Vorl.- u. Übungsunterlagen, Notizen, Taschenrechner, keine Funkeinrichtungen)
- 12462 Konstruktionspraktikum (PL), schriftlich, eventuell mündlich, Gewichtung: 67.0, Hausarbeit

18. Grundlage für ...

19. Medienform:

| Beamer: Power-Point Präsentationen & Fach-DVD’s |
| Tageslichtprojektor: Übungsanschrieb |
| Tafel für vertiefende Erläuterungen |
| Zeitweise: Demonstrationshardware |

20. Angeboten von:

| Institut für Flugzeugbau |
Modul: 13780 Regelungs- und Steuerungstechnik

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Frank Allgöwer

9. Dozenten:
- Frank Allgöwer
- Christian Ebenbauer
- Oliver Sawodny
- Matthias Müller
- Armin Lechler

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>B.Sc. Erneuerbare Energien, PO 2009, 4. Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>→ Ergänzungsmodule -->Erweiterte Grundlagen</td>
</tr>
<tr>
<td>→ Kernmodule -->Thermische Energiesysteme</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B.Sc. Erneuerbare Energien, PO 2011, 4. Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>→ Kernmodule -->Thermische Energiesysteme</td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen: HM I-III

12. Lernziele:
Die Studierenden
- können lineare dynamische Systeme analysieren,
- können lineare dynamische Systeme auf deren Struktureigenschaften untersuchen und Aussagen über mögliche Regelungs- und Steuerungskonzepte treffen,
- können einfache Regelungs- und Steuerungsaufgaben für lineare Systeme lösen.

13. Inhalt:

Vorlesung „Systemdynamische Grundlagen der Regelungstechnik“:
Fourier-Reihe, Fourier-Transformation, Laplace-Transformation, Testsignale, Blockdiagramme, Zustandsraumdarstellung

Vorlesung „Einführung in die Regelungstechnik“:
Systemtheoretische Konzepte der Regelungstechnik, Stabilität (Nyquist-, Hurwitz- und Small-Gain-Kriterium,...), Beobachtbarkeit, Steuerbarkeit, Robustheit, Reglerentwurfsverfahren im Zeit- und Frequenzbereich (PID, Polvorgabe,Vorfilter,...), Beobachterentwurf

Vorlesung „Steuerungstechnik mit Antriebstechnik“:
Steuerungskonzepte (mechanisch, fluidisch, Kontaktsteuerung, SPS, Motion Control, Numerische Steuerung, Robotiksteuerung, Leitsteuerung): Aufbau, Architektur, Funktionsweise, Programmierung, Darstellung und Lösung steuerungstechnischer Probleme. Grundlagen der in der Automatisierungstechnik verwendeten Antriebssysteme
Bemerkung 1: Es ist einer der beiden folgenden Blöcke zu wählen:

Block 1: "Systemdynamische Grundlagen der Regelungstechnik" und "Einführung in die Regelungstechnik"

Block 2: "Systemdynamische Grundlagen der Regelungstechnik" und "Steuerungstechnik mit Antriebstechnik"

Bemerkung 2 (Prüfungsanmeldung):

- Studierende der Erneuerbaren Energien müssen die Prüfung "Systemdynamische Grundlagen der Regelungstechnik" bei Univ.-Prof. Oliver Sawodny ablegen.
- Studierende anderer Studiengänge müssen die Prüfung "Systemdynamische Grundlagen der Regelungstechnik" bei Univ.-Prof. Christian Ebenbauer ablegen.

14. Literatur:

Vorlesung „Systemdynamische Grundlagen der Regelungstechnik“
- Föllinger, O.: Laplace-, Fourier- und z-Transformation. 7. Aufl., Hüthig Verlag 1999

Vorlesung „Einführung in die Regelungstechnik“

Vorlesung „Steuerungstechnik mit Antriebstechnik“
- Pritschow, G.: Einführung in die Steuerungstechnik, Carl Hanser Verlag, München, 2006

15. Lehrveranstaltungen und -formen:

- 137801 Vorlesung Systemdynamische Grundlagen der Regelungstechnik
- 137802 Vorlesung Einführung in die Regelungstechnik
- 137803 Vorlesung Steuerungstechnik mit Antriebstechnik

16. Abschätzung Arbeitsaufwand:

Präsenzzzeit: 42h
Selbststudiumszeit / Nacharbeitszeit: 138h
Gesamt: 180h

17. Prüfungsnummer/n und -name:

- 13781 Systemdynamische Grundlagen der Regelungstechnik (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0
- 13782 Einführung in die Regelungstechnik (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0
- 13783 Steuerungstechnik mit Antriebstechnik (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0, Ermittlung der Modulnote: Block 1: Systemdynamische Grundlagen der
Regelungstechnik 50% Einführung in die Regelungstechnik
50% Block 2: Systemdynamische Grundlagen der
Regelungstechnik 50% Steuerungstechnik mit Antriebstechnik
50%
Modul: 13750 Technische Strömungslehre

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>042010001</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modulduer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Stefan Riedelbauch</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Stefan Riedelbauch</td>
</tr>
</tbody>
</table>
 | ☚ Ergänzungsmodule --> Erweiterte Grundlagen
 | ☚ B.Sc. Erneuerbare Energien, PO 2009, 4. Semester
 | ☚ Kernmodule --> Kinetische Energiesysteme
 | ☚ B.Sc. Erneuerbare Energien, PO 2009, 4. Semester
 | ☚ Kernmodule --> Thermische Energiesysteme
 | ☚ B.Sc. Erneuerbare Energien, PO 2011, 4. Semester
 | ☚ Ergänzungsmodule --> Erweiterte Grundlagen
 | ☚ B.Sc. Erneuerbare Energien, PO 2011, 4. Semester
 | ☚ Kernmodule --> Kinetische Energiesysteme
 | ☚ B.Sc. Erneuerbare Energien, PO 2011, 4. Semester
 | ☚ Kernmodule --> Thermische Energiesysteme
 | ☚ B.Sc. Erneuerbare Energien, PO 2011, 4. Semester
 | ☚ Vorgezogene Master-Module

| 11. Empfohlene Voraussetzungen: | Ingenieurwissenschaftliche und naturwissenschaftliche Grundlagen, Höhere Mathematik |
| 13. Inhalt: | • Stoffeigenschaften von Fluiden
 | | • Kennzahlen und Ähnlichkeit
 | | • Statik der Fluide (Hydrostatik und Aerostatik)
 | | • Grundgesetze der Fluidmechanik (Erhaltung von Masse, Impuls und Energie)
 | | • Elementare Anwendungen der Erhaltungsgleichungen
 | | • Rohrhydraulik
 | | • Differentialgleichungen für ein Fluidelement |
| 14. Literatur: | Vorlesungsmanuskript „Technische Strömungslehre
 | | E. Truckenbrodt, Fluidmechanik, Springer Verlag
 | | F.M. White, Fluid Mechanics, McGraw - Hill
 | | E. Becker, Technische Strömungslehre, B.G. Teubner Studienbücher |
| 15. Lehrveranstaltungen und -formen: | 137501 Vorlesung Technische Strömungslehre |
• 137502 Übung Technische Strömungslehre
• 137503 Seminar Technische Strömungslehre

<table>
<thead>
<tr>
<th>16. Abschätzung Arbeitsaufwand:</th>
<th>Präsenzzeit: 42 h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Selbststudiumszeit / Nacharbeitszeit: 138 h</td>
</tr>
<tr>
<td></td>
<td>Gesamt: 180 h</td>
</tr>
</tbody>
</table>

| 17. Prüfungsnummer/n und -name: | 13751 Technische Strömungslehre (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0 |

| 18. Grundlage für … : | 14100 Hydraulische Strömungsmaschinen in der Wasserkraft |

19. Medienform:	Tafelanschrieb, Tablet-PC
	PPT-Präsentationen
	Skript zur Vorlesung

| 20. Angeboten von: |
Modul: 12450 Wasserkraft und Wasserbau

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>021410004</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Silke Wieprecht</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Silke Wieprecht
• Albert Ruprecht
• Felix Beckers |
➞ Ergänzungsmodule -->Energiewandlung und -anwendung
➞ B.Sc. Erneuerbare Energien, PO 2009, 5. Semester
➞ Kernmodule -->Kinetische Energiesysteme
➞ B.Sc. Erneuerbare Energien, PO 2011, 5. Semester
➞ Ergänzungsmodule -->Energiewandlung und -anwendung
➞ B.Sc. Erneuerbare Energien, PO 2011, 5. Semester
➞ Kernmodule -->Kinetische Energiesysteme
➞ B.Sc. Erneuerbare Energien, PO 2011, 5. Semester
➞ Vorgezogene Master-Module |
| 11. Empfohlene Voraussetzungen: | Kenntnisse in der Strömungsmechanik |
| 13. Inhalt: | Einführend wird auf die notwendigen Voraussetzungen und Möglichkeiten der Wasserkraftnutzung sowie die genutzten und noch nutzbaren Potenziale der Wasserkraft eingegangen. Im Weiteren werden folgende Themen behandelt:
• Bauliche und maschinenbauliche Bestandteile einer Wasserkraftanlage
• Einteilung und Aufbau von Wasserkraftanlagen
• Wasserkraftanlagen und deren Funktionsfähigkeiten
• Speicherbewirtschaftung
• Turbinentypen und der Arbeitsweisen sowie deren Bemessung
• Auslegung der Leistung einer WKA
• Hydraulische Bemessung
• Umweltaspekte (Durchgängigkeit, Fischauf- und -abstiegsanlagen, Mindestwasser, Hochwasserschutz)
• Funktionsweise und Besonderheiten von Pumpspeicheranlagen
• Betrieb und Regelung von WKA
• Netzregelung mit WKA |
| 14. Literatur: | Skript zur Vorlesung |
| 15. Lehrveranstaltungen und -formen: | • 124501 Vorlesung Wasserbau und Wasserkraft |
• 124502 Übung Wasserbau und Wasserkraft

<table>
<thead>
<tr>
<th>16. Abschätzung Arbeitsaufwand:</th>
<th>Präsenzzeit: 45 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selbststudiumszeit / Nacharbeitszeit: 135 h</td>
<td></td>
</tr>
<tr>
<td>Gesamt: 180 h</td>
<td></td>
</tr>
</tbody>
</table>

| 17. Prüfungsnummer/n und -name: | 12451 Wasserkraft und Wasserbau (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0, |

| 18. Grundlage für … : |

| 19. Medienform: |

| 20. Angeboten von: | Institut für Wasser- und Umweltsystemmodellierung |
Modul: 12420 Windenergie 1 - Grundlagen Windenergie

2. Modulkürzel: 060320011 5. Moduldauer: 1 Semester
4. SWS: 4.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Po Wen Cheng
9. Dozenten: Po Wen Cheng

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Erneuerbare Energien, PO 2009, 4. Semester
 → Ergänzungsmodule -->Energiewandlung und -anwendung
 →
 B.Sc. Erneuerbare Energien, PO 2009, 4. Semester
 → Kernmodule -->Elektrische Energiesysteme
 →
 B.Sc. Erneuerbare Energien, PO 2009, 4. Semester
 → Kernmodule -->Kinetische Energiesysteme
 →
 B.Sc. Erneuerbare Energien, PO 2011, 4. Semester
 → Ergänzungsmodule -->Energiewandlung und -anwendung
 →
 B.Sc. Erneuerbare Energien, PO 2011, 4. Semester
 → Kernmodule -->Elektrische Energiesysteme
 →
 B.Sc. Erneuerbare Energien, PO 2011, 4. Semester
 → Kernmodule -->Kinetische Energiesysteme
 →
 B.Sc. Erneuerbare Energien, PO 2011, 4. Semester
 → Vorgezogene Master-Module

11. Empfohlene Voraussetzungen: Technische Mechanik I

12. Lernziele:
 • Die Studierenden erlangen Kenntnisse über die Grundlagen der Windenergie, insbesondere über die physikalischen und technischen Prinzipien bei modernen Windenergieanlagen.
 • Die Studierenden sind dabei in der Lage einfache physikalische Grundgleichungen und Zusammenhänge herzuleiten und ihre Bedeutung in Bezug auf die Nutzung von Windenergie zu verstehen sowie zu erklären.
 • Ausgehend vom Verständnis der einzelnen Teildisziplinen (Aerodynamik, Strukturdynamik, Elektrotechnik etc.) können die Studierenden den Aufbau und die Funktionsweise des Gesamtsystems Windenergieanlage erläutern und auf ausgewählten Gebieten elementare Auslegungs- und Entwurfsberechnungen durchführen.
 • Nach Abschluss der Lehrveranstaltung haben die Studierenden die wesentlichen Kompetenzen aufgebaut, die sie befähigen sich in Spezialgebiete im Bereich Windenergie (Komponentenauslegung, Modellierung und Simulation, Windparkplanung etc.) einzuarbeiten.

13. Inhalt:
 • Vorlesung
 Einleitung, Historie und Potenziale; Beschreibung und Charakterisierung des Windes; Ertragsberechnung; Windmessung; Aerodynamische Grundlagen: Impulsrechnung, Tragflügelrechnung, Blattauslegung nach Betz und Schmitz; Kennlinien; Typologien; Modellgesetze und Ähnlichkeitsregeln; Strukturdynamik; Konstruktiver Aufbau; Elektrisches System; Betriebsführung und Regelungstechnik.
Übung und Versuch
Es werden 5 Hörsaalübungen sowie der Hochlaufversuch im Böenwindkanal angeboten.

14. Literatur:
- Vorlesungsunterlagen des Lehrstuhls (PowerPoint-Folien)
- R. Gasch und J. Twele, "Windkraftanlagen"

15. Lehrveranstaltungen und -formen:
- 124201 Vorlesung Windenergienutzung I
- 124202 Übung Windenergienutzung I

16. Abschätzung Arbeitsaufwand:
- Vorlesung:
 Präsenzzeit 28 Stunden, Selbststudium 62 Stunden
- Übung:
 Präsenzzeit 8 Stunden, Selbststudium 74 Stunden
- Windkanalversuch:
 Präsenzzeit 3 Stunden, Versuchsauswertung 5 Stunden

Summe: 180 Stunden

17. Prüfungsnummer/n und -name:
12421 Windenergie 1 - Grundlagen Windenergie (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0, Das Versuchsprotokoll während des Semesters ist Voraussetzung für die Teilnahme an der Prüfung. Die Prüfung umfasst einen Fragenteil (20min) und einen Rechenteil (70min).

18. Grundlage für ... :
- 30880 Windenergie 3 - Entwurf von Windenergieanlagen
- 30890 Windenergie 4 - Windenergie-Projekt

19. Medienform:
- PowerPoint, Tafelanschrieb

20. Angeboten von:
- Lehrstuhl Windenergie
Modul: 11530 Einführung Erneuerbare Energien

2. Modulkürzel: 050310014
5. Modulduauer: 1 Semester

3. Leistungspunkte: 9.0 LP

4. SWS: 6.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Christoph Kattmann

9. Dozenten:
 • Silke Wieprecht
 • Po Wen Cheng
 • Harald Drück
 • Albert Ruprecht
 • Günter Scheffknecht
 • Stefan Tenbohlen
 • Jürgen Heinz Werner

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Erneuerbare Energien, PO 2009, 1. Semester
 ➞ Kernmodule
 B.Sc. Erneuerbare Energien, PO 2011, 1. Semester
 ➞ Kernmodule

11. Empfohlene Voraussetzungen:

12. Lernziele:
 Die Veranstaltung gibt eine Einführung in Erneuerbaren Energien. Die Studierenden sind anschließend in der Lage:
 • die Bedeutung und die Potenziale verschiedener Erneuerbarer Energien (Solarthermie, Photovoltaik, Windenergie, Wasserkraft, Biomasse) quantitativ einzuschätzen,
 • Berechnungen des Energieertrags und des Wirkungsgrades durchzuführen,
 • Erneuerbarer Energien in unterschiedliche Energieanwendungen und ins internationale Energiesystem einzuordnen.

13. Inhalt:
 Vorlesung:
 • Energiedaten, Umwelt- u. Klimaschutz und erneuerbare Energien, persönlicher Energieverbrauch, Globale Kreisläufe und -bilanzen (Solar, Wind, Wasser, CO₂, etc.)
 • Sonneneinstrahlung, Potentiale der Solarenergienutzung
 • Solarthermie
 • Photovoltaik
 • Windenergie
 • Wasserkraft, Meeresströmungs- und Wellenenergie
 • Therm. Nutzung von Biomasse, Biotreibstoffe
 • Smart Grids,
 • Energienszenarien
 • Exkursionen zu Beispielanlagen, Unternehmen, Instituten in der Region

 Übung:
 • Hörsaalübungen zu den Vorlesungsinhalten

14. Literatur:
 • V. Quaschning, Regenerative Energiesysteme, Hanser-Verlag
 • V. Quaschning, Erneuerbare Energien und Klimaschutz, Hanser-Verlag
 • ergänzendes Skriptum und online-Materialien
15. Lehrveranstaltungen und -formen:
- 115301 Vorlesung Erneuerbare Energien
- 115302 Übung Erneuerbare Energien
- 115303 Exkursion Erneuerbare Energien

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 84 h
- Selbststudiumszeit / Nacharbeitszeit: 186 h
- Gesamt: 270 h

17. Prüfungsnummer/n und -name:
- 11531 Einführung Erneuerbare Energien (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:
- PowerPoint, Tafelanschrieb

20. Angeboten von:
- Institut für Energieübertragung und Hochspannungstechnik
Modul: 12210 Einführung in die Elektrotechnik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>052601001</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>7.0</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>2 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Nejila Parspour</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Nejila Parspour</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Erneuerbare Energien, PO 2011, 2. Semester → Kernmodule</td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>Elektrischer Gleichstrom</td>
</tr>
<tr>
<td></td>
<td>Elektrische und magnetische Felder</td>
</tr>
<tr>
<td></td>
<td>Wechselstrom</td>
</tr>
<tr>
<td></td>
<td>Halbleiterelektronik (Diode, Bipolartransistor, Operationsverstärker)</td>
</tr>
<tr>
<td></td>
<td>Elektrische Maschinen (Gleichstrommaschine, Synchrongenerator, Asynchronmotor)</td>
</tr>
<tr>
<td></td>
<td>Moeller / Fricke / Frohne / Lüther / Müller, Grundlagen der Elektrotechnik, Teubner Stuttgart, 19. Auflage 2002</td>
</tr>
<tr>
<td></td>
<td>Jötten / Zürneck, Einführung in die Elektrotechnik I/II, uni-text Braunschweig 1972</td>
</tr>
<tr>
<td></td>
<td>Ameling, Grundlagen der Elektrotechnik I/II, Bertelsmann Universitätsverlag 1974</td>
</tr>
<tr>
<td>14. Literatur:</td>
<td>122101 Vorlesung Einführung in die Elektrotechnik</td>
</tr>
<tr>
<td></td>
<td>122102 Übungen Einführung in die Elektrotechnik</td>
</tr>
<tr>
<td></td>
<td>122103 Praktikum Einführung in die Elektrotechnik</td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>Präsenzzeit: 98 h</td>
</tr>
<tr>
<td></td>
<td>Selbststudium / Nacharbeitszeit: 82 h</td>
</tr>
<tr>
<td></td>
<td>Gesamt: 180 h</td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>122111 Einführung in die Elektrotechnik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0</td>
</tr>
<tr>
<td></td>
<td>122122 Einführung in die Elektrotechnik: Praktikum (USL), Studienbegleitend</td>
</tr>
<tr>
<td></td>
<td>V Vorleistung (USL-V), schriftlich, eventuell mündlich</td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>18. Grundlage für ... :</td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Beamer, Tafel, ILIAS</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Institut für Elektrische Energiewandlung</td>
</tr>
</tbody>
</table>
Modul: 11500 Elektrische Energietechnik

- Modulkürzel: 051010001
- Modulverantwortlicher: Univ.-Prof. Jörg Roth-Stielow
- Dozenten: Stefan Tenbohlen, Jörg Roth-Stielow
- Modul: Elektrische Energietechnik
- 2. Modulkürzel: 051010001
- 3. Leistungspunkte: 9.0 LP
- 4. SWS: 6.0
- 5. Modulduer: 2 Semester
- 6. Turnus: jedes 2. Semester, SoSe
- 7. Sprache: Deutsch
- 8. Modulverantwortlicher: Univ.-Prof. Jörg Roth-Stielow
- 9. Dozenten: Stefan Tenbohlen, Jörg Roth-Stielow
- 10. Zuordnung zum Curriculum in diesem Studiengang:
 - B.Sc. Erneuerbare Energien, PO 2009, 2. Semester ➞ Kernmodule
 - B.Sc. Erneuerbare Energien, PO 2011, 2. Semester ➞ Kernmodule
- 11. Empfohlene Voraussetzungen:
- 12. Lernziele:
 - ...kennen die grundlegenden Prinzipien der elektrischen Energieerzeugung, -übertragung und -verteilung.
 - ...können einfache Berechnungen von Größen in Systemen der elektrischen Energieerzeugung, -übertragung und -verteilung vornehmen.
 - ...kennen die grundlegenden Prinzipien der elektrischen Maschinen und Transformatoren.
 - ...können einfache Berechnungen von Größen in elektrischen Maschinen und Transformatoren vornehmen.
- 13. Inhalt:
 - Aufgabe und Bedeutung der elektrischen Energieversorgung,
 - Energieumwandlung in Kraftwerken,
 - Elektrizitätswirtschaft und Investitionstheorie,
 - Aufbau von elektrischen Energieversorgungsnetzen und Bordnetzen,
 - Lastflüsse, Kurzschlussströme, Überspannungen in elektrischen Versorgungsnetzen,
 - Sicherheitstechnik,
 - elektrischer Unfall,
 - Elektrischer Energiefluss als Informations- und Arbeitsmedium,
 - Leistungselektronik u. Regelungstechnik als Teilgebiete der Energietechnik,
 - Gleichstrommaschine,
 - Transformator,
 - Asynchronmaschine, Synchronmaschine
- 14. Literatur:
 - Vorlesungsskripte
 - Heuck, Dettmann: Elektrische Energieversorgung, Vieweg, Braunschweig/Wiesbaden, 2005
- 15. Lehrveranstaltungen und -formen:
 - 115001 Vorlesung Energietechnik I
 - 115002 Übung Energietechnik I
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 84 h
Selbststudium: 186 h
Gesamt: 270 h |
|-----------------------------|----------------|
| 17. Prüfungsnummer/n und -name: | 11501 Elektrische Energietechnik I (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0
11502 Elektrische Energietechnik II (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0 |
| 18. Grundlage für ... : | |
| 19. Medienform: | Tafel, Folien, Beamer |
| 20. Angeboten von: | Informatik, Elektrotechnik und Informationstechnik |
Modul: 11140 Konstruktionslehre I (EE)

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>5.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Po Wen Cheng</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Po Wen Cheng
 • Jan-Michael Pfaff
 • Stefan Baehr |
 B.Sc. Erneuerbare Energien, PO 2011, 1. Semester ➞ Kernmodule |
| 11. Empfohlene Voraussetzungen: | Keine |
| 12. Lernziele: | Die Studierenden sind in der Lage:
 • aufgrund des geschulten Vorstellungsvermögens technische Zusammenhänge darzustellen
 • technische Zeichnungen zu lesen und per Handskizze und CAD anzufertigen
 • Grundlagen der Konstruktionslehre anhand typischer Verbindungselemente und Wellen zu verstehen, zu berechnen und anzuwenden. |
| 13. Inhalt: | • **Darstellungstechnik**
 Schnellkurs im normgerechten Technischen Zeichnen: Geschichte/ Normung, Darstellung (Schnitt, Bruch, ...), Maßeintragungen, Oberflächenzeichen und Wortangaben, Sinnbilder (Schrauben, Niete, ...), Toleranzen und Passungen aufgeteilt in drei Einzelarbeiten (isometrische Freihandskizze, bemaßte Freihandfertigungszeichnung, Technische Zeichnung (CAD) im Format DIN A1)
 • **Konstruktionselemente I**
| 14. Literatur: | **Darstellungstechnik:**
 Darstellungstechnik und CAD I - Begleitmaterial zur Vorlesung, IFB Uni Stuttgart, 2008
 Hoischen, Hesser: Technisches Zeichnen, Cornelsen Verlag, 30. Auflage 2005
 Konstruktionselemente I:
 Zum Download angebotenes Vorlesungs-Manuskript
 Zum Download angebotenes Übungs-Manuskript
 Lehrbuch: Roloff/Matek, Maschinenelemente, Viehweg- Verlag
 Arbeitsblätter für Gruppen/- Einzelarbeit |
Ergänzende Literatur:
Berthold Schlecht: Maschinenelemente 1: Festigkeit, Wellen, Verbindungen, Federn, Kupplungen

15. Lehrveranstaltungen und -formen:
• 111401 Vorlesung Darstellungstechnik I
• 111402 Übung Darstellungstechnik I
• 111403 Vorlesung Konstruktions- und Elemente I
• 111404 Übung Konstruktions- und Elemente I

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 53 h
Selbststudiumszeit / Nacharbeitszeit: 127 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
• 11141 Darstellungstechnik I (PL), schriftliche Prüfung, Gewichtung: 1.0
• 11142 Konstruktions- und Elemente I (PL), schriftliche Prüfung, 105 Min., Gewichtung: 1.0, Fragenteil 25 min (ohne Hilfsmittel), Rechenteil 80 min (zugel. Hilfsmittel: Literatur, Vorl.- u. Übungsunterlagen, Notizen, Taschenrechner, keine Funkeinrichtungen)

18. Grundlage für ...:

19. Medienform:
Beamer: Power-Point Präsentationen & Fach-DVD’s
Tageslichtprojektor: Übungsanschrieb
Tafel für vertiefende Erklärungen
Zeitweise: Demonstrationshardware

20. Angeboten von:
Institut für Flugzeugbau
Modul: 11600 Praktikum Erneuerbare Energien

2. Modulkürzel: 050310011 5. Modulduer: 1 Semester
4. SWS: 2.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Stefan Tenbohlen

10. Zuordnung zum Curriculum in diesem Studiengang:
 - B.Sc. Erneuerbare Energien, PO 2009, 4. Semester ➞ Kernmodule
 - B.Sc. Erneuerbare Energien, PO 2011, 4. Semester ➞ Kernmodule

11. Empfohlene Voraussetzungen: keine

13. Inhalt:
 - Sicherheitsseminar: Gefahren des elektrischen Stromes und Schutzmassnahmen
 - sieben grundlegende Versuche zur Energiewandlung und Energieübertragung
 1) Photovoltaik
 2) Smart Grids
 3) Synchronmaschine
 4) Biomasse
 5) Solarthermie
 6) Wasserkraft
 7) Windenergie

15. Lehrveranstaltungen und -formen:
 - 116001 Vorlesung Sicherheitsseminar
 - 116002 Praktikum Erneuerbare Energien

16. Abschätzung Arbeitsaufwand:
 - Präsenzzeit: 28 h
 - Selbststudiumszeit / Nacharbeitszeit: 62 h
 - Gesamt: 90 h

17. Prüfungsnummer/n und -name: 11601 Praktikum Erneuerbare Energien (USL), Studienbegleitend, Unbenotete Eingangstests während der Anwesenheitszeiten Durchführung Testate für Sicherheitsseminar und Versuche

19. Medienform: Praxis im Labor, ILIAS

20. Angeboten von: Institut für Energieübertragung und Hochspannungstechnik

Stand: 06. Oktober 2015
Modul: 19430 Technische Mechanik 1 (LRT, EE)

2. Modulkürzel: 074011 100
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0
5. Modul dauer: 1 Semester
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Arnold Kistner
9. Dozenten: Arnold Kistner

10. Zuordnung zum Curriculum in diesem Studiengang:
 - B.Sc. Erneuerbare Energien, PO 2009, 1. Semester ➔ Kernmodule
 - B.Sc. Erneuerbare Energien, PO 2011, . Semester ➔ Kernmodule

11. Empfohlene Voraussetzungen: keine
13. Inhalt:
 - Grundlagen der Vektorrechnung (Vektorbegriff, Rechenregeln der Vektoralgebra, Koordinatendarstellung von Vektoren, Koordinatentransformation), Vektoren und Vektorsysteme in der Mechanik
 - Statik starrer Körper (Kräfte, Kräftesysteme und deren Momente, Gewichtskräfte und Schwerpunkt, Schnittprinzip, Gleichgewichtsbedingungen der Statik (Kräfte- und Momentengleichgewicht), Haftreibkräfte)
 - Elastostatik (Zug-, Druck- und Scherspannungen, resultierende Dehungen und Verdruillungen, Stoffgesetze (insbesondere Hookesches Gesetz), innere Kräfte und Momente an Balken (Längs- und Querkkräfte, Biegemomente), Balkenstatik, Balkenbiegung, Überlagerungsprinzip)

14. Literatur:
 - Eigenes Skript.

15. Lehrveranstaltungen und -formen:
 - 194301 Vorlesung Technische Mechanik 1 (LRT)
 - 194302 Übung Technische Mechanik 1 (LRT)

16. Abschätzung Arbeitsaufwand: 180 h (42h Präsenzzeit, 138h Selbststudium)

17. Prüfungsnummer/n und -name: 19431 Technische Mechanik 1 (LRT, EE) (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform: Vortrag, Animationen, Filme, Übungen in Kleingruppen

20. Angeboten von:
Modul: 39670 Technische Mechanik 2 (EE)

2. Modulkürzel: 074011105
5. Modulduauer: 1 Semester
3. Leistungspunkte: 3.0 LP
6. Turnus: jedes 2. Semester, SoSe
4. SWS: 2.0
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Arnold Kistner
9. Dozenten: Arnold Kistner
11. Empfohlene Voraussetzungen: 074011100 Technische Mechanik 1 (LRT, EE)
13. Inhalt:
 • Elastostatik (Allgemeiner Spannungszustand, Mohrscher Kreis, Torsion von Wellen)
 • Kinematik (ebene und räumliche Bewegungen von Punkten und starren Körpern, Relativbewegungen, Absolut- und Relativ-Geschwindigkeiten und -Beschleunigungen)
14. Literatur:
 • Eigenes Skript.
15. Lehrveranstaltungen und -formen:
16. Abschätzung Arbeitsaufwand: 90 h (21h Präsenzzeit, 69h Selbststudium)
17. Prüfungsnummer/n und -name: 39671 Technische Mechanik 2 (EE) (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0
18. Grundlage für ...
19. Medienform: Vortrag, Animationen, Filme, Übungen in Kleingruppen
20. Angeboten von:
Modul: 38540 Technische Thermodynamik I + II

2. Modulkürzel: 042100010
5. Moduldauer: 2 Semester

3. Leistungspunkte: 12.0 LP

4. SWS: 8.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Apl. Prof. Klaus Spindler

9. Dozenten:
- Klaus Spindler
- Wolfgang Heidemann

10. Zuordnung zum Curriculum in diesem Studiengang:
- B.Sc. Erneuerbare Energien, PO 2011, 3. Semester ➞ Kernmodule

11. Empfohlene Voraussetzungen:
Mathematische Grundkenntnisse in Differential- und Integralrechnung

12. Lernziele:
Die Studierenden
- beherrschen die thermodynamischen Grundbegriffe und haben die Fähigkeit, praktische Problemstellungen in den thermodynamischen Grundgrößen eigenständig zu formulieren.
- sind in der Lage, Energieumwandlungen in technischen Prozessen thermodynamisch zu beurteilen. Diese Beurteilung können die Studierenden auf Grundlage einer Systemabstraction durch die Anwendung verschiedener Werkzeuge der thermodynamischen Modellbildung wie Bilanzierungen, Zustandsgleichungen und Stoffmodellen durchführen.
- sind in der Lage, die Effizienz unterschiedlicher Prozessführungen zu berechnen und den zweiten Hauptsatz für thermodynamische Prozesse eigenständig anzuwenden.
- können Berechnungen zur Beschreibung der Lage von Phasen- und Reaktionsgleichgewichtswerten durchführen und verstehen die Bedeutung energetischer und entropischer Einflüsse auf diese Gleichgewichtslagen.
- Die Studierenden sind durch das erworben Verständnis der grundlegenden thermodynamischen Modellierung zu eigenständiger Vertiefung in weiterführende Lösungsansätze befähigt.

13. Inhalt:
Thermodynamik ist die allgemeine Theorie energie- und stoffumwandelter Prozesse. Diese Veranstaltung vermittelt die Inhalte der systemanalytischen Wissenschaft Thermodynamik im Hinblick auf technische Anwendungsfelder. Im Einzelnen:

- Grundgesetze der Energie- und Stoffumwandlung
- Prinzip der thermodynamischen Modellbildung
- Prozesse und Zustandsänderungen
- Thermische und kalorische Zustandsgrößen
- Zustandsgleichungen und Stoffmodelle
- Bilanzierung der Materie, Energie und Entropie von offenen, geschlossenen, stationären und instationären Systemen
- Energiequalität, Dissipation und Exergiekonzept
- Ausgewählte Modellprozesse: Kreisprozesse, Reversible Prozesse, Dampfkraftwerk, Gasturbine, Kombi-Kraftwerke, Verbrennungsmotoren etc.
- Gemische und Stoffmodelle für Gemische: Verdampfung und Kondensation, Verdunstung und Absorption
- Phasengleichgewichte und chemisches Potenzial
- Bilanzierung bei chemischen Zustandsänderungen
14. Literatur:

- E. Hahne: Technische Thermodynamik - Einführung und Anwendung, Oldenbourg Verlag München.

15. Lehrveranstaltungen und -formen:

- 385401 Vorlesung und Übung Technische Thermodynamik I
- 385402 Vorlesung und Übung Technische Thermodynamik II

16. Abschätzung Arbeitsaufwand:

Präsenzzeit:	112 Stunden
Selbststudium:	248 Stunden
Summe:	360 Stunden

17. Prüfungsnummer/n und -name:

- 38541 Technische Thermodynamik I + II (ITW) (PL), schriftliche Prüfung, 180 Min., Gewichtung: 1.0

18. Grundlage für ...:

19. Medienform:

Der Veranstaltungsinhalt wird als Powerpoint-Präsentation vorgestellt und diskutiert, ergänzt um Herleitungen, Beispielaufgaben und Anmerkungen am Overheadprojektor.

20. Angeboten von:
300 Ergänzungsmodule

<table>
<thead>
<tr>
<th>Zugeordnete Module</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>310</td>
<td>Energiewandlung und -anwendung</td>
</tr>
<tr>
<td>320</td>
<td>Erweiterte Grundlagen</td>
</tr>
</tbody>
</table>
310 Energiewandlung und -anwendung

Zugeordnete Module:
- 11590 Photovoltaik I
- 12420 Windenergie 1 - Grundlagen Windenergie
- 12430 Solarthermie
- 12440 Einführung in die energetische Nutzung von Biomasse
- 12450 Wasserkraft und Wasserbau
- 13060 Grundlagen der Heiz- und Raumlufttechnik
- 13940 Energie- und Umwelttechnik
- 13950 Energiewirtschaft und Energieversorgung
- 14070 Grundlagen der Thermischen Strömungsmaschinen
- 14100 Hydraulische Strömungsmaschinen in der Wasserkraft
- 36750 Rationelle Wärmeversorgung
- 38860 Energie und Umwelt
Modul: 12440 Einführung in die energetische Nutzung von Biomasse

2. Modulkürzel: 042500002
5. Moduldauer: 1 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Günter Scheffknecht

9. Dozenten:
 • Günter Scheffknecht
 • Ludger Eltrop
 • Uwe Schnell

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Erneuerbare Energien, PO 2009, 5. Semester
 → Ergänzungsmodul --> Energiewandlung und -anwendung
 B.Sc. Erneuerbare Energien, PO 2009, 5. Semester
 → Kernmodule --> Thermische Energiesysteme
 B.Sc. Erneuerbare Energien, PO 2011, 5. Semester
 → Ergänzungsmodul --> Energiewandlung und -anwendung
 B.Sc. Erneuerbare Energien, PO 2011, 5. Semester
 → Kernmodule --> Thermische Energiesysteme
 B.Sc. Erneuerbare Energien, PO 2011, 5. Semester
 → Vorgezogene Master-Module

11. Empfohlene Voraussetzungen:

12. Lernziele:

13. Inhalt:
I: Bereitstellung von biogenen Energieträgern
 • Biologische und verfahrenstechnische Grundlagen zur Produktion und Bereitstellung von Biomasse als Brennstoff zur energetischen Nutzung,
 • technisch-wirtschaftliche Entwicklungsperspektiven und ökologische Auswirkungen
 • Einordnung der systemanalytischen und energiewirtschaftlichen Zusammenhänge
 • Rahmenbedingungen einer Nutzung in Energiesystem
 • Einführung in physikalisch-chemische und biochemische Umwandlungsverfahren

II: Energetische Nutzung von Biomasse
 • Brennstofftechnische Charakterisierung von Biomasse
• Einführung in Verbrennungs- und Vergasungstechnologien sowie die Fermentation
• Emissionsverhalten und Einführung in die Abgasreinigung
• Einführung in die Umwandlungsverfahren zur Erzeugung von Strom und/oder Wärme

14. Literatur:
• Vorlesungsmanuskript

15. Lehrveranstaltungen und -formen:
124401 Vorlesung und Übung Einführung in die energetische Nutzung von Biomasse

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 56 h
Selbststudiumszeit / Nacharbeitszeit: 124 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
12441 Einführung in die energetische Nutzung von Biomasse (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:
PPT-Präsentationen, Skripte zu den Vorlesungen, Tafelanschrieb, ILIAS

20. Angeboten von:
Institut für Feuerungs- und Kraftwerkstechnik
Modul: 38860 Energie und Umwelt

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>041210003</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Apl. Prof. Rainer Friedrich</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Rainer Friedrich</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Kenntnisse in Thermodynamik, Chemie, Physik</td>
</tr>
</tbody>
</table>
| 13. Inhalt: | Auswirkungen von Energiewandlung in allen Umwandlungs- und Verbrauchersektoren auf Umwelt und menschliche Gesundheit:
| | • Luftschadstoffbelastung: SO₂, NOₓ, CO, Feinstaub VOC, Ozon, Aerosole, saure Deposition, Stickstoffeintrag
| | • Treibhauseffekt
| | • radioaktive Strahlung
| | • Flächenverbrauch
| | • Lärm
| | • Abwärme
| | • elektromagnetische Strahlung.
| | Empfehlung (fakultativ):
| | IER-Exkursion „Energiewirtschaft / Energietechnik“ |
| 14. Literatur: | Online-Manuskript
| | Borsch, P. Wagner, H.-J. 1997: Energie und Umweltbelastung; Berlin: Springer-Verlag
| | Möller, D. 2003: Luft - Chemie, Physik, Biologie, Reinhaltung, Recht; Berlin: de Gruyter
| | Roth, E. 1994: Mensch, Umwelt und Energie : die zukünftigen Erfordernisse und Möglichkeiten der Energieversorgung; Düsseldorf: etv
| 15. Lehrveranstaltungen und -formen: | 388601 Vorlesung Energie und Umwelt mit Online-Übungen |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 28 h
| | Online-Übung: 10 h |
Selbststudium / Nacharbeit: 52 h
Gesamt: 90 h

<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>38861 Energie und Umwelt (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>18. Grundlage für ... :</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>19. Medienform:</th>
<th>Beamergestützte Vorlesung und teilweise Tafelanschrieb, Lehrfilme, begleitendes Manuskript</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>20. Angeboten von:</th>
<th>Institut für Energiewirtschaft und Rationelle Energieanwendung</th>
</tr>
</thead>
</table>
Modul: 13940 Energie- und Umwelttechnik

2. Modulkürzel: 042510001
5. Modulduauer: 1 Semester
3. Leistungspunkte: 6.0 LP
6. Turnus: jedes 2. Semester, SoSe
4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Günter Scheffknecht
9. Dozenten: Günter Scheffknecht

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Erneuerbare Energien, PO 2011, 6. Semester → Ergänzungsmodule → Energiewandlung und -anwendung

B.Sc. Erneuerbare Energien, PO 2011, 6. Semester → Vorgezogene Master-Module

11. Empfohlene Voraussetzungen:

13. Inhalt:

Vorlesung und Übung, 4 SWS

1) Grundlagen zur Energieumwandlung: Einheiten, energetische Eigenschaften, verschiedene Formen von Energie, Transport und Speicherung von Energie, Energiebilanzen verschiedener Systeme
2) Energiebedarf: Statistik, Reserven und Ressourcen, Primärenergieversorgung und Endenergieverbrauch
3) Primärenergieträger: Charakterisierung, Verarbeitung und Verwendung
4) Bereitstellungstechnologien für Wärme, Strom und Kraftstoffe
5) Transport und Speicherung von Energie in unterschiedlichen Formen
6) Energieintensive industrielle Prozesse: Stahlerzeugung, Zementherstellung, Ammoniakherstellung, Papierindustrie
7) Techniken zur Begrenzung der Umweltbeeinflussungen
8) Treibhausgasemissionen
9) Rahmenbedingungen: Emissionsbegrenzung, Klimaschutz, Förderung erneuerbarer Energien

14. Literatur:
- Vorlesungsmanuskript
- Unterlagen zu den Übungen

15. Lehrveranstaltungen und -formen: 139401 Vorlesung und Übung Energie- und Umwelttechnik

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 56 h
Selbststudiumszeit / Nacharbeitszeit: 124 h
Gesamt: 180 h
17. Prüfungsnummer/n und -name: 13941 Energie- und Umwelttechnik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:
 • Skripte zu den Vorlesungen und zu den Übungen
 • Tafelanschrieb
 • ILIAS

20. Angeboten von: Institut für Feuerungs- und Kraftwerkstechnik
Modul: 13950 Energiewirtschaft und Energieversorgung

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Kai Hufendiek</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Kai Hufendiek</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B.Sc. Erneuerbare Energien, PO 2011, 5. Semester → Ergänzungsmodule → Energiewandlung und -anwendung</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B.Sc. Erneuerbare Energien, PO 2011, 5. Semester → Vorgezogene Master-Module</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>• Grundlagen der Thermodynamik (Zustandsänderungen, Kreisprozesse, 1. und 2. Hauptsatz)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Kenntnisse in Physik und Chemie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>Die Studierenden kennen die physikalisch-technischen Grundlagen der Energiewandlung und können diese im Hinblick auf die Bereitstellung von Energie trägern und die Energie Nutzung anwenden. Sie verstehen die komplexen Zusammenhänge der Energiewirtschaft und Energieversorgung, d.h. ihre technischen, wirtschaftlichen und umweltseitigen Dimensionen und können diese analysieren. Sie haben die Fähigkeit, die Methoden der Bilanzierung und der Wirtschaftlichkeitsrechnung zur Analyse und Beurteilung von Energiesystemen einschließlich ihrer umweltseitigen Effekte einzusetzen.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>• Energie und ihre volkswirtschaftliche sowie gesellschaftliche Bedeutung</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Energienachfrage und die Entwicklung der Energieversorgungsstrukturen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Energiereesourcen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Techniken zur Umwandlung und Nutzung von Mineralöl, Erdgas, Kohle, Kernenergie und erneuerbaren Energiequellen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Methoden der Bilanzierung und Wirtschaftlichkeitsrechnung</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Organisation und Struktur der Energiewirtschaft und von Energiemärkten</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Umwelteffekte und -wirkungen der Energieverwendung</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Techniken zur Reduktion energiebedingter Umweltbelastungen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Empfehlung (fakultativ): IER-Exkursion Energiewirtschaft / Energietechnik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Literatur:</td>
<td>Online-Manuskript</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Schiffer, Hans-Wilhelm</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Energiemarkt Deutschland, Praxiswissen Energie und Umwelt. TÜV Media; 10. überarbeitete Auflage 2008</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Zahoransky, Richard A.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Kugeler, Kurt; Philipp, Peter-W.
Energiotechnik: technische, ökonomische und ökologische Grundlagen.
Springer - Berlin ; Heidelberg [u.a.] , 2010

<table>
<thead>
<tr>
<th>15. Lehrveranstaltungen und -formen:</th>
<th>139501 Vorlesung Energiewirtschaft und Energieversorgung</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>16. Abschätzung Arbeitsaufwand:</th>
<th>Präsenzzeit: 56 h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Selbststudiumszeit / Nacharbeitszeit: 124 h</td>
</tr>
<tr>
<td></td>
<td>Gesamt: 180 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>13951 Energiewirtschaft und Energieversorgung (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>18. Grundlage für ... :</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>19. Medienform:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Beamergestützte Vorlesung</td>
</tr>
<tr>
<td>• teilweise Tafelanschrieb</td>
</tr>
<tr>
<td>• Lehrfilme</td>
</tr>
<tr>
<td>• begleitendes Manuskript</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>20. Angeboten von:</th>
<th>Institut für Energiewirtschaft und Rationelle Energieanwendung</th>
</tr>
</thead>
</table>
Modul: 13060 Grundlagen der Heiz- und Raumluftechnik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>041310001</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Armin Ruppert</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Michael Schmidt</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- B.Sc. Erneuerbare Energien, PO 2009, 6. Semester
 - → Ergänzungsmodule -->Energiewandlung und -anwendung

- B.Sc. Erneuerbare Energien, PO 2011, 6. Semester
 - → Ergänzungsmodule -->Energiewandlung und -anwendung
 - →

11. Empfohlene Voraussetzungen:
- Höhere Mathematik I + II
- Technische Mechanik I + II

12. Lernziele:
Im Modul Grundlagen der Heiz- und Raumluftechnik haben die Studenten die Anlagen und deren Systematik der Heizung, Lüftung und Klimatisierung von Räumen kennen gelernt und die zugehörigen ingenieurwissenschaftlichen Grundkenntnisse erworben. Auf dieser Basis können Sie grundlegende Auslegungen der Anlagen vornehmen.

Erworbene Kompetenzen:
Die Studenten

- sind mit den grundlegenden Methoden zur Anlagenauslegung vertraut,
- kennen die thermodynamischen Grundoperationen der Behandlung feuchter Luft, der Verbrennung und des Wärme- und Stofftransports
- verstehen den Zusammenhang zwischen Anlagen auslegung und funktion und den Innenlasten, den meteorologischen Randbedingungen und der thermischen sowie lufthygienischen Behaglichkeit

13. Inhalt:
- Systematik der heiz- und rumlufttechnischen Anlagen
- Strömung in Kanälen und Räumen
- Wärmeübergang durch Konvektion und Temperaturstrahlung
- Wärmeleitung
- Thermodynamik feuchter Luft
- Verbrennung
- meteorologische Grundlagen
- Anlagenauslegung
- thermische und lufthygienische Behaglichkeit

14. Literatur:
15. Lehrveranstaltungen und -formen: 130601 Vorlesung und Übung Grundlagen der Heiz- und Raumlufttechnik

16. Abschätzung Arbeitsaufwand:

Präsenzzeit:	42 h
Selbststudiumszeit / Nacharbeitszeit:	138 h
Gesamt:	180 h

17. Prüfungsnummer/n und -name: 13061 Grundlagen der Heiz- und Raumlufttechnik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

19. Medienform: Vorlesungsskript

19. Medienform:

20. Angeboten von:

Modul: 14070 Grundlagen der Thermischen Strömungsmaschinen

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>042310004</th>
<th>5. Modulduer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Damian Vogt

9. Dozenten: Damian Vogt

10. Zuordnung zum Curriculum in diesem Studiengang:

 B.Sc. Erneuerbare Energien, PO 2009, 6. Semester
 ↔ Ergänzungsmodule --> Energiewandlung und -anwendung

 B.Sc. Erneuerbare Energien, PO 2011, 6. Semester
 ↔ Ergänzungsmodule --> Energiewandlung und -anwendung

 B.Sc. Erneuerbare Energien, PO 2011, 6. Semester
 ↔ Vorgezogene Master-Module

11. Empfohlene Voraussetzungen:

 • Ingenieurwissenschaftliche Grundlagen
 • Technische Thermodynamik I + II
 • Strömungsmechanik oder Technische Strömungslehre

12. Lernziele:

 Der Studierende

 • verfügt über vertiefte Kenntnisse in Thermodynamik und Strömungsmechanik mit dem Fokus auf der Anwendung bei Strömungsmaschinen
 • kennt und versteht die physikalischen und technischen Vorgänge und Zusammenhänge in Thermischen Strömungsmaschinen (Turbinen, Verdichter, Ventilatoren)
 • beherrscht die eindimensionale Betrachtung von Arbeitsumsetzung, Verlusten und Geschwindigkeitsdreiecken bei Turbomaschinen
 • ist in der Lage, aus dieser analytischen Durchdringung die Konsequenzen für Auslegung und Konstruktion von axialen und radialen Turbomaschinen zu ziehen

13. Inhalt:

 • Anwendungsbereiche und wirtschaftliche Bedeutung
 • Bauarten
 • Thermodynamische Grundlagen
 • Fluideigenschaften und Zustandsänderungen
 • Strömungsmechanische Grundlagen
 • Anwendung auf Gestaltung der Bauteile
 • Ähnlichkeitsgesetze
 • Turbinen- und Verdichtertheorie
 • Verluste und Wirkungsgrade, Möglichkeiten ihrer Beeinflussung
 • Maschinenkomponenten
 • Betriebsverhalten, Kennfelder, Regelungsverfahren
 • Instationäre Phänomene

14. Literatur:

 • Vogt, D., Grundlagen der Thermischen Strömungsmaschinen, Vorle-
 sungsmanuskript, ITSM Univ. Stuttgart
 • Dixon, S.L., Fluid Mechanics and Thermodynamics of Turbomachinery, Elsevier 2005
 • Cohen H., Rogers, G.F.C., Saravanamuttoo, H.I.H., Gas Turbine Theory, Longman 2000
 • Traupel, W., Thermische Turbomaschinen, Band 1, 4. Auflage, Springer 2001

<table>
<thead>
<tr>
<th>15. Lehrveranstaltungen und -formen:</th>
<th>140701 Vorlesung und Übung Grundlagen der Thermischen Strömungsmaschinen</th>
</tr>
</thead>
<tbody>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Präsenzzeit: 42 h</td>
</tr>
<tr>
<td></td>
<td>Selbststudiumszeit / Nacharbeitszeit: 138 h</td>
</tr>
<tr>
<td></td>
<td>Gesamt: 180 h</td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>14071 Grundlagen der Thermischen Strömungsmaschinen (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td>30820 Thermische Strömungsmaschinen</td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Podcasted Whiteboard, Tafelanschrieb, Skript zur Vorlesung</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Institut für Thermische Strömungsmaschinen und Maschinenlaboratorium</td>
</tr>
</tbody>
</table>
Modul: 14100 Hydraulische Strömungsmaschinen in der Wasserkraft

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>042000100</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Stefan Riedelbauch</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Stefan Riedelbauch</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>• Wahlpflichtmodul Gruppe 1 (Strömungsmechanik) • Technische Strömungslehre (Fluidmechanik 1) oder Strömungsmechanik</td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 141001 Vorlesung Hydraulische Strömungsmaschinen in der Wasserkraft • 141002 Übung Hydraulische Strömungsmaschinen in der Wasserkraft</td>
</tr>
</tbody>
</table>
• 141003 Seminar Hydraulische Strömungsmaschinen in der Wasserkraft

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>14101 Hydraulische Strömungsmaschinen in der Wasserkraft (PL), schriftlich, eventuell mündlich, 120 Min., Gewichtung: 1.0,</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td>29210 Transiente Vorgänge und Regelungsaspekte in Wasserkraftanlagen</td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Tafel, Tablet-PC, Powerpoint Präsentation</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td></td>
</tr>
</tbody>
</table>
Modul: 11590 Photovoltaik I

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050513002</th>
<th>5. Modulduauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Jürgen Heinz Werner
9. Dozenten: Jürgen Heinz Werner

10. Zuordnung zum Curriculum in diesem Studiengang:

- B.Sc. Erneuerbare Energien, PO 2009, 4. Semester
 → Ergänzungsmodul: Energiewandlung und -anwendung

- B.Sc. Erneuerbare Energien, PO 2009, 4. Semester
 → Kernmodule: Elektrische Energiesysteme

- B.Sc. Erneuerbare Energien, PO 2011, 4. Semester
 → Ergänzungsmodul: Energiewandlung und -anwendung

- B.Sc. Erneuerbare Energien, PO 2011, 4. Semester
 → Kernmodule: Elektrische Energiesysteme

- B.Sc. Erneuerbare Energien, PO 2011, 4. Semester
 → Vorgezogene Master-Module

11. Empfohlene Voraussetzungen: Grundkenntnisse über Halbleitermaterialien und Halbleiterdioden, z.B. aus "Mikroelektronik I"

12. Lernziele:

- Die Studierenden kennen
 - das Potential der Sonnenstrahlung
 - die Funktionsweise von Solarzellen
 - die wichtigsten Technologien der Herstellung von Solarzellen
 - die Grundprinzipien von Wechselrichtern
 - die Energieerträge verschiedener Photovoltaik-Technologien
 - den aktuellen Stand des Photovoltaikmarktes und der Kosten von Photovoltaik-Strom

13. Inhalt:

- Der photovoltaische Effekt
- Sonnenleistung und Energieumsätze in Deutschland
- Maximaler Wirkungsgrad von Solarzellen
- Grundprinzip von Solarzellen
- Ersatzschaltbilder von Solarzellen
- Photovoltaik-Materialien und -technologien
- Modultechnik: Erträge von Photovoltaik-Systemen
- Photovoltaik-Markt

14. Literatur:

- Goetzberger, Voß, Knobloch, Sonnenenergie: Photovoltaik, Teubner, 1994
- P. Würfel, Physik der Solarzellen, Spektrum, 1995
- M. A. Green, Solar Cells - Operating Principles, Technology and System Applications, Centre for Photovoltaic Devices and Systems, Sydney, 1986
- F. Staß, Photovoltaik - Technik, Potentiale und Perspektiven der solaren Stromerzeugung, Vieweg, 1996

15. Lehrveranstaltungen und -formen:

- 115901 Vorlesung Photovoltaik I
- 115902 Übungen Photovoltaik I
16. Abschätzung Arbeitsaufwand: Präsenzzeit: 56 h
Selbststudium/Nacharbeitszeit: 142 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name: 11591 Photovoltaik I (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0

18. Grundlage für ...: 21930 Photovoltaik II

19. Medienform: Powerpoint, Tafel

20. Angeboten von: Institut für Photovoltaik
Modul: 36750 Rationelle Wärmeverwendung

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>042410031</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Moduldaus:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. Modulverantwortlicher:</th>
<th>Apl. Prof. Klaus Spindler</th>
</tr>
</thead>
<tbody>
<tr>
<td>9. Dozenten:</td>
<td>Klaus Spindler</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10. Zuordnung zum Curriculum in diesem Studiengang:</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.Sc. Erneuerbare Energien, PO 2011</td>
</tr>
<tr>
<td>➔ Ergänzungsmodule -->Energiewandlung und -anwendung</td>
</tr>
<tr>
<td>B.Sc. Erneuerbare Energien, PO 2011</td>
</tr>
<tr>
<td>➔ Vorgezogene Master-Module</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11. Empfohlene Voraussetzungen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Technische Thermodynamik I/II</td>
</tr>
<tr>
<td>Wärmeübertragung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12. Lernziele:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>13. Inhalt:</th>
</tr>
</thead>
</table>

Stand: 06. Oktober 2015

15. Lehrveranstaltungen und -formen: 367501 Vorlesung Rationelle Wärmeversorgung

16. Abschätzung Arbeitsaufwand: Präsenzzeit: 28 h
Selbststudium, Prüfungsvorber.: 62 h
Gesamt: 90h

17. Prüfungsnummer/n und -name: 36751 Rationelle Wärmeversorgung (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0

18. Grundlage für ...

20. Angeboten von:
Modul: 12430 Solarthermie

2. Modulkürzel: 042410022
5. Moduldauer: 1 Semester
3. Leistungspunkte: 6.0 LP
6. Turnus: jedes 2. Semester, SoSe
4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Harald Drück
9. Dozenten: Harald Drück

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Erneuerbare Energien, PO 2009, 6. Semester
→ Ergänzungsmodule -->Energiewandlung und -anwendung

B.Sc. Erneuerbare Energien, PO 2009, 6. Semester
→ Kernmodule -->Thermische Energiesysteme

B.Sc. Erneuerbare Energien, PO 2011, 6. Semester
→ Ergänzungsmodule -->Energiewandlung und -anwendung

B.Sc. Erneuerbare Energien, PO 2011, 6. Semester
→ Kernmodule -->Thermische Energiesysteme

11. Empfohlene Voraussetzungen: Grundkenntnisse in Mathematik und Thermodynamik

12. Lernziele:
Erworbene Kompetenzen: Die Studierenden können
• die auf unterschiedlich orientierte Flächen auf der Erdoberfläche
auftreffende Solarstrahlung berechnen
• kennen Methoden zur aktiven und passiven thermischen
Solarenergienutzung im Niedertemperaturbereich
• kennen Anlagen und deren Komponenten zur Trinkwassererwärmung,
Raumheizung und für industrielle Prozesswärme mittels Solarenergie
• kennen unterschiedliche Technologien zur Speicherung von
Solarwärme.

13. Inhalt:
Es wird Fachwissen zum Aufbau und Funktion der Sonne sowie
zur Solarstrahlung vermittelt. Wärmeübertragungsvorgänge an
Sonnennkollektoren, Bauformen von Sonnenkollektoren, Wärmespeicher
(Technologien, Bauformen, Beurteilung werden ausführlich hinsichtlich
Grundlagen und Anwendung behandelt. Der Einsatz saisonaler
Wärmespeicher, deren Modellierung sowie der Aufbau von Solaranlagen
zur Trinkwassererwärmung, zur kombinierten Trinkwassererwärmung
und Heizungsunterstützung wird ausführlich diskutiert. Neben aktiver
Solarenergienutzung sind die Grundlagen passiver Solarenergienutzung
Gegenstand der Lehrveranstaltung

14. Literatur:
• J.A. Duffie, W.A. Beckman: Solar Engineering of Thermal Processes,
• Norbert Fisch / Bruno Möws / Jürgen Zieger: Solarstadt Konzepte,
Technologien, Projekte, W. Kolhammer, 2001 ISBN 3-17-015418-4

15. Lehrveranstaltungen und -formen:
• 124301 Vorlesung Solarthermie I
• 124302 Übungen mit Workshop Solarthermie I

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 48 h
Selbststudium / Nacharbeitszeit: 132 h
Gesamt: 180 h
<table>
<thead>
<tr>
<th>Anzahl</th>
<th>17. Prüfungsnummer/n und -name:</th>
<th>12431 Solarthermie (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Vorlesung Powerpoint-Präsentation mit ergänzendem Tafel Anschrieb</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Modul: 12450 Wasserkraft und Wasserbau

2. Modulkürzel: 021410004
5. Modulduauer: 1 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher:
Univ.-Prof. Silke Wieprecht

9. Dozenten:
• Silke Wieprecht
• Albert Ruprecht
• Felix Beckers

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Erneuerbare Energien, PO 2009, 5. Semester
→ Ergänzungsmodule -->Energiewandlung und -anwendung
→ B.Sc. Erneuerbare Energien, PO 2009, 5. Semester
→ Kernmodule -->Kinetische Energiesysteme
→ B.Sc. Erneuerbare Energien, PO 2011, 5. Semester
→ Ergänzungsmodule -->Energiewandlung und -anwendung
→ B.Sc. Erneuerbare Energien, PO 2011, 5. Semester
→ Kernmodule -->Kinetische Energiesysteme
→ B.Sc. Erneuerbare Energien, PO 2011, 5. Semester
→ Vorgezogene Master-Module

11. Empfohlene Voraussetzungen:
Kenntnisse in der Strömungsmechanik

12. Lernziele:

13. Inhalt:
Einführend wird auf die notwendigen Voraussetzungen und Möglichkeiten der Wasserkraftnutzung sowie die genutzten und noch nutzbaren Potenziale der Wasserkraft eingegangen. Im Weiteren werden folgende Themen behandelt:

• Bauliche und maschinenbauliche Bestandteile einer Wasserkraftanlage
• Einteilung und Aufbau von Wasserkraftanlagen
• Wasserbauliche Anlagenteile und deren Funktionsfähigkeiten
• Speicherbewirtschaftung
• Turbinentypen und der Arbeitsweisen sowie deren Bemessung
• Auslegung der Leistung einer WKA
• Hydrologische Bemessung
• Umweltaspekte (Durchgängigkeit, Fischauf- und -abstiegsanlagen, Mindestwasser, Hochwasserschutz)
• Funktionsweise und Besonderheiten von Pumpspeicheranlagen
• Betrieb und Regelung von WKA
• Netzregelung mit WKA

14. Literatur:
Skript zur Vorlesung

15. Lehrveranstaltungen und -formen:
• 124501 Vorlesung Wasserbau und Wasserkraft
124502 Übung Wasserbau und Wasserkraft

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 45 h
 Selbststudiumszeit / Nacharbeitszeit: 135 h
 Gesamt: 180 h

17. Prüfungsnummer/n und -name:
 12451 Wasserkraft und Wasserbau (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0,

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
 Institut für Wasser- und Umweltsystemmodellierung
Modul: 12420 Windenergie 1 - Grundlagen Windenergie

2. Modulkürzel: 060320011
5. Modulsdauer: 1 Semester
3. Leistungspunkte: 6.0 LP
6. Turnus: jedes 2. Semester, SoSe
4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Po Wen Cheng
9. Dozenten: Po Wen Cheng

10. Zuordnung zum Curriculum in diesem Studiengang:

- B.Sc. Erneuerbare Energien, PO 2009, 4. Semester
 ➔ Ergänzungsmodule -->Energiewandlung und -anwendung
 ➔
- B.Sc. Erneuerbare Energien, PO 2009, 4. Semester
 ➔ Kernmodule -->Elektrische Energiesysteme
 ➔
- B.Sc. Erneuerbare Energien, PO 2009, 4. Semester
 ➔ Kernmodule -->Kinetische Energiesysteme
 ➔
- B.Sc. Erneuerbare Energien, PO 2011, 4. Semester
 ➔ Ergänzungsmodule -->Energiewandlung und -anwendung
 ➔
- B.Sc. Erneuerbare Energien, PO 2011, 4. Semester
 ➔ Kernmodule -->Elektrische Energiesysteme
 ➔
- B.Sc. Erneuerbare Energien, PO 2011, 4. Semester
 ➔ Kernmodule -->Kinetische Energiesysteme
 ➔
- B.Sc. Erneuerbare Energien, PO 2011, 4. Semester
 ➔ Vorgezogene Master-Module

11. Empfohlene Voraussetzungen: Technische Mechanik I

12. Lernziele:

- Die Studierenden erlangen Kenntnisse über die Grundlagen der Windenergie, insbesondere über die physikalischen und technischen Prinzipien bei modernen Windenergieanlagen.
- Die Studierenden sind dabei in der Lage einfache physikalische Grundgleichungen und Zusammenhänge herzuleiten und ihre Bedeutung in Bezug auf die Nutzung von Windenergie zu verstehen sowie zu erklären.
- Ausgehend vom Verständnis der einzelnen Teildisziplinen (Aerodynamik, Strukturdynamik, Elektrotechnik etc.) können die Studierenden den Aufbau und die Funktionsweise des Gesamtsystems Windenergieanlage erläutern und auf ausgewählten Gebieten elementare Auslegungs- und Entwurfsberechnungen durchführen.
- Nach Abschluss der Lehrveranstaltung haben die Studierenden die wesentlichen Kompetenzen aufgebaut, die sie befähigen sich in Spezialgebiete im Bereich Windenergie (Komponentenauslegung, Modellierung und Simulation, Windparkplanung etc.) einzuarbeiten.

13. Inhalt:

- Vorlesung
 Einleitung, Historie und Potenziale; Beschreibung und Charakterisierung des Windes; Ertragsberechnung; Windmessung; Aerodynamische Grundlagen: Impulstheorie, Tragflügeltheorie, Blattauslegung nach Betz und Schmitz; Kennlinien; Typologien; Modellgesetze und Ähnlichkeitsregeln; Strukturdynamik; Konstruktiver Aufbau; Elektrisches System; Betriebsführung und Regelungstechnik.
• **Übung und Versuch**
 Es werden 5 Hörsaalübungen sowie der Hochlaufversuch im Böenwindkanal angeboten.

14. **Literatur:**
- Vorlesungsunterlagen des Lehrstuhls (PowerPoint-Folien)
- R. Gasch und J. Twele, "Windkraftanlagen"

15. **Lehrveranstaltungen und -formen:**
- 124201 Vorlesung Windenergienutzung I
- 124202 Übung Windenergienutzung I

16. **Abschätzung Arbeitsaufwand:**
- Vorlesung:
 Präsenzzeit 28 Stunden, Selbststudium 62 Stunden
- Übung:
 Präsenzzeit 8 Stunden, Selbststudium 74 Stunden
- Windkanalversuch:
 Präsenzzeit 3 Stunden, Versuchsauswertung 5 Stunden

 Summe: 180 Stunden

17. **Prüfungsnummer/n und -name:**
- 12421 Windenergie 1 - Grundlagen Windenergie (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0, Das Versuchsprotokoll während des Semesters ist Voraussetzung für die Teilnahme an der Prüfung. Die Prüfung umfasst einen Fragenteil (20min) und einen Rechenteil (70min).

18. **Grundlage für ... :**
- 30880 Windenergie 3 - Entwurf von Windenergieanlagen
- 30890 Windenergie 4 - Windenergie-Projekt

19. **Medienform:**
- PowerPoint, Tafelanschrieb

20. **Angeboten von:**
- Lehrstuhl Windenergie
320 Erweiterte Grundlagen

Zugeordnete Module:
11550 Leistungselektronik I
11560 Elektrische Energienetze I
11570 Hochspannungstechnik I
11580 Elektrische Maschinen I
11620 Automatisierungstechnik I
11640 Digitale Signalverarbeitung
11700 Halbleitertechnik I
12330 Elektrische Signalverarbeitung
12460 Konstruktionslehre II (EE)
13750 Technische Strömungslehre
13830 Grundlagen der Wärmeübertragung
14090 Grundlagen Technischer Verbrennungsvorgänge I + II
14150 Leichtbau
14920 Technische Mechanik IV für Mathematiker
20930 Technische Mechanik 3 (EE)
28550 Regelung von Kraftwerken und Netzen
28560 Mikroelektronik I
38720 Meteorologie
38770 Umweltssoziologie
38790 Grundlagen der Wirtschaftswissenschaften
38840 Fertigungslehre mit Einführung in die Fabrikorganisation
39160 Grundlagen der Betriebswirtschaftslehre
41170 Speichertechnik für elektrische Energie I
41450 Grundzüge der Angewandten Chemie
46340 Signale und Systeme
Modul: 11620 Automatisierungstechnik I

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

| 8. Modulverantwortlicher: | Univ.-Prof. Michael Weyrich |
| 9. Dozenten: | Michael Weyrich |

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>B.Sc. Erneuerbare Energien, PO 2011, 6. Semester</td>
<td>Vorgezogene Master-Module</td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen:

- Grundlagen der Elektrotechnik, Informatik und Mathematik

12. Lernziele:

Die Studierenden

- besitzen grundlegende Kenntnisse über rechnerbasierte Automatisierungssysteme
- setzen sich mit Kommunikationssystemen der Automatisierungstechnik auseinander
- wenden grundlegende Methoden und Verfahren der Echtzeit-Programmierung an
- lernen spezifische Programmiersprachen der Automatisierungstechnik kennen

13. Inhalt:

- Grundlegende Begriffe der Prozessautomatisierung
- Automatisierungs-Gerätesysteme und -strukturen
- Prozessperipherie - Schnittstellen zwischen dem Automatisierungscomputersystem und dem technischen Prozess
- Kommunikationssysteme
- Echtzeitprogrammierung (synchron und asynchron Programmierung, Scheduling-Algorithmen, Synchronisationskonzepte)
- Echtzeitbetriebssysteme, Entwicklung eines Mini-Echtzeit-Betriebssystems
- Programmiersprachen für die Prozessautomatisierung (SPS-Programmierung)

14. Literatur:

- Vorlesungsskript
- Lauber, Göhner: Prozessautomatisierung Band 1 (3. Auflage), Springer, 1999
- Früh, Maier: Handbuch der Prozessautomatisierung (3. Auflage) Oldenbourg Industrieverlag, 2004
- Wellenreuther Automatisieren mit SPS (3. Auflage), Vieweg, 2005
- Vorlesungsportal mit Vorlesungsaufzeichnung auf http://www.ias.uni-stuttgart.de/at1/

15. Lehrveranstaltungen und -formen:

- 116201 Vorlesung Automatisierungstechnik I
- 116202 Übung Automatisierungstechnik I

16. Abschätzung Arbeitsaufwand:

<p>| Präsenzzeit: | 56 h |
| Selbststudium: | 124 h |
| Gesamt: | 180 h |</p>
<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>11621 Automatisierungstechnik I (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td>21730 Automatisierungstechnik II</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Institut für Automatisierungs- und Softwaretechnik</td>
</tr>
</tbody>
</table>
Modul: 11640 Digitale Signalverarbeitung

2. Modulkürzel: 051610002
5. Modulduauer: 1 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Bin Yang

9. Dozenten: Bin Yang

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Erneuerbare Energien, PO 2009, 5. Semester
→ Ergänzungsmodule --> Erweiterte Grundlagen

B.Sc. Erneuerbare Energien, PO 2011, 5. Semester
→ Ergänzungsmodule --> Erweiterte Grundlagen

B.Sc. Erneuerbare Energien, PO 2011, 5. Semester
→ Vorgezogene Master-Module

11. Empfohlene Voraussetzungen: Grundkenntnisse in höherer Mathematik
Grundkenntnisse über Signale und Systeme

12. Lernziele:
Die Studierenden
• beherrschen die grundlegenden Methoden zur digitalen Signalverarbeitung,
• besitzen die notwendigen Grundfähigkeiten zur Analyse von zeitdiskreten Signalen und Systemen,
• können einfache Signale und Systeme selbstständig analysieren,
• können einfache Signalverarbeitungsaufgaben selbstständig lösen.

13. Inhalt:
• A/D- und D/A-Umwandlung, Abtastung, Quantisierung
• Zeitdiskrete Signale und Systeme, Analyse von LTI-Systemen im Zeitbereich, Differenzengleichung
• Analyse von Signalen und LTI-Systemen in der komplexen Ebene, z-Transformation, Übertragungsfunktion, Pole und Nullstellen
• Analyse von Signalen und LTI-Systemen im Frequenzbereich
• Digitale Filter, FIR und IIR, Tiefpass, Hochpass, Bandpass, Oszillator, Kerbfilter, Kammfilter, linearphasige Filter, Allpass, minimalphasige Filter
• Korrelationsanalyse, Auto- und Kreuzkorrelation, Auto- und Kreuzkorrelationsfunktion
• Diskrete Fourier-Transformation, schnelle Fourier-Transformation (FFT), schnelle Faltung
• Spektralanalyse, Periodogramm, Fenstereffekt, Zeit-Frequenz-Analyse, Spektrogramm

14. Literatur:
• Vorlesungsunterlagen, Videoaufzeichnung der Vorlesung
• A. V. Oppenheim und R. W. Schafer, "Zeitdiskrete Signalverarbeitung", Oldenburg, 1999
• J. Proakis and D. G. Manolakis: Digital signal processing, Prentice-Hall, 1996
• M. Mandal and A. Asif, "Continuous and discrete time signals and systems", Cambridge, 2008

15. Lehrveranstaltungen und -formen:
• 116401 Vorlesung Digitale Signalverarbeitung
• 116402 Übung Digitale Signalverarbeitung

16. Abschätzung Arbeitsaufwand:
Präsenzzzeit: 56 h
<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>11641 Digitale Signalverarbeitung (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Laptop, Beamer, Videoaufzeichnung aller Vorlesungen und Übungen</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Institut für Signalverarbeitung und Systemtheorie</td>
</tr>
</tbody>
</table>
Modul: 11560 Elektrische Energienetze I

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050310001</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B.Sc. Erneuerbare Energien, PO 2011, 5. Semester → Ergänzungsmodul → Erweiterte Grundlagen</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>B.Sc. Erneuerbare Energien, PO 2011, 5. Semester → Kernmodule → Elektrische Energiesysteme</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>• Elektrische Energietechnik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>• Aufgaben des elektrischen Energienetzes, Smart Grids</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Einpolige Ersatzschaltungen der Betriebselemente für symmetrische Betriebsweise</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Berechnung von Energieübertragungsanlagen und -netzen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Betrieb elektrischer Energieversorgungsnetze</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Kurzschlusstromrechnung bei symmetrischem Kurzschluss</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Symmetrische Komponenten</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Heuck, Dettmann: Elektrische Energieversorgung Vieweg, Braunschweig/Wiesbaden, 6. Aufl., 2005</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Schwab: Elektroenergiesysteme, Springer-Verlag, 1. Aufl., 2006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 115601 Vorlesung Elektrische Energienetze 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 115602 Übung Elektrische Energienetze 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Präsenzzeit: 56 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Selbststudium/Nacharbeitszeit: 124 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gesamt: 180 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>11561 Elektrische Energienetze I (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Grundlage für ...</td>
<td>21760 Elektrische Energienetze II</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------</td>
<td>-----------------------------------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>PowerPoint, Tafelanschrieb</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Institut für Energieübertragung und Hochspannungstechnik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Modulkürzel:</td>
<td>052601011</td>
<td>5. Modulduauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Nejila Parspour
9. Dozenten: Nejila Parspour

10. Zuordnung zum Curriculum in diesem Studiengang:

 B.Sc. Erneuerbare Energien, PO 2009, 5. Semester
 ➔ Ergänzungsmodule --> Erweiterte Grundlagen

 B.Sc. Erneuerbare Energien, PO 2009, 5. Semester
 ➔ Kernmodule --> Elektrische Energiesysteme

 B.Sc. Erneuerbare Energien, PO 2009, 5. Semester
 ➔ Kernmodule --> Kinetische Energiesysteme

 B.Sc. Erneuerbare Energien, PO 2011, 5. Semester
 ➔ Ergänzungsmodule --> Erweiterte Grundlagen

 B.Sc. Erneuerbare Energien, PO 2011, 5. Semester
 ➔ Kernmodule --> Elektrische Energiesysteme

 B.Sc. Erneuerbare Energien, PO 2011, 5. Semester
 ➔ Kernmodule --> Kinetische Energiesysteme

 B.Sc. Erneuerbare Energien, PO 2011, 5. Semester
 ➔ Vorgezogene Master-Module

11. Empfohlene Voraussetzungen:

12. Lernziele:

 Studierende kennen den Aufbau und die Funktionsweise von Gleichstrom-, Synchron und Asynchronmaschine. Sie kennen die Berechnung magnetischer Kreise.

13. Inhalt:

 • Magnetismus und Grundlagen der magnetischen Kreise
 • Antriebstechnische Zusammenhänge
 • Verluste in elektrischen Maschinen
 • Behandelte Maschinentypen:

 1) **Synchronmaschine**: Aufbau und Funktion, Ersatzschaltbilder, Energiefluss, mathematische Zusammenhänge, Kennlinien, vollständiges Ersatzschaltbild, Drehzahlstellverfahren, Brems- und Anlaufverfahren, Einführung in das rotorflussorientierte dynamische Model, Bauformen und Einsatzgebiete

 2) **Asynchronmaschine**: Aufbau und Funktion, Ersatzschaltbilder, Energiefluss, mathematische Zusammenhänge, Kennlinien, Drehzahlstellverfahren, Brems- und Anlaufverfahren, Bauformen und Einsatzgebiete

 3) **Gleichstrommaschine**: Aufbau und Funktion, Ersatzschaltbilder, mathematische Zusammenhänge, Kennlinien, Drehzahlstellverfahren, Brems- und Anlaufverfahren, Bauformen und Einsatzgebiete
14. Literatur:

- Seinsch, H. O.: Grundlagen elektrischer Maschinen und Antriebe; B.G. Teubner, Stuttgart, 1988
- Richter, Rudolf: Elektrische Maschinen; Verlag von Julius Springer, Berlin, 1936

15. Lehrveranstaltungen und -formen:

- 115801 Vorlesung Elektrische Maschinen I
- 115802 Übung Elektrische Maschinen I

16. Abschätzung Arbeitsaufwand:

- Präsenzzeit: 56 h
- Selbststudium/Nacharbeitszeit: 124 h
- Summe: 180 h

17. Prüfungsnummer/n und -name:

- 11581 Elektrische Maschinen I (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ...:

- 21690 Elektrische Maschinen II

19. Medienform:

- Beamer, Tafel, ILIAS

20. Angeboten von:

- Institut für Elektrische Energiewandlung
Modul: 12330 Elektrische Signalverarbeitung

2. Modulkürzel: 074711010
5. Moduldaurer: 1 Semester

3. Leistungspunkte: 6.0 LP
6. Turnus: jedes 2. Semester, SoSe

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Cristina Tarin Sauer

9. Dozenten: Cristina Tarin Sauer

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Erneuerbare Energien, PO 2009, 4. Semester
 ➞ Ergänzungsmodul --> Erweiterte Grundlagen
 B.Sc. Erneuerbare Energien, PO 2011, 4. Semester
 ➞ Ergänzungsmodul --> Erweiterte Grundlagen

13. Inhalt:
• Grundlagen
 - Gleichstrom
 - Wechselstrom
• Halbleiter-Bauelemente
 - Diode
 - Transistor
 - Operationsverstärker
• Signale und Systeme
 - Transformation der unabhängigen Variablen
 - Grundsignale
 - LTI-Systeme
• Zeitkontinuierliche Transformationen
 - Fourier-Analyse zeitkontinuierlicher Signale und Systeme
 - Laplace-Transformation
• Zeitdiskrete Transformationen
 - Zeitdiskrete Fourier-Transformation
 - Z-Transformation
• Abtastung
 - Zeitdiskrete Verarbeitung zeitkontinuierlicher Signale
• Analog Filter
 - Ideale und nichtideale frequenzselektive Filter
 - Zeitkontinuierliche frequenzselektive Filter
 - Filterentwurf
• Analog Modulationen
 - Amplitudenmodulation
 - Winkelmodulation

14. Literatur:
• Vorlesungsumdruck (Vorlesungsfolien)
• Übungsblätter
• Aus der Bibliothek:
- Tietze und Schenk: Halbleiter-Schaltungstechnik
- Oppenheim and Willsky: Signals and Systems
- Oppenheim and Schafer: Digital Signal Processing
- Weitere Literatur wird in der Vorlesung bekannt gegeben.

<table>
<thead>
<tr>
<th>15. Lehrveranstaltungen und -formen:</th>
<th>123301 Vorlesung Elektrische Signalverarbeitung: Vorlesung mit integrierten Vortragsübungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Präsenzzeit: 42h</td>
</tr>
<tr>
<td></td>
<td>Nachbereitungszeit: 138h</td>
</tr>
<tr>
<td></td>
<td>Gesamt: 180h</td>
</tr>
<tr>
<td></td>
<td>4 SWS gegliedert in 2 VL und 2 Ü</td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>12331 Elektrische Signalverarbeitung (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td>• 12350 Echtzeitanalyseverarbeitung</td>
</tr>
<tr>
<td></td>
<td>• 33840 Dynamische Filterverfahren</td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Beamer-Präsentation, Tafelschrieb, Vortragsübungen</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Institut für Systemdynamik</td>
</tr>
</tbody>
</table>
Modul: 38840 Fertigungslehre mit Einführung in die Fabrikorganisation

2. Modulkürzel: 072410001 5. Modulduauer: 1 Semester
4. SWS: 3.0 7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Thomas Bauernhansl
9. Dozenten: Thomas Bauernhansl
 ➞ Ergänzungsmodule --> Erweiterte Grundlagen

11. Empfohlene Voraussetzungen: keine
12. Lernziele:

 Der Studierende kennt die Ziele, die Aufgaben und grundlegenden organisatorischen Gestaltungsaspekte eines produzierenden Unternehmens. Er kennt verschiedene Innovationsstrategien, kann die wesentlichen Phasen im Produktentstehungsprozess und die wichtigsten Methoden der Produktentwicklung benennen. Weiterhin ist er in der Lage mehrere Auslöser für die Fabrikplanung aufzuzählen und kennt die Vorgehensweise bei Fabrikplanungsprojekten. Der Student kann den Grundgedanken und die Ziele des Supply Chain Managements beschreiben und kennt die verschiedenen Ebenen und Aufgaben des Supply Chain Managements. Außerdem kann er die Gründe für die Einführung von Lean Management darstellen, die Lean-Grundprinzipien erklären und die Basismethoden und Werkzeuge des Lean Managements beschreiben. Der Student kennt die Grundlagen der Kosten- und Leistungsrechnung und kann die Charakteristika der Industrie 4.0 darstellen.

13. Inhalt:

14. Literatur:
- Vorlesungsskripte;
- "Einführung in die Fertigungstechnik", Westkämper/Warnecke, Teubner Lehrbuch;
- "Einführung in die Organisation der Produktion", Westkämper, Springer Lehrbuch

15. Lehrveranstaltungen und -formen:
- 388401 Vorlesung Fertigungstechnik
- 388402 Vorlesung Einführung in die Fabrikorganisation
- 388403 Freiwillige Übungen Fertigungstechnik mit Einführung in die Fabrikorganisation

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit Vorlesung Fertigungstechnik (2 SWS): 21h
- Präsenzzeit Vorlesung Einführung in die Fabrikorganisation (1 SWS): 10,5h
- Präsenzzeit gesamt: 31,5h
- Selbststudium inkl. freiwilliger Übung: 58,5h
- GESAMT: 90h

17. Prüfungsnummer/n und -name:
- 38841 Fertigungstechnik mit Einführung in die Fabrikorganisation (BSL), schriftliche Prüfung, 120 Min., Gewichtung: 2.0

18. Grundlage für ... :

19. Medienform:
- PowerPoint, Video, Animation, Simulation

20. Angeboten von:
- Institut für Industrielle Fertigung und Fabrikbetrieb
Modul: 14090 Grundlagen Technischer Verbrennungsvorgänge I + II

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>040800010</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Modulduauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>5.0</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Nach Ankündigung</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Andreas Kronenburg</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Andreas Kronenburg</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:
- B.Sc. Erneuerbare Energien, PO 2009, 5. Semester
 - Ergänzungsmodule --> Erweiterte Grundlagen
 - Kernmodule --> Thermische Energiesysteme
- B.Sc. Erneuerbare Energien, PO 2011, 5. Semester
 - Ergänzungsmodule --> Erweiterte Grundlagen
 - Kernmodule --> Thermische Energiesysteme
- B.Sc. Erneuerbare Energien, PO 2011, 5. Semester
 - Vorgezogene Master-Module

11. Empfohlene Voraussetzungen:
Ingenieurwissenschaftliche und naturwissenschaftliche Grundlagen, Grundlagen in Maschinenbau, Verfahrenstechnik, Thermodynamik, Reaktionskinetik

12. Lernziele:
Die Studenten kennen die physikalisch-chemischen Grundlagen von Verbrennungsvorgängen: Reaktionskinetik von fossilen und biogenen Brennstoffen, Flammenstrukturen (laminare und turbulente Flammen, vorgemischte und nicht-vorgemischte Flammen), Turbulenz-Chemie Wechselwirkungsmechanismen, Schadstoffbildung

13. Inhalt:
Grdlg. Technischer Verbrennungsvorgänge I & II (WiSe, Unterrichtssprache Deutsch):

- Erhaltungsgleichungen; Thermodynamik; molekularer Transport; chemische Reaktion; Reaktionsmechanismen; laminare vorgemischte und nicht-vorgemischte Flammen.
- Gestreckte Flammenstrukturen; Zündprozesse; Flammenstabilität; turbulente vorgemischte und nicht-vorgemischte Verbrennung; Schadstoffbildung; Spray-Verbrennung

An equivalent course is taught in English:

Combustion Fundamentals I & II (summer term only, taught in English):

- Transport equations; thermodynamics; fluid properties; chemical reactions; reaction mechanisms; laminar premixed and non-premixed combustion.
- Effects of stretch, strain and curvature on flame characteristics; ignition; stability; turbulent reacting flows; pollutants and their formation; spray combustion

14. Literatur:
- Vorlesungsmanuskript
15. Lehrveranstaltungen und -formen:

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>140901 Vorlesung Grundlagen Technischer Verbrennungsvorgänge I + II</td>
</tr>
<tr>
<td>140902 Übung Grundlagen Technischer Verbrennungsvorgänge I + II</td>
</tr>
</tbody>
</table>

16. Abschätzung Arbeitsaufwand:

- Präsenzzeit: 70 h (4SWS Vorlesung, 1SWS Übung)
- Selbststudiumszeit / Nacharbeitszeit: 110 h

Gesamt: 180 h

17. Prüfungsnummer/n und -name:

<table>
<thead>
<tr>
<th>Prüfungsnummer/n</th>
<th>Prüfungsdetails</th>
</tr>
</thead>
<tbody>
<tr>
<td>14091</td>
<td>Grundlagen Technischer Verbrennungsvorgänge I + II (PL), schriftlich, eventuell mündlich, 120 Min., Gewichtung: 1.0</td>
</tr>
</tbody>
</table>

18. Grundlage für ... :

19. Medienform:

- Tafelanschrieb
- PPT-Präsentationen
- Skripte zu den Vorlesungen

20. Angeboten von:

Institut für Technische Verbrennung
Modul: 39160 Grundlagen der Betriebswirtschaftslehre

2. Modulkürzel: 100110001
5. Moduldauer: 1 Semester

3. Leistungspunkte: 3.0 LP
6. Turnus: unregelmäßig

4. SWS: 3.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Wolfgang Burr

9. Dozenten:
• Wolfgang Burr
• Xenia Schmidt
• Micha Bosler

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Erneuerbare Energien, PO 2011, 4. Semester
➞ Ergänzungsmodule -->Erweiterte Grundlagen
➞ B.Sc. Erneuerbare Energien, PO 2011, 4. Semester
➞ Vorgezogene Master-Module

11. Empfohlene Voraussetzungen: keine

12. Lernziele:
• Die Studierenden können die zentrale betriebswirtschaftliche Definitionen wiedergeben und lernen auf deren Basis zu argumentieren
• Die Studierenden können die verschiedene Teilbereiche der Betriebswirtschaft benennen und in das Gesamtkonzept der Betriebswirtschaft einordnen sowie dortige Problemstellungen angeben und eingesetzte Instrumente anwenden
• Die Studierenden sind in der Lage ausgewählte betriebswirtschaftlichen Theorien zu erklären und auf bestimmte Problemstellungen anzuwenden

13. Inhalt:
Dieses einführende Modul bringt zunächst den Studierenden den Gegenstand der Betriebswirtschaftslehre näher und ermöglicht ein Kennenlernen erster betriebswirtschaftlicher Begriffe sowie eine Einordnung der Betriebswirtschaftslehre in den Rahmen der Wirtschaftswissenschaften.
Weiterhin werden die entscheidungstheoretischen Grundlagen und Modelle diskutiert. Anhand praxisorientierter Aufgaben wird die Entscheidungsproblematik begreiflich gemacht. Ferner werden die Einheiten der betrieblichen Leistungserstellung und die Instrumente zur Unterstützung dieser erläutert.
Schließlich lernen die Studierenden die Aufgaben und Probleme der Unternehmensführung kennen. Neben der Einführung in die Theorien, Methoden und Konzepte der Unternehmensführung, bekommen die Studierenden Einblick in weitere Bereiche wie z. B. Innovationsmanagement.

14. Literatur:
• Folien zu Vorlesungen und Übungen
• Übungsaufgaben im ILIAS

Die Basisliteratur umfasst die folgenden Werke:
• Burr, W.: Innovationen in Organisationen, aktuelle Auflage, Kohlhammer Verlag, Stuttgart.
15. Lehrveranstaltungen und -formen:

- 391601 Vorlesung Grundlagen der Betriebswirtschaftslehre
- 391602 Übung Grundlagen der Betriebswirtschaftslehre

16. Abschätzung Arbeitsaufwand:

Vorlesung
- Präsenzzeit: 28 h
- Selbststudium: 32 h

Übung
- Präsenzzeit: 14 h
- Selbststudium: 16 h

Gesamt: 90 h

17. Prüfungsnummer/n und -name:

39161 Grundlagen der Betriebswirtschaftslehre (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:

Tafel, Beamer, Overhead-Projektor

20. Angeboten von:

ABWL, Forschungs-, Entwicklungs- und Innovationsmanagement
Modul: 38790 Grundlagen der Wirtschaftswissenschaften

2. Modulkürzel: 100410003
3. Leistungspunkte: 3.0 LP
4. SWS: 3.0
5. Moduldauer: 1 Semester
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Frank Clemens Englmann
9. Dozenten: • Frank Clemens Englmann
 • Susanne Becker
 ➞ Ergänzungsmodule --> Erweiterte Grundlagen
11. Empfohlene Voraussetzungen: Keine
14. Literatur: Ergänzende Folien
Die Basisliteratur umfasst die folgenden Werke:
• N.G. Mankiw und M.P. Taylor: Grundzüge der Volkswirtschaftslehre, Schäffer-Poeschel, neueste Auflage
• H.-D. Hardes und A. Uhly: Grundzüge der Volkswirtschaftslehre, Oldenburg, neueste Auflage
• F.C. Englmann: Makroökonomik, Kohlhammer, neueste Auflage
• B. Woeckener: Volkswirtschaftslehre, Springer, neueste Auflage
15. Lehrveranstaltungen und -formen:
• 387901 Vorlesung Grundlagen der Wirtschaftswissenschaften
• 387902 Übung Grundlagen der Wirtschaftswissenschaften
16. Abschätzung Arbeitsaufwand:
Vorlesung
Präsenzzeit: 28 h
Selbststudiumszeit / Nacharbeitszeit: 32 h
Übung

Stand: 06. Oktober 2015
Seite 115 von 153
<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>38791 Grundlagen der Wirtschaftswissenschaften (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Volkswirtschaftslehre</td>
</tr>
</tbody>
</table>
Modul: 13830 Grundlagen der Wärmeübertragung

2. Modulkürzel: 042410010
5. Moduldoauer: 1 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Apl. Prof. Klaus Spindler

9. Dozenten: Klaus Spindler

10. Zuordnung zum Curriculum in diesem Studiengang:
 - B.Sc. Erneuerbare Energien, PO 2009, 5. Semester
 → Ergänzungsmodule -->Erweiterte Grundlagen
 → B.Sc. Erneuerbare Energien, PO 2009, 5. Semester
 → Kernmodule -->Thermische Energiesysteme
 - B.Sc. Erneuerbare Energien, PO 2011, 5. Semester
 → Ergänzungsmodule -->Erweiterte Grundlagen
 → B.Sc. Erneuerbare Energien, PO 2011, 5. Semester
 → Kernmodule -->Thermische Energiesysteme

11. Empfohlene Voraussetzungen:
 - Technische Thermodynamik I/II
 - 1. u. 2 Hauptsatz, Bilanzierungen, Zustandsgrößen und Zustandsverhalten
 - Integral- und Differentialrechnung
 - Strömungslehre

12. Lernziele:

13. Inhalt:

14. Literatur:
 - Incropera, F.P.; Dewit, D.F.; Bergmann, T.L.; Lavine, A.S.:
• Powerpoint-Folien der Vorlesung auf Homepage
• Formelsammlung und Datenblätter
• Übungsaufgaben und alte Prüfungsaufgaben mit Kurzlösungen

15. Lehrveranstaltungen und -formen:
• 138301 Vorlesung Grundlagen der Wärmeübertragung
• 138302 Übung Grundlagen der Wärmeübertragung

16. Abschätzung Arbeitsaufwand:
| Präsenzzeit: | 56 h |
| Selbststudiumszeit / Nacharbeitszeit: | 124 h |
| Gesamt: | 180 h |

17. Prüfungsnummer/n und -name:
13831 Grundlagen der Wärmeübertragung (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:
• Vorlesung als Powerpoint-Präsentation mit kleinen Beispielen zur Anwendung des Stoffes
• Folien auf Homepage verfügbar
• Übungen als Vortragsübungen mit Overhead-Anschrieb

20. Angeboten von:
Modul: 41450 Grundzüge der Angewandten Chemie

2. Modulkürzel: 030230906 5. Moduldauer: 1 Semester
4. SWS: 2.0 7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Rainer Niewa
9. Dozenten: Rainer Niewa

➞ Ergänzungsmodule --> Erweiterte Grundlagen

➞ B.Sc. Erneuerbare Energien, PO 2011, 2. Semester

➞ Vorgezogene Master-Module

11. Empfohlene Voraussetzungen: keine
12. Lernziele: Die Studierenden
 • kennen grundlegende Konzepte der Chemie wie Atombau, Periodensystem, Bindungstypen, Formelsprache und Stöchiometrie
 • kennen grundlegende chemische Stoffklassen sowie exemplarische Reaktionstypen
 • wissen um den Zusammenhang zwischen chemischem Aufbau und Eigenschaften wichtiger Materialien
 • erkennen wichtige Anwendungen der Chemie im eigenen Hauptfach

 Säuren und Basen: Definition, pH-Werte
 Elektrochemie: Redoxreaktionen, galvanische Zellen, Elektrolyse, Korrosion, Batterien, Akkumulatoren und Brennstoffzellen.
 Metalle und Halbleiter: Struktur (Kugelpackungen), Bändermodell, Gewinnung und Eigenschaften der wichtigsten techn. Metalle (Eisen, Kobalt, Nickel, Kupfer, Aluminium, Titan, Zinn), Silizium (Darstellung, Zonenschmelzen)

 G. Kickelbick: Chemie für Ingenieure, 2008

15. Lehrveranstaltungen und -formen: 414501 Vorlesung Grundzüge der Angewandten Chemie

16. Abschätzung Arbeitsaufwand: Präsenzzeit: 21 h
 Selbststudium / Nacharbeitszeit: 69 h
 Gesamt: 90 h

17. Prüfungsnummer/n und -name: 41451 Grundzüge der Angewandten Chemie (BSL), schriftlich, eventuell mündlich, 90 Min., Gewichtung: 1.0

18. Grundlage für ... :
19. Medienform:
20. Angeboten von:
Modul: 11700 Halbleitertechnik I

2. Modulkürzel: 050500002

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0

5. Modul: 11700

6. Modulverantwortlicher: Univ.-Prof. Jörg Schulze

7. Turnus: jedes 2. Semester, WiSe

8. Dozenten: Jörg Schulze

9. Modul: 11700

10. Sprache: Deutsch

11. Empfohlene Voraussetzungen:
Empfohlen werden Kenntnisse, wie Sie beispielsweise in Mikroelektronik (ME) und Halbleitertechnologie: Prozesstechnologie (HLT I) vermittelt werden.

12. Lernziele:
Die Studierenden besitzen die Kenntnis und das Verständnis der mathematisch-physikalischen Grundlagen der Bauelement-Modellierung, kennen die ideale und die reale Funktionsweise und den Aufbau diverser Halbleiterdioden und haben ein umfassendes Verständnis vom Aufbau und vom idealen/realen Verhalten eines Bipolar- und eines Heterobipolartransistors. Darüber hinaus kennen sie die prinzipielle Funktionsweise von Thyristoren und haben erste Grundkenntnisse von der Funktionsweise von Leistungsbipolartransistoren mit isoliertem Gate und von BiCMOS-Schaltungen (BiCMOS: Schaltungstechnik, bei der Bipolar- und Feldeffekttransistoren miteinander kombiniert werden). Außerdem kennen sie die prinzipiellen Herstellungsprozessabläufe moderner Bipolar- und BiCMOS-Prozesse.

13. Inhalt:

Die folgenden Inhalte werden besprochen:

• Beschreibung eines p-n-Übergangs im thermodynamischen Gleichgewicht (Raumladungszonen, Poisson-Gleichung, "Depletion"-Näherung und "Built-in"-Spannung),
• Beschreibung eines p-n-Übergangs im Nicht-Gleichgewicht (I-U-Charakteristik des idealen pn-Übergangs, Rekombinationsmechanismen in pn-Übergängen, I-U-Charakteristik des realen pn-Übergangs, Durchbruchmechanismen in pn-Übergängen),
• Aufbau und Funktionsweise von Bipolar- und Heterobipolartransistoren: Ideales und reales Verhalten und Hochfrequenzbetrieb,
• Thyristor und lichtgezündeter Thyristor, TRIAC ("Triode for Alternating Current").

Als Ausblick wird zum Schluss der Vorlesung auf Leistungsbipolartransistoren mit isoliertem Gate wie dem "Gate-Turn-Off"-Thyristor (GTO-Thyristor) und dem "Insulated Gate Bipolar Transistor" (IGBT) und auf BiCMOS-Schaltungen eingegangen.

14. Literatur:

• Chang: ULSI Devices, Wiley, 2000
• Hoffmann: Systemintegration, Oldenbourg, 2003
• Linder: Power Semiconductors, CRC Press, 2006
• Löcherer: Halbleiterbauelemente, Teubner, 1992
• Ng: Complete Guide to Semiconductor Devices, Wiley, 2002
• Razavi: Microelectronics, Wiley, 2015
• Roulsten: An Introduction to the Physics of Semiconductor Devices, Oxford University Press, 1999
• Schaumburg: Halbleiter, Teubner, 1991
• Schulze: Konzepte Silizium-basierter MOS-Bauelemente, Springer, 2005
• Sze: Semiconductor Devices - Physics and Technology, Wiley, 1985
• Thuselt: Physik der Halbleiterbauelemente, Springer, 2005
• Treitinger, Miura-Mattausch (Ed.): Ultra-Fast Silicon Bipolar Technology, Springer, 1988

15. Lehrveranstaltungen und -formen:

• 117001 Vorlesung Halbleitertechnik 1
• 117002 Übung Halbleitertechnik 1

16. Abschätzung Arbeitsaufwand:

Gesamtaufwand: 180 h

Dabei:

• 45 h (2 SWS Vorlesung + 2 SWS Übung) Präsenz
• 135 h Selbststudium

17. Prüfungsnummer/n und -name:

11701 Halbleitertechnik I (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

• PowerPoint-Präsentationen zu den einzelnen Kapiteln (Beamer)
• Aufzeichnungen während der Vorlesungen (Notizen, Rechnungen, Skizzen u. ä.) mit Hilfe eines Tablet-PCs (Beamer)
• Lehrbriefe zu den einzelnen Themenschwerpunkten
• Ausgedrucktes Skript mit sämtlichen Vorlesungs- und Übungsfolien, Übungsbändern und Lehrbriefen (zum Selbstkostenpreis erhältlich)
• Vorlesungsaufzeichnungen im MPG4-Format mittels Tablet-PCs & Head-Set
• Sämtliche Unterlagen werden elektronisch über ILIAS zum Download bereitgestellt.

20. Angeboten von:

Institut für Halbleitertechnik
Modul: 11570 Hochspannungstechnik I

2. Modulkürzel: 050310003
5. Modulduer: 1 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Stefan Tenbohlen

9. Dozenten: Stefan Tenbohlen

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Erneuerbare Energien, PO 2009, 5. Semester
 ➔ Ergänzungsmodul --> Erweiterte Grundlagen
 ➔
 B.Sc. Erneuerbare Energien, PO 2011, 5. Semester
 ➔ Ergänzungsmodul --> Erweiterte Grundlagen
 ➔
 B.Sc. Erneuerbare Energien, PO 2011, 5. Semester
 ➔ Vorgezogene Master-Module

11. Empfohlene Voraussetzungen:
 • Elektrische Energietechnik

12. Lernziele:
 Studierender hat Kenntnisse der Grundlagen der Versuchs- und Messtechnik für Hochspannungsprüfungen, Verständnis der Zusammenhänge Festigkeit und Beanspruchung eines Isolierstoffsystems und des Aufbaus eines Isoliationssystems.

13. Inhalt:
 • Auftreten und Anwendung hoher Spannungen bzw. Ströme
 • Einführung in die Hochspannungsversuchstechnik
 • Berechnung elektrischer Felder
 • Grundlagen der Hochspannungsisoliertechnik
 • Isolierstoffsysteme in Hochspannungsgeräten

14. Literatur:
 • Beyer, Boeck, Möller, Zaengl: Hochspannungstechnik Springer-Verlag, Berlin, 1986
 • Kind, Feser: Hochspannungs-Versuchstechnik Vieweg, Braunschweig, 1995
 • Kind, Kärner: Hochspannungsisoliertechnik Vieweg, Braunschweig, 1982

15. Lehrveranstaltungen und -formen:
 • 115701 Vorlesung Hochspannungstechnik 1
 • 115702 Übung Hochspannungstechnik 1

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 56 h
 Selbststudium/Nacharbeitszeit: 124 h
 Gesamt: 180 h

17. Prüfungsnummer/n und -name: 11571 Hochspannungstechnik I (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform: PowerPoint, Tafelanschrieb

20. Angeboten von: Institut für Energieübertragung und Hochspannungstechnik
Modul: 12460 Konstruktionslehre II (EE)

2. Modulkürzel: 060320002
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0
5. Moduldauer: 1 Semester
7. Sprache: Deutsch
8. Modulverantwortlicher: Stefan Baehr
9. Dozenten: • Stephan Staudacher
• Stefan Baehr
• Joachim Greiner
10. Zuordnung zum Curriculum in diesem Studiengang:

 B.Sc. Erneuerbare Energien, PO 2009, 5. Semester
 → Ergänzungsmodule -->Erweiterte Grundlagen
 → B.Sc. Erneuerbare Energien, PO 2009, 5. Semester
 → Kernmodule -->Kinetische Energiesysteme
 → B.Sc. Erneuerbare Energien, PO 2011, 5. Semester
 → Ergänzungsmodule -->Erweiterte Grundlagen
 → B.Sc. Erneuerbare Energien, PO 2011, 5. Semester
 → Kernmodule -->Kinetische Energiesysteme
 → B.Sc. Erneuerbare Energien, PO 2011, 5. Semester
 → Vorgezogene Master-Module

11. Empfohlene Voraussetzungen:

 • Erneuerbare Energien Bachelor 060320003 „Konstruktionslehre I (EE)“

12. Lernziele:

 Die Studierenden sind in der Lage
 - Funktionsanforderungen an Komponenten durch Konstruktionselemente zu verwirklichen und Bauausführungen zu begründen
 - eine Konstruktion aus verschiedenen Konstruktionselementen zu erstellen, zu berechnen, nachzuweisen, zu dokumentieren (Stückliste) und darzustellen
 - Konstruktionselemente und deren Einsatz anhand widersprüchlicher Kriterien (z.B. Kosten, Qualität) zu beurteilen

13. Inhalt:

 Konstruktionselemente II
 Bauweisen, Gestaltung und Auslegung von Gleit- und Wälzlager,
 Welle-Nabe-Verbindungen, Kupplungen und Zahnradgetriebe;
 Entwicklungsprozesse, Korrosion und Korrosionsschutz

 Konstruktionsseminar
 Ermernen und Umsetzen von Konstruktionsweisen im Flugzeugbau und/
 oder Energiewandlern anhand von komplexen wie auch individuellen
 Konstruktionen, die über das gesamte Semester hinweg betreut und
 ausgearbeitet werden. Die Lehrveranstaltung kann alternativ am IFB oder
 ILA belegt werden.

14. Literatur:

 - Vorlesungs-Manuskript zum Herunterladen
 - Übungs-Manuskript zum Herunterladen
 - Lehrbuch: Roloff/Matek, Maschinenelemente, Viehweg-Verlag
 - Arbeitsblätter für Gruppen-/ Einzelarbeit

15. Lehrveranstaltungen und -formen:

 • 124601 Vorlesung Konstruktionselemente II
 • 124602 Übung Konstruktionselemente II
 • 124603 Seminar Konstruktionspraktikum
16. Abschätzung Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Präsenzzeit:</th>
<th>42 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selbststudiumszeit / Nacharbeitszeit:</td>
<td>138 h</td>
</tr>
<tr>
<td>Gesamt:</td>
<td>180 h</td>
</tr>
</tbody>
</table>

17. Prüfungsnummer/n und -name:

- 12461 Konstruktionslehre II (EE) (PL), schriftliche Prüfung, 90 Min., Gewichtung: 33.0, Fragenteil 30 min (ohne Hilfsmittel), Rechenteil 60 min (zugel. Hilfsmittel: Literatur, Vorl.- u. Übungsunterlagen, Notizen, Taschenrechner, keine Funkeinrichtungen)

- 12462 Konstruktionspraktikum (PL), schriftlich, eventuell mündlich, Gewichtung: 67.0, Hausarbeit

18. Grundlage für ...

19. Medienform:

- Beamer: Power-Point Präsentationen & Fach-DVD’s
- Tageslichtprojektor: Übungsanschrieb
- Tafel für vertiefende Erläuterungen
- Zeitweise: Demonstrationshardware

20. Angeboten von:

Institut für Flugzeugbau
Modul: 14150 Leichtbau

2. Modulkürzel: 041810002 5. Modulduauer: 1 Semester
4. SWS: 4.0 7. Sprache: Deutsch
8. Modulverantwortlicher: Michael Seidenfuß
9. Dozenten: • Stefan Weihe
 • Michael Seidenfuß
 ➞ Ergänzungsmodul --> Erweiterte Grundlagen
 ➞ B.Sc. Erneuerbare Energien, PO 2011, 6. Semester
 ➞ Ergänzungsmodul --> Erweiterte Grundlagen
 ➞ B.Sc. Erneuerbare Energien, PO 2011, 6. Semester
 ➞ Vorgezogene Master-Module
11. Empfohlene Voraussetzungen: • Einführung in die Festigkeitslehre
 • Werkstoffkunde I und II
13. Inhalt: • Werkstoffe im Leichtbau
 • Festigkeitsberechnung
 • Konstruktionsprinzipien
 • Stabilitätsprobleme: Knicken und Beulen
 • Verbindungstechnik
 • Zuverlässigkeit
 • Recycling
14. Literatur: - Manuskript zur Vorlesung
 - Ergänzende Folien (online verfügbar)
 - Klein, B.: Leichtbau-Konstruktion, Vieweg Verlagsgesellschaft
 - Petersen, C.: Statik und Stabilität der Baukonstruktionen, Vieweg Verlagsgesellschaft
15. Lehrveranstaltungen und -formen: • 141501 Vorlesung Leichtbau
 • 141502 Leichtbau Übung
16. Abschätzung Arbeitsaufwand: Präsenzzeit: 42 h
 Selbststudium / Nacharbeit: 138 h
 Gesamt: 180 h
17. Prüfungsnummer/n und -name: 14151 Leichtbau (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1,0
18. Grundlage für ... :
19. Medienform: PPT auf Tablet PC, Animationen u. Simulationen
20. Angeboten von: Institut für Materialprüfung, Werkstoffkunde und Festigkeitslehre
Modul: 11550 Leistungselektronik I

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>051010011</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modulduer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Jörg Roth-Stielow</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Jörg Roth-Stielow</td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen:

- Studierende...
 - ...kennen die wichtigsten potentialverbindenden und potentialtrennenden Schaltungen der Leistungselektronik mit abschaltbaren Ventilen und die zugehörigen Modulationsverfahren.
 - ...können diese Anordnungen mathematisch beschreiben und Aufgabenstellungen lösen.
 - ...kennen die grundlegenden Prinzipien der Meßverfahren für Mischströme.

12. Lernziele:

- Abschaltbare Leistungshalbleiter
- Schaltungstopologien potentialverbindender Stellglieder
- Schaltungstopologien potentialtrennender Gleichstromsteller
- Modulationsverfahren
- Strommeßtechnik in der Leistungselektronik

14. Literatur:

15. Lehrveranstaltungen und -formen:

- 115501 Vorlesung Leistungselektronik I
- 115502 Übung Leistungselektronik I

16. Abschätzung Arbeitsaufwand:

Präsenzzeit:	56 h
Selbststudium:	124 h
Gesamt:	180 h

17. Prüfungsnummer/n und -name:

- 11551 Leistungselektronik I (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0
<table>
<thead>
<tr>
<th>19. Medienform:</th>
<th>Tafel, Folien, Beamer</th>
</tr>
</thead>
<tbody>
<tr>
<td>20. Angeboten von:</td>
<td>Institut für Leistungselektronik und Elektrische Antriebe</td>
</tr>
</tbody>
</table>
Modul: 38720 Meteorologie

2. Modulkürzel: 042500051

3. Leistungspunkte: 3.0 LP

4. SWS: 2.0

5. Modulduauer: 1 Semester

6. Turnus: jedes 2. Semester, WiSe

7. Sprache: Deutsch

8. Modulverantwortlicher: Ulrich Vogt

10. Zuordnung zum Curriculum in diesem Studiengang:

- B.Sc. Erneuerbare Energien, PO 2011, 5. Semester
 → Ergänzungsmodul --> Erweiterte Grundlagen
 → B.Sc. Erneuerbare Energien, PO 2011, 5. Semester
 → Vorgezogene Master-Module

11. Empfohlene Voraussetzungen: Keine

12. Lernziele:

Die Studenten haben die Grundkenntnisse der Meteorologie und der atmosphärischen Prozesse erworben, die zum Verständnis des Verhaltens von Luftverunreinigungen und der Niederschläge in der Atmosphäre, die auch auf andere Bereiche der Umwelt einwirken (Wasser, Vegetation) erforderlich sind.

13. Inhalt:

In der Vorlesung „Meteorologie“ werden die folgenden Themen behandelt:

- Strahlung und Strahlungsbilanz,
- Meteorologische Elemente (Luftdichte, Luftdruck, Lufttemperatur, Luftfeuchtigkeit, Wind) und ihre Messung,
- allgemeine Gesetze,
- Aufbau der Erdatmosphäre,
- klein- und großräumige Zirkulationssysteme in der Atmosphäre,
- Wetterkarte und Wettervorhersage,
- Ausbreitung von Schadstoffen in der Atmosphäre,
- Stadtklimatologie,
- Globale Klimaveränderungen und ihre Auswirkungen, „Ozonloch“.

14. Literatur:

- Vorlesungsmanuskript

15. Lehrveranstaltungen und -formen:

- 387201 Vorlesung Meteorologie

16. Abschätzung Arbeitsaufwand:

- Präsenzzeit: 28 h
- Selbststudium / Nacharbeitszeit: 62 h
- Gesamt: 90 h

17. Prüfungsnummer/n und -name:

- 38721 Meteorologie (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0
18. Grundlage für ...

<table>
<thead>
<tr>
<th>19. Medienform:</th>
<th>Tafelanschrieb, PPT-Präsentationen, ILIAS</th>
</tr>
</thead>
<tbody>
<tr>
<td>20. Angeboten von:</td>
<td>Institut für Feuerungs- und Kraftwerkstechnik</td>
</tr>
</tbody>
</table>
Modul: 28560 Mikroelektronik I

2. Modulkürzel: 050513005
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0
5. Modul dauer: 1 Semester
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Jürgen Heinz Werner
9. Dozenten: Jürgen Heinz Werner
10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Erneuerbare Energien, PO 2009, 3. Semester
 → Ergänzungsmodule --> Erweiterte Grundlagen
 B.Sc. Erneuerbare Energien, PO 2011, 3. Semester
 → Ergänzungsmodule --> Erweiterte Grundlagen
11. Empfohlene Voraussetzungen:
12. Lernziele: Die Studierenden kennen
 - die Unterschiede zwischen Metallen, Halbleitern und Isolatoren
 - die gesamte Prozesskette der Herstellung von Silizium für die
 Mikroelektronik und Photovoltaik
 - die elementaren Eigenschaften von Elektronen und Löchern in
 Halbleiter
 - Feld- und Diffusionsströme in Halbleitern
 - die Fermi-Verteilung
 - die Funktionsweise und Beschreibung von pn-Übergängen in
 Gleichgewicht und Nichtgleichgewicht
 - die Anwendungsmöglichkeiten von Dioden

13. Inhalt:
 - Silizium als Werkstoff der Mikroelektronik
 - Elektronen und Löcher
 - Ströme in Halbleitern
 - Elektrostatik und Kennlinie des pn-Übergangs
 - Anwendungen von pn-Dioden

14. Literatur:
 - R. F. Pierret, Semiconductor Fundamentals (Addison-Wesley, Reading,
 MA, 1988)
 - G. W. Neudeck, R. F. Pierret, The PN Junction Diode (Addison-Wesley,
 Reading, MA, 1989)

15. Lehrveranstaltungen und -formen:
 • 285601 Vorlesung Mikroelektronik I
 • 285602 Übung Mikroelektronik I

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 56 h
 Selbststudium: 124 h
 Gesamt: 180

17. Prüfungsnummer/n und -name: 28561 Mikroelektronik I (PL), schriftliche Prüfung, 60 Min.,
 Gewichtung: 1.0

18. Grundlage für ... :
19. Medienform: Powerpoint, Tafel
20. Angeboten von: Institut für Photovoltaik
Modul: 28550 Regelung von Kraftwerken und Netzen

2. Modulkürzel: 042500042
5. Modulduauer: 1 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Günter Scheffknecht
9. Dozenten: Florian Gutekunst

10. Zuordnung zum Curriculum in diesem Studiengang:

 B.Sc. Erneuerbare Energien, PO 2009, 5. Semester
 → Ergänzungsmodule -->Erweiterte Grundlagen

 B.Sc. Erneuerbare Energien, PO 2011, 5. Semester
 → Ergänzungsmodule -->Erweiterte Grundlagen

 B.Sc. Erneuerbare Energien, PO 2011, 5. Semester
 → Vorgezogene Master-Module

11. Empfohlene Voraussetzungen: Keine

12. Lernziele:
Die Absolventen des Moduls kennen die klassischen kraftwerksund netzseitigen Automatisierungs- und Regelungsaufgaben im Bereich der Stromerzeugung. Sie sind mit den aktuellen nationalen und internationalen Spezifikationen und Richtlinien für die Standard-Regelaufgaben in der Stromerzeugung vertraut und können bestehende Regelungen und ihre Auswirkungen auf das Verbundsystem bewerten.

13. Inhalt:
I: Einführung: Aufbau elektrischer Energieversorgungssysteme
 I.1: Verbundnetzgliederung
 I.2: Netzpartner
 I.3: Europäisches Verbundnetz und Verbundnetze weltweit
II: Dynamisches Verhalten der Netzpartner
 II.1a: fossile Dampfkraftwerke
 II.1b: Kernkraftwerke
 II.1c: Solarthermische Kraftwerke
 II.1d: Wasserkraftwerke
 II.1e: Windkraftanlagen
 II.1f: weitere dezentrale Erzeuger
 II.2: Verbraucher
 II.3: Netzbetriebsmittel/Leistungslektronik
III: Netzregelung und Systemführung
 III.1: Frequenz-Wirkleistungs-Regelung
 III.2: Spannungsregelung
 III.3: Dynamisches Netzverhalten
 III.4: Monitoring
IV: Aktuelle Herausforderungen
 IV.1: Einbindung erneuerbarer Energien
 IV.2: Ausweitungen des europäischen Stromhandels
 IV.3: Erweiterungen des europäischen Verbundnetzes
 IV.4: Möglichkeiten zur Minderung von CO2 Emissionen bei der el. Energieerzeugung mittels CCS (Carbon Capture and Storage)
V: Übung
 V.1: Fossil befeuerte Kraftwerke
 V.2: Kernkraftwerke und Wasserkraftwerke
 V.3: Leistungs-Frequenzregelung
V.4: Lastflussrechnung

14. Literatur:

15. Lehrveranstaltungen und -formen:
<table>
<thead>
<tr>
<th>Prüfungsnummer/n und -name</th>
<th>Lehrveranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>285501</td>
<td>Vorlesung Regelung von Kraftwerken und Netzen</td>
</tr>
</tbody>
</table>

16. Abschätzung Arbeitsaufwand:
Präsenzzzeit:	56 Stunden
Selbststudium:	124 Stunden
Summe:	180 Stunden

17. Prüfungsnummer/n und -name:
<table>
<thead>
<tr>
<th>Prüfungsnummer/n und -name</th>
<th>Lehrveranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>28551</td>
<td>Regelung von Kraftwerken und Netzen (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0</td>
</tr>
</tbody>
</table>

18. Grundlage für ...:
<table>
<thead>
<tr>
<th>Prüfungsnummer/n und -name</th>
<th>Lehrveranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>28550</td>
<td>Regelung von Kraftwerken und Netzen</td>
</tr>
</tbody>
</table>

19. Medienform:
PPT-Präsentationen, Tafelanschrieb, ILIAS

20. Angeboten von:
Institut für Feuerungs- und Kraftwerkstechnik
Modul: 46340 Signale und Systeme

2. Modulkürzel: 051600044
5. Modulstart: 1 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Bin Yang

9. Dozenten: Bin Yang

10. Zuordnung zum Curriculum in diesem Studiengang:
 - B.Sc. Erneuerbare Energien, PO 2009 → Ergänzungsmodule --> Erweiterte Grundlagen
 - B.Sc. Erneuerbare Energien, PO 2011 → Ergänzungsmodule --> Erweiterte Grundlagen
 - B.Sc. Erneuerbare Energien, PO 2011 → Vorgezogene Master-Module

11. Empfohlene Voraussetzungen: Grundkenntnisse in höherer Mathematik
 Grundkenntnisse in Elektrotechnik

12. Lernziele: Die Studierenden besitzen Grundkenntnisse der Theorie von linearen Systemen und beherrschen die elementaren Methoden für die Analyse der Signale und Systeme im Zeit- und Frequenzbereich.

13. Inhalt:
 • Signal, Klassifikation von Signalen, zeitkontinuierliche und zeitdiskrete Signale, verschiedene Elementarsignale
 • System, zeitkontinuierliche und zeitdiskrete Systeme, linear, gedächtnislos, kausal, zeitinvariant, stabil
 • Analyse zeitkontinuierlicher und zeitdiskreter LTI-Systeme im Zeitbereich, Impulsantwort, Faltung
 • Fourier-Reihe und Fourier-Transformation zeitkontinuierlicher und zeitdiskreter Signale
 • Abtastung, Abtasttheorem
 • Analyse zeitkontinuierlicher und zeitdiskreter LTI-Systeme im Frequenzbereich, Frequenzgang, Amplitudengang, Phasengang, Gruppenlaufzeit, rationaler Frequenzgang

14. Literatur:
 • Vorlesungsunterlagen, Videoaufzeichnung der Vorlesung
 • H. P. Hsu: Schaum’s outline of signals and systems, McGraw-Hill, 1995;
 • R. Unbehauen: Systemtheorie I, 7. Auflage, Oldenburg, 1997;

15. Lehrveranstaltungen und -formen:
 • 463401 Vorlesung Signale und Systeme
 • 463402 Übung Signale und Systeme

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 56 h
 Selbststudium: 124 h
 Gesamt: 180 h

17. Prüfungsnummer/n und -name: 46341 Signale und Systeme (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform: Laptop, Beamer, Videoaufzeichnung aller Vorlesungen

Stand: 06. Oktober 2015
20. Angeboten von: Institut für Signalverarbeitung und Systemtheorie
Modul: 41170 Speichertechnik für elektrische Energie I

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>052601027</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Moduldauster:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Kai Peter Birke</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Kai Peter Birke</td>
</tr>
</tbody>
</table>
 → Erfüllungsmodul -- Erweiterte Grundlagen
 →
 B.Sc. Erneuerbare Energien, PO 2011
 → Erfüllungsmodul -- Erweiterte Grundlagen
 →
 B.Sc. Erneuerbare Energien, PO 2011
 → Vorgezogene Master-Module |
| 12. Lernziele: | Aufbau und Funktionsweise von:
 • Elektrischen Speichern (Supraleitende Spule, Super Kondensator)
 • Elektro-mechanischen Speichern (Schwungrad, Druckluft, Wasser)
 • Elektro-chemischen Speichern (Li-Ion-Akku, Pb-Akku, Elektrolyse-Brennstoffzelle, Redox-Flow-Zellen)
 Charakterisierung der Speicher anhand
 • Energieinhalt
 • Leistung (dynamisch/stationär)
 • Kosten
 • Betriebssicherheit |
 • A.Jossen, W. Weydanz: Moderne akkumulatoren richtig einsetzten, Reichardt Verlag 2006
| 15. Lehrveranstaltungen und -formen: | 411701 Vorlesung Speicher für Elektrische Energie
 411702 Übung Speicher für Elektrische Energie |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 56 h
 Selbststudium: ca. 124 h
 Summe: 180h |
| 17. Prüfungsnummer/n und -name: | 41171 Speichertechnik für elektrische Energie I (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0 |

Stand: 06. Oktober 2015
20. Angeboten von: Institut für Photovoltaik
Modul: 20930 Technische Mechanik 3 (EE)

2. Modulkürzel: 074011106
5. Moduldauer: 1 Semester
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Arnold Kistner
9. Dozenten: Arnold Kistner

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Erneuerbare Energien, PO 2009, 3. Semester
➞ Ergänzungsmodule --> Erweiterte Grundlagen

B.Sc. Erneuerbare Energien, PO 2011, 3. Semester
➞ Ergänzungsmodule --> Erweiterte Grundlagen

11. Empfohlene Voraussetzungen:
074011100 Technische Mechanik 1 (LRT, EE)
074011105 Technische Mechanik 2 (EE)

12. Lernziele:
Absolventen sind in der Lage, einfache Probleme aus der Dynamik von Punktmassen und starren Körpern zu lösen.

13. Inhalt:
• Kinetik (Newtonscbe Grundgesetze der Kinetik, Impulssatz für Punktmassen und Punktmassensysteme (in kartesischen und Polarkoordinaten), Impuls- und Drallsatz für starre Körper (samt kinematischen Zusammenhängen), Energiessatz für konservative mechanische Systeme, Arbeitssatz für nichtkonservative mechanische Systeme)

• Analytische Mechanik (Prinzip von d’Alembert, Freiheitsgrade und Bindungen bei mechanischen Systemen, Lagrange-Funktion eines mechanischen Systems, Lagrange-Gleichungen zweiter Art)

• Schwingungen (Klassifikation und Behandlung von freien kleinen Schwingungen mit einem Freiheitsgrad, erzwungene Schwingungen mit einem Freiheitsgrad bei harmonischer und nichtharmonischer Anregung) Stoßvorgänge (Klassifikation von Stößen, Kinetik von Stoßvorgängen, zentrale Stöße (gerade und schief glatt), ebene exzentrische glatte Stöße)

14. Literatur:

Eigenes Skript.

15. Lehrveranstaltungen und -formen:
• 209301 Vorlesung Technische Mechanik 3 (EE)
• 209302 Übung Technische Mechanik 3 (EE)

16. Abschätzung Arbeitsaufwand: 180 h (42h Präsenzzeit, 138h Selbststudium)

17. Prüfungsnummer/n und -name: 20931 Technische Mechanik 3 (EE) (PL), schriftlich oder mündlich, 60 Min., Gewichtung: 1.0
18. Grundlage für ... :

<table>
<thead>
<tr>
<th>19. Medienform:</th>
<th>Vortrag, Animationen, Filme, Übungen in Kleingruppen</th>
</tr>
</thead>
</table>

20. Angeboten von:
Modul: 14920 Technische Mechanik IV für Mathematiker

2. Modulkürzel: 072810010
5. Modulduauer: 1 Semester

3. Leistungspunkte: 6.0 LP
6. Turnus: jedes 2. Semester, SoSe

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Peter Eberhard

9. Dozenten:
- Peter Eberhard
- Michael Hanss

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Erneuerbare Energien, PO 2009, 4. Semester
➞ Ergänzungsmodule --> Erweiterte Grundlagen

B.Sc. Erneuerbare Energien, PO 2011, 4. Semester
➞ Ergänzungsmodule --> Erweiterte Grundlagen

11. Empfohlene Voraussetzungen: Grundlagen in Technischer Mechanik I-III

12. Lernziele:
Nach erfolgreichem Besuch des Moduls Technische Mechanik IV besitzen die Studierenden ein grundlegendes Verständnis und Kenntnis der wichtigsten Zusammenhänge in der Stoßmechanik, der kontinuierlichen Schwingungslehre, den Energiemethoden der Elasto-Statik und der finiten Elemente Methode. Sie beherrschen somit selbständig, sicher, kritisch und kreativ einfache Anwendungen weiterführender grundlegender mechanischer Methoden der Statik und Dynamik.

13. Inhalt:
Stoßprobleme:
- elastischer und plastischer Stoß, schiefer Stoß, exzentrischer Stoß, rauer Stoß, Lagerstoß

Kontinuierliche Schwingungs-systeme:
- Transversalschwingungen einer Saite, Longitudinal-schwingungen eines Stabes, Torsionsschwingungen eines Rundstabes, Biegeschwingungen eines Balkens, Eigenlösungen der eindimensionalen Wellengleichung, Eigenlösungen bei Balkenbiegung, freie Schwingungen kontinuierlicher Systeme

Energiemethoden der Elasto-Statik:
- Formänderungsenergie eines Stabes bzw. Balkens, Arbeitssatz, Prinzip der virtuellen Arbeit/Kräfte, Satz von Castigliano, Satz von Menabrea, Maxwellscher Vertauschungssatz, Satz vom Minimum der potenziellen Energie

Methode der finiten Elemente:
- Einzelelement, Gesamtsystem, Matrixverschie-bungsgrößenverfahren, Ritzches Verfahren

14. Literatur:
- Vorlesungsmitschrieb
- Vorlesungs- und Übungsunterlagen
15. Lehrveranstaltungen und -formen:

- 149201 Vorlesung Technische Mechanik IV
- 149202 Übung Technische Mechanik IV

16. Abschätzung Arbeitsaufwand:

<table>
<thead>
<tr>
<th></th>
<th>Präsenzzeit: 42 h</th>
<th>Selbststudiumszeit / Nacharbeitszeit: 138 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Gesamt</td>
<td></td>
<td>180 h</td>
</tr>
</tbody>
</table>

17. Prüfungsnummer/n und -name:

14921 Technische Mechanik IV für Mathematiker (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

- Beamer
- Tablet-PC/Overhead-Projektor
- Experimente

20. Angeboten von:

Institut für Technische und Numerische Mechanik
Modul: 13750 Technische Strömungslehre

2. Modulkürzel: 042010001 5. Moduldaauer: 1 Semester
4. SWS: 4.0 7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Stefan Riedelbauch
9. Dozenten: Stefan Riedelbauch

10. Zuordnung zum Curriculum in diesem Studiengang:

 B.Sc. Erneuerbare Energien, PO 2009, 4. Semester
 → Ergänzungsmodule --> Erweiterte Grundlagen
 →
 B.Sc. Erneuerbare Energien, PO 2009, 4. Semester
 → Kernmodule --> Kinetische Energiesysteme
 →
 B.Sc. Erneuerbare Energien, PO 2009, 4. Semester
 → Kernmodule --> Thermische Energiesysteme
 →
 B.Sc. Erneuerbare Energien, PO 2011, 4. Semester
 → Ergänzungsmodule --> Erweiterte Grundlagen
 →
 B.Sc. Erneuerbare Energien, PO 2011, 4. Semester
 → Kernmodule --> Kinetische Energiesysteme
 →
 B.Sc. Erneuerbare Energien, PO 2011, 4. Semester
 → Kernmodule --> Thermische Energiesysteme
 →
 B.Sc. Erneuerbare Energien, PO 2011, 4. Semester
 → Vorgezogene Master-Module

11. Empfohlene Voraussetzungen: Ingenieurwissenschaftliche und naturwissenschaftliche Grundlagen, Höhere Mathematik

12. Lernziele:

13. Inhalt:

 • Stoffeigenschaften von Fluiden
 • Kennzahlen und Ähnlichkeit
 • Statik der Fluide (Hydrostatik und Aerostatik)
 • Grundgesetze der Fluidmechanik (Erhaltung von Masse, Impuls und Energie)
 • Elementare Anwendungen der Erhaltungsgleichungen
 • Rohrhydraulik
 • Differentialgleichungen für ein Fluidelement

14. Literatur:

 Vorlesungsmanuskript „Technische Strömungslehre"

 E. Truckenbrodt, Fluidmechanik, Springer Verlag

 F.M. White, Fluid Mechanics, McGraw - Hill

 E. Becker, Technische Strömungslehre, B.G. Teubner Studienbücher

15. Lehrveranstaltungen und -formen:

 • 137501 Vorlesung Technische Strömungslehre
16. Abschätzung Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Prädessenzeit</th>
<th>42 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selbststudiumszeit / Nacharbeit</td>
<td>138 h</td>
</tr>
<tr>
<td>Gesamt</td>
<td>180 h</td>
</tr>
</tbody>
</table>

17. Prüfungsnummer/n und -name:

<table>
<thead>
<tr>
<th>Prüfungsnr</th>
<th>Prüfungsbereich</th>
</tr>
</thead>
<tbody>
<tr>
<td>13751</td>
<td>Technische Strömungslehre (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0</td>
</tr>
</tbody>
</table>

18. Grundlage für ...:

<table>
<thead>
<tr>
<th>Grundlage/n</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>14100</td>
<td>Hydraulische Strömungsmaschinen in der Wasserkraft</td>
</tr>
</tbody>
</table>

19. Medienform:

- Tafelanschrieb, Tablet-PC
- PPT-Präsentationen
- Skript zur Vorlesung

20. Angeboten von:
Modul: 38770 Umweltsoziologie

2. Modulkürzel: 100240009 5. Moduldauer: 1 Semester
4. SWS: 2.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Ortwin Renn

9. Dozenten: • Ortwin Renn • Dieter Fremdling • Jürgen Hampel • Michael Zwick

11. Empfohlene Voraussetzungen: keine

13. Inhalt:
Betrachtet werden die Wechselwirkungen zwischen Natur, Technik und Gesellschaft:

• Technikgenese

• Technikfolgenforschung und Technikfolgenabschätzung

• Technikdiffusion und Markteinführung

• Wahrnehmung (Gentechnik, Kerntechnik, Informationstechnik, Alltagstechnik)

• Risiko: Wahrnehmung, Bewertung, Kommunikation

• Empirische Arbeiten zur Wahrnehmung, Bewertung und zur Akzeptabilität ausgewählter Risiken

• Technikkatastrophen und ihre Ursachen

• Umweltwahrnehmung - Umweltbewußtsein - umweltgerechtes Handeln

• Technischer und sozialer Wandel

• Technik und Umwelt als Elemente einer interdisziplinären Sozialwissenschaft

14. Literatur:
Degele, N.: Einführung in die Techniksoziologie, München 2002

Renn, Ortwin: Das Riskoparadox. Warum wir uns vor dem Falschen fürchten, Frankfurt am Main 2014
15. Lehrveranstaltungen und -formen: 387701 Vorlesung Umweltsoziologie

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 21 h
 Selbststudiumszeit / Nacharbeitszeit: 69 h
 Gesamt: 90 h

17. Prüfungsnummer/n und -name: 38771 Umweltsoziologie (BSL), schriftlich oder mündlich, Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:
 • Folien
 • PowerPoint-Slides
 • Skripte
 • Tafelanschriebe
 • Web-basierte Arbeitsblätter

20. Angeboten von: Soziologie mit Schwerpunkt sozialwissenschaftliche Risiko- und Technikforschung
600 Schlüsselqualifikationen

Zugeordnete Module:
12400 Informatik II (Programmierung) für Geodäsie und Geoinformatik, Umweltschutztechnik und Erneuerbare Energien
12410 Projektarbeit Erneuerbare Energien
31820 Informatik I für Geodäsie und Geoinformatik, Umweltschutztechnik und Erneuerbare Energien
900 Schlüsselqualifikationen fachübergreifend
900 Schlüsselqualifikationen fachübergreifend
Modul: 31820 Informatik I für Geodäsie und Geoinformatik, Umweltschutztechnik und Erneuerbare Energien

2. Modulkürzel: 051410001 5. Moduldaurer: 1 Semester
4. SWS: 2.0 7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dieter Roller
9. Dozenten: Dieter Roller
10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Erneuerbare Energien, PO 2009, 3. Semester
 ➔ Schlüsselqualifikationen
 B.Sc. Erneuerbare Energien, PO 2011
 ➔ Schlüsselqualifikationen
11. Empfohlene Voraussetzungen: Hochschulreife
12. Lernziele:
 • Studierende können Informationen in rechnergerechte Form umwandeln, die Möglichkeiten des Internets aktiv und passiv nutzen und einfache Anwendungsprogrammen in C/C++ erstellen.
 • Sie kennen die wichtigsten Netzstrukturen, Eigenschaften und Nutzungsmöglichkeiten von Betriebssystemen, den Umgang mit PC-Betriebssystemen, die Grundprinzipien von weit verbreiteten Anwendungssystemen.
13. Inhalt:
 Informationsdarstellung im Rechner (Codierung, Zahlen, Zeichen, Graphiken, Befehle), Rechnernetze und Internet (Netztopologien und Kommunikationsarchitektur, Einführung in das Internet, Internetanwendungen), Rechneraufbau (Prozessor, Periphere Geräte, Massenspeicher), Betriebssysteme (Aufgaben des Betriebssystems, Einführung in UNIX, LINUX, DOS/WINDOWS), Anwendungsprogramme (Textverarbeitung, Tabellenkalkulation, Datenbanken und Technische Informationssysteme, CAD, Simulationssysteme), Grundlagen der Anwendungsprogrammierung (Einführung in das Software Engineering, lexikalische Grundstruktur in C/C++, Grunddatentypen, Ablaufsteuerung und Ein- Ausgabe).
14. Literatur:
 • Roller: Programmieren in C/C++, Expert-Verlag
15. Lehrveranstaltungen und -formen: 318201 Vorlesung Informatik I
16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 21 h
 Selbststudiums- / Nachbearbeitungszeit: 69 h
 Summe: 90 h
17. Prüfungsnummer/n und -name: 31821 Informatik I für Geodäsie und Geoinformatik, Umweltschutztechnik und Erneuerbare Energien (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0
18. Grundlage für ...
19. Medienform:
20. Angeboten von: Institut für Rechnergestützte Ingenieursysteme
Modul: 12400 Informatik II (Programmierung) für Geodäsie und Geoinformatik, Umweltschutztechnik und Erneuerbare Energien

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>051410002</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Dieter Roller

9. Dozenten: • Dieter Roller
• Otto Eggenberger

11. Empfohlene Voraussetzungen: • Hochschulreife
• Informatik I

• Ulrich Breymann: C++ - Eine Einführung, Hanser Verlag, 2005
• Bjarne Stroustrup: Die C++ Programmiersprache, Addison Wesley, 2000

15. Lehrveranstaltungen und -formen: • 124001 Vorlesung Programmierung
• 124002 Übung Programmierung

16. Abschätzung Arbeitsaufwand: Präsenzzeit: 42 h
Selbststudiums- / Nachbearbeitungszeit: 138 h
Summe: 180 h

17. Prüfungsnummer/n und -name: 12401 Informatik II (Programmierung) für Geodäsie und Geoinformatik, Umweltschutztechnik und Erneuerbare Energien (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0

18. Grundlage für ...:

19. Medienform: • Beamer
• Rechner
• Tafel
20. Angeboten von: Institut für Rechnergestützte Ingenieursysteme
Modul: 12410 Projektarbeit Erneuerbare Energien

2. Modulkürzel: 050310012 5. Modulduer: 1 Semester
4. SWS: 4.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Stefan Tenbohlen
9. Dozenten: • Rolf Ilg
• Harald Drück
• Alfred Voß
• Jürgen Heinz Werner
• Dieter Spath
• Jörg Roth-Stielow
• Silke Wieprecht
• Stefan Tenbohlen
• Günter Scheffknecht
• Nejila Parspour
• Stefan Riedelbauch
• Po Wen Cheng
• Krzysztof Rudion

11. Empfohlene Voraussetzungen: keine

13. Inhalt: Im Rahmen dieses Moduls wird an den beteiligten Instituten ein Projektthema aus dem Bereich der Erneuerbaren Energien im Team erarbeitet. Die Teamgröße hängt von den teilnehmenden Studierenden ab, sollte aber i.d.R. bei ca. 3-4 liegen. Dabei stehen neben den inhaltlichen die folgenden generellen Themen im Vordergrund:

• praktische arbeitsteilige Projektarbeit/ Projektmanagement
• Training von Teamarbeit
• selbstständige Anwendung erworbenen Wissens auf die Lösung komplexer praktischer Problemstellungen
• eigenständiger Wissenserwerb bei fehlenden Kenntnissen

Es wird zu Beginn des Semesters für alle beteiligten Studierenden eine Einführungsveranstaltung geben, die auf die allgemeinen Themen des Projektmanagements eingeht: Definition Projekt und Projektmanagement,
Organisation und Projektplanung (Projektorganisationsformen, Phasenmodelle), Methoden des Projektmanagements und der Projektsteuerung (Netzplantechnik, Projektstrukturplan), Menschen im Projekt (Projektleiter, Projektteam), Kulturelle Besonderheiten bei internationalen Projekten.

14. Literatur:
• Spath, Dieter; Ohlhausen, Peter: Skript Projektmanagement
• Schelle, Heinz; Ottmann, Roland; Pfeiffer, Astrid: ProjektManager. GPM - Deutsche Gesellschaft für Projektmanagement, 2. Auflage 2005
• Eine Literaturliste wird abhängig von der jeweiligen Aufgabenstellung zu Semesterbeginn bekannt gegeben.

15. Lehrveranstaltungen und -formen:
• 124101 Seminar Projektmanagement
• 124102 Teamarbeit

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 10,5 h
Selbststudiumszeit / Nacharbeitszeit: 168,5 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
12411 Projektarbeit Erneuerbare Energien (BSL), mündliche Prüfung, 20 Min., Gewichtung: 1.0, Die Zulassung zur Modulprüfung setzt die regelmäßige Teilnahme an dem Projekt, eine kontinuierliche Beteiligung sowie eine erfolgreiche Projektmitarbeit voraus.

18. Grundlage für ... :

19. Medienform:
• Beamer-Präsentation
• Overhead
• Tafel

20. Angeboten von:
Energieübertragung und Hochspannungstechnik
Modul: 80930 Bachelorarbeit Erneuerbare Energien

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050310020</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>12.0 LP</td>
<td>6. Turnus:</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>0.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Stefan Tenbohlen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Erwerb von mind. 120 Leistungspunkten im Bachelorstudiengang Erneuerbare Energien</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>Die / der Studierende besitzt die Fähigkeit, selbstständig wissenschaftliche Arbeiten auf der von Ihr / Ihm erworbenen Kompetenzen und Wissen während ihres / seines Studiums zu erstellen. Sie / er besitzt die Kompetenz, eine Problemstellung innerhalb einer Frist selbstständig strukturiert, nach wissenschaftlichen Methoden systematisch zu bearbeiten und transparent zu dokumentieren.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 13. Inhalt: | • Einarbeitung in die Aufgabenstellung durch Literaturrecherche und Erstellung eines Arbeitsplanes.
• Durchführung und Auswertung der eigenen Untersuchungen
• Diskussion der Ergebnisse
• Zusammenfassung der Ergebnisse in einer wissenschaftlichen Arbeit
• Präsentation und Verteidigung der Ergebnisse in einem Seminarvortag |
| 14. Literatur: | Textbücher |
| 15. Lehrveranstaltungen und -formen: | |
| 16. Abschätzung Arbeitsaufwand: | Gesamtaufwand: 360h |
| 17. Prüfungsnummer/n und -name: | |
| 18. Grundlage für ... : | |
| 19. Medienform: | |
| 20. Angeboten von: | Institut für Energieübertragung und Hochspannungstechnik |

Innerhalb der Bearbeitungsfrist (5 Monate) ist die fertige Bachelorarbeit in 2 gebundenen Exemplaren bei der bzw. dem Betreuer(in) abzugeben. Zusätzlich muss ein Exemplar in elektronischer Form eingereicht werden. Bestandteil der Bachelorarbeit ist der Besuch von mindestens 9 Seminarvorträgen (Teilnahmebestätigung auf Formblatt des Instituts).