Kontaktpersonen:

<table>
<thead>
<tr>
<th>Position</th>
<th>Name</th>
<th>Institut für Maschinelle Sprachverarbeitung</th>
<th>Tel.:</th>
<th>E-Mail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studiendekan/in</td>
<td>Prof. Ph.D. Hinrich Schütze</td>
<td></td>
<td></td>
<td>hinrich.schuetze@ims.uni-stuttgart.de</td>
</tr>
<tr>
<td>Studiengangsmanager/in</td>
<td>Katrin Schneider</td>
<td></td>
<td></td>
<td>katrin.schneider@ims.uni-stuttgart.de</td>
</tr>
<tr>
<td>Prüfungsausschussvorsitzende/r</td>
<td>Prof. Dr. Grzegorz Dogil</td>
<td></td>
<td></td>
<td>grzegorz.dogil@ims.uni-stuttgart.de</td>
</tr>
<tr>
<td>Fachstudienberater/in</td>
<td>Apl. Prof. Dr. Rainer Bäuerle</td>
<td></td>
<td>0711-685-81355</td>
<td>rainer.baeuerle@ims.uni-stuttgart.de</td>
</tr>
</tbody>
</table>
Inhaltsverzeichnis

Praambel ... 5

Qualifikationsziele ... 6

100 Basismodule .. 7

<table>
<thead>
<tr>
<th>Code</th>
<th>Modul</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>12060</td>
<td>Datenstrukturen und Algorithmen</td>
<td>8</td>
</tr>
<tr>
<td>15260</td>
<td>Einführung in die Maschinelle Sprachverarbeitung</td>
<td>10</td>
</tr>
<tr>
<td>13160</td>
<td>Grundlagen der Maschinellen Sprachverarbeitung</td>
<td>11</td>
</tr>
<tr>
<td>13170</td>
<td>Grundlagen der Syntax</td>
<td>13</td>
</tr>
<tr>
<td>10260</td>
<td>Programmierkurs</td>
<td>14</td>
</tr>
<tr>
<td>10280</td>
<td>Programmierung und Software-Entwicklung</td>
<td>15</td>
</tr>
<tr>
<td>10940</td>
<td>Theoretische Grundlagen der Informatik</td>
<td>17</td>
</tr>
</tbody>
</table>

200 Kernmodule .. 19

<table>
<thead>
<tr>
<th>Code</th>
<th>Modul</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>13960</td>
<td>Algorithmisches Sprachverstehen</td>
<td>20</td>
</tr>
<tr>
<td>10180</td>
<td>Information Retrieval und Text Mining</td>
<td>21</td>
</tr>
<tr>
<td>13270</td>
<td>Parsing</td>
<td>22</td>
</tr>
<tr>
<td>14000</td>
<td>Phonetik und Phonologie</td>
<td>23</td>
</tr>
<tr>
<td>13970</td>
<td>Semantik</td>
<td>24</td>
</tr>
<tr>
<td>14040</td>
<td>Sprachsynthese und Spracherkennung</td>
<td>25</td>
</tr>
<tr>
<td>14080</td>
<td>Statistische Sprachverarbeitung</td>
<td>26</td>
</tr>
</tbody>
</table>

300 Ergänzungsmoduln .. 27

<table>
<thead>
<tr>
<th>Code</th>
<th>Modul</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>14270</td>
<td>Projekt Maschinelle Sprachverarbeitung</td>
<td>28</td>
</tr>
<tr>
<td>14290</td>
<td>Seminar Maschinelle Sprachverarbeitung</td>
<td>29</td>
</tr>
</tbody>
</table>

400 Schlüsselqualifikationen fachaffin .. 30

<table>
<thead>
<tr>
<th>Code</th>
<th>Modul</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>14300</td>
<td>Mathematik für die Maschinelle Sprachverarbeitung</td>
<td>31</td>
</tr>
</tbody>
</table>

610 Wahlbereich E/I ... 32

<table>
<thead>
<tr>
<th>Code</th>
<th>Modul</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>10020</td>
<td>Algorithmik</td>
<td>33</td>
</tr>
<tr>
<td>10060</td>
<td>Computergraphik</td>
<td>34</td>
</tr>
<tr>
<td>10110</td>
<td>Grundlagen der Künstlichen Intelligenz</td>
<td>35</td>
</tr>
<tr>
<td>10150</td>
<td>Grundlagen des Compilerbaus und der Programmiersprachen</td>
<td>36</td>
</tr>
<tr>
<td>25610</td>
<td>Grundlagen des Software Engineerings</td>
<td>38</td>
</tr>
<tr>
<td>31600</td>
<td>Machine learning for NLP</td>
<td>39</td>
</tr>
<tr>
<td>10210</td>
<td>Mensch-Computer-Interaktion</td>
<td>40</td>
</tr>
<tr>
<td>10220</td>
<td>Modellierung</td>
<td>42</td>
</tr>
<tr>
<td>10240</td>
<td>Numerische und Stochastische Grundlagen</td>
<td>44</td>
</tr>
<tr>
<td>10270</td>
<td>Programmerparadigmen</td>
<td>46</td>
</tr>
<tr>
<td>39040</td>
<td>Rechnernetze</td>
<td>48</td>
</tr>
<tr>
<td>40090</td>
<td>Systemkonzepte und -programmierung</td>
<td>50</td>
</tr>
<tr>
<td>11330</td>
<td>Visualisierung</td>
<td>52</td>
</tr>
<tr>
<td>11490</td>
<td>Nachrichtentechnik</td>
<td>54</td>
</tr>
<tr>
<td>11640</td>
<td>Digitale Signalverarbeitung</td>
<td>56</td>
</tr>
<tr>
<td>17130</td>
<td>Entwurf digitaler Filter</td>
<td>58</td>
</tr>
<tr>
<td>11670</td>
<td>Grundlagen integrierter Schaltungen</td>
<td>60</td>
</tr>
<tr>
<td>11680</td>
<td>Kommunikationsnetze I</td>
<td>61</td>
</tr>
</tbody>
</table>
620 Wahlbereich F

<table>
<thead>
<tr>
<th>Code</th>
<th>Name</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>14250</td>
<td>BioNLP: Maschinelle Sprachverarbeitung in Medizin und Biologie</td>
<td>63</td>
</tr>
<tr>
<td>29620</td>
<td>Fortgeschrittene Aspekte der Sprachperzeption und Sprachproduktion</td>
<td>64</td>
</tr>
<tr>
<td>41070</td>
<td>Fortgeschrittene Methoden in der Maschinellen Sprachverarbeitung</td>
<td>65</td>
</tr>
<tr>
<td>14220</td>
<td>Fortgeschrittene Sprachsynthese</td>
<td>67</td>
</tr>
<tr>
<td>14260</td>
<td>Grundlagen der Signalverarbeitung in der Lautsprachverarbeitung</td>
<td>68</td>
</tr>
<tr>
<td>14170</td>
<td>Komputationelle Morphologie</td>
<td>69</td>
</tr>
<tr>
<td>41060</td>
<td>Lexikalische Semantik und Komputationelle Lexikographie</td>
<td>70</td>
</tr>
<tr>
<td>14210</td>
<td>Pragmatik</td>
<td>71</td>
</tr>
</tbody>
</table>

630 Wahlbereich W

<table>
<thead>
<tr>
<th>Code</th>
<th>Name</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>21570</td>
<td>Einführung in die Praktische Philosophie - Nebenfach</td>
<td>73</td>
</tr>
<tr>
<td>20050</td>
<td>Einführung in die Theoretische Philosophie - Nebenfach</td>
<td>74</td>
</tr>
<tr>
<td>14340</td>
<td>Grundlagen der Praktischen Philosophie</td>
<td>75</td>
</tr>
<tr>
<td>14350</td>
<td>Mensch und Technik</td>
<td>77</td>
</tr>
<tr>
<td>310</td>
<td>Spezialisierung Theoretische Linguistik b</td>
<td>79</td>
</tr>
<tr>
<td>14330</td>
<td>Sprache und Geist (Vertiefung Theoretische Philosophie)</td>
<td>80</td>
</tr>
<tr>
<td>17240</td>
<td>Sprachwandel</td>
<td>82</td>
</tr>
<tr>
<td>46580</td>
<td>Varietäten des Deutschen</td>
<td>83</td>
</tr>
</tbody>
</table>
Präambel

Der Studiengang MSV unterscheidet sich von rein computerlinguistischen Studiengängen dadurch, dass die sprachlichen und technischen Aspekte des Studiums gleichen Stellenwert haben. Ein tiefes Verständnis der linguistischen Grundlagen ist in der maschinellen Sprachverarbeitung unabdingbar, gleichzeitig wird aber genau so viel Wert auf die mathematische und technische Grundausbildung gelegt, die sowohl in der Praxis als auch in der Forschung der maschinellen Sprachverarbeitung gebraucht wird.

Wer den Bachelor MSV erworben hat, kann in allen Bereichen eingesetzt werden, in denen Sprachtechnologie erforderlich ist, in denen Kommunikationsprozesse mit mindestens einem menschlichen Partner automatisiert oder teilautomatisiert werden sollen, in denen Texte generiert, übersetzt oder analysiert werden müssen, in denen klassische Systeme durch sprachbezogene Schnittstellen ergänzt oder ersetzt werden und in denen ganz allgemein sprachbezogene Benutzungsoberflächen erforderlich sind. Weiterhin kann er oder sie in vielen Bereichen der Informationsverarbeitung zum Einsatz kommen: bei Suchmaschinen, im Bereich des Text Mining, in Software-Unternehmen, die Textdatenbanken bauen, und in anderen Bereichen, in denen große Mengen von wissenschaftlichen oder Geschäftsdaten in Textform gespeichert und verarbeitet werden.
Qualifikationsziele

Die Absolventinnen und Absolventen des Bachelorstudienganges Maschinelle Sprachverarbeitung

• haben linguistisches, mathematisches und informatorisches Grundwissen erworben, das sie befähigt, Probleme der maschinellen Sprachverarbeitung zu lösen.
• verfügen über Fachwissen auf dem Gebiet der Maschinellen Sprachverarbeitung und können typische Aufgabenstellungen der Sprachverarbeitung beschreiben und lösen, analysieren und bewerten.
• haben ein Verständnis zu Forschungs- und Entwicklungsmethoden der Computerlinguistik und ihrer Anwendungsmöglichkeiten und verfügen über die Fertigkeit, Lösungen für Sprachverarbeitungssysteme zu erarbeiten.
• besitzen Verständnis zu verschiedenen Aufgabenfeldern anwendbare Methoden und Algorithmen der Maschinellen Sprachverarbeitung.
• können mit Spezialisten verschiedener Disziplinen kommunizieren und zusammenarbeiten.

100 Basismodule

Zugeordnete Module:
- 10260 Programmierkurs
- 10280 Programmierung und Software-Entwicklung
- 10940 Theoretische Grundlagen der Informatik
- 12060 Datenstrukturen und Algorithmen
- 13160 Grundlagen der Maschinellen Sprachverarbeitung
- 13170 Grundlagen der Syntax
- 15260 Einführung in die Maschinelle Sprachverarbeitung
Modul: 12060 Datenstrukturen und Algorithmen

2. Modulkürzel: 051510005 5. Moduldauer: 1 Semester
4. SWS: 6.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Prof. Dr. Thomas Ertl
9. Dozenten: Stefan Funke
11. Empfohlene Voraussetzungen: • Modul 051520005 Programmierung und Software-Entwicklung

Konkret:

• Kenntnis der Eigenschaften elementarer und häufig benötigter Algorithmen
• Verständnis für die Auswirkungen theoretischer und tatsächlicher Komplexität
• Erweiterung der Kompetenz im Entwurf und Verstehen von Algorithmen und der zugehörigen Datenstrukturen
• Erste Begegnung mit nebenläufigen Algorithmen; sowohl „originär“ parallel, als auch parallelisierte Versionen bereits vorgestellter sequentieller Algorithmen

13. Inhalt: • Vorgehensweise bei der Entwicklung und Implementierung von Algorithmen
• Komplexität und Effizienz von Algorithmen, O-Notation
• Wahl der Datenstrukturen; Listen, Bäume, Graphen; deren Definitionen, deren Datenstrukturen
• diverse interne und externe Such- und Sortierverfahren (z.B. Linear-, Binär-, Interpolationssuche, AVL-, B-Bäume, internes und externes Hashing, mehrere langsamer Sortierungen, Heap-, Quick-, Bucket-, MergeSort)
• diverse Graphenalgorithmen (DFS, BFS, Besuchssequenzen, topol. Traversierung, Zusammenhangskomponenten, minimale Spannbäume, Dijkstra-, Floyd- kürzeste Wege)
• Algorithmen auf Mengen und Relationen (transitive Hüllen, Warshall)
• Korrektheitsbegriff und -formalismen; Spezifikation und Implementierung
• Einige parallele und parallelisierte Algorithmen
• einfache Elemente paralleler Programmierung, soweit für obiges notwendig

• Sedgewick, R., Algorithms in C, 1998

15. Lehrveranstaltungen und -formen: • 120601 Vorlesung Datenstrukturen und Algorithmen
• 120602 Übung Datenstrukturen und Algorithmen

Nachbearbeitungszeit: 207 Stunden

• V Vorleistung (USL-V), schriftlich, eventuell mündlich |

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
Modul: 15260 Einführung in die Maschinelle Sprachverarbeitung

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>052400001</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. Modulverantwortlicher:</th>
<th>Prof. Dr. Jonas Kuhn</th>
</tr>
</thead>
<tbody>
<tr>
<td>9. Dozenten:</td>
<td>Rainer Bäuerle</td>
</tr>
<tr>
<td></td>
<td>Katrin Schneider</td>
</tr>
<tr>
<td></td>
<td>Hinrich Schütze</td>
</tr>
</tbody>
</table>

|--|--|

<table>
<thead>
<tr>
<th>11. Empfohlene Voraussetzungen:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>12. Lernziele:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Die Studierenden sind mit den grundlegenden Eigenschaften syntaktischer Verarbeitung vertraut. Sie haben die Fähigkeit zur grammatischen Modellierung der wichtigsten sprachlichen Konstruktionen (des Deutschen, aber exemplarisch auch anderer Sprachen) in einem theoretisch fundierten Grammatikformalismus erworben.</td>
</tr>
<tr>
<td>Sie sind in der Lage syntaktische Analysekomponenten in vor- oder nachgeschaltete Komponenten der maschinellen Verarbeitung einzubinden.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13. Inhalt:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sprachliches Wissen, Grammatik, Beschreibungsebenen, artikulatorische und akustische Phonetik, Phonologie, Sprache und Schrift, morphologische und syntaktische Einheiten, Strukturen und Regeln, Interpretation von Sprache: Semantik und Pragmatik, Sprachverarbeitung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>14. Literatur:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>15. Lehrveranstaltungen und -formen:</th>
<th>152601 Vorlesung Einführung in die Maschinelle Sprachverarbeitung</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>16. Abschätzung Arbeitsaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzzeit: 21 h</td>
</tr>
<tr>
<td>Nachbearbeitungszeit: 69 h</td>
</tr>
<tr>
<td>Gesamt: 90 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>15261 Einführung in die Maschinelle Sprachverarbeitung (LBP), schriftliche Prüfung, 20 Min., Gewichtung: 1.0</th>
</tr>
</thead>
</table>

| 18. Grundlage für ... : |

| 19. Medienform: |

| 20. Angeboten von: |
Modul: 13160 Grundlagen der Maschinellen Sprachverarbeitung

2. Modulkürzel: 052400002 5. Moduldauer: 2 Semester
4. SWS: 6.0 7. Sprache: Deutsch
8. Modulverantwortlicher: Prof. Dr. Jonas Kuhn
9. Dozenten: Jonas Kuhn, Antje Schweitzer,
11. Empfohlene Voraussetzungen: 052400001
12. Lernziele:
 • Sie kennen formale Beschreibungsmodelle für einige Ebenen der Sprachbeschreibung und können grundlegende algorithmische Verfahren zur Prozessierung dieser Modelle anwenden. Sie haben die Fähigkeit erworbenu, Programme in einer Skriptsprache zu entwerfen und auf Probleme der Maschinellen Sprachverarbeitung anzuwenden.
13. Inhalt: Das Modul setzt sich aus drei Teilveranstaltungen zusammen: (a) Vorlesung mit Übungen "Grundlagen der Maschinellen Sprachverarbeitung" (3 SWS), (b) Vorlesung "Einführung in die Syntax" (2 SWS), (c) Tutorium "Skriptsprachenkurs" (1 SWS)
 (a) Signalanalyse, akustische Theorien der Sprachproduktion; reguläre Ausdrücke, endliche Automaten und Transduktoren, kontextfreie Grammatiken; Tokenisierung, POS-Tagging, Morphologie-Analyse, Chunking, Parsing (grundlegende Parsing-Strategien); Umsetzung von Pseudo-Code für zentrale computerlinguistische Algorithmen in Python
 (b) Syntax: Konstituenz, Dominanz, Dependenz; Feldermodell der deutschen Satzstruktur; Transformations-Grammatiken; Grundlagen der Lexikalisch-Funktionalen Grammatik: Konstituenten-Struktur, funktionale Struktur; Kohärenz/Vollständigkeit;
 (c) Erlernen und praktischer Einsatz der Skriptsprache Python
14. Literatur:
 Carstensen, Kai-Uwe et al. (Hrsg.). Computerlinguistik und Sprachtechnologie. Eine Einführung. Spektrum- Verlag, 2004
15. Lehrveranstaltungen und -formen:
 • 131601 Vorlesung mit Übung Grundlagen der Maschinellen Sprachverarbeitung
 • 131602 Vorlesung Einführung in die Syntax
 • 131603 Tutorium Skriptsprachenkurs

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit 63 h, Selbststudium 207 h

17. Prüfungsnummer/n und -name:
 • 13161 Grundlagen der Maschinellen Sprachverarbeitung (LBP), schriftlich, eventuell mündlich, 100 Min., Gewichtung: 1.0, 5 lehrveranstaltungsbegleitende Kurztests je 20 Minuten (davon drei zur Veranstaltung "Grundlagen der MSV", zwei zur Veranstaltung "Einführung in die Syntax")
 • 13162 Grundlagen der Maschinellen Sprachverarbeitung - Hausübungen (USL), Sonstiges, Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 13170 Grundlagen der Syntax

2. Modulkürzel: 052400003

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0

5. Modulduer: 2 Semester

6. Turnus: jedes 2. Semester, WiSe

7. Sprache: Deutsch

8. Modulverantwortlicher: Prof. Dr. Jonas Kuhn

9. Dozenten: Jonas Kuhn

11. Empfohlene Voraussetzungen: 052400001, 052400002, 050420005, 051510005, 05152005, 05152010

12. Lernziele:

- Verständnis grundlegender Eigenschaften syntaktischer Verarbeitung.
- Fähigkeit zur grammatischen Modellierung der wichtigsten sprachlichen Konstruktionen (des Deutschen aber exemplarisch auch anderer Sprachen) in einem theoretisch fundierten Grammatikformalismus.
- Fähigkeit der algorithmischen Einbindung syntaktischer Analyse in vor- und nachgeschalteten Komponenten der maschinellen Verarbeitung.

13. Inhalt:

Formale Grammatikbeschreibung im Formalismus der Lexikalisch-Funktionalen Grammatik (LFG); Subkategorisierung, Diathesen, Argumentstruktur, Lange Abhängigkeiten, Anhebung und Kontrolle, Koordination; Implementierung von Constraint-basierten Grammatiken (im Rahmen von XLE)

14. Literatur:

Skripte

15. Lehrveranstaltungen und -formen: 131701 Vorlesung mit Übung Grundlagen der Syntax

16. Abschätzung Arbeitsaufwand:

Präsenzzeit 42 h, Selbststudium 138 h

17. Prüfungsnummer/n und -name:

- 13171 Grundlagen der Syntax (LBP), schriftlich, eventuell mündlich, Gewichtung: 1.0, 2 lehrveranstaltungsbegleitende Tests je 45 Minuten. Hausübungen sind Zulassungsvoraussetzung.
- 13172 Grundlagen der Syntax - Hausübungen (USL), schriftlich, eventuell mündlich, Gewichtung: 1.0

18. Grundlage für...

19. Medienform:

20. Angeboten von:
Modul: 10260 Programmierkurs

2. Modulkürzel: 051520010
5. Modulduer: 1 Semester
3. Leistungspunkte: 3.0 LP
4. SWS: 2.0
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr. Stefan Wagner
9. Dozenten: • N. N.
 • Ivan Bogicevic
11. Empfohlene Voraussetzungen: Keine

Die Lehrveranstaltung findet in zwei Varianten statt. Die Teilnahme richtet sich nach dem Studiengang:

S. Riexinger:
 • BSc. Informatik
 • BA (Komb) Informatik
 • BSc. Maschinelle Sprachverarbeitung

H. Röder:
 • BSc. Softwaretechnik
 • BSc. Wirtschaftsinformatik
 • BSc. Technikpädagogik
 • MSc. Technikpädagogik

14. Literatur:
15. Lehrveranstaltungen und -formen: 102601 Übung Programmierkurs
 Nachbearbeitungszeit: 69 Stunden
17. Prüfungsnummer/n und -name: 10261 Programmierkurs (USL), Sonstiges, Gewichtung: 1.0, Übungsschein - Scheinkriterien werden zu Beginn der Veranstaltung angekündigt.

18. Grundlage für ... :
19. Medienform:
20. Angeboten von:
Modul: 10280 Programmierung und Software-Entwicklung

2. Modulkürzel: 051520005 5. Moduldauer: 1 Semester
4. SWS: 6.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr. Stefan Wagner
9. Dozenten: Bernhard Mitschang

12. Lernziele: Die Teilnehmer haben die wichtigsten Konzepte einer höheren Programmiersprache und ihrer Verwendung verstanden und sind in der Lage, kleine Programme (bis zu einigen hundert Zeilen) zu analysieren und selbst zu konzipieren und zu implementieren. Sie kennen die Möglichkeiten, Daten- und Ablaufstrukturen zu entwerfen, zu beschreiben und zu codieren. Sie haben die Abstraktionskonzepte moderner Programmiersprachen verstanden. Sie kennen die Techniken und Notationen zur Definition kontextfreier Programmiersprachen und können damit arbeiten.

13. Inhalt:
• Die Programmiersprache Java und die virtuelle Maschine
• Objekte, Klassen, Schnittstellen, Blöcke, Programmstrukturen, Kontrakte
• Klassenmodellierung mit der UML
• Objekterzeugung und -ausführung
• Boolesche Logik
• Verzweigungen, Schleifen, Routinen, Abstraktionen, Modularisierung, Variablen, Zuweisungen
• Rechner, Hardware
• Syntaxdarstellungen
• Übersicht über Programmiersprachen und -werkzeuge
• Grundlegende Datenstrukturen und Algorithmen
• Vererbung, Polymorphie
• Semantik
• Programmierung graphischer Oberflächen
• Übergang zum Software Engineering

14. Literatur:
• Meyer, Bertrand, "Touch of Class", Springer-Verlag, 2009

15. Lehrveranstaltungen und -formen:
• 102801 Vorlesung Programmierung und Softwareentwicklung
• 102802 Übung Programmierung und Softwareentwicklung

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 63 Stunden
Vor-/Nachbearbeitungszeit: 187 Stunden
Prüfungsvorbereitung: 20 Stunden

Stand: 15. Oktober 2012
17. Prüfungsnummer/n und -name:

- V Vorleistung (USL-V), schriftlich, eventuell mündlich

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 10940 Theoretische Grundlagen der Informatik

2. Modulkürzel: 050420005
5. Modulduauer: 2 Semester
3. Leistungspunkte: 12.0 LP
4. SWS: 8.0
7. Sprache: Deutsch
8. Modulverantwortlicher: Prof. Dr. Volker Diekert
9. Dozenten:
 • Ulrich Hertrampf
 • Volker Diekert
11. Empfohlene Voraussetzungen: Keine
12. Lernziele:
 • Logik und Diskrete Strukturen:
 Die Studierenden haben die grundsätzlichen Kenntnisse in Logik und Discrete Mathematik erworben, wie sie in den weiteren Grundvorlesungen der Informatik in verschiedenen Bereichen benötigt werden.
 • Automaten und Formale Sprachen:
13. Inhalt:
 • Logik und Diskrete Strukturen:
 Einführung in die Aussagenlogik; formale Sprache; Semantik (Wahrheitswerte); Syntax (Axiome und Schlussregeln); Normalformen; Hornformeln; aussagenlogische Resolution; Korrektheit und Vollständigkeit für die Aussagenlogik; Einführung in die Prädikatenlogik 1. Stufe; formale Sprache; Semantik und Syntax; Normalformen; Herbrand-Theorie; prädikatenlogische Resolution; Kombinatorik, Graphen, elementare Zahlentheorie: Rechnen mit Restklassen, endliche Körper, RSA-Verfahren.
 • Automaten und Formale Sprachen:
14. Literatur:
 • John Hopcroft, Jeffrey Ullman, Einführung in die Automatentheorie, formale Sprachen und Komplexitätstheorie, 1988
 • Uwe Schöning, Theoretische Informatik - kurzgefasst, 1999
15. Lehrveranstaltungen und -formen:
 • 109401 Vorlesung Logik und Diskrete Strukturen
 • 109402 Übung Logik und Diskrete Strukturen
 • 109403 Vorlesung Automaten und Formale Sprachen
 • 109404 Übung Automaten und Formale Sprachen
16. Abschätzung Arbeitsaufwand: Präsenzzeit: 84 Stunden
Nachbearbeitungszeit: 276 Stunden

<table>
<thead>
<tr>
<th>Prüfungsnummer/n und -name:</th>
<th>10941 Theoretische Grundlagen der Informatik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0, Prüfungsvorleistung: Übungsschein</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>V Vorleistung (USL-V), schriftlich, eventuell mündlich</td>
</tr>
<tr>
<td></td>
<td>V Vorleistung (USL-V), schriftlich, eventuell mündlich, 30 Min.</td>
</tr>
</tbody>
</table>

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
200 Kernmodule

<table>
<thead>
<tr>
<th>Zugeordnete Module</th>
<th>Code</th>
<th>Titel</th>
</tr>
</thead>
<tbody>
<tr>
<td>10180 Information Retrieval und Text Mining</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13270 Parsing</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13870 Semantik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13960 Algorithmisches Sprachverstehen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14000 Phonetik und Phonologie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14040 Sprachsynthese und Spracherkennung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14080 Statistische Sprachverarbeitung</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Modul: 13960 Algorithmisches Sprachverstehen

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>052400006</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Ph.D. Marie Louise Elizabeth van der Plas

9. Dozenten: Marie Louise Elizabeth van der Plas

11. Empfohlene Voraussetzungen: 052400005

13. Inhalt: • Überblick Algorithmisches Sprachverstehen • Lexikalische Semantik • Korpusbasierte Akquisition von lexikalischen Relationen • Word sense disambiguation • Informationsextraktion • Semantic role labelling • Koreferenz-Resolution • Diskursrepräsentationstheorie (DRT)

15. Lehrveranstaltungen und -formen: 139601 Vorlesung mit Übung Algorithmisches Sprachverstehen

16. Abschätzung Arbeitsaufwand: Präsenzzeit 42 h, Selbststudium 138 h

17. Prüfungsnummer/n und -name: 13961 Algorithmisches Sprachverstehen (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0, Vorleistung: regelmäßige Übungen

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 10180 Information Retrieval und Text Mining

2. Modulkürzel: 052401010 5. Modulduauer: 1 Semester
4. SWS: 4.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Prof. Ph.D. Hinrich Schütze

9. Dozenten: • Helmut Schmid
 • Hinrich Schütze

11. Empfohlene Voraussetzungen: 052400009

13. Inhalt: • Textpräprozessierung
 • invertierte Indexe
 • IR-Modelle (z.B. Vektorraumbasiertes IR)
 • Linkanalyse
 • Clustering
 • Frage-Antwort-Systeme
 • Informationsextraktion
 • korpusbasierter Erwerb von lexikalischem und Weltwissen

15. Lehrveranstaltungen und -formen: • 101801 Vorlesung Information Retrieval and Text Mining
 • 101802 Übung Information Retrieval and Text Mining

16. Abschätzung Arbeitsaufwand: Präsenzzeit: 42 Stunden
 Selbststudium: 138 Stunden

17. Prüfungsnummer/n und -name: • 10181 Information Retrieval und Text Mining (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0
 • 10182 Information Retrieval und Text Mining - Hausübungen (USL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
Modul: 13270 Parsing

2. Modulkürzel: 052400004
5. Moduldaurer: 2 Semester
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0 7. Sprache: Deutsch

8. Modulverantwortlicher: PD Dr. Helmut Schmid
9. Dozenten: Helmut Schmid
11. Empfohlene Voraussetzungen: 052400002, 050420005, 05152005, 05152010

12. Lernziele:
• Die Studierenden beherrschen Techniken zur Segmentierung von Texten in einzelne Wörter (Tokenisierung). Sie haben die gängigen Verfahren für die automatische syntaktische Analyse (Parsing) natürlicher Sprache mit kontextfreien Grammatiken verstanden und einen Einblick in das Parsing mit merkmalsbasierten Grammatiken gewonnen.
• Die Studierenden sind in der Lage, einen kontextfreien Parser selbständig zu programmieren.
• Die Studierenden haben das nötige Grundwissen erworben, um wissenschaftliche Arbeiten auf dem Gebiet des Parsings verstehen und beurteilen zu können.

13. Inhalt:
Methoden der Tokenisierung; Parsingverfahren für kontextfreie Grammatiken (ableitungsorientierte Parser, tabellengesteuerte Parser, Chartparser); Parsingalgorithmen für merkmalsbasierte Grammatiken (Earley-Deduktion); weitere Parsingverfahren

14. Literatur:
Skript

15. Lehrveranstaltungen und -formen: 132701 Vorlesung mit Übung Parsing

16. Abschätzung Arbeitsaufwand: Präsenzzeit 42 h, Nachbearbeitungszeit 138 h

17. Prüfungsnummer/n und -name:
• 13271 Parsing (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0
• 13272 Parsing - Hausübungen (USL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 14000 Phonetik und Phonologie

2. Modulkürzel: 052400007
5. Modulduauer: 1 Semester
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0
7. Sprache: Deutsch
8. Modulverantwortlicher: Prof. Dr. Grzegorz Dogil
9. Dozenten: • Grzegorz Dogil
• Jörg Mayer
11. Empfohlene Voraussetzungen: 052400001, 052400002, 080310502, 050420005, 051510005, 05152005, 05152010
12. Lernziele:
• Die Studierenden haben ein grundlegendes Verständnis für die segmentale und die suprasegmentale Struktur der Sprache. Sie sind mit der akustischen Theorie der Sprachproduktion und mit Theorien der Sprachperzeption vertraut.
• Die Studierenden sind in der Lage, gesprochene Sprache phonetisch zu transkribieren. Sie können aus der Spektrogrammdarstellung die gesprochenen Laute ableiten. Sie können selbständig phonologische Regelmäßigkeiten in vorgegebenen Sprachdaten erkennen bzw. verifizieren.
• Die Studierenden sind in der Lage, wissenschaftliche Arbeiten auf dem Gebiet der Phonetik und Phonologie zu verstehen und zu beurteilen.
13. Inhalt:
Artikulation & Akustik, akustische Theorie der Sprachproduktion; Sprachperzeption; Prosodie; Phonologische Theorien; praktische Einführung in die Transkription: Ohrenphonetik; International Phonetic Alphabet, selbständiges Transkribieren
14. Literatur:
15. Lehrveranstaltungen und -formen: 140001 Vorlesung mit Übung Phonetik und Phonologie
16. Abschätzung Arbeitsaufwand: Präsenzzeit 42 h, Selbststudium 138 h
17. Prüfungsnummer/n und -name: 14001 Phonetik und Phonologie (LBP), schriftlich und mündlich, Gewichtung: 1.0, 5 lehrveranstaltungsbegleitende Prüfungen: 2 Kurztests (Gewicht je 0.2), zwei Übungen (Gewicht je 0.2), eine mündliche Leistungspräsentation (Gewicht 0.2)
18. Grundlage für ... :
19. Medienform:
20. Angeboten von:
Modul: 13870 Semantik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>052400005</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Apl. Prof. Dr. Rainer Bäuerle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Rainer Bäuerle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>052400001, 052400002, 052400003, 050420005, 051510005, 05152005, 05152010</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
 • Die Studierenden sind zur Semantikkonstruktion im Rahmen der modelltheoretischen Semantik in der Lage. |
| 13. Inhalt: | Extensionale Semantik, Bedeutungsbegriff, Mögliche-Welten-Semantik, Intensionen, Proposition, modale und temporale Logik, opake Kontexte, rigide Designatoren, Typentheorie, Funktionalabstraktion, Montaguegrammatik, Generalisierte Quantoren, dynamische Semantik (Diskursrepräsentationstheorie) |
| 15. Lehrveranstaltungen und -formen: | 138701 Vorlesung mit Übung Semantik |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit 42 h, Selbststudium 138 h |
| 17. Prüfungsnummer/n und -name: | 13871 Semantik (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0, Vorleistung: regelmäßige Hausübungen |
| 18. Grundlage für ... : |
| 19. Medienform: |
| 20. Angeboten von: |
Modul: 14040 Sprachsynthese und Spracherkennung

2. Modulkürzel: 052400008 5. Moduldauer: 1 Semester
4. SWS: 6.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Prof. Dr. Grzegorz Dogil
9. Dozenten: • Grzegorz Dogil
• Wolfgang Wokurek
• Stefan Rapp
• Antje Schweitzer

11. Empfohlene Voraussetzungen: 052400007, 080310502

• Die Studierenden können aktuelle Werkzeuge für automatische Spracherkennung und Sprachsynthese selbständig anwenden.

13. Inhalt: Formantsynthese und artikulatorische Synthese, konkatensativ Synthese, Text-To-Speech Synthese (TTS), Textvorverarbeitung für die TTS, linguistische Analyse für die TTS, Syntheseinventare und Auswahlalgorithmen, Prosodiemodellierung, Arbeit mit aktuellen Text-To-Speech-Systemen; Anwendungen der Spracherkennung, Merkmalsextraktion, Hidden Markov Modelle, Arbeit mit Hidden Markov Toolkit

P. Taylor, Text-to-Speech Synthesis, Manuskript

15. Lehrveranstaltungen und -formen: 140401 Vorlesung mit Übung Sprachsynthese und Spracherkennung

16. Abschätzung Arbeitsaufwand: Präsenzzeit 63 h, Selbststudium 207 h

17. Prüfungsnummer/n und -name: • 14041 Sprachsynthese und Spracherkennung (LBP), schriftlich und mündlich, Gewichtung: 1.0, 3 lehrveranstaltungsbegleitende Prüfungen: 2 Kurztests (Gewicht je 1/3), eine mündliche Leistungsprüfung (Gewicht 1/3)
• 14042 Sprachsynthese und Spracherkennung - Projekte (USL), schriftlich, eventuell mündlich, Gewichtung: 1.0

18. Grundlage für ... :
19. Medienform:
20. Angeboten von:
Modul: 14080 Statistische Sprachverarbeitung

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>052400009</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Prof. Ph.D. Hinrich Schütze</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Helmut Schmid
| | • Hinrich Schütze |
| 11. Empfohlene Voraussetzungen: | 052400002, 052400003, 052400004, 052400005, 052400007, 080310502, 050420005, 051510005, 05152005, 05152010 |
| 12. Lernziele: | • Die Studierenden sind mit den grundlegenden probabilistischen und numerischen Methoden der Sprachverarbeitung vertraut und haben in den Übungen Erfahrung mit ihrer Anwendung gesammelt. |
| 13. Inhalt: | Wahrscheinlichkeitsrechnung, korpusbasierte Parameterschätzung, Sprachmodelle, Klassifikation, syntaktische und semantische Disambiguierung (z.B. part-of-speech tagging), probabilistisches Parsing, Maschinelle Übersetzung |
| 15. Lehrveranstaltungen und -formen: | 140801 Vorlesung mit Übung Statistische Sprachverarbeitung |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit 42 h, Selbststudium 138 h |
| 17. Prüfungsnummer/n und -name: | • 14081 Statistische Sprachverarbeitung (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0
| | • 14082 Statistische Sprachverarbeitung - Hausübungen (USL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0 |
| 18. Grundlage für ... : | |
| 19. Medienform: | |
| 20. Angeboten von: | |
300 Ergänzungsmodule

Zugeordnete Module:
14270 Projekt Maschinelle Sprachverarbeitung
14290 Seminar Maschinelle Sprachverarbeitung
Modul: 14270 Projekt Maschinelle Sprachverarbeitung

2. Modulkürzel: 052400097 5. Moduldauer: 1 Semester
4. SWS: 4.0 7. Sprache: Deutsch
8. Modulverantwortlicher: Prof. Ph.D. Hinrich Schütze
9. Dozenten: • Grzegorz Dogil • Hinrich Schütze • Natalie Lewandowski • Jagoda Bruni
11. Empfohlene Voraussetzungen: 052400002, 052400003, 052400005, 052400007, 052400009
12. Lernziele: • Erfolgreiche Anwendung einer oder mehrerer der zentralen Methoden und formalen Beschreibungsmodelle der Computerlinguistik und Sprachtechnologie auf eine größere Aufgabe, die wesentliche experimentelle oder datenanalytische Komponenten enthält. Aufgabenstellungen werden sich in der Regel auf Text- oder Lautsprachkorpora beziehen und die programmatische Bearbeitung eines Korpus als Teilaufgabe einschließen.
14. Literatur:
15. Lehrveranstaltungen und -formen: 142701 Projekt Maschinelle Sprachverarbeitung
16. Abschätzung Arbeitsaufwand: Präsenzzeit 42 h, Selbststudium 138 h
17. Prüfungsnummer/n und -name: 14271 Projekt Maschinelle Sprachverarbeitung (USL), schriftlich, eventuell mündlich, Gewichtung: 1.0, Umfang und Inhalt der unbenoteten Studienleistungen, die zum erfolgreichen Abschluss des Projektes erforderlich sind, werden zu Beginn der Veranstaltung von den Dozierenden bekanntgegeben.
18. Grundlage für ... :
19. Medienform:
20. Angeboten von:
Modul: 14290 Seminar Maschinelle Sprachverarbeitung

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>052400098</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. Modulverantwortlicher:</th>
<th>Prof.Ph.D. Hinrich Schütze</th>
</tr>
</thead>
</table>
| 9. Dozenten: | • Natalie Lewandowski
• Jagoda Bruni
• Hinrich Schütze
• Grzegorz Dogil |

→ Ergänzungsmodul |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>052400002, 052400003, 052400005, 052400007, 052400009</td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>• Die Studierenden können Projektarbeiten in Präsentationen darstellen, ihre Herangehensweise in Diskussionen kritisch hinterfragen und das Ergebnis ihrer Arbeit in einer kurzen schriftlichen Arbeit wissenschaftlich darstellen.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13. Inhalt:</th>
<th>Der Inhalt des Seminars entspricht dem Inhalt des Projektes.</th>
</tr>
</thead>
<tbody>
<tr>
<td>14. Literatur:</td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>142901 Projektseminar Maschinelle Sprachverarbeitung</td>
</tr>
</tbody>
</table>
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit 21 h
Selbststudium 69 h
Gesamt 90 h |

<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>14291 Seminar Maschinelle Sprachverarbeitung (PL), Sonstiges, Gewichtung: 1.0, Hausarbeit, 15 bis 20 Seiten</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td></td>
</tr>
</tbody>
</table>
400 Schlüsselqualifikationen fachaffin

Zugeordnete Module: 14300 Mathematik für die Maschinelle Sprachverarbeitung
Modul: 14300 Mathematik für die Maschinelle Sprachverarbeitung

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>15.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Apl. Prof. Dr. Wolfgang Rump</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

12. Lernziele:

Die Studierenden haben die mathematischen Grundlagen für den Studiengang Maschinelle Sprachverarbeitung erarbeitet und den selbständigen und kreativen Umgang mit den mathematischen Stoffgebieten gelernt.

13. Inhalt:

1. Semester

- Grundlagen (Aussagenlogik, Mengen, Relationen, Abbildungen, Zahlenmengen, Grundbegriffe der Algebra)
- Lineare Algebra (Vektorräume, lineare Abbildungen, Matrizen, Determinanten lineare Gleichungssysteme, Eigenwerte, Normalformen, Hauptachsenttransformation, Skalarprodukte)
- Analysis (Konvergenz, Zahlenfolgen und Zahlenreihen, stetige Abbildungen, Folgen und Reihen von Funktionen, spezielle Funktionen).

2. Semester (verkürzt um ein Drittel)

- Differential- und Integralrechnung (Funktionen einer und mehrerer Variablen, Ableitungen, Taylorentwicklungen, Extremwerte, Integration, Anwendungen).

14. Literatur:

- M. Brill: Mathematik für Informatiker, Hanser-Verlag 2001
- P. Hartmann: Mathematik für Informatiker, Vieweg 2002.

15. Lehrveranstaltungen und -formen:

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Veranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>143001</td>
<td>Vorlesung mit Übung Mathematik für die Maschinelle Sprachverarbeitung</td>
</tr>
</tbody>
</table>

16. Abschätzung Arbeitsaufwand:

140 Präsenz + 310 Nacharbeit, Hausaufgaben = 450 Stunden

17. Prüfungsnummer/n und -name:

143001 Mathematik für die Maschinelle Sprachverarbeitung (USL), schriftliche Prüfung, Gewichtung: 1.0, 2 unbenotete Übungsscheine, jeweils im 1. und 2. Fachsemester zu erwerben

18. Grundlage für ... :

19. Medienform:

Beamer, Tafel, Visualizer

20. Angeboten von:
610 Wahlbereich E/I

Zugeordnete Module:

- 10020 Algorithmik
- 10060 Computergraphik
- 10110 Grundlagen der Künstlichen Intelligenz
- 10150 Grundlagen des Compilerbaus und der Programmiersprachen
- 10210 Mensch-Computer-Interaktion
- 10220 Modellierung
- 10240 Numerische und Stochastische Grundlagen
- 10270 Programmierparadigmen
- 11330 Visualisierung
- 11490 Nachrichtentechnik
- 11640 Digitale Signalverarbeitung
- 11670 Grundlagen integrierter Schaltungen
- 11680 Kommunikationsnetze I
- 17130 Entwurf digitaler Filter
- 25610 Grundlagen des Software Engineering
- 31600 Machine learning for NLP
- 39040 Rechnernetze
- 40090 Systemkonzepte und -programmierung
Modul: 10020 Algorithmik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050420015</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Prof. Dr. Volker Diekert</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>• Ulrich Hertrampf</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Volker Diekert</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>• Kennenlernen und beherrschenden wichtiger Programmierparadigmen und Entwurfsstrategien;</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Selbstständiges Erarbeiten von Laufzeitabschätzungen.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>• Entwurfsstrategien für Algorithmen (Teile und Beherrsehre, Gierige Methode, Dynamische Programmierung, Backtracking, heuristische Algorithmen)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Analyse und Komplexität von Algorithmen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Mustererkennung</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Sortierverfahren und ihre Komplexität</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Verwaltung von Mengen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Union-Find-Algorithmen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Konvexe Hülle</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• optimale (Teil-) Bäume</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Minimale Schnitte</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Randomisierte Algorithmen und weitere Themen.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Alfred V. Aho, John E. Hopcroft, Jeffrey Algorithms, 1987</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• T. Ottmann und P. Widmayer, Algorithmen 2004</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Volker Diekert, Entwurf und Analyse effizienter (Vorlesungsskript), 2006</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 100201 Vorlesung Algorithmik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 100202 Übung Algorithmik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Präsenzzeit: 42 Stunden</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Nachbearbeitungszeit: 138 Stunden</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnr/und-name:</td>
<td>• 10021 Algorithmik (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0, Prüfungsvoraussetzung: Übungsschein</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• V Vorlesung (USL-V), schriftlich, eventuell mündlich</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Modul: 10060 Computergraphik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>051900002</th>
<th>5. Modulldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher:
Prof. Dr. Thomas Ertl

9. Dozenten:
- Thomas Ertl
- Daniel Weiskopf
- Martin Fuchs

10. Zuordnung zum Curriculum in diesem Studiengang:

11. Empfohlene Voraussetzungen:
- Modul 051900001 Mensch-Computer-Interaktion
- Modul 051240005 Numerik und Stochastik.

12. Lernziele:
Die Studierenden haben Wissen über die Grundlagen der Computergraphik sowie praktische Fähigkeiten in der Graphikprogrammierung erworben.

13. Inhalt:
Folgende Themen werden in der Vorlesung behandelt:
- Überblick über den Prozess der Bildsynthese
- Graphische Geräte, visuelle Wahrnehmung, Farbsysteme
- Grundlegende Rastergraphik und Bildverarbeitung
- Raytracing und Beleuchtungsmodelle
- 2D und 3D Geometrietransformationen, 3D Projektion
- Graphikprogrammierung in OpenGL 3
- Texturen
- Polygonale und hierarchische Modelle
- Rasterisierung und Verdeckungsberechnung
- Grundlagen der geometrischen Modellierung (Kurven, Flächen)
- Räumliche Datenstrukturen

14. Literatur:
- J. Encarnacao, W. Strasser, R. Klein, Graphische Datenverarbeitung (Band 1 und 2), 1997

15. Lehrveranstaltungen und -formen:
- 100601 Vorlesung Computergraphik
- 100602 Übung Computergraphik

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 42 Stunden
- Nachbearbeitungszeit: 138 Stunden

17. Prüfungsnummer/n und -name:
- 10061 Computergraphik (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0, Prüfungsvorleistung: Übungsschein.
- V Vorleistung (USL-V), schriftlich, eventuell mündlich

18. Grundlage für ...:

19. Medienform:

20. Angeboten von:
Institut für Visualisierung und Interaktive Systeme
Modul: 10110 Grundlagen der Künstlichen Intelligenz

2. Modulkürzel: 051900205
5. Modulduauer: 1 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Andrés Bruhn

9. Dozenten:

11. Empfohlene Voraussetzungen: • Modul 080300100 Mathematik für Informatiker und Softwaretechniker

12. Lernziele: Der Student / die Studentin beherrscht die Grundlagen der Künstlichen Intelligenz, kann Probleme der KI selbständig einordnen und mit den erlernten Methoden und Algorithmen bearbeiten.

13. Inhalt:
• Intelligenz
• Agentenbegriff
• Problemlösen durch Suchen, Suchverfahren
• Probleme mit Rand- und Nebenbedingungen
• Spiele
• Aussagen- und Prädikatenlogik
• Logikbasierte Agenten, Wissensrepräsentation
• Inferenz
• Planen
• Unsicherheit, probabilistisches Schließen
• Probabilistisches Schließen über die Zeit
• Sprachverarbeitung
• Entscheidungstheorie
• Lernen

14. Literatur:
• S. Russell, P. Norvig, Künstliche Intelligenz, 2004
• G. F. Luger, Künstliche Intelligenz, 2001

15. Lehrveranstaltungen und -formen:
• 101101 Vorlesung Grundlagen der Künstlichen Intelligenz
• 101102 Übung Grundlagen der Künstlichen Intelligenz

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 Stunden
Selbststudium: 138 Stunden
Gesamt: 180 Stunden

17. Prüfungsnummer/n und -name:
• 10111 Grundlagen der Künstlichen Intelligenz (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0, Prüfungsvorleistung: Übungsschein, Kriterien werden in der ersten Vorlesung bekannt gegeben
• V Vorleistung (USL-V), schriftlich, eventuell mündlich

18. Grundlage für ...

19. Medienform:

20. Angeboten von: Institut für Visualisierung und Interaktive Systeme
Modul: 10150 Grundlagen des Compilerbaus und der Programmiersprachen

2. Modulkürzel: 051510015
5. Moduldaurer: 1 Semester

3. Leistungspunkte: 6.0 LP
6. Turnus: jedes 2. Semester, SoSe

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Prof. Dr. Erhard Plödereder

9. Dozenten: Erhard Plödereder

(Nach SS14 wird sich der programmiersprachliche Teil ändern.)

14. Literatur:
• Aho, Sethi, Ullman, Compilers - Principles, Techniques, and Tools, 1988
• Wilhelm, Maurer, Uebersetzerbau, 1997

15. Lehrveranstaltungen und -formen: • 101501 Vorlesung Grundlagen des Compilerbaus und der Programmiersprachen
• 101502 Übung Grundlagen des Compilerbaus und der Programmiersprachen

16. Abschätzung Arbeitsaufwand: Präsenzzeit: 42 Stunden
Nachbearbeitungszeit: 138 Stunden

17. Prüfungsnummer/n und -name: 10151 Grundlagen des Compilerbaus und der Programmiersprachen (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0
18. Grundlage für ...

19. Medienform:

20. Angeboten von:
Modul: 25610 Grundlagen des Software Engineerings

2. Modulkürzel: 51520170
5. Moduldauer: 1 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr. Stefan Wagner

9. Dozenten: Jochen Ludewig

11. Empfohlene Voraussetzungen: 051520005 Programmierung und Software-Entwicklung
051510005 Datenstrukturen und Algorithmen sowie entsprechende Programmiererfahrung

- Geschichte und Konzepte des Software Engineerings
- Der Software-Lebenszyklus und Software-Management
- Software-Prüfung und Qualitätssicherung
- Methoden, Sprachen und Werkzeuge für die einzelnen Phasen: Spezifikation, Grobentwurf, Feinentwurf, Implementierung, Test

Dieses Modul kommt, wenn die Voraussetzungen erfüllt sind, auch für andere Fachrichtungen in Frage.

14. Literatur:
- Ludewig, Lichter: Software Engineering. dpunkt-Verlag, Heidelberg. 2. Aufl. 2010,
- Pfleeger, Atlee: Software Engineering, Pearson. 2010

15. Lehrveranstaltungen und -formen:
- 256101 Vorlesung Grundlagen des Software Engineerings
- 256102 Übung Grundlagen des Software Engineerings

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 Stunden
Nachbearbeitungszeit: 138

17. Prüfungsnummer/n und -name: 25611 Grundlagen des Software Engineerings (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:
- Folien am Beamer unterstützt durch Tafel und Overhead
- Dokumente, Links und Diskussionsforen in ILIAS

20. Angeboten von: Institut für Softwaretechnologie
Modul: 31600 Machine learning for NLP

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>052400616</th>
<th>5. Moduldauner:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>1.0</td>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Prof. Ph. D. Hinrich Schütze
9. Dozenten: Hinrich Schütze
11. Empfohlene Voraussetzungen: Statistical natural language processing (recommended)
12. Lernziele: Students have acquired in depth knowledge of several machine learning methods that are used in natural language processing and are familiar with the relevant literature.
13. Inhalt: - Maximum entropy models
- Regression and regularized regression
- Support vector machines
- Sequence models
- Generative models
- Parameter estimation

15. Lehrveranstaltungen und -formen: 316001 Seminar course Machine learning for NLP
16. Abschätzung Arbeitsaufwand: Präsenzzeit: 28h
Selbststudium: 60h
17. Prüfungsnummer/n und -name: 31601 Machine learning for NLP (PL), schriftlich, eventuell mündlich, Gewichtung: 1.0

18. Grundlage für ... :
19. Medienform:
20. Angeboten von:
Modul: 10210 Mensch-Computer-Interaktion

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>051900001</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

| 8. Modulverantwortlicher: | Univ.-Prof.Dr. Albrecht Schmidt |
| 9. Dozenten: | • Albrecht Schmidt
• Thomas Ertl
• Daniel Weiskopf |

| 11. Empfohlene Voraussetzungen: | • 051520005 Programmierung und Software-Entwicklung
• 051200005 Systemkonzepte und -programmierung |

• Einführung in die Grundlagen der Mensch-Computer Interaktion, historische Entwicklung
• Entwurfsprinzipien und Modelle für moderne Benutzungsschnittstellen und interaktive Systeme
• Informationsverarbeitung des Menschen, Wahrnehmung, Motorik, Eigenschaften und Fähigkeiten des Benutzers
• Interaktionskonzepte und -stile, Metaphern, Normen, Regeln und Style Guides
• Ein- und Ausgabegeräte, Entwurfsraum für interaktive Systeme
• Analyse-, Entwurfs- und Entwicklungsmethoden und -werkzeuge für Benutzungsschnittstellen
• Prototypische Realisierung und Implementierung von interaktiven Systemen, Werkzeuge
• Architekturen für interaktive Systeme, User Interface Toolkits und Komponenten
• Akzeptanz, Evaluationsmethoden und Qualitätssicherung |

• Alan Dix, Janet Finley, Gregory Abowd, Russell Beale, Human-Computer Interaction, 2004
• Ben Shneiderman, Catherine Plaisant, Designing the User Interfaces, 2005 |
| 15. Lehrveranstaltungen und -formen: | • 102101 Vorlesung Mensch-Computer-Interaktion
• 102102 Übung Mensch-Computer-Interaktion |
|-----------------------------|---|
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 42 Stunden
Nachbearbeitungszeit: 138 Stunden |
| 17. Prüfungsnummer/n und -name: | • 10211 Mensch-Computer-Interaktion (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0, Prüfungsvorleistung: Übungsschein
• V Vorleistung (USL-V), schriftlich, eventuell mündlich |
18. Grundlage für ... :	
19. Medienform:	
20. Angeboten von:	Institut für Visualisierung und Interaktive Systeme
Modul: 10220 Modellierung

2. Modulkürzel: 052010001
5. Moduldauer: 1 Semester

3. Leistungspunkte: 6.0 LP
6. Turnus: jedes 2. Semester, SoSe

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Prof. Dr. Frank Leymann

9. Dozenten:
- Bernhard Mitschang
- Frank Leymann

10. Zuordnung zum Curriculum in diesem Studiengang:

11. Empfohlene Voraussetzungen:
- 051520005 Programmierung und Software-Entwicklung
- 051510005 Datenstrukturen und Algorithmen
- 051200005 Systemkonzepte und -programmierung

12. Lernziele:

13. Inhalt:
- Entity-Relationship Modell & komplexe Objekte
- Relationenmodell & Relationenalgebra, Überblick SQL
- Transformationen von ER nach Relationen, Normalisierung
- XML, DTD, XML-Schema, Info-Set, Namensräume
- Metamodelle & Repository
- RDF, RDF-S & Ontologien
- UML
- Petri Netze, Workfownetze
- BPMN

14. Literatur:
- R. Eckstein, S. Eckstein, "XML und Datenmodellierung", dpunkt.verlag 2004
- M. Hitz, G. Kappel, E. Kapsammer, W. Retschitzegger, UML @ Work - Objektorientierte Modellierung mit UML2, 2005
- H.J. Habermann, F. Leymann, "Repository", Oldenbourg 1993
- W. Reisig, "Petri-Netze", Vieweg & Teubner 2010
- B. Silver, "BPMN Method & Style", Cody-Cassidy Press 2009

15. Lehrveranstaltungen und -formen:
- 102201 Vorlesung Modellierung
- 102202 Übung Modellierung

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 Stunden
Nachbearbeitungszeit: 138 Stunden

17. Prüfungsnummer/n und -name:
- 10221 Modellierung (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0, Prüfungsvorleistung: Übungsschein
- V Vorleistung (USL-V), schriftlich, eventuell mündlich

18. Grundlage für ... :
- 10030 Architektur von Anwendungssystemen
- 10080 Datenbanken und Informationssysteme

19. Medienform:

Stand: 15. Oktober 2012
20. Angeboten von:
Modul: 10240 Numerische und Stochastische Grundlagen

2. Modulkürzel: 051240005
5. Modulduauer: 1 Semester
3. Leistungspunkte: 9.0 LP
4. SWS: 6.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr. Marc Alexander Schweitzer

9. Dozenten:
 • Stefan Zimmer
 • Marc Alexander Schweitzer

10. Zuordnung zum Curriculum in diesem Studiengang:

11. Empfohlene Voraussetzungen:
 • Modul 080300100 Mathematik für Informatiker und Softwaretechniker

12. Lernziele:

13. Inhalt:
 Methoden der angewandten Mathematik, insbesondere der Numerik, Stochastik und Statistik, sind für viele Bereiche der Informatik wie Simulation, Grafik oder Bildverarbeitung von zentraler Bedeutung. In Ergänzung der Mathematik-Grundausbildung vermittelt diese Vorlesung folgende Grundkenntnisse:
 • numerische Algorithmik
 • Gleitpunktzahlen und Gleitpunktarithmetik
 • Interpolation & Approximation
 • Integration
 • lineare Gleichungssysteme
 • Iterative Lösung linearer und nichtlinearer Gleichungen
 • gewöhnliche Differentialgleichungen
 • Stochastik
 • Zufall und Unsicherheit
 • diskrete und kontinuierliche Wahrscheinlichkeitsräume
 • Asymptotik
 • Elementare induktive Statistik

Dabei wird ein konstruktiv-algorithmischer Zugang gewählt, der sich an konkreten Aufgabenstellungen aus der Informatik orientiert.

14. Literatur:
 • Huckle, Schneider; Numerik für Informatiker
 • Schickinger T., Steger A.; Diskrete Strukturen, Band 2, 2002
 • Dahmen, Reusken; Numerik für Ingenieure

15. Lehrveranstaltungen und -formen:
 • 102401 Vorlesung Numerische und Stochastische Grundlagen der Informatik
 • 102402 Übung Numerische und Stochastische Grundlagen der Informatik

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 63 Stunden
 Nachbearbeitungszeit: 207 Stunden

17. Prüfungsnummer/n und -name:
 • 10241 Numerische und Stochastische Grundlagen (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0, Prüfungsvorleistung: Übungsschein
18. Grundlage für ...

19. Medienform:

20. Angeboten von:

• V Vorleistung (USL-V), schriftlich, eventuell mündlich
Modul: 10270 Programmierparadigmen

2. Modulkürzel: 051510010
5. Moduldauer: 1 Semester
3. Leistungspunkte: 3.0 LP
4. SWS: 2.0
7. Sprache: Deutsch

8. Modulverantwortlicher:
Prof.Dr. Erhard Plödereder
9. Dozenten:
Erhard Plödereder
10. Zuordnung zum Curriculum in diesem Studiengang:

11. Empfohlene Voraussetzungen:
• Programmierzufahrung in einer ersten Programmiersprache
• Modul 051520005 Programmierung und Softwareentwicklung
• Modul 051520010 Programmierkurs
• Modul 051510005 Datenstrukturen und Algorithmen

12. Lernziele:

13. Inhalt:
Inhalte:

1. Ausführungsmodelle im Überblick: Imperativ/prozedural, objektorientiert, funktional, datenfluss-gesteuert, logisch.

2. Speichermodell: Umgang mit Zustand; Stack und Heap-Management, Benutzerprobleme der Halde im Allokations/Deallocations- und im Garbage Collection Modell; Speicherlöcher, dangling references und deren Vermeidung; Speichermodelle im Kontext paralleler Ausführung.

Zu jedem der Sprachkonzepte stellt die Vorlesung oder Übung die konkrete Ausprägung in Referenzprogrammiersprachen dieses Lehrmoduls vor und erklärt die Vor- und Nachteile sowie die Grenzen der Verwendung, oft auch die Motivation für die Einführung des Konzepts in der jeweiligen Form. Referenzsprachen sind derzeit Java, Ada und C++. An einigen Stellen sind „Ergänzungssprachen“ nötig, z. B. Scriptingsprachen wie Ruby oder Python, sowie Smalltalk und Haskell. (Ab WS 13/14 wird dieses Modul durch ein SS Modul doppelten Umfangs ersetzt.)

14. Literatur:

15. Lehrveranstaltungen und -formen: 102701 Übung Programmierparadigmen
Nachbearbeitungszeit: 69 Stunden
17. Prüfungsnummer/n und -name: 10271 Programmierparadigmen (USL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0, Studienbegleitende Abgabe von Programmierlösungen
18. Grundlage für ...
19. Medienform:
20. Angeboten von: Institut für Softwaretechnologie
Modul: 39040 Rechnernetze

2. Modulkürzel: 051200010 5. Modulduauer: 1 Semester
4. SWS: 4.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Prof. Dr. Kurt Rothermel

9. Dozenten:
 • Kurt Rothermel
 • Frank Dürr

11. Empfohlene Voraussetzungen:
 • 051520005 Programmierung und Software-Entwicklung
 • 051510005 Datenstrukturen und Algorithmen
 • Grundkenntnisse in Java

12. Lernziele:
 • Versteht grundsätzliche Eigenschaften, Konzepte und Methoden von Rechnernetzen, insbesondere dem Internet.
 • Versteht Schichten und deren Zusammenwirken in einem Protokollstapel
 • Kann Rechnernetze aufbauen, verwalten und analysieren.
 • Kann Protokolle entwickeln und in Schichtenarchitektur einbetten.
 • Kann höhere Kommunikationsdienste zur Entwicklung von netzgestützten Systemen anwenden.
 • Kann sich mit Experten anderer Domänen über Methoden der Rechnernetze verständigen.

13. Inhalt:
 • Einführung in die Rechnernetze, ISO Referenzmodell;
 • Bitübertragungsschicht: Übertragungsmedien, analoge und digitale Informationskodierung und -übertragung, Vermittlungsarten;
 • Sicherungsschicht: Betriebsarten, Fehlererkennung und -behandlung, Flusskontrolle;
 • Lokale Netze: CSMA/CD, Token Ring, Token Bus, FDDI, Kopplung;
 • Vermittlungsschicht: Verbindungsorientierter und verbindungsloser Dienst, Leitwegbestimmung, Überlastkontrolle;
 • Internetworking;
 • Internet-Protokoll;
 • Transportschicht: ausgewählte Realisierungsprobleme und Internet-Protokolle;
 • Echtzeitkommunikation: IntServ, DiffServ; Sicherheit: Verfahren, IPsec, SSL, TLS.

14. Literatur:
 • D.E. Comer, Computernetzwerke und Internets, 2000
 • J. F. Kurose, K. W. Ross, Computer Networks: a top-down approach featuring the Internet, 2001
 • L.L. Peterson, B.S. Davie, Computer Networks: A Systems Approach, 1999

15. Lehrveranstaltungen und -formen:
 • 390401 VL Rechnernetze
 • 390402 ÜB Rechnernetze

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 42 Stunden
Nachbearbeitungszeit: 138 Stunden

17. Prüfungsnummer/n und -name:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Prüfungstitel</th>
<th>Art</th>
<th>Dauer</th>
<th>Gewichtung</th>
</tr>
</thead>
<tbody>
<tr>
<td>39041</td>
<td>Rechnernetze (PL), schriftliche Prüfung</td>
<td>90 Min.</td>
<td>1,0</td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>Vorleistung (USL-V), schriftlich, eventuell mündlich</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
Modul: 40090 Systemkonzepte und -programmierung

2. Modulkürzel: 051200005

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0

5. Modulbeginn: 1 Semester

7. Sprache: Deutsch

8. Modulverantwortlicher: Prof. Dr. Kurt Rothermel

9. Dozenten: • Kurt Rothermel
 • Frank Leymann

11. Empfohlene Voraussetzungen:
* Modul 051520005 Programmierung und Software-Entwicklung
* Modul 051510005 Datenstrukturen und Algorithmen

12. Lernziele:
* Verstehen grundlegender Architekturen und Organisationsformen von Software-Systemen
* Verstehen systemnaher Konzepte und Mechanismen
* Kann existierende Systemplattformen und Betriebssysteme hinsichtlich ihrer Eigenschaften analysieren und anwenden.
* Kann systemnahe Software entwerfen und implementieren.
* Kann nebenläufige Programme entwickeln
* Kann mit Experten anderer Fachgebiete die Anwendung von Systemfunktionen abstimmen.

13. Inhalt:
Grundlegende Systemstrukturen - und organisationen
• Multitaskingsystem
• Multiprozessorsystem
• Verteiltes System

Modellierung und Analyse nebenläufiger Programme
• Abstraktionen: Atomare Befehle, Prozesse, nebenläufiges Programm
• Korrektheit- und Leitungskriterien

Betriebssystemkonzepte
• Organisation von Betriebssystemen
• Prozesse und Threads
• Eingabe/Ausgabe
• Scheduling

Konzepte zur Synchronisation über gemeinsamen Speicher
• Synchronisationsprobleme und -lösungen
• Synchronisationswerkzeuge: Semaphore, Monitor

Konzepte zur Kommunikation und Synchronisation mittels Nachrichtentransfer
• Taxonomie: Kommunikation und Synchronisation
• Nachrichten als Kommunikationskonzept
• Höhere Kommunikationskonzepte

Konzepte zur Verteilung von Computern
• Erkennung globaler Eigenschaften
• Schnappschussproblem
• Konsistenter globaler Zustand
• Verteilte Terminierung
Praktische nebenläufige Programmierung in Java
 • Threads und Synchronisation
 • Socketschnittstelle
 • RMI Programmierung

<table>
<thead>
<tr>
<th>14. Literatur:</th>
<th>Literatur, siehe Webseite zur Veranstaltung</th>
</tr>
</thead>
</table>
| 15. Lehrveranstaltungen und -formen: | • 400901 Vorlesung Systemkonzepte und -programmierung
 • 400902 Übung Systemkonzepte und -programmierung |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 42 Stunden
 Nachbearbeitungszeit: 138 Stunden |
| 17. Prüfungsnummer/n und -name: | • 40091 Systemkonzepte und -programmierung (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0
 • V Vorleistung (USL-V), schriftlich, eventuell mündlich |
| 18. Grundlage für ...: | |
| 19. Medienform: | |
| 20. Angeboten von: | |
Modul: 11330 Visualisierung

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>051900011</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Daniel Weiskopf</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Thomas Ertl
• Daniel Weiskopf
• Filip Sadlo |
| 11. Empfohlene Voraussetzungen: | • 051900002 Computergraphik
• 051900001 Mensch-Computer-Interaktion
• 051240005 Numerik und Stochastik. |
| 13. Inhalt: | Visualisierung behandelt alle Aspekte, die mit der visuellen Repräsentation von Daten aus wissenschaftlichen Experimenten, Simulationen, medizinischen Scannern, Datenbanken oder ähnlichen Datenquellen gewonnen werden, um zu einem tieferen Verständnis zu gelangen oder eine einfachere Darstellung komplexer Phänomene oder Sachverhalte zu erhalten. Um dieses Ziel zu erreichen, werden zum einen wohlbekannte Techniken aus dem Gebiet der interaktiven Computergraphik, zum anderen auch neu entwickelte Techniken angewendet.

Entsprechend werden in dieser Vorlesung folgenden Themen behandelt:

• Einführung, Historie, Visualisierungspipeline
• Datenakquise und -repräsentation (Abtasten, Rekonstruktion, Gitter, Datenstrukturen)
• Wahrnehmungsaspekte
• Grundlegende Konzepte visueller Abbildungen
• Visualisierung von Skalarfeldern (Isoflächenextraktion, Volumenrendering)
• Visualisierung von Vektorfeldern (Teilchenverfolgung, texturbasierte Methoden, Topologie)
• Tensorfelder, Multiattributdaten
• Hochdimensionale Daten und Informationsvisualisierung |
• C. Ware, Information Visualization: Perception for Design, 2004
• H. Schumann, W. Müller, Visualisierung: Grundlagen und allgemeine Methoden, 2000
| 15. Lehrveranstaltungen und -formen: | • 113301 Vorlesung Visualisierung
• 113302 Übungen Visualisierung |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 42 Stunden
Nachbearbeitungszeit: 138 Stunden |
17. Prüfungsnummer/n und -name:
• 11331 Visualisierung (PL), mündliche Prüfung, 30 Min., Gewichtung: 1.0
• V Vorleistung (USL-V), schriftlich, eventuell mündlich, 30 Min.

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 11490 Nachrichtentechnik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050600003</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>9.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>6.0</td>
</tr>
<tr>
<td>5. Modul dauer:</td>
<td>2 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Jan Hesselbarth</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Joachim Speidel
• Jan Hesselbarth |
| 12. Lernziele: | Teil I:
Schaltungen bei höheren Frequenzen, Grundlagen der Sender- und Empfangstechnik, Leitungen, Einführung in Antennen, Wellenausbreitung und Empfängerrauschen, Übersicht wichtiger Funksysteme

Teil II:
Grundzüge der Informationstheorie, Codierung und Modulation, Signalübertragung über elektrische Leitungen |
| 13. Inhalt: |
• Vorlesungsskripte,
• Meinke, Gundlach: Taschenbuch der Hochfrequenztechnik, 5. Auflage, Springer-Verlag, 1992,
• Tietze, Schenk: Halbleiterschaltungstechnik, 12. Auflage, Springer-Verlag, 2002,
• Herter, Lörcher: Nachrichtentechnik, 9. Auflage, Hanser-Verlag, 2004,
| 14. Literatur: |
• 114901 Vorlesung Nachrichtentechnik 1
• 114902 Übung Nachrichtentechnik 1
• 114903 Vorlesung Nachrichtentechnik 2
• 114904 Übung Nachrichtentechnik 2 |
| 15. Lehrveranstaltungen und -formen: |
• Präsenzzeit: 84 h
• Selbststudium/Nacharbeitszeit: 186 h
• Gesamt: 270 h |
| 16. Abschätzung Arbeitsaufwand: |
• 11491 Nachrichtentechnik (PL), schriftliche Prüfung, 180 Min., Gewichtung: 1.0 |
| 17. Prüfungsnummer/n und -name: |
11491 Nachrichtentechnik (PL), schriftliche Prüfung, 180 Min., Gewichtung: 1.0 |
<p>| 18. Grundlage für ... : |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>19. Medienform:</td>
<td>Tafel, Beamer, Projektor, ILIAS</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Institut für Hochfrequenztechnik</td>
</tr>
</tbody>
</table>
Modul: 11640 Digitale Signalverarbeitung

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>051610002</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Prof. Dr.-Ing. Bin Yang</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Bin Yang</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Die Studierenden beherrschen die grundlegenden Methoden zur digitalen Signalverarbeitung, besitzen die notwendigen Grundfertigkeiten zur Analyse von zeitdiskreten Signalen und Systemen, können einfache Signale und Systeme selbstständig analysieren, können einfache Signalverarbeitungsaufgaben selbstständig lösen.</td>
</tr>
</tbody>
</table>
| 12. Lernziele: | • A/D- und D/A-Umwandlung, Abtastung, Quantisierung
• Zeitdiskrete Signale und Systeme, Analyse von LTI-Systemen im Zeitbereich, Differenzengleichung
• Analyse von Signalen und LTI-Systemen in der komplexen Ebene, z-Transformation, Übertragungsfunktion, Pole und Nullstellen
• Analyse von Signalen und LTI-Systemen im Frequenzbereich
• Digitale Filter, FIR und IIR, Tiefpass, Hochpass, Bandpass, Oszillator, KerbfILTER, Kammfilter, linearpulsige Filter, Allpass, minimalphasige Filter
• Diskrete Fourier-Transformation, schnelle Fourier-Transformation (FFT), schnelle Faltung
• Spektralanalyse, Periodogramm, Fenstereffekt, Zeit-Frequenz-Analyse, Spektrogramm |
• J. Proakis and D. G. Manolakis: Digital signal processing, Prentice-Hall, 1996
• M. Mandal and A. Asif, "Continuous and discrete time signals and systems", Cambridge, 2008
• Begleitblätter, MATLAB-Demonstrationen, Audio-Aufzeichnung der Vorlesung |
| 14. Literatur: | • 116401 Vorlesung Digitale Signalverarbeitung
• 116402 Übung Digitale Signalverarbeitung |
| 15. Lehrveranstaltungen und -formen: | Präsenzzeit: 56 h
Selbststudium: 124 h
Gesamt: 180 h |
| 16. Abschätzung Arbeitsaufwand: | 11641 Digitale Signalverarbeitung (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0 |
| 17. Prüfungsnummer/n und -name: | 11641 Digitale Signalverarbeitung (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0 |
| 18. Grundlage für ... : | Tafel, Projektor, Beamer, ILIAS |
20. Angeboten von: Institut für Signalverarbeitung und Systemtheorie
Modul: 17130 Entwurf digitaler Filter

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>051610003</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Moduldauber:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>PD Dr.-Ing. Markus Gaida</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Markus Gaida</td>
</tr>
</tbody>
</table>
| 13. Inhalt: | • Filter und Anwendungen, FIR- und IIR-Filter, Blockdiagramm und Signalflussgraph
| | | • Entwurf von FIR-Filtern: linearpasige FIR-Filter, Fenster-Methode, Frequenzabtastmethode, Methode der kleinsten Quadrate, Remez-Algorithmus
| | | • Entwurf von IIR-Filtern: analoge Referenzfilter (Butterworth, Tschebyscheff I und II, Cauer), Frequenztransformation, Methode der invarianten Impulsantwort, Bilineartransformation
| | | • Struktur von FIR-Filtern (Direkt, Kaskade, Lattice), Struktur von IIR-Filtern (Direkt, Kaskade, Parallel, Lattice-Ladder), Levinson-Durbin-Rekursion, Schur-Cohen-Rekursion
| | | • Quantisierungseffekte
| | | • Zahlendarstellung, Fließkomma und Festkomma, Koeffizientenempfindlichkeit, Überlauf und Sättigung, Rundungsverfahren, Polgitter, Rundungsrauschen, Signal-zu-Rausch-Abstand, Grenzyklen
| | | • Entwurf digitaler Filter mit MATLAB
| | | • Abtastratenumsetzung, Dezimation, Interpolation |
| 14. Literatur: | • Skript (siehe ILIAS)
| 15. Lehrveranstaltungen und -formen: | • 171301 Vorlesung Entwurf digitaler Filter
| | | • 171302 Übung Entwurf digitaler Filter |

Stand: 15. Oktober 2012
16. Abschätzung Arbeitsaufwand: Präsenzzeit: 56 h
Selbststudium/Nacharbeitszeit: 124 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name: 17131 Entwurf digitaler Filter (PL), schriftlich, eventuell mündlich, 90 Min., Gewichtung: 1,0, Schriftliche Prüfung (90 Min.), Prüfung wird zwei mal im Jahr angeboten. Bei geringer Hörerzahl kann die Prüfung mündlich sein; dies wird am Anfang der Vorlesung bekanntgegeben. Im Fall einer mündlichen Prüfung kann dies auch eine mündliche Gruppenprüfung (max. 3 zu prüfende Personen pro Gruppe, ca. 15 Min. pro zu prüfender Person) sein.

18. Grundlage für ... :

19. Medienform: Tafel, Projektor, Beamer, CIP-Pool

20. Angeboten von: Institut für Signalverarbeitung und Systemtheorie
Modul: 11670 Grundlagen integrierter Schaltungen

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050200002</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Prof. Dr.-Ing. Manfred Berroth
9. Dozenten: Manfred Berroth
11. Empfohlene Voraussetzungen: Kenntnisse in Schaltungstechnik, Kenntnisse in höherer Mathematik

12. Lernziele: Die Studierenden besitzen Grundkenntnisse über integrierte Schaltungen der Digitaltechnik basierend auf Silizium-MOSFETs

13. Inhalt:
 - Bauelemente der Digitaltechnik
 - Digitale Grundschaltungen
 - CMOS-Logikschaltungen
 - Schaltwerke

14. Literatur:
 - Vorlesungsskript,
 - Hoffmann: VLSI-Entwurf - Modelle und Schaltungen, Oldenbourg Verlag, München, 1998

15. Lehrveranstaltungen und -formen:
 - 116701 Vorlesung Grundlagen Integrierter Schaltungen
 - 116702 Übung Grundlagen Integrierter Schaltungen

16. Abschätzung Arbeitsaufwand:
 - Präsenzzeit: 56 h
 - Selbststudium: 124 h
 - Gesamt: 180 h

17. Prüfungsnummer/n und -name: 11671 Grundlagen integrierter Schaltungen (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform: Tafel, Beamer

20. Angeboten von: Institut für Elektrische und Optische Nachrichtentechnik

Stand: 15. Oktober 2012
Modul: 11680 Kommunikationsnetze I

2. Modulkürzel: 050901005
5. Moduldauer: 1 Semester
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Prof. Dr.-Ing. Andreas Kirstädter
9. Dozenten: Andreas Kirstädter

11. Empfohlene Voraussetzungen:
 • Kenntnisse, wie sie in den Modulen "Informatik I" und "Informatik II" vermittelt werden
 • Kenntnisse, wie sie in den Modulen "Nachrichtentechnik I" und "Nachrichtentechnik II" vermittelt werden

12. Lernziele:
 Verstehen der grundlegenden Architekturprinzipien von Kommunikationsnetzen wie zum Beispiel mobilen Netzen, Kernnetzen und des Internet; Kenntnis von Aufbau und Funktion ausgewählter Systeme, Protokolle und Dienste. Anwenden der Methoden zur formalen Beschreibung und Bewertung von Kommunikationsnetzen.

13. Inhalt:

 Für nähere Informationen, aktuelle Ankündigungen und Material siehe http://www.ikr.uni-stuttgart.de/Xref/CC/L_CN_I

14. Literatur:
 • Skript zur Vorlesung
 • Tanenbaum: "Computer Networks", Prentice-Hall, 2003
 • Kurose, Ross: "Computer Networking", Addison-Wesley, 2009
 • Spragins: "Telecommunications. Protocols and Design", Addison-Wesley, 1992

15. Lehrveranstaltungen und -formen:
 • 116801 Vorlesung Kommunikationsnetze I
 • 116802 Übung zu Kommunikationsnetze I

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 56 h
 Selbststudium: 124 h
 Gesamt: 180 h

17. Prüfungsnummer/n und -name: 11681 Kommunikationsnetze I (PL), schriftlich oder mündlich, 120 Min., Gewichtung: 1.0

18. Grundlage für ...:
 • 14570 Praktische Übungen im Labor "Rechnerarchitektur und Kommunikationssysteme I"
 • 21790 Communication Networks II

19. Medienform: Notebook-Präsentation

20. Angeboten von: Institut für Kommunikationsnetze und Rechnersysteme
620 Wahlbereich F

Zugeordnete Module:
14170 Komputationelle Morphologie
14210 Pragmatik
14220 Fortgeschrittene Sprachsynthese
14250 BioNLP: Maschinelle Sprachverarbeitung in Medizin und Biologie
14260 Grundlagen der Signalverarbeitung in der Lautsprachverarbeitung
29620 Fortgeschrittene Aspekte der Sprachperzeption und Sprachproduktion
41060 Lexikalische Semantik und Komputationelle Lexikographie
41070 Fortgeschrittene Methoden in der Maschinellen Sprachverarbeitung
Modul: 14250 BioNLP: Maschinelle Sprachverarbeitung in Medizin und Biologie

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>052400023</th>
<th>5. Moduldaurer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Apl. Prof.Dr. Uwe Reyle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>052400002</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>• Die Studierenden haben ein grundlegendes Verständnis des biologischen, biochemischen und medizinischen Kontexts erworben, • Verständnis der spezifischen Anforderungen der bio-medicinischen Fachsprachen an die Komponenten eines sprachverarbeitenden Systems entwickelt und • Adaption sprachverarbeitender Technologie für bio-medicinische Texte kennengelernt.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>Biologisches, biochemisches und medizinisches Grundwissen; biologische, biochemische und medizinische Datenbanken; Spezifika der Fachsprachen; Tokenizing, Tagging, Morphologie; Named Entity Recognition; Ontologien; semantisches Tagging; Koreferenzresolution; Informationsextraktion</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Literatur:</td>
<td>Skripte, wissenschaftliche Veröffentlichungen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>142501 Vorlesung BioNLP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Präsenzzzeit 42 h, Selbststudium 138 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>14251 BioNLP: Maschinelle Sprachverarbeitung in Medizin und Biologie (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0, Studienleistung: regelmäßige Hausübungen</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stand: 15. Oktober 2012
Modul: 29620 Fortgeschrittene Aspekte der Sprachperzeption und Sprachproduktion

2. Modulkürzel: 052400010
5. Moduldauer: 1 Semester

3. Leistungspunkte: 6.0 LP
6. Turnus: unregelmäßig

4. SWS: 4.0
7. Sprache: Englisch

8. Modulverantwortlicher: Dr. Antje Schweitzer

9. Dozenten:
 • Grzegorz Dogil
 • Antje Schweitzer
 • Natalie Lewandowski

11. Empfohlene Voraussetzungen: 14000 Phonetik und Phonologie

13. Inhalt: Es werden aktuelle Konferenz- und Zeitschriftenbeiträge aus den Bereichen Sprachperzeption und Sprachproduktion erarbeitet und diskutiert, unter Berücksichtigung theoretischer und/oder praktischer Aspekte.

14. Literatur:
 • W.J.M. Levelt, Speaking: From Intention to Articulation, 1989, MIT Press
 • Konferenz- und Zeitschriftenbeiträge nach Ankündigung in den Vorlesungen.

15. Lehrveranstaltungen und -formen: 296201 Vorlesung Advanced Speech Perception und Advanced Speech Production

16. Abschätzung Arbeitsaufwand: Präsenzzeit 42 h
 Selbststudiumszeit 138 h

17. Prüfungsnummer/n und -name:
 • 29621 Fortgeschrittene Aspekte der Sprachperzeption und Sprachproduktion (PL), mündliche Prüfung, 20 Min., Gewichtung: 1.0
 • V Vorleistung (USL-V), schriftlich, eventuell mündlich

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 41070 Fortgeschrittene Methoden in der Maschinellen Sprachverarbeitung

2. Modulkürzel: 052400025
5. Moduldauer: 1 Semester

3. Leistungspunkte: 6.0 LP
6. Turnus: unregelmäßig

4. SWS: 4.0
7. Sprache: Englisch

8. Modulverantwortlicher: Prof. Dr. Jonas Kuhn

9. Dozenten:
 • Rainer Bäuerle
 • Hinrich Schütze
 • Jonas Kuhn
 • Thomas Müller
 • Wiltrud Kessler
 • Sina Zarrieß
 • Jens Stegmann
 • Marie Louise Elizabeth van der Plas

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Maschinelle Sprachverarbeitung, PO 2009 ➞ Wahlbereich F

11. Empfohlene Voraussetzungen: 052400009

12. Lernziele:
 Die Studierenden haben ein grundlegendes Verständnis der Konzepte, Formalismen, Algorithmen und Implementierungsfragen zu fortgeschrittene Methoden in der Maschinellen Sprachverarbeitung entwickelt.

13. Inhalt:
 In zwei 2-stündigen Teilveranstaltungen werden jeweils zu einem Bereich der Maschinellen Sprachverarbeitung fortgeschrittene Methoden thematisiert. Im WiSe 2012/13 stehen folgende Teilveranstaltungen zur Wahl:
 • 40562 Machine Learning for NLP
 • 410705 Distributional Semantics
 • 401060101 Semantic Web
 • 3518011 Text Technology
 • 18121308 eHumanities - Projekte und Perspektiven (Ringvorlesung)
 • 4035350 Advanced Semantics: Questions and Answers
 Alternativ kann die folgende 4-stündige Veranstaltung belegt werden:
 • 3516013 Tree Automata - 4 SWS

14. Literatur:
 Variabel nach Teilveranstaltung

15. Lehrveranstaltungen und -formen:
 410701 Vorlesung Fortgeschrittene Methoden in der Maschinellen Sprachverarbeitung

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit 42 h
 Selbststudiumszeit 138 h
17. Prüfungsnummer/n und -name:
• 41071 Fortgeschrittene Methoden in der Maschinellen Sprachverarbeitung (PL), Sonstiges, 60 Min., Gewichtung: 1.0
• V Vorleistung (USL-V), schriftlich, eventuell mündlich

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 14220 Fortgeschrittene Sprachsynthese

2. Modulkürzel: 052400022
5. Moduldaauer: 1 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Prof. Dr. Grzegorz Dogil

9. Dozenten:
• Grzegorz Dogil
• Antje Schweitzer

11. Empfohlene Voraussetzungen: 052400008
Vertrautheit mit theoretischen Aspekten der Sprachsynthese
Grundkenntnisse in Linux
Programmierkenntnisse

12. Lernziele:
• Die Studierenden haben ein grundlegendes Verständnis für fortgeschrittene Konzepte der Sprachsynthese erworben.
• Die Studierenden sind in der Lage, selbständig ein Syntheseprojekt für beschränkte Domänen zu erstellen.

15. Lehrveranstaltungen und -formen: 142201 Vorlesung mit Übung Fortgeschrittene Sprachsynthese

16. Abschätzung Arbeitsaufwand: Präsenzzeit 42 h, Selbststudium 138 h

17. Prüfungsnummer/n und -name: 14221 Fortgeschrittene Sprachsynthese (PL), Sonstiges, Gewichtung: 1.0, Studienleistung: regelmäßige Hausübungen

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 14260 Grundlagen der Signalverarbeitung in der Lautsprachverarbeitung

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>052400024</th>
<th>5. Modulduer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Dr. Wolfgang Wokurek</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Wolfgang Wokurek</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>052400008</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>Schwingungen und Rauschen, Abtastung, Filter, Korrelation, Fensterfunktionen, Spektrum, Cepstrum, Lineare Prädiktion, Quelle-Filter Modell der Sprachproduktion, Kurzzeitenergie, Kurzzeitspektrum, Quelle-Modelle</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>142601 Vorlesung mit Übung Grundlagen der Signalverarbeitung in der Lautsprachverarbeitung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Präsenzzeit 42 h, Selbststudium 138 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>14261 Grundlagen der Signalverarbeitung in der Lautsprachverarbeitung (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0, Studienleistung: regelmäßige Hausübungen</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stand: 15. Oktober 2012
Modul: 14170 Komputationelle Morphologie

3. Leistungspunkte: 6.0 LP 6. Turnus: -
4. SWS: 4.0 7. Sprache: Englisch

8. Modulverantwortlicher: Prof. Dr. Jonas Kuhn

9. Dozenten: • Özlem Cetinoglu
 • Helmut Schmid
 • Ulrich Heid
 • Jens Stegmann

11. Empfohlene Voraussetzungen: 052400002

12. Lernziele: • Die Studierenden haben ein grundlegendes Verständnis für die Konzepte und Algorithmen, die in der komputationellen Morphologie verwendet werden, erworben.
 • Sie sind in der Lage, eine Finite-State-Morphologie für eine Sprache selbständig zu implementieren.

13. Inhalt: Das Modul wird dieses Mal in zwei Teilen angeboten. Im SoSe 2012 wird die zweistündige Vorlesung "Computational Morphology/Finite-State Morphology" (Lehre in Englisch) angeboten, im WiSe 2012/13 wird eine zweistündige Veranstaltung "Texttechnologie" angeboten. Beide Teile zusammen ergeben das Module "Komputationelle Morphologie".
 Inhalte Finite-State Morphology: Endliche Transducer, Operationen auf endlichen Transducern, Tokenisierung mit endlichen Transducern, Implementierung von Flexion, Derivation und Komposition, Lexikonorganisation, Oberflächenrealisierungsregeln, besondere Phänomene

15. Lehrveranstaltungen und -formen: 141701 Vorlesung mit Übung Komputationelle Morphologie

16. Abschätzung Arbeitsaufwand: Präsenzzeit 42 h, Selbststudium 138 h

17. Prüfungsnummer/n und -name: 14171 Komputationelle Morphologie (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0, Studienleistung: regelmäßige Hausübungen

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
Modul: 41060 Lexikalische Semantik und Komputationelle Lexikographie

| 2. Modulkürzel: | 052400026 | 5. Moduldauer: | 1 Semester |
| 4. SWS: | 4.0 | 7. Sprache: | Deutsch |

8. Modulverantwortlicher: Dr. Antje Roßdeutscher

9. Dozenten: • Ulrich Heid • Antje Roßdeutscher

11. Empfohlene Voraussetzungen:

13. Inhalt:

Grundlagen der Komputationalen Lexikographie Korpuslinguistische Werkzeuge für die Lexikographie Modelle der elektronischen Wörterbücher Korpusbasierte Anreicherung elektronischer Wörterbücher Grundlagen der lexikalischen Semantik DRT-basierte Lexika Formalisierung von Tempus im Lexikon Nominalisierungen in der lexikalischen Semantik

14. Literatur:

15. Lehrveranstaltungen und -formen: 410601 Vorlesung Lexikalische Semantik und Komputationelle Lexikographie

16. Abschätzung Arbeitsaufwand: Präsenzzeit 42 h Selbststudiumszeit 138 h

17. Prüfungsnummer/n und -name:

• 41061 Lexikalische Semantik und Komputationelle Lexikographie (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0 • V Vorleistung (USL-V), schriftlich, eventuell mündlich

18. Grundlage für:

19. Medienform:

20. Angeboten von:
Modul: 14210 Pragmatik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>052400021</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Moduldaurer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Apl. Prof. Dr. Rainer Bäuerle</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Rainer Bäuerle, Johan Kamp</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>052400005, 052400006</td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>Anaphorik, Präsupposition, Deixis, Implikaturen, Sprechakte, Informationsstruktur, Diskursstruktur</td>
</tr>
<tr>
<td>14. Literatur:</td>
<td>eigene Skripte</td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>142101 Vorlesung mit Übung Pragmatik</td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Präsenzzeit 42 h, Selbststudium 138 h</td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>14211 Pragmatik (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0, Studienleistung: regelmäßige Hausübungen</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td></td>
</tr>
</tbody>
</table>
630 Wahlbereich W

Zugeordnete Module:
14330 Sprache und Geist (Vertiefung Theoretische Philosophie)
14340 Grundlagen der Praktischen Philosophie
14350 Mensch und Technik
17240 Sprachwandel
20050 Einführung in die Theoretische Philosophie - Nebenfach
21570 Einführung in die Praktische Philosophie - Nebenfach
310 Spezialisierung Theoretische Linguistik b
46580 Varietäten des Deutschen
Modul: 21570 Einführung in die Praktische Philosophie - Nebenfach

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>091320003</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Catrin Misselhorn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>• Andreas Luckner</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Gerhard Ernst</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Literatur:</td>
<td>Literatursauswahl:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Auszüge aus klassischen Texten zur Ethik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 215701 Seminar Einführung in die Praktische Philosophie</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 215702 Tutorium Einführung in die Praktische Philosophie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Präsenzzeit: 42 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Selbststudium: 138 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Summe: 180 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>• 21571 Einführung in die Praktische Philosophie - Nebenfach (PL), schriftlich oder mündlich, 90 Min., Gewichtung: 1.0, Essays und/oder schriftlich, 90 min</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• V Vorleistung (USL-V), schriftlich, eventuell mündlich</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Skripte/Reader, Thesenpapiere, Tafelbilder, Power-Point, Protokolle, Literatur zur Lektüre</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Modul: 20050 Einführung in die Theoretische Philosophie - Nebenfach

2. Modulkürzel: 091320022 5. Moduldauer: 1 Semester
4. SWS: 4.0 7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr. Catrin Misselhorn
9. Dozenten: • Gerhard Ernst • Ulrike Ramming
11. Empfohlene Voraussetzungen:
15. Lehrveranstaltungen und -formen: • 200501 Seminar Einführung in die Theoretische Philosophie • 200502 Tutorium Einführung in die Theoretische Philosophie
17. Prüfungsnummer/n und -name: 20051 Einführung in die Theoretische Philosophie (PL), schriftlich oder mündlich, 90 Min., Gewichtung: 1.0, Essays und/oder schriftlich
18. Grundlage für ...:
19. Medienform: Skripte/Reader, Thesenpapiere, Tafelbilder, Power-Point, Protokolle, Literatur zur Lektüre
20. Angeboten von:
Modul: 14340 Grundlagen der Praktischen Philosophie

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>091320005</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>12.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>6.0</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Catrin Misselhorn</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Gerhard Ernst, Andreas Luckner</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>keine</td>
</tr>
</tbody>
</table>
 • Fähigkeit zur Beurteilung und differenzierten Anwendung unterschiedlicher moralphilosophischer Begründungsstrategien.
 • Erwerb von Kompetenzen, Konzepte aus dem Gebiet der praktischen Philosophie systematisch und historisch zu vergleichen und einzuordnen.
 • Fähigkeit, klassische Positionen des Gebiets selbständig zu interpretieren und zu analysieren sowie neuere Diskussionen zu verstehen und ein Problembewusstsein auszubilden. |
| 14. Literatur: | Literaturauswahl (exemplarisch):
 1) Aristoteles: Nikomachische Ethik
 2) Hobbes, Thomas: Leviathan
 3) Kant, Immanuel: Grundlegung zur Metaphysik der Sitten
 4) Mill, John Stuart: Utilitarianism
| 15. Lehrveranstaltungen und -formen: | 143401 Seminar 1 zu einem oder mehreren klassischen Werken aus dem Bereich der praktischen Philosophie
 143402 Seminar 2 zu einem oder mehreren klassischen Werken aus dem Bereich der praktischen Philosophie
 143403 Tutorium Grundlagen der Praktischen Philosophie |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 63 h
 Selbststudium: 297 h
 Summe: 360 h |

Stand: 15. Oktober 2012
• V Vorleistung (USL-V), schriftlich, eventuell mündlich

18. Grundlage für ... :

19. Medienform: Skripte/Reader, Thesenpapiere, Tafelbilder, Power-Point, Protokolle, Literatur zur Lektüre

20. Angeboten von:
Modul: 14350 Mensch und Technik

2. Modulkürzel: 091320006 | 5. Moduldauer: 1 Semester
4. SWS: 4.0 | 7. Sprache: Deutsch
8. Modulverantwortlicher: Apl. Prof.Dr. Andreas Luckner
9. Dozenten: • Andreas Luckner
• Ulrike Ramming
• Tillmann Pross
11. Empfohlene Voraussetzungen: Module 091320001-091320004
12. Lernziele:
• Kenntnis der grundlegenden Positionen der Philosophischen Anthropologie und der Technikphilosophie sowie des engen Zusammenhangs zwischen beiden Teilgebieten des Fachs.
• Fähigkeit zur Erarbeitung klassischer Texte zum Thema und ihrer systematischen Einordnung.
13. Inhalt:
In den philosophisch-anthropologischen Fragen nach dem Wesen des Menschen (mögliche Antworten reichen vom „animal rationale“ (Aristoteles) über das „tool making animal“ (Franklin) bis hin zum „Mängelwesen“ (Gehlen)) sind jeweils zugleich die Grundlinien der Bestimmung dessen angelegt, was Technik ist: Von der Technik als Kompensation natürlicher Mängel bis hin zur Bestimmung von Technik als Medium.
14. Literatur:
Literatursauswahl (exemplarisch):
15. Lehrveranstaltungen und -formen:
• 143501 Integrierte Veranstaltung Anthropologie und Technik
• 143502 Seminar zu einer oder mehreren klassischen Positionen der Technikphilosophie
16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 h
Selbststudium: 228 h
Summe: 270 h
17. Prüfungsnummer/n und -name:

- 14351 Mensch und Technik mündliche Prüfung (PL), mündliche Prüfung, 30 Min., Gewichtung: 7.0, Prüfungsvorleistung: Referat inkl. Thesenpapier
- 14352 Mensch und Technik Hausarbeit (PL), schriftliche Prüfung, Gewichtung: 3.0, Hausarbeit, max. 25 Seiten
- V Vorleistung (USL-V), schriftlich, eventuell mündlich

18. Grundlage für ... :

19. Medienform:
Skripte/Reader, Thesenpapiere, Tafelbilder, Power-Point, Protokolle, Literatur zur Lektüre

20. Angeboten von:
310 Spezialisierung Theoretische Linguistik b
<table>
<thead>
<tr>
<th>Modul: 14330 Sprache und Geist (Vertiefung Theoretische Philosophie)</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Modulkürzel: 091320010</td>
</tr>
<tr>
<td>5. Moduldaurer: 1 Semester</td>
</tr>
<tr>
<td>3. Leistungspunkte: 9.0 LP</td>
</tr>
<tr>
<td>6. Turnus: jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>4. SWS: 4.0</td>
</tr>
<tr>
<td>7. Sprache: Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher: Univ.-Prof.Dr. Catrin Misselhorn</td>
</tr>
<tr>
<td>9. Dozenten: • Gerhard Ernst • Andreas Luckner • Ulrike Ramming • Tillmann Pross</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen: Module 091320001- 091320004</td>
</tr>
<tr>
<td>12. Lernziele: Fähigkeit zur Identifikation, Analyse, Systematisierung und Kritik der Ansätze zu den Wechselwirkungen zwischen Sprache und Denken in folgenden Hinsichten:</td>
</tr>
<tr>
<td>• metaphysich unter den Dimensionen der Immaterialität, Wirksamkeit und des Selbstbewusstseins;</td>
</tr>
<tr>
<td>• kulturphilosophisch im Sinn der Überindividualität und Historizität von Sprache und Denken;</td>
</tr>
<tr>
<td>• sprachanalytisch als Frage nach der Natur mentaler Gehalte in ihren Beziehungen zu den Kognitionswissenschaften.</td>
</tr>
<tr>
<td>• Kenntnis der zentralen Ansätze zu Bedeutung und Referenz.</td>
</tr>
<tr>
<td>14. Literatur: Literaturauswahl (exemplarisch):</td>
</tr>
<tr>
<td>1) Hegel, Georg Wilhelm Friedrich: Phänomenologie des Geistes</td>
</tr>
<tr>
<td>2) Husserl, Edmund: Ideen zu einer reinen Phänomenologie</td>
</tr>
<tr>
<td>3) Frege, Gottlob: Über Sinn und Bedeutung</td>
</tr>
<tr>
<td>4) Wittgenstein, Ludwig: Philosophische Untersuchungen</td>
</tr>
</tbody>
</table>
13) Martinich, Aloysius (Hg.) (2006): The Philosophy of Language. OUP.

15. Lehrveranstaltungen und -formen:
• 143301 Seminar zu einem Thema aus dem Gebiet der Sprachphilosophie oder der Philosophie des Geistes
• 143302 Seminar zu einem Thema aus dem Gebiet der Sprachphilosophie oder der Philosophie des Geistes

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 h
Selbststudium: 228 h
Summe: 270 h

17. Prüfungsnummer/n und -name:
• 14331 Sprache und Geist - Referat (PL), schriftlich, eventuell mündlich, Gewichtung: 3.0,
• 14332 Sprache und Geist - Hausarbeit (PL), Sonstiges, Gewichtung: 1.0, Prüfungsvorleistung: Referat inkl. Thesenpapier. Die Hausarbeit ist im Seminar zu schreiben, in dem die Prüfungsvorleistung erbracht wurde; das benotete Referat ist im anderen Seminar zu halten.
• V Vorleistung (USL-V), schriftlich, eventuell mündlich

18. Grundlage für ... :

19. Medienform: Skripte/Reader, Thesenpapiere, Tafelbilder, Power-Point, Protokolle, Literatur zur Lektüre

20. Angeboten von:
Modul: 17240 Sprachwandel

2. Modulkürzel: 091000017

3. Leistungspunkte: 12.0 LP

4. SWS: 4.0

5. Modulduer: 2 Semester

7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof.Dr. Jürgen Pafel

9. Dozenten: Susanne Lohrmann

11. Empfohlene Voraussetzungen: alle Kernmodule

12. Lernziele:
 • Einblick in die Gesetzmäßigkeiten des Sprachwandels auf den verschiedenen Ebene der Sprache
 • Grundkenntnisse der Sprachgeschichte des Deutschen, Englischen und/oder Französischen
 • Theoretische und pratische Vertrautheit mit dem Phänomen der Variation bzw. dem Begriff der Varietät (Dialekt, Soziolekt etc.)
 • Analyse von sprachlichem Material ausgewählter diachroner Varietäten

13. Inhalt:
 • Das Phänomen des Sprachwandels wird auf den verschiedenen Ebene der Sprache behandelt, theoretische Ansätze zur Erklärung von Sprachwandelphänomenen vorgestellt.
 • Eine ältere Sprachstufe des Deutschen, Englischen oder Französischen wird vorgestellt.
 • Einführung in die Struktur von Sprachvarietäten (Standardsprache, Dialekte etc.)

14. Literatur:

15. Lehrveranstaltungen und -formen:
 • 172401 Proseminar Sprachwandel
 • 172402 Hauptseminar Sprachwandel

16. Abschätzung Arbeitsaufwand:

17. Prüfungsnummer/n und -name:
 • 17241 Sprachwandel Hauptseminar (PL), schriftlich, eventuell mündlich, Gewichtung: 1.0
 • 17242 Sprachwandel Proseminar (USL), schriftlich, eventuell mündlich, Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
Modul: 46580 Varietäten des Deutschen

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>091000018</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>12.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modul:</td>
<td>2 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher:

9. Dozenten:

10. Zuordnung zum Curriculum in diesem Studiengang:

11. Empfohlene Voraussetzungen:

12. Lernziele:

13. Inhalt:

14. Literatur:

15. Lehrveranstaltungen und -formen:

16. Abschätzung Arbeitsaufwand:

17. Prüfungsnummer/n und -name:

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: