Kontaktpersonen:

Studiendekan/in: Univ.-Prof. Jörg Schulze
Institut für Halbleitertechnik
Tel.: +4971168568003
E-Mail: joerg.schulze@iht.uni-stuttgart.de

Studiengangsmanager/in: PD Markus Gaida
Institutsverbund Elektrotechnik und Informationstechnik
E-Mail: markus.gaida@f05.uni-stuttgart.de

Prüfungsausschussvorsitzende/r: Univ.-Prof. Jörg Schulze
Institut für Halbleitertechnik
Tel.: +4971168568003
E-Mail: joerg.schulze@iht.uni-stuttgart.de
Inhaltsverzeichnis

Präambel ... 8

Qualifikationsziele .. 9

100 Grundstudium ... 10

11430 Mikroelektronik .. 11
11440 Grundlagen der Elektrotechnik .. 12
11450 Informatik I ... 14
11460 Grundlagenpraktikum .. 15
11470 Schaltungen und Systeme .. 16
11480 Elektrodynamik .. 18
11490 Nachrichtentechnik ... 20
11500 Elektrische Energietechnik ... 22
11510 Informatik II .. 24
11520 Informatikpraktikum .. 26
12220 Höhere Mathematik für Physiker, Kybernetiker und Elektroingenieure Teil 1+2 27
14460 Grundlagen der Experimentalphysik: Mechanik und Wärmelehre 29
14990 Höhere Mathematik für Elektroingenieure Teil III ... 31

200 Teamarbeit ... 32

17010 Teamarbeit - ISB/LFB .. 33
17020 Teamarbeit - IAS ... 34
17030 Teamarbeit - INT ... 35
17040 Teamarbeit - IKR ... 36
17050 Teamarbeit - IPE .. 37
17060 Teamarbeit - IEH ... 38
17070 Teamarbeit - IEW ... 39
17080 Teamarbeit - ILEA-LR .. 40
17090 Teamarbeit - INÜ ... 41
17100 Teamarbeit - ISS ... 43
25890 Teamarbeit: Halbleitertechnologie - Die MOS-Kapazität (TA IHT) 44
25900 Teamarbeit - ITE ... 47
26100 Teamarbeit - IHF ... 48
56280 Teamarbeit - ILH ... 49

300 Schwerpunkte .. 50

310 Schwerpunkt: Elektrische Energiesysteme .. 51

11540 Regelungstechnik I .. 52
11550 Leistungselektronik I .. 54
11560 Elektrische Energienetze I ... 56
11570 Hochspannungstechnik I ... 58
11580 Elektrische Maschinen I ... 60
11590 Photovoltaik I ... 63
311 Wahlfächer ... 65

11610 Technische Informatik I ... 66
11620 Automatisierungstechnik I .. 68
11640 Digitale Signalverarbeitung ... 70
11650 Hochfrequenztechnik I ... 72
11660 Übertragungstechnik I ... 74
11670 Grundlagen integrierter Schaltungen ... 76
11680 Kommunikationstechnik I .. 78
11690 Hochfrequenztechnik II .. 80
11700 Halbleitertechnik I ... 82
<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>Kreditpunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>11710</td>
<td>Optoelectronics I</td>
<td>85</td>
</tr>
<tr>
<td>11720</td>
<td>Halbleitertechnologie I</td>
<td>87</td>
</tr>
<tr>
<td>11730</td>
<td>Flachbildschirme</td>
<td>90</td>
</tr>
<tr>
<td>11740</td>
<td>Elektromagnetische Verträglichkeit</td>
<td>92</td>
</tr>
<tr>
<td>11750</td>
<td>Numerische Feldberechnung I</td>
<td>94</td>
</tr>
<tr>
<td>12420</td>
<td>Windenergie I - Grundlagen Windenergie</td>
<td>96</td>
</tr>
<tr>
<td>13590</td>
<td>Kraftfahrzeuge I + II</td>
<td>99</td>
</tr>
<tr>
<td>14130</td>
<td>Kraftfahrzeugmechatronik I + II</td>
<td>101</td>
</tr>
<tr>
<td>17110</td>
<td>Entwurf digitaler Systeme</td>
<td>103</td>
</tr>
<tr>
<td>17130</td>
<td>Entwurf digitaler Filter</td>
<td>105</td>
</tr>
<tr>
<td>17170</td>
<td>Elektrische Antriebe</td>
<td>108</td>
</tr>
<tr>
<td>25940</td>
<td>Verstärkertechnik I + II</td>
<td>110</td>
</tr>
<tr>
<td>29310</td>
<td>Regenerative Energiesysteme</td>
<td>112</td>
</tr>
<tr>
<td>41170</td>
<td>Speichertechnik für elektrische Energie I</td>
<td>115</td>
</tr>
<tr>
<td>69050</td>
<td>Technologien und Methoden der SoFtesysteme I</td>
<td>117</td>
</tr>
<tr>
<td>320</td>
<td>Schwerpunkt: Automatisierungs- und Regelungstechnik</td>
<td>119</td>
</tr>
<tr>
<td>11540</td>
<td>Regelungstechnik I</td>
<td>120</td>
</tr>
<tr>
<td>11550</td>
<td>Leistungselectronik I</td>
<td>122</td>
</tr>
<tr>
<td>11610</td>
<td>Technische Informatik I</td>
<td>124</td>
</tr>
<tr>
<td>11620</td>
<td>Automatisierungstechnik I</td>
<td>126</td>
</tr>
<tr>
<td>11640</td>
<td>Digitale Signalverarbeitung</td>
<td>128</td>
</tr>
<tr>
<td>321</td>
<td>Wahlfächer</td>
<td>130</td>
</tr>
<tr>
<td>11560</td>
<td>Elektrische Energienetze I</td>
<td>131</td>
</tr>
<tr>
<td>11570</td>
<td>Hochspannungstechnik I</td>
<td>133</td>
</tr>
<tr>
<td>11580</td>
<td>Elektrische Maschinen I</td>
<td>135</td>
</tr>
<tr>
<td>11590</td>
<td>Photovoltaik I</td>
<td>138</td>
</tr>
<tr>
<td>11650</td>
<td>Hochfrequenztechnik I</td>
<td>140</td>
</tr>
<tr>
<td>11660</td>
<td>Übertragungstechnik I</td>
<td>142</td>
</tr>
<tr>
<td>11670</td>
<td>Grundlagen integrierter Schaltungen</td>
<td>144</td>
</tr>
<tr>
<td>11680</td>
<td>Kommunikationsnetze I</td>
<td>146</td>
</tr>
<tr>
<td>11690</td>
<td>Hochfrequenztechnik II</td>
<td>148</td>
</tr>
<tr>
<td>11700</td>
<td>Halbleitertechnik I</td>
<td>150</td>
</tr>
<tr>
<td>11710</td>
<td>Optoelectronics I</td>
<td>153</td>
</tr>
<tr>
<td>11720</td>
<td>Halbleitertechnologie I</td>
<td>155</td>
</tr>
<tr>
<td>11730</td>
<td>Flachbildschirme</td>
<td>158</td>
</tr>
<tr>
<td>11740</td>
<td>Elektromagnetische Verträglichkeit</td>
<td>160</td>
</tr>
<tr>
<td>11750</td>
<td>Numerische Feldberechnung I</td>
<td>162</td>
</tr>
<tr>
<td>12420</td>
<td>Windenergie I - Grundlagen Windenergie</td>
<td>164</td>
</tr>
<tr>
<td>13590</td>
<td>Kraftfahrzeuge I + II</td>
<td>167</td>
</tr>
<tr>
<td>14130</td>
<td>Kraftfahrzeugmechatronik I + II</td>
<td>169</td>
</tr>
<tr>
<td>17110</td>
<td>Entwurf digitaler Systeme</td>
<td>171</td>
</tr>
<tr>
<td>17130</td>
<td>Entwurf digitaler Filter</td>
<td>173</td>
</tr>
<tr>
<td>17170</td>
<td>Elektrische Antriebe</td>
<td>176</td>
</tr>
<tr>
<td>25940</td>
<td>Verstärkertechnik I + II</td>
<td>178</td>
</tr>
<tr>
<td>29310</td>
<td>Regenerative Energiesysteme</td>
<td>180</td>
</tr>
<tr>
<td>41170</td>
<td>Speichertechnik für elektrische Energie I</td>
<td>183</td>
</tr>
<tr>
<td>69050</td>
<td>Technologien und Methoden der SoFtesysteme I</td>
<td>185</td>
</tr>
<tr>
<td>330</td>
<td>Schwerpunkt: Kommunikationssysteme und Signalverarbeitung</td>
<td>187</td>
</tr>
<tr>
<td>11640</td>
<td>Digitale Signalverarbeitung</td>
<td>188</td>
</tr>
<tr>
<td>11650</td>
<td>Hochfrequenztechnik I</td>
<td>190</td>
</tr>
<tr>
<td>11660</td>
<td>Übertragungstechnik I</td>
<td>192</td>
</tr>
<tr>
<td>11670</td>
<td>Grundlagen integrierter Schaltungen</td>
<td>194</td>
</tr>
<tr>
<td>11680</td>
<td>Kommunikationsnetze I</td>
<td>196</td>
</tr>
<tr>
<td>11690</td>
<td>Hochfrequenztechnik II</td>
<td>198</td>
</tr>
<tr>
<td>331</td>
<td>Wahlfächer</td>
<td>200</td>
</tr>
<tr>
<td>11540</td>
<td>Regelungstechnik I</td>
<td>201</td>
</tr>
<tr>
<td>11550</td>
<td>Leistungselectronik I</td>
<td>203</td>
</tr>
<tr>
<td>11560</td>
<td>Elektrische Energienetze I</td>
<td>205</td>
</tr>
<tr>
<td>Modulcode</td>
<td>Modulname</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>--</td>
<td></td>
</tr>
<tr>
<td>11570</td>
<td>Hochspannungstechnik I</td>
<td></td>
</tr>
<tr>
<td>11580</td>
<td>Elektrische Maschinen I</td>
<td></td>
</tr>
<tr>
<td>11590</td>
<td>Photovoltaik I</td>
<td></td>
</tr>
<tr>
<td>11610</td>
<td>Technische Informatik I</td>
<td></td>
</tr>
<tr>
<td>11620</td>
<td>Automatisierungstechnik I</td>
<td></td>
</tr>
<tr>
<td>11700</td>
<td>Halbleitertechnik I</td>
<td></td>
</tr>
<tr>
<td>11710</td>
<td>Optoelectronics I</td>
<td></td>
</tr>
<tr>
<td>11720</td>
<td>Halbleitertechnologie I</td>
<td></td>
</tr>
<tr>
<td>11730</td>
<td>Flachbildschirme</td>
<td></td>
</tr>
<tr>
<td>11740</td>
<td>Elektromagnetische Verträglichkeit</td>
<td></td>
</tr>
<tr>
<td>11750</td>
<td>Numerische Feldberechnung I</td>
<td></td>
</tr>
<tr>
<td>12420</td>
<td>Windenergie I - Grundlagen Windenergie</td>
<td></td>
</tr>
<tr>
<td>13590</td>
<td>Kraftfahrzeuge I + II</td>
<td></td>
</tr>
<tr>
<td>14130</td>
<td>Kraftfahrzeugmechatronik I + II</td>
<td></td>
</tr>
<tr>
<td>17110</td>
<td>Entwurf digitaler Systeme</td>
<td></td>
</tr>
<tr>
<td>17130</td>
<td>Entwurf digitaler Filter</td>
<td></td>
</tr>
<tr>
<td>17170</td>
<td>Elektrische Antriebe</td>
<td></td>
</tr>
<tr>
<td>25940</td>
<td>Verstärkertechnik I+II</td>
<td></td>
</tr>
<tr>
<td>29310</td>
<td>Regenerative Energetysysteme</td>
<td></td>
</tr>
<tr>
<td>41170</td>
<td>Speichertechnik für elektrische Energie I</td>
<td></td>
</tr>
<tr>
<td>69050</td>
<td>Technologien und Methoden der Softwaresysteme I</td>
<td></td>
</tr>
<tr>
<td>341 Wahlfächer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11540</td>
<td>Regelungstechnik I</td>
<td></td>
</tr>
<tr>
<td>11550</td>
<td>Leistungselektronik I</td>
<td></td>
</tr>
<tr>
<td>11560</td>
<td>Elektrische Energienetz I</td>
<td></td>
</tr>
<tr>
<td>11570</td>
<td>Hochspannungstechnik I</td>
<td></td>
</tr>
<tr>
<td>11580</td>
<td>Elektrische Maschinen I</td>
<td></td>
</tr>
<tr>
<td>11590</td>
<td>Photovoltaik I</td>
<td></td>
</tr>
<tr>
<td>11620</td>
<td>Automatisierungstechnik I</td>
<td></td>
</tr>
<tr>
<td>11650</td>
<td>Hochfrequenztechnik I</td>
<td></td>
</tr>
<tr>
<td>11690</td>
<td>Hochfrequenztechnik II</td>
<td></td>
</tr>
<tr>
<td>11700</td>
<td>Halbleitertechnik I</td>
<td></td>
</tr>
<tr>
<td>11710</td>
<td>Optoelectronics I</td>
<td></td>
</tr>
<tr>
<td>11720</td>
<td>Halbleitertechnologie I</td>
<td></td>
</tr>
<tr>
<td>11730</td>
<td>Flachbildschirme</td>
<td></td>
</tr>
<tr>
<td>11740</td>
<td>Elektromagnetische Verträglichkeit</td>
<td></td>
</tr>
<tr>
<td>11750</td>
<td>Numerische Feldberechnung I</td>
<td></td>
</tr>
<tr>
<td>12420</td>
<td>Windenergie I - Grundlagen Windenergie</td>
<td></td>
</tr>
<tr>
<td>13590</td>
<td>Kraftfahrzeuge I + II</td>
<td></td>
</tr>
<tr>
<td>14130</td>
<td>Kraftfahrzeugmechatronik I + II</td>
<td></td>
</tr>
<tr>
<td>17110</td>
<td>Entwurf digitaler Systeme</td>
<td></td>
</tr>
<tr>
<td>17130</td>
<td>Entwurf digitaler Filter</td>
<td></td>
</tr>
<tr>
<td>17170</td>
<td>Elektrische Antriebe</td>
<td></td>
</tr>
<tr>
<td>25940</td>
<td>Verstärkertechnik I+II</td>
<td></td>
</tr>
<tr>
<td>29310</td>
<td>Regenerative Energiesysteme</td>
<td></td>
</tr>
<tr>
<td>41170</td>
<td>Speichertechnik für elektrische Energie I</td>
<td></td>
</tr>
<tr>
<td>69050</td>
<td>Technologien und Methoden der Softwaresysteme I</td>
<td></td>
</tr>
<tr>
<td>350 Schwerpunkt: Mikro- und Optoelektronik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11590</td>
<td>Photovoltaik I</td>
<td></td>
</tr>
<tr>
<td>11670</td>
<td>Grundlagen integrierter Schaltungen</td>
<td></td>
</tr>
<tr>
<td>11700</td>
<td>Halbleitertechnik I</td>
<td></td>
</tr>
<tr>
<td>11710</td>
<td>Optoelectronics I</td>
<td></td>
</tr>
</tbody>
</table>

Stand: 09. April 2018
<table>
<thead>
<tr>
<th>Modul</th>
<th>Titel</th>
</tr>
</thead>
<tbody>
<tr>
<td>11720</td>
<td>Halbleitertechnologie I</td>
</tr>
<tr>
<td>11730</td>
<td>Flachbildschirme</td>
</tr>
<tr>
<td>351</td>
<td>Wahlfächer</td>
</tr>
<tr>
<td>11540</td>
<td>Regelungstechnik I</td>
</tr>
<tr>
<td>11550</td>
<td>Leistungselektronik I</td>
</tr>
<tr>
<td>11560</td>
<td>Elektrische Energienetze I</td>
</tr>
<tr>
<td>11570</td>
<td>Hochspannungstechnik I</td>
</tr>
<tr>
<td>11580</td>
<td>Elektrische Maschinen I</td>
</tr>
<tr>
<td>11610</td>
<td>Technische Informatik I</td>
</tr>
<tr>
<td>11620</td>
<td>Automatisierungstechnik I</td>
</tr>
<tr>
<td>11640</td>
<td>Digitale Signalverarbeitung</td>
</tr>
<tr>
<td>11650</td>
<td>Hochfrequenztechnik I</td>
</tr>
<tr>
<td>11660</td>
<td>Übertragungstechnik I</td>
</tr>
<tr>
<td>11680</td>
<td>Kommunikationsnetze I</td>
</tr>
<tr>
<td>11690</td>
<td>Hochfrequenztechnik II</td>
</tr>
<tr>
<td>11740</td>
<td>Elektromagnetische Verträglichkeit</td>
</tr>
<tr>
<td>11750</td>
<td>Numerische Feldberechnung I</td>
</tr>
<tr>
<td>12420</td>
<td>Windenergie 1 - Grundlagen Windenergie</td>
</tr>
<tr>
<td>13590</td>
<td>Kraftfahrzeuge I + II</td>
</tr>
<tr>
<td>14130</td>
<td>Kraftfahrzeugmechatronik I + II</td>
</tr>
<tr>
<td>17110</td>
<td>Entwurf digitaler Systeme</td>
</tr>
<tr>
<td>17130</td>
<td>Entwurf digitaler Filter</td>
</tr>
<tr>
<td>17170</td>
<td>Elektrische Antriebe</td>
</tr>
<tr>
<td>25940</td>
<td>Verstärkertechnik I-II</td>
</tr>
<tr>
<td>29310</td>
<td>Regenerative Energiesysteme</td>
</tr>
<tr>
<td>41170</td>
<td>Speichertechnik für elektrische Energie I</td>
</tr>
<tr>
<td>69050</td>
<td>Technologien und Methoden der Softwaresysteme I</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>360</th>
<th>Schwerpunkt: Elektrotechnische Systeme</th>
</tr>
</thead>
<tbody>
<tr>
<td>11550</td>
<td>Leistungselektronik I</td>
</tr>
<tr>
<td>11570</td>
<td>Hochspannungstechnik I</td>
</tr>
<tr>
<td>11650</td>
<td>Hochfrequenztechnik I</td>
</tr>
<tr>
<td>11740</td>
<td>Elektromagnetische Verträglichkeit</td>
</tr>
<tr>
<td>11750</td>
<td>Numerische Feldberechnung I</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>361</th>
<th>Wahlfächer</th>
</tr>
</thead>
<tbody>
<tr>
<td>11540</td>
<td>Regelungstechnik I</td>
</tr>
<tr>
<td>11560</td>
<td>Elektrische Energienetze I</td>
</tr>
<tr>
<td>11580</td>
<td>Elektrische Maschinen I</td>
</tr>
<tr>
<td>11590</td>
<td>Photovoltaik I</td>
</tr>
<tr>
<td>11610</td>
<td>Technische Informatik I</td>
</tr>
<tr>
<td>11620</td>
<td>Automatisierungstechnik I</td>
</tr>
<tr>
<td>11640</td>
<td>Digitale Signalverarbeitung</td>
</tr>
<tr>
<td>11660</td>
<td>Übertragungstechnik I</td>
</tr>
<tr>
<td>11670</td>
<td>Grundlagen integrierter Schaltungen</td>
</tr>
<tr>
<td>11680</td>
<td>Kommunikationsnetze I</td>
</tr>
<tr>
<td>11690</td>
<td>Hochfrequenztechnik II</td>
</tr>
<tr>
<td>11700</td>
<td>Halbleitertechnik I</td>
</tr>
<tr>
<td>11710</td>
<td>Optoelectronics I</td>
</tr>
<tr>
<td>11720</td>
<td>Halbleitertechnologie I</td>
</tr>
<tr>
<td>11730</td>
<td>Flachbildschirme</td>
</tr>
<tr>
<td>12420</td>
<td>Windenergie 1 - Grundlagen Windenergie</td>
</tr>
<tr>
<td>13590</td>
<td>Kraftfahrzeuge I + II</td>
</tr>
<tr>
<td>14130</td>
<td>Kraftfahrzeugmechatronik I + II</td>
</tr>
<tr>
<td>17110</td>
<td>Entwurf digitaler Systeme</td>
</tr>
<tr>
<td>17130</td>
<td>Entwurf digitaler Filter</td>
</tr>
<tr>
<td>17170</td>
<td>Elektrische Antriebe</td>
</tr>
<tr>
<td>25940</td>
<td>Verstärkertechnik I-II</td>
</tr>
<tr>
<td>29310</td>
<td>Regenerative Energiesysteme</td>
</tr>
<tr>
<td>41170</td>
<td>Speichertechnik für elektrische Energie I</td>
</tr>
</tbody>
</table>
600 Schlüsselqualifikation fachaffin

<table>
<thead>
<tr>
<th>Code</th>
<th>Kursname</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>69050</td>
<td>Technologien und Methoden der Softwaresysteme I</td>
<td>457</td>
</tr>
<tr>
<td>370</td>
<td>Schwerpunkt: Elektromobilität</td>
<td>459</td>
</tr>
<tr>
<td>11540</td>
<td>Regelungstechnik I</td>
<td>460</td>
</tr>
<tr>
<td>11550</td>
<td>Leistungselektronik I</td>
<td>462</td>
</tr>
<tr>
<td>11580</td>
<td>Elektrische Maschinen I</td>
<td>464</td>
</tr>
<tr>
<td>13590</td>
<td>Kraftfahrzeuge I + II</td>
<td>467</td>
</tr>
<tr>
<td>14130</td>
<td>Kraftfahrzeugmechatronik I + II</td>
<td>469</td>
</tr>
<tr>
<td>371</td>
<td>Wahlfächer</td>
<td>471</td>
</tr>
<tr>
<td>11550</td>
<td>Leistungselektronik I</td>
<td>472</td>
</tr>
<tr>
<td>11560</td>
<td>Elektrische Energienetze I</td>
<td>474</td>
</tr>
<tr>
<td>11570</td>
<td>Hochspannungstechnik I</td>
<td>476</td>
</tr>
<tr>
<td>11580</td>
<td>Elektrische Maschinen I</td>
<td>478</td>
</tr>
<tr>
<td>11590</td>
<td>Photovoltaik I</td>
<td>481</td>
</tr>
<tr>
<td>11610</td>
<td>Technische Informatik I</td>
<td>483</td>
</tr>
<tr>
<td>11620</td>
<td>Automatisierungstechnik I</td>
<td>485</td>
</tr>
<tr>
<td>11640</td>
<td>Digitale Signalverarbeitung</td>
<td>487</td>
</tr>
<tr>
<td>11650</td>
<td>Hochfrequenztechnik I</td>
<td>489</td>
</tr>
<tr>
<td>11660</td>
<td>Übertragungstechnik I</td>
<td>491</td>
</tr>
<tr>
<td>11670</td>
<td>Grundlagen integrierter Schaltungen</td>
<td>493</td>
</tr>
<tr>
<td>11680</td>
<td>Kommunikationsnetze I</td>
<td>495</td>
</tr>
<tr>
<td>11690</td>
<td>Hochfrequenztechnik II</td>
<td>497</td>
</tr>
<tr>
<td>11700</td>
<td>Halbleitertechnik I</td>
<td>499</td>
</tr>
<tr>
<td>11710</td>
<td>Optoelectronics I</td>
<td>502</td>
</tr>
<tr>
<td>11720</td>
<td>Halbleitertechnologie I</td>
<td>504</td>
</tr>
<tr>
<td>11730</td>
<td>Flachbildschirme</td>
<td>507</td>
</tr>
<tr>
<td>11740</td>
<td>Elektromagnetische Verträglichkeit</td>
<td>509</td>
</tr>
<tr>
<td>11750</td>
<td>Numerische Feldberechnung I</td>
<td>511</td>
</tr>
<tr>
<td>12420</td>
<td>Windenergie I - Grundlagen Windenergie</td>
<td>513</td>
</tr>
<tr>
<td>17110</td>
<td>Entwurf digitaler Systeme</td>
<td>516</td>
</tr>
<tr>
<td>17130</td>
<td>Entwurf digitaler Filter</td>
<td>518</td>
</tr>
<tr>
<td>17170</td>
<td>Elektrische Antriebe</td>
<td>521</td>
</tr>
<tr>
<td>25940</td>
<td>Verstärkertechnik I+II</td>
<td>523</td>
</tr>
<tr>
<td>29310</td>
<td>Regenerative Energiesysteme</td>
<td>525</td>
</tr>
<tr>
<td>69050</td>
<td>Technologien und Methoden der Softwaresysteme I</td>
<td>528</td>
</tr>
<tr>
<td>41170</td>
<td>Speichertechnik für elektrische Energie I</td>
<td>530</td>
</tr>
</tbody>
</table>

80030 Bachelorarbeit Elektrotechnik und Informationstechnik

Stand: 09. April 2018
Präambel
Das Fachgebiet Elektrotechnik und Informationstechnik umfasst ein breites Spektrum: Von der Mikro- und Optoelektronik über die Energieversorgung und die Automatisierung technischer Abläufe erstreckt es sich bis zur Kommunikationstechnik und Informationsverarbeitung.

Die Elektrotechnik und Informationstechnik ist benachbart zur Physik, die sich mit den Eigenschaften und dem Verhalten der Materie befasst, und zur Informatik, die die Strukturen informationsverarbeitender Systeme zum Inhalt hat. Gemeinsame Grundlage für diese Fachbereiche ist die Mathematik.

Die Betätigungsfelder für Ingenieurinnen und Ingenieure der Elektrotechnik und Informationstechnik sind vielfältig und herausfordernd:

- Entwicklung innovativer Produkte
- Erforschung neuartiger Problemlösungen
- Produktionsplanung und Qualitätssicherung
- Planung und Betrieb komplexer Systeme und Anlagen
- Vertrieb und Anwendungsunterstützung
- Unternehmensberatung und Consulting

Mit seinen sechs Studienschwerpunkten und den darin enthaltenen Wahlmöglichkeiten bietet der Bachelor-Studiengang Elektrotechnik und Informationstechnik viele individuelle Gestaltungsmöglichkeiten. Das Grundlagenpraktikum, die Teamarbeit, das Fachpraktikum (Praktische Übung im Labor) sowie die Bachelor-Arbeit bieten ausreichend Gelegenheit zur Umsetzung von theoretischem Wissen in praktisches Können.

Die Absolventinnen und Absolventen des Bachelor-Studiengangs Elektrotechnik und Informationstechnik

- verstehen die physikalischen Grundlagen der Elektrotechnik und die mathematischen Grundlagen zur quantitativen Beschreibung der elektrotechnischen Systeme und Prozesse,
- sind vertraut mit den Grundlagen der Informationsdarstellung und Informationsverarbeitung, der Programmierung, der algorithmischen Formulierung von Abläufen sowie der Anwendung von Programmwerkzeugen,
- verfügen über grundlegende analytische und experimentelle Methoden, um Modelle, Konzepte und Lösungen für elektro- und informationstechnische Aufgabenstellungen zu erarbeiten,
- besitzen die Fertigkeit, selbständig bzw. im Team analytische und experimentelle Untersuchungen zu planen, durchzuführen, zu dokumentieren und zu präsentieren,

Im anschließenden Master-Studiengang Elektrotechnik und Informationstechnik werden die methodischen Grundlagen aus dem Bachelor-Studium vertieft und die Voraussetzungen für anspruchsvolle Tätigkeiten in Wissenschaft, Industrie und im Dienstleistungssektor geschaffen.
Qualifikationsziele

Die Absolventen des Bachelorstudiengangs EI

- verstehen die physikalischen Grundlagen der Elektrotechnik, die mathematischen Grundlagen zur qualitativen Beschreibung der Zusammenhänge und Verfahren zur Analyse und zum Entwurf von Schaltungen, Geräten und Anlagen,
- sind vertraut mit den Grundlagen der Informationsdarstellung- und -verarbeitung, der Programmierung, der algorithmischen Formulierung von Abläufen sowie der Anwendung von Programmwerkzeugen,
- haben tiefe Kenntnisse in einem der Hauptanwendungsgebiete in Elektrotechnik, elektrischer Energietechnik, Regelungstechnik und Automatisierung, der Informations- und Kommunikationstechnik sowie der Technischen Informatik und der jeweils angewandten Methoden,
- können Probleme analysieren und mit wissenschaftlich fundierter Methodik bearbeiten. Sie verfügen über eine verantwortliche und selbständige wissenschaftliche Arbeitsweise.
100 Grundstudium

Zugeordnete Module:

11430 Mikroelektronik
11440 Grundlagen der Elektrotechnik
11450 Informatik I
11460 Grundlagenpraktikum
11470 Schaltungen und Systeme
11480 Elektrodynamik
11490 Nachrichtentechnik
11500 Elektrische Energietechnik
11510 Informatik II
11520 Informatikpraktikum
12220 Höhere Mathematik für Physiker, Kybernetiker und Elektroingenieure Teil 1+2
14460 Grundlagen der Experimentalphysik: Mechanik und Wärmelehre
14990 Höhere Mathematik für Elektroingenieure Teil III
200 Teamarbeit
Modul: 11430 Mikroelektronik

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>6</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Jörg Schulze</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Jörg Schulze, Jürgen Heinz Werner</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zuordnung zum Curriculum in diesem Studiengang:
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 1. Semester ➞ Grundstudium
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 1. Semester ➞ Basismodule

Empfohlene Voraussetzungen:

Lernziele:
Verständnis der Halbleitergrundlagen, Kenntnis der Bauelementphysik und wichtiger Bauelementtypen. Der Student kennt die Grundlagen der Halbleitertechnologie.

Inhalt:
- Geschichte der Halbleiterbauelemente, Silizium - Werkstoff der Mikroelektronik, Ladungsträger in Halbleitern, Ströme in Halbleitern, Rekombination und Generation von Ladungsträgern, Elektrostatik des pn-Übergangs, Ströme im pn-Übergang, Kennlinie und Eigenschaften von pn-Dioden

Literatur:
- Schulze: Konzepte Silizium-basierter MOS-Bauelemente, Springer, 2005

Lehrveranstaltungen und -formen:
- 114301 Vorlesung Mikroelektronik I
- 114302 Übung Mikroelektronik I
- 114303 Vorlesung Mikroelektronik II
- 114304 Übung Mikroelektronik II

Abschätzung Arbeitsaufwand:
- Präsenzzeit: 84 Stunden
- Selbststudium: 186 Stunden
- Summe: 270 Stunden

Prüfungsnummer/n und -name:
- 11431 Mikroelektronik (PL), Schriftlich, 120 Min., Gewichtung: 1

Grundlage für ...

Medienform:
- Tafel, Beamer (Powerpoint), ILIAS

Angeboten von:
- Halbleitertechnik
Modul: 11440 Grundlagen der Elektrotechnik

2. Modulkürzel: 051800001
5. Modulduauer: Zweisemestrig

3. Leistungspunkte: 9 LP
6. Turnus: Wintersemester

4. SWS: 8
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr. Norbert Frühauf

9. Dozenten:

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 1. Semester
→ Grundstudium

11. Empfohlene Voraussetzungen:

12. Lernziele:
Die Studierenden:
• besitzen die Kenntnisse der physikalischen Grundlagen der Elektrotechnik
• beherrschen die analytischen Verfahren zur Analyse elektronischer Schaltungen

13. Inhalt:
• Physikalische Größen, Einheiten und Gleichungen
• Grundbegriffe, Elektrische Ladungen, Ströme und Spannungen
• Elektrische Gleichstromkreise, Ohm'sches Gesetz, Kirchhoff'sche Gesetze
• Elektrischer Widerstand, Reihen- und Parallelschaltung von Widerständen
• Strom- und Spannungsquellen
• Verfahren zur Netzwerkanalyse, Maschen- und Knotenanalyse
• Statistisches elektrisches Feld, Coulomb'sches Gesetz
• Kapazität eines Kondensators, Lade- und Entladevorgänge
• Stationäres magnetisches Feld, Durchflutungsgesetz, magnetische Kreise
• Zeitlich veränderliche Magnetfelder, Induktionsgesetz
• Induktivität einer Spule
• Sinusförmige Wechselgrößen, komplexe Darstellung
• Wechselstromkreise
• Allgemeine Zweipole, Ersatzschaltungen, komplexe Leistung
• Übertrager
• Vierpolquellen, gesteuerte Strom- und Spannungsquellen
• Bipolarer Transistor, Feldeffekttransistor, Operationsverstärker
• Schwingkreise

14. Literatur:
• Albach M.: Grundlagen der Elektrotechnik 1-3, Pearson, München, 2004
• Hagmann G.: Grundlagen der Elektrotechnik, Aula-Verlag, Wiebelsheim, 2006
• Nerreter W.: Grundlagen der Elektrotechnik, Hanser, München, 2006
15. Lehrveranstaltungen und -formen:
- 114403 Vorlesung Grundlagen der Elektrotechnik 2
- 114404 Übung Grundlagen der Elektrotechnik 2
- 114402 Übung Grundlagen der Elektrotechnik 1
- 114401 Vorlesung Grundlagen der Elektrotechnik 1

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 112 h
Selbststudium: 158 h
Gesamt: 270 h

17. Prüfungsnummer/n und -name:
- 11441 Grundlagen der Elektrotechnik (PL), Schriftlich, 150 Min., Gewichtung: 1
- V Vorleistung (USL-V), Schriftlich oder Mündlich
Prüfungsvorleistung: Art und Umfang wird in der Vorlesung bekannt gegeben

19. Medienform:
Tafel, Beamer, Projektor

20. Angeboten von:
Bildschirmtechnik
Modul: 11450 Informatik I

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Andreas Kirstädter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Andreas Kirstädter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Dieses Modul wird nicht mehr angeboten</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>Dieses Modul wird nicht mehr angeboten.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>Vorlesungsskript</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Barnes, D.J.: Object-Oriented Programming with Java: An Introduction, Prentice Hall</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Weiss, M.A.: Data Structures and Algorithm Analysis in Java, Addison-Wesley</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Merzenich, W., Zeidler, Chr.: Informatik für Ingenieure, B.G. Teubner</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Meyer, Bertrand: Object-Oriented Software Construction, Prentice Hall</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>114502 Übung Informatik I, Teil 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>114503 Vorlesung Informatik I, Teil 2</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>114504 freie Übungen am Rechnerpool zur Programmierung Informatik I</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>114501 Vorlesung Informatik I, Teil 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Präsenzzeit: 56 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Selbststudium: 124 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gesamt: 180 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>11451 Informatik I (PL), Mündlich, 120 Min., Gewichtung: 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Notebook-Präsentation und Übungen am Rechner</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Kommunikationsnetze und Rechnersysteme</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Modul: 11460 Grundlagenpraktikum

2. Modulkürzel: 050310010
5. Modulduer: Einsemestrig
3. Leistungspunkte: 3 LP
6. Turnus: Wintersemester
4. SWS: 2
7. Sprache: Deutsch
8. Modulverantwortlicher: Marc Wilke
9. Dozenten: Ulrich Schärli
Marc Wilke
11. Empfohlene Voraussetzungen: keine
13. Inhalt: Im 1. Semester Sicherheitsseminar (Dr. Schärli) und vier grundlegende Versuche.
- Sicherheitsbelehrung über die Gefahren des elektrischen Stromes.
- Kennlernen von und Messen der Eigenschaften von Bauelementen.
- Grundlagen analoger Schaltungen.
- Grundlagen digitaler Schaltungen.
- Energie-Übertragungsstrecken.
Im 3. Semester Durchführung von fünf vertiefenden Versuchen aus dem fachlichen Angebot der Institute.
Homepage des Grundlagenpraktikums (GP) mit Hinweisen zu den erforderlichen Anmeldungen zum GP in den beiden Wintersemestern:
http://www.uni-stuttgart.de/etit/gp
14. Literatur: • Umdrucke und Anleitungen zu den Versuchen
15. Lehrveranstaltungen und -formen: • 114601 Vorlesung Sicherheitsseminar
• 114602 Praktikum Grundlagenpraktikum
16. Abschätzung Arbeitsaufwand: Präsenzzeit: 21 h
Selbststudium/Vorbereitungszeit: 69 h
Gesamt: 90 h
17. Prüfungsnummer/n und -name: 11461 Grundlagenpraktikum (USL), Sonstige, Gewichtung: 1 Kurztests zu Beginn der einzelnen Versuche
18. Grundlage für ... :
19. Medienform: Praxis im Labor
20. Angeboten von: Bildschirmtechnik
Modul: 11470 Schaltungen und Systeme

2. Modulkürzel: 050200001
5. Moduldauer: Zweisemestrig

3. Leistungspunkte: 12 LP
6. Turnus: Wintersemester

4. SWS: 12
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Manfred Berroth

9. Dozenten: Manfred Berroth
Bin Yang

→ Grundstudium

11. Empfohlene Voraussetzungen: Grundkenntnisse in höherer Mathematik
Grundkenntnisse in Elektrotechnik

13. Inhalt:
• Signal, Klassifikation von Signalen, zeitkontinuierliche und zeitdiskrete Signale, verschiedene Elementarsignale
• System, zeitkontinuierliche und zeitdiskrete Systeme, linear, gedächtnislos, kausal, zeitinvariant, stabil
• Analyse zeitkontinuierlicher und zeitdiskreter Systeme im Zeitbereich, Impulsantwort, Faltung
• Netzwerkanalyse linearer und nichtlinearer Schaltungen bei beliebiger Anregung
• Grundzüge der Vierpoltheorie
• Differentialgleichung, Differenzengleichung
• Einschwingvorgänge
• Fourier-Reihe und Fourier-Transformation zeitkontinuierlicher und zeitdiskreter Signale
• Fourier-Transformation aperiodischer Signale
• Abtastung, Abtasttheorem
• Analyse zeitkontinuierlicher und zeitdiskreter LTI-Systeme im Frequenzbereich, Frequenzgang, Amplitudengang, Phasengang, Gruppenlaufzeit, rationaler Frequenzgang
• Laplace-Transformation
• Analyse zeitkontinuierlicher LTI-Systeme in der komplexen Ebene, Übertragungsfunktion
• Schaltungen mit frequenzselektiven Eigenschaften

14. Literatur:
• Vorlesungsskript, Begleitblätter,
• H. P. Hsu: Schaum's outline of signals and systems, McGraw-Hill, 1995,
• A. V. Oppenheim und A. S. Willsky: Signals and systems, 2. Auflage, Prentice-Hall, 1997,
• R. Unbehauen: Systemtheorie I, 7. Auflage, Oldenburg, 1997,
• Küpfmüller, Kohn: Theoretische Elektrotechnik und Elektronik, Springer-Verlag, Berlin, 2006,
• Chua: Introduction to nonlinear network theory, Vol. 1-3, Huntington, New York, 1978,
• Feldtkeller: Einführung in die Siebschaltungstheorie, Hirzel Verlag, Stuttgart, 1963,
• Paul: Elektrotechnik, Band 1 und 2, Springer-Verlag, Berlin, 1996

15. Lehrveranstaltungen und -formen:
• 114702 Übung Schaltungstechnik I
• 114705 Vorlesung Signale und Systeme
• 114706 Übung Signale und Systeme
• 114701 Vorlesung Schaltungstechnik I
• 114704 Übung Schaltungstechnik II
• 114703 Vorlesung Schaltungstechnik II

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 168 h
Selbststudium/Nacharbeitszeit: 192 h
Gesamt: 360 h

17. Prüfungsnummer/n und -name:
• 11471 Schaltungstechnik (PL), Schriftlich, 180 Min., Gewichtung: 8
• 11472 Signale und Systeme (PL), Schriftlich, 90 Min., Gewichtung: 4
• V Vorleistung (USL-V), Schriftlich oder Mündlich

18. Grundlage für ...

19. Medienform:
Tafel, Beamer

20. Angeboten von:
Elektrische und Optische Nachrichtentechnik
Modul: 11480 Elektrodynamik

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>6</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher:
Univ.-Prof. Dr. Jens Anders

9. Dozenten:
Prof. Dr. Jens Anders

10. Zuordnung zum Curriculum in diesem Studiengang:
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 3. Semester → Kernmodule
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 3. Semester → Grundstudium

11. Empfohlene Voraussetzungen:

12. Lernziele:
Die Studierenden:
- besitzen die Grundkenntnisse der Theoretischen Elektrotechnik
- beherrschen analytischen Methoden zur Lösung elektromagnetischer Feldprobleme
- sind in der Lage ein elektromagnetisches Feldproblem für eine numerische Lösung zu formulieren

13. Inhalt:
- Der Feldbegriff
- Grundgesetze der Elektrodynamik
- Die Maxwell'schen Gleichungen
- Potenziale für elektrische und magnetische Felder
- Elektrische und magnetische Felder in Materie
- Elektromagnetische Wellen
- Wirbelströme und Stromverdrängung
- Lösung von Randwertproblemen
- Elektrische und magnetische Netzwerkparameter
- Kräfte im elektrischen und magnetischen Feld

14. Literatur:
- Simonyi K.: Theoretische Elektrotechnik, J. A. Barth, Leipzig, 1993

15. Lehrveranstaltungen und -formen:
- 114801 Vorlesung Elektrodynamik 1
- 114802 Übung Elektrodynamik 1
- 114803 Vorlesung Elektrodynamik 2
- 114804 Übung Elektrodynamik 2

16. Abschätzung Arbeitsaufwand:
In der Vorlesung mit Übung werden theoretische Grundlagen erarbeitet, welche mithilfe numerischer Beispiele anschaulich vertieft werden. Einfache Aufgaben werden analytisch gelöst. Die
Gruppenübung und die Rechnerübung bieten Gelegenheit zum betreuten Selbststudium.

<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>11481 Elektrodynamik (PL), Schriftlich, 150 Min., Gewichtung: 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Projektor, Rechner</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Elektrotechnik bionischer Systeme</td>
</tr>
</tbody>
</table>
Modul: 11490 Nachrichtentechnik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050600003</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>9 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>6</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>Zweisemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Stephan ten Brink</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Stephan Brink</td>
</tr>
<tr>
<td></td>
<td>Jan Hesselbarth</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 3. Semester ➔ Kernmodule</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>Teil I: Schaltungen bei höheren Frequenzen, Grundlagen der Sender- und Empfangstechnik, Leitungen, Einführung in Antennen, Wellenausbreitung und Empfangerrauschen, Übersicht wichtiger Funksysteme</td>
</tr>
<tr>
<td></td>
<td>Teil II: Grundzüge der Informationstheorie, Codierung und Modulation, Signalübertragung über elektrische Leitungen</td>
</tr>
<tr>
<td>14. Literatur:</td>
<td>• Vorlesungsskripte,</td>
</tr>
<tr>
<td></td>
<td>• Meinke, Gundlach: Taschenbuch der Hochfrequenztechnik, 5. Auflage, Springer-Verlag, 1992,</td>
</tr>
<tr>
<td></td>
<td>• Tietze, Schenk: Halbleiterschaltungstechnik, 12. Auflage, Springer-Verlag, 2002,</td>
</tr>
<tr>
<td></td>
<td>• Herter, Lörcher: Nachrichtentechnik, 9. Auflage, Hanser-Verlag, 2004,</td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 114902 Übung Nachrichtentechnik 1</td>
</tr>
<tr>
<td></td>
<td>• 114903 Vorlesung Nachrichtentechnik 2</td>
</tr>
<tr>
<td></td>
<td>• 114901 Vorlesung Nachrichtentechnik 1</td>
</tr>
<tr>
<td></td>
<td>• 114904 Übung Nachrichtentechnik 2</td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Präsenzzeit: 84 h</td>
</tr>
<tr>
<td></td>
<td>Selbstdarstellung/Nacharbeitszeit: 186 h</td>
</tr>
<tr>
<td></td>
<td>Gesamt: 270 h</td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>11491 Nachrichtentechnik (PL), Schriftlich oder Mündlich, 180 Min., Gewichtung: 1</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Nachrichtenübertragung</td>
</tr>
</tbody>
</table>
Modul: 11500 Elektrische Energietechnik

2. Modulkürzel: 051010001
3. Leistungspunkte: 9 LP
4. SWS: 6
5. Modulduauer: Zweisemestrig
6. Turnus: Sommersemester
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Jörg Roth-Stielow
9. Dozenten: Stefan Tenbohlen (Elektrische Energietechnik I)
Jörg Roth-Stielow (Elektrische Energietechnik II)
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 2. Semester
11. Empfohlene Voraussetzungen: Studierende...
12. Lernziele:
• ...kennen die grundlegenden Prinzipien der elektrischen Energieerzeugung, -übertragung und -verteilung.
• ...können einfache Berechnungen von Größen in Systemen der elektrischen Energieerzeugung, -übertragung und -verteilung vornehmen.
• ...kennen die grundlegenden Prinzipien der elektrischen Maschinen und Transformatoren.
• ...können einfache Berechnungen von Größen in elektrischen Maschinen und Transformatoren vornehmen.
13. Inhalt:
• Aufgabe und Bedeutung der elektrischen Energieversorgung,
• Energieumwandlung in Kraftwerken,
• Elektrizitätswirtschaft und Investitionstheorie,
• Aufbau von elektrischen Energieversorgungsnetzen und Bordnetzen,
• Lastflüsse, Kurzschlussströme, Überspannungen in elektrischen Versorgungsnetzen,
• Sicherheitstechnik,
• elektrischer Unfall,
• Elektrischer Energiefluss als Informations- und Arbeitsmedium,
• Leistungselectronik u. Regelungstechnik als Teilgebiete der Energietechnik,
• Gleichstrommaschine,
• Transformator,
• Asynchronmaschine, Synchronmaschine
14. Literatur:
• Vorlesungsskripte
• Heuck, Dettmann: Elektrische Energieversorgung, Vieweg, Braunschweig/Wiesbaden, 2005
• Schwab: Elektroenergiesysteme, Springer, 2009/2015
• Heumann, K.: Grundlagen der Leistungselectronik, B. G. Teubner, Stuttgart, 1989
15. Lehrveranstaltungen und -formen:

- 115001 Vorlesung Elektrische Energietechnik I
- 115002 Übung Elektrische Energietechnik I
- 115003 Vorlesung Elektrische Energietechnik II
- 115004 Übung Elektrische Energietechnik II

16. Abschätzung Arbeitsaufwand:
Frontalvorlesung

17. Prüfungsnummer/n und -name:

- 11501 Elektrische Energietechnik I (PL), Schriftlich, 90 Min., Gewichtung: 4,5
- 11502 Elektrische Energietechnik II (PL), Schriftlich, 90 Min., Gewichtung: 4,5
Klausur Elektrische Energietechnik I (90 min., 2x pro Jahr)
Klausur Elektrische Energietechnik II (90 min., 2x pro Jahr)

18. Grundlage für ... :

19. Medienform:
Tafel, Folien, Beamer

20. Angeboten von:
Leistungselektronik und Regelungstechnik
Modul: 11510 Informatik II

4. SWS: 5 7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Michael Weyrich
9. Dozenten: Andreas Kirstädter
 Michael Weyrich
 → Grundstudium
11. Empfohlene Voraussetzungen: Informatik I, Grundlagen der Elektrotechnik und Mikroelektronik
12. Lernziele:
 Die Studierenden
 • verstehen die Grundkonzepte und die grundlegenden Methoden der objektorientierten Systementwicklung und können diese anwenden
 • kennen die Notation in der Unified Modeling Language UML und in SysML
 • sind mit der Booleschen Algebra vertraut
 • können kombinatorische und sequentielle Netzwerke entwerfen
 • kennen die Funktionsweise von Rechnersystemen.
13. Inhalt:
 • Basiskonzepte und Notationen der Objektorientierung
 • Statistische und dynamische Konzepte in der objektorientierten Analyse
 • Konzepte und Notationen des objektorientierten Entwurfs
 • Entwurfs muster und Frameworks
 • Implementierung objektorientierter Konzepte
 • Komponentenbasierte Softwareentwicklung
 • SysML
 • Axiome und Sätze der Booleschen Algebra
 • Normalformen und Minimierungsverfahren
 • Digitale Grundelemente (Gatter, Flip-flops)
 • Kombinatorische und sequentielle Netzwerke
 • Einfache Rechen- und Steuerwerke
 • Einführung in programmierbare Logik (FPGAs)
 • Einführung Rechnerarchitektur
 • Maschinennahe Programmierung
14. Literatur:
 • Vorlesungsskript
 • Balzert, H.: Lehrbuch der Objektmodellierung: Analyse und Entwurf, Spektrum Akademischer Verlag 2004
 • Oestereich, B.: Objektorientierte Softwareentwicklung: Analyse und Design mit der Unified Modeling Language, Oldenbourg Verlag 2001
 • Stevens, P. et. al.: UML-Softwareentwicklung mit Objekten und Komponenten, Person Studium Verlag 2001
 • Forbrig, P.: Objektorientierte Softwareentwicklung mit UML, Carl Hanser Verlag, 2002
 • Gamma, E. et al.: Entwurfsmuster-Elemente wiederverwendbarer objektorientierter Software, Addison Wesley 2004
- Schiffmann, W., Schmitz, R.: Technische Informatik, Bd. 1: Grundlagen der digitalen Elektronik, Bd. 2: Grundlagen der Computertechnik, Springer-Verlag, 1993
- Vorlesungsportal für Teil 1 mit Vorlesungsaufzeichnung auf http://www.ias.uni-stuttgart.de/info2
- Vorlesungsportal für Teil 2 http://www.ikr.uni-stuttgart.de/Xref/CC/L_Info_II-2

<table>
<thead>
<tr>
<th>15. Lehrveranstaltungen und -formen:</th>
<th>115103 Vorlesung Grundlagen der technischen Informatik</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>115101 Vorlesung Grundlagen der Softwaretechnik</td>
</tr>
<tr>
<td></td>
<td>115102 Übung Grundlagen der Softwaretechnik</td>
</tr>
<tr>
<td></td>
<td>115104 Übung Grundlagen der technischen Informatik</td>
</tr>
</tbody>
</table>

| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 70 h |

<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>11511 Grundlagen der Softwaretechnik (PL), Schriftlich, 60 Min., Gewichtung: 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>11512 Grundlagen der technischen Informatik (PL), Schriftlich, 60 Min., Gewichtung: 1</td>
</tr>
</tbody>
</table>

| 18. Grundlage für ... : | Technische Informatik I Automatisierungstechnik I Softwaretechnik |

| 20. Angeboten von: | Automatisierungstechnik und Softwaretechnik |
Modul: 11520 Informatikpraktikum

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3 LP</td>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>Das Informatikpraktikum wird nicht mehr angeboten.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td></td>
<td>14. Literatur:</td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 115201 Praktikum Informatikpraktikum</td>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>11521 Informatikpraktikum (USL), Schriftlich oder Mündlich, Gewichtung: 1</td>
<td>18. Grundlage für ...:</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Modul: 12220 Höhere Mathematik für Physiker, Kybernetiker und Elektroingenieure Teil 1+2

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>18</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Bernard Haasdonk</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 1. Semester
→ Basismodule
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 1. Semester
→ Grundstudium

11. Empfohlene Voraussetzungen: keine

12. Lernziele:

Die Studierenden
- verfügen über grundlegende Kenntnisse der Differential- und Integralrechnung für Funktionen einer und mehrerer Veränderlicher sowie der Theorie der linearen Gleichungssysteme und der linearen Abbildungen
- sind in der Lage, die behandelten Methoden selbständig, sicher, kritisch und kreativ anzuwenden.
- besitzen die mathematische Grundlage für das Verständnis quantitativer Modelle aus den Natur- und Ingenieurwissenschaften.
- können sich mit Spezialisten über die benutzten mathematischen Methoden verständigen.

13. Inhalt:

1. Grundlagen der Mathematik
2. Lineare Algebra
3. Analysis in einer und mehreren Variablen

14. Literatur:

wird in der Vorlesung bekannt gegeben

15. Lehrveranstaltungen und -formen:

- 122201 Vorlesung Höhere Mathematik für Physiker, Kybernetiker und Elektroingenieure Teil 1
- 122202 Vortragsübung Höhere Mathematik für Physiker, Kybernetiker und Elektroingenieure Teil 1
- 122203 Gruppenübung Höhere Mathematik für Physiker, Kybernetiker und Elektroingenieure Teil 1
- 122204 Vorlesung Höhere Mathematik für Physiker, Kybernetiker und Elektroingenieure Teil 2
- 122205 Vortragsübung Höhere Mathematik für Physiker, Kybernetiker und Elektroingenieure Teil 2
- 122206 Gruppenübung Höhere Mathematik für Physiker, Kybernetiker und Elektroingenieure Teil 2

16. Abschätzung Arbeitsaufwand:

- Präsenzzeit: 189 h
- Selbststudiumszeit / Nacharbeitszeit: 351 h
- Gesamt: 540 h

17. Prüfungsnummer/n und -name:

- 12221 Höhere Mathematik für Physiker, Kybernetiker und Elektroingenieure Teil 1+2 (PL), Schriftlich, 180 Min., Gewichtung: 1
• Vorleistung (USL-V), Schriftlich oder Mündlich
 Prüfungsvoraussetzung ist
 • für Studierende, für die das Modul Bestandteil der
 Orientierungsprüfung ist, einer der Übungsscheine HM 1 oder
 HM 2
 • für alle anderen Studierenden die beiden Übungsscheine HM 1
 und HM 2

18. Grundlage für ...

19. Medienform:

20. Angeboten von: Numerische Mathematik
Modul: 14460 Grundlagen der Experimentalphysik: Mechanik und Wärmelehre

4. SWS: 6 7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr. Martin Dressel
9. Dozenten: Martin Dressel

In den Übungen werden Lösungsstrategien zur Bearbeitung konkreter Probleme in diesen Teilgebieten vermittelt.

13. Inhalt: Mechanik und Wärmelehre:
• Mechanik starrer Körper
• Mechanik deformierbarer Körper
• Schwingungen und Wellen
• Grundlagen der Thermodynamik

14. Literatur:
• Demtröder, "Experimentalphysik 1, Mechanik und Wärme", und "Experimentalphysik 2, Elektrizität und Optik", Springer Verlag
• Paus, Physik in Experimenten und Beispielen, Hanser Verlag (1995)
• Bergmann, Schaefer, Lehrbuch der Experimentalphysik, Band 1, Mechanik, Akustik, Wärme, und Band 2, Elektromagnetismus, De Gruyter
• Feynman, Leighton, Sands, Vorlesungen über Physik, Band 1 und Band 2, Oldenbourg Verlag (1997)
• Halliday, Resnick, Walker, Physik, Wiley-VCH
• Gerthsen, Physik Springer
• Daniel, Physik 1 und 2, de Gruyter, Berlin (1997)

15. Lehrveranstaltungen und -formen:
• 144602 Vorlesung Experimentalphysik für Elektrotechniker
• 144601 Übungen Experimentalphysik für Elektrotechniker

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 53 h
Selbststudiumszeit / Nacharbeitszeit: 127 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
• 14461 Grundlagen der Experimentalphysik: Mechanik und Wärmelehre (PL), Schriftlich, 90 Min., Gewichtung: 1
• V Übung Experimentalphysik für Elektrotechniker (USL-V), Schriftlich oder Mündlich

18. Grundlage für ... :
<table>
<thead>
<tr>
<th>19. Medienform:</th>
<th>Demonstrationsexperimente, Projektion, Overhead, Tafel</th>
</tr>
</thead>
<tbody>
<tr>
<td>20. Angeboten von:</td>
<td>Experimentalphysik I</td>
</tr>
</tbody>
</table>
Modul: 14990 Höhere Mathematik für Elektroingenieure Teil III

4. SWS: 6 7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr. Bernard Haasdonk
9. Dozenten:
10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 3. Semester
 → Basismodule
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 3. Semester
 → Grundstudium
11. Empfohlene Voraussetzungen: Höhere Mathematik für Physiker, Kybernetiker und Elektroingenieure Teil I+II
12. Lernziele:
 Die Studierenden
 • verfügen über grundlegende Kenntnisse der Differentialgleichungen und der Vektoranalysis, sowie über elementare Kenntnisse der komplexen Analysis
 • sind in der Lage, die behandelten Methoden selbständig, sicher, kritisch und kreativ anzuwenden
 • können sich mit Spezialisten über die benutzten mathematischen Methoden verständigen und sich selbstständig weiterführende Literatur erarbeiten
13. Inhalt:
 • Differentialgleichungen
 • Vektoranalysis
 • elementare Grundlagen der komplexen Analysis
14. Literatur:
 wird in der Vorlesung bekannt gegeben
15. Lehrveranstaltungen und -formen:
 • 149901 Vorlesung Höhere Mathematik für Elektroingenieure Teil III
 • 149902 Vortragsübung Höhere Mathematik für Elektroingenieure Teil III
 • 149903 Gruppenübung Höhere Mathematik für Elektroingenieure Teil III
16. Abschätzung Arbeitsaufwand:
 Präsenzstunden: 63 h
 Selbststudium/Nacharbeitszeit: 117 h
 Gesamt: 180 h
17. Prüfungsnummer/n und -name:
 14991 Höhere Mathematik für Elektroingenieure Teil III (PL), Schriftlich, 120 Min., Gewichtung: 1
 Prüfungsvoraussetzung: Übungsscheine nach dem 3. FS
18. Grundlage für ...
19. Medienform:
20. Angeboten von:
 Numerische Mathematik
200 Teamarbeit

<table>
<thead>
<tr>
<th>Zugeordnete Module</th>
<th>Modulbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>17010</td>
<td>Teamarbeit - ISB/LFB</td>
</tr>
<tr>
<td>17020</td>
<td>Teamarbeit - IAS</td>
</tr>
<tr>
<td>17030</td>
<td>Teamarbeit - INT</td>
</tr>
<tr>
<td>17040</td>
<td>Teamarbeit - IKR</td>
</tr>
<tr>
<td>17050</td>
<td>Teamarbeit - IPE</td>
</tr>
<tr>
<td>17060</td>
<td>Teamarbeit - IEH</td>
</tr>
<tr>
<td>17070</td>
<td>Teamarbeit - IEW</td>
</tr>
<tr>
<td>17080</td>
<td>Teamarbeit - ILEA-LR</td>
</tr>
<tr>
<td>17090</td>
<td>Teamarbeit - INÜ</td>
</tr>
<tr>
<td>17100</td>
<td>Teamarbeit - ISS</td>
</tr>
<tr>
<td>25890</td>
<td>Teamarbeit: Halbleitertechnologie - Die MOS-Kapazität (TA IHT)</td>
</tr>
<tr>
<td>25900</td>
<td>Teamarbeit - ITE</td>
</tr>
<tr>
<td>26100</td>
<td>Teamarbeit - IHF</td>
</tr>
<tr>
<td>56280</td>
<td>Teamarbeit - ILH</td>
</tr>
</tbody>
</table>
Modul: 17010 Teamarbeit - ISB/LFB

2. Modulkürzel: 051620002
5. Moduldauer: Einsemestrig
3. Leistungspunkte: 3 LP
6. Turnus: Sommersemester
4. SWS: 2
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr. Norbert Frühauf
9. Dozenten: Bastian Diehm
12. Lernziele: Die Studierenden
 • können eine konkrete Aufgabenstellung im Bereich einer software definierten Hardware im Team eigenverantwortlich stukturieren, bearbeiten und Lösren
 • können die erzielten Ergebnisse dokumentieren und präsentieren
13. Inhalt:
 • Einarbeitung in die Aufgabenstellung (Datenblätter, VHDL)
 • Entwurf und die praktische Realisierung einer FPGA basierten Ansteuersystems für einen vollfarbigen qVGA AMLCD Bildschirm. Jeweils ein Team bearbeitet die folgenden drei Teilkomponenten des Ansteuersystems: DVI-Schnittstellenmodul, Ansteuerung der Zeilen- und Spaltentreiber, Testbildgenerator
 • Aufbereitung und Präsentation der Ergebnisse
14. Literatur:
 • Umdruck zur Teamarbeit
 • Datenblätter (wird vom LfB gestellt)
 • Buch: VHDL-Synthese (wird vom LfB gestellt)
15. Lehrveranstaltungen und -formen:
 • 170101 Praktikum Teamarbeit - ISB/LFB
16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 20 h
 Selbststudium/Nacharbeitszeit: 70 h
 Gesamt: 90 h
17. Prüfungsnr/n und -name:
 17011 Teamarbeit - ISB/LFB (USL), Schriftlich oder Mündlich, Gewichtung: 1
18. Grundlage für ...
19. Medienform:
20. Angeboten von:
 Bildschirmtechnik
Modul: 17020 Teamarbeit - IAS

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3 LP</td>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Michael Weyrich</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>Die Studierenden können eine konkrete Aufgabenstellung im Team strukturieren, Teilaufgaben und Schritte definieren, diese bearbeiten und lesen.</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 13. Inhalt: | • Systematische Entwicklung eines Systems zur kollisionsfreien Fernsteuerung für ein Modellauto
• Entwurf und Implementierung der Hardware- und Softwarebestandteile
• Projektmanagement und Qualitätssicherung zur rechtzeitigen Fertigstellung eines funktionierenden Systems |
| 14. Literatur: | Umdruck zur Teamarbeit |
| 15. Lehrveranstaltungen und -formen: | • 170201 Praktikum Teamarbeit im Labor |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 20 h
Selbststudium: 70 h
Gesamt: 90 h |
| 17. Prüfungsnummer/n und -name: | 17021 Teamarbeit - IAS (USL), Schriftlich oder Mündlich, Gewichtung: 1 |
| 18. Grundlage für ... : | |
| 19. Medienform: | |
| 20. Angeboten von: | Automatisierungstechnik und Softwaresysteme |
Modul: 17030 Teamarbeit - INT

2. Modulkürzel: 050200003

3. Leistungspunkte: 3 LP

4. SWS: 2

5. Modulduer: Einsemestrig

6. Turnus: Sommersemester

7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Manfred Berroth

9. Dozenten: wiss. MA

11. Empfohlene Voraussetzungen: Grundkenntnisse in Schaltungstechnik

12. Lernziele:

Die Studierenden können eine konkrete Aufgabenstellung im Team strukturieren, Teilaufgaben und Schritte definieren, diese bearbeiten und lösen. Sie benutzen dazu Fachliteratur und Internetrecherche. Sie berichten über den gewählten Weg und die Ergebnisse und präsentieren diese.

13. Inhalt:

Die Studierenden sollen als Gruppe eine funktionsfähige elektronische oder optoelektronische Schaltung oder ein entsprechendes System aus dem Bereich der elektrischen und optischen Kommunikationstechnik entwerfen, aufbauen und testen.

14. Literatur:

Fachbücher, Datenblätter, Applikationshinweise

15. Lehrveranstaltungen und -formen:

• 170301 Praktikum Teamarbeit - INT

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 20 h
Selbststudium: 70 h
Gesamt: 90 h

17. Prüfungsnummer/n und -name:

17031 Teamarbeit - INT (USL), Schriftlich oder Mündlich, Gewichtung: 1

18. Grundlage für ...

19. Medienform:

20. Angeboten von:

Elektrische und Optische Nachrichtentechnik
<table>
<thead>
<tr>
<th>Modul: 17040 Teamarbeit - IKR</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Modulkürzel: 050901003</td>
</tr>
<tr>
<td>3. Leistungspunkte: 3 LP</td>
</tr>
<tr>
<td>4. SWS: 2</td>
</tr>
<tr>
<td>5. Modulduauer: Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus: Sommersemester</td>
</tr>
<tr>
<td>7. Sprache: Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Andreas Kirstädter</td>
</tr>
<tr>
<td>9. Dozenten: Matthias Meyer</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen: Kenntnisse, wie sie in den Modulen Informatik I und Informatik II (parallel hörbar) vermittelt werden.</td>
</tr>
<tr>
<td>12. Lernziele: Der Studierende kann einfache Digitalschaltungen und Rechenwerke entwerfen, implementieren, in Betrieb nehmen und testen. Er lernt Entwurfswerkzeuge, programmierbare Logikbausteine und Messgeräte kennen und ist fähig, im Team zu arbeiten.</td>
</tr>
<tr>
<td>13. Inhalt: Kombinatorische und sequenzielle Netzwerke, Zahlendarstellungen, Rechenwerke. Für nähere Informationen, aktuelle Ankündigungen und Material siehe http://www.ikr.uni-stuttgart.de/Xref/CC/P_TA</td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen: 170401 Praktikum Teamarbeit - IKR</td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand: Präsenzzeit: 20 h Selbststudium: 70 h Gesamt: 90 h</td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name: 17041 Teamarbeit - IKR (USL), Schriftlich oder Mündlich, Gewichtung: 1 Ausarbeitung der Ergebnisse, Tests während Präsenzzeit</td>
</tr>
<tr>
<td>18. Grundlage für …:</td>
</tr>
<tr>
<td>19. Medienform: Software-Werkzeuge, Hardware-Plattformen, Messgeräte</td>
</tr>
<tr>
<td>20. Angeboten von: Kommunikationsnetze und Rechnersysteme</td>
</tr>
</tbody>
</table>
Modul: 17050 Teamarbeit - IPE

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050513004</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2</td>
</tr>
<tr>
<td>5. Modulcode:</td>
<td>050513004</td>
</tr>
<tr>
<td>6. Moduldauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Jürgen Heinz Werner</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>wiss. MA Markus Schubert</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Grundkenntnisse über die Eigenschaften von Halbleitern</td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>Die Studierenden können</td>
</tr>
<tr>
<td></td>
<td>- eine konkrete Aufgabenstellung im Team strukturieren</td>
</tr>
<tr>
<td></td>
<td>- Teilaufgaben definieren, bearbeiten und lösen</td>
</tr>
<tr>
<td></td>
<td>- Fachliteratur und internet-Recherchen benutzen</td>
</tr>
<tr>
<td></td>
<td>- über ihre Ergebnisse im Team vortragen</td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>- Herstellung von Solarzellen und Modulen aus kristallinem Silizium</td>
</tr>
<tr>
<td></td>
<td>- elektrische, optische, strukturellen Vermessung von Solarzellen</td>
</tr>
<tr>
<td></td>
<td>- Aufbau eines Photovoltaik-Systems</td>
</tr>
<tr>
<td>14. Literatur:</td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 170501 Praktikum Teamarbeit - ipe</td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Präsenzzeit: 20 h</td>
</tr>
<tr>
<td></td>
<td>Selbststudium/Nacharbeitszeit: 70 h</td>
</tr>
<tr>
<td></td>
<td>Gesamt: 90 h</td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>17051 Teamarbeit - IPE (USL), Schriftlich oder Mündlich, Gewichtung: 1</td>
</tr>
<tr>
<td>18. Grundlage für ...:</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Physikalische Elektronik</td>
</tr>
</tbody>
</table>
Modul: 17060 Teamarbeit - IEH

2. Modulkürzel: 050310008
5. Moduldauer: Einsemestrig

3. Leistungspunkte: 3 LP
6. Turnus: Sommersemester

4. SWS: 2
7. Sprache: Deutsch

8. Modulverantwortlicher: Dr.-Ing. Ulrich Schärli

9. Dozenten: Ulrich Schärli wiss. MA

→ Teamarbeit -- Grundstudium

14. Literatur: Fachliteratur, Versuchsumdruck

15. Lehrveranstaltungen und -formen: • 170601 Praktikum Teamarbeit - IEH

16. Abschätzung Arbeitsaufwand: Präsenzzeit: 20 h
Selbststudium: 70 h
Gesamt: 90 h

17. Prüfungsnummer/n und -name: 17061 Teamarbeit - IEH (USL), Schriftlich oder Mündlich, Gewichtung: 1

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Energieübertragung und Hochspannungstechnik
Modul: 17070 Teamarbeit - IEW

2. Modulkürzel: 052601012
5. Moduldauer: Einsemestrig
3. Leistungspunkte: 3 LP
6. Turnus: Sommersemester
4. SWS: 2
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Nejila Parspour
9. Dozenten: wiss. MA Nejila Parspour
12. Lernziele: Die Studierenden
 • können eine konkrete Aufgabenstellung aus dem Bereich der Elektrischen Maschinen im Team eigenverantwortlich strukturieren, bearbeiten und lösen
 • können die erzielten Ergebnisse dokumentieren und präsentieren
13. Inhalt:
 • Einarbeitung in die Aufgabenstellung
 • Berechnen und Bewickeln eines Statorpakets
 • Entwurf und Implementierung eines Algorithmus zur Steuerung eines Elektronikmotors in AHD, bzw. C
 • Aufbereitung und grafische Darstellung der Ergebnisse
14. Literatur: Umdruck zur Teamarbeit
15. Lehrveranstaltungen und -formen: • 170701 Praktikum Teamarbeit - ILEA-EEW
16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 20 h
 Selbststudium: 70 h
 Gesamt: 90 h
17. Prüfungsnummer/n und -name:
 17071 Teamarbeit - IEW (USL), Mündlich, Gewichtung: 1
 Ausarbeitung der Ergebnisse, Präsentation in der Gruppe
18. Grundlage für ...
19. Medienform: Tafel, Beamer, ILIAS
20. Angeboten von: Elektrische Energiewandlung
Modul: 17080 Teamarbeit - ILEA-LR

2. Modulkürzel: 051010015
5. Moduldauber: Einsemestrig

3. Leistungspunkte: 3 LP
6. Turnus: Sommersemester

4. SWS: 2
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Jörg Roth-Stielow

9. Dozenten: wiss. MA

12. Lernziele: Studierende...
- ...können eine konkrete Aufgabenstellung aus dem Bereich der Leistungselektronik und Regelungstechnik in einer Kleingruppe strukturieren, Teilaufgaben und Schritte definieren, diese bearbeiten und lösen.
- ...können die erzielten Ergebnisse wissenschaftlich nachvollziehbar dokumentieren und präsentieren.

13. Inhalt:
Projekt-Beispiel:
- Heizungsregelung für ein Modellhaus

Vorgehen:
- Vorbereitung, Literaturstudium
- Strukturierung der Aufgabe, Gliederung in Arbeitspakete, Arbeitsplanung
- Durchführung der Arbeitsschritte
 - Aufbau der Leistungselektronik
 - Programmierung Mikrocontroller
 - Entwurf und Programmierung Regelung
- Dokumentation der Ergebnisse
- Ergebnis-Präsentation

14. Literatur:
Umdruck zur Teamarbeit

15. Lehrveranstaltungen und -formen:
- 170801 Praktikum Teamarbeit - ILEA-LR

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 20 h
- Selbststudium: 70 h
- Gesamt: 90 h

17. Prüfungsnummer/n und -name:
17081 Teamarbeit - ILEA-LR (USL), Schriftlich, Gewichtung: 1

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Leistungselektronik und Regelungstechnik
Modul: 17090 Teamarbeit - INÜ

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3 LP</td>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Stephan ten Brink</td>
<td>9. Dozenten:</td>
<td>Stephan Brink</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Grundlagen der Elektrotechnik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Der Betreuer umreißt zu Beginn des Projekts die Aufgabenstellung und gibt dem Team geeignete schriftliche Unterlagen.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Das Team erstellt auf dieser Grundlage eine Feinspezifikation und einen Projektplan.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Das Team teilt die Aufgaben unter seinen Mitgliedern auf.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Ein Team-Mitglied kann dabei die laufende und abschließende schriftliche Dokumentation erstellen. Dabei sollen gängige Textsysteme verwendet werden, wie LaTeX, OpenOffice oder Word. Das schafft gute Voraussetzungen für die spätere Bachelorarbeit.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Das Team trifft sich regelmäßig mit dem Betreuer, gibt einen mündlichen Zwischenbericht und erörtert die nächsten Schritte.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Am Ende der Arbeit berichtet das Team über die Ergebnisse in einem 15-minütigen Vortrag.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 170901 Praktikum Teamarbeit - INÜ</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Präsenzzeit 20 h, Selbststudium/Nacharbeitszeit 70 h, insgesamt 90 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>17091 Teamarbeit - INÜ (USL), Sonstige, Gewichtung: 1 Abschlussbericht, Vortrag</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
18. Grundlage für ...:

20. Angeboten von: Nachrichtenübertragung
Modul: 17100 Teamarbeit - ISS

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3 LP</td>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td></td>
<td>Univ.-Prof. Dr.-Ing. Bin Yang</td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td></td>
<td>Christof Zeile</td>
<td></td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td></td>
<td>Die Studierenden</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>können eine konkrete Aufgabenstellung aus dem Bereich der Signalverarbeitung im Team eigenverantwortlich strukturieren, bearbeiten und lösen, können die erzielten Ergebnisse dokumentieren und präsentieren.</td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td></td>
<td>• Einarbeitung in die Aufgabenstellung</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Vorverarbeitung von gemessenen EKG-Signalen</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Entwurf und Implementierung von Algorithmen zur Extraktion von kardiologischen Merkmalen (Herzfrequenz usw.) aus EKG-Signalen in MATLAB</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Aufbereitung und grafische Darstellung der Ergebnisse</td>
<td></td>
</tr>
<tr>
<td>14. Literatur:</td>
<td></td>
<td>• Umdruck zur Teamarbeit</td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>171001 Praktikum Teamarbeit - ISB/LSS</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Präsenzzeit: 20 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Selbststudium: 70 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gesamt: 90 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>17101 Teamarbeit - ISS (USL), Sonstige, Gewichtung: 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td></td>
<td>Netzwerk- und Systemtheorie</td>
<td></td>
</tr>
</tbody>
</table>
Modul: 25890 Teamarbeit: Halbleitertechnologie - Die MOS-Kapazität (TA IHT)

3. Leistungspunkte: 3 LP 6. Turnus: Sommersemester
4. SWS: 2 7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Jörg Schulze
9. Dozenten: wiss. MA Jörg Schulze
11. Empfohlene Voraussetzungen: Empfohlen werden Kenntnisse, wie Sie beispielsweise in Mikroelektronik (ME) vermittelt werden.
14. Literatur: Der IHT-Laborzyklus dient zur Vorbereitung und zur Vertiefung der IHT-Vorlesungszyklen zur Halbleitertechnologie (HL), Halbleitertechnologie (HLT) und Quantenelektronik (QE). Dementsprechend sei hier auf die jeweils relevante Literatur verwiesen. HL-relevante Literatur:
- Hoffmann: Systemintegration, Oldenbourg, 2003
- Löcherer: Halbleiterbauelemente, Teubner, 1992
- Roulsten: An Introduction to the Physics of Semiconductor Devices, Oxford University Press, 1999
- Schulze: Konzepte Silizium-basierter MOS-Bauelemente, Springer, 2005
- Sze: Semiconductor Devices
- Physics and Technology, Wiley, 1985
- Thuselt: Physik der Halbleiterbauelemente, Springer, 2005
- Beneking: Halbleitertechnologie, Eine Einführung in die Prozessestechnik von Silizium und III-V Verbindungen, Teubner Verlag, 1984
- Herman, Sitter: Molecular Beam Epitaxy, Springer, 1989
- Hilleringmann: Silizium-Halbleitertechnologie, Teubner Verlag, 1996
- Kasper, Bean: Silicon-Molecular Beam Epitaxy, CRC Press, 1988
- Kasper, Lyutovich: Properties of Silicon Germanium and SiGe: Carbon, INSPEC, 2000
- v. München: Einführung in die Halbleitertechnologie, Teubner Verlag, 1993
- Nijs (Ed.): Advanced Silicon and Semiconducting Silicon-Alloy Based Materials and Devices, Institute of Physics Publishing, 1994
- Siffert, Krimmel (Ed.): Silicon
- Evolution and Future of a Technology, Springer, 2004
- Barnham, Vvedensky (Ed.): Low-dimensional semiconductor structures, Cambridge University Press, 2001 (Kapitel 10)
- Durrani: Single-Electron Devices and Circuits in Silicon, Imperial College Press, 2010
- Kasper, Paul: Silicon Quantum Integrated Circuits, Springer, 2005
- Oda, Ferry (Ed.): Silicon Nanoelectronics, CRC Press, 2005
- Sturm, Schulze: Quantum Computation aus algorithmischer Sicht, Oldenbourg, 2008
15. Lehrveranstaltungen und -formen:
- 258901 Praktikum Teamarbeit - IHT

16. Abschätzung Arbeitsaufwand:
Gesamtaufwand: 90 h Dabei:
- 22,5 h (6 Termine á 5 SWS) Präsenz
- 67,5 h Selbststudium

17. Prüfungsnummer/n und -name:
25891 Teamarbeit: Halbleitertechnologie - Die MOS-Kapazität (TA IHT) (USL), Mündlich, 30 Min., Gewichtung: 1
Prüfungsvorleistungen (USL): Kolloquien während der Laborarbeit, Abschlusspräsentation der Ergebnisse

18. Grundlage für ... :

19. Medienform:
- PowerPoint-Präsentationen zur Einführung in das Praktikum und das Thema (Beamer)
- Lehrbriefe zu den einzelnen Themenschwerpunkten
- Ausgedrucktes Praktikumsskript mit sämtlichen Folien und Lehrbriefen (zum Selbstkostenpreis erhältlich)
- Sämtliche Unterlagen werden elektronisch über ILIAS zum Download bereitgestellt.

20. Angeboten von:
Halbleitertechnik
Modul: 25900 Teamarbeit - ITE

2. Modulkürzel: 051800004
5. Moduldauber: Einsemestrig
3. Leistungspunkte: 3 LP
6. Turnus: Sommersemester
4. SWS: 2
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr. Jens Anders
9. Dozenten: Prof. Dr. sc. techn. Jan Hesselbarth
Wissenschaftliche Mitarbeiter
 → Teamarbeit --> Grundstudium
11. Empfohlene Voraussetzungen:
12. Lernziele:
 Die Studierenden können:
 • eine konkrete ingenieurstechnische Aufgabenstellung im Team eigenverantwortlich strukturieren, bearbeiten und lösen,
 • das Ziel durch hard- und softwaretechnische Mittel erreichen,
 • die eingesetzten Mittel und die damit erzielten Ergebnisse präsentieren.
13. Inhalt:
 • Die Funktionsweise einer Gausskanone
 • Programmierung eines Mikrochips
 • Layout einer Platine (und diese herstellen lassen)
 • Verbesserung des Wirkungsgrads der Gausskanone, deren Grundaufbau vorhanden ist, durch verschiedene Maßnahmen
 • Inbetriebnahme des Prototyps
14. Literatur:
 • Umdruck zur Teamarbeit
 • Skript zur Vorlesung Grundlagen der Elektrotechnik 1,2
15. Lehrveranstaltungen und -formen:
 • 259001 Praktikum Teamarbeit - ITE
16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 28 h
 Selbststudium: 62 h
 Gesamt: 90 h
17. Prüfungsnummer/n und -name:
 25901 Teamarbeit - ITE (USL), Sonstige, Gewichtung: 1
 Unbenotete Studienleistung
18. Grundlage für ... :
19. Medienform:
20. Angeboten von: Elektrotechnik bionischer Systeme
Modul: 26100 Teamarbeit - IHF

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3 LP</td>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

| 8. Modulverantwortlicher: | Univ.-Prof. Dr. Jan Hesselbarth |
| 9. Dozenten: | wiss. MA |

10. Zuordnung zum Curriculum in diesem Studiengang:

| 11. Empfohlene Voraussetzungen: | Grundkenntnisse über Nachrichtentechnik werden empfohlen |

| 15. Lehrveranstaltungen und -formen: | 261001 Praktikum Teamarbeit - IHF |

| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 20 h Selbststudium: 70 h Gesamt: 90 h |

| 17. Prüfungsnummer/n und -name: | 26101 Teamarbeit - IHF (USL), Schriftlich oder Mündlich, Gewichtung: 1 USL: Ausarbeitung der Ergebnisse, Präsentationen mehrerer Gruppen am Institut |

| 18. Grundlage für ... : | |

| 19. Medienform: | |

| 20. Angeboten von: | Hochfrequenztechnik |
Modul: 56280 Teamarbeit - ILH

2. Modulkürzel: -
5. Modulduer: Einsemestrig
3. Leistungspunkte: 3 LP
6. Turnus: Sommersemester
4. SWS: 2
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Ingmar Kallfass

9. Dozenten:
 → Teamarbeit --> Grundstudium
11. Empfohlene Voraussetzungen:

12. Lernziele:
Das Ziel der Teamarbeit ist, den Studierenden den Entwurfs- und Herstellungsprozess von Schlüsselkomponenten der modernen Leistungselektronik zu veranschaulichen.

Die Studierenden sollen eine konkrete Aufgabenstellung im Team strukturieren, Teilaufgaben definieren, bearbeiten und lösen. Für den Ausbau ihres Fachwissens verwenden sie Fachliteratur und Internetrecherche.

13. Inhalt:
Spannungswandler im Gleichstromnetz
Im Rahmen der Teamarbeit sollen Schaltwandler für ein Gleichstromnetz entworfen, aufgebaut, getestet und charakterisiert werden. Die Tätigkeiten umfassen Komponentenauswahl, Schaltungssimulation, Schaltplanerstellung, Layoutentwurf, Aufbau, Inbetriebnahme, Test und Vermessung.

Als Roadmap sind folgende Präsenztermine vorgesehen:
Requirement Review (RR)
Preliminary Design Review (PDR)
Intermediate Design Review (IDR)
Final Design Review (FDR)
Abschlussvortrag + Vorführung der Schaltwandler
Weitere Termine zur betreuten und selbstständigen Bearbeitung werden beim Requirement Review bekannt gegeben.
Im Rahmen eines Abschlussvortrags berichten die Studierenden über ihr Vorgehen, gewonnene Erkenntnisse und ihre Ergebnisse.

14. Literatur:
Unterlagen wie Datenblätter, Applikationshinweise und Fachliteratur, werden zu Beginn des Projekts genannt.

15. Lehrveranstaltungen und -formen:
• 562801 Teamarbeit - ILH

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 20 h
Selbststudium: 70 h
Gesamt: 90 h

17. Prüfungsnummer/n und -name: 56281 Teamarbeit - ILH (USL), Schriftlich, 90 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Robuste Leistungshalbleitersysteme
300 Schwerpunkte

Zugeordnete Module:

310 Schwerpunkt: Elektrische Energiesysteme
320 Schwerpunkt: Automatisierungs- und Regelungstechnik
330 Schwerpunkt: Kommunikationssysteme und Signalverarbeitung
340 Schwerpunkt: Technische Informatik
350 Schwerpunkt: Mikro- und Optoelektronik
360 Schwerpunkt: Elektrotechnische Systeme
370 Schwerpunkt: Elektromobilität
310 Schwerpunkt: Elektrische Energiesysteme

Zugeordnete Module:

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
</tr>
</thead>
<tbody>
<tr>
<td>11540</td>
<td>Regelungstechnik I</td>
</tr>
<tr>
<td>11550</td>
<td>Leistungselektronik I</td>
</tr>
<tr>
<td>11560</td>
<td>Elektrische Energienetze I</td>
</tr>
<tr>
<td>11570</td>
<td>Hochspannungstechnik I</td>
</tr>
<tr>
<td>11580</td>
<td>Elektrische Maschinen I</td>
</tr>
<tr>
<td>11590</td>
<td>Photovoltaik I</td>
</tr>
<tr>
<td>311</td>
<td>Wahlfächer</td>
</tr>
</tbody>
</table>
Modul: 11540 Regelungstechnik I

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>051010012</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Jörg Roth-Stielow</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Jörg Roth-Stielow</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
 → Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
 → Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
 → Zusatzmodule

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
 → Ergänzungsmodule --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
 → Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
 → Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
 → Ergänzungsmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
 → Kernmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
 → Kernmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
 → Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
 → Kernmodule --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
11. Empfohlene Voraussetzungen: Kenntnisse vergleichbar...
...Höhere Mathematik I, II, III
...Experimentalphysik
...Grundlagen der Elektrotechnik
...Elektrische Energietechnik
...Signale und Systeme
...Schaltungstechnik

12. Lernziele: Studierende...

- können eine Regelstrecke modellieren und kennen die wichtigsten Regelsysteme.
- können diese Anordnungen mathematisch beschreiben, hinsichtlich ihrer Stabilität beurteilen und Aufgabenstellungen lösen.

13. Inhalt: Beschreibung von Übertragungsstrecken
- Stabilität von Regelsystemen
- Herkömmliche Regelsysteme
- Regelsysteme mit Rückführung eines vollständigen Satzes von Zustandsvariablen
- Echtes Integralverhalten
- Beobachter
- Systemführung nach dem Prinzip unterlagerter Schleifen
- Systeme mit einem Wechsel der Regelgröße

- Unbehauen, H.: Regelungstechnik 1, Vieweg, Braunschweig, 1989
- Leonhard, W.: Einführung in die Regelungstechnik, Vieweg, Braunschweig, 1992

15. Lehrveranstaltungen und -formen: 115401 Vorlesung Regelungstechnik I
- 115402 Übung Regelungstechnik I

16. Abschätzung Arbeitsaufwand: Frontalvorlesung

17. Prüfungsnummer/n und -name: 11541 Regelungstechnik I (PL), Schriftlich, 120 Min., Gewichtung: 1 Klausur (120 min., 2x pro Jahr)

18. Grundlage für ...: Regelungstechnik II

19. Medienform: Tafel, Folien, Beamer

20. Angeboten von: Leistungselektronik und Regelungstechnik
Modul: 11550 Leistungselektronik I

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Jörg Roth-Stielow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Jörg Roth-Stielow</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Wahlfächer → Schwerpunkt: Technische Informatik → Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Schwerpunkt: Elektrotechnische Systeme → Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Wahlfächer → Schwerpunkt: Elektromobilität → Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Schwerpunkt: Elektrische Energiesysteme → Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
→ Ergänzungsmodule → Schwerpunkt: Mikro- und Optoelektronik → Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
→ Kernmodule → Schwerpunkt: Elektromobilität → Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Wahlfächer → Schwerpunkt: Mikro- und Optoelektronik → Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
→ Ergänzungsmodule → Schwerpunkt: Elektromobilität → Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
→ Ergänzungsmodule → Schwerpunkt: Kommunikationssysteme und Signalverarbeitung → Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
→ Kernmodule → Schwerpunkt: Automatisierungs- und Regelungstechnik → Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Wahlfächer → Schwerpunkt: Kommunikationssysteme und Signalverarbeitung → Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Schwerpunkt: Automatisierungs- und Regelungstechnik → Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
→ Kernmodule → Schwerpunkt: Elektrische Energiesysteme → Schwerpunkte
11. Empfohlene Voraussetzungen:
Kenntnisse vergleichbar Elektrische Energietechnik I
Kenntnisse vergleichbar Elektrische Energietechnik II

12. Lernziele:
Studierende...

- ...kennen die wichtigsten potentialverbindenden und potentialtrennenden Schaltungen der Leistungselektronik mit abschaltbaren Ventilen und die zugehörigen Modulationsverfahren.
- ...können diese Anordnungen mathematisch beschreiben und Aufgabenstellungen lösen.
- ...kennen die grundlegenden Prinzipien der Messverfahren für Mischströme.

13. Inhalt:
- Abschaltbare Leistungshalbleiter
- Schaltungstopologien potentialverbindender Stellglieder
- Schaltungstopologien potentialtrennender Gleichstromsteller
- Modulationsverfahren
- Strommeßtechnik in der Leistungselektronik

14. Literatur:

15. Lehrveranstaltungen und -formen:
- 115501 Vorlesung Leistungselektronik I
- 115502 Übung Leistungselektronik I

16. Abschätzung Arbeitsaufwand:
Frontalvorlesung

17. Prüfungsnummer/n und -name:
11551 Leistungselektronik I (PL), Schriftlich, 120 Min., Gewichtung: 1 Klausur (120 min., 2x pro Jahr)

18. Grundlage für ...:

19. Medienform:
Tafel, Folien, Beamer

20. Angeboten von:
Leistungselektronik und Regelungstechnik
Modul: 11560 Elektrische Energienetze I

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050310001</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Stefan Tenbohlen</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Stefan Tenbohlen</td>
</tr>
<tr>
<td></td>
<td>→ Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
</tr>
<tr>
<td></td>
<td>→ Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
</tr>
<tr>
<td></td>
<td>→ Ergänzungsmodul --> Schwerpunkt: Technische Informatik --> Schwerpunkte</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
</tr>
<tr>
<td></td>
<td>→ Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
</tr>
<tr>
<td></td>
<td>→ Kernmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
</tr>
<tr>
<td></td>
<td>→ Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
</tr>
<tr>
<td></td>
<td>→ Ergänzungsmodul --> Schwerpunkt: Elektromobilität --> Schwerpunkte</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
</tr>
<tr>
<td></td>
<td>→ Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
</tr>
<tr>
<td></td>
<td>→ Ergänzungsmodul --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
</tr>
<tr>
<td></td>
<td>→ Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
</tr>
<tr>
<td></td>
<td>→ Ergänzungsmodul --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
</tr>
<tr>
<td></td>
<td>→ Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
</tr>
</tbody>
</table>
11. Empfohlene Voraussetzungen:

- Elektrische EnergieTechnik

12. Lernziele:

13. Inhalt:

- Aufgaben des elektrischen Energienetzes, Smart Grids
- Einpolige Ersatzschaltungen der Betriebselemente für symmetrische Betriebsweise
- Berechnung von Energieübertragungsanlagen und -netzen
- Betrieb elektrischer Energieversorgungsnetze
- Kurzschlussströme bei symmetrischem Kurzschluss
- Symmetrische Komponenten

14. Literatur:

- Oeding, Oswald: Elektrische Kraftwerke und Netze Springer-Verlag, 6. Aufl., 2004
- Heuck, Dettmann: Elektrische Energieversorgung Vieweg, Braunschweig/Wiesbaden, 6. Aufl., 2005
- Schwab: Elektroenergiesysteme, Springer-Verlag, 1. Aufl., 2006

15. Lehrveranstaltungen und -formen:

- 115601 Vorlesung Elektrische Energienetze 1
- 115602 Übung Elektrische Energienetze 1

16. Abschätzung Arbeitsaufwand:

- Präsenzzeit: 56 h
- Selbststudium/Nacharbeitszeit: 124 h
- Gesamt: 180 h

17. Prüfungsnummer/n und -name:

- 11561 Elektrische Energienetze I (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ...

- Elektrische Energienetze II

19. Medienform:

- PowerPoint, Tafelschrift

20. Angeboten von:

- Energieübertragung und Hochspannungstechnik
Modul: 11570 Hochspannungstechnik I

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050310003</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Stefan Tenbohlen</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Stefan Tenbohlen</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
</tr>
<tr>
<td>→ Ergänzungsmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
</tr>
<tr>
<td>→ Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
</tr>
<tr>
<td>→ Ergänzungsmodule --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
</tr>
<tr>
<td>→ Ergänzungsmodule --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
</tr>
<tr>
<td>→ Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
</tr>
<tr>
<td>→ Ergänzungsmodule --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
</tr>
<tr>
<td>→ Kernmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte</td>
</tr>
</tbody>
</table>
11. Empfohlene Voraussetzungen: • Elektrische Energietechnik

13. Inhalt: • Auftreten und Anwendung hoher Spannungen bzw. Ströme • Einführung in die Hochspannungsversuchstechnik • Berechnung elektrischer Felder • Grundlagen der Hochspannungsisoliertechnik • Isolierstoffsysteme in Hochspannungsgeräten

15. Lehrveranstaltungen und -formen: • 115702 Übung Hochspannungstechnik 1 • 115701 Vorlesung Hochspannungstechnik 1

17. Prüfungsnummer/n und -name: 11571 Hochspannungstechnik I (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ...:

19. Medienform: PowerPoint, Tafelanschrieb

20. Angeboten von: Energieübertragung und Hochspannungstechnik
Modul: 11580 Elektrische Maschinen I

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>052601011</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Modulduer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Nejila Parspour</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Nejila Parspour</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
- Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
- Ergänzungsmodul --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
- Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
- Ergänzungsmodul --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
- Ergänzungsmodul --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
- Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
- Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
- Kernmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
- Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
- Ergänzungsmodul --> Schwerpunkt: Elektromobilität --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
- Kernmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
- Ergänzungsmodul --> Schwerpunkt: Technische Informatik --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester

→ Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester

→ Schwerpunkt: Elektromobilität --> Schwerpunkte

11. Empfohlene Voraussetzungen:

12. Lernziele:
Studierende können magnetische Kreise analysieren und berechnen. Sie kennen den Aufbau und die Funktionsweise von Drehfeldmaschinen. Sie haben grundlegende Kenntnisse im Bereich der Steuerung und Modellierung von Drehfeldmaschinen.

13. Inhalt:
- Magnetismus und Grundlagen der magnetischen Kreise (Energie, Reluktanzkraft)
- Antriebstechnische Zusammenhänge
- Verluste in elektrischen Maschinen
- Berechnung von magnetischen Luftspaltfeldern von einfachen Wickelschemata in Drehfeldmaschinen
- Behandelte Maschinentypen:

 1) **Reluktanzmaschine** : Aufbau und Funktion, Ersatzschaltbilder, Energiefluss, Kennlinien, Bauformen und Einsatzgebiete

 2) **Synchronmaschine** : Aufbau und Funktion, Ersatzschaltbilder, Energiefluss, mathematische Zusammenhänge, Kennlinien, vollständiges Ersatzschaltbild, Drehzahlstellverfahren, Brems- und Anlaufverfahren, Bauformen und Einsatzgebiete

 3) **Asynchronmaschine** : Aufbau und Funktion, Ersatzschaltbilder, Energiefluss, mathematische Zusammenhänge, Kennlinien, Drehzahlstellverfahren, Brems- und Anlaufverfahren, Bauformen und Einsatzgebiete

14. Literatur:

15. Lehrveranstaltungen und -formen:
- 115801 Vorlesung Elektrische Maschinen I
- 115802 Übung Elektrische Maschinen I

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 56 h
- Selbststudium/Nacharbeitszeit: 124 h
- Summe: 180 h

17. Prüfungsnummer/n und -name: 11581 Elektrische Maschinen I (PL), Schriftlich, 120 Min., Gewichtung: 1
<table>
<thead>
<tr>
<th>18. Grundlage für ... :</th>
<th>Elektrische Maschinen II</th>
</tr>
</thead>
<tbody>
<tr>
<td>19. Medienform:</td>
<td>Beamer, Tafel, ILIAS</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Elektrische Energiewandlung</td>
</tr>
</tbody>
</table>
Modul: 11590 Photovoltaik I

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050513002</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Jürgen Heinz Werner</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Jürgen Heinz Werner</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10. Zuordnung zum Curriculum in diesem Studiengang:</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester</td>
</tr>
<tr>
<td>→ Kernmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester</td>
</tr>
<tr>
<td>→ Kernmodule --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester</td>
</tr>
<tr>
<td>→ Ergänzungsmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</td>
</tr>
<tr>
<td>→ Ergänzungsmodule --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</td>
</tr>
<tr>
<td>→ Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester</td>
</tr>
<tr>
<td>→ Ergänzungsmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester</td>
</tr>
<tr>
<td>→ Ergänzungsmodule --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</td>
</tr>
<tr>
<td>→ Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte</td>
</tr>
</tbody>
</table>
11. Empfohlene Voraussetzungen: Grundkenntnisse über Halbleitermaterialien und Halbleiterdioden, z.B. aus Mikroelektronik I

12. Lernziele: Die Studierenden kennen
- das Potential der Sonnenstrahlung
- die Funktionsweise von Solarzellen
- die wichtigsten Technologien der Herstellung von Solarmodulen
- die Grundprinzipien von Wechselrichtern
- die Energieerträge verschiedener Photovoltaik-Technologien
- den aktuellen Stand des Photovoltaikmarktes und der Kosten von Photovoltaik-Strom

13. Inhalt:
- Der Photovoltaische Effekt (Zelle, Modul, Anlage)
- Solarstrahlung und Energieumsatz in Deutschland
- Grundprinzip und Kenngrößen von Solarzellen
- Ersatzschaltbilder von Solarzellen
- Maximaler Wirkungsgrad
- Photovoltaik-Materialien und -Technologien
- Modultechnik
- Photovoltaische Systemtechnik
- (Jahres-) Energieerträge von Photovoltaiksystemen

14. Literatur:
- Goetzberger, Voß, Knobloch, Sonnenenergie: Photovoltaik, Teubner, 1994
- P. Würfel, Physik der Solarzellen, Spektrum, 1995
- M. A. Green, Solar Cells - Operating Principles, Technology and System Applications, Centre for Photovoltaic Devices and Systems, Sydney, 1986
- F. Staß, Photovoltaik - Technik, Potentiale und Perspektiven der solaren Stromerzeugung, Vieweg, 1996

15. Lehrveranstaltungen und -formen:
- 115901 Vorlesung Photovoltaik I
- 115902 Übungen Photovoltaik I

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 56 h
- Selbststudium/Nacharbeitszeit: 142 h
- Gesamt: 180 h

17. Prüfungsnummer/n und -name:
- 11591 Photovoltaik I (PL), Schriftlich, 90 Min., Gewichtung: 1

18. Grundlage für ... :
- Photovoltaik II

19. Medienform:
- Powerpoint, Tafel

20. Angeboten von:
- Physikalische Elektronik
311 Wahlfächer

Zugeordnete Module:

11610 Technische Informatik I
11620 Automatisierungstechnik I
11640 Digitale Signalverarbeitung
11650 Hochfrequenztechnik I
11660 Übertragungstechnik I
11670 Grundlagen integrierter Schaltungen
11680 Kommunikationsnetze I
11690 Hochfrequenztechnik II
11700 Halbleitertechnik I
11710 Optoelectronics I
11720 Halbleitertechnologie I
11730 Flachbildschirme
11740 Elektromagnetische Verträglichkeit
11750 Numerische Feldberechnung I
12420 Windenergie I - Grundlagen Windenergie
13590 Kraftfahrzeuge I + II
14130 Kraftfahrzeugmechatronik I + II
17110 Entwurf digitaler Systeme
17130 Entwurf digitaler Filter
17170 Elektrische Antriebe
25940 Verstärkertechnik I+II
29310 Regenerative Energiesysteme
41170 Speichertechnik für elektrische Energie I
69050 Technologien und Methoden der Softwaresysteme I
Modul: 11610 Technische Informatik I

2. Modulkürzel: 050901004
5. Modulduauer: Einsemestrig

3. Leistungspunkte: 6 LP
6. Turnus: Wintersemester

4. SWS: 4
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Andreas Kirstädter
9. Dozenten: Andreas Kirstädter
Matthias Meyer

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Kernmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Schwerpunkt: Technische Informatik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Ergänzungsmodule --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Ergänzungsmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Ergänzungsmodule --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester

Stand: 09. April 2018
11. Empfohlene Voraussetzungen:
Kenntnisse, wie sie in den Modulen Grundlagen der Programmierung sowie Grundlagen der Informationsverarbeitung vermittelt werden.

12. Lernziele:
Der Studierende kann Schaltungen auf der Register-Transfer-Ebene entwerfen, Mikroprogrammierung anwenden, kennt Konzepte und Mechanismen von Betriebssystemen und versteht den Aufbau von Rechnersystemen einschließlich der Ein- und Ausgabemechanismen.

13. Inhalt:
• Einfache Einadressmaschine, Elemente und Mechanismen der Register-Transfer-Ebene
• Prozessorbaugruppen und Mikroprogrammierung
• Grundkonzepte von CISC-Prozessoren
• Grundkonzepte und Mechanismen von Betriebssystemen
• Aufbau von Rechnersystemen einschl. Ein-/Ausgabe

14. Literatur:

15. Lehrveranstaltungen und -formen:
• 116102 Übung zu Technische Informatik I
• 116101 Vorlesung Technische Informatik I

16. Abschätzung Arbeitsaufwand:
Vorlesung, Übungen und Selbststudium

17. Prüfungsnummer/n und -name:
11611 Technische Informatik I (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ...

19. Medienform:
• Vortrag mit Folien
• Tafelanschriebe

20. Angeboten von:
Kommunikationsnetze und Rechnersysteme
Modul: 11620 Automatisierungstechnik I

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. Modulverantwortlicher:</th>
<th>Univ.-Prof. Dr.-Ing. Michael Weyrich</th>
</tr>
</thead>
<tbody>
<tr>
<td>9. Dozenten:</td>
<td>Michael Weyrich</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte</td>
<td></td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</td>
<td></td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte</td>
<td></td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</td>
<td></td>
</tr>
<tr>
<td>→ Zusatzmodule</td>
<td></td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester</td>
<td></td>
</tr>
<tr>
<td>→ Ergänzungsmodul --> Schwerpunkt: Technische Informatik --> Schwerpunkte</td>
<td></td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</td>
<td></td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte</td>
<td></td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</td>
<td></td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte</td>
<td></td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</td>
<td></td>
</tr>
<tr>
<td>→ Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte</td>
<td></td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester</td>
<td></td>
</tr>
<tr>
<td>→ Ergänzungsmodul --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte</td>
<td></td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</td>
<td></td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte</td>
<td></td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester</td>
<td></td>
</tr>
<tr>
<td>→ Ergänzungsmodul --> Schwerpunkt: Elektromobilität --> Schwerpunkte</td>
<td></td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester</td>
<td></td>
</tr>
<tr>
<td>→ Kernmodule --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte</td>
<td></td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</td>
<td></td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte</td>
<td></td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester</td>
<td></td>
</tr>
<tr>
<td>→ Ergänzungsmodul --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte</td>
<td></td>
</tr>
</tbody>
</table>

Stand: 09. April 2018

Seite 68 von 554
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester

→ Ergänzungsmodule --> Schwerpunkt:
Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte

11. Empfohlene Voraussetzungen:

• Grundlagen der Elektrotechnik, Informatik und Mathematik

12. Lernziele:

Die Studierenden

• besitzen grundlegende Kenntnisse über rechnerbasierte Automatisierungssysteme
• setzen sich mit Kommunikationssystemen der Automatisierungstechnik ausseinernder
• wenden grundlegende Methoden und Verfahren der Echtzeit-Programmierung an
• lernen spezifische Programmiersprachen der Automatisierungstechnik kennen

13. Inhalt:

• Grundlegende Begriffe der Automatisierungstechnik
• Automatisierungs-Gerätesysteme und -strukturen
• Prozessperipherie – Schnittstellen zwischen dem Automatisierungscomputersystem und dem technischen Prozess (Prozesssignalерfassung und -überwachung)
• Grundlagen zu Kommunikationssystemen in der Automatisierungstechnik (Feldbussysteme, drahtlose Kommunikation)
• Grundlagen der Echtzeitprogrammierung (Synchronre und Asynchronre Programmierung, Scheduling-Algorithmen, Synchronisationskonzepte)
• Programmiersprachen für die Automatisierungstechnik (Programmierung von Speicherprogrammierbaren und Pneumatischen Steuerungen)

14. Literatur:

• Vorlesungsskript
• Lauber, Göhner: Prozessautomatisierung Band 1 (3. Auflage), Springer, 1999
• Früh, Maier: Handbuch der Prozessautomatisierung (3. Auflage) Oldenbourg Industrieverlag, 2004
• Wellenreuther Automatisieren mit SPS (3. Auflage), Vieweg, 2005
• Materialien und Vorlesungsaufzeichnungen im ILIAS

15. Lehrveranstaltungen und -formen:

• 116201 Vorlesung Automatisierungstechnik I
• 116202 Übung Automatisierungstechnik I

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 56 h
Selbststudium: 124 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:

11621 Automatisierungstechnik I (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ... :

Automatisierungstechnik II

19. Medienform:

Beamerpräsentation mit Aufzeichnung der Vorlesungen und Übungen

20. Angeboten von:

Automatisierungstechnik und Softwaresysteme
Modul: 11640 Digitale Signalverarbeitung

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>051610002</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Bin Yang</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Bin Yang</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester**
 - → Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester**
 - → Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester**
 - → Kernmodule --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester**
 - → Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester**
 - → Schwerpunkt: Technische Informatik --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester**
 - → Ergänzungsmodule --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester**
 - → Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester**
 - → Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester**
 - → Ergänzungsmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester**
 - → Kernmodule --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester**
 - → Ergänzungsmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester**
 - → Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester**
 - → Kernmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte
11. Empfohlene Voraussetzungen: Grundkenntnisse in höherer Mathematik
Grundkenntnisse über Signale und Systeme

12. Lernziele: Die Studierenden

- beherrschen die grundlegenden Methoden zur digitalen Signalverarbeitung,
- besitzen die notwendigen Grundfertigkeiten zur Analyse von zeitdiskreten Signalen und Systemen,
- können einfache Signale und Systeme selbstständig analysieren,
- können einfache Signalverarbeitungsaufgaben selbstständig lösen.

13. Inhalt:

- A/D- und D/A-Umwandlung, Abtastung, Quantisierung
- Zeitdiskrete Signale und Systeme, Analyse von LTI-Systemen im Zeitbereich, Differenzengleichung
- Analyse von Signalen und LTI-Systemen in der komplexen Ebene, z-Transformation, Übertragungsfunktion, Pole und Nullstellen
- Analyse von Signalen und LTI-Systemen im Frequenzbereich
- Digitale Filter, FIR und IIR, Tiefpass, Hochpass, Bandpass, Oszillator, Kerbfilter, Kammfilter, linearpastige Filter, Allpass, minimalphasige Filter
- Korrelationsanalyse, Auto- und Kreuzkorrelation, Auto- und Kreuzkorrelationsfunktion
- Diskrete Fourier-Transformation, schnelle Fourier-Transformation (FFT), schnelle Faltung
- Spektralanalyse, Periodogramm, Fenstereffekt, Zeit-Frequenz-Analyse, Spektrogramm

14. Literatur:

- Vorlesungsunterlagen, Videoaufzeichnung der Vorlesung
- M. Mandal and A. Asif, ”Continuous and discrete time signals and systems“, Cambridge, 2008

15. Lehrveranstaltungen und -formen:

- 116401 Vorlesung Digitale Signalverarbeitung
- 116402 Übung Digitale Signalverarbeitung

16. Abschätzung Arbeitsaufwand:

- Präsenzzeit: 56 h
- Selbststudium: 124 h
- Gesamt: 180 h

17. Prüfungsnummer/n und -name:

- 11641 Digitale Signalverarbeitung (PL), Schriftlich, 90 Min., Gewichtung: 1

18. Grundlage für ...

19. Medienform:

- Laptop, Beamer, Videoaufzeichnung aller Vorlesungen und Übungen

20. Angeboten von:

- Netzwerk- und Systemtheorie
Modul: 11650 Hochfrequenztechnik I

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050600001</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Jan Hesselbarth</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Jan Hesselbarth</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte

- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte

- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte

- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 → Ergänzungsmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte

- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 → Ergänzungsmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte

- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte

- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte

- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 → Ergänzungsmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte

- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 → Kernmodule --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte

- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte

- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte

- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 → Ergänzungsmodule --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte

- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 → Ergänzungsmodule --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
11. Empfohlene Voraussetzungen:

13. Inhalt: Maxwell'sche Gleichungen, ebene Welle im freien Raum, Leitungswellen, konzentrierte Bauelemente, Resonanzschaltungen, Transformationsschaltungen, Hochfrequenzfilter

14. Literatur:
- Vorlesungsskript,
- Detlefsen, Siart: Grundlagen der Hochfrequenztechnik, 3. Auflage, Oldenbourg Verlag, 2009,

15. Lehrveranstaltungen und -formen:
- 116501 Vorlesung Hochfrequenztechnik I
- 116502 Übung Hochfrequenztechnik I

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 56 h
Selbststudium/Nacharbeitszeit: 124 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
11651 Hochfrequenztechnik I (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ...:
Hochfrequenztechnik II

19. Medienform:
Tafel, Beamer, Projektor, ILIAS

20. Angeboten von:
Hochfrequenztechnik
Modul: 11660 Übertragungstechnik I

2. Modulkürzel: 051100001
3. Leistungspunkte: 6 LP
4. SWS: 4

5. Modulduer: Einsemestrig
6. Turnus: Wintersemester
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr. Stephan ten Brink
9. Dozenten: Stephan Brink

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester

→ Ergänzungsmodul: Schwerpunkt: Elektrische Energiesysteme → Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester

→ Kernmodule: Schwerpunkt: Technische Informatik → Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester

→ Wahlfächer: Schwerpunkt: Elektrotechnische Systeme → Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester

→ Ergänzungsmodul: Schwerpunkt: Mikro- und Optoelektronik → Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester

→ Schwerpunkt: Elektrische Energiesysteme → Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester

→ Schwerpunkt: Technische Informatik → Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
11. Empfohlene Voraussetzungen: Grundlagen der Elektrotechnik

15. Lehrveranstaltungen und -formen: • 116602 Übungen Übertragungstechnik I • 116601 Vorlesung Übertragungstechnik I

17. Prüfungsnummer/n und -name: 11661 Übertragungstechnik I (PL), Schriftlich oder Mündlich, 120 Min., Gewichtung: 1

18. Grundlage für ... :

20. Angeboten von: Nachrichtenübertragung
Modul: 11670 Grundlagen integrierter Schaltungen

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050200002</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Manfred Berroth</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Manfred Berroth</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, |
| → Ergänzungsmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, |
| → Vorgezogene Master-Module |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester |
| → Kernmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester |
| → Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester |
| → Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester |
| → Kernmodule --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester |
| → Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester |
| → Schwerpunkt: Technische Informatik --> Schwerpunkte |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester |
| → Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester |
| → Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester |
| → Ergänzungsmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester |
| → Ergänzungsmodule --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester |
| → Kernmodule --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester |
| → Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte |
11. Empfohlene Voraussetzungen: Kenntnisse in Schaltungstechnik
Kenntnisse in höherer Mathematik

12. Lernziele: Die Studierenden besitzen Grundkenntnisse über integrierte Schaltungen der Digitaltechnik basierend auf Silizium-MOSFETs

13. Inhalt:
- Bauelemente der Digitaltechnik
- Digitale Grundschaltungen
- CMOS-Logikschaltungen
- Schaltwerke

14. Literatur:
- Vorlesungsskript,
- Hoffmann: VLSI-Entwurf - Modelle und Schaltungen, Oldenbourg Verlag, München, 1998

15. Lehrveranstaltungen und -formen:
- 116701 Vorlesung Grundlagen Integrierter Schaltungen
- 116702 Übung Grundlagen Integrierter Schaltungen

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 56 h
- Selbststudium: 124 h
- Gesamt: 180 h

17. Prüfungsnummer/n und -name: 11671 Grundlagen integrierter Schaltungen (PL), Schriftlich, 90 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform: Tafel, Beamer

20. Angeboten von: Elektrische und Optische Nachrichtentechnik
Modul: 11680 Kommunikationsnetze I

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Andreas Kirstädter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Andreas Kirstädter</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>→ Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>→ Kernmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>→ Zusatzmodule</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>→ Ergänzungsmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>→ Ergänzungsmodule --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>→ Kernmodule --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>→ Schwerpunkt: Technische Informatik --> Schwerpunkte</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte</td>
</tr>
</tbody>
</table>

Stand: 09. April 2018
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5.
Semester
→ Ergänzungsmodul --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte

11. Empfohlene Voraussetzungen: • Kenntnisse, wie sie in den Modulen Informatik I und Informatik II vermittelt werden

13. Inhalt: Grundprinzipien von Kommunikationsnetzen und -protokollen:
• Übertragung und Multiplextechniken
• Fehlersicherung
• Medienzugriff
• Vermittlung
• Wegesuche
• Transportprotokolle

Spezifikation mit Hilfe der Specification and Description Language (SDL)
Bewertung der Leistungsfähigkeit von Kommunikationsprotokollen
Ausgewählte Dienste und Anwendungen im Internet
Für nähere Informationen, aktuelle Ankündigungen und Material siehe http://www.ikr.uni-stuttgart.de/Xref/CC/L_CN_I

14. Literatur:
• Skript zur Vorlesung
• Tanenbaum: Computer Networks, Prentice-Hall, 2003
• Kurose, Ross: Computer Networking, Addison-Wesley, 2009

15. Lehrveranstaltungen und -formen:
• 116802 Übung zu Kommunikationsnetze I
• 116801 Vorlesung Kommunikationsnetze I

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 56 h
Selbststudium: 124 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
11681 Kommunikationsnetze I (PL), Schriftlich oder Mündlich, 120 Min., Gewichtung: 1

18. Grundlage für ... :
Praktische Übungen im Labor Rechnerarchitektur und Kommunikationssysteme I Communication Networks II

19. Medienform:
Notebook-Präsentation

20. Angeboten von:
Kommunikationsnetze und Rechnersysteme
Modul: 11690 Hochfrequenztechnik II

2. Modulkürzel: 050600002
5. Modulsdauer: Einsemestrig
3. Leistungspunkte: 6 LP
6. Turnus: Sommersemester
4. SWS: 4
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr. Jan Hesselbarth
9. Dozenten: Jan Hesselbarth

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>Modulverantwortlicher</th>
<th>Grundlagen der Nachrichtentechnik</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Grundlagend der Hochfrequenztechnik</td>
</tr>
</tbody>
</table>

15. Lehrveranstaltungen und -formen: • 116901 Vorlesung Antennas • 116902 Übung Antennas

17. Prüfungsnummer/n und -name: 11691 Hochfrequenztechnik II (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform: Tafel, Beamer, Projektor, ILIAS

20. Angeboten von: Hochfrequenztechnik
Modul: 11700 Halbleitertechnik I

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. Modulverantwortlicher:</th>
<th>Univ.-Prof. Dr.-Ing. Jörg Schulze</th>
</tr>
</thead>
<tbody>
<tr>
<td>9. Dozenten:</td>
<td>Jörg Schulze</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10. Zuordnung zum Curriculum in diesem Studiengang:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
<td></td>
</tr>
<tr>
<td>→ Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte</td>
<td></td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
<td></td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte</td>
<td></td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
<td></td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte</td>
<td></td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
<td></td>
</tr>
<tr>
<td>→ Ergänzungsmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte</td>
<td></td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
<td></td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte</td>
<td></td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
<td></td>
</tr>
<tr>
<td>→ Ergänzungsmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte</td>
<td></td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
<td></td>
</tr>
<tr>
<td>→ Ergänzungsmodule --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte</td>
<td></td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
<td></td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte</td>
<td></td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
<td></td>
</tr>
<tr>
<td>→ Ergänzungsmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte</td>
<td></td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
<td></td>
</tr>
<tr>
<td>→ Ergänzungsmodule --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte</td>
<td></td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
<td></td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte</td>
<td></td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
<td></td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte</td>
<td></td>
</tr>
</tbody>
</table>

Stand: 09. April 2018

- Beschreibung eines psn-Übergangs im thermodynamischen Gleichgewicht (Raumladungszonen, Poisson-Gleichung, Depletion-Näherung und Built-in-Spannung),
- Beschreibung eines psn-Übergangs im Nicht-Gleichgewicht (I-U-Charakteristik des idealen pn-Übergangs, Rekombinationsmechanismen in pn-Übergängen, I-U-Charakteristik des realen pn-Übergangs, Durchbruchmechanismen in pn-Übergängen),
- Aufbau und Funktionsweise von Bipolar- und Heterobipolartransistoren: Ideales und reales Verhalten und Hochfrequenzbetrieb,
- Thyristor und lichtgezündeter Thyristor, TRIAC (Triode for Alternating Current).

Als Ausblick wird zum Schluss der Vorlesung auf Leistungs bipolartransistoren mit isoliertem Gate wie dem Gate-Turn-Off-Thyristor (GTO-Thyristor) und dem Insulated Gate Bipolar Transistor (IGBT) und auf BiCMOS-Schaltungen eingegangen.

14. Literatur:
- Hoffmann: Systemintegration, Oldenbourg, 2003
- Löcherer: Halbleiterbauelemente, Teubner, 1992
- Roulsten: An Introduction to the Physics of Semiconductor Devices, Oxford University Press, 1999
15. Lehrveranstaltungen und -formen:
 • 117001 Vorlesung Halbleitertechnik 1
 • 117002 Übung Halbleitertechnik 1

16. Abschätzung Arbeitsaufwand:
 Gesamtaufwand: 180 h
 Dabei:
 • 45 h (2 SWS Vorlesung + 2 SWS Übung) Präsenz
 • 135 h Selbststudium

17. Prüfungsnummer/n und -name:
 11701 Halbleitertechnik I (PL), Schriftlich, 90 Min., Gewichtung: 1

18. Grundlage für ...

19. Medienform:
 • PowerPoint-Präsentationen zu den einzelnen Kapiteln (Beamer)
 • Aufzeichnungen während der Vorlesungen (Notizen, Rechnungen, Skizzen u. ä.) mit Hilfe eines Tablet-PCs (Beamer)
 • Lehrbriefe zu den einzelnen Themenschwerpunkten
 • Ausgedrucktes Skript mit sämtlichen Vorlesungs- und Übungsfolien, Übungsblättern und Lehrbriefen (zum Selbstkostenpreis erhältlich)
 • Vorlesungsaufzeichnungen im MPG4-Format mittels Tablet-PCs und Head-Set
 • Sämtliche Unterlagen werden elektronisch über ILIAS zum Download bereitgestellt.

20. Angeboten von:
 Halbleitertechnik
Modul: 11710 Optoelectronics I

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050513001</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Jürgen Heinz Werner</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Jürgen Heinz Werner</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10. Zuordnung zum Curriculum in diesem Studiengang:</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016,</td>
</tr>
<tr>
<td>→ Ergänzungsmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016,</td>
</tr>
<tr>
<td>→ Kernmodule --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016,</td>
</tr>
<tr>
<td>→ Ergänzungsmodule --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011,</td>
</tr>
<tr>
<td>Semester → Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011,</td>
</tr>
<tr>
<td>Semester → Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011,</td>
</tr>
<tr>
<td>Semester → Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011,</td>
</tr>
<tr>
<td>Semester → Ergänzungsmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011,</td>
</tr>
<tr>
<td>Semester → Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011,</td>
</tr>
<tr>
<td>Semester → Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011,</td>
</tr>
<tr>
<td>Semester → Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011,</td>
</tr>
<tr>
<td>Semester → Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016,</td>
</tr>
<tr>
<td>Semester → Ergänzungsmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016,</td>
</tr>
<tr>
<td>Semester → Ergänzungsmodule --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte</td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen:
12. Lernziele: The students know
- the fundamentals of incoherent and coherent radiation
- the generation of radiation by light emitting diodes and semiconductor laser diodes
- the transport of radiation via glass fibers and its detection using photodetectors

13. Inhalt:
• Basics of incoherent and coherent radiation
• Semiconductor basics
• Excitation and recombination processes in semiconductors
• Light emitting diodes
• Semiconductor lasers
• Glass fibers
• Photodetectors

14. Literatur:
• W. Bludau, Halbleiteroptoelektronik: Die physikalischen Grundlagen der LEDs, Diodenlaser und pn-Photodioden (Carl Hanser, München, 1995).
• W. L. Leigh, Devices for Optoelectronics (Dekker, New York, 1996).
• G. Winstel and C. Weyrich, Optoelektronik II (Springer-Verlag, Berlin, 1986).

15. Lehrveranstaltungen und -formen:
• 117102 Übung Optoelectronics I
• 117101 Vorlesung Optoelectronics I

16. Abschätzung Arbeitsaufwand:
Presence time: 56 h
Self studies: 124 h
Total: 180 h

17. Prüfungsnummer/n und -name:
11711 Optoelectronics I (PL), Schriftlich oder Mündlich, 120 Min., Gewichtung: 1
group presentation in seminar (60 min, once per year) written exam (60 min, twice per year)

18. Grundlage für ... :

19. Medienform:
- Powerpoint, blackboard

20. Angeboten von:
Physikalische Elektronik
Modul: 11720 Halbleitertechnologie I

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Jörg Schulze</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Jörg Schulze</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester**
 - → Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
 - → Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte
 - → Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
 - → Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester**
 - → Ergänzungsmodul --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
 - → Ergänzungsmodul --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
 - → Wahlfächer --> Schwerpunkt: Elektrische Informatik --> Schwerpunkte
 - → Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester**
 - → Ergänzungsmodul --> Schwerpunkt: Elektromobilität --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester**
 - → Ergänzungsmodul --> Schwerpunkt: Technische Informatik --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester**
 - → Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte

11. Empfohlene Voraussetzungen:

Empfohlen werden Kenntnisse, wie Sie beispielsweise in *Mikroelektronik (ME)* vermittelt werden.
12. Lernziele:

13. Inhalt:

- Einführung in die Silizium-basierte Halbleitertechnologie,
- Technologische Grundlagen (Prozessparameter und grundlegende Technologieprozesse),
- Substrat- und Waferherstellung (CZ-Waver, FZ-Wafer und Silicon-On-Insulator-Wafer),
- Lithographie (optische Lithographie und alternative Verfahren) und Strukturierungsmethoden (nasschemisch, trockenchemisch und physikalisch-chemisch),
- Dotiermethoden: Epitaxie, Diffusion und Ionenimplantation,
- Herstellung und Strukturierung von Isolatorschichten (Standarddielektrika, Low-k-, Medium-k- und high-k-Dielektrika) und Planarisierungsmethoden,
- Herstellung und Strukturierung metallischer Schichten.

Als Ausblick wird zum Schluss der Vorlesung auf die Aufbau- und Verbindungstechnik eingegangen und exemplarische Herstellungsprozesse unterschiedlicher mikroelektronischer Bauelemente werden diskutiert.

14. Literatur:

- Beneking: Halbleitertechnologie, Eine Einführung in die Prozesstechnik von Silizium und III-V Verbindungen, Teubner Verlag, 1984
- Hilleringmann: Silizium-Halbleitertechnologie, Teubner Verlag, 1996
- v. Münch: Einführung in die Halbleitertechnologie, Teubner Verlag, 1993
- Nijs (Ed.): Advanced Silicon and Semiconducting Silicon-Alloy Based Materials and Devices, Institute of Physics Publishing, 1994
• Schulze: Konzepte Silizium-basierter MOS-Bauelemente, Springer, 2005
• Siffert, Krimmel (Ed.): Silicon - Evolution and Future of a Technology, Springer, 2004

15. Lehrveranstaltungen und -formen:
• 117201 Vorlesung Halbleitertechnologie 1
• 117202 Übung Halbleitertechnologie 1

16. Abschätzung Arbeitsaufwand:
Gesamtaufwand: 180 h
Dabei:
• 45 h (2 SWS Vorlesung + 2 SWS Übung) Präsenz
• 135 h Selbststudium

17. Prüfungsnummer/n und -name:
11721 Halbleitertechnologie I (PL), Schriftlich, 90 Min., Gewichtung: 1

18. Grundlage für ...

19. Medienform:
• PowerPoint-Präsentationen zu den einzelnen Kapiteln (Beamer)
• Aufzeichnungen während der Vorlesungen (Notizen, Rechnungen, Skizzen u. ä.) mit Hilfe eines Tablet-PCs (Beamer)
• Lehrbriefe zu den einzelnen Themenschwerpunkten
• Ausgedrucktes Skript mit sämtlichen Vorlesungs- und Übungsfolien, Übungsbögen und Lehrbriefen (zum Selbstkostenpreis erhältlich)
• Vorlesungsaufzeichnungen im MPG4-Format mittels Tablet-PCs und Head-Set
• Sämtliche Unterlagen werden elektronisch über ILIAS zum Download bereitgestellt.

20. Angeboten von:
Halbleitertechnik
Modul: 11730 Flachbildschirme

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>051620001</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Nesrine Kammoun</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Norbert Frühauf</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester
→ Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte
→ Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester
→ Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 6. Semester
→ Ergänzungsmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester
→ Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester
→ Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 6. Semester
→ Ergänzungsmodule --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 6. Semester
→ Ergänzungsmodule --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester
→ Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 6. Semester
→ Ergänzungsmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 6. Semester
→ Ergänzungsmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester
→ Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 6. Semester
Kernmodule --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte

11. Empfohlene Voraussetzungen:

12. Lernziele:

 Die Studierenden
 • kennen die in Flachbildschirmen eingesetzten elektrooptischen Effekte und die zugehörigen Ansteuerverfahren
 • können grundlegende Dimensionierungen von Flüssigkristalldisplays vornehmen
 • kennen Verfahren zur elektro-optischen Charakterisierung von Bildschirmen und können wesentliche Leistungsparameter wie Kontrast und Farbort berechnen

13. Inhalt:

 • Einsatzgebiete der Flachbildschirmtechnik
 • Physiologie des menschlichen Sehens
 • Farbdarstellung (Tri-Stimulus-Theorie)
 • Elektro-optische Eigenschaften von Flüssigkristallen
 • Organische Lichtemittierende Dioden
 • Elektrophoretische Medien
 • Sonstige Elektro-optische Effekte
 • Plasmabildschirme
 • Passiv- und Aktiv-Matrix Ansteuerverfahren
 • Ansteuerschaltungen
 • Herstellungsverfahren
 • Charakterisierung von Flachbildschirmen

14. Literatur:

 • E. Lueder - Liquid Crystal Displays, Wiley, 2001

15. Lehrveranstaltungen und -formen:

 • 117301 Vorlesung Flachbildschirme
 • 117302 Übung Flachbildschirme

16. Abschätzung Arbeitsaufwand:

 Präsenzzeit: 56 h
 Selbststudium/Nacharbeitszeit: 124 h
 Gesamt: 180 h

17. Prüfungsnummer/n und -name:

 11731 Flachbildschirme (PL), Schriftlich oder Mündlich, 90 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform:

 Tafel, Projektor, Beamer, ILIAS

20. Angeboten von:

 Bildschirmtechnik
Modul: 11740 Elektromagnetische Verträglichkeit

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. Modulverantwortlicher:</th>
<th>Univ.-Prof. Dr.-Ing. Stefan Tenbohlen</th>
</tr>
</thead>
</table>
| 9. Dozenten: | Stefan Tenbohlen
 Daniel Schneider |

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>- Schwerpunkt:</td>
<td>Elektrotechnische Systeme --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</td>
<td>- Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester</td>
<td>- Ergänzungsmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester</td>
<td>- Ergänzungsmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester</td>
<td>- Ergänzungsmodule --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte</td>
</tr>
</tbody>
</table>
11. Empfohlene Voraussetzungen: Grundlagen der Elektrotechnik

12. Lernziele: Studierender hat Kenntnisse der Messverfahren und Messausrüstungen der Elektromagnetischen Verträglichkeit. Er kennt praktische Abhilfemaßnahmen zur Beherrschung der EMV-Problematik und die Besonderheiten in der Automobil-EMV

13. Inhalt:
 - Einführung
 - Begriffsbestimmungen
 - EMV-Umgebung
 - Allgemeine Maßnahmen zur Sicherstellung der EMV
 - Aktive Schutzmaßnahmen
 - Nachweis der EMV (Messverfahren, Messumgebung)
 - Einwirkung elektromagnetischer Felder auf biologische Systeme
 - EMV im Automobilbereich

14. Literatur:
 - Schwab, Adolf J.: Elektromagnetische Verträglichkeit Springer Verlag, 1996
 - Habiger, Ernst: Elektromagnetische Verträglichkeit Hüthig Verlag, 3. Aufl., 1998
 - Gonschorek, K.-H.: EMV für Geräteentwickler und Systemintegratoren Springer Verlag, 2005
 - Wiesinger, J. u.a.: EMV-Blitzschutz von elektrischen und elektronischen Systemen in baulichen Anlagen VDE-Verlag, Oktober 2004

15. Lehrveranstaltungen und -formen:
 - 117401 Vorlesung Elektromagnetische Verträglichkeit
 - 117402 Übung Elektromagnetische Verträglichkeit

16. Abschätzung Arbeitsaufwand:
 - Präsenzzeit: 56 h
 - Selbststudium/Nacharbeitszeit: 124 h
 - Gesamt: 180 h

17. Prüfungsnummer/n und -name:
 - 11741 Elektromagnetische Verträglichkeit (PL), Schriftlich, 90 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform:
 - PowerPoint, Tafelanschrieb

20. Angeboten von:
 - Energieübertragung und Hochspannungstechnik
Modul: 11750 Numerische Feldberechnung I

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>051800003</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Prof. Dr. Wolfgang Rucker</td>
</tr>
</tbody>
</table>

9. Dozenten:

<table>
<thead>
<tr>
<th>10. Zuordnung zum Curriculum in diesem Studiengang:</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester</td>
</tr>
<tr>
<td>→ Ergänzungsmodul --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester</td>
</tr>
<tr>
<td>→ Ergänzungsmodul --> Schwerpunkt: Elektromobilität --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester</td>
</tr>
<tr>
<td>→ Ergänzungsmodul --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</td>
</tr>
<tr>
<td>→ Zusatzmodule</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester</td>
</tr>
<tr>
<td>→ Ergänzungsmodul --> Schwerpunkt: Technische Informatik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester</td>
</tr>
<tr>
<td>→ Ergänzungsmodul --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester</td>
</tr>
<tr>
<td>→ Ergänzungsmodul --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</td>
</tr>
<tr>
<td>→ Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte</td>
</tr>
</tbody>
</table>

12. Lernziele:
- besitzen die Grundkenntnisse der wichtigsten numerischen Verfahren zur Modellierung und Simulation von Feldproblemen in der Elektrotechnik,
- beherrschen den Einsatz von Simulationswerkzeugen.

13. Inhalt:
- Grundlagen der numerischen Simulation elektromagnetischer Felder
- Allgemeiner Ablauf einer numerischen Simulation, Simulationssoftware
- Methode der finiten Elemente (FEM)
- Ausgangsbeziehung der FEM für Potenzialprobleme
- Geometriemodellierung
- Erstellung und Lösung des FE-Gleichungssystems
- FE-Formulierungen von elektromagnetischen Feldproblemen
- Methode der Randelemente (BEM)
- Randintegraldarstellung, Randintegralgleichung
- Erstellung und Lösung des BE-Gleichungssystems
- BE-Formulierung von Elektrodenproblemen

14. Literatur:

15. Lehrveranstaltungen und -formen:
- 117501 Vorlesung Numerische Feldberechnung I
- 117502 Übung Numerische Feldberechnung I

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 56 h
- Selbststudium: 124 h
- Gesamt: 180 h

17. Prüfungsnummer/n und -name:
- 11751 Numerische Feldberechnung I (PL), Mündlich, 45 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform:
- Tafel, Beamer

20. Angeboten von:
- Elektrotechnik bionischer Systeme
Modul: 12420 Windenergie 1 - Grundlagen Windenergie

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>060320011</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Modulldauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Po Wen Cheng</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester |
| Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester |
| Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester |
| Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester |
| Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester |
| Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester |
| Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester |
| Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester |
| Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester |
| Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester |
| Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte |
11. Empfohlene Voraussetzungen: Technische Mechanik I

12. Lernziele:
• Die Studierenden erlangen Kenntnisse über die Grundlagen der Windenergie, insbesondere über die physikalischen und technischen Prinzipien bei modernen Windenergieanlagen.
• Die Studierenden sind dabei in der Lage einfache physikalische Grundgleichungen und Zusammenhänge herzuleiten und ihre Bedeutung in Bezug auf die Nutzung von Windenergie zu verstehen sowie zu erklären.
• Ausgehend vom Verständnis der einzelnen Teildisziplinen (Aerodynamik, Strukturdynamik, Elektrotechnik etc.) können die Studierenden den Aufbau und die Funktionsweise des Gesamtsystems Windenergieanlage erläutern und auf ausgewählten Gebieten elementare Auslegungs- und Entwurfsberechnungen durchführen.
• Nach Abschluss der Lehrveranstaltung haben die Studierenden die wesentlichen Kompetenzen aufgebaut, die sie befähigen sich in Spezialgebiete im Bereich Windenergie (Komponentenauslegung, Modellierung und Simulation, Windparkplanung etc.) einuarbeiten.

13. Inhalt:
• Vorlesung
• Übung und Versuch
 Es werden 8 Hörsaalübungen sowie ein Hochlaufversuch im Böenwindkanal angeboten.

14. Literatur:
• lecture notes
• R. Gasch und J. Twele, Windkraftanlagen

15. Lehrveranstaltungen und -formen:
• 124202 Übung Windenergienutzung I
• 124201 Vorlesung Windenergienutzung I

16. Abschätzung Arbeitsaufwand:
• Vorlesung:
 Präsenzzeit 28 Stunden, Selbststudium 62 Stunden
• Übung:
 Präsenzzeit 8 Stunden, Selbststudium 74 Stunden
• Windkanalversuch:
 Präsenzzeit 3 Stunden, Versuchsauswertung 5 Stunden
Summe: 180 Stunden

17. Prüfungsnummer/n und -name:
12421 Windenergie 1 - Grundlagen Windenergie (PL), Schriftlich, 90 Min., Gewichtung: 1
Das Versuchsprotokoll des Windkanalversuchs während des Semesters ist Voraussetzung für die Teilnahme an der Prüfung.
Die Prüfung umfasst einen Fragenteil (20 min) und einen Rechenteil (70 min).

<table>
<thead>
<tr>
<th>18. Grundlage für ...</th>
<th>Windenergie 3 - Entwurf von Windenergieanlagen Windenergie 4 - Windenergie-Projekt</th>
</tr>
</thead>
<tbody>
<tr>
<td>19. Medienform:</td>
<td>PowerPoint, Tafelanschrieb, Versuchsdurchführungen</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Windenergie</td>
</tr>
</tbody>
</table>
Modul: 13590 Kraftfahrzeuge I + II

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Nils Widdecke
9. Dozenten: Jochen Wiedemann
Nils Widdecke

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
- Schwerpunkt: Elektromobilität --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
- Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
- Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
- Ergänzungsmodul --> Schwerpunkt: Technische Informatik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
- Ergänzungsmodul --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
- Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
- Zusatzmodule
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
- Ergänzungsmodul --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
- Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
- Ergänzungsmodul --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
- Kernmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
- Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
11. Empfohlene Voraussetzungen: Kenntnisse aus den Fachsemestern 1 bis 4

14. Literatur:
 - Wiedemann, J.: Kraftfahrzeuge I+II, Vorlesungsumdruck,
 - Reimpell, J.: Fahrwerkstechnik: Grundlagen, Vogel-Fachbuchverlag, 2005

15. Lehrveranstaltungen und -formen:
 - 135901 Vorlesung Kraftfahrzeuge I + II
 - 135902 Übung Kraftfahrzeuge I + II

16. Abschätzung Arbeitsaufwand: Vorlesung, Selbststudium

17. Prüfungsnummer/n und -name: 13591 Kraftfahrzeuge I + II (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform: PPT-Präsentation

20. Angeboten von: Kraftfahrwesen
Modul: 14130 Kraftfahrzeugmechatronik I + II

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>070800002</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Moduldaurer:</td>
<td>Zweisemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th align="center">B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td align="center">Kernmodule --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte</td>
</tr>
<tr>
<td align="center">B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
</tr>
<tr>
<td align="center">→ Wahlfächer: Automatisierungs- und Regelungstechnik --> Schwerpunkte</td>
</tr>
<tr>
<td align="center">→ Schwerpunkt: Elektromobilität --> Schwerpunkte</td>
</tr>
<tr>
<td align="center">→ Wahlfächer: Elektrotechnische Systeme --> Schwerpunkte</td>
</tr>
<tr>
<td align="center">→ Wahlfächer: Elektrische Energiesysteme --> Schwerpunkte</td>
</tr>
<tr>
<td align="center">→ Wahlfächer: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte</td>
</tr>
<tr>
<td align="center">→ Wahlfächer: Mikro- und Optoelektronik --> Schwerpunkte</td>
</tr>
<tr>
<td align="center">→ Wahlfächer: Technische Informatik --> Schwerpunkte</td>
</tr>
<tr>
<td align="center">→ Zusatzmodule</td>
</tr>
<tr>
<td align="center">→ Kernmodule: Elektromobilität --> Schwerpunkte</td>
</tr>
<tr>
<td align="center">→ Wahlfächer: Technische Informatik --> Schwerpunkte</td>
</tr>
</tbody>
</table>
11. Empfohlene Voraussetzungen:
Grundkenntnisse aus den Fachsemestern 1 bis 4

12. Lernziele:
Die Studenten kennen mechatronische Komponenten in Automobilen, können Funktionsweisen und Zusammenhänge erklären.
Die Studenten können Entwicklungsmethoden für mechatronische Komponenten im Automobil einordnen und anwenden. Wichtige Entwicklungswerkzeuge können sie nutzen.

13. Inhalt:

VL Kfz-Mech I:
- kraftfahrzeugspezifische Anforderungen an die Elektronik
- Bordnetz (Energiemanagement, Generator, Starter, Batterie, Licht)
- Motorelektronik (Zündung, Einspritzung)
- Getriebeelektronik
- Lenkung
- ABS, ASR, ESP, elektromechanische Bremse, Dämpfungsregelung, Reifendrucküberwachung
- Sicherheitssysteme (Airbag, Gurt, Alarmanlage, Wegfahrsperre)
- Komfortsysteme (Tempomat, Abstandsregelung, Klimaanlage)

VL Kfz-Mech II:
- Grundlagen mechatronischer Systeme (Steuerung/Regelung, diskrete Systeme, Echtzeitsysteme, eingebettete Systeme, vernetzte Systeme)
- Systemarchitektur und Fahrzeugentwicklungsprozesse
- Kernprozess zur Entwicklung von mechatronischen Systemen und Software (Schwerpunkt V-Modell)

Laborübungen Kraftfahrzeugmechatronik
- Rapid Prototyping (Simulink)
- Modellbasierte Funktionsentwicklung mit TargetLink
- Elektronik

14. Literatur:
Vorlesungsumdruck: "Kraftfahrzeugmechatronik I" (Reuss)

15. Lehrveranstaltungen und -formen:
- 141303 Laborübungen Kraftfahrzeugmechatronik
- 141301 Vorlesung Kraftfahrzeugmechatronik I
- 141302 Vorlesung Kraftfahrzeugmechatronik II

16. Abschätzung Arbeitsaufwand:
Vorlesung, Laborübungen, Selbststudium

17. Prüfungsnummer/n und -name:
14131 Kraftfahrzeugmechatronik I + II (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform:
Vorlesung (Beamer), Laborübungen (am PC, betreute Zweiergruppen)

20. Angeboten von:
Kraftfahrzeugmechatronik
Modul: 17110 Entwurf digitaler Systeme

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Andreas Kirstädter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Matthias Meyer</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 → Ergänzungsmodulte --> Schwerpunkt: Elektromobilität --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 → Ergänzungsmodulte --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Zusatzmodule
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 → Ergänzungsmodulte --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 → Ergänzungsmodulte --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 → Ergänzungsmodulte --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
11. Empfohlene Voraussetzungen: Kenntnisse, wie sie beispielsweise im Modul Informatik II vermittelt werden

12. Lernziele: Der Studierende kann digitale Systeme entwerfen, simulieren und testen, beherrscht die Hardware-Beschreibungssprache VHDL, kennt die physikalischen Randbedingungen beim Aufbau moderner digitaler Schaltungen.

13. Inhalt:
- Entwurfsprozesse und Modularisierung
- Modellierung digitaler Systeme mit VHDL (Grundlegende Konzepte von VHDL, Verhaltens- und Strukturbeschreibung, Typkonzept, sequenzielle und nebenläufige Anweisungen, Prozeduren und Funktionen, Signale, Bibliotheken)
- Realisierung digitaler Schaltungen (Spannungsversorgung, Übersprechen, Reflexionen und Busabschlüsse, Metastabilität, Realisierungsaspekte bei kombinatorischen und sequenziellen Netzwerken)
- Digitale Bauelemente (Programmierbare Logik, Speicherbausteine)

Für nähere Informationen, aktuelle Ankündigungen und Material siehe http://www.ikr.uni-stuttgart.de/Xref/CC/L_EDS

14. Literatur:
- Vorlesungsskript

15. Lehrveranstaltungen und -formen:
- 171101 Vorlesung Entwurf digitaler Systeme
- 171102 Übung Entwurf digitaler Systeme

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 56 h
- Selbststudium: 124 h
- Gesamt: 180 h

17. Prüfungsnummer/n und -name:
- 17111 Entwurf digitaler Systeme (PL), Mündlich, 120 Min., Gewichtung: 1

18. Grundlage für ... :
- Praktische Übungen im Labor Rechnerarchitektur und Kommunikationssysteme I

19. Medienform:
- Notebook-Präsentationen

20. Angeboten von:
- Kommunikationsnetze und Rechnersysteme
Modul: 17130 Entwurf digitaler Filter

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>051610003</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>PD Dr.-Ing. Markus Gaida</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Markus Gaida</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester
 - Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
 - Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte

- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester
 - Ergänzungsmodul --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
 - Ergänzungsmodul --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte

- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 6. Semester
 - Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte
 - Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
 - Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte
 - Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
11. Empfohlene Voraussetzungen:
Empfohlen werden Kenntnisse, wie sie beispielsweise in der Lehrveranstaltung *Signale und Systeme* vermittelt werden.

12. Lernziele:

13. Inhalt:
- Filter und Anwendungen, FIR- und IIR-Filter, Blockdiagramm und Signalfussgraph
- Entwurf von FIR-Filtern: linearphasige FIR-Filter, Fenster-Methode, Frequenzabtastmethode, Methode der kleinsten Quadrate, Remez-Algorithmus
- Entwurf von IIR-Filtern: analoge Referenzfilter (Butterworth, Tschebyscheff I und II, Cauer), Frequenztransformation, Methode der invarianten Impulsantwort, Bilineartransformation
- Struktur von FIR-Filtern (Direkt, Kaskade, Lattice), Struktur von IIR-Filtern (Direkt, Kaskade, Parallel, Lattice-Ladder), Levinson-Durbin-Rekursion, Schur-Cohen-Rekursion
- Quantisierungseffekte
- Zahlendarstellung, Fließkomma und Festkomma, Koeffizientenempfindlichkeit, Überlauf und Sättigung, Rundungsverfahren, Polglitter, Rundungsrauschen, Signal-zu-Rausch-Abstand, Grenzyklen
- Entwurf digitaler Filter mit MATLAB
- Abtastratenumsetzung, Dezimation, Interpolation

14. Literatur:
- Skript

15. Lehrveranstaltungen und -formen:
- 171301 Vorlesung Entwurf digitaler Filter
- 171302 Übung Entwurf digitaler Filter

16. Abschätzung Arbeitsaufwand:
Präsenzzzeit: 56 h
Selbststudium/Nacharbeitszeit: 124 h
Gesamt: 180 h
<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>17131 Entwurf digitaler Filter (PL), Schriftlich oder Mündlich, 90 Min., Gewichtung: 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Schriftliche Prüfung (90 Min.), Prüfung wird zwei mal im Jahr angeboten. Bei geringer Hörerzahl kann die Prüfung mündlich sein, dies wird am Anfang der Vorlesung bekanntgegeben. Im Fall einer mündlichen Prüfung kann dies auch eine mündliche Gruppenprüfung (max. 3 zu prüfende Personen pro Gruppe, ca. 15 Min. pro zu prüfender Person) sein.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>18. Grundlage für ... :</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>19. Medienform:</td>
<td>Tafel, Projektor, Beamer, CIP-Pool</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Institutsverbund Elektrotechnik und Informationstechnik</td>
</tr>
</tbody>
</table>
Modul: 17170 Elektrische Antriebe

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>051010013</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Jörg Roth-Stielow</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Jörg Roth-Stielow</td>
</tr>
</tbody>
</table>

Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester

- **→ Ergänzungsmodul**: Schwerpunkt: Technische Informatik → Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester

- **→ Wahlfächer**: Schwerpunkt: Automatisierungs- und Regelungstechnik → Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester

- **→ Wahlfächer**: Schwerpunkt: Elektrische Energiesysteme → Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester

- **→ Ergänzungsmodul**: Schwerpunkt: Mikro- und Optoelektronik → Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester

- **→ Ergänzungsmodul**: Schwerpunkt: Elektromobilität → Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester

- **→ Wahlfächer**: Schwerpunkt: Elektromobilität → Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester

- **→ Ergänzungsmodul**: Schwerpunkt: Automatisierungs- und Regelungstechnik → Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester

- **→ Ergänzungsmodul**: Schwerpunkt: Kommunikationssysteme und Signalverarbeitung → Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester

- **→ Wahlfächer**: Schwerpunkt: Mikro- und Optoelektronik → Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester

- **→ Wahlfächer**: Schwerpunkt: Elektrotechnische Systeme → Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester

- **→ Wahlfächer**: Schwerpunkt: Kommunikationssysteme und Signalverarbeitung → Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester

- **→ Wahlfächer**: Schwerpunkt: Technische Informatik → Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
Ergänzungsmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte

<table>
<thead>
<tr>
<th>11. Empfohlene Voraussetzungen:</th>
<th>• Kenntnisse vergleichbar "Einführung in die Elektrotechnik I"</th>
</tr>
</thead>
<tbody>
<tr>
<td>12. Lernziele:</td>
<td>Studierende...</td>
</tr>
<tr>
<td></td>
<td>• ...kennen den Aufbau, die Komponenten und die Auslegungskriterien von geregelten elektrischen Antrieben.</td>
</tr>
<tr>
<td></td>
<td>• ...können mechanische Antriebsstränge eines elektromechanischen Antriebssystems mathematisch beschreiben und einfache Aufgabenstellungen lösen.</td>
</tr>
<tr>
<td></td>
<td>• ...können leistungselektronische Stellgliedereines elektromechanischen Antriebssystems mathematisch beschreiben und einfache Aufgabenstellungen lösen.</td>
</tr>
<tr>
<td></td>
<td>• ...können elektrische Maschinen eines elektromechanischen Antriebssystems mathematisch beschreiben und einfache Aufgabenstellungen lösen.</td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>• Grundlagen der Antriebstechnik</td>
</tr>
<tr>
<td></td>
<td>• Elektronische Stellglieder</td>
</tr>
<tr>
<td></td>
<td>• Gleichstrommaschine</td>
</tr>
<tr>
<td></td>
<td>• Drehfeldmaschinen</td>
</tr>
<tr>
<td></td>
<td>• Schröder, Dierk: Elektrische Antriebe 2, Springer, Berlin, 1995</td>
</tr>
<tr>
<td></td>
<td>• Heumann, K.: Grundlagen der Leistungselektronik,B. G. Teubner, Stuttgart, 1989</td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 171701 Vorlesung Elektrische Antriebe</td>
</tr>
<tr>
<td></td>
<td>• 171702 Übung Elektrische Antriebe</td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Frontalvorlesung</td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>17171 Elektrische Antriebe (PL), Schriftlich, 120 Min., Gewichtung: 1 Klausur (120 min., 2x pro Jahr)</td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Tafel, Folien, Beamer</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Leistungselektronik und Regelungstechnik</td>
</tr>
</tbody>
</table>
Modul: 25940 Verstärkertechnik I+II

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050200013</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>Zweisemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Manfred Berroth</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Markus Grözing</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10. Zuordnung zum Curriculum in diesem Studiengang:</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester</td>
</tr>
<tr>
<td>→ Ergänzungsmodule --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester</td>
</tr>
<tr>
<td>→ Ergänzungsmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester</td>
</tr>
<tr>
<td>→ Ergänzungsmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester</td>
</tr>
<tr>
<td>→ Ergänzungsmodule --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester</td>
</tr>
<tr>
<td>→ Ergänzungsmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester</td>
</tr>
</tbody>
</table>
11. Empfohlene Voraussetzungen: Grundkenntnisse in Elektrotechnik, Grundkenntnisse in Schaltungstechnik, Grundkenntnisse von elektronischen Bauelementen

13. Inhalt:
- Analog Grundschaltungen
- Stromspiegel
- Innerer Aufbau von Operationsverstärkern
- Anwendung von Operationsverstärkern
- Rauscharme Verstärker
- Oszillatoren
- Frequenzumsetzung
- Leistungsverstärker

14. Literatur:
- Zusatzblätter zum Selbststudium
- Aufgaben zur Selbstbearbeitung

Bücher:
- B. Razavi: RF Microelectronics, Prentice Hall, 1997

15. Lehrveranstaltungen und -formen:
- 259401 Vorlesung Verstärkertechnik I
- 259402 Vorlesung Verstärkertechnik II

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 56 h
- Selbststudium: 124 h
- Gesamt: 180 h

17. Prüfungsnummer/n und -name:
- 25941 Verstärkertechnik I (PL), Schriftlich, 60 Min., Gewichtung: 1
- 25942 Verstärkertechnik II (PL), Schriftlich, 60 Min., Gewichtung: 1

18. Grundlage für ...:

19. Medienform:
- Tafel, Beamer

20. Angeboten von:
- Elektrische und Optische Nachrichtentechnik
Modul: 29310 Regenerative Energiesysteme

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050310015</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>5</td>
</tr>
<tr>
<td>5. Modul dauert:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Stefan Tenbohlen</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Stefan Tenbohlen, Silke Wieprecht, Harald Drück, Andreas Rettenmeier, Albert Ruprecht, Günter Scheffknecht</td>
</tr>
</tbody>
</table>
 → Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte
 → Vorlesung Regenerative Energiesysteme --> Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
 → Ergänzungsmodul --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
 → Vorlesung Regenerative Energiesysteme --> Ergänzungsmodul --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
 → Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
 → Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
 → Ergänzungsmodul --> Schwerpunkt: Technische Informatik --> Schwerpunkte
 → Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte
 → Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte
 → Vorlesung Regenerative Energiesysteme --> Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte |
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester

→ Vorlesung Regenerative Energiesysteme
 → Ergänzungsmodule --> Schwerpunkt: Technische Informatik
 → Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester

→ Vorlesung Regenerative Energiesysteme
 → Ergänzungsmodule --> Schwerpunkt: Mikro- und Optoelektronik
 → Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester

→ Vorlesung Regenerative Energiesysteme
 → Ergänzungsmodule --> Schwerpunkt: Elektromobilität
 → Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester

→ Vorlesung Regenerative Energiesysteme
 → Ergänzungsmodule --> Schwerpunkt: Automatisierungs- und Regelungstechnik
 → Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester

→ Vorlesung Regenerative Energiesysteme
 → Schwerpunkt: Elektromobilität
 → Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester

→ Vorlesung Regenerative Energiesysteme
 → Schwerpunkt: Mikro- und Optoelektronik
 → Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester

→ Vorlesung Regenerative Energiesysteme
 → Schwerpunkt: Elektrische Energiesysteme
 → Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester

→ Vorlesung Regenerative Energiesysteme
 → Schwerpunkt: Technische Informatik
 → Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester

→ Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik
 → Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester

→ Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme
 → Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester

→ Vorlesung Regenerative Energiesysteme
 → Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik
 → Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester

→ Vorlesung Regenerative Energiesysteme
 → Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme
 → Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester

→ Vorlesung Regenerative Energiesysteme
 → Wahlfächer --> Schwerpunkt: Technische Informatik
 → Schwerpunkte
Vorlesung Regenerative Energiesysteme -->
Ergänzungsmodule --> Schwerpunkt: Elektrische
Energiesysteme --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5.
Semester

Ergänzungsmodule --> Schwerpunkt:
Kommunikationssysteme und Signalverarbeitung -->
Schwerpunkte

11. Empfohlene Voraussetzungen:

12. Lernziele:
Die Veranstaltung gibt eine Einführung in Erneuerbaren Energien.
Die Studierenden sind anschließend in der Lage:

• die Bedeutung und die Potenziale verschiedener Erneuerbarer
Energien (Solarthermie, Windenergie, Wasserkraft, Biomasse)
quantiﬁzativ einzuschätzen,
• Berechnungen des Energieertrags und des Wirkungsgrades
durchzuführen,
• Erneuerbarer Energien in unterschiedliche Energieanwendungen
und ins Energiesystem einzuordnen

13. Inhalt:
• Energiedaten, Umwelt- u. Klimaschutz und erneuerbare
Energien, persönlicher Energieverbrauch, Globale Kreisläufe
und -bilanzen
• Sonneneinstrahlung, Potentiale der Solarenergienutzung
• Solarthermie
• Windenergie
• Wasserkraft, Meeresströmungs- und Wellenenergie
• Therm. Nutzung von Biomasse, Biotreibstoffe

14. Literatur:
• V. Quaschning, Regenerative Energiesysteme, 6. Aufl., Hanser
• ergänzendes Skriptum und online-Materialien

15. Lehrveranstaltungen und -formen:
• 293102 Übung Regenerative Energiesysteme
• 29310 Vorlesung Regenerative Energiesysteme

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 70 Stunden
Selbststudium: 110 Stunden
Summe: 180 Stunden

17. Prüfungsnummer/n und -name:
29311 Regenerative Energiesysteme (PL), Schriftlich, 90 Min.,
Gewichtung: 1

18. Grundlage für ...

19. Medienform:
PowerPoint, Tafel

20. Angeboten von:
Energieübertragung und Hochspannungstechnik
Modul: 41170 Speichertechnik für elektrische Energie I

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Kai Peter Birke</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Kai Peter Birke</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016,</th>
<th>→ Ergänzungs-Modul: Schwerpunkt: Technische Informatik → Schwerpunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>→ Wahlfächer: Schwerpunkt: Technische Informatik → Schwerpunkte</td>
<td></td>
</tr>
<tr>
<td>→ Wahlfächer: Schwerpunkt: Elektrische Energiesysteme → Schwerpunkte</td>
<td></td>
</tr>
<tr>
<td>→ Wahlfächer: Schwerpunkt: Elektrotechnische Systeme → Schwerpunkte</td>
<td></td>
</tr>
<tr>
<td>→ Wahlfächer: Schwerpunkt: Kommunikationssysteme und Signalverarbeitung → Schwerpunkte</td>
<td></td>
</tr>
<tr>
<td>→ Ergänzungs-Modul: Schwerpunkt: Automatisierungs- und Regelungstechnik → Schwerpunkte</td>
<td></td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
<td>→ Schwerpunkt: Elektromobilität → Schwerpunkte</td>
</tr>
</tbody>
</table>
11. Empfohlene Voraussetzungen:

12. Lernziele:
Die Studierenden lernen die Speichertechniken für elektrische Energie kennen.

13. Inhalt:
Aufbau und Funktionsweise von:
- Elektrischen Speichern (Spule, supraleitende Spule, Kondensator, Doppelschichtkondensator)
- Elektromechanischen Speichern (Schwungrad, Gas, Wasser)
Charakterisierung der Speicher anhand charakteristischer Größen wie:
- Energieinhalt
- Leistung (dynamisch/stationär)
- Kosten
- Betriebssicherheit
Überblick über die wichtigsten Messverfahren
Einführung in Ersatzschaltbilder und Modellierung

14. Literatur:
Skript zur Vorlesung, wird im ILIAS regelmäßig hochgeladen, ausführliche Literaturhinweise werden in der ersten Vorlesung bekannt gegeben und mit dem Skript hochgeladen.

15. Lehrveranstaltungen und -formen:
- 411702 Übung Speicher für Elektrische Energie
- 411701 Vorlesung Speicher für Elektrische Energie

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 56 h
Selbststudium: ca. 124 h
Summe: 180h

17. Prüfungsnummer/n und -name:
41171 Speichertechnik für elektrische Energie (PL), Schriftlich, 90 Min., Gewichtung: 1

18. Grundlage für ...

19. Medienform:
Beamer, Tafel

20. Angeboten von:
Elektrische Energiespeichersysteme
Modul: 69050 Technologien und Methoden der Softwaresysteme I

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050501002</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Modulda:uer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Michael Weyrich</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Michael Weyrich</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>Studiengang</th>
<th>Modulbeschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, → Ergänzungsmodule --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte</td>
<td></td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, → Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte</td>
<td></td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, → Ergänzungsmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte</td>
<td></td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, → Ergänzungsmodule --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte</td>
<td></td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, → Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte</td>
<td></td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, → Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte</td>
<td></td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, → Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte</td>
<td></td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, → Kernmodule --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte</td>
<td></td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, → Schwerpunkt: Technische Informatik --> Schwerpunkte</td>
<td></td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, → Kernmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte</td>
<td></td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, → Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte</td>
<td></td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, → Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte</td>
<td></td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, → Ergänzungsmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte</td>
<td></td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen:

Grundlagen der Softwaretechnik

12. Lernziele:

13. Inhalt:

Grundbegriffe der Softwaretechnik, Softwareentwicklungsprozesse und Vorgehensmodelle, Requirements Engineering, Systemanalyse, Softwareentwurf, Implementierung,
14. Literatur:
Vorlesungsskript,
Ian Sommerville: Software Engineering, 10. Ausgabe, 2016,
Wiegers, K.: Software-Requirements, Microsoft Press, 2005
Meyer, Bertrand, Nordio, Martin (Eds.): Software Engineering,
2015, Springer, ISBN 978-3-319-28406-4
Christof Ebert: Systematisches Requirements Engineering:
Anforderungen ermitteln, dokumentieren, analysieren und
Robert C. Martin: Clean Code - Refactoring, Patterns, Testen
978-3826655487
Vorlesungsportal mit Vorlesungsaufzeichnung auf http://
www.ias.uni-stuttgart.de/st1/

15. Lehrveranstaltungen und -formen:
• 690501 Vorlesung Technologien und Methoden der
 Softwaresysteme I
• 690502 Übung Technologien und Methoden der Softwaresysteme I

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 56 h
Selbststudium: ca. 124 h

17. Prüfungsnr/n und -name:
• 69051 Technologien und Methoden der Softwaresysteme I (PL),
 Schriftlich, 120 Min., Gewichtung: 1
• 69052 Technologien und Methoden der Softwaresysteme I (USL),
 Sonstige, Gewichtung: 1
Erfolgreiche Bearbeitung eines Kleinprojekts während des
Semesters

18. Grundlage für ...

19. Medienform:

20. Angeboten von: Automatisierungstechnik und Softwaresysteme
320 Schwerpunkt: Automatisierungs- und Regelungstechnik

Zugeordnete Module:

- 11540 Regelungstechnik I
- 11550 Leistungselektronik I
- 11610 Technische Informatik I
- 11620 Automatisierungstechnik I
- 11640 Digitale Signalverarbeitung
- 321 Wahlfächer
- 69050 Technologien und Methoden der Softwaresysteme I
Modul: 11540 Regelungstechnik I

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Jörg Roth-Stielow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Jörg Roth-Stielow</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zuordnung zum Curriculum in diesem Studiengang:

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester**
 - → Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
 - **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester**
 - → Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
 - **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester**
 - → Zusatzmodule
 - **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester**
 - → Ergänzungsmodule --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
 - **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester**
 - → Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
 - **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester**
 - → Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
 - **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester**
 - → Vorgezogene Master-Module
 - **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester**
 - → Ergänzungsmodule --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
 - **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester**
 - → Ergänzungsmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte
 - **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester**
 - → Kernmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
 - **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester**
 - → Kernmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte
 - **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester**
 - → Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte
 - **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester**
 - → Kernmodule --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester

→ Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte

11. Empfohlene Voraussetzungen:
Kenntnisse vergleichbar...
...Höhere Mathematik I, II, III
...Experimentalphysik
...Grundlagen der Elektrotechnik
...Elektrische Energietechnik
...Signale und Systeme
...Schaltungstechnik

12. Lernziele:
...können eine Regelstrecke modellieren und kennen die wichtigsten Regelsysteme.
...können diese Anordnungen mathematisch beschreiben, hinsichtlich ihrer Stabilität beurteilen und Aufgabenstellungen lösen.

13. Inhalt:
Beschreibung von Übertragungsstrecken
Stabilität von Regelsystemen
Herkömmliche Regelsysteme
Regelsysteme mit Rückführung eines vollständigen Satzes von Zustandsvariablen
Echtes Integralverhalten
Beobachter
Systemführung nach dem Prinzip unterlagerter Schleifen
Systeme mit einem Wechsel der Regelgröße

14. Literatur:
Lunze, Jan: Regelungstechnik 1, Springer, Berlin, 1999
Unbehauen, H.: Regelungstechnik 1, Vieweg, Braunschweig, 1989
Leonhard, W.: Einführung in die Regelungstechnik, Vieweg, Braunschweig, 1992

15. Lehrveranstaltungen und -formen:
115401 Vorlesung Regelungstechnik I
115402 Übung Regelungstechnik I

16. Abschätzung Arbeitsaufwand:
Frontalvorlesung

17. Prüfungsnummer/n und -name:
11541 Regelungstechnik I (PL), Schriftlich, 120 Min., Gewichtung: 1
Klausur (120 min., 2x pro Jahr)

18. Grundlage für ...:
Regelungstechnik II

19. Medienform:
Tafel, Folien, Beamer

20. Angeboten von:
Leistungselektronik und Regelungstechnik
Modul: 11550 Leistungselektronik I

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>051010011</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Modulduer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Jörg Roth-Stiellow</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Jörg Roth-Stiellow</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester**
 - Wahlfächer -- Schwerpunkt: Technische Informatik
 - Wahlfächer -- Schwerpunkt: Elektrotechnische Systeme
 - Wahlfächer -- Schwerpunkt: Elektromobilität

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester**
 - Wahlfächer -- Schwerpunkt: Elektrische Energiesysteme
 - Wahlfächer -- Schwerpunkt: Mikro- und Optoelektronik

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester**
 - Wahlfächer -- Schwerpunkt: Kommunikationssysteme und Signalverarbeitung

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester**
 - Wahlfächer -- Schwerpunkt: Automatisierungs- und Regelungstechnik

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester**
 - Wahlfächer -- Schwerpunkt: Kommunikationssysteme und Signalverarbeitung

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester**
 - Wahlfächer -- Schwerpunkt: Automatisierungs- und Regelungstechnik

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester**
 - Wahlfächer -- Schwerpunkt: Elektrische Energiesysteme
11. Empfohlene Voraussetzungen:
Kenntnisse vergleichbar Elektrische Energietechnik I
Kenntnisse vergleichbar Elektrische Energietechnik II

12. Lernziele:

• ...kennen die wichtigsten potentialverbindenden und
 potentialtrennenden Schaltungen der Leistungselektronik
 mit abschaltbaren Ventilen und die zugehörigen
 Modulationsverfahren.
• ...können diese Anordnungen mathematisch beschreiben und
 Aufgabenstellungen lösen.
• ...kennen die grundlegenden Prinzipien der Meßverfahren für
 Mischströme.

13. Inhalt:
• Abschaltbare Leistungshalbleiter
• Schaltungstopologien potentialverbindender Stellglieder
• Schaltungstopologien potentialtrennender Gleichstromsteller
• Modulationsverfahren
• Strommessung in der Leistungselektronik

14. Literatur:
• Heumann, K.: Grundlagen der Leistungselektronik, B. G.
 Teubner, Stuttgart, 1989
• Mohan, Ned: Power Electronics, John Wiley und Sons, Inc.,
 2003

15. Lehrveranstaltungen und -formen:
• 115501 Vorlesung Leistungselektronik I
• 115502 Übung Leistungselektronik I

16. Abschätzung Arbeitsaufwand:
Frontalvorlesung

17. Prüfungsnummer/n und -name:
11551 Leistungselektronik I (PL), Schriftlich, 120 Min., Gewichtung: 1
Klausur (120 min., 2x pro Jahr)

18. Grundlage für ... :

19. Medienform:
Tafel, Folien, Beamer

20. Angeboten von:
Leistungselektronik und Regelungstechnik
Modul: 11610 Technische Informatik I

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050901004</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Moduldaurer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Andreas Kirstädter</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Andreas Kirstädter, Matthias Meyer</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
- Kernmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
- Kernmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
- Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
- Schwerpunkt: Technische Informatik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
- Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
- Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
- Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
- Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
- Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
- Ergänzungs module --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
- Ergänzungs module --> Schwerpunkt: Elektromobilität --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
- Ergänzungs module --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester

13. Inhalt:

- Einfache Einadressmaschine, Elemente und Mechanismen der Register-Transfer-Ebene
- Prozessorbaugruppen und Mikroprogrammierung
- Grundkonzepte von CISC-Prozessoren
- Grundkonzepte und Mechanismen von Betriebssystemen
- Aufbau von Rechnersystemen einschl. Ein-/Ausgabe

14. Literatur:

15. Lehrveranstaltungen und -formen:

- 116101 Vorlesung Technische Informatik I
- 116102 Übung zu Technische Informatik I

16. Abschätzung Arbeitsaufwand: Vorlesung, Übungen und Selbststudium

17. Prüfungsnummer/n und -name: 11611 Technische Informatik I (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ...

19. Medienform:

- Vortrag mit Folien
- Tafelanschriebe

20. Angeboten von: Kommunikationsnetze und Rechnersysteme
Modul: 11620 Automatisierungstechnik I

2. Modulkürzel: 050501003
5. Modulduauer: Einsemestrig

3. Leistungspunkte: 6 LP
6. Turnus: Sommersemester

4. SWS: 4
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Michael Weyrich

9. Dozenten: Michael Weyrich

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte</td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte</td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte</td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte</td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte</td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte</td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte</td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte</td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte</td>
</tr>
<tr>
<td>→ Kernmodule --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte</td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte</td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte</td>
</tr>
</tbody>
</table>
11. Empfohlene Voraussetzungen:

- Grundlagen der Elektrotechnik, Informatik und Mathematik

12. Lernziele:

Die Studierenden

- besitzen grundlegende Kenntnisse über rechnerbasierte Automatisierungssysteme
- setzen sich mit Kommunikationssystemen der Automatisierungstechnik ausserstande
- wenden grundlegende Methoden und Verfahren der Echtzeit-Programmierung an
- lernen spezifische Programmiersprachen der Automatisierungstechnik kennen

13. Inhalt:

- Grundlegende Begriffe der Automatisierungstechnik
- Automatisierungs-Gerätesysteme und -strukturen
- Prozessperipherie – Schnittstellen zwischen dem Automatisierungscomputersystem und dem technischen Prozess (Prozesssignal erfassung und -überwachung)
- Grundlagen zu Kommunikationssystemen in der Automatisierungstechnik (Feldbussysteme, drahtlose Kommunikation)
- Grundlagen der Echtzeit programmierung (Synchrone und Asynchrone Programmierung, Scheduling-Algorithmen, Synchronisationskonzepte)
- Programmiersprachen für die Automatisierungstechnik (Programmierung von Speicher programmierbaren und Pneumatischen Steuerungen)

14. Literatur:

- Vorlesungsskript
- Lauber, Göhner: Prozessautomatisierung Band 1 (3. Auflage), Springer, 1999
- Früh, Maier: Handbuch der Prozessautomatisierung (3. Auflage) Oldenbourg Industrieverlag, 2004
- Wellenreuther Automatisieren mit SPS (3. Auflage), Vieweg, 2005
- Materialien und Vorlesungsaufzeichnungen im ILIAS

15. Lehrveranstaltungen und -formen:

- 116201 Vorlesung Automatisierungstechnik I
- 116202 Übung Automatisierungstechnik I

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 56 h
Selbststudium: 124 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:

11621 Automatisierungstechnik I (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ... :

Automatisierungstechnik II

19. Medienform:

Beamerpräsentation mit Aufzeichnung der Vorlesungen und Übungen

20. Angeboten von:

Automatisierungstechnik und Softwaresysteme
Modul: 11640 Digitale Signalverarbeitung

2. Modulkürzel: 051610002
5. Moduldaeuer: Einsemestrig
3. Leistungspunkte: 6 LP
6. Turnus: Wintersemester
4. SWS: 4
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Bin Yang
9. Dozenten: Bin Yang

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5.
Semester
→ Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5.
Semester
→ Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5.
Semester
→ Kernmodule --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5.
Semester
→ Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5.
Semester
→ Schwerpunkt: Technische Informatik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5.
Semester
→ Ergänzungsmodule --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5.
Semester
→ Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5.
Semester
→ Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5.
Semester
→ Ergänzungsmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5.
Semester
→ Kernmodule --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5.
Semester
→ Ergänzungsmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5.
Semester
→ Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5.
Semester
→ Kernmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte
11. Empfohlene Voraussetzungen:
Grundkenntnisse in höherer Mathematik
Grundkenntnisse über Signale und Systeme

12. Lernziele:
Die Studierenden
- beherrschen die grundlegenden Methoden zur digitalen
 Signalverarbeitung,
- besitzen die notwendigen Grundfertigkeiten zur Analyse von
 zeitdiskreten Signalen und Systemen,
- können einfache Signale und Systeme selbstständig
 analysieren,
- können einfache Signalverarbeitungsaufgaben selbstständig
 lösen.

13. Inhalt:
- A/D- und D/A-Umwandlung, Abtastung, Quantisierung
- Zeitdiskrete Signale und Systeme, Analyse von LTI-Systemen im
 Zeitbereich, Differenzengleichung
- Analyse von Signalen und LTI-Systemen in der komplexen
 Ebene, z-Transformation, Übertragungsfunktion, Pole und
 Nullstellen
- Analyse von Signalen und LTI-Systemen im Frequenzbereich
- Digitale Filter, FIR und IIR, Tiefpass, Hochpass, Bandpass,
 Oszillator, Kerbfilter, Kammfilter, linearphasige Filter, Allpass,
 minimalphasige Filter
- Korrelationsanalyse, Auto- und Kreuzkorrelation, Auto- und
 Kreuzkorrelationsfunktion
- Diskrete Fourier-Transformation, schnelle Fourier-
 Transformation (FFT), schnelle Faltung
- Spektralanalyse, Periodogramm, Fenstereffekt, Zeit-Frequenz-
 Analyse, Spektrogramm

14. Literatur:
- Vorlesungsunterlagen, Videoaufzeichnung der Vorlesung
- A. V. Oppenheim und R. W. Schafer, "Zeitdiskrete
 Signalverarbeitung", Oldenburg, 1999
- J. Proakis and D. G. Manolakis: Digital signal processing,
 Prentice-Hall, 1996
- M. Mandal and A. Asif, "Continuous and discrete time signals
 and systems", Cambridge, 2008

15. Lehrveranstaltungen und -formen:
- 116401 Vorlesung Digitale Signalverarbeitung
- 116402 Übung Digitale Signalverarbeitung

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 56 h
Selbststudium: 124 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
11641 Digitale Signalverarbeitung (PL), Schriftlich, 90 Min.,
Gewichtung: 1

18. Grundlage für ... :

19. Medienform:
Laptop, Beamer, Videoaufzeichnung aller Vorlesungen und
Übungen

20. Angeboten von:
Netzwerk- und Systemtheorie
321 Wahlfächer

Zugeordnete Module:

- 11560 Elektrische Energienetze I
- 11570 Hochspannungstechnik I
- 11580 Elektrische Maschinen I
- 11590 Photovoltaik I
- 11650 Hochfrequenztechnik I
- 11660 Übertragungstechnik I
- 11670 Grundlagen integrierter Schaltungen
- 11680 Kommunikationsnetze I
- 11690 Hochfrequenztechnik II
- 11700 Halbleitertechnik I
- 11710 Optoelectronics I
- 11720 Halbleitertechnologie I
- 11730 Flachbildschirme
- 11740 Elektromagnetische Verträglichkeit
- 11750 Numerische Feldberechnung I
- 12420 Windenergie I - Grundlagen Windenergie
- 13590 Kraftfahrzeuge I + II
- 14130 Kraftfahrzeugmechatronik I + II
- 17110 Entwurf digitaler Systeme
- 17130 Entwurf digitaler Filter
- 17170 Elektrische Antriebe
- 25940 Verstärkertechnik I+II
- 29310 Regenerative Energiesysteme
- 41170 Speichertechnik für elektrische Energie I
Modul: 11560 Elektrische Energienetze I

2. Modulkürzel: 050310001
5. Modulsdauer: Einsemestrig
3. Leistungspunkte: 6 LP
6. Turnus: Wintersemester
4. SWS: 4
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Stefan Tenbohlen
9. Dozenten: Stefan Tenbohlen

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
→ Ergänzungsmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
→ Kernmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
→ Ergänzungsmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
→ Ergänzungsmodule --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
→ Ergänzungsmodule --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
11. Empfohlene Voraussetzungen:
- Elektrische Energie technik

12. Lernziele:

13. Inhalt:
- Aufgaben des elektrischen Energienetzes, Smart Grids
- Einpolige Ersatzschaltungen der Betriebselemente für symmetrische Betriebsweise
- Berechnung von Energieübertragungsanlagen und -netzen
- Betrieb elektrischer Energieversorgungsnetze
- Kurzschlussströme bei symmetrischem Kurzschluss
- Symmetrische Komponenten

14. Literatur:
- Oeding, Oswald: Elektrische Kraftwerke und Netze Springer-Verlag, 6. Aufl., 2004
- Heuck, Dettmann: Elektrische Energieversorgung Vieweg, Braunschweig/Wiesbaden, 6. Aufl., 2005
- Schwab: Elektroenergiesysteme, Springer-Verlag, 1. Aufl., 2006

15. Lehrveranstaltungen und -formen:
- 115601 Vorlesung Elektrische Energienetze 1
- 115602 Übung Elektrische Energienetze 1

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 56 h
Selbststudium/Nacharbeitszeit: 124 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
11561 Elektrische Energienetze I (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ... :
Elektrische Energienetze II

19. Medienform:
PowerPoint, Tafelanschrieb

20. Angeboten von:
Energieübertragung und Hochspannungstechnik
Modul: 11570 Hochspannungstechnik I

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Stefan Tenbohlen

9. Dozenten: Stefan Tenbohlen

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
- Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
- Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
- Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
- Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
- Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
- Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
- Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
- Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
- Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
- Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
- Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
- Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
- Kernmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
11. Empfohlene Voraussetzungen:
- Elektrische Energietechnik

12. Lernziele:
Studierender hat Kenntnisse der Grundlagen der Versuchs- und Messtechnik für Hochspannungsprüfungen, Verständnis der Zusammenhänge Festigkeit und Beanspruchung eines Isolierstoffsystems und des Aufbaus eines Isolationssystems.

13. Inhalt:
- Auftreten und Anwendung hoher Spannungen bzw. Ströme
- Einführung in die Hochspannungsversuchstechnik
- Berechnung elektrischer Felder
- Grundlagen der Hochspannungsisoliertechnik
- Isolierstoffsysteme in Hochspannungsgeräten

14. Literatur:
- Kind, Feser: Hochspannungs-Versuchstechnik Vieweg, Braunschweig, 1995
- Kind, Kärner: Hochspannungs-Isoliertechnik Vieweg, Braunschweig, 1982

15. Lehrveranstaltungen und -formen:
- 115702 Übung Hochspannungstechnik 1
- 115701 Vorlesung Hochspannungstechnik 1

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 56 h
- Selbststudium/Nacharbeitszeit: 124 h
- Gesamt: 180 h

17. Prüfungsnummer/n und -name:
- 11571 Hochspannungstechnik I (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform:
PowerPoint, Tafelanschrieb

20. Angeboten von:
Energieübertragung und Hochspannungstechnik
Modul: 11580 Elektrische Maschinen I

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Nejila Parspour</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Nejila Parspour</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
- Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
 - Ergänzungsmodul --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
- Wahlfächerei: Elektrotechnische Systeme --> Schwerpunkte
 - Wahlfächerei: Technische Informatik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
- Wahlfächerei: Elektromobilität --> Schwerpunkte
 - Wahlfächerei: Technische Informatik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
- Wahlfächerei: Mikro- und Optoelektronik --> Schwerpunkte
 - Wahlfächerei: Elektromobilität --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
- Wahlfächerei: Automatisierungs- und Regelungstechnik --> Schwerpunkte
 - Wahlfächerei: Mikro- und Optoelektronik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
- Wahlfächerei: Automatisierungs- und Regelungstechnik --> Schwerpunkte
 - Wahlfächerei: Technische Informatik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
- Wahlfächerei: Elektromobilität --> Schwerpunkte
 - Wahlfächerei: Elektromobilität --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
- Wahlfächerei: Technische Informatik --> Schwerpunkte

Stand: 09. April 2018
11. Empfohlene Voraussetzungen:

12. Lernziele:

Studierende können magnetische Kreise analysieren und berechnen. Sie kennen den Aufbau und die Funktionsweise von Drehfeldmaschinen. Sie haben grundlegende Kenntnisse im Bereich der Steuerung und Modellierung von Drehfeldmaschinen.

13. Inhalt:

- Magnetismus und Grundlagen der magnetischen Kreise (Energie, Reluktanzkraft)
- Antriebstechnische Zusammenhänge
- Verluste in elektrischen Maschinen
- Berechnung von magnetischen Luftspaltfeldern von einfachen Wickelschemata in Drehfeldmaschinen
- Behandelte Maschinentypen:

 1) **Reluktanzmaschine**: Aufbau und Funktion, Ersatzschaltbilder, Energiefluss, Kennlinien, Bauformen und Einsatzgebiete

 2) **Synchronmaschine**: Aufbau und Funktion, Ersatzschaltbilder, Energiefluss, mathematische Zusammenhänge, Kennlinien, vollständiges Ersatzschaltbild, Drehzahlstellverfahren, Brems- und Anlaufverfahren, Bauformen und Einsatzgebiete

 3) **Asynchronmaschine**: Aufbau und Funktion, Ersatzschaltbilder, Energiefluss, mathematische Zusammenhänge, Kennlinien, Drehzahlstellverfahren, Brems- und Anlaufverfahren, Bauformen und Einsatzgebiete

14. Literatur:

15. Lehrveranstaltungen und -formen:

- 115801 Vorlesung Elektrische Maschinen I
- 115802 Übung Elektrische Maschinen I

16. Abschätzung Arbeitsaufwand:

 Präsenzzeit: 56 h
 Selbststudium/Nacharbeitszeit: 124 h
 Summe: 180 h

17. Prüfungsnummer/n und -name:

 11581 Elektrische Maschinen I (PL), Schriftlich, 120 Min., Gewichtung: 1
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td>Elektrische Maschinen II</td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Beamer, Tafel, ILIAS</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Elektrische Energiewandlung</td>
</tr>
<tr>
<td>Modul: 11590 Photovoltaik I</td>
<td></td>
</tr>
<tr>
<td>----------------------------</td>
<td></td>
</tr>
<tr>
<td>2. Modulkürzel: 050513002</td>
<td></td>
</tr>
<tr>
<td>3. Leistungspunkte: 6 LP</td>
<td></td>
</tr>
<tr>
<td>4. SWS: 4</td>
<td></td>
</tr>
<tr>
<td>5. Modulduauer: Einsemestrig</td>
<td></td>
</tr>
<tr>
<td>6. Turnus: Sommersemester</td>
<td></td>
</tr>
<tr>
<td>7. Sprache: Deutsch</td>
<td></td>
</tr>
<tr>
<td>8. Modulverantwortlicher: Univ.-Prof. Dr. Jürgen Heinz Werner</td>
<td></td>
</tr>
<tr>
<td>9. Dozenten: Jürgen Heinz Werner</td>
<td></td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester**
 - Kernmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
 - Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte
 - Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester**
 - Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester**
 - Kernmodule --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester**
 - Ergänzungsmodul --> Schwerpunkt: Technische Informatik --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester**
 - Ergänzungsmodul --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester**
 - Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester**
 - Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester**
 - Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester**
 - Ergänzungsmodul --> Schwerpunkt: Elektromobilität --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester**
 - Ergänzungsmodul --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester**
 - Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester**
 - Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
11. Empfohlene Voraussetzungen: Grundkenntnisse über Halbleitermaterialien und Halbleiterdioden, z.B. aus Mikroelektronik I

12. Lernziele: Die Studierenden kennen
- das Potential der Sonnenstrahlung
- die Funktionsweise von Solarzellen
- die wichtigsten Technologien der Herstellung von Solarmodulen
- die Grundprinzipien von Wechselrichtern
- die Energieerträge verschiedener Photovoltaik-Technologien
- den aktuellen Stand des Photovoltaikmarktes und der Kosten von Photovoltaik-Strom

13. Inhalt:
- Der Photovoltaische Effekt (Zelle, Modul, Anlage)
- Solarstrahlung und Energieumsatz in Deutschland
- Grundprinzip und Kenngrößen von Solarzellen
- Ersatzschaltbilder von Solarzellen
- Maximaler Wirkungsgrad
- Photovoltaik-Materialien und -Technologien
- Modultechnik
- Photovoltaische Systemtechnik
- (Jahres-) Energieerträge von Photovoltaiksystemen

14. Literatur:
• Goetzberger, Voß, Knobloch, Sonnenenergie: Photovoltaik, Teubner, 1994
• P. Würfel, Physik der Solarzellen, Spektrum, 1995
• M. A. Green, Solar Cells - Operating Principles, Technology and System Applications, Centre for Photovoltaic Devices and Systems, Sydney, 1986
• F. Staiß, Photovoltaik - Technik, Potentiale und Perspektiven der solaren Stromerzeugung, Vieweg, 1996

15. Lehrveranstaltungen und -formen:
• 115901 Vorlesung Photovoltaik I
• 115902 Übungen Photovoltaik I

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 56 h
Selbststudium/Nacharbeitszeit: 142 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name: 11591 Photovoltaik I (PL), Schriftlich, 90 Min., Gewichtung: 1

18. Grundlage für …: Photovoltaik II

19. Medienform: Powerpoint, Tafel

20. Angeboten von: Physikalische Elektronik
Modul: 11650 Hochfrequenztechnik I

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050600001</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Moduldaurer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Jan Hesselbarth</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Jan Hesselbarth</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th></th>
<th>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>→ Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
</tr>
<tr>
<td></td>
<td>→ Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
</tr>
<tr>
<td></td>
<td>→ Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
</tr>
<tr>
<td></td>
<td>→ Ergänzungsmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
</tr>
<tr>
<td></td>
<td>→ Ergänzungsmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
</tr>
<tr>
<td></td>
<td>→ Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
</tr>
<tr>
<td></td>
<td>→ Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
</tr>
<tr>
<td></td>
<td>→ Ergänzungsmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
</tr>
<tr>
<td></td>
<td>→ Kernmodule --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
</tr>
<tr>
<td></td>
<td>→ Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
</tr>
<tr>
<td></td>
<td>→ Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
</tr>
<tr>
<td></td>
<td>→ Ergänzungsmodule --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
</tr>
<tr>
<td></td>
<td>→ Ergänzungsmodule --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte</td>
</tr>
</tbody>
</table>
11. Empfohlene Voraussetzungen:

12. Lernziele:

13. Inhalt:
Maxwell'sche Gleichungen, ebene Welle im freien Raum, Leitungswellen, konzentrierte Bauelemente, Resonanzschaltungen, Transformationsschaltungen, Hochfrequenzfilter

14. Literatur:
- Vorlesungsskript,
- Detlefsen, Siart: Gundlagen der Hochfrequenztechnik, 3. Auflage, Oldenbourg Verlag, 2009,

15. Lehrveranstaltungen und -formen:
- 116501 Vorlesung Hochfrequenztechnik I
- 116502 Übung Hochfrequenztechnik I

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 56 h
- Selbststudium/Nacharbeitszeit: 124 h
- Gesamt: 180 h

17. Prüfungsnummer/n und -name:
- 11651 Hochfrequenztechnik I (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ...:
Hochfrequenztechnik II

19. Medienform:
Tafel, Beamer, Projektor, ILIAS

20. Angeboten von:
Hochfrequenztechnik
Modul: 11660 Übertragungstechnik I

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Stephan ten Brink</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Stephan Brink</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester**
 - → Ergänzungsmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 - → Ergänzungsmodule --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 - → Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 - → Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 - → Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 - → Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 - → Zusatzmodule
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 - → Ergänzungsmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 - → Kernmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 - → Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 - → Ergänzungsmodule --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 - → Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 - → Schwerpunkt: Technische Informatik --> Schwerpunkte
11. Empfohlene Voraussetzungen:
Grundlagen der Elektrotechnik

12. Lernziele:
Beherrschung der grundlegenden Zusammenhänge und Verfahren der digitalen Speicherung und Übertragung von analogen und digitalen Signalen.

13. Inhalt:
- A/D- und D/A-Umsetzung, Quantisierung, PCM, Bandbreitenbedarf, digitale Übertragung über Tiefpass- und Bandpasskanäle, Intersymbolinterferenz, Rauschen, Symbol- und Bitfehlerwahrscheinlichkeit, Digitale Modulationsverfahren, Unzulänglichkeiten digitaler Übertragung, Mehrträgerverfahren (OFDM), Anwendungen
- Übungsaufgaben mit Anwendungen aus der Praxis.

14. Literatur:
- Vorlesungsbegleitendes Material, Übungsaufgaben
- Kammeyer, K. D.: Nachrichtenübertragung. Verlag Teubner, Stuttgart
- Weitere Literaturangaben im vorlesungsbegleitenden Material.

15. Lehrveranstaltungen und -formen:
- 116602 Übungen Übertragungstechnik I
- 116601 Vorlesung Übertragungstechnik I

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 56 h, Selbststudium/Nacharbeitszeit: 124 h, Gesamt 180 h

17. Prüfungsnummer/n und -name:
- 11661 Übertragungstechnik I (PL), Schriftlich oder Mündlich, 120 Min., Gewichtung: 1

18. Grundlage für ...

19. Medienform:
- Skript und Übungsaufgaben in elektronischer Form (ILIAS).
- Anschrieb auf Tablet-PC mit Projektion.

20. Angeboten von:
- Nachrichtenübertragung
Modul: 11670 Grundlagen integrierter Schaltungen

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050200002</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Moduldaure:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Manfred Berroth</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Manfred Berroth</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016,**
 - → Ergänzungsmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011,
 - Vorgezogene Master-Module
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
 - → Kernmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
 - → Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
 - → Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
 - → Kernmodule --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
 - → Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
 - → Schwerpunkt: Technische Informatik --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
 - → Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
 - → Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
 - → Ergänzungsmodul --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
 - → Ergänzungsmodul --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
 - → Kernmodule --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
 - → Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
11. Empfohlene Voraussetzungen:
Kenntnisse in Schaltungstechnik
Kenntnisse in höherer Mathematik

12. Lernziele:
Die Studierenden besitzen Grundkenntnisse über integrierte Schaltungen der Digitaltechnik basierend auf Silizium-MOSFETs

13. Inhalt:
• Bauelemente der Digitaltechnik
• Digitale Grundschaltungen
• CMOS-Logikschaltungen
• Schaltwerke

14. Literatur:
• Vorlesungs-skript,
• Hoffmann: VLSI-Entwurf - Modelle und Schaltungen, Oldenbourg Verlag, München, 1998

15. Lehrveranstaltungen und -formen:
• 116701 Vorlesung Grundlagen Integrierter Schaltungen
• 116702 Übung Grundlagen Integrierter Schaltungen

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 56 h
Selbststudium: 124 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
11671 Grundlagen integrierter Schaltungen (PL), Schriftlich, 90 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform:
Tafel, Beamer

20. Angeboten von:
Elektrische und Optische Nachrichtentechnik
Modul: 11680 Kommunikationsnetze I

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050901005</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Modulduer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Andreas Kirstädter</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Andreas Kirstädter</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester**
 - Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
 - Kernmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte
 - Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
 - Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester**
 - Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
 - Kernmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte
 - Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester**
 - Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
 - Kernmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte
 - Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
→ Ergänzungsmodule --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte

11. Empfohlene Voraussetzungen:
• Kenntnisse, wie sie in den Modulen Informatik I und Informatik II vermittelt werden

12. Lernziele:
Verstehen der grundlegenden Architekturprinzipien von Kommunikationsnetzen mit Beispielen aus den Bereichen der Mobilfunknetze, Local Area Networks, Automatisierungsnetze und des Internet, Kenntnis von Aufbau und Funktion ausgewählter Systeme, Protokolle und Dienste. Anwenden der Methoden zur formalen Beschreibung und Bewertung von Kommunikationsnetzen.

13. Inhalt:
Grundprinzipien von Kommunikationsnetzen und -protokollen:
• Übertragung und Multiplextechniken
• Fehlersicherung
• Medienzugriff
• Vermittlung
• Wegesuche
• Transportprotokolle

Spezifikation mit Hilfe der Specification and Description Language (SDL)
Bewertung der Leistungsfähigkeit von Kommunikationsprotokollen
Ausgewählte Dienste und Anwendungen im Internet
Für nähere Informationen, aktuelle Ankündigungen und Material siehe http://www.ikr.uni-stuttgart.de/Xref/CC/L_CN_I

14. Literatur:
• Skript zur Vorlesung
• Tanenbaum: Computer Networks, Prentice-Hall, 2003
• Kurose, Ross: Computer Networking, Addison-Wesley, 2009

15. Lehrveranstaltungen und -formen:
• 116802 Übung zu Kommunikationsnetze I
• 116801 Vorlesung Kommunikationsnetze I

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 56 h
Selbststudium: 124 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
11681 Kommunikationsnetze I (PL), Schriftlich oder Mündlich, 120 Min., Gewichtung: 1

18. Grundlage für ... :
Praktische Übungen im Labor Rechnerarchitektur und Kommunikationssysteme I Communication Networks II

19. Medienform:
Notebook-Präsentation

20. Angeboten von:
Kommunikationsnetze und Rechnersysteme
Modul: 11690 Hochfrequenztechnik II

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050600002</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Modulsdauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Jan Hesselbarth</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Jan Hesselbarth</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, Zusatzmodule
 - P. Elektrotechnik und Informationstechnik, PO 048-2016, Ergänzungsmodul -- Schwerpunkt: Elektromobilität
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, Ergänzungsmodul -- Schwerpunkt: Mikro- und Optoelektronik
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester
 - Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester
 - Schwerpunkt: Kommunikationssysteme und Signalverarbeitung
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 6. Semester
 - Ergänzungsmodul -- Schwerpunkt: Technische Informatik
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester
 - Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester
 - Wahlfächer --> Schwerpunkt: Technische Informatik
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester
 - Wahlfächer --> Schwerpunkt: Elektromobilität
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 6. Semester
 - Ergänzungsmodul -- Schwerpunkt: Automatisierungs- und Regelungstechnik
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester
 - Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 6. Semester
 - Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester
 - Ergänzungsmodul -- Schwerpunkt: Elektrische Energiesysteme

11. Empfohlene Voraussetzungen:

- Grundlagen der Nachrichtentechnik
- Grundlagend der Hochfrequenztechnik
|------------------|---|
| 15. Lehrveranstaltungen und -formen: | • 116901 Vorlesung Antennas
• 116902 Übung Antennas |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 56 h
Selbststudium/Nacharbeitszeit: 124 h
Gesamt: 180 h |
| 17. Prüfungsnummer/n und -name: | 11691 Hochfrequenztechnik II (PL), Schriftlich, 120 Min., Gewichtung: 1 |
| 18. Grundlage für ... : | |
| 19. Medienform: | Tafel, Beamer, Projektor, ILIAS |
| 20. Angeboten von: | Hochfrequenztechnik |
Modul: 11700 Halbleitertechnik I

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher:
Univ.-Prof. Dr.-Ing. Jörg Schulze

9. Dozenten:
Jörg Schulze

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
- Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 - Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 - Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 - Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 - Ergänzungsmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 - Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 - Ergänzungsmodule --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 - Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 - Ergänzungsmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 - Ergänzungsmodule --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 - Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 - Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte

• Beschreibung eines psn-Übergangs im thermodynamischen Gleichgewicht (Raumladungszone, Poisson-Gleichung, Depletion-Näherung und Built-in-Spannung),
• Beschreibung eines psn-Übergangs im Nicht-Gleichgewicht (I-U-Charakteristik des idealen pn-Übergangs, Rekombinationsmechanismen in pn-Übergängen, I-U-Charakteristik des realen pn-Übergangs, Durchbruchmechanismen in pn-Übergängen),
• Aufbau und Funktionsweise von Bipolar- und Heterobipolartransistoren: Ideales und reales Verhalten und Hochfrequenzbetrieb,
• Thyristor und lichtgezündeter Thyristor, TRIAC (Triode for Alternating Current).

Als Ausblick wird zum Schluss der Vorlesung auf Leistungs bipolartransistoren mit isoliertem Gate wie dem Gate-Turn-Off-Thyristor (GTO-Thyristor) und dem Insulated Gate Bipolar Transistor (IGBT) und auf BiCMOS-Schaltungen eingegangen.

14. Literatur:
• Chang: ULSI Devices, Wiley, 2000
• Hoffmann: Systemintegration, Oldenbourg, 2003
• Linder: Power Semiconductors, CRC Press, 2006
• Löcherer: Halbleiterbauelemente, Teubner, 1992
• Lutz: Halbleiter-Leistungsbaulemente, Springer, 2006
• Ng: Complete Guide to Semiconductor Devices, Wiley, 2002
• Razavi: Microelectronics, Wiley, 2015
• Roulsten: An Introduction to the Physics of Semiconductor Devices, Oxford University Press, 1999
• Schaumburg: Halbleiter, Teubner, 1991
• Schulze: Konzepte Silizium-basierter MOS-Bauelemente, Springer, 2005
• Sze: Semiconductor Devices - Physics and Technology, Wiley, 1985
• Thuselt: Physik der Halbleiterbauelemente, Springer, 2005
• Treitinger, Miura-Mattausch (Ed.): Ultra-Fast Silicon Bipolar Technology, Springer, 1988

15. Lehrveranstaltungen und -formen:
• 117001 Vorlesung Halbleitertechnik 1
• 117002 Übung Halbleitertechnik 1

16. Abschätzung Arbeitsaufwand:
Gesamtaufwand: 180 h
Dabei:
• 45 h (2 SWS Vorlesung + 2 SWS Übung) Präsenz
• 135 h Selbststudium

17. Prüfungsnummer/n und -name:
11701 Halbleitertechnik I (PL), Schriftlich, 90 Min., Gewichtung: 1

18. Grundlage für ...

19. Medienform:
• PowerPoint-Präsentationen zu den einzelnen Kapiteln (Beamer)
• Aufzeichnungen während der Vorlesungen (Notizen, Rechnungen, Skizzen u. ä.) mit Hilfe eines Tablet-PCs (Beamer)
• Lehrbriefe zu den einzelnen Themenschwerpunkten
• Ausgedrucktes Skript mit sämtlichen Vorlesungs- und Übungsfolien, Übungsbögen und Lehrbriefen (zum Selbstkostenpreis erhältlich)
• Vorlesungsaufzeichnungen im MPG4-Format mittels Tablet-PCs und Head-Set
• Sämtliche Unterlagen werden elektronisch über ILIAS zum Download bereitgestellt.

20. Angeboten von: Halbleitertechnik
Modul: 11710 Optoelectronics I

2. Modulkürzel: 050513001
5. Moduldauer: Einsemestrig
3. Leistungspunkte: 6 LP
6. Turnus: Sommersemester
4. SWS: 4
7. Sprache: Englisch

8. Modulverantwortlicher: Univ.-Prof. Dr. Jürgen Heinz Werner

9. Dozenten: Jürgen Heinz Werner

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 6. Semester
 → Ergänzungs module --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 6. Semester
 → Kernmodule --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 6. Semester
 → Ergänzungsmodule --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester
 → Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester
 → Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester
 → Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 6. Semester
 → Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester
 → Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester
 → Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester
 → Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 6. Semester
 → Ergänzungs module --> Schwerpunkt: Elektromobilität --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 6. Semester
 → Ergänzungsmodule --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte

11. Empfohlene Voraussetzungen:
12. Lernziele: The students know
- the fundamentals of incoherent and coherent radiation
- the generation of radiation by light emitting diodes and semiconductor laser diodes
- the transport of radiation via glass fibers and its detection using photodetectors

13. Inhalt:
- Basics of incoherent and coherent radiation
- Semiconductor basics
- Excitation and recombination processes in semiconductors
- Light emitting diodes
- Semiconductor lasers
- Glass fibers
- Photodetectors

14. Literatur:
- W. Bludau, Halbleiteroptoelektronik: Die physikalischen Grundlagen der LEDs, Diodenlaser und pn-Photodioden (Carl Hanser, München, 1995).
- W. L. Leigh, Devices for Optoelectronics (Dekker, New York, 1996).

15. Lehrveranstaltungen und -formen:
- 117102 Übung Optoelectronics I
- 117101 Vorlesung Optoelectronics I

16. Abschätzung Arbeitsaufwand:
Presence time: 56 h
Self studies: 124 h
Total: 180 h

17. Prüfungsnummer/n und -name:
11711 Optoelectronics I (PL), Schriftlich oder Mündlich, 120 Min., Gewichtung: 1
group presentation in seminar (60 min, once per year) written exam (60 min, twice per year)

18. Grundlage für ...:

19. Medienform:
- Powerpoint, blackboard

20. Angeboten von:
Physikalische Elektronik
Modul: 11720 Halbleitertechnologie I

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. Modulverantwortlicher:</th>
<th>Univ.-Prof. Dr.-Ing. Jörg Schulze</th>
</tr>
</thead>
<tbody>
<tr>
<td>9. Dozenten:</td>
<td>Jörg Schulze</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10. Zuordnung zum Curriculum in diesem Studiengang:</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
</tr>
<tr>
<td>→ Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
</tr>
<tr>
<td>→ Ergänzungsmodule --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
</tr>
<tr>
<td>→ Ergänzungsmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
</tr>
<tr>
<td>→ Ergänzungsmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
</tr>
<tr>
<td>→ Ergänzungsmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
</tr>
<tr>
<td>→ Ergänzungsmodule --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte</td>
</tr>
</tbody>
</table>

| 11. Empfohlene Voraussetzungen: | Empfohlen werden Kenntnisse, wie Sie beispielsweise in Mikroelektronik (ME) vermittelt werden. |

Stand: 09. April 2018
12. Lernziele:

13. Inhalt:
• Einführung in die Silizium-basierte Halbleitertechnologie,
• Technologische Grundlagen (Prozessparameter und grundlegende Technologieprozesse),
• Substrat- und Waferherstellung (CZ-Waver, FZ-Wafer und Silicon-On-Insulator-Wafer),
• Lithographie (optische Lithographie und alternative Verfahren) und Strukturierungsmethoden (nasschemisch, trockenchemisch und physikalisch-chemisch),
• Dotiermethoden: Epitaxie, Diffusion und Ionenimplantation,
• Herstellung und Strukturierung von Isolatorschichten (Standardelektrika, Low-k-, Medium-k- und high-k-Dielektrika) und Planarisierungsmethoden,
• Herstellung und Strukturierung metallischer Schichten.
Als Ausblick wird zum Schluss der Vorlesung auf die Aufbau- und Verbindungstechnik eingegangen und exemplarische Herstellungsprozesse unterschiedlicher mikroelektronischer Bauelemente werden diskutiert.

14. Literatur:
• Beneking: Halbleitertechnologie, Eine Einführung in die Prozesstechnik von Silizium und III-V Verbindungen, Teubner Verlag, 1984
• Chan, Sze: ULSI-Technology, Mc Graw Hill, 1996
• Hattori (Ed.): Ultraclean Surface Processing of Silicon Wafers, Springer, 1998
• Hilleringmann: Silizium-Halbleitertechnologie, Teubner Verlag, 1996
• v. Münch: Einführung in die Halbleitertechnologie, Teubner Verlag, 1993
• Nijs (Ed.): Advanced Silicon and Semiconducting Silicon-Alloy Based Materials and Devices, Institute of Physics Publishing, 1994
• Schulze: Konzepte Silizium-basierter MOS-Bauelemente, Springer, 2005
• Siffert, Krimmel (Ed.): Silicon - Evolution and Future of a Technology, Springer, 2004

15. Lehrveranstaltungen und -formen:
• 117201 Vorlesung Halbleitertechnologie 1
• 117202 Übung Halbleitertechnologie 1

16. Abschätzung Arbeitsaufwand:
Gesamtaufwand: 180 h
Dabei:
• 45 h (2 SWS Vorlesung + 2 SWS Übung) Präsenz
• 135 h Selbststudium

17. Prüfungsnummer/n und -name:
11721 Halbleitertechnologie I (PL), Schriftlich, 90 Min., Gewichtung: 1

18. Grundlage für ...

19. Medienform:
• PowerPoint-Präsentationen zu den einzelnen Kapiteln (Beamer)
• Aufzeichnungen während der Vorlesungen (Notizen, Rechnungen, Skizzen u. ä.) mit Hilfe eines Tablet-PCs (Beamer)
• Lehrbriefe zu den einzelnen Themenschwerpunkten
• Ausgedrucktes Skript mit sämtlichen Vorlesungs- und Übungsfolien, Übungsbäften und Lehrbriefen (zum Selbstkostenpreis erhältlich)
• Vorlesungsaufzeichnungen im MPG4-Format mittels Tablet-PCs und Head-Set
• Sämtliche Unterlagen werden elektronisch über ILIAS zum Download bereitgestellt.

20. Angeboten von: Halbleitertechnik
Modul: 11730 Flachbildschirme

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Nesrine Kammoun</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Norbert Frühauf</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester**
 - → Wahlfächer -> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester
 - → Wahlfächer -> Schwerpunkt: Technische Informatik --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester
 - → Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 6. Semester
 - → Ergänzungsmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester
 - → Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester
 - → Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 6. Semester
 - → Ergänzungsmodule --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 6. Semester
 - → Ergänzungsmodule --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester
 - → Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 6. Semester
 - → Ergänzungsmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 6. Semester
 - → Ergänzungsmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester
 - → Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 6. Semester
Kernmodule --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte

11. Empfohlene Voraussetzungen:

12. Lernziele: Die Studierenden

- kennen die in Flachbildschirmen eingesetzten elektrooptischen Effekte und die zugehörigen Ansteuerverfahren
- können grundlegende Dimensionierungen von Flüssigkristallbildschirmen vornehmen
- kennen Verfahren zur elektro-optischen Charakterisierung von Bildschirmen und können wesentliche Leistungsparameter wie Kontrast und Farbort berechnen

13. Inhalt:

- Einsatzgebiete der Flachbildschirmtechnik
- Physiologie des menschlichen Sehens
- Farbdarstellung (Tri-Stimulus Theorie)
- Elektro-optische Eigenschaften von Flüssigkristallen
- Organische Lichtemittierende Dioden
- Elektrophoretische Medien
- Sonstige Elektro-optische Effekte
- Plasmabildschirme
- Passiv- und Aktiv-Matrix Ansteuerverfahren
- Ansteuerschaltungen
- Herstellungsverfahren
- Charakterisierung von Flachbildschirmen

15. Lehrveranstaltungen und -formen:

- 117301 Vorlesung Flachbildschirme
- 117302 Übung Flachbildschirme

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 56 h
Selbststudium/Nacharbeitszeit: 124 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name: 11731 Flachbildschirme (PL), Schriftlich oder Mündlich, 90 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform: Tafel, Projektor, Beamer, ILIAS

20. Angeboten von: Bildschirmtechnik
Modul: 11740 Elektromagnetische Verträglichkeit

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050310006</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Modulda:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Stefan Tenbohlen

9. Dozenten: Stefan Tenbohlen, Daniel Schneider

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>→ Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte</td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester</td>
</tr>
<tr>
<td>→ Ergänzungsmodul: Automatisierungs- und Regelungstechnik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester</td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester</td>
</tr>
<tr>
<td>→ Ergänzungsmodul: Elektromobilität --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester</td>
</tr>
<tr>
<td>→ Ergänzungsmodul: Technische Informatik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester</td>
</tr>
<tr>
<td>→ Ergänzungsmodul: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester</td>
</tr>
<tr>
<td>→ Ergänzungsmodul: Elektrische Energiesysteme --> Schwerpunkte</td>
</tr>
</tbody>
</table>
11. Empfohlene Voraussetzungen: Grundlagen der Elektrotechnik

12. Lernziele: Studierender hat Kenntnisse der Messverfahren und Messausrüstungen der Elektromagnetischen Verträglichkeit. Er kennt praktische Abhilfemaßnahmen zur Beherrschung der EMV-Problematik und die Besonderheiten in der Automobil-EMV

13. Inhalt:
- Einführung
- Begriffsbestimmungen
- EMV-Umgebung
- Allgemeine Maßnahmen zur Sicherstellung der EMV
- Aktive Schutzmaßnahmen
- Nachweis der EMV (Messverfahren, Messumgebung)
- Einwirkung elektromagnetischer Felder auf biologische Systeme
- EMV im Automobilbereich

14. Literatur:
- Schwab, Adolf J.: Elektromagnetische Verträglichkeit Springer Verlag, 1996
- Habiger, Ernst: Elektromagnetische Verträglichkeit Hüthig Verlag, 3. Aufl., 1998
- Gonschorek, K.-H.: EMV für Geräteentwickler und Systemintegratoren Springer Verlag, 2005
- Wiesinger, J. u.a.: EMV-Blitzschutz von elektrischen und elektronischen Systemen in baulichen Anlagen VDE-Verlag, Oktober 2004

15. Lehrveranstaltungen und -formen:
- 117401 Vorlesung Elektromagnetische Verträglichkeit
- 117402 Übung Elektromagnetische Verträglichkeit

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 56 h
Selbststudium/Nacharbeitszeit: 124 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
11741 Elektromagnetische Verträglichkeit (PL), Schriftlich, 90 Min., Gewichtung: 1

18. Grundlage für ...

19. Medienform:
PowerPoint, Tafelanschrieb

20. Angeboten von:
Energieübertragung und Hochspannungstechnik
Modul: 11750 Numerische Feldberechnung I

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Prof. Dr. Wolfgang Rucker</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte</td>
<td></td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte</td>
<td></td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte</td>
<td></td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte</td>
<td></td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte</td>
<td></td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte</td>
<td></td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte</td>
<td></td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte</td>
<td></td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte</td>
<td></td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte</td>
<td></td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte</td>
<td></td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte</td>
<td></td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte</td>
<td></td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte</td>
<td></td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte</td>
<td></td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte</td>
<td></td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte</td>
<td></td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte</td>
<td></td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte</td>
<td></td>
</tr>
</tbody>
</table>

12. Lernziele: Die Studierenden:

- besitzen die Grundkenntnisse der wichtigsten numerischen Verfahren zur Modellierung und Simulation von Feldproblemen in der Elektrotechnik,
- beherrschen den Einsatz von Simulationswerkzeugen.

13. Inhalt:
- Grundlagen der numerischen Simulation elektromagnetischer Felder
- Allgemeiner Ablauf einer numerischen Simulation, Simulationssoftware
- Methode der finiten Elemente (FEM)
- Ausgangsbeziehung der FEM für Potenzialprobleme
- Geometriemodellierung
- Erstellung und Lösung des FE-Gleichungssystems
- FE-Formulierungen von elektromagnetischen Feldproblemen
- Methode der Randelemente (BEM)
- Randintegraldarstellung, Randintegralgleichung
- Erstellung und Lösung des BE-Gleichungssystems
- BE-Formulierung von Elektrodenproblemen

14. Literatur:

15. Lehrveranstaltungen und -formen:
- 117501 Vorlesung Numerische Feldberechnung I
- 117502 Übung Numerische Feldberechnung I

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 56 h
- Selbststudium: 124 h
- Gesamt: 180 h

17. Prüfungsnummer/n und -name: 11751 Numerische Feldberechnung I (PL), Mündlich, 45 Min., Gewichtung: 1

18. Grundlage für ...

19. Medienform: Tafel, Beamer

20. Angeboten von: Elektrotechnik bionischer Systeme
Modul: 12420 Windenergie 1 - Grundlagen Windenergie

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Po Wen Cheng</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zuordnung zum Curriculum in diesem Studiengang:

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester**
 - Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte
- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester**
 - Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester**
 - Wahlfächer --> Schwerpunkt: Telektrische Energiesysteme --> Schwerpunkte
- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester**
 - Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte
- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester**
 - Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme und Signalverarbeitung --> Schwerpunkte
- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester**
 - Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte
- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester**
 - Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte
- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester**
 - Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester**
 - Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester**
 - Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte
- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester**
 - Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester**
 - Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester**
 - Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester**
 - Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte
11. Empfohlene Voraussetzungen: Technische Mechanik I

12. Lernziele:

- Die Studierenden erlangen Kenntnisse über die Grundlagen der Windenergie, insbesondere über die physikalischen und technischen Prinzipien bei modernen Windenergieanlagen.
- Die Studierenden sind dabei in der Lage einfache physikalische Grundgleichungen und Zusammenhänge herzuleiten und ihre Bedeutung in Bezug auf die Nutzung von Windenergie zu verstehen sowie zu erklären.
- Ausgehend vom Verständnis der einzelnen Teildisziplinen (Aerodynamik, Strukturdynamik, Elektrotechnik etc.) können die Studierenden den Aufbau und die Funktionsweise des Gesamtsystems Windenergieanlage erläutern und auf ausgewählten Gebieten elementare Auslegungs- und Entwurfsberechnungen durchführen.
- Nach Abschluss der Lehrveranstaltung haben die Studierenden die wesentlichen Kompetenzen aufgebaut, die sie befähigen sich in Spezialgebiete im Bereich Windenergie (Komponentenauslegung, Modellierung und Simulation, Windparkplanung etc.) einzuarbeiten.

13. Inhalt:

- **Vorlesung**
- **Übung und Versuch**
 Es werden 8 Hörsaalübungen sowie ein Hochlaufversuch im Böenwindkanal angeboten.

14. Literatur:

- lecture notes
- R. Gasch und J. Twele, Windkraftanlagen

15. Lehrveranstaltungen und -formen:

- 124202 Übung Windenergienutzung I
- 124201 Vorlesung Windenergienutzung I

16. Abschätzung Arbeitsaufwand:

- Vorlesung: Präsenzzeit 28 Stunden, Selbststudium 62 Stunden
- Übung: Präsenzzeit 8 Stunden, Selbststudium 74 Stunden
- Windkanalversuch: Präsenzzeit 3 Stunden, Versuchsauswertung 5 Stunden

Summe: 180 Stunden

17. Prüfungsnummer/n und -name:

12421 Windenergie 1 - Grundlagen Windenergie (PL), Schriftlich, 90 Min., Gewichtung: 1

Das Versuchsprotokoll des Windkanalversuchs während des Semesters ist Voraussetzung für die Teilnahme an der Prüfung.
Die Prüfung umfasst einen Fragenteil (20 min) und einen Rechenteil (70 min).

<table>
<thead>
<tr>
<th>18. Grundlage für ... :</th>
<th>Windenergie 3 - Entwurf von Windenergieanlagen Windenergie 4 - Windenergie-Projekt</th>
</tr>
</thead>
<tbody>
<tr>
<td>19. Medienform:</td>
<td>PowerPoint, Tafelanschrieb, Versuchsdurchführungen</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Windenergie</td>
</tr>
</tbody>
</table>
Modul: 13590 Kraftfahrzeuge I + II

2. Modulkürzel: 070800001
5. Moduldauer: Einsemestrig
3. Leistungspunkte: 6 LP
6. Turnus: Wintersemester
4. SWS: 4
7. Sprache: Deutsch

8. Modulverantwortlicher: Nils Widdecke
9. Dozenten: Jochen Wiedemann
Nils Widdecke

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Schwerpunkt: Elektromobilität --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
→ Ergänzungsmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
→ Ergänzungsmodule --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Zusatzmodule
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
→ Ergänzungsmodule --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
→ Ergänzungsmodule --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
→ Kernmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
→ Ergänzungsmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte

11. Empfohlene Voraussetzungen: Kenntnisse aus den Fachsemestern 1 bis 4

14. Literatur:
• Wiedemann, J.: Kraftfahrzeuge I+II, Vorlesungsumdruck,
• Reimpell, J.: Fahrwerkstechnik: Grundlagen, Vogel-Fachbuchverlag, 2005

15. Lehrveranstaltungen und -formen:
• 135901 Vorlesung Kraftfahrzeuge I + II
• 135902 Übung Kraftfahrzeuge I + II

16. Abschätzung Arbeitsaufwand: Vorlesung, Selbststudium

17. Prüfungsnummer/n und -name: 13591 Kraftfahrzeuge I + II (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform: PPT-Präsentation

20. Angeboten von: Kraftfahrwesen
Modul: 14130 Kraftfahrzeugmechatronik I + II

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>070800002</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>Zweisemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester**
 - → Ergänzungsmodule --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
 - → Schwerpunkt: Elektromobilität --> Schwerpunkte
 - → Ergänzungsmodule --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
 - → Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte
 - → Ergänzungsmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester**
 - → Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
 - → Ergänzungsmodule --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester**
 - → Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester**
 - → Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester**
 - → Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester**
 - → Zusatzmodule

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester**
 - → Kernmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester**
 - → Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte
11. Empfohlene Voraussetzungen:
Grundkenntnisse aus den Fachsemestern 1 bis 4

12. Lernziele:
Die Studenten kennen mechatronische Komponenten in Automobilen, können Funktionsweisen und Zusammenhänge erklären.
Die Studenten können Entwicklungsmethoden für mechatronische Komponenten im Automobil einordnen und anwenden. Wichtige Entwicklungswerkzeuge können sie nutzen.

13. Inhalt:
VL Kfz-Mech I:
- kraftfahrzeugspezifische Anforderungen an die Elektronik
- Bordnetz (Energiemanagement, Generator, Starter, Batterie, Licht)
- Motorelektronik (Zündung, Einspritzung)
- Getriebeelektronik
- Lenkung
- ABS, ASR, ESP, elektromechanische Bremse, Dämpfungsregelung, Reifendrucküberwachung
- Sicherheitssysteme (Airbag, Gurt, Alarmanlage, Wegfahrsperrre)
- Komfortsysteme (Tempomat, Abstandsregelung, Klimaanlage)

VL Kfz-Mech II:
- Grundlagen mechatronischer Systeme (Steuerung/Regelung, diskrete Systeme, Echtzeitsysteme, eingebettete Systeme, vernetzte Systeme)
- Systemarchitektur und Fahrzeugentwicklungsprozesse
- Kernprozess zur Entwicklung von mechatronischen Systemen und Software (Schwerpunkt V-Modell)

Laborübungen Kraftfahrzeugmechatronik
- Rapid Prototyping (Simulink)
- Modellbasierte Funktionsentwicklung mit TargetLink
- Elektronik

14. Literatur:
Vorlesungsumdruck: "Kraftfahrzeugmechatronik I" (Reuss)

15. Lehrveranstaltungen und -formen:
- 141303 Laborübungen Kraftfahrzeugmechatronik
- 141301 Vorlesung Kraftfahrzeugmechatronik I
- 141302 Vorlesung Kraftfahrzeugmechatronik II

16. Abschätzung Arbeitsaufwand:
Vorlesung, Laborübungen, Selbststudium

17. Prüfungsnummer/n und -name:
14131 Kraftfahrzeugmechatronik I + II (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform:
Vorlesung (Beamer), Laborübungen (am PC, betreute Zweiergruppen)

20. Angeboten von:
Kraftfahrzeugmechatronik
Modul: 17110 Entwurf digitaler Systeme

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Andreas Kirstädter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Matthias Meyer</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Ergänzungsmodul --> Schwerpunkt: Elektromobilität --> Schwerpunkte</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Ergänzungsmodul --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Zusatzmodule</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Ergänzungsmodul --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Ergänzungsmodul --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Ergänzungsmodul --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stand: 09. April 2018
Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte

1. Empfohlene Voraussetzungen: Kenntnisse, wie sie beispielsweise im Modul Informatik II vermittelt werden

2. Lernziele: Der Studierende kann digitale Systeme entwerfen, simulieren und testen, beherrscht die Hardware-Beschreibungssprache VHDL, kennt die physikalischen Randbedingungen beim Aufbau moderner digitaler Schaltungen.

3. Inhalt:
 • Entwurfsprozesse und Modularisierung
 • Modellierung digitaler Systeme mit VHDL (Grundlegende Konzepte von VHDL, Verhaltens- und Strukturbeschreibung, Typkonzept, sequenzielle und nebeneinläufige Anweisungen, Prozeduren und Funktionen, Signale, Bibliotheken)
 • Realisierung digitaler Schaltungen (Spannungsversorgung, Übersprechen, Reflexionen und Busabschlüsse, Metastabilität, Realisierungsaspekte bei kombinatorischen und sequenziellen Netzwerken)
 • Digitale Bauelemente (Programmierbare Logik, Speicherbausteine)

Für nähere Informationen, aktuelle Ankündigungen und Material siehe
http://www.ikr.uni-stuttgart.de/Xref/CC/L_EDS

4. Literatur:
 • Vorlesungsskript
 • Ashenden, P. J.: The Student's Guide to VHDL, Morgan Kaufmann Publishers
 • Ashenden, P. J.: The Designer's Guide to VHDL, Morgan Kaufmann Publishers

5. Lehrveranstaltungen und -formen:
 • 171101 Vorlesung Entwurf digitaler Systeme
 • 171102 Übung Entwurf digitaler Systeme

6. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 56 h
 Selbststudium: 124 h
 Gesamt: 180 h

7. Prüfungsnummer/n und -name: 17111 Entwurf digitaler Systeme (PL), Mündlich, 120 Min., Gewichtung: 1

8. Grundlage für ... :
 Praktische Übungen im Labor Rechnerarchitektur und Kommunikationssysteme

9. Medienform: Notebook-Präsentationen

10. Angeboten von: Kommunikationsnetze und Rechnersysteme
Modul: 17130 Entwurf digitaler Filter

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>051610003</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>PD Dr.-Ing. Markus Gaida</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Markus Gaida</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester**
 - Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester**
 - Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester**
 - Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester**
 - Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 6. Semester**
 - Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 6. Semester**
 - Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 6. Semester**
 - Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 6. Semester**
 - Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 6. Semester**
 - Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 6. Semester**
 - Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 6. Semester**
 - Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 6. Semester**
 - Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 6. Semester**
 - Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte
11. Empfohlene Voraussetzungen:
Empfohlen werden Kenntnisse, wie sie beispielsweise in der Lehrveranstaltung *Signale und Systeme* vermittelt werden.

12. Lernziele:

13. Inhalt:
- Filter und Anwendungen, FIR- und IIR-Filter, Blockdiagramm und Signalflussgraph
- Entwurf von FIR-Filtern: linearphasige FIR-Filter, Fenster-Methode, Frequenzabtastmethode, Methode der kleinsten Quadrate, Remez-Algorithmus
- Entwurf von IIR-Filtern: analoge Referenzfilter (Butterworth, Tschebyscheff I und II, Cauer), Frequenztransformation, Methode der invarianten Impulsantwort, Bilineartransformation
- Struktur von FIR-Filtern (Direkt, Kaskade, Lattice), Struktur von IIR-Filtern (Direkt, Kaskade, Parallel, Lattice-Ladder), Levinson-Durbin-Rekursion, Schur-Cohen-Rekursion
- Quantisierungseffekte
- Zahlendarstellung, Fließkomma und Festkomma, Koeffizientenempfindlichkeit, Überlauf und Sättigung, Rundungsverfahren, Polgitter, Rundungsrauschen, Signal-zu-Rausch-Abstand, Grenzzyklen
- Entwurf digitaler Filter mit MATLAB
- Abtastrateumsetzung, Dezimation, Interpolation

14. Literatur:
- Skript

15. Lehrveranstaltungen und -formen:
- 171301 Vorlesung Entwurf digitaler Filter
- 171302 Übung Entwurf digitaler Filter

16. Abschätzung Arbeitsaufwand:
Präsenzzzeit: 56 h
Selbststudium/Nacharbeitszeit: 124 h
Gesamt: 180 h
17. Prüfungsnummer/n und -name: 17131 Entwurf digitaler Filter (PL), Schriftlich oder Mündlich, 90 Min., Gewichtung: 1
Schriftliche Prüfung (90 Min.), Prüfung wird zwei mal im Jahr angeboten. Bei geringer Hörerzahl kann die Prüfung mündlich sein, dies wird am Anfang der Vorlesung bekanntgegeben. Im Fall einer mündlichen Prüfung kann dies auch eine mündliche Gruppenprüfung (max. 3 zu prüfende Personen pro Gruppe, ca. 15 Min. pro zu prüfender Person) sein.

18. Grundlage für ...

19. Medienform: Tafel, Projektor, Beamer, CIP-Pool

20. Angeboten von: Institutsverbund Elektrotechnik und Informationstechnik
Modul: 17170 Elektrische Antriebe

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Jörg Roth-Stielow

9. Dozenten: Jörg Roth-Stielow

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester

- → Ergänzungsmodule -- Schwerpunkt: Technische Informatik
- → Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester

- → Wahlfächer -- Schwerpunkt: Automatisierungs- und Regelungstechnik
- → Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester

- → Wahlfächer -- Schwerpunkt: Elektrische Energiesysteme
- → Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester

- → Ergänzungsmodule -- Schwerpunkt: Mikro- und Optoelektronik
- → Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester

- → Ergänzungsmodule -- Schwerpunkt: Elektromobilität
- → Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester

- → Wahlfächer -- Schwerpunkt: Elektromobilität
- → Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester

- → Ergänzungsmodule -- Schwerpunkt: Automatisierungs- und Regelungstechnik
- → Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester

- → Ergänzungsmodule -- Schwerpunkt: Kommunikationssysteme und Signalverarbeitung
- → Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester

- → Wahlfächer -- Schwerpunkt: Mikro- und Optoelektronik
- → Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester

- → Wahlfächer -- Schwerpunkt: Elektrotechnische Systeme
- → Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester

- → Wahlfächer -- Schwerpunkt: Kommunikationssysteme und Signalverarbeitung
- → Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester

- → Wahlfächer -- Schwerpunkt: Technische Informatik
- → Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
11. Empfohlene Voraussetzungen:
- Kenntnisse vergleichbar "Einführung in die Elektrotechnik I"

12. Lernziele:
- ...kennen den Aufbau, die Komponenten und die Auslegungskriterien von geregelten elektrischen Antrieben.
- ...können mechanische Antriebsstränge eines elektromechanischen Antriebssystems mathematisch beschreiben und einfache Aufgabenstellungen lösen.
- ...können leistungselektronische Stellglieder eines elektromechanischen Antriebssystems mathematisch beschreiben und einfache Aufgabenstellungen lösen.
- ...können elektrische Maschinen eines elektromechanischen Antriebssystems mathematisch beschreiben und einfache Aufgabenstellungen lösen.

13. Inhalt:
- Grundlagen der Antriebstechnik
- Elektronische Stellglieder
- Gleichstrommaschine
- Drehfeldmaschinen

14. Literatur:

15. Lehrveranstaltungen und -formen:
- 171701 Vorlesung Elektrische Antriebe
- 171702 Übung Elektrische Antriebe

16. Abschätzung Arbeitsaufwand:
Frontalvorlesung

17. Prüfungsnummer/n und -name:
- 17171 Elektrische Antriebe (PL), Schriftlich, 120 Min., Gewichtung: 1 Klausur (120 min., 2x pro Jahr)

18. Grundlage für ...:
Tafel, Folien, Beamer

19. Medienform:
Leistungselektronik und Regelungstechnik
Modul: 25940 Verstärkertechnik I+II

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Manfred Berroth</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Markus Grözing</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
→ Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
→ Ergänzungsmodul --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
→ Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
→ Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
→ Ergänzungsmodul --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
→ Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
→ Ergänzungsmodul --> Schwerpunkt: Technische Informatik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
→ Ergänzungsmodul --> Schwerpunkt: Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
→ Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
→ Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
→ Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
→ Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester |
11. Empfohlene Voraussetzungen:
Grundkenntnisse in Elektrotechnik, Grundkenntnisse in Schaltungstechnik, Grundkenntnisse von elektronischen Bauelementen

12. Lernziele:
Die Studierenden verfügen über vertiefte Kenntnisse im Bereich analoge integrierte Schaltungen und integrierte Hochfrequenzschaltungen. Die Studierenden sind in der Lage, solche Schaltungen selbständig zu analysieren und zu entwerfen.

13. Inhalt:
- Analoge Grundschaltungen
- Stromspiegel
- Innerer Aufbau von Operationsverstärkern
- Anwendung von Operationsverstärkern
- Rauscharme Verstärker
- Oszillatoren
- Frequenzumsetzung
- Leistungsverstärker

14. Literatur:
- Zusatzblätter zum Selbststudium
- Aufgaben zur Selbstbearbeitung

Bücher:
- B. Razavi: RF Microelectronics, Prentice Hall, 1997

15. Lehrveranstaltungen und -formen:
- 259401 Vorlesung Verstärkertechnik I
- 259402 Vorlesung Verstärkertechnik II

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 56 h
- Selbststudium: 124 h
- Gesamt: 180 h

17. Prüfungsnummer/n und -name:
- 25941 Verstärkertechnik I (PL), Schriftlich, 60 Min., Gewichtung: 1
- 25942 Verstärkertechnik II (PL), Schriftlich, 60 Min., Gewichtung: 1

19. Medienform:
Tafel, Beamer

20. Angeboten von:
Elektrische und Optische Nachrichtentechnik
Modul: 29310 Regenerative Energiesysteme

2. Modulkürzel: 050310015
5. Moduldauer: Einsemestrig

3. Leistungspunkte: 6 LP
6. Turnus: Wintersemester

4. SWS: 5
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Stefan Tenbohlen

9. Dozenten: Stefan Tenbohlen
Silke Wieprecht
Harald Drück
Andreas Rettenmeier
Albert Ruprecht
Günter Scheffknecht

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Vorlesung Regenerative Energiesysteme --> Wahlfächer
→ Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
→ Ergänzungsmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
→ Vorlesung Regenerative Energiesysteme
→ Ergänzungsmodule --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
→ Ergänzungsmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Vorlesung Regenerative Energiesysteme --> Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 ➔ Vorlesung Regenerative Energiesysteme
 ➔ Ergänzungs module --> Schwerpunkt: Technische Informatik
 ➔ Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 ➔ Vorlesung Regenerative Energiesysteme
 ➔ Ergänzungs module --> Schwerpunkt: Mikro- und Optoelektronik
 ➔ Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 ➔ Vorlesung Regenerative Energiesysteme
 ➔ Ergänzungs module --> Schwerpunkt: Elektromobilität
 ➔ Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 ➔ Ergänzungs module --> Schwerpunkt: Automatisierungs- und Regelungstechnik
 ➔ Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 ➔ Vorlesung Regenerative Energiesysteme
 ➔ Wahlfächer --> Schwerpunkt: Elektromobilität
 ➔ Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 ➔ Vorlesung Regenerative Energiesysteme
 ➔ Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme
 ➔ Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 ➔ Ergänzungs module --> Schwerpunkt: Elektromobilität
 ➔ Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 ➔ Ergänzungs module --> Schwerpunkt: Mikro- und Optoelektronik
 ➔ Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 ➔ Vorlesung Regenerative Energiesysteme
 ➔ Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik
 ➔ Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 ➔ Vorlesung Regenerative Energiesysteme
 ➔ Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme
 ➔ Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 ➔ Vorlesung Regenerative Energiesysteme
 ➔ Ergänzungs module --> Schwerpunkt: Automatisierungs- und Regelungstechnik
 ➔ Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 ➔ Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik
 ➔ Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 ➔ Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme
 ➔ Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 ➔ Vorlesung Regenerative Energiesysteme
 ➔ Wahlfächer --> Schwerpunkt: Technische Informatik
 ➔ Schwerpunkte
11. Empfohlene Voraussetzungen:

12. Lernziele:
Die Veranstaltung gibt eine Einführung in erneuerbaren Energien.

Die Studierenden sind anschließend in der Lage:

• die Bedeutung und die Potenziale verschiedener erneuerbarer Energien (Solarthermie, Windenergie, Wasserkraft, Biomasse) quantitativ einzuschätzen,
• Berechnungen des Energieertrags und des Wirkungsgrades durchzuführen,
• Erneuerbarer Energien in unterschiedliche Energieanwendungen und ins Energiesystem einzuordnen

13. Inhalt:
• Energiedaten, Umwelt- u. Klimaschutz und erneuerbare Energien, persönlicher Energieverbrauch, Globale Kreisläufe und -bilanzen
• Sonneneinstrahlung, Potentiale der Solarenergienutzung
• Solarthermie
• Windenergie
• Wasserkraft, Meeresströmungs- und Wellenergie
• Therm. Nutzung von Biomasse, Biotreibstoffe

14. Literatur:
• V. Quaschning, Regenerative Energiesysteme, 6. Aufl., Hanser
• ergänzendes Skriptum und online-Materialien

15. Lehrveranstaltungen und -formen:
• 293102 Übung Regenerative Energiesysteme
• 29310 Vorlesung Regenerative Energiesysteme

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 70 Stunden
Selbststudium: 110 Stunden
Summe: 180 Stunden

17. Prüfungsnummer/n und -name:
29311 Regenerative Energiesysteme (PL), Schriftlich, 90 Min., Gewichtung: 1

18. Grundlage für ...

19. Medienform:
PowerPoint, Tafel

20. Angeboten von:
Energieübertragung und Hochspannungstechnik
Modul: 41170 Speichertechnik für elektrische Energie I

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050513050</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Modulduer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Kai Peter Birke</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Kai Peter Birke</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016,
→ Ergänzungsmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
→ Ergänzungsmodule --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
→ Ergänzungsmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Zusatzmodule
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
→ Ergänzungsmodule --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
→ Ergänzungsmodule --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Schwerpunkt: Elektromobilität --> Schwerpunkte
11. Empfohlene Voraussetzungen:

12. Lernziele: Die Studierenden lernen die Speichertechniken für elektrische Energie kennen.

13. Inhalt: Aufbau und Funktionsweise von:
 • Elektrischen Speichern (Spule, supraleitende Spule, Kondensator, Doppelschichtkondensator)
 • Elektromechanischen Speichern (Schwungrad, Gas, Wasser)

Charakterisierung der Speicher anhand charakteristischer Größen wie:
 • Energieinhalt
 • Leistung (dynamisch/stationär)
 • Kosten
 • Betriebssicherheit

Überblick über die wichtigsten Messverfahren
Einführung in Ersatzschaltbilder und Modellierung

15. Lehrveranstaltungen und -formen: • 411702 Übung Speicher für Elektrische Energie
• 411701 Vorlesung Speicher für Elektrische Energie

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 56 h
 Selbststudium: ca. 124 h
 Summe: 180h

17. Prüfungsnummer/n und -name: 41171 Speichertechnik für elektrische Energie (PL), Schriftlich, 90 Min., Gewichtung: 1

18. Grundlage für ...

19. Medienform: Beamer, Tafel

20. Angeboten von: Elektrische Energiespeichersysteme
Modul: 69050 Technologien und Methoden der Softwaresysteme I

2. Modulkürzel: 050501002
5. Moduldauer: Einsemestrig
3. Leistungspunkte: 6 LP
6. Turnus: Wintersemester
4. SWS: 4
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Michael Weyrich
9. Dozenten: Michael Weyrich
10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016,
 ➔ Ergänzungsmodule --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011,
 ➔ Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016,
 ➔ Ergänzungsmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016,
 ➔ Ergänzungsmodule --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011,
 ➔ Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011,
 ➔ Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011,
 ➔ Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016,
 ➔ Kernmodule --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011,
 ➔ Schwerpunkt: Technische Informatik --> Schwerpunkte
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016,
 ➔ Kernmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011,
 ➔ Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011,
 ➔ Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016,
 ➔ Ergänzungsmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte

11. Empfohlene Voraussetzungen: Grundlagen der Softwaretechnik

12. Lernziele:

13. Inhalt:
 Grundbegriffe der Softwaretechnik, Softwareentwicklungsprozesse und Vorgehensmodelle, Requirements Engineering, Systemanalyse, Softwareentwurf, Implementierung,
14. Literatur: Vorlesungsskript,
Ian Sommerville: Software Engineering, 10. Ausgabe, 2016,
Wiegers, K.: Software-Requirements, Microsoft Press, 2005
Meyer, Bertrand, Nordio, Martin (Eds.): Software Engineering,
2015, Springer, ISBN 978-3-319-28406-4
Christof Ebert: Systematisches Requirements Engineering:
Anforderungen ermitteln, dokumentieren, analysieren und
Robert C. Martin: Clean Code - Refactoring, Patterns, Testen
978-3826655487
Vorlesungsportal mit Vorlesungsaufzeichnung auf http://
www.ias.uni-stuttgart.de/st1/

15. Lehrveranstaltungen und -formen:
• 690501 Vorlesung Technologien und Methoden der
 Softwaresysteme I
• 690502 Übung Technologien und Methoden der Softwaresysteme I

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 56 h
Selbststudium: ca. 124 h

17. Prüfungsnummer/n und -name:
• 69051 Technologien und Methoden der Softwaresysteme I (PL),
 Schriftlich, 120 Min., Gewichtung: 1
• 69052 Technologien und Methoden der Softwaresysteme I (USL),
 Sonstige, Gewichtung: 1
Erfolgreiche Bearbeitung eines Kleinprojekts während des
Semesters

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Automatisierungstechnik und Softwaresysteme
330 Schwerpunkt: Kommunikationssysteme und Signalverarbeitung

Zugeordnete Module:
11640 Digitale Signalverarbeitung
11650 Hochfrequenztechnik I
11660 Übertragungstechnik I
11670 Grundlagen integrierter Schaltungen
11680 Kommunikationsnetze I
11690 Hochfrequenztechnik II
331 Wahlfächer
Modul: 11640 Digitale Signalverarbeitung

2. Modulkürzel: 051610002
3. Leistungspunkte: 6 LP
4. SWS: 4
5. Modulduauer: Einsemestrig
6. Turnus: Wintersemester
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Bin Yang
9. Dozenten: Bin Yang
10. Zuordnung zum Curriculum in diesem Studiengang:

 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 → Kernmodule --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Schwerpunkt: Technische Informatik --> Schwerpunkte
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 → Ergänzungsmodule --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 → Ergänzungsmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 → Kernmodule --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 → Ergänzungsmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 → Kernmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte
11. Empfohlene Voraussetzungen: Grundkenntnisse in höherer Mathematik
Grundkenntnisse über Signale und Systeme

12. Lernziele:
Die Studierenden

• beherrschen die grundlegenden Methoden zur digitalen Signalverarbeitung,
• besitzen die notwendigen Grundfertigkeiten zur Analyse von zeidiskreten Signalen und Systemen,
• können einfache Signale und Systeme selbstständig analysieren,
• können einfache Signalverarbeitungsaufgaben selbstständig lösen.

13. Inhalt:
• A/D- und D/A-Umwandlung, Abtastung, Quantisierung
• Zeitdiskrete Signale und Systeme, Analyse von LTI-Systemen im Zeitbereich, Differenzengleichung
• Analyse von Signalen und LTI-Systemen in der komplexen Ebene, z-Transformation, Übertragungsfunktion, Pole und Nullstellen
• Analyse von Signalen und LTI-Systemen im Frequenzbereich
• Digitale Filter, FIR und IIR, Tiefpass, Hochpass, Bandpass, Oszillator, KerbfILTER, KAMMfilter, linearphasige Filter, Allpass, minimalphasige Filter
• Korrelationsanalyse, Auto- und Kreuzkorrelation, Auto- und Kreuzkorrelationsfunktion
• Diskrete Fourier-Transformation, schnelle Fourier-Transformation (FFT), schnelle Faltung
• Spektralanalyse, Periodogramm, Fenstereffekt, Zeit-Frequenz-Analyse, Spektrogramm

14. Literatur:
• Vorlesungsunterlagen, Videoaufzeichnung der Vorlesung
• A. V. Oppenheim und R. W. Schafer, "Zeitdiskrete Signalverarbeitung", Oldenburg, 1999
• J. Proakis and D. G. Manolakis: Digital signal processing, Prentice-Hall, 1996
• M. Mandal and A. Asif, "Continuous and discrete time signals and systems", Cambridge, 2008

15. Lehrveranstaltungen und -formen:
• 116401 Vorlesung Digitale Signalverarbeitung
• 116402 Übung Digitale Signalverarbeitung

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 56 h
Selbststudium: 124 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
11641 Digitale Signalverarbeitung (PL), Schriftlich, 90 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform:
Laptop, Beamer, Videoaufzeichnung aller Vorlesungen und Übungen

20. Angeboten von:
Netzwerk- und Systemtheorie
Modul: 11650 Hochfrequenztechnik I

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050600001</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Jan Hesselbarth</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Jan Hesselbarth</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester |
| → Wahlfächer → Schwerpunkt: Mikro- und Optoelektronik → Schwerpunkte |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester |
| → Wahlfächer → Schwerpunkt: Elektrische Energiesysteme → Schwerpunkte |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester |
| → Wahlfächer → Schwerpunkt: Technische Informatik → Schwerpunkte |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester |
| → Ergänzungsmodule → Schwerpunkt: Elektrische Energiesysteme → Schwerpunkte |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester |
| → Ergänzungsmodule → Schwerpunkt: Elektromobilität → Schwerpunkte |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester |
| → Schwerpunkt: Kommunikationssysteme und Signalverarbeitung → Schwerpunkte |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester |
| → Wahlfächer → Schwerpunkt: Elektromobilität → Schwerpunkte |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester |
| → Ergänzungsmodule → Schwerpunkt: Technische Informatik → Schwerpunkte |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester |
| → Kernmodule → Schwerpunkt: Kommunikationssysteme und Signalverarbeitung → Schwerpunkte |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester |
| → Schwerpunkt: Elektrotechnische Systeme → Schwerpunkte |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester |
| → Wahlfächer → Schwerpunkt: Automatisierungs- und Regelungstechnik → Schwerpunkte |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester |
| → Ergänzungsmodule → Schwerpunkt: Mikro- und Optoelektronik → Schwerpunkte |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester |
| → Ergänzungsmodule → Schwerpunkt: Automatisierungs- und Regelungstechnik → Schwerpunkte |

Stand: 09. April 2018
11. Empfohlene Voraussetzungen:

13. Inhalt: Maxwell'sche Gleichungen, ebene Welle im freien Raum, Leitungswellen, konzentrierte Bauelemente, Resonanzschaltungen, Transformationsschaltungen, Hochfrequenzfilter

14. Literatur:
 • Vorlesungsskript,
 • Detlefsen, Siart: Grundlagen der Hochfrequenztechnik, 3. Auflage, Oldenbourg Verlag, 2009,

15. Lehrveranstaltungen und -formen:
 • 116501 Vorlesung Hochfrequenztechnik I
 • 116502 Übung Hochfrequenztechnik I

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 56 h
 Selbststudium/Nacharbeitszeit: 124 h
 Gesamt: 180 h

17. Prüfungsnummer/n und -name: 11651 Hochfrequenztechnik I (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ... : Hochfrequenztechnik II

19. Medienform: Tafel, Beamer, Projektor, ILIAS

20. Angeboten von: Hochfrequenztechnik
Modul: 11660 Übertragungstechnik I

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>051100001</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Modulduer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Stephan ten Brink</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Stephan Brink</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
→ Ergänzungsmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
→ Ergänzungsmodule --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Zusatzmodule
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
→ Ergänzungsmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
→ Kernmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
→ Ergänzungsmodule --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Schwerpunkt: Technische Informatik --> Schwerpunkte
11. Empfohlene Voraussetzungen:
Grundlagen der Elektrotechnik

12. Lernziele:
Beherrschung der grundlegenden Zusammenhänge und Verfahren der digitalen Speicherung und Übertragung von analogen und digitalen Signalen.

13. Inhalt:

14. Literatur:
- Vorlesungsbegleitendes Material, Übungsaufgaben
- Kammeyer, K. D.: Nachrichtenübertragung. Verlag Teubner, Stuttgart
- Weitere Literaturangaben im vorlesungsbegleitenden Material.

15. Lehrveranstaltungen und -formen:
- 116602 Übungen Übertragungstechnik I
- 116601 Vorlesung Übertragungstechnik I

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 56 h, Selbststudium/Nacharbeitszeit: 124 h, Gesamt 180 h

17. Prüfungsnummer/n und -name:
- 11661 Übertragungstechnik I (PL), Schriftlich oder Mündlich, 120 Min., Gewichtung: 1

18. Grundlage für ...

19. Medienform:
Skript und Übungsaufgaben in elektronischer Form (ILIAS). Anschrieb auf Tablet-PC mit Projektion.

20. Angeboten von:
Nachrichtenübertragung
Modul: 11670 Grundlagen integrierter Schaltungen

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Manfred Berroth</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Manfred Berroth</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016,</th>
<th>→ Ergänzungsmodul: Schwerpunkt: Elektromobilität → Schwerpunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>→ Vorgezogene Master-Module</td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016,</td>
</tr>
<tr>
<td>→ Wahlfach: Technische Informatik → Schwerpunkte</td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016,</td>
</tr>
<tr>
<td>→ Kernmodule: Schwerpunkt: Mikro- und Optoelektronik</td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011,</td>
</tr>
</tbody>
</table>
11. Empfohlene Voraussetzungen: Kenntnisse in Schaltungstechnik
Kenntnisse in höherer Mathematik

12. Lernziele: Die Studierenden besitzen Grundkenntnisse über integrierte Schaltungen der Digitaltechnik basierend auf Silizium-MOSFETs

13. Inhalt:
- Bauelemente der Digitaltechnik
- Digitale Grundschaltungen
- CMOS-Logikschaltungen
- Schaltwerke

14. Literatur:
- Vorlesungsskript,
- Hoffmann: VLSI-Entwurf - Modelle und Schaltungen, Oldenbourg Verlag, München, 1998

15. Lehrveranstaltungen und -formen:
- 116701 Vorlesung Grundlagen Integrierter Schaltungen
- 116702 Übung Grundlagen Integrierter Schaltungen

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 56 h
Selbststudium: 124 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
11671 Grundlagen integrierter Schaltungen (PL), Schriftlich, 90 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform:
Tafel, Beamer

20. Angeboten von:
Elektrische und Optische Nachrichtentechnik
Modul: 11680 Kommunikationsnetze I

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Andreas Kirstädter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Andreas Kirstädter</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester**
 - → Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 - → Kernmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 - → Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 - → Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 - → Zusatzmodule
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 - → Ergänzungsmoduls --> Schwerpunkt: Elektromobilität --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 - → Ergänzungsmoduls --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 - → Kernmodule --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 - → Schwerpunkt: Technische Informatik --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 - → Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 - → Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 - → Ergänzungsmoduls --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 - → Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester

Ergänzungsmodule --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte

11. Empfohlene Voraussetzungen:

- Kenntnisse, wie sie in den Modulen Informatik I und Informatik II vermittelt werden

12. Lernziele:

Verstehen der grundlegenden Architekturprinzipien von Kommunikationsnetzen mit Beispielen aus den Bereichen der Mobilfunknetze, Local Area Networks, Automatisierungsnetze und des Internet, Kenntnis von Aufbau und Funktion ausgewählter Systeme, Protokolle und Dienste. Anwenden der Methoden zur formalen Beschreibung und Bewertung von Kommunikationsnetzen.

13. Inhalt:

Grundprinzipien von Kommunikationsnetzen und -protokollen:
- Übertragung und Multiplextechniken
- Fehlersicherung
- Medienzugriff
- Vermittlung
- Wegesuche
- Transportprotokolle

Spezifikation mit Hilfe der Specification and Description Language (SDL)

Bewertung der Leistungsfähigkeit von Kommunikationsprotokollen

Ausgewählte Dienste und Anwendungen im Internet

Für nähere Informationen, aktuelle Ankündigungen und Material siehe
http://www.ikr.uni-stuttgart.de/Xref/CC/L_CN_I

14. Literatur:

- Skript zur Vorlesung
- Kurose, Ross: Computer Networking, Addison-Wesley, 2009

15. Lehrveranstaltungen und -formen:

- 116802 Übung zu Kommunikationsnetze I
- 116801 Vorlesung Kommunikationsnetze I

16. Abschätzung Arbeitsaufwand:

- Präsenzzeit: 56 h
- Selbststudium: 124 h
- Gesamt: 180 h

17. Prüfungsnummer/n und -name:

- 11681 Kommunikationsnetze I (PL), Schriftlich oder Mündlich, 120 Min., Gewichtung: 1

18. Grundlage für ...

- Praktische Übungen im Labor Rechnerarchitektur und Kommunikationssysteme I Communication Networks II

19. Medienform:

- Notebook-Präsentation

20. Angeboten von:

- Kommunikationsnetze und Rechnersysteme
Modul: 11690 Hochfrequenztechnik II

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050600002</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Modulduer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Jan Hesselbarth</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Jan Hesselbarth</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, Ergänzungsmodulle --> Schwerpunkt: Elektromobilität --> Schwerpunkte</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, Ergänzungsmodulle --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte</td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen: Grundlagen der Nachrichtentechnik Grundlagend der Hochfrequenztechnik
| 15. Lehrveranstaltungen und -formen: | • 116901 Vorlesung Antennas
• 116902 Übung Antennas |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 56 h
Selbststudium/Nacharbeitszeit: 124 h
Gesamt: 180 h |
| 17. Prüfungsnummer/n und -name: | 11691 Hochfrequenztechnik II (PL), Schriftlich, 120 Min., Gewichtung: 1 |
| 18. Grundlage für ... : | |
| 19. Medienform: | Tafel, Beamer, Projektor, ILIAS |
| 20. Angeboten von: | Hochfrequenztechnik |
331 Wahlfächer

Zugeordnete Module:

- 11540 Regelungstechnik I
- 11550 Leistungselektronik I
- 11560 Elektrische Energienetze I
- 11570 Hochspannungstechnik I
- 11580 Elektrische Maschinen I
- 11590 Photovoltaik I
- 11610 Technische Informatik I
- 11620 Automatisierungstechnik I
- 11700 Halbleitertechnik I
- 11710 Optoelectronics I
- 11720 Halbleitertechnologie I
- 11730 Flachbildschirme
- 11740 Elektromagnetische Verträglichkeit
- 11750 Numerische Feldberechnung I
- 12420 Windenergie I - Grundlagen Windenergie
- 13590 Kraftfahrzeuge I + II
- 14130 Kraftfahrzeugmechatronik I + II
- 17110 Entwurf digitaler Systeme
- 17130 Entwurf digitaler Filter
- 17170 Elektrische Antriebe
- 25940 Verstärkertechnik I+II
- 29310 Regenerative Energiesysteme
- 41170 Speichertechnik für elektrische Energie I
- 69050 Technologien und Methoden der Softwaresysteme I
Modul: 11540 Regelungstechnik I

<table>
<thead>
<tr>
<th>Modulkürzel:</th>
<th>051010012</th>
<th>Modulkürzel:</th>
<th>051010012</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leistungspunkte:</td>
<td>6 LP</td>
<td>Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Jörg Roth-Stielow</td>
<td>Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Jörg Roth-Stielow</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Jörg Roth-Stielow</td>
<td>Dozenten:</td>
<td>Jörg Roth-Stielow</td>
</tr>
<tr>
<td>Zuordnung zum Curriculum in diesem Studiengang:</td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Zusatzmodule</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Erganzungsmodule --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Vorgezogene Master-Module</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Erganzungsmodul --> Schwerpunkt: Technische Informatik --> Schwerpunkte</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Kernmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Kernmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Kernmodule --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester

→ Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester

→ Schwerpunkt: Elektromobilität --> Schwerpunkte

11. Empfohlene Voraussetzungen:

Kenntnisse vergleichbar...

...Höhere Mathematik I, II, III
...Experimentalphysik
...Grundlagen der Elektrotechnik
...Elektrische Energietechnik
...Signale und Systeme
...Schaltungstechnik

12. Lernziele:

Studierende...

• ...können eine Regelstrecke modellieren und kennen die wichtigsten Regelsysteme.
• ...können diese Anordnungen mathematisch beschreiben, hinsichtlich ihrer Stabilität beurteilen und Aufgabenstellungen lösen.

13. Inhalt:

• Beschreibung von Übertragungsstrecken
• Stabilität von Regelsystemen
• Herkömmliche Regelsysteme
• Regelsysteme mit Rückführung eines vollständigen Satzes von Zustandsvariablen
• Echtes Integralverhalten
• Beobachter
• Systemführung nach dem Prinzip unterlagerter Schleifen
• Systeme mit einem Wechsel der Regelgröße

14. Literatur:

• Lunze, Jan: Regelungstechnik 1, Springer, Berlin, 1999
• Unbehauen, H.: Regelungstechnik 1, Vieweg, Braunschweig, 1989
• Leonhard, W.: Einführung in die Regelungstechnik, Vieweg, Braunschweig, 1992

15. Lehrveranstaltungen und -formen:

• 115401 Vorlesung Regelungstechnik I
• 115402 Übung Regelungstechnik I

16. Abschätzung Arbeitsaufwand:

Frontalvorlesung

17. Prüfungsnummer/n und -name:

11541 Regelungstechnik I (PL), Schriftlich, 120 Min., Gewichtung: 1
Klausur (120 min., 2x pro Jahr)

18. Grundlage für ...

Regelungstechnik II

19. Medienform:

Tafel, Folien, Beamer

20. Angeboten von:

Leistungselektronik und Regelungstechnik
Modul: 11550 Leistungselektronik I

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>051010011</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Modulduer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Jörg Roth-Stielow</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Jörg Roth-Stielow</td>
</tr>
</tbody>
</table>

Zuordnung zum Curriculum in diesem Studiengang:

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester**
 - Wählfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 - Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 - Wählfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 - Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 - Wählfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 - Kernmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 - Wählfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 - Wählfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 - Kernmodule --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 - Wählfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 - Kernmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester

Stand: 09. April 2018
11. Empfohlene Voraussetzungen: Kenntnisse vergleichbar Elektrische Energietechnik I
Kenntnisse vergleichbar Elektrische Energietechnik II

12. Lernziele: Studierende...

- ...kennen die wichtigsten potentialverbindenden und potentialtrennenden Schaltungen der Leistungselektronik mit abschaltbaren Ventilen und die zugehörigen Modulationsverfahren.
- ...können diese Anordnungen mathematisch beschreiben und Aufgabenstellungen lösen.
- ...kennen die grundlegenden Prinzipien der Messverfahren für Mischströme.

13. Inhalt:

- Abschaltbare Leistungshalbleiter
- Schaltungstopologien potentialverbindender Stellglieder
- Schaltungstopologien potentialtrennender Gleichstromsteller
- Modulationsverfahren
- Strommesstechnik in der Leistungselektronik

14. Literatur:

15. Lehrveranstaltungen und -formen:

- 115501 Vorlesung Leistungselektronik I
- 115502 Übung Leistungselektronik I

16. Abschätzung Arbeitsaufwand:

- Frontalvorlesung

17. Prüfungsnummer/n und -name:

- 11551 Leistungselektronik I (PL), Schriftlich, 120 Min., Gewichtung: 1
- Klausur (120 min., 2x pro Jahr)

18. Grundlage für ...

19. Medienform:

- Tafel, Folien, Beamer

20. Angeboten von:

- Leistungselektronik und Regelungstechnik
Modul: 11560 Elektrische Energienetze I

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050310001</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Stefan Tenbohlen</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Stefan Tenbohlen</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
- Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
- Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
- Ergänzungsmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
- Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
- Kernmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
- Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
- Ergänzungsmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
- Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
- Ergänzungsmodule --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
- Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
- Ergänzungsmodul --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
- Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
11. Empfohlene Voraussetzungen:

<table>
<thead>
<tr>
<th>Ergänzungsmodule</th>
<th>Schwerpunkt: Automatisierungs- und Regelungstechnik</th>
<th>Schwerpunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Elektrische Energietechnik</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

12. Lernziele:

13. Inhalt:

<table>
<thead>
<tr>
<th>Aufgaben des elektrischen Energienetzes, Smart Grids</th>
<th>Einpolige Ersatzschaltungen der Betriebselemente für symmetrische Betriebsweise</th>
<th>Berechnung von Energieübertragungsanlagen und -netzen</th>
<th>Betrieb elektrischer Energieversorgungsnetze</th>
<th>Kurzschlussströme bei symmetrischem Kurzschluss</th>
<th>Symmetrische Komponenten</th>
</tr>
</thead>
</table>

14. Literatur:

15. Lehrveranstaltungen und -formen:

| 115601 Vorlesung Elektrische Energienetze 1 | 115602 Übung Elektrische Energienetze 1 |

16. Abschätzung Arbeitsaufwand:

| Präsenzzeit: 56 h | Selbststudium/Nacharbeitszeit: 124 h | Gesamt: 180 h |

17. Prüfungsnummer/n und -name:

| 11561 Elektrische Energienetze I (PL), Schriftlich, 120 Min., Gewichtung: 1 |

18. Grundlage für ...:

| Elektrische Energienetze II |

19. Medienform:

| PowerPoint, Tafelanschrieb |

20. Angeboten von:

| Energieübertragung und Hochspannungstechnik |
Modul: 11570 Hochspannungstechnik I

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050310003</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Stefan Tenbohlen</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Stefan Tenbohlen</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester**
 - Wahlfächer
 - Schwerpunkt: Technische Informatik
 - Schwerpunkte
 - Ergänzungsmodule
 - Schwerpunkt: Elektromobilität
 - Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester**
 - Wahlfächer
 - Schwerpunkt: Kommunikationssysteme und Signalverarbeitung
 - Schwerpunkte
 - Ergänzungsmodule
 - Schwerpunkt: Automatisierungs- und Regelungstechnik
 - Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester**
 - Wahlfächer
 - Schwerpunkt: Elektrische Energiesysteme
 - Schwerpunkte
 - Ergänzungsmodule
 - Schwerpunkt: Technische Informatik
 - Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester**
 - Wahlfächer
 - Schwerpunkt: Automatisierungs- und Regelungstechnik
 - Schwerpunkte
 - Ergänzungsmodule
 - Schwerpunkt: Mikro- und Optoelektronik
 - Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester**
 - Wahlfächer
 - Schwerpunkt: Kommunikationssysteme und Signalverarbeitung
 - Schwerpunkte
 - Ergänzungsmodule
 - Schwerpunkt: Technische Informatik
 - Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester**
 - Wahlfächer
 - Schwerpunkt: Elektro- und Elektromaschinen
 - Schwerpunkte
 - Ergänzungsmodule
 - Schwerpunkt: Automatisierungs- und Regelungstechnik
 - Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester**
 - Wahlfächer
 - Schwerpunkt: Mikro- und Optoelektronik
 - Schwerpunkte
 - Ergänzungsmodule
 - Schwerpunkt: Technische Informatik
 - Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester**
 - Wahlfächer
 - Schwerpunkt: Kommunikationssysteme und Signalverarbeitung
 - Schwerpunkte
 - Ergänzungsmodule
 - Schwerpunkt: Technische Informatik
 - Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester**
 - Wahlfächer
 - Schwerpunkt: Automatisierungs- und Regelungstechnik
 - Schwerpunkte
 - Ergänzungsmodule
 - Schwerpunkt: Mikro- und Optoelektronik
 - Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester**
 - Wahlfächer
 - Schwerpunkt: Technische Informatik
 - Schwerpunkte
 - Kernmodule
 - Schwerpunkt: Elektrische Energiesysteme
 - Schwerpunkte
| 11. Empfohlene Voraussetzungen: | • Elektrische Energietechnik |
| 13. Inhalt: | • Auftreten und Anwendung hoher Spannungen bzw. Ströme |
| | • Einführung in die Hochspannungsversuchstechnik |
| | • Berechnung elektrischer Felder |
| | • Grundlagen der Hochspannungsisoliertechnik |
| | • Isolierstoffsysteme in Hochspannungsgeräten |
| | • Beyer, Boeck, Möller, Zaengl: Hochspannungstechnik Springer-Verlag, Berlin, 1986 |
| | • Kind, Feser: Hochspannungs-Versuchstechnik Vieweg, Braunschweig, 1995 |
| | • Kind, Kärner: Hochspannungs-Isoliertechnik Vieweg, Braunschweig, 1982 |
| 15. Lehrveranstaltungen und -formen: | • 115702 Übung Hochspannungstechnik 1 |
| | • 115701 Vorlesung Hochspannungstechnik 1 |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 56 h |
| | Selbststudium/Nacharbeitszeit: 124 h |
| | Gesamt: 180 h |
| 17. Prüfungsnummer/n und -name: | 11571 Hochspannungstechnik I (PL), Schriftlich, 120 Min., Gewichtung: 1 |
| 18. Grundlage für ... : | |
| 19. Medienform: | PowerPoint, Tafelanschrieb |
| 20. Angeboten von: | Energieübertragung und Hochspannungstechnik |
Modul: 11580 Elektrische Maschinen I

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Nejila Parspour</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Nejila Parspour</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
- Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
- Ergänzungsmodule --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
- Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
- Ergänzungsmodule --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
- Ergänzungsmodule --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
- Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
- Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
- Kernmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
- Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
- Ergänzungsmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
- Kernmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
- Ergänzungsmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
11. Empfohlene Voraussetzungen:

13. Inhalt:

- Magnetismus und Grundlagen der magnetischen Kreise (Energie, Reluktanzkraft)
- Antriebstechnische Zusammenhänge
- Verluste in elektrischen Maschinen
- Berechnung von magnetischen Luftspaltfeldern von einfachen Wickelschemata in Drehfeldmaschinen
- Behandelte Maschinentypen:

1) **Reluktanzmaschine**: Aufbau und Funktion, Ersatzschaltbilder, Energiefluss, Kennlinien, Bauformen und Einsatzgebiete

2) **Synchronmaschine**: Aufbau und Funktion, Ersatzschaltbilder, Energiefluss, mathematische Zusammenhänge, Kennlinien, vollständiges Ersatzschaltbild, Drehzahlstellverfahren, Brems- und Anlaufverfahren, Bauformen und Einsatzgebiete

3) **Asynchronmaschine**: Aufbau und Funktion, Ersatzschaltbilder, Energiefluss, mathematische Zusammenhänge, Kennlinien, Drehzahlstellverfahren, Brems- und Anlaufverfahren, Bauformen und Einsatzgebiete

14. Literatur:

15. Lehrveranstaltungen und -formen:

- 115801 Vorlesung Elektrische Maschinen I
- 115802 Übung Elektrische Maschinen I

16. Abschätzung Arbeitsaufwand:

Präsenzzeit:	56 h
Selbststudium/Nacharbeitszeit:	124 h
Summe:	180 h

17. Prüfungsnummer/n und -name:

| 11581 | Elektrische Maschinen I (PL), Schriftlich, 120 Min., Gewichtung: 1 |

Stand: 09. April 2018
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ...</td>
<td>Elektrische Maschinen II</td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Beamer, Tafel, ILIAS</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Elektrische Energiewandlung</td>
</tr>
</tbody>
</table>
Modul: 11590 Photovoltaik I

<table>
<thead>
<tr>
<th>Modulkürzel:</th>
<th>050513002</th>
<th>Moduldauer:</th>
<th>Einsemestrig</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leistungspunkte:</td>
<td>6 LP</td>
<td>Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>SWS:</td>
<td>4</td>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Jürgen Heinz Werner</td>
<td>Dozenten:</td>
<td>Jürgen Heinz Werner</td>
</tr>
</tbody>
</table>

Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kernmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte</td>
</tr>
<tr>
<td>Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kernmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kernmodule --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte</td>
</tr>
<tr>
<td>Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kerneinheit --> Schwerpunkt: Elektromobilität --> Schwerpunkte</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte</td>
</tr>
<tr>
<td>Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte</td>
</tr>
</tbody>
</table>
11. Empfohlene Voraussetzungen: Grundkenntnisse über Halbleitermaterialien und Halbleiterdioden, z.B. aus Mikroelektronik I

12. Lernziele:
- das Potential der Sonnenstrahlung
- die Funktionsweise von Solarzellen
- die wichtigsten Technologien der Herstellung von Solarmodulen
- die Grundprinzipien von Wechselrichtern
- die Energieerträge verschiedener Photovoltaik-Technologien
- den aktuellen Stand des Photovoltaikmarktes und der Kosten von Photovoltaik-Strom

13. Inhalt:
- Der Photovoltaische Effekt (Zelle, Modul, Anlage)
- Solarstrahlung und Energieumsatz in Deutschland
- Grundprinzip und Kenngrößen von Solarzellen
- Ersatzschaltbilder von Solarzellen
- Maximaler Wirkungsgrad
- Photovoltaik-Materialien und -Technologien
- Modultechnik
- Photovoltaische Systemtechnik
- (Jahres-) Energieerträge von Photovoltaiksystemen

14. Literatur:
• Goetzberger, Voß, Knobloch, Sonnenenergie: Photovoltaik, Teubner, 1994
• P. Würfel, Physik der Solarzellen, Spektrum, 1995
• M. A. Green, Solar Cells - Operating Principles, Technology and System Applications, Centre for Photovoltaic Devices and Systems, Sydney, 1986
• F. Staiß, Photovoltaik - Technik, Potentiale und Perspektiven der solaren Stromerzeugung, Vieweg, 1996

15. Lehrveranstaltungen und -formen:
• 115901 Vorlesung Photovoltaik I
• 115902 Übungen Photovoltaik I

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 56 h
Selbststudium/Nacharbeitszeit: 142 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name: 11591 Photovoltaik I (PL), Schriftlich, 90 Min., Gewichtung: 1

18. Grundlage für ...
Photovoltaik II

19. Medienform:
Powerpoint, Tafel

20. Angeboten von:
Physikalische Elektronik
Modul: 11610 Technische Informatik I

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

| 8. Modulverantwortlicher: | Univ.-Prof. Dr.-Ing. Andreas Kirstädter |
| 9. Dozenten: | Andreas Kirstädter, Matthias Meyer |

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
- Kerntmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
- Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
- Schwerpunkt: Technische Informatik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
- Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
- Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
- Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
- Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
- Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
- Ergänzungsmodule --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
- Ergänzungsmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
- Ergänzungsmodule --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
11. Empfohlene Voraussetzungen:
Kenntnisse, wie sie in den Modulen Grundlagen der Programmierung sowie Grundlagen der Informationsverarbeitung vermittelt werden.

12. Lernziele:
Der Studierende kann Schaltungen auf der Register-Transfer-Ebene entwerfen, Mikroprogrammierung anwenden, kennt Konzepte und Mechanismen von Betriebssystemen und versteht den Aufbau von Rechnersystemen einschließlich der Ein- und Ausgabemechanismen.

13. Inhalt:
- Einfache Einadressmaschine, Elemente und Mechanismen der Register-Transfer-Ebene
- Prozessorbaugruppen und Mikroprogrammierung
- Grundkonzepte von CISC-Prozessoren
- Grundkonzepte und Mechanismen von Betriebssystemen
- Aufbau von Rechnersystemen einschl. Ein-/Ausgabe

14. Literatur:

15. Lehrveranstaltungen und -formen:
- 116102 Übung zu Technische Informatik I
- 116101 Vorlesung Technische Informatik I

16. Abschätzung Arbeitsaufwand:
Vorlesung, Übungen und Selbststudium

17. Prüfungsnummer/n und -name:
11611 Technische Informatik I (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform:
- Vortrag mit Folien
- Tafelanschriebe

20. Angeboten von:
Kommunikationsnetze und Rechnersysteme
Modul: 11620 Automatisierungstechnik I

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050501003</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Moduldauber:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Michael Weyrich</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Michael Weyrich</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester |
|----------------------|------------------------|
| → Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester |
| → Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester |
| → Zusatzmodule |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester |
| → Ergänzungsmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester |
| → Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester |
| → Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester |
| → Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester |
| → Ergänzungsmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester |
| → Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester |
| → Ergänzungsmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester |
| → Kernmodule --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester |
| → Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester |
| → Ergänzungsmodule --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte |
11. Empfohlene Voraussetzungen:
- Grundlagen der Elektrotechnik, Informatik und Mathematik

12. Lernziele:
Die Studierenden
- besitzen grundlegende Kenntnisse über rechnerbasierte Automatisierungssysteme
- setzen sich mit Kommunikationssystemen der Automatisierungstechnik aus
- wenden grundlegende Methoden und Verfahren der Echtzeit-Programmierung an
- lernen spezifische Programmiersprachen der Automatisierungstechnik kennen

13. Inhalt:
- Grundlegende Begriffe der Automatisierungstechnik
- Automatisierungs-Gerätesysteme und -strukturen
- Prozessperipherie – Schnittstellen zwischen dem Automatisierungscomputersystem und dem technischen Prozess (Prozesssignalanfassung und -überwachung)
- Grundlagen zu Kommunikationssystemen in der Automatisierungstechnik (Feldbussysteme, drahtlose Kommunikation)
- Grundlagen der Echtzeitprogrammierung (Synchron und Asynchron Programmierung, Scheduling-Algorithmen, Synchronisationskonzepte)
- Programmiersprachen für die Automatisierungstechnik (Programmierung von Speicherprogrammierbaren und pneumatischen Steuerungen)

14. Literatur:
- Vorlesungsskript
- Lauber, Göhner: Prozessautomatisierung Band 1 (3. Auflage), Springer, 1999
- Früh, Maier: Handbuch der Prozessautomatisierung (3. Auflage) Oldenbourg Industrieverlag, 2004
- Wellenreuther Automatisieren mit SPS (3. Auflage), Vieweg, 2005
- Materialien und Vorlesungsaufzeichnungen im ILIAS

15. Lehrveranstaltungen und -formen:
- 116201 Vorlesung Automatisierungstechnik I
- 116202 Übung Automatisierungstechnik I

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 56 h
 Selbststudium: 124 h
 Gesamt: 180 h

17. Prüfungsnummer/n und -name:
 11621 Automatisierungstechnik I (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ...:
 Automatisierungstechnik II

19. Medienform:
 Beamerpräsentation mit Aufzeichnung der Vorlesungen und Übungen

20. Angeboten von:
 Automatisierungstechnik und Softwaresysteme
Modul: 11700 Halbleitertechnik I

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Jörg Schulze</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Jörg Schulze</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zuordnung zum Curriculum in diesem Studiengang:

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester**
 - → Schwerpunkt: Mikro- und Optoelektronik → Schwerpunkte
 - → Wahlfächer → Schwerpunkt: Elektrotechnische Systeme → Schwerpunkte
- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester**
 - → Wahlfächer → Schwerpunkt: Elektromobilität → Schwerpunkte
- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester**
 - → Wahlfächer → Schwerpunkt: Elektrische Energiesysteme → Schwerpunkte
- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester**
 - → Wahlfächer → Schwerpunkt: Automatisierungs- und Regelungstechnik → Schwerpunkte
- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester**
 - → Wahlfächer → Schwerpunkt: Technische Informatik → Schwerpunkte
- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester**
 - → Wahlfächer → Schwerpunkt: Kommunikationssysteme und Signalverarbeitung → Schwerpunkte
- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester**
 - → Wahlfächer → Schwerpunkt: Automatisierungs- und Regelungstechnik → Schwerpunkte
- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester**
 - → Wahlfächer → Schwerpunkt: Technische Informatik → Schwerpunkte
- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester**
 - → Wahlfächer → Schwerpunkt: Kommunikationssysteme und Signalverarbeitung → Schwerpunkte
11. Empfohlene Voraussetzungen:
Empfohlen werden Kenntnisse, wie Sie beispielsweise in Mikroelektronik (ME) und Halbleitertechnologie: Prozesstechnologie (HLT I) vermittelt werden.

12. Lernziele:
Die Studierenden besitzen die Kenntnis und das Verständnis der mathematisch-physikalischen Grundlagen der Bauelement-Modellierung, kennen die ideale und die reale Funktionsweise und den Aufbau diverser Halbleiterdioden und haben ein umfassendes Verständnis vom Aufbau und vom idealen/realen Verhalten eines Bipolar- und eines Heterobipolartransistors. Darüber hinaus kennen sie die prinzipielle Funktionsweise von Thyristoren und haben erste Grundkenntnisse von der Funktionsweise von Leistungs bipolartransistoren mit isoliertem Gate und von BiCMOS-Schaltungen (BiCMOS: Schaltungstechnik, bei der Bipolar- und Feldeffekttransistoren miteinander kombiniert werden). Außerdem kennen sie die prinzipiellen Herstellungsprozessabläufe moderner Bipolar- und BiCMOS-Prozesse.

13. Inhalt:
Die Vorlesung Halbleitertechnik: Bipolartechnik (HL I) bildet zusammen mit der Vorlesung Halbleitertechnik: Nano-CMOS-Ära (HL II) den Halbleitertechnik-Zyklus des IHT. Die Vorlesung wird jedes zweite Semester immer im Wintersemester angeboten. Die folgenden Inhalte werden besprochen:
• Beschreibung eines p+n-Übergangs im thermodynamischen Gleichgewicht (Raumladungszonen, Poisson-Gleichung, Depletion-Näherung und Built-in-Spannung),
• Beschreibung eines p+n-Übergangs im Nicht-Gleichgewicht (I-U-Charakteristik des idealen p-n-Übergangs, Rekombinationsmechanismen in p-n-Übergängen, I-U-Charakteristik des realen p-n-Übergangs, Durchbruchmechanismen in p-n-Übergängen),
• Dioden-Spezialformen: Schottky-Diode und Ohmscher Kontakt, Z-Dioden (Zener-Diode und Avalanche-Diode), IMPATT-Diode (Impact-Ionization-Avalanche-Transit-Time-Diode), Gunn-Diode, Uni-Tunneldiode, Esaki-Tunneldiode, Shockley-Diode, DIAC (Diode for Alternating Current),
• Aufbau und Funktionsweise von Bipolar- und Heterobipolartransistoren: Ideales und reales Verhalten und Hochfrequenzbetrieb,
• Thyristor und lichtgezündeter Thyristor, TRIAC (Triode for Alternating Current).

Als Ausblick wird zum Schluss der Vorlesung auf Leistungs bipolartransistoren mit isoliertem Gate wie dem Gate-Turn-Off-Thyristor (GTO-Thyristor) und dem Insulated Gate Bipolar Transistor (IGBT) und auf BiCMOS-Schaltungen eingegangen.

14. Literatur:
• Chang: ULSI Devices, Wiley, 2000
• Hoffmann: Systemintegration, Oldenbourg, 2003
• Linder: Power Semiconductors, CRC Press, 2006
• Löcherer: Halbleiterbauelemente, Teubner, 1992
• Lutz: Halbleiter-Leistungsbaulemente, Springer, 2006
• Ng: Complete Guide to Semiconductor Devices, Wiley, 2002
• Razavi: Microelectronics, Wiley, 2015
• Roulsten: An Introduction to the Physics of Semiconductor Devices, Oxford University Press, 1999
• Schaumburg: Halbleiter, Teubner, 1991
15. Lehrveranstaltungen und -formen:

- 117001 Vorlesung Halbleitertechnik 1
- 117002 Übung Halbleitertechnik 1

16. Abschätzung Arbeitsaufwand:

Gesamtaufwand: 180 h
Dabei:
- 45 h (2 SWS Vorlesung + 2 SWS Übung) Präsenz
- 135 h Selbststudium

17. Prüfungsnummer/n und -name:

11701 Halbleitertechnik I (PL), Schriftlich, 90 Min., Gewichtung: 1

18. Grundlage für ...

19. Medienform:

- PowerPoint-Präsentationen zu den einzelnen Kapiteln (Beamer)
- Aufzeichnungen während der Vorlesungen (Notizen, Rechnungen, Skizzen u. ä.) mit Hilfe eines Tablet-PCs (Beamer)
- Lehrbriefe zu den einzelnen Themenschwerpunkten
- Ausgedrucktes Skript mit sämtlichen Vorlesungs- und Übungsfolien, Übungsblättern und Lehrbriefen (zum Selbstkostenpreis erhältlich)
- Vorlesungsaufzeichnungen im MPG4-Format mittels Tablet-PCs und Head-Set
- Sämtliche Unterlagen werden elektronisch über ILIAS zum Download bereitgestellt.

20. Angeboten von:

Halbleitertechnik
Modul: 11710 Optoelectronics I

2. Modulkürzel: 050513001
5. Modulduauer: Einsemestrig
3. Leistungspunkte: 6 LP
6. Turnus: Sommersemester
4. SWS: 4
7. Sprache: Englisch
8. Modulverantwortlicher: Univ.-Prof. Dr. Jürgen Heinz Werner
9. Dozenten: Jürgen Heinz Werner

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 6. Semester
→ Ergänzungsmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 6. Semester
→ Kernmodule --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 6. Semester
→ Ergänzungsmodule --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester
→ Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester
→ Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester
→ Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 6. Semester
→ Ergänzungsmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester
→ Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester
→ Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester
→ Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester
→ Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 6. Semester
→ Ergänzungsmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 6. Semester
→ Ergänzungsmodule --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte

11. Empfohlene Voraussetzungen:
12. Lernziele: The students know
- the fundamentals of incoherent and coherent radiation
- the generation of radiation by light emitting diodes and semiconductor laser diodes
- the transport of radiation via glass fibers and its detection using photodetectors

13. Inhalt:
- Basics of incoherent and coherent radiation
- Semiconductor basics
- Excitation and recombination processes in semiconductors
- Light emitting diodes
- Semiconductor lasers
- Glass fibers
- Photodetectors

14. Literatur:
- W. Bludau, Halbleiteroptoelektronik: Die physikalischen Grundlagen der LEDs, Diodenlaser und pn-Photodioden (Carl Hanser, München, 1995).
- W. L. Leigh, Devices for Optoelectronics (Dekker, New York, 1996).

15. Lehrveranstaltungen und -formen:
- 117102 Übung Optoelectronics I
- 117101 Vorlesung Optoelectronics I

16. Abschätzung Arbeitsaufwand:
Presence time: 56 h
Self studies: 124 h
Total: 180 h

17. Prüfungsnummer/n und -name:
11711 Optoelectronics I (PL), Schriftlich oder Mündlich, 120 Min., Gewichtung: 1
Group presentation in seminar (60 min, once per year) written exam (60 min, twice per year)

18. Grundlage für ...

19. Medienform:
- Powerpoint, blackboard

20. Angeboten von:
Physikalische Elektronik
Modul: 11720 Halbleitertechnologie I

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050500003</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Modulduer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Jörg Schulze</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Jörg Schulze</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester |
|-------------------------|-----------------------------|
| → Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte |
| → Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte |
| → Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte |
| → Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte |
| → Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte |
| → Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte |
| → Ergänzungsmodul --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte |
| → Ergänzungsmodul --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte |
| → Ergänzungsmodul --> Schwerpunkt: Technische Informatik --> Schwerpunkte |
| → Ergänzungsmodul --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte |

11. Empfohlene Voraussetzungen:
Empfohlen werden Kenntnisse, wie Sie beispielsweise in *Mikroelektronik (ME)* vermittelt werden.

- Einführung in die Silizium-basierte Halbleitertechnologie,
- Technologische Grundlagen (Prozessparameter und grundlegende Technologieprozesse),
- Substrat- und Waferherstellung (CZ-Waver, FZ-Wafer und Silicon-On-Insulator-Wafer),
- Lithographie (optische Lithographie und alternative Verfahren) und Strukturierungsmethoden (nasschemisch, trockenchemisch und physikalisch-chemisch),
- Dotiermethoden: Epitaxie, Diffusion und Ionenimplantation,
- Herstellung und Strukturierung von Isolatorschichten (Standardelektrika, Low-k-, Medium-k- und high-k-Dielektrika) und Planarisierungsmethoden,
- Herstellung und Strukturierung metallischer Schichten.

Als Ausblick wird zum Schluss der Vorlesung auf die Aufbau- und Verbindungstechnik eingegangen und exemplarische Herstellungsprozesse unterschiedlicher mikroelektronischer Bauelemente werden diskutiert.

14. Literatur:
- Beneking: Halbleitertechnologie, Eine Einführung in die Prozesstechnik von Silizium und III-V Verbindungen, Teubner Verlag, 1984
- Hilleringmann: Silizium-Halbleitertechnologie, Teubner Verlag, 1996
- v. Münch: Einführung in die Halbleitertechnologie, Teubner Verlag, 1993
- Nijs (Ed.): Advanced Silicon and Semiconducting Silicon-Alloy Based Materials and Devices, Institute of Physics Publishing, 1994
15. Lehrveranstaltungen und -formen:

- 117201 Vorlesung Halbleitertechnologie 1
- 117202 Übung Halbleitertechnologie 1

16. Abschätzung Arbeitsaufwand:

Gesamtaufwand: 180 h
Dabei:
- 45 h (2 SWS Vorlesung + 2 SWS Übung) Präsenz
- 135 h Selbststudium

17. Prüfungsnummer/n und -name:

11721 Halbleitertechnologie I (PL), Schriftlich, 90 Min., Gewichtung: 1

18. Grundlauft für ...:

19. Medienform:

- PowerPoint-Präsentationen zu den einzelnen Kapiteln (Beamer)
- Aufzeichnungen während der Vorlesungen (Notizen, Rechnungen, Skizzen u. ä.) mit Hilfe eines Tablet-PCs (Beamer)
- Lehrbriefe zu den einzelnen Themenschwerpunkten
- Ausgedrucktes Skript mit sämtlichen Vorlesungs- und Übungsfolien, Übungsbögen und Lehrbriefen (zum Selbstkostenpreis erhältlich)
- Vorlesungsaufzeichnungen im MPG4-Format mittels Tablet-PCs und Head-Set
- Sämtliche Unterlagen werden elektronisch über ILIAS zum Download bereitgestellt.

20. Angeboten von:

Halbleitertechnik
Modul: 11730 Flachbildschirme

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Nesrine Kammoun</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Norbert Frühauf</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester</td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 6. Semester</td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester</td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester</td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 6. Semester</td>
</tr>
<tr>
<td>→ Ergänzungsmodul -- > Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 6. Semester</td>
</tr>
<tr>
<td>→ Ergänzungsmodul --> Schwerpunkt: Elektromobilität --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 6. Semester</td>
</tr>
<tr>
<td>→ Ergänzungsmodul --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester</td>
</tr>
<tr>
<td>→ Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 6. Semester</td>
</tr>
<tr>
<td>→ Ergänzungsmodul --> Schwerpunkt: Elektromobilität --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 6. Semester</td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 6. Semester</td>
</tr>
</tbody>
</table>
11. Empfohlene Voraussetzungen:

12. Lernziele: Die Studierenden
 • kennen die in Flachbildschirmen eingesetzten elektrooptischen Effekte und die zugehörigen Ansteuerverfahren
 • können grundlegende Dimensionierungen von Flüssigkristallbildschirmen vornehmen
 • kennen Verfahren zur elektro-optischen Charakterisierung von Bildschirmen und können wesentliche Leistungsparameter wie Kontrast und Farbort berechnen

13. Inhalt:
 • Einsatzgebiete der Flachbildschirmtechnik
 • Physiologie des menschlichen Sehens
 • Farbdarstellung (Tri-Stimulus Theorie)
 • Elektro-optische Eigenschaften von Flüssigkristallen
 • Organische Lichtemittierende Dioden
 • Elektrophoretische Medien
 • Sonstige Elektro-optische Effekte
 • Plasmabildschirme
 • Passiv- und Aktiv-Matrix Ansteuerverfahren
 • Ansteuerschaltungen
 • Herstellungsverfahren
 • Charakterisierung von Flachbildschirmen

14. Literatur:
 • E. Lueder - Liquid Crystal Displays, Wiley, 2001

15. Lehrveranstaltungen und -formen:
 • 117301 Vorlesung Flachbildschirme
 • 117302 Übung Flachbildschirme

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 56 h
 Selbststudium/Nacharbeitszeit: 124 h
 Gesamt: 180 h

17. Prüfungsnummer/n und -name:
 11731 Flachbildschirme (PL), Schriftlich oder Mündlich, 90 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform:
 Tafel, Projektor, Beamer, ILIAS

20. Angeboten von:
 Bildschirmtechnik
Modul: 11740 Elektromagnetisches Verträglichkeit

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050310006</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Modulduer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Stefan Tenbohlen</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Stefan Tenbohlen, Daniel Schneider</td>
</tr>
</tbody>
</table>
 → Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
 → Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
 → Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
 → Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
 → Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
 → Ergänzungsmodul --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
 → Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
 → Ergänzungsmodul --> Schwerpunkt: Elektromobilität --> Schwerpunkte
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
 → Ergänzungsmodul --> Schwerpunkt: Technische Informatik --> Schwerpunkte
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
 → Ergänzungsmodul --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
 → Ergänzungsmodul --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
 → Ergänzungsmodul --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
 → Ergänzungsmodul --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte |
Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte

11. Empfohlene Voraussetzungen:
Grundlagen der Elektrotechnik

12. Lernziele:
Studierender hat Kenntnisse der Messverfahren und Messausrüstungen der Elektromagnetischen Verträglichkeit. Er kennt praktische Abhilfemaßnahmen zur Beherrschung der EMV-Problematik und die Besonderheiten in der Automobil-EMV

13. Inhalt:
- Einführung
- Begriffsbestimmungen
- EMV-Umgebung
- Allgemeine Maßnahmen zur Sicherstellung der EMV
- Aktive Schutzmaßnahmen
- Nachweis der EMV (Messverfahren, Messumgebung)
- Einwirkung elektromagnetischer Felder auf biologische Systeme
- EMV im Automobilbereich

14. Literatur:
- Schwab, Adolf J.: Elektromagnetische Verträglichkeit Springer Verlag, 1996
- Habiger, Ernst: Elektromagnetische Verträglichkeit Hüthig Verlag, 3. Aufl., 1998
- Gonschorek, K.-H.: EMV für Geräteentwickler und Systemintegratoren Springer Verlag, 2005
- Wiesinger, J. u.a.: EMV-Blitzschutz von elektrischen und elektronischen Systemen in baulichen Anlagen VDE-Verlag, Oktober 2004

15. Lehrveranstaltungen und -formen:
- 117401 Vorlesung Elektromagnetische Verträglichkeit
- 117402 Übung Elektromagnetische Verträglichkeit

16. Abschätzung Arbeitsaufwand:
<table>
<thead>
<tr>
<th>Präsenzzeit: 56 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selbststudium/Nacharbeitszeit: 124 h</td>
</tr>
<tr>
<td>Gesamt: 180 h</td>
</tr>
</tbody>
</table>

17. Prüfungsnummer/n und -name:
11741 Elektromagnetische Verträglichkeit (PL), Schriftlich, 90 Min., Gewichtung: 1

18. Grundlage für ...

19. Medienform:
PowerPoint, Tafelanschrieb

20. Angeboten von:
Energieübertragung und Hochspannungstechnik
Modul: 11750 Numerische Feldberechnung I

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Prof. Dr. Wolfgang Rucker</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester**
 - → Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte
 - → Ergänzungsmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
 - → Ergänzungsmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte
 - → Ergänzungsmodul --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
 - → Zusatzmodule
 - → Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte
 - → Ergänzungsmodul --> Schwerpunkt: Technische Informatik --> Schwerpunkte
 - → Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
 - → Ergänzungsmodul --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
 - → Ergänzungsmodul --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
 - → Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte
 - → Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
 - → Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
11. Empfohlene Voraussetzungen:

Grundkenntnisse der Theoretischen Elektrotechnik werden empfohlen.

12. Lernziele:

Die Studierenden:

- besitzen die Grundkenntnisse der wichtigsten numerischen Verfahren zur Modellierung und Simulation von Feldproblemen in der Elektrotechnik,
- beherrschen den Einsatz von Simulationswerkzeugen.

13. Inhalt:

- Grundlagen der numerischen Simulation elektromagnetischer Felder
- Allgemeiner Ablauf einer numerischen Simulation, Simulationssoftware
- Methode der finiten Elemente (FEM)
- Ausgangsbeziehung der FEM für Potenzialprobleme
- Geometriemodellierung
- Erstellung und Lösung des FE-Gleichungssystems
- FE-Formulierungen von elektromagnetischen Feldproblemen
- Methode der Randelemente (BEM)
- Randintegraldarstellung, Randintegralgleichung
- Erstellung und Lösung des BE-Gleichungssystems
- BE-Formulierung von Elektrodenproblemen

14. Literatur:

15. Lehrveranstaltungen und -formen:

- 117501 Vorlesung Numerische Feldberechnung I
- 117502 Übung Numerische Feldberechnung I

16. Abschätzung Arbeitsaufwand:

- Präsenzzeit: 56 h
- Selbststudium: 124 h
- Gesamt: 180 h

17. Prüfungsnummer/n und -name:

11751 Numerische Feldberechnung I (PL), Mündlich, 45 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform:

Tafel, Beamer

20. Angeboten von:

Elektrotechnik bionischer Systeme
Modul: 12420 Windenergie 1 - Grundlagen Windenergie

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>060320011</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Modulduer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Po Wen Cheng</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 - Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 - Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 - Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 - Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 - Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 - Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 - Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 - Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 - Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 - Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 - Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 - Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester

→ Ergänzungsmodule --> Schwerpunkt:
Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte

11. Empfohlene Voraussetzungen: Technische Mechanik I

12. Lernziele:

• Die Studierenden erlangen Kenntnisse über die Grundlagen der Windenergie, insbesondere über die physikalischen und technischen Prinzipien bei modernen Windenergieanlagen.
• Die Studierenden sind dabei in der Lage einfache physikalische Grundgleichungen und Zusammenhänge herzuleiten und ihre Bedeutung in Bezug auf die Nutzung von Windenergie zu verstehen sowie zu erklären.
• Ausgehend vom Verständnis der einzelnen Teildisziplinen (Aerodynamik, Strukturdynamik, Elektrotechnik etc.) können die Studierenden den Aufbau und die Funktionsweise des Gesamtsystems Windenergieanlage erläutern und auf ausgewählten Gebieten elementare Auslegungs- und Entwurfsberechnungen durchführen.
• Nach Abschluss der Lehrveranstaltung haben die Studierenden die wesentlichen Kompetenzen aufgebaut, die sie befähigen sich in Spezialgebiete im Bereich Windenergie (Komponentenauslegung, Modellierung und Simulation, Windparkplanung etc.) einzuarbeiten.

13. Inhalt:

• Vorlesung
• Übung und Versuch
Es werden 8 Hörsaalübungen sowie ein Hochlaufversuch im Böenwindkanal angeboten.

14. Literatur:

• lecture notes
• R. Gasch und J. Twele, Windkraftanlagen

15. Lehrveranstaltungen und -formen:

• 124202 Übung Windenergienutzung I
• 124201 Vorlesung Windenergienutzung I

16. Abschätzung Arbeitsaufwand:

• Vorlesung:
 Präsenzzeit 28 Stunden, Selbststudium 62 Stunden
• Übung:
 Präsenzzeit 8 Stunden, Selbststudium 74 Stunden
• Windkanalversuch:
 Präsenzzeit 3 Stunden, Versuchs austwertung 5 Stunden
Summe: 180 Stunden

17. Prüfungsnummer/n und -name:

12421 Windenergie 1 - Grundlagen Windenergie (PL), Schriftlich, 90 Min., Gewichtung: 1
Das Versuchsprotokoll des Windkanalversuchs während des Semesters ist Voraussetzung für die Teilnahme an der Prüfung.
Die Prüfung umfasst einen Fragenteil (20 min) und einen Rechenteil (70 min).

<table>
<thead>
<tr>
<th>18. Grundlage für ...</th>
<th>Windenergie 3 - Entwurf von Windenergieanlagen Windenergie 4 - Windenergie-Projekt</th>
</tr>
</thead>
<tbody>
<tr>
<td>19. Medienform:</td>
<td>PowerPoint, Tafelanschrieb, Versuchsdurchführungen</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Windenergie</td>
</tr>
</tbody>
</table>
Modul: 13590 Kraftfahrzeuge I + II

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. Modulverantwortlicher:</th>
<th>Nils Widdecke</th>
</tr>
</thead>
<tbody>
<tr>
<td>9. Dozenten:</td>
<td>Jochen Wiedemann Nils Widdecke</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>→ Schwerpunkt: Elektromobilität → Schwerpunkte</td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
</tr>
<tr>
<td>→ Wahlfächer → Schwerpunkt: Kommunikationssysteme und Signalverarbeitung → Schwerpunkte</td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
</tr>
<tr>
<td>→ Ergänzungsmodule → Schwerpunkt: Technische Informatik → Schwerpunkte</td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
</tr>
<tr>
<td>→ Ergänzungsmodule → Schwerpunkt: Kommunikationssysteme und Signalverarbeitung → Schwerpunkte</td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
</tr>
<tr>
<td>→ Wahlfächer → Schwerpunkt: Technische Informatik → Schwerpunkte</td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
</tr>
<tr>
<td>→ Zusatzmodule</td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
</tr>
<tr>
<td>→ Ergänzungsmodule → Schwerpunkt: Automatisierungs- und Regelungstechnik → Schwerpunkte</td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
</tr>
<tr>
<td>→ Wahlfächer → Schwerpunkt: Automatisierungs- und Regelungstechnik → Schwerpunkte</td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
</tr>
<tr>
<td>→ Ergänzungsmodule → Schwerpunkt: Mikro- und Optoelektronik → Schwerpunkte</td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
</tr>
<tr>
<td>→ Kernmodule → Schwerpunkt: Elektromobilität → Schwerpunkte</td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
</tr>
<tr>
<td>→ Wahlfächer → Schwerpunkt: Mikro- und Optoelektronik → Schwerpunkte</td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
</tr>
</tbody>
</table>
11. Empfohlene Voraussetzungen: Kenntnisse aus den Fachsemestern 1 bis 4

Wichtig: Ab WS2015/16 ist die Prüfung ohne Hilfsmittel zu absolvieren.

14. Literatur:
 - Wiedemann, J.: Kraftfahrzeuge I+II, Vorlesungsumdruck,
 - Reimpell, J.: Fahrwerkstechnik: Grundlagen, Vogel- Fachbuchverlag, 2005

15. Lehrveranstaltungen und -formen:
 - 135901 Vorlesung Kraftfahrzeuge I + II
 - 135902 Übung Kraftfahrzeuge I + II

16. Abschätzung Arbeitsaufwand: Vorlesung, Selbststudium

17. Prüfungsnummer/n und -name: 13591 Kraftfahrzeuge I + II (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform: PPT-Präsentation

20. Angeboten von: Kraftfahrwesen
Modul: 14130 Kraftfahrzeugmechatronik I + II

<table>
<thead>
<tr>
<th>Modulkürzel:</th>
<th>070800002</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Moduldaeuerm:</td>
<td>Zweisemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

	B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester → Schwerpunkt: Elektromobilität --> Schwerpunkte
	B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester → Ergänzungsmodule --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
	B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester → Ergänzungsmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte
	B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester → Ergänzungsmodule --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
	B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester → Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
	B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester → Zusatzmodule
	B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester → Kernmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte
11. Empfohlene Voraussetzungen: Grundkenntnisse aus den Fachsemestern 1 bis 4

12. Lernziele:
- Die Studenten kennen mechatronische Komponenten in Automobilen, können Funktionsweisen und Zusammenhänge erklären.
- Die Studenten können Entwicklungsmethoden für mechatronische Komponenten im Automobil einordnen und anwenden. Wichtige Entwicklungswerkzeuge können sie nutzen.

13. Inhalt:

VL Kfz-Mech I:
- kraftfahrzeugspezifische Anforderungen an die Elektronik
- Bordnetz (Energiemanagement, Generator, Starter, Batterie, Licht)
- Motorelektronik (Zündung, Einspritzung)
- Getriebeelektronik
- Lenkung
- ABS, ASR, ESP, elektromechanische Bremse, Dämpfungsregelung, Reifendrucküberwachung
- Sicherheitssysteme (Airbag, Gurt, Alarmanlage, Wegfahrsperre)
- Komfortsysteme (Tempomat, Abstandsregelung, Klimaanlage)

VL Kfz-Mech II:
- Grundlagen mechatronischer Systeme (Steuerung/Regelung, diskrete Systeme, Echtzeitsysteme, eingebettete Systeme, vernetzte Systeme)
- Systemarchitektur und Fahrzeugentwicklungsprozesse
- Kernprozess zur Entwicklung von mechatronischen Systemen und Software (Schwerpunkt V-Modell)

Laborübungen Kraftfahrzeugmechatronik
- Rapid Prototyping (Simulink)
- Modellbasierte Funktionsentwicklung mit TargetLink
- Elektronik

14. Literatur:
- Vorlesungsumdruck: "Kraftfahrzeugmechatronik I" (Reuss)

15. Lehrveranstaltungen und -formen:
- 141303 Laborübungen Kraftfahrzeugmechatronik
- 141301 Vorlesung Kraftfahrzeugmechatronik I
- 141302 Vorlesung Kraftfahrzeugmechatronik II

16. Abschätzung Arbeitsaufwand:
- Vorlesung, Laborübungen, Selbststudium

17. Prüfungsnummer/n und -name:
- 14131 Kraftfahrzeugmechatronik I + II (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ...

19. Medienform:
- Vorlesung (Beamer), Laborübungen (am PC, betreute Zweiergruppen)

20. Angeboten von:
- Kraftfahrzeugmechatronik
Modul: 17110 Entwurf digitaler Systeme

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050901006</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Moduldauser:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Andreas Kirstädter</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Matthias Meyer</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester |
|---|---|
| → Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte |
| → Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte |
| → Ergänzungsmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte |
| → Ergänzungsmodule --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte |
| → Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte |
| → Ergänzungsmodule --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte |
| → Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte |
| → Ergänzungsmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte |
| → Ergänzungsmodule --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte |
| → Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte |
| → Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte |
| → Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte |
11. Empfohlene Voraussetzungen: Kenntnisse, wie sie beispielsweise im Modul Informatik II vermittelt werden

12. Lernziele: Der Studierende kann digitale Systeme entwerfen, simulieren und testen, beherrscht die Hardware-Beschreibungssprache VHDL, kennt die physikalischen Randbedingungen beim Aufbau moderner digitaler Schaltungen.

13. Inhalt:
 • Entwurfsprozesse und Modularisierung
 • Modellierung digitaler Systeme mit VHDL (Grundlegende Konzepte von VHDL, Verhaltens- und Strukturbeschreibung, Typkonzept, sequenzielle und nebeneinläufige Anweisungen, Prozeduren und Funktionen, Signale, Bibliotheken)
 • Realisierung digitaler Schaltungen (Spannungsversorgung, Übersprechen, Reflexionen und Busabschlüsse, Metastabilität, Realisierungsaspekte bei kombinatorischen und sequenziellen Netzwerken)
 • Digitale Bauelemente (Programmierbare Logik, Speicherbausteine)

Für nähere Informationen, aktuelle Ankündigungen und Material siehe http://www.ikr.uni-stuttgart.de/Xref/CC/L_EDS

14. Literatur:
 • Vorlesungsskript
 • Ashenden, P. J.: The Student's Guide to VHDL, Morgan Kaufmann Publishers
 • Ashenden, P. J.: The Designer's Guide to VHDL, Morgan Kaufmann Publishers

15. Lehrveranstaltungen und -formen:
 • 171101 Vorlesung Entwurf digitaler Systeme
 • 171102 Übung Entwurf digitaler Systeme

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 56 h
 Selbststudium: 124 h
 Gesamt: 180 h

17. Prüfungsnummer/n und -name:
 17111 Entwurf digitaler Systeme (PL), Mündlich, 120 Min., Gewichtung: 1

18. Grundlage für ...
 Praktische Übungen im Labor Rechnerarchitektur und Kommunikationssysteme I

19. Medienform:
 Notebook-Präsentationen

20. Angeboten von:
 Kommunikationsnetze und Rechnersysteme
Modul: 17130 Entwurf digitaler Filter

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>5. Moduldaus:</th>
</tr>
</thead>
<tbody>
<tr>
<td>051610003</td>
<td>Einsemestrig</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3. Leistungspunkte:</th>
<th>6. Turnus:</th>
</tr>
</thead>
<tbody>
<tr>
<td>6 LP</td>
<td>Sommersemester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. SWS:</th>
<th>7. Sprache:</th>
</tr>
</thead>
<tbody>
<tr>
<td>4</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. Modulverantwortlicher:</th>
<th>9. Dozenten:</th>
</tr>
</thead>
<tbody>
<tr>
<td>PD Dr.-Ing. Markus Gaida</td>
<td>Markus Gaida</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10. Zuordnung zum Curriculum in diesem Studiengang:</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester</td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester</td>
</tr>
<tr>
<td>→ Ergänzungsmodul --> Schwerpunkt: Technische Informatik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 6. Semester</td>
</tr>
<tr>
<td>→ Ergänzungsmodul --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester</td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester</td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester</td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 6. Semester</td>
</tr>
<tr>
<td>→ Ergänzungsmodul --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 6. Semester</td>
</tr>
<tr>
<td>→ Ergänzungsmodul --> Schwerpunkt: Elektromobilität --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 6. Semester</td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester</td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte</td>
</tr>
</tbody>
</table>
11. Empfohlene Voraussetzungen:
Empfohlen werden Kenntnisse, wie sie beispielsweise in der Lehrveranstaltung Signale und Systeme vermittelt werden.

12. Lernziele:

13. Inhalt:
- Filter und Anwendungen, FIR- und IIR-Filter, Blockdiagramm und Signalfussgraph
- Entwurf von FIR-Filtern: linearpasige FIR-Filter, Fenster-Methode, Frequenzabtastmethode, Methode der kleinsten Quadrate, Remez-Algorithmus
- Entwurf von IIR-Filtern: analoge Referenzfilter (Butterworth, Tschebyscheff I und II, Cauer), Frequenztransformation, Methode der invarianten Impulsantwort, Bilineartransformation
- Struktur von FIR-Filtern (Direkt, Kaskade, Lattice), Struktur von IIR-Filtern (Direkt, Kaskade, Parallel, Lattice-Ladder), Levinson-Durbin-Rekursion, Schur-Cohen-Rekursion
- Quantisierungseffekte
- Zahlendarstellung, Fließkomma und Festkomma, Koeffizientenempfindlichkeit, Überlauf und Sättigung, Rundungsverfahren, Polgitter, Rundungsrauschen, Signal-zu-Rausch-Abstand, Grenzzyklen
- Entwurf digitaler Filter mit MATLAB
- Abtastratenumsetzung, Dezimation, Interpolation

14. Literatur:
- Skript

15. Lehrveranstaltungen und -formen:
- 171301 Vorlesung Entwurf digitaler Filter
- 171302 Übung Entwurf digitaler Filter

16. Abschätzung Arbeitsaufwand:
Präsenzzzeit: 56 h
Selbststudium/Nacharbeitszeit: 124 h
Gesamt: 180 h
17. Prüfungsnummer/n und -name: 17131
Entwurf digitaler Filter (PL), Schriftlich oder Mündlich, 90 Min., Gewichtung: 1
Schriftliche Prüfung (90 Min.), Prüfung wird zwei mal im Jahr angeboten. Bei geringer Hörerzahl kann die Prüfung mündlich sein, dies wird am Anfang der Vorlesung bekanntgegeben. Im Fall einer mündlichen Prüfung kann dies auch eine mündliche Gruppenprüfung (max. 3 zu prüfende Personen pro Gruppe, ca. 15 Min. pro zu prüfender Person) sein.

18. Grundlage für ...:

19. Medienform:
Tafel, Projektor, Beamer, CIP-Pool

20. Angeboten von:
Institutsverbund Elektrotechnik und Informationstechnik
Modul: 17170 Elektrische Antriebe

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>051010013</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Jörg Roth-Stielow</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Jörg Roth-Stielow</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester**
 - → Ergänzungsmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte
 - → B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
 - → Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
 - → B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
 - → Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
 - → B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
 - → Ergänzungsmodule --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
 - → B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
 - → Ergänzungsmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte
 - → B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
 - → Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte
 - → B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
 - → Ergänzungsmodule --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
 - → B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
 - → Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
 - → B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
 - → Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte
 - → B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
 - → Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
 - → B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
 - → Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte
 - → B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
11. Empfohlene Voraussetzungen:
- Kenntnisse vergleichbar "Einführung in die Elektrotechnik I"

12. Lernziele:
- Studierende...
Modul: 25940 Verstärkertechnik I+II

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Manfred Berroth
9. Dozenten: Markus Grözing

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester

→ Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester

→ Ergänzungsmodule --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester

→ Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester

→ Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester

→ Ergänzungsmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester

→ Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester

→ Ergänzungsmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester

→ Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester

→ Ergänzungsmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester

→ Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester

→ Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester

→ Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
Ergänzungsmodul --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte

<table>
<thead>
<tr>
<th>11. Empfohlene Voraussetzungen:</th>
<th>Grundkenntnisse in Elektrotechnik, Grundkenntnisse in Schaltungstechnik Grundkenntnisse von elektronischen Bauelementen</th>
</tr>
</thead>
</table>
| 13. Inhalt: | • Analoge Grundschaltungen
• Stromspiegel
• Innerer Aufbau von Operationsverstärkern
• Anwendung von Operationsverstärkern
• Rauscharme Verstärker
• Oszillatoren
• Frequenzumsetzung
• Leistungsverstärker |
| 14. Literatur: | • Zusatzblätter zum Selbststudium
• Aufgaben zur Selbstbearbeitung
Bücher:
• B. Razavi: RF Microelectronics, Prentice Hall, 1997 |
| 15. Lehrveranstaltungen und -formen: | • 259401 Vorlesung Verstärkertechnik I
• 259402 Vorlesung Verstärkertechnik II |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 56 h
Selbststudium: 124 h
Gesamt: 180 h |
| 17. Prüfungsnummer/n und -name: | • 25941 Verstärkertechnik I (PL), Schriftlich, 60 Min., Gewichtung: 1
• 25942 Verstärkertechnik II (PL), Schriftlich, 60 Min., Gewichtung: 1 |
| 18. Grundlage für ... : | |
| 19. Medienform: | Tafel, Beamer |
| 20. Angeboten von: | Elektrische und Optische Nachrichtentechnik |
Modul: 29310 Regenerative Energiesysteme

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>5</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Stefan Tenbohlen

9. Dozenten: Stefan Tenbohlen, Silke Wieprecht, Harald Drück, Andreas Rettenmeier, Albert Ruprecht, Günter Scheffknecht

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
- Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
- Vorlesung Regenerative Energiesysteme --> Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
- Ergänzungsmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
- Vorlesung Regenerative Energiesysteme --> Ergänzungsmodule --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
- Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
- Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
- Ergänzungsmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
- Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
- Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
- Vorlesung Regenerative Energiesysteme --> Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
→ Vorlesung Regenerative Energiesysteme --> Ergänzungsmodul --> Schwerpunkt: Technische Informatik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
→ Vorlesung Regenerative Energiesysteme --> Ergänzungsmodul --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
→ Vorlesung Regenerative Energiesysteme --> Ergänzungsmodul --> Schwerpunkt: Elektromobilität --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
→ Ergänzungsmodul --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Vorlesung Regenerative Energiesysteme --> Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
→ Vorlesung Regenerative Energiesysteme --> Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Ergänzungsmodul --> Schwerpunkt: Elektromobilität --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
→ Ergänzungsmodul --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Vorlesung Regenerative Energiesysteme --> Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Vorlesung Regenerative Energiesysteme --> Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
→ Vorlesung Regenerative Energiesysteme --> Ergänzungsmodul --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Vorlesung Regenerative Energiesysteme --> Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte
11. Empfohlene Voraussetzungen:

12. Lernziele:
Die Veranstaltung gibt eine Einführung in Erneuerbaren Energien.
Die Studierenden sind anschließend in der Lage:
• die Bedeutung und die Potenziale verschiedener Erneuerbarer Energien (Solarthermie, Windenergie, Wasserkraft, Biomasse) quantitativ einzuschätzen,
• Berechnungen des Energieertrags und des Wirkungsgrades durchzuführen,
• Erneuerbarer Energien in unterschiedliche Energieanwendungen und ins Energiesystem einzuordnen

13. Inhalt:
• Energiedaten, Umwelt- u. Klimaschutz und erneuerbare Energien, persönlicher Energieverbrauch, Globale Kreisläufe und -bilanzen
• Sonneneinstrahlung, Potentiale der Solarenergienutzung
• Solarthermie
• Windenergie
• Wasserkraft, Meeresströmungs- und Wellenergie
• Therm. Nutzung von Biomasse, Biotreibstoffe

14. Literatur:
• V. Quaschning, Regenerative Energiesysteme, 6. Aufl., Hanser
• ergänzendes Skriptum und online-Materialien

15. Lehrveranstaltungen und -formen:
• 293102 Übung Regenerative Energiesysteme
• 29310 Vorlesung Regenerative Energiesysteme

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 70 Stunden
Selbststudium: 110 Stunden
Summe: 180 Stunden

17. Prüfungnummer/n und -name:
29311 Regenerative Energiesysteme (PL), Schriftlich, 90 Min., Gewichtung: 1

18. Grundlage für ...

19. Medienform:
PowerPoint, Tafel

20. Angeboten von:
Energieübertragung und Hochspannungstechnik
Modul: 41170 Speichertechnik für elektrische Energie I

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Kai Peter Birke</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Kai Peter Birke</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016**, 5. Semester
 - Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte
 - Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester**
 - Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte
 - Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
 - Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte
- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester**
 - Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
 - Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
 - Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
 - Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte
 - Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte
- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester**
 - Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
 - Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
 - Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester**
 - Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
 - Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
 - Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
 - Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte
11. Empfohlene Voraussetzungen:

12. Lernziele: Die Studierenden lernen die Speichertechniken für elektrische Energie kennen.

13. Inhalt: Aufbau und Funktionsweise von:
- Elektrischen Speichern (Spule, supraleitende Spule, Kondensator, Doppelschichtkondensator)
- Elektromechanischen Speichern (Schwungrad, Gas, Wasser)

Charakterisierung der Speicher anhand charakteristischer Größen wie:
- Energieinhalt
- Leistung (dynamisch/stationär)
- Kosten
- Betriebssicherheit

Überblick über die wichtigsten Messverfahren
Einführung in Ersatzschaltbilder und Modellierung

15. Lehrveranstaltungen und -formen: • 411702 Übung Speicher für Elektrische Energie • 411701 Vorlesung Speicher für Elektrische Energie

16. Abschätzung Arbeitsaufwand: Präsenzzeit: 56 h Selbststudium: ca. 124 h Summe: 180h

17. Prüfungsnummer/n und -name: 41171 Speichertechnik für elektrische Energie (PL), Schriftlich, 90 Min., Gewichtung: 1

18. Grundlage für ...

19. Medienform: Beamer, Tafel

20. Angeboten von: Elektrische Energiespeichersysteme
Modul: 69050 Technologien und Methoden der Softwaresysteme I

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050501002</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Michael Weyrich</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Michael Weyrich</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, → Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, → Ergänzungsmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, → Ergänzungsmodule --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, → Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, → Wahlfächere --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, → Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, → Kernmodule --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, → Schwerpunkt: Technische Informatik --> Schwerpunkte</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, → Kernmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, → Wahlfächere --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, → Wahlfächere --> Schwerpunkt: Elektromobilität --> Schwerpunkte</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, → Ergänzungsmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Grundlagen der Softwaretechnik</td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>Grundbegriffe der Softwaretechnik, Softwareentwicklungsprozesse und Vorgehensmodelle, Requirements Engineering, Systemanalyse, Softwareentwurf, Implementierung,</td>
</tr>
</tbody>
</table>
14. Literatur:

<table>
<thead>
<tr>
<th>Autor</th>
<th>Titel</th>
<th>Verlag</th>
<th>ISBN-13</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ian Sommerville</td>
<td>Software Engineering, 10. Ausgabe, 2016</td>
<td>Pearson-IT</td>
<td>9780133943030</td>
</tr>
<tr>
<td>Wiegers, K.</td>
<td>Software-Requirements, Microsoft Press, 2005</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vorlesungsportal mit Vorlesungsaufzeichnung auf http://www.ias.uni-stuttgart.de/st1/</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

15. Lehrveranstaltungen und -formen:

- 690501 Vorlesung Technologien und Methoden der Softwaresysteme I
- 690502 Übung Technologien und Methoden der Softwaresysteme I

16. Abschätzung Arbeitsaufwand:

- Präsenzzeit: 56 h
- Selbststudium: ca. 124 h

17. Prüfungsnummer/n und -name:

- 69051 Technologien und Methoden der Softwaresysteme I (PL), Schriftlich, 120 Min., Gewichtung: 1
- 69052 Technologien und Methoden der Softwaresysteme I (USL), Sonstige, Gewichtung: 1
Erfolgreiche Bearbeitung eines Kleinprojekts während des Semesters

18. Grundlage für ...:

19. Medienform:

20. Angeboten von: Automatisierungstechnik und Softwaresysteme
340 Schwerpunkt: Technische Informatik

<table>
<thead>
<tr>
<th>Zugeordnete Module</th>
<th>Inhalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>11610</td>
<td>Technische Informatik I</td>
</tr>
<tr>
<td>11640</td>
<td>Digitale Signalverarbeitung</td>
</tr>
<tr>
<td>11660</td>
<td>Übertragungstechnik I</td>
</tr>
<tr>
<td>11670</td>
<td>Grundlagen integrierter Schaltungen</td>
</tr>
<tr>
<td>11680</td>
<td>Kommunikationsnetze I</td>
</tr>
<tr>
<td>341</td>
<td>Wahlfächer</td>
</tr>
<tr>
<td>69050</td>
<td>Technologien und Methoden der Softwaresysteme I</td>
</tr>
</tbody>
</table>
Modul: 11610 Technische Informatik I

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Andreas Kirstädter

9. Dozenten: Andreas Kirstädter
Matthias Meyer

10. Zuordnung zum Curriculum in diesem Studiengang:

- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 - Kernmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 - Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 - Schwerpunkt: Technische Informatik --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 - Schwerpunkt: Technische Informatik --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 - Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 - Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 - Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 - Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 - Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 - Ergänzungsmodulere --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 - Ergänzungsmodulere --> Schwerpunkt: Elektromobilität --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 - Ergänzungsmodulere --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester

13. Inhalt: • Einfache Einadressmaschine, Elemente und Mechanismen der Register-Transfer-Ebene • Prozessorbaugruppen und Mikroprogrammierung • Grundkonzepte von CISC-Prozessoren • Grundkonzepte und Mechanismen von Betriebssystemen • Aufbau von Rechnersystemen einschl. Ein-/Ausgabe

14. Literatur:

15. Lehrveranstaltungen und -formen: • 116102 Übung zu Technische Informatik I • 116101 Vorlesung Technische Informatik I

16. Abschätzung Arbeitsaufwand: Vorlesung, Übungen und Selbststudium

17. Prüfungsnummer/n und -name: 11611 Technische Informatik I (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ...:

19. Medienform: • Vortrag mit Folien • Tafelanschriebe

20. Angeboten von: Kommunikationsnetze und Rechnersysteme
Modul: 11640 Digitale Signalverarbeitung

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>10.</td>
<td></td>
<td>→ Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>→ Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>→ Kernmodule --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>→ Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>→ Schwerpunkt: Technische Informatik --> Schwerpunkte</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>→ Ergänzungsmodule --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>→ Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>→ Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>→ Ergänzungsmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>→ Kernmodule --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>→ Ergänzungsmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>→ Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>→ Kernmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte</td>
<td></td>
</tr>
</tbody>
</table>
11. Empfohlene Voraussetzungen:

Grundkenntnisse in höherer Mathematik
Grundkenntnisse über Signale und Systeme

12. Lernziele:

Die Studierenden

- beherrschen die grundlegenden Methoden zur digitalen Signalverarbeitung,
- besitzen die notwendigen Grundfertigkeiten zur Analyse von zeitdiskreten Signalen und Systemen,
- können einfache Signale und Systeme selbstständig analysieren,
- können einfache Signalverarbeitungsaufgaben selbstständig lösen.

13. Inhalt:

- A/D- und D/A-Umwandlung, Abtastung, Quantisierung
- Zeitdiskrete Signale und Systeme, Analyse von LTI-Systemen im Zeitbereich, Differenzengleichung
- Analyse von Signalen und LTI-Systemen in der komplexen Ebene, z-Transformation, Übertragungsfunktion, Pole und Nullstellen
- Analyse von Signalen und LTI-Systemen im Frequenzbereich
- Digitale Filter, FIR und IIR, Tiefpass, Hochpass, Bandpass, Oszillator, KerbfILTER, KamffILTER, linearpHAsige Filter, Allpass, minimalphasige Filter
- Korrelationsanalyse, Auto- und Kreuzkorrelation, Auto- und Kreuzkorrelationsfunktion
- Diskrete Fourier-Transformation, schnelle Fourier-Transformation (FFT), schnelle Faltung
- Spektralanalyse, Periodogramm, Fenstereffekt, Zeit-Frequenz-Analyse, Spektrogramm

14. Literatur:

- Vorlesungsunterlagen, Videoaufzeichnung der Vorlesung
- M. Mandal and A. Asif, "Continuous and discrete time signals and systems", Cambridge, 2008

15. Lehrveranstaltungen und -formen:

- 116401 Vorlesung Digitale Signalverarbeitung
- 116402 Übung Digitale Signalverarbeitung

16. Abschätzung Arbeitsaufwand:

Präsenzzeit:	56 h
Selbststudium:	124 h
Gesamt:	180 h

17. Prüfungsnummer/n und -name:

11641 Digitale Signalverarbeitung (PL), Schriftlich, 90 Min., Gewichtung: 1

18. Grundlage für ...

19. Medienform:

Laptop, Beamer, Videoaufzeichnung aller Vorlesungen und Übungen

20. Angeboten von:

Netzwerk- und Systemtheorie
Modul: 11660 Übertragungstechnik I

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>051100001</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Moduldauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Stephan ten Brink</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Stephan Brink</td>
</tr>
</tbody>
</table>
 → Ergänzungsmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 → Ergänzungsmodule --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Zusatzmodule
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 → Ergänzungsmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 → Kernmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 → Ergänzungsmodule --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Schwerpunkt: Technische Informatik --> Schwerpunkte |
11. Empfohlene Voraussetzungen: Grundlagen der Elektrotechnik

14. Literatur:
 • Vorlesungsbegleitendes Material, Übungsaufgaben
 • Kammeyer, K. D.: Nachrichtenübertragung. Verlag Teubner, Stuttgart
 • Weitere Literaturangaben im vorlesungsbegleitenden Material.

15. Lehrveranstaltungen und -formen:
 • 116602 Übungen Übertragungstechnik I
 • 116601 Vorlesung Übertragungstechnik I

17. Prüfungsnummer/n und -name: 11661 Übertragungstechnik I (PL), Schriftlich oder Mündlich, 120 Min., Gewichtung: 1

18. Grundlage für ... :

20. Angeboten von: Nachrichtenübertragung
Modul: 11670 Grundlagen integrierter Schaltungen

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050200002</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Manfred Berroth</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Manfred Berroth</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016,
 - Ergänzungsmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011,
 - Vorgezogene Master-Module
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
 - Kernmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
 - Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
 - Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
 - Kernmodule --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
 - Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
 - Schwerpunkt: Technische Informatik --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
 - Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
 - Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
 - Ergänzungsmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
 - Ergänzungsmodule --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
 - Kernmodule --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
 - Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
11. Empfohlene Voraussetzungen:
Kenntnisse in Schaltungstechnik
Kenntnisse in höherer Mathematik

12. Lernziele:
Die Studierenden besitzen Grundkenntnisse über integrierte Schaltungen der Digitaltechnik basierend auf Silizium-MOSFETs

13. Inhalt:
- Bauelemente der Digitaltechnik
- Digitale Grundschaltungen
- CMOS-Logikschialtungen
- Schaltwerke

14. Literatur:
- Vorlesungsskript,
- Hoffmann: VLSI-Entwurf - Modelle und Schaltungen, Oldenbourg Verlag, München, 1998

15. Lehrveranstaltungen und -formen:
- 116701 Vorlesung Grundlagen Integrierter Schaltungen
- 116702 Übung Grundlagen Integrierter Schaltungen

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 56 h
Selbststudium: 124 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
11671 Grundlagen integrierter Schaltungen (PL), Schriftlich, 90 Min., Gewichtung: 1

18. Grundlage für ...

19. Medienform:
Tafel, Beamer

20. Angeboten von:
Elektrische und Optische Nachrichtentechnik
Modul: 11680 Kommunikationsnetze I

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Andreas Kirstädter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Andreas Kirstädter</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Kernmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Zusatzmodule</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Ergänzungsmodul --> Schwerpunkt: Elektromobilität --> Schwerpunkte</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Ergänzungsmodul --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Kernmodule --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Schwerpunkt: Technische Informatik --> Schwerpunkte</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Ergänzungsmodul --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester

→ Ergänzungsmodul: Schwerpunkt: Mikro- und Optoelektronik, Schwerpunkte

11. Empfohlene Voraussetzungen:
 • Kenntnisse, wie sie in den Modulen Informatik I und Informatik II vermittelt werden

12. Lernziele:
 Verstehen der grundlegenden Architekturprinzipien von Kommunikationsnetzen mit Beispielen aus den Bereichen der Mobilfunknetze, Local Area Networks, Automatisierungsnetze und des Internet, Kenntnis von Aufbau und Funktion ausgewählter Systeme, Protokolle und Dienste. Anwenden der Methoden zur formalen Beschreibung und Bewertung von Kommunikationsnetzen.

13. Inhalt:
 Grundprinzipien von Kommunikationsnetzen und -protokollen:
 • Übertragung und Multiplextechniken
 • Fehlersicherung
 • Medienzugriff
 • Vermittlung
 • Wegesuche
 • Transportprotokolle
 Spezifikation mit Hilfe der Specification and Description Language (SDL)
 Bewertung der Leistungsfähigkeit von Kommunikationsprotokollen
 Ausgewählte Dienste und Anwendungen im Internet
 Für nähere Informationen, aktuelle Ankündigungen und Material siehe
 http://www.ikr.uni-stuttgart.de/Xref/CC/L_CN_I

14. Literatur:
 • Skript zur Vorlesung
 • Tanenbaum: Computer Networks, Prentice-Hall, 2003
 • Kurose, Ross: Computer Networking, Addison-Wesley, 2009

15. Lehrveranstaltungen und -formen:
 • 116802 Übung zu Kommunikationsnetze I
 • 116801 Vorlesung Kommunikationsnetze I

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 56 h
 Selbststudium: 124 h
 Gesamt: 180 h

17. Prüfungsnummer/n und -name:
 11681 Kommunikationsnetze I (PL), Schriftlich oder Mündlich, 120 Min., Gewichtung: 1

18. Grundlage für ...:
 Praktische Übungen im Labor Rechnerarchitektur und Kommunikationssysteme I Communication Networks II

19. Medienform:
 Notebook-Präsentation

20. Angeboten von:
 Kommunikationsnetze und Rechnersysteme
341 Wahlfächer

Zugeordnete Module:

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
</tr>
</thead>
<tbody>
<tr>
<td>11540</td>
<td>Regelungstechnik I</td>
</tr>
<tr>
<td>11550</td>
<td>Leistungselektronik I</td>
</tr>
<tr>
<td>11560</td>
<td>Elektrische Energienetze I</td>
</tr>
<tr>
<td>11570</td>
<td>Hochspannungstechnik I</td>
</tr>
<tr>
<td>11580</td>
<td>Elektrische Maschinen I</td>
</tr>
<tr>
<td>11590</td>
<td>Photovoltaik I</td>
</tr>
<tr>
<td>11620</td>
<td>Automatisierungstechnik I</td>
</tr>
<tr>
<td>11650</td>
<td>Hochfrequenztechnik I</td>
</tr>
<tr>
<td>11690</td>
<td>Hochfrequenztechnik II</td>
</tr>
<tr>
<td>11700</td>
<td>Halbleiterotechnik I</td>
</tr>
<tr>
<td>11710</td>
<td>Optoelectronics I</td>
</tr>
<tr>
<td>11720</td>
<td>Halbleitertechnologie I</td>
</tr>
<tr>
<td>11730</td>
<td>Flachbildschirme</td>
</tr>
<tr>
<td>11740</td>
<td>Elektromagnetische Verträglichkeit</td>
</tr>
<tr>
<td>11750</td>
<td>Numerische Feldberechnung I</td>
</tr>
<tr>
<td>12420</td>
<td>Windenergie I - Grundlagen Windenergie</td>
</tr>
<tr>
<td>13590</td>
<td>Kraftfahrzeuge I + II</td>
</tr>
<tr>
<td>14130</td>
<td>Kraftfahrzeugmechatronik I + II</td>
</tr>
<tr>
<td>17110</td>
<td>Entwurf digitaler Systeme</td>
</tr>
<tr>
<td>17130</td>
<td>Entwurf digitaler Filter</td>
</tr>
<tr>
<td>17170</td>
<td>Elektrische Antriebe</td>
</tr>
<tr>
<td>25940</td>
<td>Verstärkertechnik I+II</td>
</tr>
<tr>
<td>29310</td>
<td>Regenerative Energiesysteme</td>
</tr>
<tr>
<td>41170</td>
<td>Speichertechnik für elektrische Energie I</td>
</tr>
</tbody>
</table>
Modul: 11540 Regelungstechnik I

| 4. SWS: | 4 | 7. Sprache: | Deutsch |

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Jörg Roth-Stielow
9. Dozenten: Jörg Roth-Stielow

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester

- Wahlfächer ---> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung ---> Schwerpunkte

- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
 - Schwerpunkt: Automatisierungs- und Regelungstechnik ---> Schwerpunkte

- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
 - Zusatzmodule

- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
 - Ergänzungsmodule ---> Schwerpunkt: Mikro- und Optoelektronik ---> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester

- Schwerpunkt: Elektrische Energiesysteme ---> Schwerpunkte

- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
 - Wahlfächer ---> Schwerpunkt: Mikro- und Optoelektronik ---> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester

- Vorgezogene Master-Module

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester

- Ergänzungsmodul ---> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung ---> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester

- Ergänzungsmodul ---> Schwerpunkt: Technische Informatik ---> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester

- Kernmodule ---> Schwerpunkt: Elektrische Energiesysteme -- > Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester

- Kernmodule ---> Schwerpunkt: Elektromobilität --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester

- Wahlfächer ---> Schwerpunkt: Technische Informatik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester

- Kernmodule ---> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
11. Empfohlene Voraussetzungen:
Kenntnisse vergleichbar...
- Höhere Mathematik I, II, III
- Experimentalphysik
- Grundlagen der Elektrotechnik
- Elektrische Energietechnik
- Signale und Systeme
- Schaltungstechnik

12. Lernziele:
- ...können eine Regelstrecke modellieren und kennen die wichtigsten Regelsysteme.
- ...können diese Anordnungen mathematisch beschreiben, hinsichtlich ihrer Stabilität beurteilen und Aufgabenstellungen lösen.

13. Inhalt:
- Beschreibung von Übertragungsstrecken
- Stabilität von Regelsystemen
- Herkömmliche Regelsysteme
- Regelsysteme mit Rückführung eines vollständigen Satzes von Zustandsvariablen
- Echtes Integralverhalten
- Beobachter
- Systemführung nach dem Prinzip unterlagerter Schleifen
- Systeme mit einem Wechsel der Regelgröße

14. Literatur:
- Lunze, Jan: Regelungstechnik 1, Springer, Berlin, 1999
- Unbehauen, H.: Regelungstechnik 1, Vieweg, Braunschweig, 1989
- Leonhard, W.: Einführung in die Regelungstechnik, Vieweg, Braunschweig, 1992

15. Lehrveranstaltungen und -formen:
- 115401 Vorlesung Regelungstechnik I
- 115402 Übung Regelungstechnik I

16. Abschätzung Arbeitsaufwand:
Frontalvorlesung

17. Prüfungsnummer/n und -name:
11541 Regelungstechnik I (PL), Schriftlich, 120 Min., Gewichtung: 1
Klausur (120 min., 2x pro Jahr)

18. Grundlage für ...:
Regelungstechnik II

19. Medienform:
Tafel, Folien, Beamer

20. Angeboten von:
Leistungselektronik und Regelungstechnik
Modul: 11550 Leistungselektronik I

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>051010011</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Jörg Roth-Stielow</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Jörg Roth-Stielow</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester**
 - Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte
 - Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte
 - Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester**
 - Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
 - Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester**
 - Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte
 - Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
 - Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester**
 - Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester**
 - Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester**
 - Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Schwerpunkt: Elektromobilität --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
→ Ergänzungs module --> Schwerpunkt: Technische Informatik ↔ Schwerpunkte

11. Empfohlene Voraussetzungen:
Kenntnisse vergleichbar Elektrische Energietechnik I
Kenntnisse vergleichbar Elektrische Energietechnik II

12. Lernziele:
Studierende...
• ...kennen die wichtigsten potentialverbindenden und potentialtrennenden Schaltungen der Leistungselektronik mit abschaltbaren Ventilen und die zugehörigen Modulationsverfahren.
• ...können diese Anordnungen mathematisch beschreiben und Aufgabenstellungen lösen.
• ...kennen die grundlegenden Prinzipien der Meßverfahren für Mischströme.

13. Inhalt:
• Abschaltbare Leistungshalbleiter
• Schaltungstopologien potentialverbindender Stellglieder
• Schaltungstopologien potentialtrennender Gleichstromsteller
• Modulationsverfahren
• Strommessung in der Leistungselektronik

14. Literatur:
• Heumann, K.: Grundlagen der Leistungselektronik, B. G. Teubner, Stuttgart, 1989
• Mohan, Ned: Power Electronics, John Wiley und Sons, Inc., 2003

15. Lehrveranstaltungen und -formen:
• 115501 Vorlesung Leistungselektronik I
• 115502 Übung Leistungselektronik I

16. Abschätzung Arbeitsaufwand:
Frontalvorlesung

17. Prüfungsnummer/n und -name:
11551 Leistungselektronik I (PL), Schriftlich, 120 Min., Gewichtung: 1 Klausur (120 min., 2x pro Jahr)

18. Grundlage für ... :

19. Medienform:
Tafel, Folien, Beamer

20. Angeboten von:
Leistungselektronik und Regelungstechnik
Modul: 11560 Elektrische Energienetze I

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Stefan Tenbohlen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Stefan Tenbohlen</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 - → Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 - → Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 - → Ergänzungsmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 - → Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 - → Kernmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 - → Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 - → Ergänzungsmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 - → Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 - → Ergänzungsmodule --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 - → Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 - → Ergänzungsmodule --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 - → Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
11. Empfohlene Voraussetzungen:
- Elektrische Energietechnik

12. Lernziele:

13. Inhalt:
- Aufgaben des elektrischen Energienetzes, Smart Grids
- Einpolige Ersatzschaltungen der Betriebselemente für symmetrische Betriebsweise
- Berechnung von Energieübertragungsanlagen und -netzen
- Betrieb elektrischer Energieversorgungsnetze
- Kurzschlussströme bei symmetrischem Kurzschluss
- Symmetrische Komponenten

14. Literatur:
- Oeding, Oswald: Elektrische Kraftwerke und Netze Springer-Verlag, 6. Aufl., 2004
- Heuck, Dettmann: Elektrische Energieversorgung Vieweg, Braunschweig/Wiesbaden, 6. Aufl., 2005
- Schwab: Elektroenergiesysteme, Springer-Verlag, 1. Aufl., 2006

15. Lehrveranstaltungen und -formen:
- 115601 Vorlesung Elektrische Energienetze 1
- 115602 Übung Elektrische Energienetze 1

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 56 h
- Selbststudium/Nacharbeitszeit: 124 h
- Gesamt: 180 h

17. Prüfungsnummer/n und -name:
11561 Elektrische Energienetze I (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ...:
Elektrische Energienetze II

19. Medienform:
PowerPoint, Tafelschrieb

20. Angeboten von:
Energieübertragung und Hochspannungstechnik
Modul: 11570 Hochspannungstechnik I

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Stefan Tenbohlen

9. Dozenten: Stefan Tenbohlen

10. Zuordnung zum Curriculum in diesem Studiengang:

- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 - Wahlfächer → Schwerpunkt: Technische Informatik → Schwerpunkte

- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 - Ergänzungsmodule → Schwerpunkt: Elektromobilität → Schwerpunkte

- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 - Schwerpunkt: Elektrische Energiesysteme → Schwerpunkte

- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 - Wahlfächer → Schwerpunkt: Kommunikationssysteme und Signalverarbeitung → Schwerpunkte

- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 - Wahlfächer → Schwerpunkt: Mikro- und Optoelektronik → Schwerpunkte

- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 - Ergänzungsmodule → Schwerpunkt: Automatisierungs- und Regelungstechnik → Schwerpunkte

- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 - Wahlfächer → Schwerpunkt: Elektromobilität → Schwerpunkte

- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 - Ergänzungsmodule → Schwerpunkt: Kommunikationssysteme und Signalverarbeitung → Schwerpunkte

- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 - Schwerpunkt: Elektrotechnische Systeme → Schwerpunkte

- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 - Wahlfächer → Schwerpunkt: Automatisierungs- und Regelungstechnik → Schwerpunkte

- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 - Ergänzungsmodule → Schwerpunkt: Mikro- und Optoelektronik → Schwerpunkte

- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 - Kernmodule → Schwerpunkt: Elektrische Energiesysteme → Schwerpunkte
11. Empfohlene Voraussetzungen: • Elektrische Energieotechnik

13. Inhalt: • Auftreten und Anwendung hoher Spannungen bzw. Ströme • Einführung in die Hochspannungsversuchstechnik • Berechnung elektrischer Felder • Grundlagen der Hochspannungsisoliertechnik • Isolierstoffsysteme in Hochspannungsgeräten

15. Lehrveranstaltungen und -formen: • 115702 Übung Hochspannungstechnik 1 • 115701 Vorlesung Hochspannungstechnik 1

17. Prüfungsnummer/n und -name: 11571 Hochspannungstechnik I (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform: PowerPoint, Tafelanschrieb

20. Angeboten von: Energieübertragung und Hochspannungstechnik
Modul: 11580 Elektrische Maschinen I

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

| 8. Modulverantwortlicher: | Univ.-Prof. Dr.-Ing. Nejila Parspour |

| 9. Dozenten: | Nejila Parspour |

<table>
<thead>
<tr>
<th>10. Zuordnung zum Curriculum in diesem Studiengang:</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
</tr>
<tr>
<td>→ Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
</tr>
<tr>
<td>→ Ergänzungsmodule --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
</tr>
<tr>
<td>→ Ergänzungsmodule --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
</tr>
<tr>
<td>→ Kernmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
</tr>
<tr>
<td>→ Ergänzungsmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
</tr>
<tr>
<td>→ Kernmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
</tr>
<tr>
<td>→ Ergänzungsmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
</tr>
</tbody>
</table>
→ Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Schwerpunkt: Elektromobilität --> Schwerpunkte

11. Empfohlene Voraussetzungen:

13. Inhalt:
- Magnetismus und Grundlagen der magnetischen Kreise (Energie, Reluktanzkraft)
- Antriebstechnische Zusammenhänge
- Verluste in elektrischen Maschinen
- Berechnung von magnetischen Luftspaltfeldern von einfachen Wickelschemata in Drehfeldmaschinen
- Behandelte Maschinentypen:
 1) **Reluktanzmaschine**: Aufbau und Funktion, Ersatzschaltbilder, Energiefluss, Kennlinien, Bauformen und Einsatzgebiete
 2) **Synchronmaschine**: Aufbau und Funktion, Ersatzschaltbilder, Energiefluss, mathematische Zusammenhänge, Kennlinien, vollständiges Ersatzschaltbild, Drehzahlstellverfahren, Brems- und Anlaufverfahren, Bauformen und Einsatzgebiete
 3) **Asynchronmaschine**: Aufbau und Funktion, Ersatzschaltbilder, Energiefluss, mathematische Zusammenhänge, Kennlinien, Drehzahlstellverfahren, Brems- und Anlaufverfahren, Bauformen und Einsatzgebiete

14. Literatur:

15. Lehrveranstaltungen und -formen:
- 115801 Vorlesung Elektrische Maschinen I
- 115802 Übung Elektrische Maschinen I

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 56 h
- Selbststudium/Nacharbeitszeit: 124 h
- Summe: 180 h

17. Prüfungsnummer/n und -name: 11581 Elektrische Maschinen I (PL), Schriftlich, 120 Min., Gewichtung: 1
<table>
<thead>
<tr>
<th>18. Grundlage für ...</th>
<th>Elektrische Maschinen II</th>
</tr>
</thead>
<tbody>
<tr>
<td>19. Medienform:</td>
<td>Beamer, Tafel, ILIAS</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Elektrische Energiewandlung</td>
</tr>
</tbody>
</table>
Modul: 11590 Photovoltaik I

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Jürgen Heinz Werner</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Jürgen Heinz Werner</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester</th>
<th>Kernmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</td>
<td>Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester</td>
<td>Kernmodule --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester</td>
<td>Ergänzungsmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</td>
<td>Ergänzungsmodule --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</td>
<td>Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</td>
<td>Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester</td>
<td>Ergänzungsmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</td>
<td>Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte</td>
</tr>
</tbody>
</table>
11. Empfohlene Voraussetzungen: Grundkenntnisse über Halbleitermaterialien und Halbleiterdioden, z.B. aus Mikroelektronik I

12. Lernziele: Die Studierenden kennen
- das Potential der Sonnenstrahlung
- die Funktionsweise von Solarzellen
- die wichtigsten Technologien der Herstellung von Solarmodulen
- die Grundprinzipien von Wechselrichtern
- die Energieerträge verschiedener Photovoltaik-Technologien
- den aktuellen Stand des Photovoltaikmarktes und der Kosten von Photovoltaik-Strom

13. Inhalt: - Der Photovoltaische Effekt (Zelle, Modul, Anlage)
- Solarstrahlung und Energieumsatz in Deutschland
- Grundprinzip und Kenngrößen von Solarzellen
- Ersatzschaltbilder von Solarzellen
- Maximaler Wirkungsgrad
- Photovoltaik-Materialien und -Technologien
- Modultechnik
- Photovoltaische Systemtechnik
- (Jahres-) Energieerträge von Photovoltaiksystemen

• P. Würfel, Physik der Solarzellen, Spektrum, 1995
• M. A. Green, Solar Cells - Operating Principles, Technology and System Applications, Centre for Photovoltaic Devices and Systems, Sydney, 1986
• F. Staiß, Photovoltaik - Technik, Potentiale und Perspektiven der solaren Stromerzeugung, Vieweg, 1996

15. Lehrveranstaltungen und -formen: • 115901 Vorlesung Photovoltaik I
• 115902 Übungen Photovoltaik I

16. Abschätzung Arbeitsaufwand: Präsenzzeit: 56 h
Selbststudium/Nacharbeitszeit: 142 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name: 11591 Photovoltaik I (PL), Schriftlich, 90 Min., Gewichtung: 1

18. Grundlage für ... : Photovoltaik II

19. Medienform: Powerpoint, Tafel

20. Angeboten von: Physikalische Elektronik
Modul: 11620 Automatisierungstechnik I

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Michael Weyrich

9. Dozenten: Michael Weyrich

10. Zuordnung zum Curriculum in diesem Studiengang:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</td>
<td>Wählfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</td>
<td>Zusatzmodule</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester</td>
<td>Wählfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</td>
<td>Wählfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester</td>
<td>Wählfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester</td>
<td>Wählfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</td>
<td>Wählfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester</td>
<td>Wählfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte</td>
</tr>
</tbody>
</table>
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester

→ Ergänzungsmodule --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte

11. Empfohlene Voraussetzungen:

• Grundlagen der Elektrotechnik, Informatik und Mathematik

12. Lernziele:

Die Studierenden

• besitzen grundlegende Kenntnisse über rechnerbasierte Automatisierungssysteme
• setzen sich mit Kommunikationssystemen der Automatisierungstechnik ausseinerder
• wenden grundlegende Methoden und Verfahren der Echtzeit-Programmierung an
• lernen spezifische Programmiersprachen der Automatisierungstechnik kennen

13. Inhalt:

• Grundlegende Begriffe der Automatisierungstechnik
• Automatisierungs-Gerätesysteme und -strukturen
• Prozessperipherie – Schnittstellen zwischen dem Automatisierungscomputersystem und dem technischen Prozess (Prozesssignalantransportion und -überwachung)
• Grundlagen zu Kommunikationssystemen in der Automatisierungstechnik (Feldbussysteme, drahtlose Kommunikation)
• Grundlagen der Echtzeitprogrammierung (Synchronische und Asynchrone Programmierung, Scheduling-Algorithmen, Synchronisationskonzepte)
• Programmiersprachen für die Automatisierungstechnik (Programmierung von Speicherprogrammierbaren und Pneumatischen Steuerungen)

14. Literatur:

• Vorlesungsskript
• Lauber, Göhner: Prozessautomatisierung Band 1 (3. Auflage), Springer, 1999
• Früh, Maier: Handbuch der Prozessautomatisierung (3. Auflage) Oldenbourg Industrieverlag, 2004
• Wellenreuther Automatisieren mit SPS (3. Auflage), Vieweg, 2005
• Materialien und Vorlesungsaufzeichnungen im ILIAS

15. Lehrveranstaltungen und -formen:

• 116201 Vorlesung Automatisierungstechnik I
• 116202 Übung Automatisierungstechnik I

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 56 h
Selbststudium: 124 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:

11621 Automatisierungstechnik I (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ...

Automatisierungstechnik II

19. Medienform:

Beamerpräsentation mit Aufzeichnung der Vorlesungen und Übungen

20. Angeboten von:

Automatisierungstechnik und Softwaresysteme
Modul: 11650 Hochfrequenztechnik I

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050600001</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Jan Hesselbarth</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Jan Hesselbarth</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester**
 - → Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
 - → Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
 - → Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte
 - → Ergänzungsmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
 - → Ergänzungsmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte
 - → Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
 - → Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte
 - → Ergänzungsmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte
 - → Kernmodule --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
 - → Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte
 - → Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
 - → Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
 - → Ergänzungsmodule --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
11. Empfohlene Voraussetzungen:

13. Inhalt: Maxwell'sche Gleichungen, ebene Welle im freien Raum, Leitungswellen, konzentrierte Bauelemente, Resonanzschaltungen, Transformationsschaltungen, Hochfrequenzfilter

14. Literatur:

- Vorlesungsskript,
- Detlefsen, Siart: Grundlagen der Hochfrequenztechnik, 3. Auflage, Oldenbourg Verlag, 2009,

15. Lehrveranstaltungen und -formen:

- 116501 Vorlesung Hochfrequenztechnik I
- 116502 Übung Hochfrequenztechnik I

17. Prüfungsnummer/n und -name: 11651 Hochfrequenztechnik I (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ... : Hochfrequenztechnik II

19. Medienform: Tafel, Beamer, Projektor, ILIAS

20. Angeboten von: Hochfrequenztechnik
Modul: 11690 Hochfrequenztechnik II

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050600002</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Moduldaure:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Jan Hesselbarth</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Jan Hesselbarth</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, Zusatzmodule
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, Ergänzungsmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, Ergänzungsmodule --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester
 - Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester
 - Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 6. Semester
 - Ergänzungsmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester
 - Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester
 - Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester
 - Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 6. Semester
 - Ergänzungsmodule --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester
 - Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester
 - Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 6. Semester
 - Ergänzungsmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte

11. Empfohlene Voraussetzungen:

- Grundlagen der Nachrichtentechnik
- Grundlagend der Hochfrequenztechnik

15. Lehrveranstaltungen und -formen: • 116901 Vorlesung Antennas • 116902 Übung Antennas

17. Prüfungsnummer/n und -name: 11691 Hochfrequenztechnik II (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ...

19. Medienform: Tafel, Beamer, Projektor, ILIAS

20. Angeboten von: Hochfrequenztechnik
Modul: 11700 Halbleitertechnik I

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Jörg Schulze</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Jörg Schulze</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zuordnung zum Curriculum in diesem Studiengang:

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester**
 - Schwerpunkt: Mikro- und Optoelektronik → Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 - Wahlfächer → Schwerpunkt: Elektrotechnische Systeme → Schwerpunkte
- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester**
 - Wahlfächer → Schwerpunkt: Elektromobilität → Schwerpunkte
- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester**
 - Wahlfächer → Schwerpunkt: Elektronische Energiesysteme → Schwerpunkte
- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester**
 - Wahlfächer → Schwerpunkt: Automatisierungs- und Regelungstechnik → Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 - Wahlfächer → Schwerpunkt: Technische Informatik → Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 - Ergänzungsmodule → Schwerpunkt: Technische Informatik → Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 - Ergänzungsmodule → Schwerpunkt: Elektronische Energiesysteme → Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 - Ergänzungsmodule → Schwerpunkt: Kommunikationssysteme und Signalverarbeitung → Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 - Wahlfächer → Schwerpunkt: Automatisierungs- und Regelungstechnik → Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 - Ergänzungsmodule → Schwerpunkt: Elektromobilität → Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 - Ergänzungsmodule → Schwerpunkt: Automatisierungs- und Regelungstechnik → Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 - Wahlfächer → Schwerpunkt: Technische Informatik → Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 - Wahlfächer → Schwerpunkt: Kommunikationssysteme und Signalverarbeitung → Schwerpunkte
11. Empfohlene Voraussetzungen:
Empfohlen werden Kenntnisse, wie Sie beispielsweise
in Mikroelektronik (ME) und Halbleitertechnologie:
Prozesstechnologie (HLT I) vermittelt werden.

12. Lernziele:
Die Studierenden besitzen die Kenntnis und das Verständnis
der mathematisch-physikalischen Grundlagen der Bauelement-
Modellierung, kennen die ideale und die reale Funktionsweise und
den Aufbau diverser Halbleiterdioden und haben ein umfassendes
Verständnis vom Aufbau und vom idealen/realen Verhalten
eines Bipolar- und eines Heterobipolartransistors. Darüber hinaus
kennen sie die prinzipielle Funktionsweise von Thyristoren und
haben erste Grundkenntnisse von der Funktionsweise von
Leistungsbipolartransistoren mit isoliertem Gate und von BiCMOS-
Schaltungen (BiCMOS: Schaltungstechnik, bei der Bipolar- und
Feldeffektkristalldioden miteinander kombiniert werden). Außerdem
kennen sie die prinzipiellen Herstellungsprozessabläufe moderner
Bipolar- und BiCMOS-Prozesse.

13. Inhalt:
Die Vorlesung Halbleitertechnik: Bipolartechnik (HL I) bildet
zusammen mit der Vorlesung Halbleitertechnik: Nano-CMOS-Ära
(HL II) den Halbleitertechnik-Zyklus des IHT. Die Vorlesung wird
ejedes zweite Semester immer im Wintersemester angeboten.
Die folgenden Inhalte werden besprochen:
• Beschreibung eines psn-Übergangs im thermodynamischen
 Gleichgewicht (Raumladungszonen, Poisson-Gleichung,
 Depletion-Näherung und Built-in-Spannung),
• Beschreibung eines psn-Übergangs im Nicht-
 Gleichgewicht (I-U-Charakteristik des idealen pn-
 Übergangs, Rekombinationsmechanismen in pn-
 Übergängen, I-U-Charakteristik des realen pn-Übergangs,
 Durchbruchmechanismen in pn-Übergängen),
• Dioden-Spezialformen: Schottky-Diode und Ohmscher Kontakt,
 Z-Dioden (Zener-Diode und Avalanche-Diode), IMPATT-Diode
 (Impact-Ionization-Avalanche-Transit-Time-Diode), Gunn-Diode,
 Uni-Tunneldiode, Esaki-Tunneldiode, Shockley-Diode, DIAC
 (Diode for Alternating Current),
• Aufbau und Funktionsweise von Bipolar- und
 Heterobiplartransistoren: Ideales und reales Verhalten und
 Hochfrequenzbetrieb,
• Thyristor und lichtgezündeter Thyristor, TRIAC (Triode for
 Alternating Current).

Als Ausblick wird zum Schluss der Vorlesung auf
Leistungsbipolartransistoren mit isoliertem Gate wie dem Gate-
Turn-Off-Thyristor (GTO-Thyristor) und dem Insulated Gate Bipolar
Transistor (IGBT) und auf BiCMOS-Schaltungen eingegangen.

14. Literatur:
• Chang: ULSI Devices, Wiley, 2000
• Hoffmann: Systemintegration, Oldenbourg, 2003
• Linder: Power Semiconductors, CRC Press, 2006
• Löcherer: Halbleiterbauelemente, Teubner, 1992
• Lutz: Halbleiter-Leistungsaufbereitung, Springer, 2006
• Ng: Complete Guide to Semiconductor Devices, Wiley, 2002
• Razavi: Microelectronics, Wiley, 2015
• Roulsten: An Introduction to the Physics of Semiconductor
 Devices, Oxford University Press, 1999
• Schaumburg: Halbleiter, Teubner, 1991
15. Lehrveranstaltungen und -formen:

- 117001 Vorlesung Halbleitertechnik 1
- 117002 Übung Halbleitertechnik 1

16. Abschätzung Arbeitsaufwand:

Gesamtaufwand: 180 h
Dabei:
- 45 h (2 SWS Vorlesung + 2 SWS Übung) Präsenz
- 135 h Selbststudium

17. Prüfungsnummer/n und -name:
11701 Halbleitertechnik I (PL), Schriftlich, 90 Min., Gewichtung: 1

18. Grundlage für ...

19. Medienform:

- PowerPoint-Präsentationen zu den einzelnen Kapiteln (Beamer)
- Aufzeichnungen während der Vorlesungen (Notizen, Rechnungen, Skizzen u. ä.) mit Hilfe eines Tablet-PCs (Beamer)
- Lehrbriefe zu den einzelnen Themenschwerpunkten
- Ausgedrucktes Skript mit sämtlichen Vorlesungs- und Übungsfolien, Übungsblättern und Lehrbriefen (zum Selbstkostenpreis erhältlich)
- Vorlesungsaufzeichnungen im MPG4-Format mittels Tablet-PCs und Head-Set
- Sämtliche Unterlagen werden elektronisch über ILIAS zum Download bereitgestellt.

20. Angeboten von:

Halbleitertechnik
Modul: 11710 Optoelectronics I

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050513001</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Modultermin:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Jürgen Heinz Werner</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Jürgen Heinz Werner</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 6. Semester**
 - Ergänzungsmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
 - Kernmodule --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 6. Semester**
 - Ergänzungsmodule --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester**
 - Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester**
 - Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 6. Semester**
 - Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester**
 - Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester**
 - Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester**
 - Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte

11. Empfohlene Voraussetzungen:
12. Lernziele: The students know

- the fundamentals of incoherent and coherent radiation
- the generation of radiation by light emitting diodes and semiconductor laser diodes
- the transport of radiation via glass fibers and its detection using photodetectors

13. Inhalt:

- Basics of incoherent and coherent radiation
- Semiconductor basics
- Excitation and recombination processes in semiconductors
- Light emitting diodes
- Semiconductor lasers
- Glass fibers
- Photodetectors

14. Literatur:

- W. Bludau, Halbleiteroptoelektronik: Die physikalischen Grundlagen der LEDs, Diodenlaser und pn-Photodioden (Carl Hanser, München, 1995).
- W. L. Leigh, Devices for Optoelectronics (Dekker, New York, 1996).

15. Lehrveranstaltungen und -formen:

- 117102 Übung Optoelectronics I
- 117101 Vorlesung Optoelectronics I

16. Abschätzung Arbeitsaufwand:

| Presence time: 56 h | Self studies: 124 h | Total: 180 h |

17. Prüfungsnr/n und -name:

- 11711 Optoelectronics I (PL), Schriftlich oder Mündlich, 120 Min., Gewichtung: 1
- group presentation in seminar (60 min, once per year) written exam (60 min, twice per year)

18. Grundlage für...

19. Medienform:

- Powerpoint, blackboard

20. Angeboten von:

- Physikalische Elektronik
Modul: 11720 Halbleitertechnologie I

<p>| | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Jörg Schulze</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Jörg Schulze</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

11. Empfohlene Voraussetzungen:

Empfohlen werden Kenntnisse, wie Sie beispielsweise in *Mikroelektronik (ME)* vermittelt werden.
12. Lernziele:

13. Inhalt:

• Einführung in die Silizium-basierte Halbleitertechnologie,
• Technologische Grundlagen (Prozessparameter und grundlegende Technologieprozesse),
• Substrat- und Waferherstellung (CZ-Wafer, FZ-Wafer und Silicon-On-Insulator-Wafer),
• Lithographie (optische Lithographie und alternative Verfahren) und Strukturierungsmethoden (nasschemisch, trockenchemisch und physikalisch-chemisch),
• Dotiermethoden: Epitaxie, Diffusion und Ionenimplantation,
• Herstellung und Strukturierung von Isolatorschichten (Standard-Dielektrika, Low-k-, Medium-k- und high-k-Dielektrika) und Planarisierungsmethoden,
• Herstellung und Strukturierung metallischer Schichten.

Als Ausblick wird zum Schluss der Vorlesung auf die Aufbau- und Verbindungstechnik eingegangen und exemplarische Herstellungsprozesse unterschiedlicher mikroelektronischer Bauelemente werden diskutiert.

14. Literatur:

• Beneking: Halbleitertechnologie, Eine Einführung in die Prozesstechnik von Silizium und III-V Verbindungen, Teubner Verlag, 1984
• Chan, Sze: ULSI-Technology, Mc Graw Hill, 1996
• Hattori (Ed.): Ultraclean Surface Processing of Silicon Wafers, Springer, 1998
• Hilleringmann: Silizium-Halbleitertechnologie, Teubner Verlag, 1996
• v. Münch: Einführung in die Halbleitertechnologie, Teubner Verlag, 1993
• Nijs (Ed.): Advanced Silicon and Semiconducting Silicon-Alloy Based Materials and Devices, Institute of Physics Publishing, 1994
• Schulze: Konzepte Silizium-basierter MOS-Bauelemente, Springer, 2005
• Siffert, Krimmel (Ed.): Silicon - Evolution and Future of a Technology, Springer, 2004

15. Lehrveranstaltungen und -formen:
• 117201 Vorlesung Halbleitertechnologie 1
• 117202 Übung Halbleitertechnologie 1

16. Abschätzung Arbeitsaufwand:
Gesamtaufwand: 180 h
Dabei:
• 45 h (2 SWS Vorlesung + 2 SWS Übung) Präsenz
• 135 h Selbststudium

17. Prüfungsnummer/n und -name:
11721 Halbleitertechnologie I (PL), Schriftlich, 90 Min., Gewichtung: 1

18. Grundlage für ...

19. Medienform:
• PowerPoint-Präsentationen zu den einzelnen Kapiteln (Beamer)
• Aufzeichnungen während der Vorlesungen (Notizen, Rechnungen, Skizzen u. ä.) mit Hilfe eines Tablet-PCs (Beamer)
• Lehrbriefe zu den einzelnen Themenschwerpunkten
• Ausgedrucktes Skript mit sämtlichen Vorlesungs- und Übungsfolien, Übungsbögen und Lehrbriefen (zum Selbstkostenpreis erhältlich)
• Vorlesungsaufzeichnungen im MPG4-Format mittels Tablet-PCs und Head-Set
• Sämtliche Unterlagen werden elektronisch über ILIAS zum Download bereitgestellt.

20. Angeboten von: Halbleitertechnik
Modul: 11730 Flachbildschirme

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

| 8. Modulverantwortlicher: | Nesrine Kammoun |
| 9. Dozenten: | Norbert Frühauf |

10. Zuordnung zum Curriculum in diesem Studiengang:

- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester
 - Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester
 - Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester
 - Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 6. Semester
 - Ergänzungsmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester
 - Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester
 - Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 6. Semester
 - Ergänzungsmodule --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 6. Semester
 - Ergänzungsmodule --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester
 - Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 6. Semester
 - Ergänzungsmodulme --> Schwerpunkt: Elektromobilität --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 6. Semester
 - Ergänzungsmodulme --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester
 - Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 6. Semester

Stand: 09. April 2018
11. Empfohlene Voraussetzungen:

12. Lernziele: Die Studierenden

- kennen die in Flachbildschirmen eingesetzten elektrooptischen Effekte und die zugehörigen Ansteuerverfahren
- können grundlegende Dimensionierungen von Flüssigkristallbildschirmen vornehmen
- kennen Verfahren zur elektro-optischen Charakterisierung von Bildschirmen und können wesentliche Leistungsparameter wie Kontrast und Farbort berechnen

13. Inhalt:

- Einsatzgebiete der Flachbildschirmtechnik
- Physiologie des menschlichen Sehens
- Farbdarstellung (Tri-Stimulus Theorie)
- Elektro-optische Eigenschaften von Flüssigkristallen
- Organische Lichtemittierende Dioden
- Elektrophoretische Medien
- Sonstige Elektro-optische Effekte
- Plasmabildschirme
- Passiv- und Aktiv-Matrix Ansteuerverfahren
- Ansteuerschaltungen
- Herstellungsverfahren
- Charakterisierung von Flachbildschirmen

14. Literatur:

- E. Lueder - Liquid Crystal Displays, Wiley, 2001

15. Lehrveranstaltungen und -formen:

- 117301 Vorlesung Flachbildschirme
- 117302 Übung Flachbildschirme

16. Abschätzung Arbeitsaufwand:

- Präsenzzeit: 56 h
- Selbststudium/Nacharbeitszeit: 124 h
- Gesamt: 180 h

17. Prüfungsnr/n und -name:

- 11731 Flachbildschirme (PL), Schriftlich oder Mündlich, 90 Min., Gewichtung: 1

18. Grundlage für ...:

19. Medienform:

- Tafel, Projektor, Beamer, ILIAS

20. Angeboten von:

- Bildschirmtechnik
Modul: 11740 Elektromagnetische Verträglichkeit

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Stefan Tenbohlen

9. Dozenten: Stefan Tenbohlen Daniel Schneider

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
- Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte
 - Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
- Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
- Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
- Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
- Ergänzungsmodule --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
- Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
- Ergänzungsmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
- Ergänzungsmodule --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
- Ergänzungsmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
- Ergänzungsmodule --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
- Ergänzungsmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
11. Empfohlene Voraussetzungen: Grundlagen der Elektrotechnik

12. Lernziele: Studierender hat Kenntnisse der Messverfahren und Messausrüstungen der Elektromagnetischen Verträglichkeit. Er kennt praktische Abhilfemaßnahmen zur Beherrschung der EMV-Problematik und die Besonderheiten in der Automobil-EMV

13. Inhalt:
- Einführung
- Begriffsbestimmungen
- EMV-Umgebung
- Allgemeine Maßnahmen zur Sicherstellung der EMV
- Aktive Schutzmaßnahmen
- Nachweis der EMV (Messverfahren, Messumgebung)
- Einwirkung elektromagnetischer Felder auf biologische Systeme
- EMV im Automobilbereich

14. Literatur:
- Schwab, Adolf J.: Elektromagnetische Verträglichkeit Springer Verlag, 1996
- Habiger, Ernst: Elektromagnetische Verträglichkeit Hüthig Verlag, 3. Aufl., 1998
- Gonschorek, K.-H.: EMV für Geräteentwickler und Systemintegratoren Springer Verlag, 2005
- Wiesinger, J. u.a.: EMV-Blitzschutz von elektrischen und elektronischen Systemen in baulichen Anlagen VDE-Verlag, Oktober 2004

15. Lehrveranstaltungen und -formen:
- 117401 Vorlesung Elektromagnetische Verträglichkeit
- 117402 Übung Elektromagnetische Verträglichkeit

16. Abschätzung Arbeitsaufwand: Präsenzzeit: 56 h
Selbststudium/Nacharbeitszeit: 124 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name: 11741 Elektromagnetische Verträglichkeit (PL), Schriftlich, 90 Min., Gewichtung: 1

18. Grundlage für ...

19. Medienform: PowerPoint, Tafelanschrieb

20. Angeboten von: Energieübertragung und Hochspannungstechnik
Modul: 11750 Numerische Feldberechnung I

2. Modulkürzel: 051800003
5. Moduldaurer: Einsemestrig
3. Leistungspunkte: 6 LP
6. Turnus: Sommersemester
4. SWS: 4
7. Sprache: Deutsch
8. Modulverantwortlicher: Prof. Dr. Wolfgang Rucker

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
→ Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
→ Ergänzungsmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
→ Ergänzungsmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
→ Ergänzungsmodule --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
→ Zusatzmodule
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
→ Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
→ Ergänzungsmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
→ Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
→ Ergänzungsmodule --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
→ Ergänzungsmodule --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
→ Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
→ Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
→ Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte

12. Lernziele: Die Studierenden:

- besitzen die Grundkenntnisse der wichtigsten numerischen Verfahren zur Modellierung und Simulation von Feldproblemen in der Elektrotechnik,
- beherrschen den Einsatz von Simulationswerkzeugen.

13. Inhalt:

- Grundlagen der numerischen Simulation elektromagnetischer Felder
- Allgemeiner Ablauf einer numerischen Simulation, Simulationssoftware
- Methode der finiten Elemente (FEM)
- Ausgangsbeziehung der FEM für Potenzialprobleme
- Geometriemodellierung
- Erstellung und Lösung des FE-Gleichungssystems
- FE-Formulierungen von elektromagnetischen Feldproblemen
- Methode der Randelemente (BEM)
- Randintegraldarstellung, Randintegralgleichung
- Erstellung und Lösung des BE-Gleichungssystems
- BE-Formulierung von Elektrodenproblemen

14. Literatur:

15. Lehrveranstaltungen und -formen:

- 117501 Vorlesung Numerische Feldberechnung I
- 117502 Übung Numerische Feldberechnung I

16. Abschätzung Arbeitsaufwand:

- Präsenzzeit: 56 h
- Selbststudium: 124 h
- Gesamt: 180 h

17. Prüfungsnummer/n und -name: 11751 Numerische Feldberechnung I (PL), Mündlich, 45 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform: Tafel, Beamer

20. Angeboten von: Elektrotechnik bionischer Systeme
Modul: 12420 Windenergie 1 - Grundlagen Windenergie

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. Modulverantwortlicher:</th>
<th>Univ.-Prof. Dr. Po Wen Cheng</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>9. Dozenten:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung: Po Wen Cheng</td>
</tr>
<tr>
<td>Übung: Holger Fürst</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester**
 - Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester**
 - Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester**
 - Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester**
 - Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester**
 - Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester**
 - Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester**
 - Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester**
 - Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester**
 - Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester**
 - Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester**
 - Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte
11. Empfohlene Voraussetzungen: Technische Mechanik I

12. Lernziele:
- Die Studierenden erlangen Kenntnisse über die Grundlagen
 der Windenergie, insbesondere über die physikalischen und
 technischen Prinzipien bei modernen Windenergieanlagen.
- Die Studierenden sind dabei in der Lage einfache physikalische
 Grundgleichungen und Zusammenhänge herzuleiten und ihre
 Bedeutung in Bezug auf die Nutzung von Windenergie zu
 verstehen sowie zu erklären.
- Ausgehend vom Verständnis der einzelnen Teildisziplinen
 (Aerodynamik, Strukturdynamik, Elektrotechnik etc.) können
 die Studierenden den Aufbau und die Funktionsweise
 des Gesamtsystems Windenergieanlage erläutern und
 auf ausgewählten Gebieten elementare Auslegungs- und
 Entwurfsberechnungen durchführen.
- Nach Abschluss der Lehrveranstaltung haben die Studierenden
 die wesentlichen Kompetenzen aufgebaut, die sie
 befähigen sich in Spezialgebiete im Bereich Windenergie
 (Komponentenauslegung, Modellierung und Simulation,
 Windparkplanung etc.) einzu arbeiten.

13. Inhalt:
- **Vorlesung**
 Einleitung, Historie und Potenziale, Beschreibung und
 Charakterisierung des Windes, Ertragsberechnung,
 Windmessung, Aerodynamische Grundlagen: Impulstheorie,
 Tragflügeltheorie, Blattauslegung nach Betz und Schmitz,
 Kennlinien, Typologien, Modellgesetze und Ähnlichkeitsregeln,
 Strukturdynamik, Konstruktiver Aufbau, Elektrisches System,
 Betriebsführung und Regelungstechnik.
- **Übung und Versuch**
 Es werden 8 Hörsaalübungen sowie ein Hochlaufversuch im
 Böenwindkanal angeboten.

14. Literatur:
- lecture notes
- R. Gasch und J. Twele, Windkraftanlagen
- James F. Manwell, Jon G. McGowan und Anthony L. Rogers,
 Wind Energy Explained: Theory, Design and Application

15. Lehrveranstaltungen und -formen:
- 124202 Übung Windenergienutzung I
- 124201 Vorlesung Windenergienutzung I

16. Abschätzung Arbeitsaufwand:
- Vorlesung: Präsenzzeit 28 Stunden, Selbststudium 62 Stunden
- Übung: Präsenzzeit 8 Stunden, Selbststudium 74 Stunden
- Windkanalversuch: Präsenzzeit 3 Stunden, Versuchsauswertung 5 Stunden
 Summe: 180 Stunden

17. Prüfungsnummer/n und -name: 12421 Windenergie 1 - Grundlagen Windenergie (PL), Schriftlich, 90
 Min., Gewichtung: 1
 Das Versuchsprotokoll des Windkanalversuchs während des
 Semesters ist Voraussetzung für die Teilnahme an der Prüfung.
Die Prüfung umfasst einen Fragenteil (20 min) und einen Rechenteil (70 min).

<table>
<thead>
<tr>
<th>18. Grundlage für ... :</th>
<th>Windenergie 3 - Entwurf von Windenergieanlagen Windenergie 4 - Windenergie-Projekt</th>
</tr>
</thead>
<tbody>
<tr>
<td>19. Medienform:</td>
<td>PowerPoint, Tafelanschrieb, Versuchsdurchführungen</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Windenergie</td>
</tr>
</tbody>
</table>
Modul: 13590 Kraftfahrzeuge I + II

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>070800001</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Moduldauser:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Nils Widdecke</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Jochen Wiedemann, Nils Widdecke</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester**
 - Schwerpunkt: Elektromobilität --> Schwerpunkte
 - *Wahlfächer* --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester**
 - *Wahlfächer* --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester**
 - *Ergänzungsmodul* --> Schwerpunkt: Technische Informatik --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester**
 - *Ergänzungsmodul* --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester**
 - *Wahlfächer* --> Schwerpunkt: Technische Informatik --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester**
 - *Ergänzungsmodul* --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester**
 - *Wahlfächer* --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester**
 - *Ergänzungsmodul* --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester**
 - Kernmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester**
 - *Wahlfächer* --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester**
 - *Wahlfächer* --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
11. Empfohlene Voraussetzungen: Kenntnisse aus den Fachsemestern 1 bis 4

14. Literatur:
 - Wiedemann, J.: Kraftfahrzeuge I+II, Vorlesungsumdruck,
 - Reimpell, J.: Fahrwerkstechnik: Grundlagen, Vogel-Fachbuchverlag, 2005

15. Lehrveranstaltungen und -formen: • 135901 Vorlesung Kraftfahrzeuge I + II
 • 135902 Übung Kraftfahrzeuge I + II

16. Abschätzung Arbeitsaufwand: Vorlesung, Selbststudium

17. Prüfungsnummer/n und -name: 13591 Kraftfahrzeuge I + II (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform: PPT-Präsentation

20. Angeboten von: Kraftfahrwesen
Modul: 14130 Kraftfahrzeugmechatronik I + II

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>070800002</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>Zweisemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016,**
 - → Ergänzungsmoduls --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
 - → Schwerpunkt: Elektromobilität --> Schwerpunkte
- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011,** 5. Semester
 - → Ergänzungsmoduls --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
 - → Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte
- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016,** 5. Semester
 - → Ergänzungsmoduls --> Schwerpunkt: Technische Informatik --> Schwerpunkte
- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011,** 5. Semester
 - → Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016,** 5. Semester
 - → Ergänzungsmoduls --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011,** 5. Semester
 - → Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011,** 5. Semester
 - → Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011,** 5. Semester
 - → Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011,** 5. Semester
 - → Kernmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte
- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011,** 5. Semester
 - → Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte
11. Empfohlene Voraussetzungen: Grundkenntnisse aus den Fachsemestern 1 bis 4

12. Lernziele: Die Studenten kennen mechatronische Komponenten in Automobilen, können Funktionsweisen und Zusammenhänge erklären.
Die Studenten können Entwicklungsmethoden für mechatronische Komponenten im Automobil einordnen und anwenden. Wichtige Entwicklungswerkzeuge können sie nutzen.

13. Inhalt:

VL Kfz-Mech I:
- Kraftfahrzeugspezifische Anforderungen an die Elektronik
- Bordnetz (Energiemanagement, Generator, Starter, Batterie, Licht)
- Motorelektronik (Zündung, Einspritzung)
- Getriebeelektronik
- Lenkung
- ABS, ASR, ESP, elektromechanische Bremse, Dämpfungsregelung, Reifendrucküberwachung
- Sicherheitssysteme (Airbag, Gurt, Alarmanlage, Wegfahr sperre)
- Komfortsysteme (Tempomat, Abstandsregelung, Klimaanlage)

VL Kfz-Mech II:
- Grundlagen mechatronischer Systeme (Steuerung/Regelung, diskrete Systeme, Echtzeitsysteme, eingebettete Systeme, vernetzte Systeme)
- Systemarchitektur und Fahrzeugentwicklungsprozesse
- Kernprozess zur Entwicklung von mechatronischen Systemen und Software (Schwerpunkt V-Modell)

Laborübungen Kraftfahrzeugmechatronik
- Rapid Prototyping (Simulink)
- Modellbasierte Funktionsentwicklung mit TargetLink
- Elektronik

15. Lehrveranstaltungen und -formen:
- 141303 Laborübungen Kraftfahrzeugmechatronik
- 141301 Vorlesung Kraftfahrzeugmechatronik I
- 141302 Vorlesung Kraftfahrzeugmechatronik II

16. Abschätzung Arbeitsaufwand: Vorlesung, Laborübungen, Selbststudium

17. Prüfungsnummer/n und -name: 14131 Kraftfahrzeugmechatronik I + II (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ...

19. Medienform: Vorlesung (Beamer), Laborübungen (am PC, betreute Zweiergruppen)

20. Angeboten von: Kraftfahrzeugmechatronik
Modul: 17110 Entwurf digitaler Systeme

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Andreas Kirstädter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Matthias Meyer</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
11. Empfohlene Voraussetzungen: Kenntnisse, wie sie beispielsweise im Modul Informatik II vermittelt werden

12. Lernziele: Der Studierende kann digitale Systeme entwerfen, simulieren und testen, beherrscht die Hardware-Beschreibungssprache VHDL, kennt die physikalischen Randbedingungen beim Aufbau moderner digitaler Schaltungen.

13. Inhalt:
 • Entwurfsprozesse und Modularisierung
 • Modellierung digitaler Systeme mit VHDL (Grundlegende Konzepte von VHDL, Verhaltens- und Strukturbeschreibung, Typkonzept, sequenzielle und nebeneinläufige Anweisungen, Prozeduren und Funktionen, Signale, Bibliotheken)
 • Realisierung digitaler Schaltungen (Spannungsversorgung, Übersprechen, Reflexionen und Busabschlüsse, Metastabilität, Realisierungsaspekte bei kombinatorischen und sequenziellen Netzwerken)
 • Digitale Bauelemente (Programmierbare Logik, Speicherbausteine)

 Für nähere Informationen, aktuelle Ankündigungen und Material siehe http://www.ikr.uni-stuttgart.de/Xref/CC/L_EDS

14. Literatur:
 • Vorlesungsskript
 • Ashenden, P. J.: The Student's Guide to VHDL, Morgan Kaufmann Publishers
 • Ashenden, P. J.: The Designer's Guide to VHDL, Morgan Kaufmann Publishers

15. Lehrveranstaltungen und -formen:
 • 171101 Vorlesung Entwurf digitaler Systeme
 • 171102 Übung Entwurf digitaler Systeme

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 56 h
 Selbststudium: 124 h
 Gesamt: 180 h

17. Prüfungsnummer/n und -name: 17111 Entwurf digitaler Systeme (PL), Mündlich, 120 Min., Gewichtung: 1

18. Grundlage für ... :
 Praktische Übungen im Labor Rechnerarchitektur und Kommunikationssysteme

19. Medienform:
 Notebook-Präsentationen

20. Angeboten von:
 Kommunikationsnetze und Rechnersysteme
Modul: 17130 Entwurf digitaler Filter

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>PD Dr.-Ing. Markus Gaida</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Markus Gaida</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester
 - Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester
 - Ergänzungsmodul --> Schwerpunkt: Technische Informatik --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 6. Semester
 - Ergänzungsmodul --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 6. Semester
 - Ergänzungsmodul --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester
 - Zusatzmodule
 - Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester
 - Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester
 - Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 6. Semester
 - Ergänzungsmodul --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 6. Semester
 - Ergänzungsmodul --> Schwerpunkt: Elektromobilität --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester
 - Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester
 - Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
11. Empfohlene Voraussetzungen:
Empfohlen werden Kenntnisse, wie sie beispielsweise in der Lehrveranstaltung *Signale und Systeme* vermittelt werden.

12. Lernziele:

13. Inhalt:
- Filter und Anwendungen, FIR- und IIR-Filter, Blockdiagramm und Signalfussgraph
- Entwurf von FIR-Filtern: linearphasisge FIR-Filter, Fenster-
 Methode, Frequenzabtastmethode, Methode der kleinsten
 Quadrate, Remez-Algorithmus
- Entwurf von IIR-Filtern: analoge Referenzfilter (Butterworth,
 Tschebyscheff I und II, Cauer), Frequenztransformation,
 Methode der invarianten Impulsantwort, Bilineartransformation
- Struktur von FIR-Filtern (Direkt, Kaskade, Lattice), Struktur von IIR-Filtern (Direkt, Kaskade, Parallel, Lattice-Ladder), Levinson-
 Durbin-Rekursion, Schur-Cohen-Rekursion
- Quantisierungseffekte
- Zahlendarstellung, Fließkomma und Festkomma,
 Koeffizientenempfindlichkeit, Überlauf und Sättigung,
 Rundungsverfahren, Polgitter, Rundungsrauschen, Signal-zu-
 Rausch-Abstand, Grenzyklen
- Entwurf digitaler Filter mit MATLAB
- Abtastratenumsetzung, Dezimation, Interpolation

14. Literatur:
- Skript
- N. Fliege und M. Gaida: *Signale und Systeme - Grundlagen
 und Anwendungen mit MATLAB*. J. Schlembach Fachverlag,
 Wilburgstetten, 2008.
- K. D. Kammeyer und K. Kroschel: *Digitale Signalverarbeitung*.

15. Lehrveranstaltungen und -formen:
- 171301 Vorlesung Entwurf digitaler Filter
- 171302 Übung Entwurf digitaler Filter

16. Abschätzung Arbeitsaufwand:
Präsenzzzeit: 56 h
Selbststudium/Nacharbeitszeit: 124 h
Gesamt: 180 h
17. Prüfungsnummer/n und -name: 17131 Entwurf digitaler Filter (PL), Schriftlich oder Mündlich, 90 Min., Gewichtung: 1
Schriftliche Prüfung (90 Min.), Prüfung wird zwei mal im Jahr angeboten. Bei geringer Hörerzahl kann die Prüfung mündlich sein, dies wird am Anfang der Vorlesung bekanntgegeben. Im Fall einer mündlichen Prüfung kann dies auch eine mündliche Gruppenprüfung (max. 3 zu prüfende Personen pro Gruppe, ca. 15 Min. pro zu prüfender Person) sein.

<table>
<thead>
<tr>
<th>18. Grundlage für ... :</th>
</tr>
</thead>
<tbody>
<tr>
<td>19. Medienform:</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
</tr>
</tbody>
</table>
Modul: 17170 Elektrische Antriebe

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>051010013</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Modulduer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Jörg Roth-Stielow</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Jörg Roth-Stielow</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester**
 - → Ergänzungsmodul: Schwerpunkt: Technische Informatik
 - → Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
 - → Wahlfächer: Schwerpunkt: Automatisierungs- und Regelungstechnik
 - → Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
 - → Wahlfächer: Schwerpunkt: Elektrische Energiesysteme
 - → Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
 - → Ergänzungsmodul: Schwerpunkt: Mikro- und Optoelektronik
 - → Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
 - → Ergänzungsmodul: Schwerpunkt: Elektromobilität
 - → Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
 - → Wahlfächer: Schwerpunkt: Elektromobilität
 - → Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
 - → Ergänzungsmodul: Schwerpunkt: Kommunikationssysteme und Signalverarbeitung
 - → Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
 - → Wahlfächer: Schwerpunkt: Mikro- und Optoelektronik
 - → Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
 - → Wahlfächer: Schwerpunkt: Elektrotechnische Systeme
 - → Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
 - → Wahlfächer: Schwerpunkt: Kommunikationssysteme und Signalverarbeitung
 - → Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
 - → Wahlfächer: Schwerpunkt: Technische Informatik
 - → Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
Ergänzungsmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte

11. Empfohlene Voraussetzungen:
• Kenntnisse vergleichbar "Einführung in die Elektrotechnik I"

12. Lernziele:
Studierende...
• ...kennen den Aufbau, die Komponenten und die Auslegungskriterien von geregelten elektrischen Antrieben.
• ...können mechanische Antriebsstränge eines elektromechanischen Antriebssystems mathematisch beschreiben und einfache Aufgabenstellungen lösen.
• ...können leistungselektronische Stellglieder eines elektromechanischen Antriebssystems mathematisch beschreiben und einfache Aufgabenstellungen lösen.
• ...können elektrische Maschinen eines elektromechanischen Antriebssystems mathematisch beschreiben und einfache Aufgabenstellungen lösen.

13. Inhalt:
• Grundlagen der Antriebstechnik
• Elektronische Stellglieder
• Gleichstrommaschine
• Drehfeldmaschinen

14. Literatur:
• Kremser, Andreas: Elektrische Maschinen und Antriebe, B. G. Teubner, Stuttgart, 2004
• Schröder, Dierk: Elektrische Antriebe 2, Springer, Berlin, 1995
• Heumann, K.: Grundlagen der Leistungselektronik, B. G. Teubner, Stuttgart, 1989

15. Lehrveranstaltungen und -formen:
• 171701 Vorlesung Elektrische Antriebe
• 171702 Übung Elektrische Antriebe

16. Abschätzung Arbeitsaufwand:
Frontalvorlesung

17. Prüfungsnummer/n und -name:
17171 Elektrische Antriebe (PL), Schriftlich, 120 Min., Gewichtung: 1
Klausur (120 min., 2x pro Jahr)

18. Grundlage für ...:

19. Medienform:
Tafel, Folien, Beamer

20. Angeboten von:
Leistungselektronik und Regelungstechnik
Modul: 25940 Verstärkertechnik I+II

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050200013</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>Zweisemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Manfred Berroth</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Markus Grözing</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester**
 → Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester**
 → Ergänzungsmodul --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester**
 → Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester**
 → Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester**
 → Ergänzungsmodul --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester**
 → Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester**
 → Ergänzungsmodul --> Schwerpunkt: Technische Informatik --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester**
 → Ergänzungsmodul --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester**
 → Ergänzungsmodul --> Schwerpunkt: Elektromobilität --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester**
 → Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester**
 → Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester**
 → Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester**
11. Empfohlene Voraussetzungen:
Grundkenntnisse in Elektrotechnik,
Grundkenntnisse in Schaltungstechnik
Grundkenntnisse von elektronischen Bauelementen

12. Lernziele:
Die Studierenden verfügen über vertiefte Kenntnisse im Bereich analoge integrierte Schaltungen und integrierte Hochfrequenzschaltungen. Die Studierenden sind in der Lage, solche Schaltungen selbständig zu analysieren und zu entwerfen.

13. Inhalt:
- Analogie Grundschaltungen
- Stromspiegel
- Innerer Aufbau von Operationsverstärkern
- Anwendung von Operationsverstärkern
- Rauscharme Verstärker
- Oszillatoren
- Frequenzumsetzung
- Leistungsverstärker

14. Literatur:
- Zusatzblätter zum Selbststudium
- Aufgaben zur Selbstbearbeitung

Bücher:
- B. Razavi: RF Microelectronics, Prentice Hall, 1997

15. Lehrveranstaltungen und -formen:
- 259401 Vorlesung Verstärkertechnik I
- 259402 Vorlesung Verstärkertechnik II

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 56 h
Selbststudium: 124 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
- 25941 Verstärkertechnik I (PL), Schriftlich, 60 Min., Gewichtung: 1
- 25942 Verstärkertechnik II (PL), Schriftlich, 60 Min., Gewichtung: 1

18. Grundlage für ...

19. Medienform:
Tafel, Beamer

20. Angeboten von:
Elektrische und Optische Nachrichtentechnik
Modul: 29310 Regenerative Energiesysteme

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>5</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Stefan Tenbohlen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Stefan Tenbohlen, Silke Wieprecht, Harald Drück, Andreas Rettenmeier, Albert Ruprecht, Günter Scheffknecht</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
- Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte
- Vorlesung Regenerative Energiesysteme --> Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
- Ergänzungsmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
- Vorlesung Regenerative Energiesysteme --> Ergänzungsmodule --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
- Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
- Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
- Ergänzungsmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
- Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
- Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
- Vorlesung Regenerative Energiesysteme --> Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester

→ Vorlesung Regenerative Energiesysteme
 → Ergänzungsmodule --> Schwerpunkt: Technische Informatik
 → Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester

→ Vorlesung Regenerative Energiesysteme
 → Ergänzungsmodule --> Schwerpunkt: Mikro- und Optoelektronik
 → Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester

→ Vorlesung Regenerative Energiesysteme
 → Ergänzungsmodule --> Schwerpunkt: Elektromobilität
 → Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester

→ Ergänzungsmodule --> Schwerpunkt: Automatisierungs- und Regelungstechnik
→ Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester

→ Vorlesung Regenerative Energiesysteme
 → Wahlfächer --> Schwerpunkt: Elektromobilität
 → Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester

→ Vorlesung Regenerative Energiesysteme
 → Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme
 → Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester

→ Ergänzungsmodule --> Schwerpunkt: Elektromobilität
→ Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester

→ Vorlesung Regenerative Energiesysteme
 → Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik
 → Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester

→ Vorlesung Regenerative Energiesysteme
 → Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme
 → Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester

→ Vorlesung Regenerative Energiesysteme
 → Ergänzungsmodule --> Schwerpunkt: Automatisierungs- und Regelungstechnik
 → Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester

→ Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik
→ Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester

→ Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme
→ Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester

→ Vorlesung Regenerative Energiesysteme
 → Wahlfächer --> Schwerpunkt: Technische Informatik
 → Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
→ Vorlesung Regenerative Energiesysteme -->
Ergänzungsmodul --> Schwerpunkt: Elektrische
Energiesysteme --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5.
Semester
→ Ergänzungsmodul --> Schwerpunkt:
Kommunikationssysteme und Signalverarbeitung -->
Schwerpunkte

11. Empfohlene Voraussetzungen:

12. Lernziele:
Die Veranstaltung gibt eine Einführung in Erneuerbaren Energien.

Die Studierenden sind anschließend in der Lage:

• die Bedeutung und die Potenziale verschiedener Erneuerbarer
 Energien (Solarthermie, Windenergie, Wasserkraft, Biomasse)
 quantitativ einzuschätzen,
• Berechnungen des Energieertrags und des Wirkungsgrades
 durchzuführen,
• Erneuerbarer Energien in unterschiedliche Energieanwendungen
 und ins Energiesystem einzuordnen

13. Inhalt:

• Energiedaten, Umwelt- u. Klimaschutz und erneuerbare
 Energien, persönlicher Energieverbrauch, Globale Kreisläufe
 und -bilanzen
• Solarenergie, Potentiale der Solarenergienutzung
• Solarthermie
• Windenergie
• Wasserkraft, Meeresströmungs- und Wellenergie
• Therme Nutzung von Biomasse, Biotreibstoffe

14. Literatur:
• V. Quaschning, Regenerative Energiesysteme, 6. Aufl., Hanser
 ergänzendes Skriptum und online-Materialien

15. Lehrveranstaltungen und -formen:
• 293102 Übung Regenerative Energiesysteme
• 29310 Vorlesung Regenerative Energiesysteme

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 70 Stunden
Selbststudium: 110 Stunden
Summe: 180 Stunden

17. Prüfungsnummer/n und -name:
29311 Regenerative Energiesysteme (PL), Schriftlich, 90 Min.,
Gewichtung: 1

18. Grundlage für ...

19. Medienform:
PowerPoint, Tafel

20. Angeboten von:
Energieübertragung und Hochspannungstechnik
Modul: 41170 Speichertechnik für elektrische Energie I

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050513050</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Kai Peter Birke</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Kai Peter Birke</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester**
 - **Ergänzungsmodule -> Schwerpunkt: Technische Informatik**
 - **Schwerpunkte**
- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester**
 - **Wahlfächer --> Schwerpunkt: Technische Informatik**
 - **Schwerpunkte**
- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester**
 - **Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik**
 - **Schwerpunkte**
- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester**
 - **Wahlfächer --> Schwerpunkt: Technische Informatik**
 - **Schwerpunkte**
- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester**
 - **Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik**
 - **Schwerpunkte**
- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester**
 - **Wahlfächer --> Schwerpunkt: Technische Informatik**
 - **Schwerpunkte**
- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester**
 - **Ergänzungsmodule --> Schwerpunkt: Elektrische Energiesysteme**
 - **Schwerpunkte**
11. Empfohlene Voraussetzungen:

12. Lernziele: Die Studierenden lernen die Speichertechniken für elektrische Energie kennen.

13. Inhalt: Aufbau und Funktionsweise von:
• Elektrischen Speichern (Spule, supraleitende Spule, Kondensator, Doppelschichtkondensator)
• Elektromechanischen Speichern (Schwungrad, Gas, Wasser)
Charakterisierung der Speicher anhand charakteristischer Größen wie:
• Energieinhalt
• Leistung (dynamisch/stationär)
• Kosten
• Betriebssicherheit
Überblick über die wichtigsten Messverfahren
Einführung in Ersatzschaltbilder und Modellierung

15. Lehrveranstaltungen und -formen:
• 411702 Übung Speicher für Elektrische Energie
• 411701 Vorlesung Speicher für Elektrische Energie

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 56 h
Selbststudium: ca. 124 h
Summe: 180h

17. Prüfungsnummer/n und -name:
41171 Speichertechnik für elektrische Energie (PL), Schriftlich, 90 Min., Gewichtung: 1

18. Grundlage für ...

19. Medienform: Beamer, Tafel

20. Angeboten von: Elektrische Energiespeichersysteme
Modul: 69050 Technologien und Methoden der Softwaresysteme I

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050501002</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Michael Weyrich</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Michael Weyrich</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016**,
 → Ergänzungsmodule --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011**,
 → Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016**,
 → Ergänzungsmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011**,
 → Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011**,
 → Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte
- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011**,
 → Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011**,
 → Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016**,
 → Kernmodule --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011**,
 → Schwerpunkt: Technische Informatik --> Schwerpunkte
- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016**,
 → Kernmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte
- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011**,
 → Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011**,
 → Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte
- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016**,
 → Ergänzungsmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte

11. Empfohlene Voraussetzungen:

- Grundlagen der Softwaretechnik

12. Lernziele:

- Studierende besitzen Kenntnisse über Anforderungsanalyse. Sie hinterfragen Systemanalysen, erstellen Softwareentwürfe und wenden gängige Softwaretestverfahren an.
- Studierende praktizieren Projektplanung und nutzen Softwareentwicklungswerkzeuge.

13. Inhalt:

- Grundbegriffe der Softwaretechnik, Softwareentwicklungsprozesse und Vorgehensmodelle, Requirements Engineering, Systemanalyse, Softwareentwurf, Implementierung,
14. Literatur:

Vorlesungsskript,
Ian Sommerville: Software Engineering, 10. Ausgabe, 2016,
Wiegers, K.: Software-Requirements, Microsoft Press, 2005
Meyer, Bertrand, Nordio, Martin (Eds.): Software Engineering,
2015, Springer, ISBN 978-3-319-28406-4
Christof Ebert: Systematisches Requirements Engineering:
Anforderungen ermitteln, dokumentieren, analysieren und
Robert C. Martin: Clean Code - Refactoring, Patterns, Testen
978-3826655487
Vorlesungsportal mit Vorlesungsaufzeichnung auf http://
www.ias.uni-stuttgart.de/st1/

15. Lehrveranstaltungen und -formen:

• 690501 Vorlesung Technologien und Methoden der
 Softwaresysteme I
• 690502 Übung Technologien und Methoden der Softwaresysteme I

16. Abschätzung Arbeitsaufwand:

 Präsenzzeit: 56 h
 Selbststudium: ca. 124 h

17. Prüfungsnummer/n und -name:

• 69051 Technologien und Methoden der Softwaresysteme I (PL),
 Schriftlich, 120 Min., Gewichtung: 1
• 69052 Technologien und Methoden der Softwaresysteme I (USL),
 Sonstige, Gewichtung: 1
Erfolgreiche Bearbeitung eines Kleinprojekts während des
Semesters

18. Grundlage für ...

19. Medienform:

20. Angeboten von:

Automatisierungstechnik und Softwaresysteme
350 Schwerpunkt: Mikro- und Optoelektronik

Zugeordnete Module:

11590 Photovoltaik I
11670 Grundlagen integrierter Schaltungen
11700 Halbleitertechnik I
11710 Optoelectronics I
11720 Halbleitertechnologie I
11730 Flachbildschirme
351 Wahlfächer
Modul: 11590 Photovoltaik I

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Dr. Jürgen Heinz Werner

9. Dozenten: Jürgen Heinz Werner

10. Zuordnung zum Curriculum in diesem Studiengang:

| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester |

Stand: 09. April 2018

Seite 324 von 554
11. Empfohlene Voraussetzungen:
Grundkenntnisse über Halbleitermaterialien und Halbleiterdioden,
z.B. aus Mikroelektronik I

12. Lernziele:
Die Studierenden kennen
- das Potential der Sonnenstrahlung
- die Funktionsweise von Solarzellen
- die wichtigsten Technologien der Herstellung von Solarmodulen
- die Grundprinzipien von Wechselrichtern
- die Energieerträge verschiedener Photovoltaik-Technologien
- den aktuellen Stand des Photovoltaikmarktes und der Kosten von Photovoltaik-Strom

13. Inhalt:
- Der Photovoltaische Effekt (Zelle, Modul, Anlage)
- Solarstrahlung und Energieumsatz in Deutschland
- Grundprinzip und Kenngrößen von Solarzellen
- Ersatzschaltbilder von Solarzellen
- Maximaler Wirkungsgrad
- Photovoltaik-Materialien und -Technologien
- Modultechnik
- Photovoltaische Systemtechnik
- (Jahres-) Energieerträge von Photovoltaiksystemen

14. Literatur:
• Goetzberger, Voß, Knobloch, Sonnenenergie: Photovoltaik, Teubner, 1994
• P. Würfel, Physik der Solarzellen, Spektrum, 1995
• M. A. Green, Solar Cells - Operating Principles, Technology and System Applications, Centre for Photovoltaic Devices and Systems, Sydney, 1986
• F. Staiß, Photovoltaik - Technik, Potentiale und Perspektiven der solaren Stromerzeugung, Vieweg, 1996

15. Lehrveranstaltungen und -formen:
• 115901 Vorlesung Photovoltaik I
• 115902 Übungen Photovoltaik I

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 56 h
Selbststudium/Nacharbeitszeit: 142 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
11591 Photovoltaik I (PL), Schriftlich, 90 Min., Gewichtung: 1

18. Grundlage für … :
Photovoltaik II

19. Medienform:
Powerpoint, Tafel

20. Angeboten von:
Physikalische Elektronik
Modul: 11670 Grundlagen integrierter Schaltungen

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Manfred Berroth

9. Dozenten: Manfred Berroth

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016,</th>
<th>Ergänzungsmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011,</td>
<td>Vorgezogene Master-Module</td>
</tr>
<tr>
<td>Kernmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte</td>
<td></td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester</td>
<td>Kernmodule --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte</td>
</tr>
<tr>
<td>Kernmodule --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte</td>
<td></td>
</tr>
<tr>
<td>Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte</td>
<td></td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</td>
<td>Schwerpunkt: Technische Informatik --> Schwerpunkte</td>
</tr>
<tr>
<td>Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte</td>
<td></td>
</tr>
<tr>
<td>Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte</td>
<td></td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester</td>
<td>Ergänzungsmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte</td>
</tr>
<tr>
<td>Ergänzungsmodul --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte</td>
<td></td>
</tr>
<tr>
<td>Kernmodule --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte</td>
<td></td>
</tr>
<tr>
<td>Kernmodule --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte</td>
<td></td>
</tr>
</tbody>
</table>
11. Empfohlene Voraussetzungen: Kenntnisse in Schaltungstechnik
Kenntnisse in höherer Mathematik

12. Lernziele: Die Studierenden besitzen Grundkenntnisse über integrierte
Schaltungen der Digitaltechnik basierend auf Silizium-MOSFETs

13. Inhalt:
- Bauelemente der Digitaltechnik
- Digitale Grundschaltungen
- CMOS-Logikschaltungen
- Schaltwerke

14. Literatur:
- Vorlesungsskript,
- Klar: Integrierte Digitale Schaltungen MOS/BICMOS, Springer-
Verlag, Berlin, 1996
- Hoffmann: VLSI-Entwurf - Modelle und Schaltungen, Oldenbourg
Verlag, München, 1998
- Gray, Meyer: Analysis and Design of Analog Integrated Circuits,
John Wiley und Sons, NY, 1993
- Geiger, Allen, Strader: VLSI-Design Techniques for Analog and
- Rabaey: Digital Integrated Circuits - A Design Perspective,
Prentice-Hall, NJ, 1996

15. Lehrveranstaltungen und -formen:
- 116701 Vorlesung Grundlagen Integrierter Schaltungen
- 116702 Übung Grundlagen Integrierter Schaltungen

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 56 h
Selbststudium: 124 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name: 11671 Grundlagen integrierter Schaltungen (PL), Schriftlich, 90 Min.,
Gewichtung: 1

18. Grundlage für ...

19. Medienform: Tafel, Beamer

20. Angeboten von: Elektrische und Optische Nachrichtentechnik
Modul: 11700 Halbleitertechnik I

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050500002</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Jörg Schulze</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Jörg Schulze</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 - Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 - Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 - Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 - Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 - Ergänzungsmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 - Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 - Ergänzungsmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 - Ergänzungsmodule --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 - Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 - Ergänzungsmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 - Ergänzungsmodule --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 - Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 - Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
11. Empfohlene Voraussetzungen: Empfohlen werden Kenntnisse, wie Sie beispielsweise
in Mikroelektronik (ME) und Halbleitertechnologie:
Prozesstechnologie (HLT I) vermittelt werden.

12. Lernziele: Die Studierenden besitzen die Kenntnis und das Verständnis
der mathematisch-physikalischen Grundlagen der Bauelement-
Modellierung, kennen die ideale und die reale Funktionsweise und
den Aufbau diverser Halbleiterdioden und haben ein umfassendes
Verständnis vom Aufbau und vom idealen/ realem Verhalten
eines Bipolar- und eines Heterobipolartransistors. Darüber hinaus
kennen sie die prinzipielle Funktionsweise von Thyristoren und
haben erste Grundkenntnisse von der Funktionsweise von
Leistungs bipolartransistoren mit isoliertem Gate und von BiCMOS-
Schaltungen (BiCMOS: Schaltungstechnik, bei der Bipolar- und
Feldeffektkransistoren mit einander kombiniert werden). Außerdem
kennen sie die prinzipiellen Herstellungsprozessabläufe moderner
Bipolar- und BiCMOS-Prozesse.

13. Inhalt: Die Vorlesung Halbleitertechnik: Bipolartechnik (HL I) bildet
zusammen mit der Vorlesung Halbleitertechnik: Nano-CMOS-Ära
(HL II) den Halbleitertechnik-Zyklus des IHT. Die Vorlesung wird
doches zweite Semester immer im Wintersemester angeboten.
Die folgenden Inhalte werden besprochen:
• Beschreibung eines psn-Übergangs im thermodynamischen
 Gleichgewicht (Raumladungszonen, Poisson-Gleichung,
 Depletion-Näherung und Built-in-Spannung),
• Beschreibung eines psn-Übergangs im Nicht-
 Gleichgewicht (I-U-Charakteristik des idealen pn-
 Übergangs, Rekombinationsmechanismen in pn-
 Übergängen, I-U-Charakteristik des realen pn-Übergangs,
 Durchbruchmechanismen in pn-Übergängen),
• Dioden-Spezialformen: Schottky-Diode und Ohmscher Kontakt,
 Z-Dioden (Zener-Diode und Avalanche-Diode), IMPATT-Diode
 (Impact-Ionization-Avalanche-Transit-Time-Diode), Gunn-Diode,
 Uni-Tunneldiode, Esaki-Tunneldiode, Shockley-Diode, DIAC
 (Diode for Alternating Current),
• Aufbau und Funktionsweise von Bipolar- und
 Heterobipolartransistoren: Ideales und reales Verhalten und
 Hochfrequenzbetrieb,
• Thyristor und lichtgezündeter Thyristor, TRIAC (Triode for
 Alternating Current).

Als Ausblick wird zum Schluss der Vorlesung auf
Leistungs bipolartransistoren mit isoliertem Gate wie dem Gate-
Turn-Off-Thyristor (GTO-Thyristor) und dem Insulated Gate Bipolar
Transistor (IGBT) und auf BiCMOS-Schaltungen eingegangen.

14. Literatur:
• Chang: ULSI Devices, Wiley, 2000
• Hoffmann: Systemintegration, Oldenbourg, 2003
• Linder: Power Semiconductors, CRC Press, 2006
• Löcherer: Halbleiterbauelemente, Teubner, 1992
• Lutz: Halbleiter-Leistungsbaulemente, Springer, 2006
• Ng: Complete Guide to Semiconductor Devices, Wiley, 2002
• Razavi: Microelectronics, Wiley, 2015
• Roulsten: An Introduction to the Physics of Semiconductor
 Devices, Oxford University Press, 1999
• Schaumburg: Halbleiter, Teubner, 1991
15. Lehrveranstaltungen und -formen:

- 117001 Vorlesung Halbleitertechnik 1
- 117002 Übung Halbleitertechnik 1

16. Abschätzung Arbeitsaufwand:

Gesamtaufwand: 180 h
Dabei:
- 45 h (2 SWS Vorlesung + 2 SWS Übung) Präsenz
- 135 h Selbststudium

17. Prüfungsnummer/n und -name:

11701 Halbleitertechnik I (PL), Schriftlich, 90 Min., Gewichtung: 1

19. Medienform:

- PowerPoint-Präsentationen zu den einzelnen Kapiteln (Beamer)
- Aufzeichnungen während der Vorlesungen (Notizen, Rechnungen, Skizzen u. ä.) mit Hilfe eines Tablet-PCs (Beamer)
- Lehrbriefe zu den einzelnen Themenschwerpunkten
- Ausgedrucktes Skript mit sämtlichen Vorlesungs- und Übungsfolien, Übungsblättern und Lehrbriefen (zum Selbstkostenpreis erhältlich)
- Vorlesungsaufzeichnungen im MPG4-Format mittels Tablet-PCs und Head-Set
- Sämtliche Unterlagen werden elektronisch über ILIAS zum Download bereitgestellt.

20. Angeboten von:

Halbleitertechnik
Modul: 11710 Optoelectronics I

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050513001</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Jürgen Heinz Werner</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Jürgen Heinz Werner</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, (\rightarrow) Kernmodule --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, (\rightarrow) Ergänzungsmodule --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester (\rightarrow) Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester (\rightarrow) Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 6. Semester (\rightarrow) Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester (\rightarrow) Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester (\rightarrow) Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester (\rightarrow) Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 6. Semester (\rightarrow) Ergänzungsmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 6. Semester (\rightarrow) Ergänzungsmodule --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte</td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen:
12. Lernziele: The students know
- the fundamentals of incoherent and coherent radiation
- the generation of radiation by light emitting diodes and semiconductor laser diodes
- the transport of radiation via glass fibers and its detection using photodetectors

13. Inhalt:
- Basics of incoherent and coherent radiation
- Semiconductor basics
- Excitation and recombination processes in semiconductors
- Light emitting diodes
- Semiconductor lasers
- Glass fibers
- Photodetectors

14. Literatur:
- W. Bludau, Halbleiteroptoelektronik: Die physikalischen Grundlagen der LEDs, Diodenlaser und pn-Photodioden (Carl Hanser, München, 1995).
- W. L. Leigh, Devices for Optoelectronics (Dekker, New York, 1996).

15. Lehrveranstaltungen und -formen:
- 117102 Übung Optoelectronics I
- 117101 Vorlesung Optoelectronics I

16. Abschätzung Arbeitsaufwand:
Presence time: 56 h
Self studies: 124 h
Total: 180 h

17. Prüfungsnummer/n und -name:
11711 Optoelectronics I (PL), Schriftlich oder Mündlich, 120 Min., Gewichtung: 1
- group presentation in seminar (60 min, once per year) written exam (60 min, twice per year)

18. Grundlage für ... :

19. Medienform:
- Powerpoint, blackboard

20. Angeboten von:
Physikalische Elektronik
Modul: 11720 Halbleitertechnologie I

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
</tr>
<tr>
<td>→ Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
</tr>
<tr>
<td>→ Ergänzungsmodule --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
</tr>
<tr>
<td>→ Ergänzungsmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
</tr>
<tr>
<td>→ Ergänzungsmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
</tr>
<tr>
<td>→ Ergänzungsmodule --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte</td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen: Empfohlen werden Kenntnisse, wie Sie beispielsweise in Mikroelektronik (ME) vermittelt werden.
12. Lernziele:

13. Inhalt:
• Einführung in die Silizium-basierte Halbleitertechnologie,
• Technologische Grundlagen (Prozessparameter und grundlegende Technologieprozesse),
• Substrat- und Waferherstellung (CZ-Wafer, FZ-Wafer und Silicon-On-Insulator-Wafer),
• Lithographie (optische Lithographie und alternative Verfahren) und Strukturierungsmethoden (nasschemisch, trockenchemisch und physikalisch-chemisch),
• Dotiermethoden: Epitaxie, Diffusion und Ionenimplantation,
• Herstellung und Strukturierung von Isolatorschichten (Standardelektrika, Low-k-, Medium-k- und high-k-Dielektrika) und Planarisierungsmethoden,
• Herstellung und Strukturierung metallischer Schichten.

Als Ausblick wird zum Schluss der Vorlesung auf die Aufbau- und Verbindungstechnik eingegangen und exemplarische Herstellungsprozesse unterschiedlicher mikroelektronischer Bauelemente werden diskutiert.

14. Literatur:
• Beneking: Halbleitertechnologie, Eine Einführung in die Prozesstechnik von Silizium und III-V Verbindungen, Teubner Verlag, 1984
• Chan, Sze: ULSI-Technology, Mc Graw Hill, 1996
• Hattori (Ed.): Ultraclean Surface Processing of Silicon Wafers, Springer, 1998
• Hilleringmann: Silizium-Halbleitertechnologie, Teubner Verlag, 1996
• v. Münch: Einführung in die Halbleitertechnologie, Teubner Verlag, 1993
• Nijs (Ed.): Advanced Silicon and Semiconducting Silicon-Alloy Based Materials and Devices, Institute of Physics Publishing, 1994
• Schulze: Konzepte Silizium-basierter MOS-Bauelemente, Springer, 2005
• Siffert, Krimmel (Ed.): Silicon - Evolution and Future of a Technology, Springer, 2004

15. Lehrveranstaltungen und -formen:
• 117201 Vorlesung Halbleitertechnologie 1
• 117202 Übung Halbleitertechnologie 1

16. Abschätzung Arbeitsaufwand:
Gesamtaufwand: 180 h
Dabei:
• 45 h (2 SWS Vorlesung + 2 SWS Übung) Präsenz
• 135 h Selbststudium

17. Prüfungsnummer/n und -name:
11721 Halbleitertechnologie I (PL), Schriftlich, 90 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform:
• PowerPoint-Präsentationen zu den einzelnen Kapiteln (Beamer)
• Aufzeichnungen während der Vorlesungen (Notizen, Rechnungen, Skizzen u. ä.) mit Hilfe eines Tablet-PCs (Beamer)
• Lehrbriefe zu den einzelnen Themenschwerpunkten
• Ausgedrucktes Skript mit sämtlichen Vorlesungs- und Übungsfolien, Übungsbüchern und Lehrbriefen (zum Selbstkostenpreis erhältlich)
• Vorlesungsaufzeichnungen im MPG4-Format mittels Tablet-PCs und Head-Set
• Sämtliche Unterlagen werden elektronisch über ILIAS zum Download bereitgestellt.

20. Angeboten von: Halbleitertechnik
Modul: 11730 Flachbildschirme

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>051620001</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Nesrine Kammoun</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Norbert Frühauf</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester**
 - Wahlfächer -- Schwerpunkt: Elektrotechnische Systeme -- Schwerpunkte
 - Wahlfächer -- Schwerpunkt: Technische Informatik -- Schwerpunkte
 - Wahlfächer -- Schwerpunkt: Automatisierungs- und Regelungstechnik -- Schwerpunkte
 - Ergänzungsmodul -- Schwerpunkt: Technische Informatik -- Schwerpunkte
 - Wahlfächer -- Schwerpunkt: Elektrische Energiesysteme -- Schwerpunkte
 - Wahlfächer -- Schwerpunkt: Kommunikationssysteme und Signalverarbeitung -- Schwerpunkte
 - Ergänzungsmodul -- Schwerpunkt: Kommunikationssysteme und Signalverarbeitung -- Schwerpunkte
 - Ergänzungsmodul -- Schwerpunkt: Automatisierungs- und Regelungstechnik -- Schwerpunkte
 - Schwerpunkt: Mikro- und Optoelektronik -- Schwerpunkte
 - Ergänzungsmodul -- Schwerpunkt: Elektromobilität -- Schwerpunkte
 - Ergänzungsmodul -- Schwerpunkt: Elektrische Energiesysteme -- Schwerpunkte
 - Wahlfächer -- Schwerpunkt: Elektromobilität -- Schwerpunkte
 - Ergänzungsmodul -- Schwerpunkt: Elektromobilität -- Schwerpunkte
 - Wahlfächer -- Schwerpunkt: Elektrische Energiesysteme -- Schwerpunkte

Stand: 09. April 2018 Seite 336 von 554
Kernmodule --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte

11. Empfohlene Voraussetzungen:

12. Lernziele: Die Studierenden
 • kennen die in Flachbildschirmen eingesetzten elektrooptischen Effekte und die zugehörigen Ansteuerverfahren
 • können grundlegende Dimensionierungen von Flüssigkristallbildschirmen vornehmen
 • kennen Verfahren zur elektro-optischen Charakterisierung von Bildschirmen und können wesentliche Leistungsparameter wie Kontrast und Farbort berechnen

13. Inhalt:
 • Einsatzgebiete der Flachbildschirmtechnik
 • Physiologie des menschlichen Sehens
 • Farbdarstellung (Tri-Stimulus Theorie)
 • Elektro-optische Eigenschaften von Flüssigkristallen
 • Organische Lichtemittierende Dioden
 • Elektrophoretische Medien
 • Sonstige Elektro-optische Effekte
 • Plasmabildschirme
 • Passiv- und Aktiv-Matrix Ansteuerverfahren
 • Ansteuerschaltungen
 • Herstellungsverfahren
 • Charakterisierung von Flachbildschirmen

14. Literatur:
 • E. Lueder - Liquid Crystal Displays, Wiley, 2001

15. Lehrveranstaltungen und -formen:
 • 117301 Vorlesung Flachbildschirme
 • 117302 Übung Flachbildschirme

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 56 h
 Selbststudium/Nacharbeitszeit: 124 h
 Gesamt: 180 h

17. Prüfungsnummer/n und -name:
 11731 Flachbildschirme (PL), Schriftlich oder Mündlich, 90 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform:
 Tafel, Projektor, Beamer, ILIAS

20. Angeboten von:
 Bildschirmtechnik
351 Wahlfächer

Zugeordnete Module:	11540 Regelungstechnik I
	11550 Leistungselektronik I
	11560 Elektrische Energienetze I
	11570 Hochspannungstechnik I
	11580 Elektrische Maschinen I
	11610 Technische Informatik I
	11620 Automatisierungstechnik I
	11640 Digitale Signalverarbeitung
	11650 Hochfrequenztechnik I
	11660 Übertragungstechnik I
	11680 Kommunikationsnetze I
	11690 Hochfrequenztechnik II
	11740 Elektromagnetische Verträglichkeit
	11750 Numerische Feldberechnung I
	12420 Windenergie I - Grundlagen Windenergie
	13590 Kraftfahrzeuge I + II
	14130 Kraftfahrzeugmechatronik I + II
	17110 Entwurf digitaler Systeme
	17130 Entwurf digitaler Filter
	17170 Elektrische Antriebe
	25940 Verstärkertechnik I+II
	29310 Regenerative Energiesysteme
	41170 Speichertechnik für elektrische Energie I
	69050 Technologien und Methoden der Softwaresysteme I
Modul: 11540 Regelungstechnik I

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Jörg Roth-Stielow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Jörg Roth-Stielow</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester**
 - → Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
 - → Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
 - → Wahlfächer --> Schwerpunkt: Elektronische Energiesysteme --> Schwerpunkte
 - → Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
 - → Ergänzungsmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte
 - → Kernmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
 - → Kernmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte
- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester**
 - → Ergänzungsmodule --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
 - → Kernmodule --> Schwerpunkt: Elektronische Energiesysteme --> Schwerpunkte
 - → Kernmodule --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
11. Empfohlene Voraussetzungen:
Kenntnisse vergleichbar...
...Höhere Mathematik I, II, III
...Experimentalphysik
...Grundlagen der Elektrotechnik
...Elektrische Energietechnik
...Signale und Systeme
...Schaltungstechnik

12. Lernziele:
Studierende...

• ...können eine Regelstrecke modellieren und kennen die wichtigsten Regelsysteme.
• ...können diese Anordnungen mathematisch beschreiben, hinsichtlich ihrer Stabilität beurteilen und Aufgabenstellungen lösen.

13. Inhalt:
• Beschreibung von Übertragungsstrecken
• Stabilität von Regelsystemen
• Herkömmliche Regelsysteme
• Regelsysteme mit Rückführung eines vollständigen Satzes von Zustandsvariablen
• Echtes Integralverhalten
• Beobachter
• Systemführung nach dem Prinzip unterlagerter Schleifen
• Systeme mit einem Wechsel der Regelgröße

14. Literatur:
• Lunze, Jan: Regelungstechnik 1, Springer, Berlin, 1999
• Unbehauen, H.: Regelungstechnik 1, Vieweg, Braunschweig, 1989
• Leonhard, W.: Einführung in die Regelungstechnik, Vieweg, Braunschweig, 1992

15. Lehrveranstaltungen und -formen:
• 115401 Vorlesung Regelungstechnik I
• 115402 Übung Regelungstechnik I

16. Abschätzung Arbeitsaufwand:
Frontalvorlesung

17. Prüfungsnummer/n und -name:
11541 Regelungstechnik I (PL), Schriftlich, 120 Min., Gewichtung: 1
Klausur (120 min., 2x pro Jahr)

18. Grundlage für ...
Regelungstechnik II

19. Medienform:
Tafel, Folien, Beamer

20. Angeboten von:
Leistungselektronik und Regelungstechnik
Modul: 11550 Leistungselektronik I

2. Modulkürzel: 051010011
5. Modulduauer: Einsemestrig
3. Leistungspunkte: 6 LP
6. Turnus: Wintersemester
4. SWS: 4
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Jörg Roth-Stielow
9. Dozenten: Jörg Roth-Stielow
10. Zuordnung zum Curriculum in diesem Studiengang:

| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester |
| → Wahlfächer: Schwerpunkt: Technische Informatik |
| → Schwerpunkte |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester |
| → Schwerpunkt: Elektrotechnische Systeme |
| → Schwerpunkte |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester |
| → Wahlfächer: Elektromobilität |
| → Schwerpunkte |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester |
| → Schwerpunkt: Elektrische Energiesysteme |
| → Schwerpunkte |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester |
| → Ergänzungsmodule: Mikro- und Optoelektronik |
| → Schwerpunkte |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester |
| → Kernmodule: Elektromobilität |
| → Schwerpunkte |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester |
| → Wahlfächer: Mikro- und Optoelektronik |
| → Schwerpunkte |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester |
| → Ergänzungsmodule: Elektromobilität |
| → Schwerpunkte |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester |
| → Ergänzungsmodule: Kommunikationssysteme und Signalverarbeitung |
| → Schwerpunkte |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester |
| → Kernmodule: Automatisierungs- und Regelungstechnik |
| → Schwerpunkte |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester |
| → Wahlfächer: Kommunikationssysteme und Signalverarbeitung |
| → Schwerpunkte |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester |
| → Schwerpunkt: Automatisierungs- und Regelungstechnik |
| → Schwerpunkte |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester |
| → Kernmodule: Elektrische Energiesysteme |
| → Schwerpunkte |
11. Empfohlene Voraussetzungen:
Kenntnisse vergleichbar Elektrische Energietechnik I
Kenntnisse vergleichbar Elektrische Energietechnik II

12. Lernziele:
Studierende...

- ...kennen die wichtigsten potentialverbindenden und potentialtrennenden Schaltungen der Leistungselektronik mit abschaltbaren Ventilen und die zugehörigen Modulationsverfahren.
- ...können diese Anordnungen mathematisch beschreiben und Aufgabenstellungen lösen.
- ...kennen die grundlegenden Prinzipien der Meßverfahren für Mischströme.

13. Inhalt:
- Abschaltbare Leistungshalbleiter
- Schaltungstopologien potentialverbindender Stellglieder
- Schaltungstopologien potentialtrennender Gleichstromsteller
- Modulationsverfahren
- Strommeßtechnik in der Leistungselektronik

14. Literatur:

15. Lehrveranstaltungen und -formen:
- 115501 Vorlesung Leistungselektronik I
- 115502 Übung Leistungselektronik I

16. Abschätzung Arbeitsaufwand:
Frontalvorlesung

17. Prüfungsnummer/n und -name:
11551 Leistungselektronik I (PL), Schriftlich, 120 Min., Gewichtung: 1 Klausur (120 min., 2x pro Jahr)

18. Grundlage für ...

19. Medienform:
Tafel, Folien, Beamer

20. Angeboten von:
Leistungselektronik und Regelungstechnik
Modul: 11560 Elektrische Energienetze I

| 4. SWS: | 4 | 7. Sprache: | Deutsch |

| 8. Modulverantwortlicher: | Univ.-Prof. Dr.-Ing. Stefan Tenbohlen |
| 9. Dozenten: | Stefan Tenbohlen |

10. Zuordnung zum Curriculum in diesem Studiengang:

| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester |
| → Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester |
| → Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester |
| → Ergänzungsmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester |
| → Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester |
| → Kernmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester |
| → Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester |
| → Ergänzungsmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester |
| → Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester |
| → Ergänzungsmodule --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester |
| → Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester |
| → Ergänzungsmodule --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester |
| → Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester |
→ Ergänzungsmodule --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte

<table>
<thead>
<tr>
<th>11. Empfohlene Voraussetzungen:</th>
<th>• Elektrische Energietechnik</th>
</tr>
</thead>
</table>
| 13. Inhalt: | • Aufgaben des elektrischen Energienetzes, Smart Grids
• Einpolige Ersatzschaltungen der Betriebselemente für symmetrische Betriebsweise
• Berechnung von Energieübertragungsanlagen und -netzen
• Betrieb elektrischer Energieversorgungsnetze
• Kurzschlussströme bei symmetrischem Kurzschluss
• Symmetrische Komponenten |
• Heuck, Dettmann: Elektrische Energieversorgung Vieweg, Braunschweig/Wiesbaden, 6. Aufl., 2005
• Schwab: Elektroenergiesysteme, Springer-Verlag, 1. Aufl., 2006 |
| 15. Lehrveranstaltungen und -formen: | • 115601 Vorlesung Elektrische Energienetze 1
• 115602 Übung Elektrische Energienetze 1 |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 56 h
Selbststudium/Nacharbeitszeit: 124 h
Gesamt: 180 h |
| 17. Prüfungsnummer/n und -name: | 11561 Elektrische Energienetze I (PL), Schriftlich, 120 Min., Gewichtung: 1 |
| 18. Grundlage für ... : | Elektrische Energienetze II |
| 19. Medienform: | PowerPoint, Tafelanschrieb |
| 20. Angeboten von: | Energieübertragung und Hochspannungstechnik |
Modul: 11570 Hochspannungstechnik I

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050310003</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Stefan Tenbohlen</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Stefan Tenbohlen</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester**
 - Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte
 - Ergänzungsmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte
 - Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
 - Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
 - Ergänzungsmodule --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
 - Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte
 - Ergänzungsmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte
 - Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte
 - Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
 - Ergänzungsmodule --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
 - Kernmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
| 11. Empfohlene Voraussetzungen: | • Elektrische Energietechnik |
| 13. Inhalt: | • Auftreten und Anwendung hoher Spannungen bzw. Ströme
 • Einführung in die Hochspannungsversuchstechnik
 • Berechnung elektrischer Felder
 • Grundlagen der Hochspannungsisoliertechnik
 • Isolierstoffsysteme in Hochspannungsgeräten |
 • Beyer, Boeck, Möller, Zaengl: Hochspannungstechnik Springer-Verlag, Berlin, 1986
 • Kind, Feser: Hochspannungs-Versuchstechnik Vieweg, Braunschweig, 1995
 • Kind, Kärner: Hochspannungs-Isoliertechnik Vieweg, Braunschweig, 1982 |
| 15. Lehrveranstaltungen und -formen: | • 115702 Übung Hochspannungstechnik 1
 • 115701 Vorlesung Hochspannungstechnik 1 |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 56 h
Selbststudium/Nacharbeitszeit: 124 h
Gesamt: 180 h |
| 17. Prüfungsnummer/n und -name: | 11571 Hochspannungstechnik I (PL), Schriftlich, 120 Min., Gewichtung: 1 |
| 19. Medienform: | PowerPoint, Tafelanschrieb |
| 20. Angeboten von: | Energieübertragung und Hochspannungstechnik |
Modul: 11580 Elektrische Maschinen I

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Nejila Parspour</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Nejila Parspour</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
- Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
- Ergänzungsmodule --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
- Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
- Ergänzungsmodule --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
- Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
- Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
- Kernmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
- Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
- Ergänzungsmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
- Kernmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
- Ergänzungsmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
11. Empfohlene Voraussetzungen:

12. Lernziele:

Studierende können magnetische Kreise analysieren und berechnen. Sie kennen den Aufbau und die Funktionsweise von Drehfeldmaschinen. Sie haben grundlegende Kenntnisse im Bereich der Steuerung und Modellierung von Drehfeldmaschinen.

13. Inhalt:

- Magnetismus und Grundlagen der magnetischen Kreise (Energie, Reluktanzkraft)
- Antriebstechnische Zusammenhänge
- Verluste in elektrischen Maschinen
- Berechnung von magnetischen Luftspaltfeldern von einfachen Wickelschemata in Drehfeldmaschinen
- Behandelte Maschinentypen:

 1) **Reluktanzmaschine** : Aufbau und Funktion, Ersatzschaltbilder, Energiefluss, Kennlinien, Bauformen und Einsatzgebiete

 2) **Synchronmaschine** : Aufbau und Funktion, Ersatzschaltbilder, Energiefluss, mathematische Zusammenhänge, Kennlinien, vollständiges Ersatzschaltbild, Drehzahlstellverfahren, Brems- und Anlaufverfahren, Bauformen und Einsatzgebiete

 3) **Asynchronmaschine** : Aufbau und Funktion, Ersatzschaltbilder, Energiefluss, mathematische Zusammenhänge, Kennlinien, Drehzahlstellverfahren, Brems- und Anlaufverfahren, Bauformen und Einsatzgebiete

14. Literatur:

15. Lehrveranstaltungen und -formen:

- 115801 Vorlesung Elektrische Maschinen I
- 115802 Übung Elektrische Maschinen I

16. Abschätzung Arbeitsaufwand:

 Präsenzzeit: 56 h
 Selbststudium/Nacharbeitszeit: 124 h
 Summe: 180 h

17. Prüfungsnummer/n und -name:

- 11581 Elektrische Maschinen I (PL), Schriftlich, 120 Min., Gewichtung: 1
| 18. Grundlage für ... : | Elektrische Maschinen II |
| 19. Medienform: | Beamer, Tafel, ILIAS |
| 20. Angeboten von: | Elektrische Energiewandlung |
Modul: 11610 Technische Informatik I

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Andreas Kirstädter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Andreas Kirstädter, Matthias Meyer</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011,
- Zusatzmodule
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 - Kernmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 - Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 - Schwerpunkt: Technische Informatik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 - Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 - Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 - Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 - Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 - Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 - Ergänzungsmodule --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 - Ergänzungsmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 - Ergänzungsmodule --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
11. Empfohlene Voraussetzungen:
Kenntnisse, wie sie in den Modulen Grundlagen der Programmierung sowie Grundlagen der Informationsverarbeitung vermittelt werden.

12. Lernziele:
Der Studierende kann Schaltungen auf der Register-Transfer-Ebene entwerfen, Mikroprogrammierung anwenden, kennt Konzepte und Mechanismen von Betriebssystemen und versteht den Aufbau von Rechnersystemen einschließlich der Ein- und Ausgabemechanismen.

13. Inhalt:
- Einfache Einadressmaschine, Elemente und Mechanismen der Register-Transfer-Ebene
- Prozessorbaugruppen und Mikroprogrammierung
- Grundkonzepte von CISC-Prozessoren
- Grundkonzepte und Mechanismen von Betriebssystemen
- Aufbau von Rechnersystemen einschl. Ein-/Ausgabe

14. Literatur:

15. Lehrveranstaltungen und -formen:
- 116102 Übung zu Technische Informatik I
- 116101 Vorlesung Technische Informatik I

16. Abschätzung Arbeitsaufwand:
Vorlesung, Übungen und Selbststudium

17. Prüfungsnummer/n und -name:
11611 Technische Informatik I (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ...:

19. Medienform:
- Vortrag mit Folien
- Tafelanschriebe

20. Angeboten von:
Kommunikationsnetze und Rechnersysteme
Modul: 11620 Automatisierungstechnik I

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050501003</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Michael Weyrich</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Michael Weyrich</td>
</tr>
<tr>
<td>10. Zuordnung zum Curriculum in diesem Studiengang:</td>
<td></td>
</tr>
</tbody>
</table>

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
→ Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
→ Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
→ Zusatzmodule
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
→ Ergänzungsmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
→ Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
→ Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
→ Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
→ Ergänzungsmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
→ Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
→ Ergänzungsmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
→ Kernmodule --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
→ Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
→ Ergänzungsmodule --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
11. Empfohlene Voraussetzungen:

- Grundlagen der Elektrotechnik, Informatik und Mathematik

12. Lernziele:

Die Studierenden

- besitzen grundlegende Kenntnisse über rechnerbasierte Automatisierungssysteme
- setzen sich mit Kommunikationssystemen der Automatisierungstechnik aus
- wenden grundlegende Methoden und Verfahren der Echtzeit-Programmierung an
- lernen spezifische Programmiersprachen der Automatisierungstechnik kennen

13. Inhalt:

- Grundlegende Begriffe der Automatisierungstechnik
- Automatisierungs-Gerätesysteme und -strukturen
- Prozessperipherie – Schnittstellen zwischen dem Automatisierungscomputersystem und dem technischen Prozess (Prozesssignalerfassung und -überwachung)
- Grundlagen zu Kommunikationssystemen in der Automatisierungstechnik (Feldbussysteme, drahtlose Kommunikation)
- Grundlagen der Echtzeitprogrammierung (Synchronre und Asynchronre Programmierung, Scheduling-Algorithmen, Synchronisationskonzepte)
- Programmiersprachen für die Automatisierungstechnik (Programmierung von Speicherprogrammierbaren und pneumatischen Steuerungen)

14. Literatur:

- Vorlesungsskript
- Lauber, Göhner: Prozessautomatisierung Band 1 (3. Auflage), Springer, 1999
- Früh, Maier: Handbuch der Prozessautomatisierung (3. Auflage) Oldenbourg Industrieverlag, 2004
- Wellenreuther Automatisieren mit SPS (3. Auflage), Vieweg, 2005
- Materialien und Vorlesungsaufzeichnungen im ILIAS

15. Lehrveranstaltungen und -formen:

- 116201 Vorlesung Automatisierungstechnik I
- 116202 Übung Automatisierungstechnik I

16. Abschätzung Arbeitsaufwand:

- Präsenzzeit: 56 h
- Selbststudium: 124 h
- Gesamt: 180 h

17. Prüfungsnummer/n und -name:

- 11621 Automatisierungstechnik I (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ...:

- Automatisierungstechnik II

19. Medienform:

- Beamerpräsentation mit Aufzeichnung der Vorlesungen und Übungen

20. Angeboten von:

- Automatisierungstechnik und Softwaresysteme
Modul: 11640 Digitale Signalverarbeitung

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Bin Yang</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Bin Yang</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10. Zuordnung zum Curriculum in diesem Studiengang:</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
</tr>
<tr>
<td>→ Kernmodule --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
</tr>
<tr>
<td>→ Schwerpunkt: Technische Informatik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
</tr>
<tr>
<td>→ Ergänzungsmodule --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
</tr>
<tr>
<td>→ Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
</tr>
<tr>
<td>→ Ergänzungsmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
</tr>
<tr>
<td>→ Kernmodule --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
</tr>
<tr>
<td>→ Ergänzungsmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
</tr>
<tr>
<td>→ Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
</tr>
<tr>
<td>→ Kernmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte</td>
</tr>
</tbody>
</table>
11. Empfohlene Voraussetzungen: Grundkenntnisse in höherer Mathematik
Grundkenntnisse über Signale und Systeme

12. Lernziele: Die Studierenden

- beherrschen die grundlegenden Methoden zur digitalen
 Signalverarbeitung,
- besitzen die notwendigen Grundfertigkeiten zur Analyse von
 zeitdiskreten Signalen und Systemen,
- können einfache Signale und Systeme selbstständig
 analysieren,
- können einfache Signalverarbeitungsaufgaben selbstständig
 lösen.

13. Inhalt:

- A/D- und D/A-Umwandlung, Abtastung, Quantisierung
- Zeitdiskrete Signale und Systeme, Analyse von LTI-Systemen im
 Zeitbereich, Differenzengleichung
- Analyse von Signalen und LTI-Systemen in der komplexen
 Ebene, z-Transformation, Übertragungsfunktion, Pole und
 Nullstellen
- Analyse von Signalen und LTI-Systemen im Frequenzbereich
- Digitale Filter, FIR und IIR, Tiefpass, Hochpass, Bandpass,
 Oszillator, Kerbfilter, Kammlfilter, linearpulsige Filter, Allpass,
 minimalphasige Filter
- Korrelationsanalyse, Auto- und Kreuzkorrelation, Auto- und
 Kreuzkorrelationsfunktion
- Diskrete Fourier-Transformation, schnelle Fourier-
 Transformation (FFT), schnelle Faltung
- Spektralanalyse, Periodogramm, Fenstereffekt, Zeit-Frequenz-
 Analyse, Spektrogramm

14. Literatur:

- Vorlesungsunterlagen, Videoaufzeichnung der Vorlesung
- A. V. Oppenheim und R. W. Schafer, "Zeitdiskrete
 Signalverarbeitung", Oldenburg, 1999
- J. Proakis and D. G. Manolakis: Digital signal processing,
 Prentice-Hall, 1996
- M. Mandal and A. Asif, "Continuous and discrete time signals
 and systems", Cambridge, 2008

15. Lehrveranstaltungen und -formen:

- 116401 Vorlesung Digitale Signalverarbeitung
- 116402 Übung Digitale Signalverarbeitung

16. Abschätzung Arbeitsaufwand:

| Präsenzzeit: 56 h |
| Selbststudium: 124 h |
| Gesamt: 180 h |

17. Prüfungsnummer/n und -name:

11641 Digitale Signalverarbeitung (PL), Schriftlich, 90 Min.,
Gewichtung: 1

18. Grundlage für ... :

19. Medienform:

Laptop, Beamer, Videoaufzeichnung aller Vorlesungen und
Übungen

20. Angeboten von:

Netzwerk- und Systemtheorie
Modul: 11650 Hochfrequenztechnik I

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050600001</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Jan Hesselbarth</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Jan Hesselbarth</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester**
 - Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik
 - Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme
 - Wahlfächer --> Schwerpunkt: Technische Informatik
 - Wahlfächer --> Schwerpunkt: Elektromobilität
 - Wahlfächer --> Schwerpunkt: Elektromobilität
 - Wahlfächer --> Schwerpunkt: Technische Informatik
 - Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik
 - Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester**
 - Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik
 - Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme
 - Wahlfächer --> Schwerpunkt: Technische Informatik
 - Wahlfächer --> Schwerpunkt: Elektromobilität
 - Wahlfächer --> Schwerpunkt: Technische Informatik
 - Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik
 - Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester**
 - Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme
 - Wahlfächer --> Schwerpunkt: Technische Informatik
 - Wahlfächer --> Schwerpunkt: Elektromobilität
 - Wahlfächer --> Schwerpunkt: Technische Informatik
 - Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik
 - Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester**
 - Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme
 - Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik
 - Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik
 - Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik
 - Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik
11. Empfohlene Voraussetzungen:

13. Inhalt: Maxwell'sche Gleichungen, ebene Welle im freien Raum, Leitungswellen, konzentrierte Bauelemente, Resonanzschaltungen, Transformationsschaltungen, Hochfrequenzfilter

14. Literatur:
- Vorlesungsskript,
- Detlefsen, Siart: Grundlagen der Hochfrequenztechnik, 3. Auflage, Oldenbourg Verlag, 2009,

15. Lehrveranstaltungen und -formen: 116501 Vorlesung Hochfrequenztechnik I 116502 Übung Hochfrequenztechnik I

17. Prüfungsnummer/n und -name: 11651 Hochfrequenztechnik I (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ...: Hochfrequenztechnik II

19. Medienform: Tafel, Beamer, Projektor, ILIAS

20. Angeboten von: Hochfrequenztechnik
Modul: 11660 Übertragungstechnik I

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher:
Univ.-Prof. Dr. Stephan ten Brink

9. Dozenten:
Stephan Brink

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester

→ Ergänzungsmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester

→ Ergänzungsmodule --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester

→ Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester

→ Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester

→ Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester

→ Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester

→ Zusatzmodule

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester

→ Ergänzungsmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester

→ Kernmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester

→ Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester

→ Ergänzungsmodule --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester

→ Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester

→ Schwerpunkt: Technische Informatik --> Schwerpunkte
11. Empfohlene Voraussetzungen: Grundlagen der Elektrotechnik

14. Literatur:
 - Vorlesungsbegleitendes Material, Übungsaufgaben
 - Kammeyer, K. D.: Nachrichtenübertragung. Verlag Teubner, Stuttgart
 - Weitere Literaturangaben im vorlesungsbegleitenden Material.

15. Lehrveranstaltungen und -formen:
 - 116602 Übungen Übertragungstechnik I
 - 116601 Vorlesung Übertragungstechnik I

17. Prüfungsnummer/n und -name: 11661 Übertragungstechnik I (PL), Schriftlich oder Mündlich, 120 Min., Gewichtung: 1

18. Grundlage für ...

20. Angeboten von: Nachrichtenübertragung
Modul: 11680 Kommunikationsnetze I

2. Modulkürzel: 050901005
5. Modulduauer: Einsemestrig

3. Leistungspunkte: 6 LP
6. Turnus: Wintersemester

4. SWS: 4
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Andreas Kirstädter

9. Dozenten: Andreas Kirstädter

10. Zuordnung zum Curriculum in diesem Studiengang:

 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 → Kernmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Zusatzmodule
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 → Ergänzungsmodul --> Schwerpunkt: Elektromobilität --> Schwerpunkte
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 → Ergänzungsmodul --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 → Kernmodule --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Schwerpunkt: Technische Informatik --> Schwerpunkte
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 → Ergänzungsmodul --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
11. Empfohlene Voraussetzungen:
- Kenntnisse, wie sie in den Modulen Informatik I und Informatik II vermittelt werden

12. Lernziele:
Verstehen der grundlegenden Architekturprinzipien von Kommunikationsnetzen mit Beispielen aus den Bereichen der Mobilfunknetze, Local Area Networks, Automatisierungsnetze und des Internet, Kenntnis von Aufbau und Funktion ausgewählter Systeme, Protokolle und Dienste. Anwenden der Methoden zur formalen Beschreibung und Bewertung von Kommunikationsnetzen.

13. Inhalt:
Grundprinzipien von Kommunikationsnetzen und -protokollen:
- Übertragung und Multiplextechniken
- Fehlersicherung
- Medienzugriff
- Vermittlung
- Wegesuche
- Transportprotokolle

Spezifikation mit Hilfe der Specification and Description Language (SDL)
Bewertung der Leistungsfähigkeit von Kommunikationsprotokollen
Ausgewählte Dienste und Anwendungen im Internet
Für nähere Informationen, aktuelle Ankündigungen und Material siehe http://www.ikr.uni-stuttgart.de/Xref/CC/L_CN_I

14. Literatur:
- Skript zur Vorlesung
- Kurose, Ross: Computer Networking, Addison-Wesley, 2009

15. Lehrveranstaltungen und -formen:
- 116802 Übung zu Kommunikationsnetze I
- 116801 Vorlesung Kommunikationsnetze I

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 56 h
Selbststudium: 124 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
11681 Kommunikationsnetze I (PL), Schriftlich oder Mündlich, 120 Min., Gewichtung: 1

18. Grundlage für ... :
Praktische Übungen im Labor Rechnerarchitektur und Kommunikationssysteme I Communication Networks II

19. Medienform:
Notebook-Präsentation

20. Angeboten von:
Kommunikationsnetze und Rechnersysteme
Modul: 11690 Hochfrequenztechnik II

2. Modulkürzel: 050600002

<table>
<thead>
<tr>
<th>3. Leistungspunkte:</th>
<th>6 LP</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
</tbody>
</table>

5. Moduldauer: Einsemestrig

<table>
<thead>
<tr>
<th>6. Turnus:</th>
<th>Sommersemester</th>
</tr>
</thead>
<tbody>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. Modulverantwortlicher:</th>
<th>Univ.-Prof. Dr. Jan Hesselbarth</th>
</tr>
</thead>
<tbody>
<tr>
<td>9. Dozenten:</td>
<td>Jan Hesselbarth</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10. Zuordnung zum Curriculum in diesem Studiengang:</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, Zusatzmodule</td>
</tr>
<tr>
<td>→ Ergänzungsmodul: Schwerpunkt: Elektromobilität --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, Ergänzungsmodul: Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester</td>
</tr>
<tr>
<td>→ Wahlfächer: Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester</td>
</tr>
<tr>
<td>→ Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 6. Semester</td>
</tr>
<tr>
<td>→ Ergänzungsmodul: Schwerpunkt: Technische Informatik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester</td>
</tr>
<tr>
<td>→ Wahlfächer: Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester</td>
</tr>
<tr>
<td>→ Wahlfächer: Schwerpunkt: Technische Informatik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester</td>
</tr>
<tr>
<td>→ Wahlfächer: Schwerpunkt: Elektromobilität --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 6. Semester</td>
</tr>
<tr>
<td>→ Ergänzungsmodul: Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester</td>
</tr>
<tr>
<td>→ Wahlfächer: Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester</td>
</tr>
<tr>
<td>→ Wahlfächer: Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte</td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen:

Grundlagen der Nachrichtentechnik
Grundlagend der Hochfrequenztechnik

15. Lehrveranstaltungen und -formen: • 116901 Vorlesung Antennas • 116902 Übung Antennas

17. Prüfungsnummer/n und -name: 11691 Hochfrequenztechnik II (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform: Tafel, Beamer, Projektor, ILIAS

20. Angeboten von: Hochfrequenztechnik
Modul: 11740 Elektromagnetische Verträglichkeit

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050310006</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Stefan Tenbohlen</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Stefan Tenbohlen, Daniel Schneider</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
 - Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte
 - Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
 - Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte

- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
 - Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte

- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
 - Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte

- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
 - Ergänzungsmodule --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte

- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
 - Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte

- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
 - Ergänzungsmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte

- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
 - Ergänzungsmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte

- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
 - Ergänzungsmodule --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte

- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
 - Ergänzungsmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester

→ Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte

11. Empfohlene Voraussetzungen: Grundlagen der Elektrotechnik

12. Lernziele:

Studierender hat Kenntnisse der Messverfahren und Messausführungen der Elektromagnetischen Verträglichkeit. Er kennt praktische Abhilfemaßnahmen zur Beherrschung der EMV-Problematik und die Besonderheiten in der Automobil-EMV

13. Inhalt:

- Einführung
- Begriffsbestimmungen
- EMV-Umgebung
- Allgemeine Maßnahmen zur Sicherstellung der EMV
- Aktive Schutzmaßnahmen
- Nachweis der EMV (Messverfahren, Messumgebung)
- Einwirkung elektromagnetischer Felder auf biologische Systeme
- EMV im Automobilbereich

14. Literatur:

- Schwab, Adolf J.: Elektromagnetische Verträglichkeit Springer Verlag, 1996
- Habiger, Ernst: Elektromagnetische Verträglichkeit Hüthig Verlag, 3. Aufl., 1998
- Gonschorek, K.-H.: EMV für Geräteentwickler und Systemintegratoren Springer Verlag, 2005
- Wiesinger, J. u.a.: EMV-Blitzschutz von elektrischen und elektronischen Systemen in baulichen Anlagen VDE-Verlag, Oktober 2004

15. Lehrveranstaltungen und -formen:

- 117401 Vorlesung Elektromagnetische Verträglichkeit
- 117402 Übung Elektromagnetische Verträglichkeit

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 56 h
Selbststudium/Nacharbeitszeit: 124 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name: 11741 Elektromagnetische Verträglichkeit (PL), Schriftlich, 90 Min., Gewichtung: 1

18. Grundlage für ...

19. Medienform: PowerPoint, Tafelanschrieb

20. Angeboten von: Energieübertragung und Hochspannungstechnik
Modul: 11750 Numerische Feldberechnung I

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Prof. Dr. Wolfgang Rucker

<table>
<thead>
<tr>
<th>9. Dozenten:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>10. Zuordnung zum Curriculum in diesem Studiengang:</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</td>
</tr>
<tr>
<td>→ Wahlfächer → Schwerpunkt: Technische Informatik → Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester</td>
</tr>
<tr>
<td>→ Ergänzungsmodul → Schwerpunkt: Elektrische Energiesysteme → Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester</td>
</tr>
<tr>
<td>→ Ergänzungsmodul → Schwerpunkt: Elektromobilität → Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester</td>
</tr>
<tr>
<td>→ Ergänzungsmodul → Schwerpunkt: Mikro- und Optoelektronik → Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</td>
</tr>
<tr>
<td>→ Zusatzmodule</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</td>
</tr>
<tr>
<td>→ Wahlfächer → Schwerpunkt: Elektromobilität → Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester</td>
</tr>
<tr>
<td>→ Ergänzungsmodul → Schwerpunkt: Technische Informatik → Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</td>
</tr>
<tr>
<td>→ Wahlfächer → Schwerpunkt: Automatisierungs- und Regelungstechnik → Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester</td>
</tr>
<tr>
<td>→ Ergänzungsmodul → Schwerpunkt: Automatisierungs- und Regelungstechnik → Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester</td>
</tr>
<tr>
<td>→ Ergänzungsmodul → Schwerpunkt: Kommunikationssysteme und Signalverarbeitung → Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</td>
</tr>
<tr>
<td>→ Schwerpunkt: Elektrotechnische Systeme → Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</td>
</tr>
<tr>
<td>→ Wahlfächer → Schwerpunkt: Mikro- und Optoelektronik → Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</td>
</tr>
<tr>
<td>→ Wahlfächer → Schwerpunkt: Elektrische Energiesysteme → Schwerpunkte</td>
</tr>
</tbody>
</table>

12. Lernziele: Die Studierenden:
 • besitzen die Grundkenntnisse der wichtigsten numerischen Verfahren zur Modellierung und Simulation von Feldproblemen in der Elektrotechnik,
 • beherrschen den Einsatz von Simulationswerkzeugen.

13. Inhalt:
 • Grundlagen der numerischen Simulation elektromagnetischer Felder
 • Allgemeiner Ablauf einer numerischen Simulation, Simulationssoftware
 • Methode der finiten Elemente (FEM)
 • Ausgangsbeziehung der FEM für Potenzialprobleme
 • Geometriemodellierung
 • Erstellung und Lösung des FE-Gleichungssystems
 • FE-Formulierungen von elektromagnetischen Feldproblemen
 • Methode der Randelemente (BEM)
 • Randintegraldarstellung, Randintegralgleichung
 • Erstellung und Lösung des BE-Gleichungssystems
 • BE-Formulierung von Elektrodenproblemen

14. Literatur:

15. Lehrveranstaltungen und -formen:
 • 117501 Vorlesung Numerische Feldberechnung I
 • 117502 Übung Numerische Feldberechnung I

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 56 h
 Selbststudium: 124 h
 Gesamt: 180 h

17. Prüfungsnummer/n und -name: 11751 Numerische Feldberechnung I (PL), Mündlich, 45 Min., Gewichtung: 1

18. Grundlage für ...

19. Medienform: Tafel, Beamer

20. Angeboten von: Elektrotechnik bionischer Systeme
Modul: 12420 Windenergie 1 - Grundlagen Windenergie

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>060320011</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Modulduer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Po Wen Cheng</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester → Ergänzungsmodul --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester → Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester → Ergänzungsmodul --> Schwerpunkt: Elektromobilität --> Schwerpunkte</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester → Ergänzungsmodul --> Schwerpunkt: Technische Informatik --> Schwerpunkte</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester → Ergänzungsmodul --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte</td>
</tr>
</tbody>
</table>
11. Empfohlene Voraussetzungen: Technische Mechanik I

12. Lernziele:
• Die Studierenden erlangen Kenntnisse über die Grundlagen der Windenergie, insbesondere über die physikalischen und technischen Prinzipien bei modernen Windenergieanlagen.
• Die Studierenden sind dabei in der Lage einfache physikalische Grundgleichungen und Zusammenhänge herzuleiten und ihre Bedeutung in Bezug auf die Nutzung von Windenergie zu verstehen sowie zu erklären.
• Ausgehend vom Verständnis der einzelnen Teildisziplinen (Aerodynamik, Strukturmechanik, Elektrotechnik etc.) können die Studierenden den Aufbau und die Funktionsweise des Gesamtsystems Windenergieanlage erläutern und auf ausgewählten Gebieten elementare Auslegungs- und Entwurfsberechnungen durchführen.
• Nach Abschluss der Lehrveranstaltung haben die Studierenden die wesentlichen Kompetenzen aufgebaut, die sie befähigen sich in Spezialgebiete im Bereich Windenergie (Komponentenauslegung, Modellierung und Simulation, Windparkplanung etc.) einzuarbeiten.

13. Inhalt:
• Vorlesung
• Übung und Versuch
 Es werden 8 Hörsaalübungen sowie ein Hochlaufversuch im Böenwindkanal angeboten.

14. Literatur:
• lecture notes
• R. Gasch und J. Twele, Windkraftanlagen

15. Lehrveranstaltungen und -formen:
• 124202 Übung Windenergienutzung I
• 124201 Vorlesung Windenergienutzung I

16. Abschätzung Arbeitsaufwand:
• Vorlesung:
 Präsenzzeit 28 Stunden, Selbststudium 62 Stunden
• Übung:
 Präsenzzeit 8 Stunden, Selbststudium 74 Stunden
• Windkanalversuch:
 Präsenzzeit 3 Stunden, Versuchsauswertung 5 Stunden

Summe: 180 Stunden

17. Prüfungsnummer/n und -name:
12421 Windenergie 1 - Grundlagen Windenergie (PL), Schriftlich, 90 Min., Gewichtung: 1
Das Versuchsprotokoll des Windkanalversuchs während des Semesters ist Voraussetzung für die Teilnahme an der Prüfung.
Die Prüfung umfasst einen Fragenteil (20 min) und einen Rechenteil (70 min).

<table>
<thead>
<tr>
<th>18. Grundlage für ...</th>
<th>Windenergie 3 - Entwurf von Windenergieanlagen Windenergie 4 - Windenergie-Projekt</th>
</tr>
</thead>
<tbody>
<tr>
<td>19. Medienform:</td>
<td>PowerPoint, Tafelanschrieb, Versuchsdurchführungen</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Windenergie</td>
</tr>
</tbody>
</table>
Modul: 13590 Kraftfahrzeuge I + II

2. Modulkürzel: 070800001
3. Leistungspunkte: 6 LP
4. SWS: 4
5. Moduldaurer: Einsemestrig
6. Turnus: Wintersemester
7. Sprache: Deutsch
8. Modulverantwortlicher: Nils Widdecke
9. Dozenten: Jochen Wiedemann, Nils Widdecke
10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Schwerpunkt: Elektromobilität --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 → Ergänzungsmodul --> Schwerpunkt: Technische Informatik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 → Ergänzungsmodul --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Zusatzmodule
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 → Ergänzungsmodul --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 → Ergänzungsmodul --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 → Kernmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
11. Empfohlene Voraussetzungen: Kenntnisse aus den Fachsemestern 1 bis 4

14. Literatur:
 - Wiedemann, J.: Kraftfahrzeuge I+II, Vorlesungsumdruck,
 - Reimpell, J.: Fahrwerkstechnik: Grundlagen, Vogel-Fachbuchverlag, 2005

15. Lehrveranstaltungen und -formen:
 - 135901 Vorlesung Kraftfahrzeuge I + II
 - 135902 Übung Kraftfahrzeuge I + II

16. Abschätzung Arbeitsaufwand: Vorlesung, Selbststudium

17. Prüfungsnummer/n und -name: 13591 Kraftfahrzeuge I + II (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform: PPT-Präsentation

20. Angeboten von: Kraftfahrwesen
Modul: 14130 Kraftfahrzeugmechatronik I + II

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

|---------------------------|---|

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016,</th>
<th>→ Ergänzungsmodule --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>→ Schwerepunkt: Elektromobilität --> Schwerpunkte</td>
<td></td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
<td></td>
</tr>
<tr>
<td>→ Schwerepunkt: Elektromobilität --> Schwerpunkte</td>
<td></td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
<td></td>
</tr>
<tr>
<td>→ Ergänzungsmodule --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte</td>
<td></td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
<td></td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte</td>
<td></td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
<td></td>
</tr>
<tr>
<td>→ Ergänzungsmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte</td>
<td></td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
<td></td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte</td>
<td></td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
<td></td>
</tr>
<tr>
<td>→ Ergänzungsmodule --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte</td>
<td></td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
<td></td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte</td>
<td></td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
<td></td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte</td>
<td></td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
<td></td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte</td>
<td></td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
<td></td>
</tr>
<tr>
<td>→ Zusatzmodule</td>
<td></td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
<td></td>
</tr>
<tr>
<td>→ Kernmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte</td>
<td></td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
<td></td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte</td>
<td></td>
</tr>
</tbody>
</table>
11. Empfohlene Voraussetzungen: Grundkenntnisse aus den Fachsemestern 1 bis 4

12. Lernziele:
Die Studenten kennen mechatronische Komponenten in Automobilen, können Funktionsweisen und Zusammenhänge erklären.
Die Studenten können Entwicklungsmethoden für mechatronische Komponenten im Automobil einordnen und anwenden. Wichtige Entwicklungswerkzeuge können sie nutzen.

13. Inhalt:
VL Kfz-Mech I:
- kraftfahrzeugspezifische Anforderungen an die Elektronik
- Bordnetz (Energiemanagement, Generator, Starter, Batterie, Licht)
- Motorelektronik (Zündung, Einspritzung)
- Getriebeelektronik
- Lenkung
- ABS, ASR, ESP, elektromechanische Bremse, Dämpfungsregelung, Reifendrucküberwachung
- Sicherheitssysteme (Airbag, Gurt, Alarmanlage, Wegfahrsperre)
- Komfortsysteme (Tempomat, Abstandsregelung, Klimaanlage)

VL Kfz-Mech II:
- Grundlagen mechatronischer Systeme (Steuerung/Regelung, diskrete Systeme, Echtzeitsysteme, eingebettete Systeme, vernetzte Systeme)
- Systemarchitektur und Fahrzeugentwicklungsprozesse
- Kernprozess zur Entwicklung von mechatronischen Systemen und Software (Schwerpunkt V-Modell)

Laborübungen Kraftfahrzeugmechatronik
- Rapid Prototyping (Simulink)
- Modellbasierte Funktionsentwicklung mit TargetLink
- Elektronik

14. Literatur:
Vorlesungsumdruck: "Kraftfahrzeugmechatronik I" (Reuss)

15. Lehrveranstaltungen und -formen:
- 141303 Laborübungen Kraftfahrzeugmechatronik
- 141301 Vorlesung Kraftfahrzeugmechatronik I
- 141302 Vorlesung Kraftfahrzeugmechatronik II

16. Abschätzung Arbeitsaufwand:
Vorlesung, Laborübungen, Selbststudium

17. Prüfungsnummer/n und -name:
14131 Kraftfahrzeugmechatronik I + II (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform:
Vorlesung (Beamer), Laborübungen (am PC, betreute Zweiergruppen)

20. Angeboten von:
Kraftfahrzeugmechatronik
Modul: 17110 Entwurf digitaler Systeme

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Andreas Kirstädter
9. Dozenten: Matthias Meyer

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
- Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
- Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
- Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
- Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
- Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
- Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
- Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
- Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
- Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
- Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
- Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
11. Empfohlene Voraussetzungen: Kenntnisse, wie sie beispielsweise im Modul Informatik II vermittelt werden

12. Lernziele: Der Studierende kann digitale Systeme entwerfen, simulieren und testen, beherrscht die Hardware-Beschreibungssprache VHDL, kennt die physikalischen Randbedingungen beim Aufbau moderner digitaler Schaltungen.

13. Inhalt:

- Entwurfsprozesse und Modularisierung
- Modellierung digitaler Systeme mit VHDL (Grundlegende Konzepte von VHDL, Verhaltens- und Strukturbeschreibung, Typkonzept, sequenzielle und nebenläufige Anweisungen, Prozeduren und Funktionen, Signale, Bibliotheken)
- Realisierung digitaler Schaltungen (Spannungsversorgung, Übersprechen, Reflexionen und Busabschlüsse, Metastabilität, Realisierungsaspekte bei kombinatorischen und sequenziellen Netzwerken)
- Digitale Bauelemente (Programmierbare Logik, Speicherbausteine)

Für nähere Informationen, aktuelle Ankündigungen und Material siehe http://www.ikr.uni-stuttgart.de/Xref/CC/L_EDS

14. Literatur:

- Vorlesungsskript

15. Lehrveranstaltungen und -formen:

- 171101 Vorlesung Entwurf digitaler Systeme
- 171102 Übung Entwurf digitaler Systeme

16. Abschätzung Arbeitsaufwand:

- Präsenzzeit: 56 h
- Selbststudium: 124 h
- Gesamt: 180 h

17. Prüfungsnummer/n und -name:

- 171111 Entwurf digitaler Systeme (PL), Mündlich, 120 Min., Gewichtung: 1

18. Grundlage für ... :

Praktische Übungen im Labor Rechnerarchitektur und Kommunikationssysteme

19. Medienform:

Notebook-Präsentationen

20. Angeboten von:

Kommunikationsnetze und Rechnersysteme
Modul: 17130 Entwurf digitaler Filter

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>051610003</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>PD Dr.-Ing. Markus Gaida</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Markus Gaida</td>
</tr>
</tbody>
</table>

Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>Studiengang</th>
<th>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, Vorgezogene Master-Module</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester</td>
</tr>
<tr>
<td></td>
<td>Ergänzungsmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 6. Semester</td>
</tr>
<tr>
<td></td>
<td>Ergänzungsmodule --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --></td>
</tr>
<tr>
<td></td>
<td>Schwerpunkte</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 6. Semester</td>
</tr>
<tr>
<td></td>
<td>Ergänzungsmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester</td>
</tr>
<tr>
<td></td>
<td>Zusatzmodule</td>
</tr>
<tr>
<td></td>
<td>Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester</td>
</tr>
<tr>
<td></td>
<td>Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester</td>
</tr>
<tr>
<td></td>
<td>Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --></td>
</tr>
<tr>
<td></td>
<td>Schwerpunkte</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 6. Semester</td>
</tr>
<tr>
<td></td>
<td>Ergänzungsmodule --> Schwerpunkt: Automatisierungs- und Regelungstechnik --></td>
</tr>
<tr>
<td></td>
<td>Schwerpunkte</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 6. Semester</td>
</tr>
<tr>
<td></td>
<td>Ergänzungsmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester</td>
</tr>
<tr>
<td></td>
<td>Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester</td>
</tr>
<tr>
<td></td>
<td>Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte</td>
</tr>
</tbody>
</table>
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 6. Semester
→ Ergänzungsmodule --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester
→ Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte

11. Empfohlene Voraussetzungen:
Empfohlen werden Kenntnisse, wie sie beispielsweise in der Lehrveranstaltung Signale und Systeme vermittelt werden.

12. Lernziele:

13. Inhalt:
• Filter und Anwendungen, FIR- und IIR-Filter, Blockdiagramm und Signalfließgraph
• Entwurf von FIR-Filtern: linearphasige FIR-Filter, Fenster-Methode, Frequenzabtastmethode, Methode der kleinsten Quadrate, Remez-Algorithmus
• Entwurf von IIR-Filtern: analoge Referenzfilter (Butterworth, Tschebyscheff I und II, Cauer), Frequenztransformation, Methode der invarianten Impulsantwort, Bilineartransformation
• Struktur von FIR-Filtern (Direkt, Kaskade, Lattice), Struktur von IIR-Filtern (Direkt, Kaskade, Parallel, Lattice-Ladder), Levinson-Durbin-Rekursion, Schur-Cohen-Rekursion
• Quantisierungseffekte
• Zahlendarstellung, Fließkomma und Festkomma, Koeffizientenempfindlichkeit, Überlauf und Sättigung, Rundungsverfahren, Polgitter, Rundungsrauschen, Signal-zu-Rausch-Abstand, Grenzyklen
• Entwurf digitaler Filter mit MATLAB
• Abtastratenumsetzung, Dezimation, Interpolation

14. Literatur:
• Skript

15. Lehrveranstaltungen und -formen:
• 171301 Vorlesung Entwurf digitaler Filter
• 171302 Übung Entwurf digitaler Filter

16. Abschätzung Arbeitsaufwand:
Präsenzzzeit: 56 h
Selbststudium/Nacharbeitszeit: 124 h
Gesamt: 180 h
<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>17131 Entwurf digitaler Filter (PL), Schriftlich oder Mündlich, 90 Min., Gewichtung: 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Schriftliche Prüfung (90 Min.), Prüfung wird zwei mal im Jahr angeboten. Bei geringer Hörerzahl kann die Prüfung mündlich sein, dies wird am Anfang der Vorlesung bekanntgegeben. Im Fall einer mündlichen Prüfung kann dies auch eine mündliche Gruppenprüfung (max. 3 zu prüfende Personen pro Gruppe, ca. 15 Min. pro zu prüfender Person) sein.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>18. Grundlage für ... :</th>
</tr>
</thead>
</table>

| 19. Medienform: | Tafel, Projektor, Beamer, CIP-Pool |

| 20. Angeboten von: | Institutsverbund Elektrotechnik und Informationstechnik |
Modul: 17170 Elektrische Antriebe

| 4. SWS: | 4 | 7. Sprache: | Deutsch |

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Jörg Roth-Stielow

9. Dozenten: Jörg Roth-Stielow

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
- Ergänzungsmodule --> Schwerpunkt: Technische Informatik
 -- Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
 - Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
 - Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
 - Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
 - Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
 - Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
 - Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
 - Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
 - Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
 - Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
 - Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
 - Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
 - Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte
Ergänzungsmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte

11. Empfohlene Voraussetzungen:
 • Kenntnisse vergleichbar "Einführung in die Elektrotechnik I"

12. Lernziele:
 Studierende...
 • ...kennen den Aufbau, die Komponenten und die Auslegungskriterien von geregelten elektrischen Antrieben.
 • ...können mechanische Antriebsstränge eines elektromechanischen Antriebssystems mathematisch beschreiben und einfache Aufgabenstellungen lösen.
 • ...können leistungselektronische Stellglieder eines elektromechanischen Antriebssystems mathematisch beschreiben und einfache Aufgabenstellungen lösen.
 • ...können elektrische Maschinen eines elektromechanischen Antriebssystems mathematisch beschreiben und einfache Aufgabenstellungen lösen.

13. Inhalt:
 • Grundlagen der Antriebstechnik
 • Elektronische Stellglieder
 • Gleichstrommaschine
 • Drehfeldmaschinen

14. Literatur:
 • Kremser, Andreas: Elektrische Maschinen und Antriebe, B. G. Teubner, Stuttgart, 2004
 • Schröder, Dierk: Elektrische Antriebe 2, Springer, Berlin, 1995
 • Heumann, K.: Grundlagen der Leistungselektronik, B. G. Teubner, Stuttgart, 1989

15. Lehrveranstaltungen und -formen:
 • 171701 Vorlesung Elektrische Antriebe
 • 171702 Übung Elektrische Antriebe

16. Abschätzung Arbeitsaufwand:
 Frontalvorlesung

17. Prüfungsnummer/n und -name:
 17171 Elektrische Antriebe (PL), Schriftlich, 120 Min., Gewichtung: 1 Klausur (120 min., 2x pro Jahr)

18. Grundlage für ...

19. Medienform:
 Tafel, Folien, Beamer

20. Angeboten von:
 Leistungselektronik und Regelungstechnik
Modul: 25940 Verstärkertechnik I+II

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050200013</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Moduldaurer:</td>
<td>Zweisemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Manfred Berroth</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Markus Grözing</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester**
 - Wahlfächer -> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester**
 - Ergänzungsmodule --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester**
 - Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester**
 - Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester**
 - Ergänzungsmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester**
 - Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester**
 - Ergänzungsmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester**
 - Ergänzungsmodule --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester**
 - Ergänzungsmodule --> Schwerpunkt: Elekromobilität --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester**
 - Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester**
 - Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester**
 - Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester**
11. Empfohlene Voraussetzungen: Grundkenntnisse in Elektrotechnik, Grundkenntnisse in Schaltungstechnik, Grundkenntnisse von elektronischen Bauelementen

13. Inhalt:
- Analoge Grundschaltungen
- Stromspiegel
- Innerer Aufbau von Operationsverstärkern
- Anwendung von Operationsverstärkern
- Rauscharme Verstärker
- Oszillatoren
- Frequenzumsetzung
- Leistungsverstärker

14. Literatur:
- Zusatzblätter zum Selbststudium
- Aufgaben zur Selbstbearbeitung

Bücher:
- B. Razavi: RF Microelectronics, Prentice Hall, 1997

15. Lehrveranstaltungen und -formen:
- 259401 Vorlesung Verstärkertechnik I
- 259402 Vorlesung Verstärkertechnik II

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 56 h
- Selbststudium: 124 h
- Gesamt: 180 h

17. Prüfungsnummer/n und -name:
- 25941 Verstärkertechnik I (PL), Schriftlich, 60 Min., Gewichtung: 1
- 25942 Verstärkertechnik II (PL), Schriftlich, 60 Min., Gewichtung: 1

18. Grundlage für ...:

19. Medienform:
- Tafel, Beamer

20. Angeboten von:
- Elektrische und Optische Nachrichtentechnik
Modul: 29310 Regenerative Energiesysteme

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050310015</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>5</td>
</tr>
<tr>
<td>5. Modulduer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. Modulverantwortlicher:</th>
<th>Univ.-Prof. Dr.-Ing. Stefan Tenbohlen</th>
</tr>
</thead>
<tbody>
<tr>
<td>9. Dozenten:</td>
<td>Stefan Tenbohlen, Silke Wieprecht, Harald Drück, Andreas Rettenmeier, Albert Ruprecht, Günter Scheffknecht</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester**
 - Wählfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte
- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester**
 - Vorlesung Regenerative Energiesysteme --> Wählfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester**
 - Ergänzungsmodulture --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester**
 - Vorlesung Regenerative Energiesysteme --> Ergänzungsmodulture --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester**
 - Wählfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester**
 - Wählfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester**
 - Ergänzungsmodulture --> Schwerpunkt: Technische Informatik --> Schwerpunkte
- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester**
 - Wählfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte
- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester**
 - Wählfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte
- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester**
 - Vorlesung Regenerative Energiesysteme --> Wählfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 → Vorlesung Regenerative Energiesysteme -->
 Ergänzungsmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 → Vorlesung Regenerative Energiesysteme -->
 Ergänzungsmodule --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 → Vorlesung Regenerative Energiesysteme -->
 Ergänzungsmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 → Ergänzungsmodule --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Vorlesung Regenerative Energiesysteme --> Wahlfächer -->
 Schwerpunkt: Elektromobilität --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 → Vorlesung Regenerative Energiesysteme --> Wahlfächer -->
 Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 → Ergänzungsmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 → Vorlesung Regenerative Energiesysteme --> Wahlfächer -->
 Schwerpunkt: Technische Informatik --> Schwerpunkte
Vorlesung Regenerative Energiesysteme -->
Ergänzungsmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
Ergänzungsmodule --> Schwerpunkt:
Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte

11. Empfohlene Voraussetzungen:

12. Lernziele:
Die Veranstaltung gibt eine Einführung in Erneuerbaren Energien.
Die Studierenden sind anschließend in der Lage:

• die Bedeutung und die Potenziale verschiedener Erneuerbarer Energien (Solarthermie, Windenergie, Wasserkraft, Biomasse) quantitativ einzuschätzen,
• Berechnungen des Energieertrags und des Wirkungsgrades durchzuführen,
• Erneuerbarer Energien in unterschiedliche Energieanwendungen und ins Energiesystem einzuordnen

13. Inhalt:
• Energiedaten, Umwelt- u. Klimaschutz und erneuerbare Energien, persönlicher Energieverbrauch, Globale Kreisläufe und -bilanzen
• Sonneneinstrahlung, Potentiale der Solarenergienutzung
• Solarthermie
• Windenergie
• Wasserkraft, Meeresströmungs- und Wellenenergie
• Therm. Nutzung von Biomasse, Biotreibstoffe

14. Literatur:
• V. Quaschning, Regenerative Energiesysteme, 6. Aufl., Hanser
• ergänzendes Skriptum und online-Materialien

15. Lehrveranstaltungen und -formen:
• 293102 Übung Regenerative Energiesysteme
• 29310 Vorlesung Regenerative Energiesysteme

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 70 Stunden
Selbststudium: 110 Stunden
Summe: 180 Stunden

17. Prüfungsnummer/n und -name:
29311 Regenerative Energiesysteme (PL), Schriftlich, 90 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform:
PowerPoint, Tafel

20. Angeboten von:
Energieübertragung und Hochspannungstechnik
Modul: 41170 Speichertechnik für elektrische Energie I

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Kai Peter Birke</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Kai Peter Birke</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 - Ergänzungsmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte
 - Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 - Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 - Ergänzungsmodule --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 - Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 - Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 - Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 - Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 - Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 - Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 - Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 - Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 - Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
11. Empfohlene Voraussetzungen:

12. Lernziele: Die Studierenden lernen die Speichertechniken für elektrische Energie kennen.

13. Inhalt: Aufbau und Funktionsweise von:
 • Elektrischen Speichern (Spule, supraleitende Spule, Kondensator, Doppelschichtkondensator)
 • Elektromechanischen Speichern (Schwungrad, Gas, Wasser)

Charakterisierung der Speicher anhand charakteristischer Größen wie:
• Energieinhalt
• Leistung (dynamisch/stationär)
• Kosten
• Betriebssicherheit

Überblick über die wichtigsten Messverfahren
Einführung in Ersatzschaltbilder und Modellierung

15. Lehrveranstaltungen und -formen: • 411702 Übung Speicher für Elektrische Energie
• 411701 Vorlesung Speicher für Elektrische Energie

16. Abschätzung Arbeitsaufwand: Präsenzzeit: 56 h
Selbststudium: ca. 124 h
Summe: 180h

17. Prüfungsnummer/n und -name: 41171 Speichertechnik für elektrische Energie (PL), Schriftlich, 90 Min., Gewichtung: 1

18. Grundlage für ...

19. Medienform: Beamer, Tafel

20. Angeboten von: Elektrische Energiespeichersysteme
Modul: 69050 Technologien und Methoden der Softwaresysteme I

2. Modulkürzel: 050501002
5. Moduldauer: Einsemestrig

3. Leistungspunkte: 6 LP
6. Turnus: Wintersemester

4. SWS: 4
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Michael Weyrich

9. Dozenten: Michael Weyrich

10. Zuordnung zum Curriculum in diesem Studiengang:

 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016,
 → Ergänzungsmodule --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte

 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011,
 → Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte

 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016,
 → Ergänzungsmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte

 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016,
 → Ergänzungsmodule --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte

 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011,
 → Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte

 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011,
 → Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte

 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011,
 → Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte

 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016,
 → Kernmodule --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte

 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011,
 → Schwerpunkt: Technische Informatik --> Schwerpunkte

 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016,
 → Kernmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte

 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011,
 → Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte

 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011,
 → Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte

 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016,
 → Ergänzungsmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte

11. Empfohlene Voraussetzungen: Grundlagen der Softwaretechnik

13. Inhalt: Grundbegriffe der Softwaretechnik, Softwareentwicklungsprozesse und Vorgehensmodelle, Requirements Engineering, Systemanalyse, Softwareentwurf, Implementierung,
14. Literatur:

<table>
<thead>
<tr>
<th>Autor/Quelle</th>
</tr>
</thead>
<tbody>
<tr>
<td>Wiegers, K.: Software-Requirements, Microsoft Press, 2005</td>
</tr>
<tr>
<td>Vorlesungsportal mit Vorlesungsaufzeichnung auf http://www.ias.uni-stuttgart.de/st1/</td>
</tr>
</tbody>
</table>

15. Lehrveranstaltungen und -formen:

<table>
<thead>
<tr>
<th>Veranstaltungsaufzählung</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 690501 Vorlesung Technologien und Methoden der Softwaresysteme I</td>
<td></td>
</tr>
<tr>
<td>• 690502 Übung Technologien und Methoden der Softwaresysteme I</td>
<td></td>
</tr>
</tbody>
</table>

16. Abschätzung Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Arbeiten/Aufgaben</th>
<th>Zeitangaben</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzzeit</td>
<td>56 h</td>
</tr>
<tr>
<td>Selbststudium</td>
<td>ca. 124 h</td>
</tr>
</tbody>
</table>

17. Prüfungsnr./n und -name:

<table>
<thead>
<tr>
<th>Prüfungsnr./n</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>69051 Technologien und Methoden der Softwaresysteme I (PL), Schriftlich, 120 Min., Gewichtung: 1</td>
<td></td>
</tr>
<tr>
<td>69052 Technologien und Methoden der Softwaresysteme I (USL), Sonstige, Gewichtung: 1</td>
<td></td>
</tr>
<tr>
<td>Erfolgreiche Bearbeitung eines Kleinprojekts während des Semesters</td>
<td></td>
</tr>
</tbody>
</table>

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Automatisierungstechnik und Softwaresysteme
360 Schwerpunkt: Elektrotechnische Systeme

Zugeordnete Module:

11550 Leistungselektronik I
11570 Hochspannungstechnik I
11650 Hochfrequenztechnik I
11740 Elektromagnetische Verträglichkeit
11750 Numerische Feldberechnung I
361 Wahlfächer
69050 Technologien und Methoden der Softwaresysteme I
Modul: 11550 Leistungselektronik I

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>051010011</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Modulduauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Jörg Roth-Stielow</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Jörg Roth-Stielow</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
- → Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
- → Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
- → Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
- → Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
- → Ergänzungsmodule --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
- → Kernmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
- → Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
- → Ergänzungsmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
- → Ergänzungsmodule --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
- → Kernmodule --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
- → Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
- → Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
- → Kernmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
11. Empfohlene Voraussetzungen: Kenntnisse vergleichbar Elektrische Energietechnik I
Kenntnisse vergleichbar Elektrische Energietechnik II

12. Lernziele:
• ...kennen die wichtigsten potentialverbindenden und
potentialtrennenden Schaltungen der Leistungselektronik
mit abschaltbaren Ventilen und die zugehörigen
Modulationsverfahren.
• ...können diese Anordnungen mathematisch beschreiben und
Aufgabenstellungen lösen.
• ...kennen die grundlegenden Prinzipien der Meßverfahren für
Mischströme.

13. Inhalt:
• Abschaltbare Leistungshalbleiter
• Schaltungstopologien potentialverbindender Stellglieder
• Schaltungstopologien potentialtrennender Gleichstromsteller
• Modulationsverfahren
• Strommessung in der Leistungselektronik

14. Literatur:
• Heumann, K.: Grundlagen der Leistungselektronik, B. G.
Teubner, Stuttgart, 1989
• Mohan, Ned: Power Electronics, John Wiley und Sons, Inc.,
2003

15. Lehrveranstaltungen und -formen:
• 115501 Vorlesung Leistungselektronik I
• 115502 Übung Leistungselektronik I

16. Abschätzung Arbeitsaufwand:
Frontalvorlesung

17. Prüfungsnummer/n und -name:
11551 Leistungselektronik I (PL), Schriftlich, 120 Min., Gewichtung: 1
Klausur (120 min., 2x pro Jahr)

18. Grundlage für ...:

19. Medienform:
Tafel, Folien, Beamer

20. Angeboten von:
Leistungselektronik und Regelungstechnik
Modul: 11570 Hochspannungstechnik I

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Stefan Tenbohlen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Stefan Tenbohlen</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Wahlfächer → Schwerpunkt: Technische Informatik → Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
→ Ergänzungsmodul → Schwerpunkt: Elektromobilität → Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Schwerpunkt: Elektrische Energiesysteme → Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Wahlfächer → Schwerpunkt: Kommunikationssysteme und Signalverarbeitung → Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Wahlfächer → Schwerpunkt: Mikro- und Optoelektronik → Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
→ Ergänzungsmodul → Schwerpunkt: Automatisierungs- und Regelungstechnik → Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Wahlfächer → Schwerpunkt: Elektromobilität → Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
→ Ergänzungsmodul → Schwerpunkt: Technische Informatik → Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Schwerpunkt: Elektrotechnische Systeme → Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Wahlfächer → Schwerpunkt: Automatisierungs- und Regelungstechnik → Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
→ Ergänzungsmodul → Schwerpunkt: Mikro- und Optoelektronik → Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
→ Kernmodule → Schwerpunkt: Elektrische Energiesysteme → Schwerpunkte

Stand: 09. April 2018
11. Empfohlene Voraussetzungen:

- Elektrische Energietechnik

12. Lernziele:

Studierender hat Kenntnisse der Grundlagen der Versuchs- und Messtechnik für Hochspannungsprüfungen, Verständnis der Zusammenhänge Festigkeit und Beanspruchung eines Isolierstoffsystems und des Aufbaues eines Isolationssystems.

13. Inhalt:

- Auftreten und Anwendung hoher Spannungen bzw. Ströme
- Einführung in die Hochspannungsversuchstechnik
- Berechnung elektrischer Felder
- Grundlagen der Hochspannungsisoliertechnik
- Isolierstoffsysteme in Hochspannungsgeräten

14. Literatur:

- Kind, Feser: Hochspannungs-Versuchstechnik Vieweg, Braunschweig, 1995
- Kind, Kärner: Hochspannungs-Isoliertechnik Vieweg, Braunschweig, 1982

15. Lehrveranstaltungen und -formen:

- 115702 Übung Hochspannungstechnik 1
- 115701 Vorlesung Hochspannungstechnik 1

16. Abschätzung Arbeitsaufwand:

- Präsenzzeit: 56 h
- Selbststudium/Nacharbeitszeit: 124 h
- Gesamt: 180 h

17. Prüfungsnummer/n und -name:

- 11571 Hochspannungstechnik I (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform:

PowerPoint, Tafelanschrieb

20. Angeboten von:

Energieübertragung und Hochspannungstechnik
Modul: 11650 Hochfrequenztechnik I

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050600001</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Modul dauert:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Jan Hesselbarth</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Jan Hesselbarth</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>Modul</th>
<th>PO und Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
<td>Ergänzungsmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
<td>Ergänzungsmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
<td>Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
<td>Ergänzungsmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
<td>Kernmodule --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
<td>Ergänzungsmodul --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte</td>
</tr>
</tbody>
</table>
11. Empfohlene Voraussetzungen:

13. Inhalt: Maxwell'sche Gleichungen, ebene Welle im freien Raum, Leitungswellen, konzentrierte Bauelemente, Resonanzschaltungen, Transformationsschaltungen, Hochfrequenzfilter

14. Literatur:
 • Vorlesungsskript,
 • Detlefsen, Siart: Grundlagen der Hochfrequenztechnik, 3. Auflage, Oldenbourg Verlag, 2009,

15. Lehrveranstaltungen und -formen:
 • 116501 Vorlesung Hochfrequenztechnik I
 • 116502 Übung Hochfrequenztechnik I

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 56 h
 Selbststudium/Nacharbeitszeit: 124 h
 Gesamt: 180 h

17. Prüfungsnummer/n und -name:
 11651 Hochfrequenztechnik I (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ...

19. Medienform:
 Tafel, Beamer, Projektor, ILIAS

20. Angeboten von:
 Hochfrequenztechnik
Modul: 11740 Elektromagnetische Verträglichkeit

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Stefan Tenbohlen

9. Dozenten: Stefan Tenbohlen, Daniel Schneider

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
- Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte
 - Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
- Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte
 - Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
- Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
- Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
- Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
- Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
- Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
- Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
- Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
- Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
11. Empfohlene Voraussetzungen: Grundlagen der Elektrotechnik

12. Lernziele: Studierender hat Kenntnisse der Messverfahren und Messausrüstungen der Elektromagnetischen Verträglichkeit. Er kennt praktische Abhilfemaßnahmen zur Beherrschung der EMV-Problematik und die Besonderheiten in der Automobil-EMV

13. Inhalt:
 - Einführung
 - Begriffsbestimmungen
 - EMV-Umgebung
 - Allgemeine Maßnahmen zur Sicherstellung der EMV
 - Aktive Schutzmaßnahmen
 - Nachweis der EMV (Messverfahren, Messumgebung)
 - Einwirkung elektromagnetischer Felder auf biologische Systeme
 - EMV im Automobilbereich

14. Literatur:
 - Schwab, Adolf J.: Elektromagnetische Verträglichkeit Springer Verlag, 1996
 - Habiger, Ernst: Elektromagnetische Verträglichkeit Hüthig Verlag, 3. Aufl., 1998
 - Gonschorek, K.-H.: EMV für Geräteentwickler und Systemintegratoren Springer Verlag, 2005
 - Wiesinger, J. u.a.: EMV-Blitzschutz von elektrischen und elektronischen Systemen in baulichen Anlagen VDE-Verlag, Oktober 2004

15. Lehrveranstaltungen und -formen:
 - 117401 Vorlesung Elektromagnetische Verträglichkeit
 - 117402 Übung Elektromagnetische Verträglichkeit

16. Abschätzung Arbeitsaufwand:
 - Präsenzzeit: 56 h
 - Selbststudium/Nacharbeitszeit: 124 h
 - Gesamt: 180 h

17. Prüfungsnummer/n und -name: 11741 Elektromagnetische Verträglichkeit (PL), Schriftlich, 90 Min., Gewichtung: 1

18. Grundlage für ...

19. Medienform: PowerPoint, Tafelanschrieb

20. Angeboten von: Energieübertragung und Hochspannungstechnik
Modul: 11750 Numerische Feldberechnung I

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>051800003</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Prof. Dr. Wolfgang Rucker</td>
</tr>
</tbody>
</table>

Zuordnung zum Curriculum in diesem Studiengang:

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester**
 - Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester**
 - Ergänzungsmodul --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
 - Ergänzungsmodul --> Schwerpunkt: Elektromobilität --> Schwerpunkte
 - Ergänzungsmodul --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester**
 - Zusatzmodule
 - Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester**
 - Ergänzungsmodul --> Schwerpunkt: Technische Informatik --> Schwerpunkte
 - Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester**
 - Ergänzungsmodul --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester**
 - Ergänzungsmodul --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester**
 - Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester**
 - Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester

→ Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte

11. Empfohlene Voraussetzungen:
Grundkenntnisse der Theoretischen Elektrotechnik werden empfohlen.

12. Lernziele:
Die Studierenden:

• besitzen die Grundkenntnisse der wichtigsten numerischen Verfahren zur Modellierung und Simulation von Feldproblemen in der Elektrotechnik,
• beherrschen den Einsatz von Simulationswerkzeugen.

13. Inhalt:

• Grundlagen der numerischen Simulation elektromagnetischer Felder
• Allgemeiner Ablauf einer numerischen Simulation, Simulationssoftware
• Methode der finiten Elemente (FEM)
• Ausgangsbeziehung der FEM für Potenzialprobleme
• Geometriemodellierung
• Erstellung und Lösung des FE-Gleichungssystems
• FE-Formulierungen von elektromagnetischen Feldproblemen
• Methode der Randelemente (BEM)
• Randintegraldarstellung, Randintegralgleichung
• Erstellung und Lösung des BE-Gleichungssystems
• BE-Formulierung von Elektrodenproblemen

14. Literatur:

15. Lehrveranstaltungen und -formen:

• 117501 Vorlesung Numerische Feldberechnung I
• 117502 Übung Numerische Feldberechnung I

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 56 h
Selbststudium: 124 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
11751 Numerische Feldberechnung I (PL), Mündlich, 45 Min., Gewichtung: 1

18. Grundlage für ...

19. Medienform:
Tafel, Beamer

20. Angeboten von:
Elektrotechnik bionischer Systeme
361 Wahlfächer

Zugeordnete Module:

11540 Regelungstechnik I
11560 Elektrische Energienetze I
11580 Elektrische Maschinen I
11590 Photovoltaik I
11610 Technische Informatik I
11620 Automatisierungstechnik I
11640 Digitale Signalverarbeitung
11660 Übertragungstechnik I
11670 Grundlagen integrierter Schaltungen
11680 Kommunikationsnetze I
11690 Hochfrequenztechnik II
11700 Halbleiterelektronik I
11710 Optoelectronics I
11720 Halbleiterelektronik I
11730 Flachbildschirme
12420 Windenergie 1 - Grundlagen Windenergie
13590 Kraftfahrzeuge I + II
14130 Kraftfahrzeugmechatronik I + II
17110 Entwurf digitaler Systeme
17130 Entwurf digitaler Filter
17170 Elektrische Antriebe
25940 Verstärkertechnik I+II
29310 Regenerative Energiesysteme
41170 Speichertechnik für elektrische Energie I
Modul: 11540 Regelungstechnik I

2. Modulkürzel: 051010012
3. Leistungspunkte: 6 LP
4. SWS: 4
5. Modulduer: Einsemestrig
6. Turnus: Sommersemester
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Jörg Roth-Stielow
9. Dozenten: Jörg Roth-Stielow
10. Zuordnung zum Curriculum in diesem Studiengang:

 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
 → Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
 → Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
 → Zusatzmodule
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
 → Ergänzungsmodule --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
 → Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
 → Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
 → Vorgezogene Master-Module
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
 → Ergänzungsmodule --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
 → Ergänzungsmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
 → Kernmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
 → Kernmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
 → Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
 → Kernmodule --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester

→ Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester

→ Schwerpunkt: Elektromobilität --> Schwerpunkte

11. Empfohlene Voraussetzungen:
Kenntnisse vergleichbar...
...Höhere Mathematik I, II, III
...Experimentalphysik
...Grundlagen der Elektrotechnik
...Elektrische Energietechnik
...Signale und Systeme
...Schaltungstechnik

12. Lernziele:
Studierende...

• ...können eine Regelstrecke modellieren und kennen die wichtigsten Regelsysteme.
• ...können diese Anordnungen mathematisch beschreiben, hinsichtlich ihrer Stabilität beurteilen und Aufgabenstellungen lösen.

13. Inhalt:
• Beschreibung von Übertragungsstrecken
• Stabilität von Regelsystemen
• Herkömmliche Regelsysteme
• Regelsysteme mit Rückführung eines vollständigen Satzes von Zustandsvariablen
• Echtes Integralverhalten
• Beobachter
• Systemführung nach dem Prinzip unterlagerter Schleifen
• Systeme mit einem Wechsel der Regelgröße

14. Literatur:
• Lunze, Jan: Regelungstechnik 1, Springer, Berlin, 1999
• Unbehauen, H.: Regelungstechnik 1, Vieweg, Braunschweig, 1989
• Leonhard, W.: Einführung in die Regelungstechnik, Vieweg, Braunschweig, 1992

15. Lehrveranstaltungen und -formen:
• 115401 Vorlesung Regelungstechnik I
• 115402 Übung Regelungstechnik I

16. Abschätzung Arbeitsaufwand:
Frontalvorlesung

17. Prüfungsnummer/n und -name:
11541 Regelungstechnik I (PL), Schriftlich, 120 Min., Gewichtung: 1 Klausur (120 min., 2x pro Jahr)

18. Grundlage für ...:
Regelungstechnik II

19. Medienform:
Tafel, Folien, Beamer

20. Angeboten von:
Leistungselektronik und Regelungstechnik
Modul: 11560 Elektrische Energienetze I

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050310001</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Modulduer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Stefan Tenbohlen</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Stefan Tenbohlen</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
→ Ergänzungsmodul --> Schwerpunkt: Technische Informatik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
→ Kernmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
→ Ergänzungsmodul --> Schwerpunkt: Elektromobilität --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
→ Ergänzungsmodul --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
→ Ergänzungsmodul --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
11. Empfohlene Voraussetzungen:
- Elektrische Energietechnik

12. Lernziele:

13. Inhalt:
- Aufgaben des elektrischen Energienetzes, Smart Grids
- Einpolige Ersatzschaltungen der Betriebselemente für symmetrische Betriebsweise
- Berechnung von Energieübertragungsanlagen und -netzen
- Betrieb elektrischer Energieversorgungsnetze
- Kurzschlussströme bei symmetrischem Kurzschluss
- Symmetrische Komponenten

14. Literatur:
- Oeding, Oswald: Elektrische Kraftwerke und Netze Springer-Verlag, 6. Aufl., 2004
- Heuck, Dettmann: Elektrische Energieversorgung Vieweg, Braunschweig/Wiesbaden, 6. Aufl., 2005
- Schwab: Elektroenergiesysteme, Springer-Verlag, 1. Aufl., 2006

15. Lehrveranstaltungen und -formen:
- 115601 Vorlesung Elektrische Energienetze 1
- 115602 Übung Elektrische Energienetze 1

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 56 h
Selbststudium/Nacharbeitszeit: 124 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
11561 Elektrische Energienetze I (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ... :
Elektrische Energienetze II

19. Medienform:
PowerPoint, Tafelanschrieb

20. Angeboten von:
Energieübertragung und Hochspannungstechnik
Modul: 11580 Elektrische Maschinen I

2. Modulkürzel: 052601011
5. Modulsdauer: Einsemestrig
3. Leistungspunkte: 6 LP
6. Turnus: Wintersemester
4. SWS: 4
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Nejila Parspour
9. Dozenten: Nejila Parspour

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
→ Ergänzungsmodule --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
→ Ergänzungsmodule --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
→ Ergänzungsmodule --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
→ Kernmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
→ Ergänzungsmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
→ Kernmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
→ Ergänzungsmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester

Stand: 09. April 2018
11. Empfohlene Voraussetzungen:

12. Lernziele:

Studierende können magnetische Kreise analysieren und berechnen. Sie kennen den Aufbau und die Funktionsweise von Drehfeldmaschinen. Sie haben grundlegende Kenntnisse im Bereich der Steuerung und Modellierung von Drehfeldmaschinen.

13. Inhalt:

· Magnetismus und Grundlagen der magnetischen Kreise (Energie, Reluktanzkraft)
· Antriebstechnische Zusammenhänge
· Verluste in elektrischen Maschinen
· Berechnung von magnetischen Luftspaltfeldern von einfachen Wickelschemata in Drehfeldmaschinen
· Behandelte Maschinentypen:

1) Reluktanzmaschine: Aufbau und Funktion, Ersatzschaltbilder, Energiefluss, Kennlinien, Bauformen und Einsatzgebiete

2) Synchronmaschine: Aufbau und Funktion, Ersatzschaltbilder, Energiefluss, mathematische Zusammenhänge, Kennlinien, vollständiges Ersatzschaltbild, Drehzahldrehscheiben, Brems- und Anlaufverfahren, Bauformen und Einsatzgebiete

3) Asynchronmaschine: Aufbau und Funktion, Ersatzschaltbilder, Energiefluss, mathematische Zusammenhänge, Kennlinien, Drehzahldrehscheiben, Brems- und Anlaufverfahren, Bauformen und Einsatzgebiete

14. Literatur:

· Richter, Rudolf: Elektrische Maschinen, Verlag von Julius Springer, Berlin, 1936

15. Lehrveranstaltungen und -formen:

· 115801 Vorlesung Elektrische Maschinen I
· 115802 Übung Elektrische Maschinen I

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 56 h
Selbststudium/Nacharbeitszeit: 124 h
Summe: 180 h

17. Prüfungsnummer/n und -name:

11581 Elektrische Maschinen I (PL), Schriftlich, 120 Min., Gewichtung: 1
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ...</td>
<td>Elektrische Maschinen II</td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Beamer, Tafel, ILIAS</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Elektrische Energiewandlung</td>
</tr>
</tbody>
</table>
Modul: 11590 Photovoltaik I

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050513002</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Jürgen Heinz Werner</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Jürgen Heinz Werner</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kernmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</td>
</tr>
<tr>
<td>Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</td>
</tr>
<tr>
<td>Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester</td>
</tr>
<tr>
<td>Kernmodule --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester</td>
</tr>
<tr>
<td>Ergänzungsmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester</td>
</tr>
<tr>
<td>Ergänzungsmodule --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</td>
</tr>
<tr>
<td>Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</td>
</tr>
<tr>
<td>Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</td>
</tr>
<tr>
<td>Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester</td>
</tr>
<tr>
<td>Ergänzungsmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester</td>
</tr>
<tr>
<td>Ergänzungsmodule --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</td>
</tr>
<tr>
<td>Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</td>
</tr>
<tr>
<td>Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte</td>
</tr>
</tbody>
</table>
11. Empfohlene Voraussetzungen: Grundkenntnisse über Halbleitermaterialien und Halbleiterdioden, z.B. aus Mikroelektronik I

12. Lernziele:
Die Studierenden kennen
- das Potential der Sonnenstrahlung
- die Funktionsweise von Solarzellen
- die wichtigsten Technologien der Herstellung von Solarmodulen
- die Grundprinzipien von Wechselrichtern
- die Energieerträge verschiedener Photovoltaik-Technologien
- den aktuellen Stand des Photovoltaikmarktes und der Kosten von Photovoltaik-Strom

13. Inhalt:
- Der Photovoltaische Effekt (Zelle, Modul, Anlage)
- Solarstrahlung und Energieumsatz in Deutschland
- Grundprinzip und Kenngrößen von Solarzellen
- Ersatzschaltbilder von Solarzellen
- Maximaler Wirkungsgrad
- Photovoltaik-Materialien und -Technologien
- Modultechnik
- Photovoltaische Systemtechnik
- (Jahres-) Energieerträge von Photovoltaiksystemen

14. Literatur:
• Goetzberger, Voß, Knobloch, Sonnenenergie: Photovoltaik, Teubner, 1994
• P. Würfel, Physik der Solarzellen, Spektrum, 1995
• M. A. Green, Solar Cells - Operating Principles, Technology and System Applications, Centre for Photovoltaic Devices and Systems, Sydney, 1986
• F. Staß, Photovoltaik - Technik, Potentiale und Perspektiven der solaren Stromerzeugung, Vieweg, 1996

15. Lehrveranstaltungen und -formen:
• 115901 Vorlesung Photovoltaik I
• 115902 Übungen Photovoltaik I

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 56 h
Selbststudium/Nacharbeitszeit: 142 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
11591 Photovoltaik I (PL), Schriftlich, 90 Min., Gewichtung: 1

18. Grundlage für ...:
Photovoltaik II

19. Medienform:
Powerpoint, Tafel

20. Angeboten von:
Physikalische Elektronik
Modul: 11610 Technische Informatik I

2. Modulkürzel:	050901004
5. Modulduer:	Einsemestrig
3. Leistungspunkte:	6 LP
6. Turnus:	Wintersemester
4. SWS:	4
7. Sprache:	Deutsch

8. Modulverantwortlicher:
Univ.-Prof. Dr.-Ing. Andreas Kirstädter

9. Dozenten:
Andreas Kirstädter
Matthias Meyer

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kernmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
</tr>
<tr>
<td>Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
</tr>
<tr>
<td>Schwerpunkt: Technische Informatik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
</tr>
<tr>
<td>Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
</tr>
<tr>
<td>Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
</tr>
<tr>
<td>Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
</tr>
<tr>
<td>Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
</tr>
<tr>
<td>Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
</tr>
<tr>
<td>Ergänzungsmodule --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
</tr>
<tr>
<td>Ergänzungsmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
</tr>
<tr>
<td>Ergänzungsmodule --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
</tr>
</tbody>
</table>

13. Inhalt:
 - Einfache Einadressmaschine, Elemente und Mechanismen der Register-Transfer-Ebene
 - Prozessorbaugruppen und Mikroprogrammierung
 - Grundkonzepte von CISC-Prozessoren
 - Grundkonzepte und Mechanismen von Betriebssystemen
 - Aufbau von Rechnersystemen einschl. Ein-/ Ausgabe

14. Literatur:

15. Lehrveranstaltungen und -formen:
 - 116102 Übung zu Technische Informatik I
 - 116101 Vorlesung Technische Informatik I

16. Abschätzung Arbeitsaufwand: Vorlesung, Übungen und Selbststudium

17. Prüfungsnummer/n und -name: 11611 Technische Informatik I (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ...

19. Medienform:
 - Vortrag mit Folien
 - Tafelanschreiben

20. Angeboten von: Kommunikationsnetze und Rechnersysteme
Modul: 11620 Automatisierungstechnik I

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Michael Weyrich
9. Dozenten: Michael Weyrich

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>> Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</td>
</tr>
<tr>
<td>> Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</td>
</tr>
<tr>
<td>> Zusatzmodule</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester</td>
</tr>
<tr>
<td>> Erganzungsmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</td>
</tr>
<tr>
<td>> Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</td>
</tr>
<tr>
<td>> Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</td>
</tr>
<tr>
<td>> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester</td>
</tr>
<tr>
<td>> Ergänzungsmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</td>
</tr>
<tr>
<td>> Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester</td>
</tr>
<tr>
<td>> Ergänzungsmoduln --> Schwerpunkt: Elektromobilität --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester</td>
</tr>
<tr>
<td>> Kernmodule --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</td>
</tr>
<tr>
<td>> Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester</td>
</tr>
<tr>
<td>> Ergänzungsmoduln --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte</td>
</tr>
</tbody>
</table>
11. Empfohlene Voraussetzungen:
- Grundlagen der Elektrotechnik, Informatik und Mathematik

12. Lernziele:
Die Studierenden
- besitzen grundlegende Kenntnisse über rechnerbasierte Automatisierungssysteme
- setzen sich mit Kommunikationssystemen der Automatisierungstechnik ausgiebig mit
- wenden grundlegende Methoden und Verfahren der Echtzeit-Programmierung an
- lernen spezifische Programmiersprachen der Automatisierungstechnik kennen

13. Inhalt:
- Grundlegende Begriffe der Automatisierungstechnik
- Automatisierungs-Gerätesysteme und -strukturen
- Prozessperipherie – Schnittstellen zwischen dem Automatisierungscomputersystem und dem technischen Prozess (Prozesssignalüberwachung und -überwachung)
- Grundlagen zu Kommunikationssystemen in der Automatisierungstechnik (Feldbussysteme, drahtlose Kommunikation)
- Grundlagen der Echtzeitprogrammierung (Synchron und Asynchron Programmierung, Scheduling-Algorithmen, Synchronisationskonzepte)
- Programmiersprachen für die Automatisierungstechnik (Programmierung von Speicherprogrammierbaren und Pneumatischen Steuerungen)

14. Literatur:
- Vorlesungsskript
- Lauber, Göhner: Prozessautomatisierung Band 1 (3. Auflage), Springer, 1999
- Früh, Maier: Handbuch der Prozessautomatisierung (3. Auflage) Oldenbourg Industrieverlag, 2004
- Wellenreuther Automatisieren mit SPS (3. Auflage), Vieweg, 2005
- Materialien und Vorlesungsaufzeichnungen im ILIAS

15. Lehrveranstaltungen und -formen:
- 116201 Vorlesung Automatisierungstechnik I
- 116202 Übung Automatisierungstechnik I

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 56 h
- Selbststudium: 124 h
- Gesamt: 180 h

17. Prüfungsnummer/n und -name:
- 11621 Automatisierungstechnik I (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ... :
- Automatisierungstechnik II

19. Medienform:
- Beamerpräsentation mit Aufzeichnung der Vorlesungen und Übungen

20. Angeboten von:
- Automatisierungstechnik und Softwaresysteme
Modul: 11640 Digitale Signalverarbeitung

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>051610002</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Modulduer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Bin Yang</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Bin Yang</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester**
 - Wahlfächer -> Schwerpunkt: Elektrotechnische Systeme
 - Wahlfächer: Mikro- und Optoelektronik
 - Kernmodule: Automatisierungs- und Regelungstechnik
- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester**
 - Wahlfächer: Elektromobilität
 - Wahlfächer: Technische Informatik
 - Wahlfächer: Elektrische Energiesysteme
 - Kernmodule: Kommunikationssysteme und Signalverarbeitung

Stand: 09. April 2018
11. Empfohlene Voraussetzungen: Grundkenntnisse in höherer Mathematik
Grundkenntnisse über Signale und Systeme

12. Lernziele: Die Studierenden
• beherrschen die grundlegenden Methoden zur digitalen Signalverarbeitung,
• besitzen die notwendigen Grundfertigkeiten zur Analyse von zeitdiskreten Signalen und Systemen,
• können einfache Signale und Systeme selbstständig analysieren,
• können einfache Signalverarbeitungsaufgaben selbstständig lösen.

13. Inhalt:
• A/D- und D/A-Umwandlung, Abtastung, Quantisierung
• Zeitdiskrete Signale und Systeme, Analyse von LTI-Systemen im Zeitbereich, Differenzengleichung
• Analyse von Signalen und LTI-Systemen in der komplexen Ebene, z-Transformation, Übertragungsfunktion, Pole und Nullstellen
• Analyse von Signalen und LTI-Systemen im Frequenzbereich
• Digitale Filter, FIR und IIR, Tiefpass, Hochpass, Bandpass, Oszillator, KerbfILTER, Kammfilter, linearpHasige Filter, Allpass, minimalphasige Filter
• Korrelationsanalyse, Auto- und Kreuzkorrelation, Auto- und Kreuzkorrelationsfunktion
• Diskrete Fourier-Transformation, schnelle Fourier-Transformation (FFT), schnelle Faltung
• Spektalanalyse, Periodogramm, Fenstereffekt, Zeit-Frequenz-Analyse, Spektrogramm

14. Literatur:
• Vorlesungsunterlagen, Videoaufzeichnung der Vorlesung
• J. Proakis and D. G. Manolakis: Digital signal processing, Prentice-Hall, 1996
• M. Mandal and A. Asif, “Continuous and discrete time signals and systems”, Cambridge, 2008

15. Lehrveranstaltungen und -formen:
• 116401 Vorlesung Digitale Signalverarbeitung
• 116402 Übung Digitale Signalverarbeitung

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 56 h
Selbststudium: 124 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name: 11641 Digitale Signalverarbeitung (PL), Schriftlich, 90 Min., Gewichtung: 1

18. Grundlage für ...

19. Medienform:
Laptop, Beamer, Videoaufzeichnung aller Vorlesungen und Übungen

20. Angeboten von:
Netzwerk- und Systemtheorie
Modul: 11660 Übertragungstechnik I

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>051100001</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Modulduer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Stephan ten Brink</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Stephan Brink</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>→ Ergänzungsmodul: Schwerpunkt: Elektromobilität</td>
</tr>
<tr>
<td></td>
<td>→ Schwerpunkte</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
</tr>
<tr>
<td></td>
<td>→ Ergänzungsmodul: Schwerpunkt: Automatisierungs- und Regelungstechnik</td>
</tr>
<tr>
<td></td>
<td>→ Schwerpunkte</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
</tr>
<tr>
<td></td>
<td>→ Schwerpunkt: Kommunikationssysteme und Signalverarbeitung</td>
</tr>
<tr>
<td></td>
<td>→ Schwerpunkte</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
</tr>
<tr>
<td></td>
<td>→ Wahlfächer: Schwerpunkt: Mikro- und Optoelektronik</td>
</tr>
<tr>
<td></td>
<td>→ Schwerpunkte</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
</tr>
<tr>
<td></td>
<td>→ Wahlfächer: Schwerpunkt: Automatisierungs- und Regelungstechnik</td>
</tr>
<tr>
<td></td>
<td>→ Schwerpunkte</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
</tr>
<tr>
<td></td>
<td>→ Wahlfächer: Schwerpunkt: Elektromobilität</td>
</tr>
<tr>
<td></td>
<td>→ Schwerpunkte</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
</tr>
<tr>
<td></td>
<td>→ Zusatzmodule</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
</tr>
<tr>
<td></td>
<td>→ Ergänzungsmodul: Schwerpunkt: Elektrische Energiesysteme</td>
</tr>
<tr>
<td></td>
<td>→ Schwerpunkte</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
</tr>
<tr>
<td></td>
<td>→ Kernmodule: Schwerpunkt: Technische Informatik</td>
</tr>
<tr>
<td></td>
<td>→ Schwerpunkte</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
</tr>
<tr>
<td></td>
<td>→ Wahlfächer: Schwerpunkt: Elektrotechnische Systeme</td>
</tr>
<tr>
<td></td>
<td>→ Schwerpunkte</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
</tr>
<tr>
<td></td>
<td>→ Ergänzungsmodul: Schwerpunkt: Mikro- und Optoelektronik</td>
</tr>
<tr>
<td></td>
<td>→ Schwerpunkte</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
</tr>
<tr>
<td></td>
<td>→ Wahlfächer: Schwerpunkt: Elektrische Energiesysteme</td>
</tr>
<tr>
<td></td>
<td>→ Schwerpunkte</td>
</tr>
</tbody>
</table>

Stand: 09. April 2018
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester

Kernmodule --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte

11. Empfohlene Voraussetzungen: Grundlagen der Elektrotechnik

14. Literatur:
- Vorlesungsbegleitendes Material, Übungsaufgaben
- Kammeyer, K. D.: Nachrichtenübertragung. Verlag Teubner, Stuttgart
- Weitere Literaturangaben im vorlesungsbegleitenden Material.

15. Lehrveranstaltungen und -formen:
- 116602 Übungen Übertragungstechnik I
- 116601 Vorlesung Übertragungstechnik I

17. Prüfungsnummer/n und -name: 11661 Übertragungstechnik I (PL), Schriftlich oder Mündlich, 120 Min., Gewichtung: 1

18. Grundlage für ...

20. Angeboten von: Nachrichtenübertragung
| 4. SWS: | 4 | 7. Sprache: | Deutsch |

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Manfred Berroth
9. Dozenten: Manfred Berroth

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016,</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>→ Ergänzungsmodul --> Schwerpunkt: Elektromobilität --> Schwerpunkte</td>
<td></td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011,</td>
<td></td>
</tr>
<tr>
<td>→ Vorgezogene Master-Module</td>
<td></td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester</td>
<td></td>
</tr>
<tr>
<td>→ Kernmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte</td>
<td></td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</td>
<td></td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte</td>
<td></td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</td>
<td></td>
</tr>
<tr>
<td>→ Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte</td>
<td></td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester</td>
<td></td>
</tr>
<tr>
<td>→ Kernmodule --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte</td>
<td></td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</td>
<td></td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte</td>
<td></td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</td>
<td></td>
</tr>
<tr>
<td>→ Schwerpunkt: Technische Informatik --> Schwerpunkte</td>
<td></td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</td>
<td></td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte</td>
<td></td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</td>
<td></td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte</td>
<td></td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester</td>
<td></td>
</tr>
<tr>
<td>→ Ergänzungsmodul --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte</td>
<td></td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester</td>
<td></td>
</tr>
<tr>
<td>→ Ergänzungsmodul --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte</td>
<td></td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester</td>
<td></td>
</tr>
<tr>
<td>→ Kernmodule --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte</td>
<td></td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</td>
<td></td>
</tr>
<tr>
<td>→ Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte</td>
<td></td>
</tr>
</tbody>
</table>
11. Empfohlene Voraussetzungen: Kenntnisse in Schaltungstechnik
Kenntnisse in höherer Mathematik

12. Lernziele: Die Studierenden besitzen Grundkenntnisse über integrierte
Schaltungen der Digitaltechnik basierend auf Silizium-MOSFETs

13. Inhalt: • Bauelemente der Digitaltechnik
• Digitale Grundschaltungen
• CMOS-Logikschaltungen
• Schaltwerke

14. Literatur: • Vorlesungsskript,
• Klar: Integrierte Digitale Schaltungen MOS/BICMOS, Springer-
 Verlag, Berlin, 1996
• Hoffmann: VLSI-Entwurf - Modelle und Schaltungen, Oldenbourg
 Verlag, München, 1998
• Gray, Meyer: Analysis and Design of Analog Integrated Circuits,
 John Wiley und Sons, NY, 1993
• Geiger, Allen, Strader: VLSI -Design Techniques for Analog and
• Rabaey: Digital Integrated Circuits - A Design Perspective,
 Prentice-Hall, NJ, 1996

15. Lehrveranstaltungen und -formen:
• 116701 Vorlesung Grundlagen Integrierter Schaltungen
• 116702 Übung Grundlagen Integrierter Schaltungen

16. Abschätzung Arbeitsaufwand: Präsenzzeit: 56 h
Selbststudium: 124 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name: 11671 Grundlagen integrierter Schaltungen (PL), Schriftlich, 90 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform: Tafel, Beamer

20. Angeboten von: Elektrische und Optische Nachrichtentechnik
Modul: 11680 Kommunikationsnetze I

2. Modulkürzel: 050901005
5. Moduldaurer: Einsemestrig
3. Leistungspunkte: 6 LP
6. Turnus: Wintersemester
4. SWS: 4
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Andreas Kirstädter
9. Dozenten: Andreas Kirstädter

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>→ Kernmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
</tr>
<tr>
<td>→ Kernmodule --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
</tr>
<tr>
<td>→ Zusatzmodule</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
</tr>
<tr>
<td>→ Ergänzungsmodul --> Schwerpunkt: Elektromobilität --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
</tr>
<tr>
<td>→ Ergänzungsmodul --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
</tr>
<tr>
<td>→ Kernmodule --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
</tr>
<tr>
<td>→ Schwerpunkt: Technische Informatik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
</tr>
<tr>
<td>→ Ergänzungsmodul --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte</td>
</tr>
</tbody>
</table>
11. Empfohlene Voraussetzungen:
• Kenntnisse, wie sie in den Modulen Informatik I und Informatik II vermittelt werden

12. Lernziele:
Verstehen der grundlegenden Architekturprinzipien von Kommunikationsnetzen mit Beispielen aus den Bereichen der Mobilfunknetze, Local Area Networks, Automatisierungsnetze und des Internet, Kenntnis von Aufbau und Funktion ausgewählter Systeme, Protokolle und Dienste. Anwenden der Methoden zur formalen Beschreibung und Bewertung von Kommunikationsnetzen.

13. Inhalt:
Grundprinzipien von Kommunikationsnetzen und -protokollen:
• Übertragung und Multiplextechniken
• Fehlersicherung
• Medienzugriff
• Vermittlung
• Wegesuche
• Transportprotokolle

Spezifikation mit Hilfe der Specification and Description Language (SDL)

Bewertung der Leistungsfähigkeit von Kommunikationsprotokollen

Ausgewählte Dienste und Anwendungen im Internet

Für nähere Informationen, aktuelle Ankündigungen und Material siehe http://www.ikr.uni-stuttgart.de/Xref/CC/L_CN_I

14. Literatur:
• Skript zur Vorlesung
• Tanenbaum: Computer Networks, Prentice-Hall, 2003
• Kurose, Ross: Computer Networking, Addison-Wesley, 2009
• Walke, B.H.: Mobile Radio Networks, John Wiley and Sons, 2002

15. Lehrveranstaltungen und -formen:
• 116802 Übung zu Kommunikationsnetze I
• 116801 Vorlesung Kommunikationsnetze I

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 56 h
Selbststudium: 124 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
11681 Kommunikationsnetze I (PL), Schriftlich oder Mündlich, 120 Min., Gewichtung: 1

18. Grundlage für ... :
Praktische Übungen im Labor Rechnerarchitektur und Kommunikationssysteme I Communication Networks II

19. Medienform:
Notebook-Präsentation

20. Angeboten von:
Kommunikationsnetze und Rechnersysteme
Modul: 11690 Hochfrequenztechnik II

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050600002</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Moduldauber:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

Modulverantwortlicher:
Univ.-Prof. Dr. Jan Hesselbarth

Dozenten:
Jan Hesselbarth

Zuordnung zum Curriculum in diesem Studiengang:

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, Zusatzmodule**
 - Grundlagen der Nachrichtentechnik
 - Grundlagen der Hochfrequenztechnik

Empfohlene Voraussetzungen:
Grundlagen der Nachrichtentechnik
Grundlagend der Hochfrequenztechnik
12. Lernziele:

13. Inhalt:
Grundbegriffe, Vektorpotentiale, Dipole und Dradhantennen, Arrays, Aperturantennen, Hornstrahler, Spiegel, Linsen, planare Antennen, Patchantennen, Breitband-Antennen, kleine Antennen, biologische Effekte, Antennenmesstechnik

14. Literatur:

15. Lehrveranstaltungen und -formen:
• 116901 Vorlesung Antennas
• 116902 Übung Antennas

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 56 h
Selbststudium/Nacharbeitszeit: 124 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
11691 Hochfrequenztechnik II (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für:

19. Medienform:
Tafel, Beamer, Projektor, ILIAS

20. Angeboten von:
Hochfrequenztechnik
Modul: 11700 Halbleitertechnik I

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Jörg Schulze</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Jörg Schulze</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester |
| Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester |
| Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester |
| Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester |
| Ergänzungsmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester |
| Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester |
| Ergänzungsmodule --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester |
| Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester |
| Ergänzungsmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester |
| Ergänzungsmodule --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester |
| Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester |
| Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte |

- Beschreibung eines psn-Übergangs im thermodynamischen Gleichgewicht (Raumladungszonen, Poisson-Gleichung, Depletion-Näherung und Built-in-Spannung),
- Beschreibung eines psn-Übergangs im Nicht-Gleichgewicht (I-U-Charakteristik des idealen pn-Übergangs, Rekombinationsmechanismen in pn-Übergängen, I-U-Charakteristik des realen pn-Übergangs, Durchbruchmechanismen in pn-Übergängen),
- Aufbau und Funktionsweise von Bipolar- und Heterobipolartransistoren: Ideales und reales Verhalten und Hochfrequenzbetrieb,
- Thyristor und lichtgezündeter Thyristor, TRIAC (Triode for Alternating Current).

Als Ausblick wird zum Schluss der Vorlesung auf Leistungsbipolartransistoren mit isoliertem Gate wie dem Gate-Turn-Off-Thyristor (GTO-Thyristor) und dem Insulated Gate Bipolar Transistor (IGBT) und auf BiCMOS-Schaltungen eingegangen.

14. Literatur:

- Hoffmann: Systemintegration, Oldenbourg, 2003
- Löcherer: Halbleiterbauelemente, Teubner, 1992
- Roulsten: An Introduction to the Physics of Semiconductor Devices, Oxford University Press, 1999
• Schulze: Konzepte Silizium-basierter MOS-Bauelemente, Springer, 2005
• Sze: Semiconductor Devices - Physics and Technology, Wiley, 1985
• Thuselt: Physik der Halbleiterbauelemente, Springer, 2005
• Treitinger, Miura-Mattausch (Ed.): Ultra-Fast Silicon Bipolar Technology, Springer, 1988

15. Lehrveranstaltungen und -formen:
 • 117001 Vorlesung Halbleitertechnik 1
 • 117002 Übung Halbleitertechnik 1

16. Abschätzung Arbeitsaufwand:
 Gesamtaufwand: 180 h
 Dabei:
 • 45 h (2 SWS Vorlesung + 2 SWS Übung) Präsenz
 • 135 h Selbststudium

17. Prüfungsnummer/n und -name:
 11701 Halbleitertechnik I (PL), Schriftlich, 90 Min., Gewichtung: 1

18. Grundlage für ...:

19. Medienform:
 • PowerPoint-Präsentationen zu den einzelnen Kapiteln (Beamer)
 • Aufzeichnungen während der Vorlesungen (Notizen, Rechnungen, Skizzen u. ä.) mit Hilfe eines Tablet-PCs (Beamer)
 • Lehrbriefe zu den einzelnen Themenschwerpunkten
 • Ausgedrucktes Skript mit sämtlichen Vorlesungs- und Übungsfolien, Übungsblättern und Lehrbriefen (zum Selbstkostenpreis erhältlich)
 • Vorlesungsaufzeichnungen im MPG4-Format mittels Tablet-PCs und Head-Set
 • Sämtliche Unterlagen werden elektronisch über ILIAS zum Download bereitgestellt.

20. Angeboten von:
 Halbleitertechnik
Modul: 11710 Optoelectronics I

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050513001</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Modulduer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Jürgen Heinz Werner</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Jürgen Heinz Werner</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 6. Semester
 - Ergänzungsmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
 - Kernmodule --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 6. Semester
 - Ergänzungsmodule --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester
 - Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester
 - Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester
 - Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 6. Semester
 - Ergänzungsmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester
 - Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester
 - Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester
 - Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester
 - Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 6. Semester
 - Ergänzungsmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 6. Semester
 - Ergänzungsmodule --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte

11. Empfohlene Voraussetzungen:
12. Lernziele: The students know

- the fundamentals of incoherent and coherent radiation
- the generation of radiation by light emitting diodes and semiconductor laser diodes
- the transport of radiation via glass fibers and its detection using photodetectors

13. Inhalt:

- Basics of incoherent and coherent radiation
- Semiconductor basics
- Excitation and recombination processes in semiconductors
- Light emitting diodes
- Semiconductor lasers
- Glass fibers
- Photodetectors

14. Literatur:

- W. Bludau, Halbleiteroptoelektronik: Die physikalischen Grundlagen der LEDs, Diodenlaser und pn-Photodioden (Carl Hanser, München, 1995).
- W. L. Leigh, Devices for Optoelectronics (Dekker, New York, 1996).

15. Lehrveranstaltungen und -formen:

- 117102 Übung Optoelectronics I
- 117101 Vorlesung Optoelectronics I

16. Abschätzung Arbeitsaufwand:

Presence time: 56 h
Self studies: 124 h
Total: 180 h

17. Prüfungsnummer/n und -name:

11711 Optoelectronics I (PL), Schriftlich oder Mündlich, 120 Min., Gewichtung: 1
11711 group presentation in seminar (60 min, once per year) written exam (60 min, twice per year)

18. Grundlage für ... :

19. Medienform:

- Powerpoint, blackboard

20. Angeboten von:

Physikalische Elektronik
Modul: 11720 Halbleitertechnologie I

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050500003</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Jörg Schulze</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Jörg Schulze</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
- Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
- Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
- Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
- Ergänzungsmodule --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
- Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
- Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
- Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
- Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
- Ergänzungsmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
- Ergänzungsmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
- Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
- Ergänzungsmodule --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte

11. Empfohlene Voraussetzungen:

Empfohlen werden Kenntnisse, wie Sie beispielsweise in Mikroelektronik (ME) vermittelt werden.

• Einführung in die Silizium-basierte Halbleitertechnologie,
• Technologische Grundlagen (Prozessparameter und grundlegende Technologieprozesse),
• Substrat- und Waferherstellung (CZ-Wafer, FZ-Wafer und Silicon-On-Insulator-Wafer),
• Lithographie (optische Lithographie und alternative Verfahren) und Strukturierungsmethoden (nasschemisch, trockenchemisch und physikalisch-chemisch),
• Dotiermethoden: Epitaxie, Diffusion und Ionenimplantation,
• Herstellung und Strukturierung von Isolatorschichten (Standarddielektrika, Low-k-, Medium-k- und high-k-Dielektrika) und Planarisierungsmethoden,
• Herstellung und Strukturierung metallischer Schichten.

Als Ausblick wird zum Schluss der Vorlesung auf die Aufbau- und Verbindungstechnik eingegangen und exemplarische Herstellungsprozesse unterschiedlicher mikroelektronischer Bauelemente werden diskutiert.

14. Literatur:
• Beneking: Halbleitertechnologie. Eine Einführung in die Prozesstechnik von Silizium und III-V Verbindungen, Teubner Verlag, 1984
• Chan, Sze: ULSI-Technology, Mc Graw Hill, 1996
• Hattori (Ed.): Ultraclean Surface Processing of Silicon Wafers, Springer, 1998
• Hilleringmann: Silizium-Halbleitertechnologie, Teubner Verlag, 1996
• v. Münch: Einführung in die Halbleitertechnologie, Teubner Verlag, 1993
• Nijs (Ed.): Advanced Silicon and Semiconducting Silicon-Alloy Based Materials and Devices, Institute of Physics Publishing, 1994
15. Lehrveranstaltungen und -formen:

• 117201 Vorlesung Halbleitertechnologie 1
• 117202 Übung Halbleitertechnologie 1

16. Abschätzung Arbeitsaufwand:

Gesamtaufwand: 180 h
Dabei:
• 45 h (2 SWS Vorlesung + 2 SWS Übung) Präsenz
• 135 h Selbststudium

17. Prüfungsnummer/n und -name:

11721 Halbleitertechnologie I (PL), Schriftlich, 90 Min., Gewichtung: 1

19. Medienform:

• PowerPoint-Präsentationen zu den einzelnen Kapiteln (Beamer)
• Aufzeichnungen während der Vorlesungen (Notizen, Rechnungen, Skizzen u. ä.) mit Hilfe eines Tablet-PCs (Beamer)
• Lehrbriefe zu den einzelnen Themenschwerpunkten
• Ausgedrucktes Skript mit sämtlichen Vorlesungs- und Übungsfolien, Übungsblättern und Lehrbriefen (zum Selbstkostenpreis erhältlich)
• Vorlesungsaufzeichnungen im MPG4-Format mittels Tablet-PCs und Head-Set
• Sämtliche Unterlagen werden elektronisch über ILIAS zum Download bereitgestellt.

20. Angeboten von:

Halbleitertechnik
Modul: 11730 Flachbildschirme

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Nesrine Kammoun</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Norbert Frühauf</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester
→ Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester
→ Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester
→ Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 6. Semester
→ Ergänzungsmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester
→ Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester
→ Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 6. Semester
→ Ergänzungsmodule --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 6. Semester
→ Ergänzungsmodule --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester
→ Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 6. Semester
→ Ergänzungsmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 6. Semester
→ Ergänzungsmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester
→ Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 6. Semester
Kernmodule --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte

11. Empfohlene Voraussetzungen:

12. Lernziele: Die Studierenden

• kennen die in Flachbildschirmen eingesetzten elektrooptischen Effekte und die zugehörigen Ansteuerverfahren
• können grundlegende Dimensionierungen von Flüssigkristallbildschirmen vornehmen
• kennen Verfahren zur elektro-optischen Charakterisierung von Bildschirmen und können wesentliche Leistungsparameter wie Kontrast und Farbort berechnen

13. Inhalt:

• Einsatzgebiete der Flachbildschirmtechnik
• Physiologie des menschlichen Sehens
• Farbdarstellung (Tri-Stimulus Theorie)
• Elektro-optische Eigenschaften von Flüssigkristallen
• Organische Lichtemittierende Dioden
• Elektrophoretische Medien
• Sonstige Elektro-optische Effekte
• Plasmabildschirme
• Passiv- und Aktiv-Matrix Ansteuerverfahren
• Ansteuerschaltungen
• Herstellungsverfahren
• Charakterisierung von Flachbildschirmen

14. Literatur:

• E. Lueder - Liquid Crystal Displays, Wiley, 2001

15. Lehrveranstaltungen und -formen:

• 117301 Vorlesung Flachbildschirme
• 117302 Übung Flachbildschirme

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 56 h
Selbststudium/Nacharbeitszeit: 124 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:

11731 Flachbildschirme (PL), Schriftlich oder Mündlich, 90 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform:

Tafel, Projektor, Beamer, ILIAS

20. Angeboten von:

Bildschirmtechnik
Modul: 12420 Windenergie 1 - Grundlagen Windenergie

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>060320011</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Modulduer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Po Wen Cheng</td>
</tr>
<tr>
<td></td>
<td>Übung: Holger Fürst</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 → Ergänzungsmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 → Ergänzungsmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 → Ergänzungsmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 → Ergänzungsmodule --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 → Ergänzungsmodule --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester

→ Ergänzungsmodul: Schwerpunkt
 Kommunikationssysteme und Signalverarbeitung

11. Empfohlene Voraussetzungen: Technische Mechanik I

12. Lernziele:

• Die Studierenden erlangen Kenntnisse über die Grundlagen der Windenergie, insbesondere über die physikalischen und technischen Prinzipien bei modernen Windenergieanlagen.
• Die Studierenden sind dabei in der Lage einfache physikalische Grundgleichungen und Zusammenhänge herzuleiten und ihre Bedeutung in Bezug auf die Nutzung von Windenergie zu verstehen sowie zu erklären.
• Ausgehend vom Verständnis der einzelnen Teildisziplinen (Aerodynamik, Strukturmechanik, Elektrotechnik etc.) können die Studierenden den Aufbau und die Funktionsweise des Gesamtsystems Windenergieanlage erläutern und auf ausgewählten Gebieten elementare Auslegungs- und Entwurfsberechnungen durchführen.
• Nach Abschluss der Lehrveranstaltung haben die Studierenden die wesentlichen Kompetenzen aufgebaut, die sie befähigen sich in Spezialgebiete im Bereich Windenergie (Komponentenauslegung, Modellierung und Simulation, Windparkplanung etc.) einzuarbeiten.

13. Inhalt:

• Vorlesung
• Übung und Versuch
 Es werden 8 Hörsaalübungen sowie ein Hochlaufversuch im Böenwindkanal angeboten.

14. Literatur:

• lecture notes
• R. Gasch und J. Twele, Windkraftanlagen

15. Lehrveranstaltungen und -formen:

• 124202 Übung Windenergienutzung I
• 124201 Vorlesung Windenergienutzung I

16. Abschätzung Arbeitsaufwand:

• Vorlesung:
 Präsenzzeit 28 Stunden, Selbststudium 62 Stunden
• Übung:
 Präsenzzeit 8 Stunden, Selbststudium 74 Stunden
• Windkanalversuch:
 Präsenzzeit 3 Stunden, Versuchsauarbeitung 5 Stunden

Summe: 180 Stunden

17. Prüfungsnummer/n und -name:

12421 Windenergie 1 - Grundlagen Windenergie (PL), Schriftlich, 90 Min., Gewichtung: 1

Das Versuchsprotokoll des Windkanalversuchs während des Semesters ist Voraussetzung für die Teilnahme an der Prüfung.
Die Prüfung umfasst einen Fragenteil (20 min) und einen Rechenteil (70 min).

<table>
<thead>
<tr>
<th>18. Grundlage für ...</th>
<th>Windenergie 3 - Entwurf von Windenergieanlagen Windenergie 4 - Windenergie-Projekt</th>
</tr>
</thead>
<tbody>
<tr>
<td>19. Medienform:</td>
<td>PowerPoint, Tafelanschrieb, Versuchsdurchführungen</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Windenergie</td>
</tr>
</tbody>
</table>
Modul: 13590 Kraftfahrzeuge I + II

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>070800001</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Modulduer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Nils Widdecke</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Jochen Wiedemann, Nils Widdecke</td>
</tr>
</tbody>
</table>
Schwerpunkt: Elektromobilität --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
Ergänzungsmodul --> Schwerpunkt: Technische Informatik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
Ergänzungsmodul --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
Zusatzmodule
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
Ergänzungsmodul --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
Ergänzungsmodul --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
Kernmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester |

Stand: 09. April 2018
11. Empfohlene Voraussetzungen: Kenntnisse aus den Fachsemestern 1 bis 4

12. Lernziele:

13. Inhalt:
Historie des Automobils, Kfz-Entwicklung, Karosserie, Antriebskonzepte, Fahrleistungen - und widerstände, Leistungsangebot, Fahrgrenzen, Räder und Reifen, Bremsen, Kraftübertragung, Fahrwerk, alternative Antriebskonzepte
Wichtig: Ab WS2015/16 ist die Prüfung ohne Hilfsmittel zu absolvieren.

14. Literatur:
- Wiedemann, J.: Kraftfahrzeuge I-II, Vorlesungsumdruck,
- Reimpell, J.: Fahrwerkstechnik: Grundlagen, Vogel-Fachbuchverlag, 2005

15. Lehrveranstaltungen und -formen:
- 135901 Vorlesung Kraftfahrzeuge I + II
- 135902 Übung Kraftfahrzeuge I + II

16. Abschätzung Arbeitsaufwand:
Vorlesung, Selbststudium

17. Prüfungsnummer/n und -name:
13591 Kraftfahrzeuge I + II (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform:
PPT-Präsentation

20. Angeboten von:
Kraftfahrwesen
<table>
<thead>
<tr>
<th>Modul: 14130 Kraftfahrzeugmechatronik I + II</th>
</tr>
</thead>
</table>

2. Modulkürzel: 070800002
5. Moduldauber: Zweisemestrig
3. Leistungspunkte: 6 LP
6. Turnus: Wintersemester
4. SWS: 4
7. Sprache: Deutsch

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016,
→ Ergänzungsmoduln: Autonomausrichtung
→ Schwerpunkt: Automatisierungs- und Regelungstechnik: Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Schwerpunkt: Elektromobilität: Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
→ Ergänzungsmodul: Mikro- und Optoelektronik: Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Wahlfächer: Elektrotechnische Systeme: Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
→ Ergänzungsmodul: Technische Informatik: Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Wahlfächer: Elektrische Energiesysteme: Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
→ Ergänzungsmodul: Kommunikationssysteme und Signalverarbeitung: Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Wahlfächer: Automatisierungs- und Regelungstechnik: Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Wahlfächer: Mikro- und Optoelektronik: Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Wahlfächer: Kommunikationssysteme und Signalverarbeitung: Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Zusatzmoduln
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
→ Kernmodule: Elektromobilität: Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Wahlfächer: Technische Informatik: Schwerpunkte
11. Empfohlene Voraussetzungen: Grundkenntnisse aus den Fachsemestern 1 bis 4

12. Lernziele:
Die Studenten kennen mechatronische Komponenten in Automobilen, können Funktionsweisen und Zusammenhänge erklären.
Die Studenten können Entwicklungsmethoden für mechatronische Komponenten im Automobil einordnen und anwenden. Wichtige Entwicklungswerkzeuge können sie nutzen.

13. Inhalt:
VL Kfz-Mech I:
- kraftfahrzeugspezifische Anforderungen an die Elektronik
- Bordnetz (Energiemanagement, Generator, Starter, Batterie, Licht)
- Motorelektronik (Zündung, Einspritzung)
- Getriebeelektronik
- Lenkung
- ABS, ASR, ESP, elektromechanische Bremse, Dämpfungsregelung, Reifendrucküberwachung
- Sicherheitssysteme (Airbag, Gurt, Alarmanlage, Wegfahrsperre)
- Komfortsysteme (Tempomat, Abstandsregelung, Klimaanlage)

VL Kfz-Mech II:
- Grundlagen mechatronischer Systeme (Steuerung/Regelung, diskrete Systeme, Echtzeitsysteme, eingebettete Systeme, vernetzte Systeme)
- Systemarchitektur und Fahrzeugentwicklungsprozesse
- Kernprozess zur Entwicklung von mechatronischen Systemen und Software (Schwerpunkt V-Modell)

Laborübungen Kraftfahrzeugmechatronik
- Rapid Prototyping (Simulink)
- Modellbasierte Funktionsentwicklung mit TargetLink
- Elektronik

14. Literatur:
Vorlesungsumdruck: "Kraftfahrzeugmechatronik I" (Reuss)
Schäuffele, J., Zurawka, T.:"Automotive Software Engineering" Vieweg, 2006

15. Lehrveranstaltungen und -formen:
- 141303 Laborübungen Kraftfahrzeugmechatronik
- 141301 Vorlesung Kraftfahrzeugmechatronik I
- 141302 Vorlesung Kraftfahrzeugmechatronik II

16. Abschätzung Arbeitsaufwand:
Vorlesung, Laborübungen, Selbststudium

17. Prüfungsnummer/n und -name:
14131 Kraftfahrzeugmechatronik I + II (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ...:

19. Medienform:
Vorlesung (Beamer), Laborübungen (am PC, betreute Zweiergruppen)

20. Angeboten von:
Kraftfahrzeugmechatronik

Stand: 09. April 2018
Modul: 17110 Entwurf digitaler Systeme

4. SWS: 4 7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Andreas Kirstädter
9. Dozenten: Matthias Meyer

 → Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 → Ergänzungsmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 → Ergänzungsmodule --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Zusatzmodule
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 → Ergänzungsmodule --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 → Ergänzungsmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 → Ergänzungsmodule --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
11. Empfohlene Voraussetzungen: Kenntnisse, wie sie beispielsweise im Modul Informatik II vermittelt werden

12. Lernziele: Der Studierende kann digitale Systeme entwerfen, simulieren und testen, beherrscht die Hardware-Beschreibungssprache VHDL, kennt die physikalischen Randbedingungen beim Aufbau moderner digitaler Schaltungen.

13. Inhalt:
- Entwurfsprozesse und Modularisierung
- Modellierung digitaler Systeme mit VHDL (Grundlegende Konzepte von VHDL, Verhaltens- und Strukturbeschreibung, Typkonzept, sequentielle und nebeneinläufige Anweisungen, Prozeduren und Funktionen, Signale, Bibliotheken)
- Realisierung digitaler Schaltungen (Spannungsversorgung, Übersprechen, Reflexionen und Busabschlüsse, Metastabilität, Realisierungsaspekte bei kombinatorischen und sequentiellen Netzwerken)
- Digitale Bauelemente (Programmierbare Logik, Speicherbausteine)

Für nähere Informationen, aktuelle Ankündigungen und Material siehe http://www.ikr.uni-stuttgart.de/Xref/CC/L_EDS

14. Literatur:
- Vorlesungsskript

15. Lehrveranstaltungen und -formen:
- 171101 Vorlesung Entwurf digitaler Systeme
- 171102 Übung Entwurf digitaler Systeme

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 56 h
- Selbststudium: 124 h
- Gesamt: 180 h

17. Prüfungsnummer/n und -name:
- 17111 Entwurf digitaler Systeme (PL), Mündlich, 120 Min., Gewichtung: 1

18. Grundlage für ...
- Praktische Übungen im Labor Rechnerarchitektur und Kommunikationssysteme I

19. Medienform: Notebook-Präsentationen

20. Angeboten von: Kommunikationsnetze und Rechnersysteme
Modul: 17130 Entwurf digitaler Filter

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>051610003</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Modulduer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>PD Dr.-Ing. Markus Gaida</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Markus Gaida</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, Vorgezogene Master-Module**
 - Wahlfächer -- Schwerpunkt: Elektromobilität -- Schwerpunkte
 - Wahlfächer -- Schwerpunkt: Technische Informatik -- Schwerpunkte
 - Wahlfächer -- Schwerpunkt: Kommunikationssysteme und Signalverarbeitung -- Schwerpunkte
 - Wahlfächer -- Schwerpunkt: Elektrische Energiesysteme -- Schwerpunkte
 - Wahlfächer -- Schwerpunkt: Automatisierungs- und Regelungstechnik -- Schwerpunkte
 - Wahlfächer -- Schwerpunkt: Elektrotechnische Systeme -- Schwerpunkte
 - Wahlfächer -- Schwerpunkt: Automatisierungs- und Regelungstechnik -- Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester**
 - Wahlfächer -- Schwerpunkt: Elektromobilität -- Schwerpunkte
 - Wahlfächer -- Schwerpunkt: Technische Informatik -- Schwerpunkte
 - Wahlfächer -- Schwerpunkt: Kommunikationssysteme und Signalverarbeitung -- Schwerpunkte
 - Wahlfächer -- Schwerpunkt: Elektrische Energiesysteme -- Schwerpunkte
 - Wahlfächer -- Schwerpunkt: Automatisierungs- und Regelungstechnik -- Schwerpunkte
 - Wahlfächer -- Schwerpunkt: Elektrotechnische Systeme -- Schwerpunkte
 - Wahlfächer -- Schwerpunkt: Automatisierungs- und Regelungstechnik -- Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester**
 - Wahlfächer -- Schwerpunkt: Elektromobilität -- Schwerpunkte
 - Wahlfächer -- Schwerpunkt: Technische Informatik -- Schwerpunkte
 - Wahlfächer -- Schwerpunkt: Kommunikationssysteme und Signalverarbeitung -- Schwerpunkte
 - Wahlfächer -- Schwerpunkt: Elektrische Energiesysteme -- Schwerpunkte
 - Wahlfächer -- Schwerpunkt: Automatisierungs- und Regelungstechnik -- Schwerpunkte
 - Wahlfächer -- Schwerpunkt: Elektrotechnische Systeme -- Schwerpunkte
 - Wahlfächer -- Schwerpunkt: Automatisierungs- und Regelungstechnik -- Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 6. Semester**
 - Wahlfächer -- Schwerpunkt: Elektromobilität -- Schwerpunkte
 - Wahlfächer -- Schwerpunkt: Technische Informatik -- Schwerpunkte
 - Wahlfächer -- Schwerpunkt: Kommunikationssysteme und Signalverarbeitung -- Schwerpunkte
 - Wahlfächer -- Schwerpunkt: Elektrische Energiesysteme -- Schwerpunkte
 - Wahlfächer -- Schwerpunkt: Automatisierungs- und Regelungstechnik -- Schwerpunkte
 - Wahlfächer -- Schwerpunkt: Elektrotechnische Systeme -- Schwerpunkte
 - Wahlfächer -- Schwerpunkt: Automatisierungs- und Regelungstechnik -- Schwerpunkte

Stand: 09. April 2018

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 6. Semester
→ Ergänzungsmodule --› Schwerpunkt: Mikro- und Optoelektronik --› Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester
→ Wahlfächer --› Schwerpunkt: Mikro- und Optoelektronik --› Schwerpunkte

11. Empfohlene Voraussetzungen:
Empfohlen werden Kenntnisse, wie sie beispielsweise in der Lehrveranstaltung Signale und Systeme vermittelt werden.

12. Lernziele:

13. Inhalt:
• Filter und Anwendungen, FIR- und IIR-Filter, Blockdiagramm und Signalflussgraph
• Entwurf von FIR-Filtern: linearphasige FIR-Filter, Fenster-Methode, Frequenzabtastmethode, Methode der kleinsten Quadrate, Remez-Algorithmus
• Entwurf von IIR-Filtern: analoge Referenzfilter (Butterworth, Tschebyscheff I und II, Cauer), Frequenztransformation, Methode der invarianten Impulsantwort, Bilineartransformation
• Struktur von FIR-Filtern (Direkt, Kaskade, Lattice), Struktur von IIR-Filtern (Direkt, Kaskade, Parallel, Lattice-Ladder), Levinson-Durbin-Rekursion, Schur-Cohen-Rekursion
• Quantisierungseffekte
• Zahlendarstellung, Fließkomma und Festkomma, Koeffizientenempfindlichkeit, Überlauf und Sättigung, Rundungsverfahren, Polglitter, Rundungsräuschen, Signal-zu-Rausch-Abstand, Grenzyklen
• Entwurf digitaler Filter mit MATLAB
• Abtastratenumsetzung, Dezimation, Interpolation

14. Literatur:
• Skript

15. Lehrveranstaltungen und -formen:
• 171301 Vorlesung Entwurf digitaler Filter
• 171302 Übung Entwurf digitaler Filter

16. Abschätzung Arbeitsaufwand:
Präsenzzzeit: 56 h
Selbststudium/Nacharbeitszeit: 124 h
Gesamt: 180 h
| 17. Prüfungsnummer/n und -name: | 17131 Entwurf digitaler Filter (PL), Schriftlich oder Mündlich, 90 Min., Gewichtung: 1
Schriftliche Prüfung (90 Min.), Prüfung wird zwei mal im Jahr angeboten. Bei geringer Hörerzahl kann die Prüfung mündlich sein, dies wird am Anfang der Vorlesung bekanntgegeben. Im Fall einer mündlichen Prüfung kann dies auch eine mündliche Gruppenprüfung (max. 3 zu prüfende Personen pro Gruppe, ca. 15 Min. pro zu prüfender Person) sein. |
| 18. Grundlage für ... : | |
| 19. Medienform: | Tafel, Projektor, Beamer, CIP-Pool |
| 20. Angeboten von: | Institutsverbund Elektrotechnik und Informationstechnik |
Modul: 17170 Elektrische Antriebe

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache: Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Jörg Roth-Stielow</td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Jörg Roth-Stielow</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Ergänzungsmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte

<table>
<thead>
<tr>
<th>11. Empfohlene Voraussetzungen:</th>
<th>• Kenntnisse vergleichbar "Einführung in die Elektrotechnik I"</th>
</tr>
</thead>
<tbody>
<tr>
<td>12. Lernziele:</td>
<td>Studierende...</td>
</tr>
<tr>
<td></td>
<td>• ...kennen den Aufbau, die Komponenten und die Auslegungskriterien von geregelten elektrischen Antrieben.</td>
</tr>
<tr>
<td></td>
<td>• ...können mechanische Antriebsstränge eines elektromechanischen Antriebssystems mathematisch beschreiben und einfache Aufgabenstellungen lösen.</td>
</tr>
<tr>
<td></td>
<td>• ...können leistungselektronische Stellglieder eines elektromechanischen Antriebssystems mathematisch beschreiben und einfache Aufgabenstellungen lösen.</td>
</tr>
<tr>
<td></td>
<td>• ...können elektrische Maschinen eines elektromechanischen Antriebssystems mathematisch beschreiben und einfache Aufgabenstellungen lösen.</td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>• Grundlagen der Antriebstechnik</td>
</tr>
<tr>
<td></td>
<td>• Elektronische Stellglieder</td>
</tr>
<tr>
<td></td>
<td>• Gleichstrommaschine</td>
</tr>
<tr>
<td></td>
<td>• Drehfeldmaschinen</td>
</tr>
<tr>
<td></td>
<td>• Schröder, Dierk: Elektrische Antriebe 2, Springer, Berlin, 1995</td>
</tr>
<tr>
<td></td>
<td>• Heumann, K.: Grundlagen der Leistungselektronik B. G. Teubner, Stuttgart, 1989</td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 171701 Vorlesung Elektrische Antriebe</td>
</tr>
<tr>
<td></td>
<td>• 171702 Übung Elektrische Antriebe</td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Frontalvorlesung</td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>17171 Elektrische Antriebe (PL), Schriftlich, 120 Min., Gewichtung: 1 Klausur (120 min., 2x pro Jahr)</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Tafel, Folien, Beamer</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Leistungselektronik und Regelungstechnik</td>
</tr>
</tbody>
</table>
Modul: 25940 Verstärkertechnik I+II

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050200013</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>Zweisemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Manfred Berroth</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Markus Grözing</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
- Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
- Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
- Ergänzungsmodule --> Schwerpunkt: Elektronische Systeme --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
- Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
- Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
- Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
- Ergänzungsmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
- Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
- Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte
- Ergänzungsmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
- Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
- Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
- Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
- Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
- Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
- Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
- Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
- Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
11. Empfohlene Voraussetzungen:
Grundkenntnisse in Elektrotechnik,
Grundkenntnisse in Schaltungstechnik
Grundkenntnisse von elektronischen Bauelementen

12. Lernziele:
Die Studierenden verfügen über vertiefte Kenntnisse im Bereich analoge integrierte Schaltungen und integrierte Hochfrequenzschaltungen. Die Studierenden sind in der Lage, solche Schaltungen selbständig zu analysieren und zu entwerfen.

13. Inhalt:
• Analoge Grundschaltungen
• Stromspiegel
• Innerer Aufbau von Operationsverstärkern
• Anwendung von Operationsverstärkern
• Rauscharme Verstärker
• Oszillatoren
• Frequenzumsetzung
• Leistungsverstärker

14. Literatur:
• Zusatzblätter zum Selbststudium
• Aufgaben zur Selbstbearbeitung

Bücher:
• B. Razavi: RF Microelectronics, Prentice Hall, 1997

15. Lehrveranstaltungen und -formen:
• 259401 Vorlesung Verstärkertechnik I
• 259402 Vorlesung Verstärkertechnik II

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 56 h
Selbststudium: 124 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
• 25941 Verstärkertechnik I (PL), Schriftlich, 60 Min., Gewichtung: 1
• 25942 Verstärkertechnik II (PL), Schriftlich, 60 Min., Gewichtung: 1

18. Grundlage für ...

19. Medienform:
Tafel, Beamer

20. Angeboten von:
Elektrische und Optische Nachrichtentechnik
Modul: 29310 Regenerative Energiesysteme

2. Modulkürzel: 050310015
3. Leistungspunkte: 6 LP
4. SWS: 5
5. Modulduauer: Einsemestrig
6. Turnus: Wintersemester
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Stefan Tenbohlen
9. Dozenten: Stefan Tenbohlen, Silke Wieprecht, Harald Drück, Andreas Rettenmeier, Albert Ruprecht, Günter Scheffknecht
10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Vorlesung Regenerative Energiesysteme --> Wahlfächer
 --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 → Übung Regenerative Energiesysteme --> Wahlfächer
 --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 → Vorlesung Regenerative Energiesysteme
 --> Übung Regenerative Energiesysteme --> Wahlfächer
 --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 → Übung Regenerative Energiesysteme --> Wahlfächer
 --> Schwerpunkt: Technische Informatik --> Schwerpunkte
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Vorlesung Regenerative Energiesysteme --> Wahlfächer
 --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 ➔ Vorlesung Regenerative Energiesysteme
 → Ergänzungsmodule -- Schwerpunkt: Technische Informatik
 → Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 ➔ Vorlesung Regenerative Energiesysteme
 → Ergänzungsmodule --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 ➔ Vorlesung Regenerative Energiesysteme
 → Ergänzungsmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 → Ergänzungsmodule --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 ➔ Vorlesung Regenerative Energiesysteme --> Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 ➔ Vorlesung Regenerative Energiesysteme --> Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 → Ergänzungsmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 ➔ Vorlesung Regenerative Energiesysteme --> Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 ➔ Vorlesung Regenerative Energiesysteme --> Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 → Vorlesung Regenerative Energiesysteme --> Ergänzungsmodule --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 ➔ Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 ➔ Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 ➔ Vorlesung Regenerative Energiesysteme --> Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
11. Empfohlene Voraussetzungen:

12. Lernziele:

Die Veranstaltung gibt eine Einführung in Erneuerbaren Energien.

Die Studierenden sind anschließend in der Lage:

• die Bedeutung und die Potenziale verschiedener Erneuerbarer Energien (Solarthermie, Windenergie, Wasserkraft, Biomasse) quantitativ einzuschätzen,
• Berechnungen des Energieertrags und des Wirkungsgrades durchzuführen,
• Erneuerbarer Energien in unterschiedliche Energieanwendungen und ins Energiesystem einzuordnen

13. Inhalt:

• Energiedaten, Umwelt- u. Klimaschutz und erneuerbare Energien, persönlicher Energieverbrauch, Globale Kreisläufe und -bilanzen
• Sonneneinstrahlung, Potentiale der Solarenergienutzung
• Solarthermie
• Windenergie
• Wasserkraft, Meeresströmungs- und Wellenenergie
• Therm. Nutzung von Biomasse, Biotreibstoffe

14. Literatur:

• V. Quaschning, Regenerative Energiesysteme, 6. Aufl., Hanser
• ergänzendes Skriptum und online-Materialien

15. Lehrveranstaltungen und -formen:

• 293102 Übung Regenerative Energiesysteme
• 29310 Vorlesung Regenerative Energiesysteme

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 70 Stunden
Selbststudium: 110 Stunden
Summe: 180 Stunden

17. Prüfungsnummer/n und -name:

29311 Regenerative Energiesysteme (PL), Schriftlich, 90 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform:

PowerPoint, Tafel

20. Angeboten von:

Energieübertragung und Hochspannungstechnik
Modul: 41170 Speichertechnik für elektrische Energie I

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050513050</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Moduldaurer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Kai Peter Birke</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Kai Peter Birke</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10. Zuordnung zum Curriculum in diesem Studiengang:</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, → Ergänzungsmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester → Ergänzungsmoduln --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester → Ergänzungsmoduln --> Schwerpunkt: Technische Energiesysteme --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester → Zusatzmodule</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester → Ergänzungsmoduln --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester → Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester → Schwerpunkt: Elektromobilität --> Schwerpunkte</td>
</tr>
</tbody>
</table>

Stand: 09. April 2018
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester

→ Kernmodule --> Schwerpunkt: Elektromobilität -->
Schwerpunkte

11. Empfohlene Voraussetzungen:

12. Lernziele:
Die Studierenden lernen die Speichertechniken für elektrische Energie kennen.

13. Inhalt:
Aufbau und Funktionsweise von:
- Elektrischen Speichern (Spule, supraleitende Spule, Kondensator, Doppelschichtkondensator)
- Elektromechanischen Speichern (Schwungrad, Gas, Wasser)
Charakterisierung der Speicher anhand charakteristischer Größen wie:
- Energieinhalt
- Leistung (dynamisch/stationär)
- Kosten
- Betriebssicherheit
Überblick über die wichtigsten Messverfahren
Einführung in Ersatzschaltbilder und Modellierung

14. Literatur:
Skript zur Vorlesung, wird im ILIAS regelmäßig hochgeladen, ausführliche Literaturhinweise werden in der ersten Vorlesung bekannt gegeben und mit dem Skript hochgeladen.

15. Lehrveranstaltungen und -formen:
- 411702 Übung Speicher für Elektrische Energie
- 411701 Vorlesung Speicher für Elektrische Energie

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 56 h
Selbststudium: ca. 124 h
Summe: 180h

17. Prüfungsnummer/n und -name:
41171 Speichertechnik für elektrische Energie (PL), Schriftlich, 90 Min., Gewichtung: 1

18. Grundlage für ...

19. Medienform:
Beamer, Tafel

20. Angeboten von:
Elektrische Energiespeichersysteme
Modul: 69050 Technologien und Methoden der Softwaresysteme I

2. Modulkürzel: 050501002
3. Leistungspunkte: 6 LP
4. SWS: 4
5. Modulraumerfordernis: Einsemestrig
6. Turnus: Wintersemester
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Michael Weyrich
9. Dozenten: Michael Weyrich
10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016,
 → Ergänzungsmodule --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011,
 → Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016,
 → Ergänzungsmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016,
 → Ergänzungsmodule --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011,
 → Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011,
 → Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011,
 → Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016,
 → Kernmodule --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011,
 → Schwerpunkt: Technische Informatik --> Schwerpunkte
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016,
 → Kernmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011,
 → Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011,
 → Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte
 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016,
 → Ergänzungsmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte

11. Empfohlene Voraussetzungen: Grundlagen der Softwaretechnik
12. Lernziele:
13. Inhalt:
 Grundbegriffe der Softwaretechnik, Softwareentwicklungsprozesse und Vorgehensmodelle, Requirements Engineering, Systemanalyse, Softwareentwurf, Implementierung,
Softwareprüfung, Projektmanagement, Softwaretechnik-Werkzeuge, Dokumentation

14. Literatur:
Vorlesungsskript,
Wiegers, K.: Software-Requirements, Microsoft Press, 2005
Vorlesungsportal mit Vorlesungsaufzeichnung auf http://www.ias.uni-stuttgart.de/st1/

15. Lehrveranstaltungen und -formen:
• 690501 Vorlesung Technologien und Methoden der Softwaresysteme I
• 690502 Übung Technologien und Methoden der Softwaresysteme I

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 56 h
Selbststudium: ca. 124 h

17. Prüfungsnummer/n und -name:
• 69051 Technologien und Methoden der Softwaresysteme I (PL), Schriftlich, 120 Min., Gewichtung: 1
• 69052 Technologien und Methoden der Softwaresysteme I (USL), Sonstige, Gewichtung: 1
Erfolgreiche Bearbeitung eines Kleinprojekts während des Semesters

18. Grundlage für ...

19. Medienform:

20. Angeboten von: Automatisierungstechnik und Softwaresysteme
370 Schwerpunkt: Elektromobilität

Zugeordnete Module:

- 11540 Regelungstechnik I
- 11550 Leistungselektronik I
- 11580 Elektrische Maschinen I
- 13590 Kraftfahrzeuge I + II
- 14130 Kraftfahrzeugmechatronik I + II
- 371 Wahlfächer
- 41170 Speichertechnik für elektrische Energie I
Modul: 11540 Regelungstechnik I

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>051010012</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Modulduer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Jörg Roth-Stielow</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Jörg Roth-Stielow</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester

- Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester

- Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester

- Zusatzmodule

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester

- Ergänzungsmodule --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester

- Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester

- Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester

- Vorgezogene Master-Module

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester

- Ergänzungsmodul --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester

- Ergänzungsmodul --> Schwerpunkt: Technische Informatik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester

- Kernmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester

- Kernmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester

- Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester

- Kernmodule --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester |
| → Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester |
| → Schwerpunkt: Elektromobilität --> Schwerpunkte |

11. Empfohlene Voraussetzungen: | Kenntnisse vergleichbar... |
| ...Höhere Mathematik I, II, III |
| ...Experimentalphysik |
| ...Grundlagen der Elektrotechnik |
| ...Elektrische Energietechnik |
| ...Signale und Systeme |
| ...Schaltungstechnik |

12. Lernziele: | Studierende... |
| •...können eine Regelstrecke modellieren und kennen die wichtigsten Regelsysteme. |
| •...können diese Anordnungen mathematisch beschreiben, hinsichtlich ihrer Stabilität beurteilen und Aufgabenstellungen lösen. |

13. Inhalt: | • Beschreibung von Übertragungsstrecken |
| • Stabilität von Regelsystemen |
| • Herkömmliche Regelsysteme |
| • Regelsysteme mit Rückführung eines vollständigen Satzes von Zustandsvariablen |
| • Echtes Integralverhalten |
| • Beobachter |
| • Systemführung nach dem Prinzip unterlagerter Schleifen |
| • Systeme mit einem Wechsel der Regelgröße |

| • Unbehauen, H.: Regelungstechnik 1, Vieweg, Braunschweig, 1989 |
| • Leonhard, W.: Einführung in die Regelungstechnik, Vieweg, Braunschweig, 1992 |

15. Lehrveranstaltungen und -formen: | • 115401 Vorlesung Regelungstechnik I |
| • 115402 Übung Regelungstechnik I |

16. Abschätzung Arbeitsaufwand: | Frontalvorlesung |

17. Prüfungsnummer/n und -name: | 11541 Regelungstechnik I (PL), Schriftlich, 120 Min., Gewichtung: 1 |
| Klausur (120 min., 2x pro Jahr) |

18. Grundlage für ...: | Regelungstechnik II |

19. Medienform: | Tafel, Folien, Beamer |

20. Angeboten von: | Leistungselektronik und Regelungstechnik |
Modul: 11550 Leistungselektronik I

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>051010011</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Jörg Roth-Stielow</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Jörg Roth-Stielow</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte

- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte

- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte

- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte

- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 → Ergänzungsmodule --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte

- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 → Kernmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte

- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte

- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 → Ergänzungsmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte

- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 → Ergänzungsmodule --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte

- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 → Kernmodule --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte

- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte

- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte

- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 → Kernmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
11. Empfohlene Voraussetzungen:
Kenntnisse vergleichbar Elektrische Energietechnik I
Kenntnisse vergleichbar Elektrische Energietechnik II

12. Lernziele:
- Studierende...
 - ...kennen die wichtigsten potentialverbindenden und
 potentialtrennenden Schaltungen der Leistungselektronik
 mit abschaltbaren Ventilen und die zugehörigen
 Modulationsverfahren.
 - ...können diese Anordnungen mathematisch beschreiben und
 Aufgabenstellungen lösen.
 - ...kennen die grundlegenden Prinzipien der Meßverfahren für
 Mischströme.

13. Inhalt:
- Abschaltbare Leistungshalbleiter
- Schaltungstopologien potentialverbindender Stellglieder
- Schaltungstopologien potentialtrennender Gleichstromsteller
- Modulationsverfahren
- Strommeßtechnik in der Leistungselektronik

14. Literatur:
- Heumann, K.: Grundlagen der Leistungselektronik, B. G.
 Teubner, Stuttgart, 1989
- Mohan, Ned: Power Electronics, John Wiley und Sons, Inc.,
 2003

15. Lehrveranstaltungen und -formen:
- 115501 Vorlesung Leistungselektronik I
- 115502 Übung Leistungselektronik I

16. Abschätzung Arbeitsaufwand:
Frontalvorlesung

17. Prüfungsnummer/n und -name:
11551 Leistungselektronik I (PL), Schriftlich, 120 Min., Gewichtung: 1
Klausur (120 min., 2x pro Jahr)

18. Grundlage für ... :

19. Medienform:
Tafel, Folien, Beamer

20. Angeboten von:
Leistungselektronik und Regelungstechnik
Modul: 11580 Elektrische Maschinen I

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>052601011</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Nejila Parspour
9. Dozenten: Nejila Parspour

10. Zuordnung zum Curriculum in diesem Studiengang:

| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester |
| Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester |
| Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester |
| Schwerpunkt: Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester |
| Schwerpunkt: Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester |
| Schwerpunkt: Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester |
| Schwerpunkt: Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester |
| Kernmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester |
| Kernmodule --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester |
| Kernmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester |
| Kernmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester |
| Kernmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester |
| Kernmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte |
→ Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester

→ Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester

→ Schwerpunkt: Elektromobilität --> Schwerpunkte

11. Empfohlene Voraussetzungen:

13. Inhalt:
· Magnetismus und Grundlagen der magnetischen Kreise (Energie, Reluktanzkraft)
· Antriebstechnische Zusammenhänge
· Verluste in elektrischen Maschinen
· Berechnung von magnetischen Luftspaltfeldern von einfachen Wickelschemata in Drehfeldmaschinen
· Behandelte Maschinentypen:

1) **Reluktanzmaschine**: Aufbau und Funktion, Ersatzschaltbilder, Energiefluss, Kennlinien, Bauformen und Einsatzgebiete
2) **Synchronmaschine**: Aufbau und Funktion, Ersatzschaltbilder, Energiefluss, mathematische Zusammenhänge, Kennlinien, vollständiges Ersatzschaltbild, Drehzahlstellverfahren, Brems- und Anlaufverfahren, Bauformen und Einsatzgebiete
3) **Asynchronmaschine**: Aufbau und Funktion, Ersatzschaltbilder, Energiefluss, mathematische Zusammenhänge, Kennlinien, Drehzahlstellverfahren, Brems- und Anlaufverfahren, Bauformen und Einsatzgebiete

14. Literatur:
· Richter, Rudolf: Elektrische Maschinen, Verlag von Julius Springer, Berlin, 1936

15. Lehrveranstaltungen und -formen:
· 115801 Vorlesung Elektrische Maschinen I
· 115802 Übung Elektrische Maschinen I

16. Abschätzung Arbeitsaufwand:

 Präsenzzeit: 56 h
 Selbststudium/Nacharbeitszeit: 124 h
 Summe: 180 h

17. Prüfungsnummer/n und -name:
 11581 Elektrische Maschinen I (PL), Schriftlich, 120 Min., Gewichtung: 1
<table>
<thead>
<tr>
<th>18. Grundlage für ... :</th>
<th>Elektrische Maschinen II</th>
</tr>
</thead>
<tbody>
<tr>
<td>19. Medienform:</td>
<td>Beamer, Tafel, ILIAS</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Elektrische Energiewandlung</td>
</tr>
</tbody>
</table>
Modul: 13590 Kraftfahrzeuge I + II

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Nils Widdecke</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 9. Dozenten: | Jochen Wiedemann
| | Nils Widdecke |
| | → Schwerpunkt: Elektromobilität --> Schwerpunkte
| | → Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
| | → Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
| | → Ergänzungsmoduule --> Schwerpunkt: Technische Informatik --> Schwerpunkte
| | → Ergänzungsmoduule --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
| | → Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte
| | → Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
| | → Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
| | → Kernmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte
| | → Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte

Stand: 09. April 2018
Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester

Ergänzungsmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte

11. Empfohlene Voraussetzungen:
Kenntnisse aus den Fachsemestern 1 bis 4

12. Lernziele:

13. Inhalt:
Historie des Automobils, Kfz-Entwicklung, Karosserie, Antriebskonzepte, Fahrleistungen - und widerstände, Leistungsangebot, Fahrgrenzen, Räder und Reifen, Bremsen, Kraftübertragung, Fahrwerk, alternative Antriebskonzepte

Wichtig: Ab WS2015/16 ist die Prüfung ohne Hilfsmittel zu absolvieren.

14. Literatur:
- Wiedemann, J.: Kraftfahrzeuge I + II, Vorlesungsumdruck,
- Reimpell, J.: Fahrwerkstechnik: Grundlagen, Vogel-Fachbuchverlag, 2005

15. Lehrveranstaltungen und -formen:
- 135901 Vorlesung Kraftfahrzeuge I + II
- 135902 Übung Kraftfahrzeuge I + II

16. Abschätzung Arbeitsaufwand:
Vorlesung, Selbststudium

17. Prüfungsnummer/n und -name:
13591 Kraftfahrzeuge I + II (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ...

19. Medienform:
PPT-Präsentation

20. Angeboten von:
Kraftfahrwesen
<table>
<thead>
<tr>
<th>Modul: 14130 Kraftfahrzeugmechatronik I + II</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS: 4</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Stand: 09. April 2018
11. Empfohlene Voraussetzungen: Grundkenntnisse aus den Fachsemestern 1 bis 4

12. Lernziele:
Die Studenten kennen mechatronische Komponenten in Automobilen, können Funktionsweisen und Zusammenhänge erklären.
Die Studenten können Entwicklungsmethoden für mechatronische Komponenten im Automobil einordnen und anwenden. Wichtige Entwicklungswerkzeuge können sie nutzen.

13. Inhalt:

VL Kfz-Mech I:
- kraftfahrzeugspezifische Anforderungen an die Elektronik
- Bordnetz (Energiemanagement, Generator, Starter, Batterie, Licht)
- Motorelektronik (Zündung, Einspritzung)
- Getriebeelektronik
- Lenkung
- ABS, ASR, ESP, elektromechanische Bremse, Dämpfungsregelung, Reifendrucküberwachung
- Sicherheitssysteme (Airbag, Gurt, Alarmanlage, Wegfahrsperrre)
- Komfortsysteme (Tempomat, Abstandsregelung, Klimaanlage)

VL Kfz-Mech II:
- Grundlagen mechatronischer Systeme (Steuerung/Regelung, diskrete Systeme, Echtzeitsysteme, eingebettete Systeme, vernetzte Systeme)
- Systemarchitektur und Fahrzeugentwicklungsprozesse
- Kernprozess zur Entwicklung von mechatronischen Systemen und Software (Schwerpunkt V-Modell)

Laborübungen Kraftfahrzeugmechatronik
- Rapid Prototyping (Simulink)
- Modellbasierte Funktionsentwicklung mit TargetLink
- Elektronik

14. Literatur:
Vorlesungsumdruck: "Kraftfahrzeugmechatronik I" (Reuss)

15. Lehrveranstaltungen und -formen:
- 141303 Laborübungen Kraftfahrzeugmechatronik
- 141301 Vorlesung Kraftfahrzeugmechatronik I
- 141302 Vorlesung Kraftfahrzeugmechatronik II

16. Abschätzung Arbeitsaufwand:
Vorlesung, Laborübungen, Selbststudium

17. Prüfungsnummer/n und -name:
- 14131 Kraftfahrzeugmechatronik I + II (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ...

19. Medienform:
Vorlesung (Beamer), Laborübungen (am PC, betreute Zweiergruppen)

20. Angeboten von:
Kraftfahrzeugmechatronik
371 Wahlfächer

Zugeordnete Module:

11550 Leistungselektronik I
11560 Elektrische Energienetze I
11570 Hochspannungstechnik I
11580 Elektrische Maschinen I
11590 Photovoltaik I
11610 Technische Informatik I
11620 Automatisierungstechnik I
11640 Digitale Signalverarbeitung
11650 Hochfrequenztechnik I
11660 Übertragungstechnik I
11670 Grundlagen integrierter Schaltungen
11680 Kommunikationsnetze I
11690 Hochfrequenztechnik II
11700 Halbleitertechnik I
11710 Optoelectronics I
11720 Halbleitertechnologie I
11730 Flachbildschirme
11740 Elektromagnetische Verträglichkeit
11750 Numerische Feldberechnung I
12420 Windenergie I - Grundlagen Windenergie
17110 Entwurf digitaler Systeme
17130 Entwurf digitaler Filter
17170 Elektrische Antriebe
25940 Verstärkertechnik I+II
29310 Regenerative Energiesterne
69050 Technologien und Methoden der Softwaresysteme I
Modul: 11550 Leistungselektronik I

2. Modulkürzel: 051010011
5. Modulduauer: Einsemestrig
3. Leistungspunkte: 6 LP
6. Turnus: Wintersemester
4. SWS: 4
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Jörg Roth-Stielow
9. Dozenten: Jörg Roth-Stielow

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>PoZ: Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>→ Wahlfächer -- Schwerpunkt: Technische Informatik -- Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
</tr>
<tr>
<td>→ Schwerpunkt: Elektrotechnische Systeme -- Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
</tr>
<tr>
<td>→ Wahlfächer -- Schwerpunkt: Elektromobilität -- Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
</tr>
<tr>
<td>→ Schwerpunkt: Elektrische Energiesysteme -- Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
</tr>
<tr>
<td>→ Ergänzungsmodule -- Schwerpunkt: Mikro- und Optoelektronik -- Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
</tr>
<tr>
<td>→ Kernmodule -- Schwerpunkt: Elektromobilität -- Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
</tr>
<tr>
<td>→ Wahlfächer -- Schwerpunkt: Mikro- und Optoelektronik -- Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
</tr>
<tr>
<td>→ Ergänzungsmodule -- Schwerpunkt: Elektromobilität -- Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
</tr>
<tr>
<td>→ Ergänzungsmodule -- Schwerpunkt: Kommunikationssysteme und Signalverarbeitung -- Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
</tr>
<tr>
<td>→ Kernmodule -- Schwerpunkt: Automatisierungs- und Regelungstechnik -- Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
</tr>
<tr>
<td>→ Wahlfächer -- Schwerpunkt: Kommunikationssysteme und Signalverarbeitung -- Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
</tr>
<tr>
<td>→ Schwerpunkt: Automatisierungs- und Regelungstechnik -- Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
</tr>
<tr>
<td>→ Kernmodule -- Schwerpunkt: Elektrische Energiesysteme -- Schwerpunkte</td>
</tr>
</tbody>
</table>
11. Empfohlene Voraussetzungen:
Kenntnisse vergleichbar Elektrische Energiotechnik I
Kenntnisse vergleichbar Elektrische Energiotechnik II

12. Lernziele:
Studierende...

• ...kennen die wichtigsten potentialverbindenden und
potentialtrennenden Schaltungen der Leistungselektronik
mit abschaltbaren Ventilen und die zugehörigen
Modulationsverfahren.
• ...können diese Anordnungen mathematisch beschreiben und
Aufgabenstellungen lösen.
• ...kennen die grundlegenden Prinzipien der Meßverfahren für
Mischströme.

13. Inhalt:
• Abschaltbare Leistungshalbleiter
• Schaltungstopologien potentialverbindender Stellglieder
• Schaltungstopologien potentialtrennender Gleichstromsteller
• Modulationsverfahren
• Strommeßtechnik in der Leistungselektronik

14. Literatur:
• Heumann, K.: Grundlagen der Leistungselektronik, B. G.
Teubner, Stuttgart, 1989
• Mohan, Ned: Power Electronics, John Wiley und Sons, Inc.,
2003

15. Lehrveranstaltungen und -formen:
• 115501 Vorlesung Leistungselektronik I
• 115502 Übung Leistungselektronik I

16. Abschätzung Arbeitsaufwand:
Frontalvorlesung

17. Prüfungsnummer/n und -name:
11551 Leistungselektronik I (PL), Schriftlich, 120 Min., Gewichtung: 1
Klausur (120 min., 2x pro Jahr)

18. Grundlage für ...:

19. Medienform:
Tafel, Folien, Beamer

20. Angeboten von:
Leistungselektronik und Regelungstechnik
Modul: 11560 Elektrische Energienetze I

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Stefan Tenbohlen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Stefan Tenbohlen</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
→ Ergänzungsmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
→ Kernmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
→ Ergänzungsmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
→ Ergänzungsmodule --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
→ Ergänzungsmodule --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
→ Ergänzungsmodule --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte

11. Empfohlene Voraussetzungen:
- Elektrische Energietechnik

12. Lernziele:

13. Inhalt:
- Aufgaben des elektrischen Energienetzes, Smart Grids
- Einpolige Ersatzschaltungen der Betriebselemente für symmetrische Betriebsweise
- Berechnung von Energieübertragungsanlagen und -netzen
- Betrieb elektrischer Energieversorgungsnetze
- Kurzschlussströme bei symmetrischem Kurzschluss
- Symmetrische Komponenten

14. Literatur:
- Oeding, Oswald: Elektrische Kraftwerke und Netze Springer-Verlag, 6. Aufl., 2004
- Heuck, Dettmann: Elektrische Energieversorgung Vieweg, Braunschweig/Wiesbaden, 6. Aufl., 2005
- Schwab: Elektroenergiesysteme, Springer-Verlag, 1. Aufl., 2006

15. Lehrveranstaltungen und -formen:
- 115601 Vorlesung Elektrische Energienetze 1
- 115602 Übung Elektrische Energienetze 1

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 56 h
Selbststudium/Nacharbeitszeit: 124 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
11561 Elektrische Energienetze I (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ... :
Elektrische Energienetze II

19. Medienform:
PowerPoint, Tafelanschrieb

20. Angeboten von:
Energieübertragung und Hochspannungstechnik
Modul: 11570 Hochspannungstechnik I

<table>
<thead>
<tr>
<th>Ausgabe</th>
<th>Stand: 09. April 2018</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seite</td>
<td>476 von 554</td>
</tr>
</tbody>
</table>

Modul: 11570 Hochspannungstechnik I

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050310003</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>SWS:</td>
<td>4</td>
</tr>
<tr>
<td>Modulverantwortlich:</td>
<td>Univ.-Prof. Dr.-Ing. Stefan Tenbohlen</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Stefan Tenbohlen</td>
</tr>
<tr>
<td>Modul:</td>
<td>Hochspannungstechnik I</td>
</tr>
<tr>
<td>Modulkürzel:</td>
<td>050310003</td>
</tr>
<tr>
<td>Modul:</td>
<td>Hochspannungstechnik I</td>
</tr>
<tr>
<td>Modulkürzel:</td>
<td>050310003</td>
</tr>
</tbody>
</table>

Modulverantwortlich
Univ.-Prof. Dr.-Ing. Stefan Tenbohlen

Dozenten
Stefan Tenbohlen

Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Ergänzungsmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 → Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 → Ergänzungsmodule --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 → Ergänzungsmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 → Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 → Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 → Kernmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
11. Empfohlene Voraussetzungen:	• Elektrische Energietechnik

---|---

13. Inhalt: | • Auftreten und Anwendung hoher Spannungen bzw. Ströme |
| | • Einführung in die Hochspannungsversuchstechnik |
| | • Berechnung elektrischer Felder |
| | • Grundlagen der Hochspannungsisoliertechnik |
	• Isolierstoffsysteme in Hochspannungsgeräten

| | • Beyer, Boeck, Möller, Zaengl: Hochspannungstechnik Springer-Verlag, Berlin, 1986 |
| | • Kind, Feser: Hochspannungs-Versuchstechnik Vieweg, Braunschweig, 1995 |
	• Kind, Kärner: Hochspannungs-Isoliertechnik Vieweg, Braunschweig, 1982

15. Lehrveranstaltungen und -formen: | • 115702 Übung Hochspannungstechnik 1 |
| | • 115701 Vorlesung Hochspannungstechnik 1 |
---|---

16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 56 h |
| | Selbstdien/Nacharbeitszeit: 124 h |
| | Gesamt: 180 h |
---|---

17. Prüfungsnummer/n und -name: | 11571 Hochspannungstechnik I (PL), Schriftlich, 120 Min., Gewichtung: 1 |
---|---

18. Grundlage für ... : |
---|---

19. Medienform: | PowerPoint, Tafelanschrieb |
---|---

20. Angeboten von: | Energieübertragung und Hochspannungstechnik |
---|---
Modul: 11580 Elektrische Maschinen I

2. Modulkürzel: 052601011
3. Leistungspunkte: 6 LP
4. SWS: 4
5. Moduldauer: Einsemestrig
6. Turnus: Wintersemester
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Nejila Parspour
9. Dozenten: Nejila Parspour

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 → Ergänzungsmodule --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 → Ergänzungsmodule --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 → Kernmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 → Ergänzungsmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 → Kernmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Ergänzungsmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte
 → Kernmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
11. Empfohlene Voraussetzungen:

12. Lernziele:
Studierende können magnetische Kreise analysieren und berechnen. Sie kennen den Aufbau und die Funktionsweise von Drehfeldmaschinen. Sie haben grundlegende Kenntnisse im Bereich der Steuerung und Modellierung von Drehfeldmaschinen.

13. Inhalt:
- Magnetismus und Grundlagen der magnetischen Kreise (Energie, Reluktanzkraft)
- Antriebstechnische Zusammenhänge
- Verluste in elektrischen Maschinen
- Berechnung von magnetischen Luftspaltfeldern von einfachen Wickelschemata in Drehfeldmaschinen
- Behandelte Maschinentypen:
 1) **Reluktanzmaschine**: Aufbau und Funktion, Ersatzschaltbilder, Energiefluss, Kennlinien, Bauformen und Einsatzgebiete
 2) **Synchronmaschine**: Aufbau und Funktion, Ersatzschaltbilder, Energiefluss, mathematische Zusammenhänge, Kennlinien, vollständiges Ersatzschaltbild, Drehzahlstellverfahren, Brems- und Anlaufverfahren, Bauformen und Einsatzgebiete
 3) **Asynchronmaschine**: Aufbau und Funktion, Ersatzschaltbilder, Energiefluss, mathematische Zusammenhänge, Kennlinien, Drehzahlstellverfahren, Brems- und Anlaufverfahren, Bauformen und Einsatzgebiete

14. Literatur:

15. Lehrveranstaltungen und -formen:
- 115801 Vorlesung Elektrische Maschinen I
- 115802 Übung Elektrische Maschinen I

16. Abschätzung Arbeitsaufwand:
- **Präsenzzeit**: 56 h
- **Selbststudium/Nacharbeitszeit**: 124 h
- **Summe**: 180 h

17. Prüfungsnummer/n und -name:
- 11581 Elektrische Maschinen I (PL), Schriftlich, 120 Min., Gewichtung: 1
<table>
<thead>
<tr>
<th>18. Grundlage für ... :</th>
<th>Elektrische Maschinen II</th>
</tr>
</thead>
<tbody>
<tr>
<td>19. Medienform:</td>
<td>Beamer, Tafel, ILIAS</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Elektrische Energiewandlung</td>
</tr>
</tbody>
</table>
Modul: 11590 Photovoltaik I

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050513002</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Jürgen Heinz Werner</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Jürgen Heinz Werner</td>
</tr>
</tbody>
</table>

Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4.
- Kernmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
- Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4.
- Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte
- Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4.
- Kernmodule --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4.
- Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4.
- Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4.
- Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4.
- Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4.
- Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4.
- Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4.
- Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
11. Empfohlene Voraussetzungen:
Grundkenntnisse über Halbleitermaterialien und Halbleiterdioden, z.B. aus Mikroelektronik I

12. Lernziele:
Die Studierenden kennen
- das Potential der Sonnenstrahlung
- die Funktionsweise von Solarzellen
- die wichtigsten Technologien der Herstellung von Solarmodulen
- die Grundprinzipien von Wechselrichtern
- die Energieerträge verschiedener Photovoltaik-Technologien
- den aktuellen Stand des Photovoltaikmarktes und der Kosten von Photovoltaik-Strom

13. Inhalt:
- Der Photovoltaische Effekt (Zelle, Modul, Anlage)
- Solarstrahlung und Energieumsatz in Deutschland
- Grundprinzip und Kenngrößen von Solarzellen
- Ersatzschaltbilder von Solarzellen
- Maximaler Wirkungsgrad
- Photovoltaik-Materialien und -Technologien
- Modultechnik
- Photovoltaische Systemtechnik
- (Jahres-) Energieerträge von Photovoltaiksystemen

14. Literatur:
- Goetzberger, Voß, Knobloch, Sonnenenergie: Photovoltaik, Teubner, 1994
- P. Würfel, Physik der Solarzellen, Spektrum, 1995
- M. A. Green, Solar Cells - Operating Principles, Technology and System Applications, Centre for Photovoltaic Devices and Systems, Sydney, 1986
- F. Staiß, Photovoltaik - Technik, Potentiale und Perspektiven der solaren Stromerzeugung, Vieweg, 1996

15. Lehrveranstaltungen und -formen:
- 115901 Vorlesung Photovoltaik I
- 115902 Übungen Photovoltaik I

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 56 h
Selbststudium/Nacharbeitszeit: 142 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
11591 Photovoltaik I (PL), Schriftlich, 90 Min., Gewichtung: 1

18. Grundlage für ...:
Photovoltaik II

19. Medienform:
Powerpoint, Tafel

20. Angeboten von:
Physikalische Elektronik
Modul: 11610 Technische Informatik I

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Andreas Kirstädter
9. Dozenten: Andreas Kirstädter, Matthias Meyer

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>Modul</th>
<th>Schwerpunkte</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
<td>→ Zusatzmodule</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
<td>→ Kernmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
<td>→ Schwerpunkt: Technische Informatik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
<td>→ Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
<td>→ Ergänzungsmodule --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
<td>→ Ergänzungsmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
<td>→ Ergänzungsmodule --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
<td>→ Ergänzungsmodul --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
<td>→ Ergänzungsmodul --> Schwerpunkt: Elektromobilität --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
<td>→ Ergänzungsmodul --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
<td>→ Ergänzungsmodul --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte</td>
</tr>
</tbody>
</table>
11. Empfohlene Voraussetzungen: Kenntnisse, wie sie in den Modulen Grundlagen der Programmierung sowie Grundlagen der Informationsverarbeitung vermittelt werden,

13. Inhalt:
 • Einfache Einadressmaschine, Elemente und Mechanismen der Register-Transfer-Ebene
 • Prozessorbaugruppen und Mikroprogrammierung
 • Grundkonzepte von CISC-Prozessoren
 • Grundkonzepte und Mechanismen von Betriebssystemen
 • Aufbau von Rechnersystemen einschl. Ein-/Ausgabe

14. Literatur:

15. Lehrveranstaltungen und -formen:
 • 116102 Übung zu Technische Informatik I
 • 116101 Vorlesung Technische Informatik I

16. Abschätzung Arbeitsaufwand: Vorlesung, Übungen und Selbststudium

17. Prüfungsnummer/n und -name: 11611 Technische Informatik I (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform:
 • Vortrag mit Folien
 • Tafelanschriebe

20. Angeboten von: Kommunikationsnetze und Rechnersysteme
Modul: 11620 Automatisierungstechnik I

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050501003</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Michael Weyrich</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Michael Weyrich</td>
</tr>
<tr>
<td></td>
<td>→ Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</td>
</tr>
<tr>
<td></td>
<td>→ Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</td>
</tr>
<tr>
<td></td>
<td>→ Zusatzmodule</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester</td>
</tr>
<tr>
<td></td>
<td>→ Ergänzungsmodulte --> Schwerpunkt: Technische Informatik --> Schwerpunkte</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</td>
</tr>
<tr>
<td></td>
<td>→ Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</td>
</tr>
<tr>
<td></td>
<td>→ Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</td>
</tr>
<tr>
<td></td>
<td>→ Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester</td>
</tr>
<tr>
<td></td>
<td>→ Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester</td>
</tr>
<tr>
<td></td>
<td>→ Wertungsmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester</td>
</tr>
<tr>
<td></td>
<td>Kernmodule --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</td>
</tr>
<tr>
<td></td>
<td>Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte</td>
</tr>
<tr>
<td></td>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester</td>
</tr>
<tr>
<td></td>
<td>→ Ergänzungsmodulte --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte</td>
</tr>
</tbody>
</table>
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester

→ Ergänzungsmodule --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte

11. Empfohlene Voraussetzungen:
• Grundlagen der Elektrotechnik, Informatik und Mathematik

12. Lernziele:
Die Studierenden
• besitzen grundlegende Kenntnisse über rechnerbasierte Automatisierungssysteme
• setzen sich mit Kommunikationssystemen der Automatisierungstechnik aus einander
• wenden grundlegende Methoden und Verfahren der Echtzeit-Programmierung an
• lernen spezifische Programmiersprachen der Automatisierungstechnik kennen

13. Inhalt:
• Grundlegende Begriffe der Automatisierungstechnik
• Automatisierungs-Gerätesysteme und -strukturen
• Prozessperipherie – Schnittstellen zwischen dem Automatisierungscomputersystem und dem technischen Prozess (Prozesssignalfassung und -überwachung)
• Grundlagen zu Kommunikationssystemen in der Automatisierungstechnik (Feldbussysteme, drahtlose Kommunikation)
• Grundlagen der Echtzeitprogrammierung (Synchronre und Asynchrone Programmierung, Scheduling-Algorithmen, Synchronisationskonzepte)
• Programmiersprachen für die Automatisierungstechnik (Programmierung von Speicherprogrammierbaren und Pneumatischen Steuerungen)

14. Literatur:
• Vorlesungsskript
• Lauber, Göhner: Prozessautomatisierung Band 1 (3. Auflage), Springer, 1999
• Früh, Maier: Handbuch der Prozessautomatisierung (3. Auflage) Oldenbourg Industrieverlag, 2004
• Wellenreuther Automatisieren mit SPS (3. Auflage), Vieweg, 2005
• Materialien und Vorlesungsaufzeichnungen im ILIAS

15. Lehrveranstaltungen und -formen:
• 116201 Vorlesung Automatisierungstechnik I
• 116202 Übung Automatisierungstechnik I

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 56 h
Selbststudium: 124 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
11621 Automatisierungstechnik I (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ...:
Automatisierungstechnik II

19. Medienform:
Beamerpräsentation mit Aufzeichnung der Vorlesungen und Übungen

20. Angeboten von:
Automatisierungstechnik und Softwaresysteme
Modul: 11640 Digitale Signalverarbeitung

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Bin Yang</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Bin Yang</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 - Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 - Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 - Kernmodule --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 - Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 - Schwerpunkt: Technische Informatik --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 - Ergänzungsmodule --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 - Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 - Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 - Ergänzungsmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 - Kernmodule --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 - Ergänzungsmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 - Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
- B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 - Kernmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte
11. Empfohlene Voraussetzungen: Grundkenntnisse in höherer Mathematik
Grundkenntnisse über Signale und Systeme

12. Lernziele: Die Studierenden

- beherrschen die grundlegenden Methoden zur digitalen Signalverarbeitung,
- besitzen die notwendigen Grundfertigkeiten zur Analyse von zeitdiskreten Signalen und Systemen,
- können einfache Signale und Systeme selbstständig analysieren,
- können einfache Signalverarbeitungsaufgaben selbstständig lösen.

13. Inhalt:

- A/D- und D/A-Umwandlung, Abtastung, Quantisierung
- Zeitdiskrete Signale und Systeme, Analyse von LTI-Systemen im Zeitbereich, Differenzengleichung
- Analyse von Signalen und LTI-Systemen in der komplexen Ebene, z-Transformation, Übertragungsfunktion, Pole und Nullstellen
- Analyse von Signalen und LTI-Systemen im Frequenzbereich
- Digitale Filter, FIR und IIR, Tiefpass, Hochpass, Bandpass, Oszillator, Kerbsfilter, Kammfilter, linearphasige Filter, Allpass, minimalphasige Filter
- Korrelationsanalyse, Auto- und Kreuzkorrelation, Auto- und Kreuzkorrelationsfunktion
- Diskrete Fourier-Transformation, schnelle Fourier-Transformation (FFT), schnelle Faltung
- Spektralanalyse, Periodogramm, Fenstereffekt, Zeit-Frequenz-Analyse, Spektrogramm

14. Literatur:

- Vorlesungsunterlagen, Videoaufzeichnung der Vorlesung
- M. Mandal and A. Asif, "Continuous and discrete time signals and systems", Cambridge, 2008

15. Lehrveranstaltungen und -formen:

- 116401 Vorlesung Digitale Signalverarbeitung
- 116402 Übung Digitale Signalverarbeitung

16. Abschätzung Arbeitsaufwand:

- Präsenzzeit: 56 h
- Selbststudium: 124 h
- Gesamt: 180 h

17. Prüfungsnummer/n und -name:

- 11641 Digitale Signalverarbeitung (PL), Schriftlich, 90 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform:

- Laptop, Beamer, Videoaufzeichnung aller Vorlesungen und Übungen

20. Angeboten von:

- Netzwerk- und Systemtheorie
Modul: 11650 Hochfrequenztechnik I

<table>
<thead>
<tr>
<th align="left">2. Modulkürzel:</th>
<th align="center">050600001</th>
</tr>
</thead>
<tbody>
<tr>
<td align="left">3. Leistungspunkte:</td>
<td align="center">6 LP</td>
</tr>
<tr>
<td align="left">4. SWS:</td>
<td align="center">4</td>
</tr>
<tr>
<td align="left">5. Modulduauer:</td>
<td align="center">Einsemestrig</td>
</tr>
<tr>
<td align="left">6. Turnus:</td>
<td align="center">Wintersemester</td>
</tr>
<tr>
<td align="left">7. Sprache:</td>
<td align="center">Deutsch</td>
</tr>
<tr>
<td align="left">8. Modulverantwortlicher:</td>
<td align="center">Univ.-Prof. Dr. Jan Hesselbarth</td>
</tr>
<tr>
<td align="left">9. Dozenten:</td>
<td align="center">Jan Hesselbarth</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10. Zuordnung zum Curriculum in diesem Studiengang:</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
</tr>
<tr>
<td>→ Ergänzungsmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
</tr>
<tr>
<td>→ Ergänzungsmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
</tr>
<tr>
<td>→ Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
</tr>
<tr>
<td>→ Ergänzungsmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
</tr>
<tr>
<td>→ Kernmodule --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
</tr>
<tr>
<td>→ Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
</tr>
<tr>
<td>→ Ergänzungsmodule --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
</tr>
<tr>
<td>→ Ergänzungsmodule --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte</td>
</tr>
</tbody>
</table>
11. Empfohlene Voraussetzungen:

13. Inhalt: Maxwell'sche Gleichungen, ebene Welle im freien Raum, Leitungswellen, konzentrierte Bauelemente, Resonanzschaltungen, Transformationsschaltungen, Hochfrequenzfilter

14. Literatur:

• Vorlesungsskript,
• Detlefsen, Siart: Grundlagen der Hochfrequenztechnik, 3. Auflage, Oldenbourg Verlag, 2009,

15. Lehrveranstaltungen und -formen:

• 116501 Vorlesung Hochfrequenztechnik I
• 116502 Übung Hochfrequenztechnik I

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 56 h
Selbststudium/Nacharbeitszeit: 124 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:

11651 Hochfrequenztechnik I (PL), Schriftlich, 120 Min., Gewichtung: 1

18. Grundlage für ... :

Hochfrequenztechnik II

19. Medienform:

Tafel, Beamer, Projektor, ILIAS

20. Angeboten von:

Hochfrequenztechnik
Modul: 11660 Übertragungstechnik I

4. SWS: 4 7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr. Stephan ten Brink
9. Dozenten: Stephan Brink

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 → Ergänzungs module --> Schwerpunkt: Elektromobilität --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 → Ergänzungs module --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Wahlfärcher --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Wahlfärcher --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Wahlfärcher --> Schwerpunkt: Elektromobilität --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Zusatzmodule
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 → Ergänzungs module --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 → Kernmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Wahlfärcher --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 → Ergänzungs module --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Wahlfärcher --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Schwerpunkt: Technische Informatik --> Schwerpunkte
11. Empfohlene Voraussetzungen:
Grundlagen der Elektrotechnik

12. Lernziele:
Beherrschung der grundlegenden Zusammenhänge und Verfahren der digitalen Speicherung und Übertragung von analogen und digitalen Signalen.

13. Inhalt:

14. Literatur:
• Vorlesungsbegleitendes Material, Übungsaufgaben
• Kammeyer, K. D.: Nachrichtenübertragung. Verlag Teubner, Stuttgart
• Weitere Literaturangaben im vorlesungsbegleitenden Material.

15. Lehrveranstaltungen und -formen:
• 116602 Übungen Übertragungstechnik I
• 116601 Vorlesung Übertragungstechnik I

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 56 h, Selbststudium/Nacharbeitszeit: 124 h, Gesamt 180 h

17. Prüfungsnummer/n und -name:
11661 Übertragungstechnik I (PL), Schriftlich oder Mündlich, 120 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform:
Skript und Übungsaufgaben in elektronischer Form (ILIAS). Anschrieb auf Tablet-PC mit Projektion.

20. Angeboten von:
Nachrichtenübertragung
Modul: 11670 Grundlagen integrierter Schaltungen

2. Modulkürzel: 050200002
3. Leistungspunkte: 6 LP
4. SWS: 4

5. Moduldauer: Einsemestrig
6. Turnus: Sommersemester
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Manfred Berroth
9. Dozenten: Manfred Berroth

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016,
 → Ergänzungsmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte

 B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011,
 → Vorgezogene Master-Module

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
 → Kernmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
 → Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
 → Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
 → Kernmodule --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
 → Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
 → Schwerpunkt: Technische Informatik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
 → Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
 → Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
 → Ergänzungsmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
 → Ergänzungsmodule --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
 → Kernmodule --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
 → Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
11. Empfohlene Voraussetzungen: Kenntnisse in Schaltungstechnik
Kenntnisse in höherer Mathematik

12. Lernziele: Die Studierenden besitzen Grundkenntnisse über integrierte Schaltungen der Digitaltechnik basierend auf Silizium-MOSFETs

13. Inhalt:
- Bauelemente der Digitaltechnik
- Digitale Grundschaltungen
- CMOS-Logikschaltungen
- Schaltwerke

14. Literatur:
- Vorlesungsskript,
- Hoffmann: VLSI-Entwurf - Modelle und Schaltungen, Oldenbourg Verlag, München, 1998

15. Lehrveranstaltungen und -formen:
- 116701 Vorlesung Grundlagen Integrierter Schaltungen
- 116702 Übung Grundlagen Integrierter Schaltungen

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 56 h
Selbststudium: 124 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name: 11671 Grundlagen integrierter Schaltungen (PL), Schriftlich, 90 Min., Gewichtung: 1

18. Grundlage für ...

19. Medienform: Tafel, Beamer

20. Angeboten von: Elektrische und Optische Nachrichtentechnik
<table>
<thead>
<tr>
<th>Modul: 11680 Kommunikationsnetze I</th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Modulkürzel: 050901005</td>
</tr>
<tr>
<td>3. Leistungspunkte: 6 LP</td>
</tr>
<tr>
<td>4. SWS: 4</td>
</tr>
<tr>
<td>5. Modulduer: Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus: Wintersemester</td>
</tr>
<tr>
<td>7. Sprache: Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
</tr>
<tr>
<td>Univ.-Prof. Dr.-Ing. Andreas Kirstädter</td>
</tr>
<tr>
<td>9. Dozenten: Andreas Kirstädter</td>
</tr>
<tr>
<td>10. Zuordnung zum Curriculum in diesem Studiengang:</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
</tr>
<tr>
<td>→ Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
</tr>
<tr>
<td>→ Kernmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
</tr>
<tr>
<td>→ Zusatzmodule</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
</tr>
<tr>
<td>→ Ergänzungsmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
</tr>
<tr>
<td>→ Ergänzungsmodule --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
</tr>
<tr>
<td>→ Kernmodule --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
</tr>
<tr>
<td>→ Schwerpunkt: Technische Informatik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
</tr>
<tr>
<td>→ Wahlfärcher --> Schwerpunkt: Elektromobilität --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester</td>
</tr>
<tr>
<td>→ Ergänzungsmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester</td>
</tr>
<tr>
<td>→ Wahlfärcher --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte</td>
</tr>
</tbody>
</table>
11. Empfohlene Voraussetzungen:

- Kenntnisse, wie sie in den Modulen Informatik I und Informatik II vermittelt werden

12. Lernziele:

Verstehen der grundlegenden Architekturprinzipien von Kommunikationsnetzen mit Beispielen aus den Bereichen der Mobilfunknetze, Local Area Networks, Automatisierungsnetze und des Internet, Kenntnis von Aufbau und Funktion ausgewählter Systeme, Protokolle und Dienste. Anwenden der Methoden zur formalen Beschreibung und Bewertung von Kommunikationsnetzen.

13. Inhalt:

Grundprinzipien von Kommunikationsnetzen und -protokollen:
- Übertragung und Multiplextechniken
- Fehlersicherung
- Medienzugriff
- Vermittlung
- Wegesuche
- Transportprotokolle

Spezifikation mit Hilfe der Specification and Description Language (SDL)

Bewertung der Leistungsfähigkeit von Kommunikationsprotokollen

Ausgewählte Dienste und Anwendungen im Internet

Für nähere Informationen, aktuelle Ankündigungen und Material siehe
http://www.ikr.uni-stuttgart.de/Xref/CC/L_CN_I

14. Literatur:

- Skript zur Vorlesung
- Kurose, Ross: Computer Networking, Addison-Wesley, 2009

15. Lehrveranstaltungen und -formen:

- 116802 Übung zu Kommunikationsnetze I
- 116801 Vorlesung Kommunikationsnetze I

16. Abschätzung Arbeitsaufwand:

- Präsenzzeit: 56 h
- Selbststudium: 124 h
- Gesamt: 180 h

17. Prüfungsnummer/n und -name:

11681 Kommunikationsnetze I (PL), Schriftlich oder Mündlich, 120 Min., Gewichtung: 1

18. Grundlage für ... :

Praktische Übungen im Labor Rechnerarchitektur und Kommunikationssysteme I Communication Networks II

19. Medienform:

Notebook-Präsentation

20. Angeboten von:

Kommunikationsnetze und Rechnersysteme
Modul: 11690 Hochfrequenztechnik II

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050600002</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Modulduer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Jan Hesselbarth</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Jan Hesselbarth</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester**
 - Zusatzmodule
 - Ergänzungsmodul: Schwerpunkt: Elektromobilität
 - Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 6. Semester**
 - Ergänzungsmodul: Schwerpunkt: Mikro- und Optoelektronik
 - Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester**
 - Wahlfächer: Schwerpunkt: Elektrische Energiesysteme
 - Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 6. Semester**
 - Schwerpunkt: Kommunikationssysteme und Signalverarbeitung
 - Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester**
 - Wahlfächer: Schwerpunkt: Elektrotechnische Systeme
 - Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 6. Semester**
 - Wahlfächer: Schwerpunkt: Technische Informatik
 - Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester**
 - Wahlfächer: Schwerpunkt: Elektromobilität
 - Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 6. Semester**
 - Wahlfächer: Schwerpunkt: Mikro- und Optoelektronik
 - Schwerpunkte

11. Empfohlene Voraussetzungen:

- Grundlagen der Nachrichtentechnik
- Grundlagend der Hochfrequenztechnik
|-------------|--|
| 15. Lehrveranstaltungen und -formen: | • 116901 Vorlesung Antennas
• 116902 Übung Antennas |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 56 h
Selbststudium/Nacharbeitszeit: 124 h
Gesamt: 180 h |
| 17. Prüfungsnummer/n und -name: | 11691 Hochfrequenztechnik II (PL), Schriftlich, 120 Min., Gewichtung: 1 |
| 18. Grundlage für ... : | |
| 19. Medienform: | Tafel, Beamer, Projektor, ILIAS |
| 20. Angeboten von: | Hochfrequenztechnik |
Modul: 11700 Halbleitertechnik I

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Jörg Schulze</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Jörg Schulze</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester**
 - Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
 - Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester**
 - Schwerpunkt: Elektromobilität --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester**
 - Ergänzungsmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte
 - Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester**
 - Ergänzungsmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester**
 - Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester**
 - Ergänzungsmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester**
 - Ergänzungsmodule --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester**
 - Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester**
 - Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte

- Beschreibung eines psn-Übergangs im thermodynamischen Gleichgewicht (Raumladungszonen, Poisson-Gleichung, Depletion-Näherung und Built-in-Spannung),
- Beschreibung eines psn-Übergangs im Nicht-Gleichgewicht (I-U-Charakteristik des idealen pn-Übergangs, Rekombinationsmechanismen in pn-Übergängen, I-U-Charakteristik des realen pn-Übergangs, Durchbruchmechanismen in pn-Übergängen),
- Aufbau und Funktionsweise von Bipolar- und Heterobipolartransistoren: Ideales und reales Verhalten und Hochfrequenzbetrieb,
- Thyristor und lichtgezündeter Thyristor, TRIAC (Triode for Alternating Current).

Als Ausblick wird zum Schluss der Vorlesung auf Leistungs bipolartransistoren mit isoliertem Gate wie dem Gate-Turn-Off-Thyristor (GTO-Thyristor) und dem Insulated Gate Bipolar Transistor (IGBT) und auf BiCMOS-Schaltungen eingegangen.

14. Literatur:

- Hoffmann: Systemintegration, Oldenbourg, 2003
- Löcherer: Halbleiterbauelemente, Teubner, 1992
- Roulsten: An Introduction to the Physics of Semiconductor Devices, Oxford University Press, 1999
• Schulze: Konzepte Silizium-basierter MOS-Bauelemente, Springer, 2005
• Sze: Semiconductor Devices - Physics and Technology, Wiley, 1985
• Thuselt: Physik der Halbleiterbauelemente, Springer, 2005
• Treitinger, Miura-Mattausch (Ed.): Ultra-Fast Silicon Bipolar Technology, Springer, 1988

15. Lehrveranstaltungen und -formen:
• 117001 Vorlesung Halbleitertechnik 1
• 117002 Übung Halbleitertechnik 1

16. Abschätzung Arbeitsaufwand:
Gesamtaufwand: 180 h
Dabei:
• 45 h (2 SWS Vorlesung + 2 SWS Übung) Präsenz
• 135 h Selbststudium

17. Prüfungsnummer/n und -name:
11701 Halbleitertechnik I (PL), Schriftlich, 90 Min., Gewichtung: 1

18. Grundlage für ...:

19. Medienform:
• PowerPoint-Präsentationen zu den einzelnen Kapiteln (Beamer)
• Aufzeichnungen während der Vorlesungen (Notizen, Rechnungen, Skizzen u. ä.) mit Hilfe eines Tablet-PCs (Beamer)
• Lehrbriefe zu den einzelnen Themenschwerpunkten
• Ausgedrucktes Skript mit sämtlichen Vorlesungs- und Übungsfolien, Übungsbüchern und Lehrbriefen (zum Selbstkostenpreis erhältlich)
• Vorlesungsaufzeichnungen im MPG4-Format mittels Tablet-PCs und Head-Set
• Sämtliche Unterlagen werden elektronisch über ILIAS zum Download bereitgestellt.

20. Angeboten von: Halbleitertechnik
Modul: 11710 Optoelectronics I

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Jürgen Heinz Werner</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Jürgen Heinz Werner</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016,**
 - Ergänzungsmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016,**
 - Kernmodule --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016,**
 - Ergänzungsmodule --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011,**
 - Sommersemester
 - Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte
- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011,**
 - Sommersemester
 - Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011,**
 - Sommersemester
 - Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte
- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016,**
 - Sommersemester
 - Ergänzungsmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte
- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011,**
 - Sommersemester
 - Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011,**
 - Sommersemester
 - Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte
- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011,**
 - Sommersemester
 - Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011,**
 - Sommersemester
 - Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016,**
 - Sommersemester
 - Ergänzungsmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte
- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016,**
 - Sommersemester
 - Ergänzungsmodule --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte

11. Empfohlene Voraussetzungen:
12. Lernziele: The students know
- the fundamentals of incoherent and coherent radiation
- the generation of radiation by light emitting diodes and semiconductor laser diodes
- the transport of radiation via glass fibers and its detection using photodetectors

13. Inhalt:
- Basics of incoherent and coherent radiation
- Semiconductor basics
- Excitation and recombination processes in semiconductors
- Light emitting diodes
- Semiconductor lasers
- Glass fibers
- Photodetectors

14. Literatur:
- W. Bludau, Halbleiteroptoelektronik: Die physikalischen Grundlagen der LEDs, Diodenlaser und pn-Photodiode (Carl Hanser, München, 1995).
- W. L. Leigh, Devices for Optoelectronics (Dekker, New York, 1996).

15. Lehrveranstaltungen und -formen:
- 117102 Übung Optoelectronics I
- 117101 Vorlesung Optoelectronics I

16. Abschätzung Arbeitsaufwand:
Presence time: 56 h
Self studies: 124 h
Total: 180 h

17. Prüfungsnummer/n und -name:
11711 Optoelectronics I (PL), Schriftlich oder Mündlich, 120 Min., Gewichtung: 1
group presentation in seminar (60 min, once per year) written exam (60 min, twice per year)

18. Grundlage für ... :

19. Medienform:
- Powerpoint, blackboard

20. Angeboten von:
Physikalische Elektronik
Modul: 11720 Halbleitertechnologie I

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Jörg Schulze</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Jörg Schulze</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester |
| → Wahlfächer: --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester |
| → Wahlfächer: --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester |
| → Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester |
| → Ergänzungsmodule --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester |
| → Ergänzungsmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester |
| → Wahlfächer: --> Schwerpunkt: Technische Informatik --> Schwerpunkte |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester |
| → Wahlfächer: --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester |
| → Wahlfächer: --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester |
| → Ergänzungsmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester |
| → Ergänzungsmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester |
| → Wahlfächer: --> Schwerpunkt: Elektromobilität --> Schwerpunkte |
| B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester |
| → Ergänzungsmodule --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte |

11. Empfohlene Voraussetzungen:

Empfohlen werden Kenntnisse, wie Sie beispielsweise in *Mikroelektronik (ME)* vermittelt werden.

- Einführung in die Silizium-basierte Halbleitertechnologie,
- Technologische Grundlagen (Prozessparameter und grundlegende Technologieprozesse),
- Substrat- und Waferherstellung (CZ-Wafer, FZ-Wafer und Silicon-On-Insulator-Wafer),
- Lithographie (optische Lithographie und alternative Verfahren) und Strukturierungsmethoden (nasschemisch, trockenchemisch und physikalisch-chemisch),
- Dotiermethoden: Epitaxie, Diffusion und Ionenimplantation,
- Herstellung und Strukturierung von Isolatorschichten (Standarddielektrika, Low-k-, Medium-k- und high-k-Dielektrika) und Planarisierungsmethoden,
- Herstellung und Strukturierung metallischer Schichten.

Als Ausblick wird zum Schluss der Vorlesung auf die Aufbau- und Verbindungstechnik eingegangen und exemplarische Herstellungsprozesse unterschiedlicher mikroelektronischer Bauelemente werden diskutiert.

14. Literatur:

- Beneking: Halbleitertechnologie, Eine Einführung in die Prozesstechnik von Silizium und III-V Verbindungen, Teubner Verlag, 1984
- Hilleringmann: Silizium-Halbleitertechnologie, Teubner Verlag, 1996
- v. Münch: Einführung in die Halbleitertechnologie, Teubner Verlag, 1993
- Nijs (Ed.): Advanced Silicon and Semiconducting Silicon-Alloy Based Materials and Devices, Institute of Physics Publishing, 1994
15. Lehrveranstaltungen und -formen:
 • 117201 Vorlesung Halbleitertechnologie I
 • 117202 Übung Halbleitertechnologie I

16. Abschätzung Arbeitsaufwand:
 Gesamtaufwand: 180 h
 Dabei:
 • 45 h (2 SWS Vorlesung + 2 SWS Übung) Präsenz
 • 135 h Selbststudium

17. Prüfungsnummer/n und -name:
 11721 Halbleitertechnologie I (PL), Schriftlich, 90 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform:
 • PowerPoint-Präsentationen zu den einzelnen Kapiteln (Beamer)
 • Aufzeichnungen während der Vorlesungen (Notizen, Rechnungen, Skizzen u. ä.) mit Hilfe eines Tablet-PCs (Beamer)
 • Lehrbriefe zu den einzelnen Themenschwerpunkten
 • Ausgedrucktes Skript mit sämtlichen Vorlesungs- und Übungsfolien, Übungsbögen und Lehrbriefen (zum Selbstkostenpreis erhältlich)
 • Vorlesungsaufzeichnungen im MPG4-Format mittels Tablet-PCs und Head-Set
 • Sämtliche Unterlagen werden elektronisch über ILIAS zum Download bereitgestellt.

20. Angeboten von:
 Halbleitertechnik
Modul: 11730 Flachbildschirme

2. Modulkürzel: 051620001
3. Leistungspunkte: 6 LP
4. SWS: 4
5. Modul: Einsemestrig
6. Turnus: Sommersemester
7. Sprache: Deutsch
8. Modulverantwortlicher: Nesrine Kammoun
9. Dozenten: Norbert Frühauf

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester
 → Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester
 → Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester
 → Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 6. Semester
 → Ergänzungsmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester
 → Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester
 → Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 6. Semester
 → Ergänzungsmodule --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 6. Semester
 → Ergänzungsmodule --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester
 → Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 6. Semester
 → Ergänzungsmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 6. Semester
 → Ergänzungsmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester
 → Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 6. Semester
11. Empfohlene Voraussetzungen:

12. Lernziele:

Die Studierenden

- kennen die in Flachbildschirmen eingesetzten elektrooptischen Effekte und die zugehörigen Ansteuerverfahren
- können grundlegende Dimensionierungen von Flüssigkristallbildschirmen vornehmen
- kennen Verfahren zur elektro-optischen Charakterisierung von Bildschirmen und können wesentliche Leistungsparameter wie Kontrast und Farbort berechnen

13. Inhalt:

- Einsatzgebiete der Flachbildschirmtechnik
- Physiologie des menschlichen Sehens
- Farbdarstellung (Tri-Stimulus Theorie)
- Elektro-optische Eigenschaften von Flüssigkristallen
- Organische Lichtemittierende Dioden
- Elektrophoretische Medien
- Sonstige Elektro-optische Effekte
- Plasmabildschirme
- Passiv- und Aktiv-Matrix Ansteuerverfahren
- Ansteuerschaltungen
- Herstellungsverfahren
- Charakterisierung von Flachbildschirmen

14. Literatur:

- E. Lueder - Liquid Crystal Displays, Wiley, 2001

15. Lehrveranstaltungen und -formen:

- 117301 Vorlesung Flachbildschirme
- 117302 Übung Flachbildschirme

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 56 h
Selbststudium/Nacharbeitszeit: 124 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:

11731 Flachbildschirme (PL), Schriftlich oder Mündlich, 90 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform:

Tafel, Projektor, Beamer, ILIAS

20. Angeboten von:

Bildschirmechnik
Modul: 11740 Elektromagnetische Verträglichkeit

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050310006</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Stefan Tenbohlen</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Stefan Tenbohlen Daniel Schneider</td>
</tr>
</tbody>
</table>

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
- Schwerpunkt: Elektrotechnische Systeme → Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
- Wahlfächer → Schwerpunkt: Kommunikationssysteme und Signalverarbeitung → Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
- Wahlfächer → Schwerpunkt: Automatisierungs- und Regelungstechnik → Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
- Wahlfächer → Schwerpunkt: Technische Informatik → Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
- Wahlfächer → Schwerpunkt: Elektrische Energiesysteme → Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
- Ergänzungsmodule → Schwerpunkt: Automatisierungs- und Regelungstechnik → Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
- Wahlfächer → Schwerpunkt: Mikro- und Optoelektronik → Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
- Ergänzungsmodule → Schwerpunkt: Elektromobilität → Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
- Ergänzungsmodule → Schwerpunkt: Mikro- und Optoelektronik → Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
- Ergänzungsmodule → Schwerpunkt: Technische Informatik → Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
- Ergänzungsmodule → Schwerpunkt: Kommunikationssysteme und Signalverarbeitung → Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
- Ergänzungsmodule → Schwerpunkt: Elektrische Energiesysteme → Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
➞ Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte

<table>
<thead>
<tr>
<th>11. Empfohlene Voraussetzungen:</th>
<th>Grundlagen der Elektrotechnik</th>
</tr>
</thead>
</table>

| 12. Lernziele: | Studierender hat Kenntnisse der Messverfahren und Messausrüstungen der Elektromagnetischen Verträglichkeit. Er kennt praktische Abhilfemaßnahmen zur Beherrschung der EMV-Problematik und die Besonderheiten in der Automobil-EMV |

| 13. Inhalt: | • Einführung
• Begriffsbestimmungen
• EMV-Umgebung
• Allgemeine Maßnahmen zur Sicherstellung der EMV
• Aktive Schutzmaßnahmen
• Nachweis der EMV (Messverfahren, Messumgebung)
• Einwirkung elektromagnetischer Felder auf biologische Systeme
• EMV im Automobilbereich |

• Habiger, Ernst: Elektromagnetische Verträglichkeit Hüthig Verlag, 3. Aufl., 1998
• Gonschorek, K.-H.: EMV für Geräteentwickler und Systemintegratoren Springer Verlag, 2005
• Köhling, A.: EMV von Gebäuden, Anlagen und Geräten VDE-Verlag, Dezember 1998
• Wiesinger, J. u.a.: EMV-Blitzschutz von elektrischen und elektronischen Systemen in baulichen Anlagen VDE-Verlag, Oktober 2004

| 15. Lehrveranstaltungen und -formen: | • 117401 Vorlesung Elektromagnetische Verträglichkeit
• 117402 Übung Elektromagnetische Verträglichkeit |

| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 56 h
Selbststudium/Nacharbeitszeit: 124 h
Gesamt: 180 h |

| 17. Prüfungsnummer/n und -name: | 11741 Elektromagnetische Verträglichkeit (PL), Schriftlich, 90 Min., Gewichtung: 1 |

| 18. Grundlage für ... : | |

| 19. Medienform: | PowerPoint, Tafelanschrieb |

| 20. Angeboten von: | Energieübertragung und Hochspannungstechnik |
Modul: 11750 Numerische Feldberechnung I

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Prof. Dr. Wolfgang Rucker</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester</td>
</tr>
<tr>
<td>→ Ergänzungsmodul: Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester</td>
</tr>
<tr>
<td>→ Ergänzungsmodul: Schwerpunkt: Elektromobilität --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester</td>
</tr>
<tr>
<td>→ Ergänzungsmodul: Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</td>
</tr>
<tr>
<td>→ Zusatzmodule</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester</td>
</tr>
<tr>
<td>→ Ergänzungsmodul: Schwerpunkt: Technische Informatik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester</td>
</tr>
<tr>
<td>→ Ergänzungsmodul: Schwerpunkt: Automatisierungs-und Regelungstechnik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester</td>
</tr>
<tr>
<td>→ Ergänzungsmodul: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</td>
</tr>
<tr>
<td>→ Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester</td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte</td>
</tr>
</tbody>
</table>

12. Lernziele: Die Studierenden:
 - besitzen die Grundkenntnisse der wichtigsten numerischen Verfahren zur Modellierung und Simulation von Feldproblemen in der Elektrotechnik,
 - beherrschen den Einsatz von Simulationswerkzeugen.

13. Inhalt:
 - Grundlagen der numerischen Simulation elektromagnetischer Felder
 - Allgemeiner Ablauf einer numerischen Simulation, Simulationssoftware
 - Methode der finiten Elemente (FEM)
 - Ausgangsbeziehung der FEM für Potenzialprobleme
 - Geometriemodellierung
 - Erstellung und Lösung des FE-Gleichungssystems
 - FE-Formulierungen von elektromagnetischen Feldproblemen
 - Methode der Randelemente (BEM)
 - Randintegraldarstellung, Randintegralgleichung
 - Erstellung und Lösung des BE-Gleichungssystems
 - BE-Formulierung von Elektrodenproblemen

14. Literatur:

15. Lehrveranstaltungen und -formen:
 - 117501 Vorlesung Numerische Feldberechnung I
 - 117502 Übung Numerische Feldberechnung I

16. Abschätzung Arbeitsaufwand:
 - Präsenzzeit: 56 h
 - Selbststudium: 124 h
 - Gesamt: 180 h

17. Prüfungsnummer/n und -name:
 - 11751 Numerische Feldberechnung I (PL), Mündlich, 45 Min., Gewichtung: 1

18. Grundlage für ...

19. Medienform:
 - Tafel, Beamer

20. Angeboten von:
 - Elektrotechnik bionischer Systeme
Modul: 12420 Windenergie 1 - Grundlagen Windenergie

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Dr. Po Wen Cheng

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
- Wahlfächer → Schwerpunkt: Elektromobilität → Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
- Wahlfächer → Schwerpunkt: Elektrische Energiesysteme → Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
- Wahlfächer → Schwerpunkt: Technische Informatik → Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
- Wahlfächer → Schwerpunkt: Kommunikationssysteme und Signalverarbeitung → Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
- Wahlfächer → Schwerpunkt: Automatisierungs- und Regelungstechnik → Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
- Wahlfächer → Schwerpunkt: Mikro- und Optoelektronik → Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
- Wahlfächer → Schwerpunkt: Technische Informatik → Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
- Wahlfächer → Schwerpunkt: Automatisierungs- und Regelungstechnik → Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
- Wahlfächer → Schwerpunkt: Elektrotechnische Systeme → Schwerpunkte
11. Empfohlene Voraussetzungen:
12. Lernziele:
- Die Studierenden erlangen Kenntnisse über die Grundlagen der Windenergie, insbesondere über die physikalischen und technischen Prinzipien bei modernen Windenergieanlagen.
- Die Studierenden sind dabei in der Lage einfache physikalische Grundgleichungen und Zusammenhänge herzuleiten und ihre Bedeutung in Bezug auf die Nutzung von Windenergie zu verstehen sowie zu erklären.
- Ausgehend vom Verständnis der einzelnen Teildisziplinen (Aerodynamik, Strukturdynamik, Elektrotechnik etc.) können die Studierenden den Aufbau und die Funktionsweise des Gesamtsystems Windenergieanlage erläutern und auf ausgewählten Gebieten elementare Auslegungs- und Entwurfsberechnungen durchführen.
- Nach Abschluss der Lehrveranstaltung haben die Studierenden die wesentlichen Kompetenzen aufgebaut, die sie befähigen sich in Spezialgebiete im Bereich Windenergie (Komponentenauslegung, Modellierung und Simulation, Windparkplanung etc.) einzuarbeiten.

13. Inhalt:
- Vorlesung
- Übung und Versuch
 Es werden 8 Hörsaalübungen sowie ein Hochlaufversuch im Böenwindkanal angeboten.

14. Literatur:
- lecture notes
- R. Gasch und J. Twele, Windkraftanlagen

15. Lehrveranstaltungen und -formen:
- 124202 Übung Windenergienutzung I
- 124201 Vorlesung Windenergienutzung I

16. Abschätzung Arbeitsaufwand:
- Vorlesung: Präsenzzeit 28 Stunden, Selbststudium 62 Stunden
- Übung: Präsenzzeit 8 Stunden, Selbststudium 74 Stunden
- Windkanalversuch: Präsenzzeit 3 Stunden, Versuchsauswertung 5 Stunden
Summe: 180 Stunden

17. Prüfungsnummer/n und -name:
12421 Windenergie 1 - Grundlagen Windenergie (PL), Schriftlich, 90 Min., Gewichtung: 1
Das Versuchsprotokoll des Windkanalversuchs während des Semesters ist Voraussetzung für die Teilnahme an der Prüfung.
Die Prüfung umfasst einen Fragenteil (20 min) und einen Rechenteil (70 min).

<table>
<thead>
<tr>
<th>18. Grundlage für ... :</th>
<th>Windenergie 3 - Entwurf von Windenergieanlagen Windenergie 4 - Windenergie-Projekt</th>
</tr>
</thead>
<tbody>
<tr>
<td>19. Medienform:</td>
<td>PowerPoint, Tafelanschrieb, Versuchsdurchführungen</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Windenergie</td>
</tr>
</tbody>
</table>
Modul: 17110 Entwurf digitaler Systeme

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050901006</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Modulduer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Andreas Kirstädter</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Matthias Meyer</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester

- Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester

- Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester

- Ergänzungsmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester

- Ergänzungsmodule --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester

- Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester

- Zusatzmodule

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester

- Ergänzungsmodule --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester

- Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester

- Ergänzungsmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester

- Ergänzungsmodule --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester

- Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester

- Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
11. Empfohlene Voraussetzungen:
Kenntnisse, wie sie beispielsweise im Modul Informatik II vermittelt werden

12. Lernziele:
Der Studierende kann digitale Systeme entwerfen, simulieren und testen, beherrscht die Hardware-Beschreibungssprache VHDL, kennt die physikalischen Randbedingungen beim Aufbau moderner digitaler Schaltungen.

13. Inhalt:
• Entwurfsprozesse und Modularisierung
• Modellierung digitaler Systeme mit VHDL (Grundlegende Konzepte von VHDL, Verhaltens- und Strukturbeschreibung, Typkonzept, sequenzielle und nebeneinläufige Anweisungen, Prozeduren und Funktionen, Signale, Bibliotheken)
• Realisierung digitaler Schaltungen (Spannungsversorgung, Übersprechen, Reflexionen und Busabschlüsse, Metastabilität, Realisierungsspezielle bei kombinatorischen und sequenziellen Netzwerken)
• Digitale Bauelemente (Programmierbare Logik, Speicherbausteine)

Für nähere Informationen, aktuelle Ankündigungen und Material siehe http://www.ikr.uni-stuttgart.de/Xref/CC/L_EDS

14. Literatur:
• Vorlesungsskript
• Ashenden, P. J.: The Student's Guide to VHDL, Morgan Kaufmann Publishers
• Ashenden, P. J.: The Designer's Guide to VHDL, Morgan Kaufmann Publishers

15. Lehrveranstaltungen und -formen:
• 171101 Vorlesung Entwurf digitaler Systeme
• 171102 Übung Entwurf digitaler Systeme

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 56 h
Selbststudium: 124 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
17111 Entwurf digitaler Systeme (PL), Mündlich, 120 Min., Gewichtung: 1

18. Grundlage für … :
Praktische Übungen im Labor Rechnerarchitektur und Kommunikationssysteme I

19. Medienform:
Notebook-Präsentationen

20. Angeboten von:
Kommunikationsnetze und Rechnersysteme
<table>
<thead>
<tr>
<th>Modul: 17130 Entwurf digitaler Filter</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS: 4</td>
<td>7. Sprache: Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher: PD Dr.-Ing. Markus Gaida</td>
<td></td>
</tr>
<tr>
<td>9. Dozenten: Markus Gaida</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10. Zuordnung zum Curriculum in diesem Studiengang:</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, Vorgezogene Master-Module</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester</td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 6. Semester</td>
</tr>
<tr>
<td>→ Ergänzungsmodul --> Schwerpunkt: Technische Informatik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 6. Semester</td>
</tr>
<tr>
<td>→ Ergänzungsmodul --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 6. Semester</td>
</tr>
<tr>
<td>→ Ergänzungsmodul --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester</td>
</tr>
<tr>
<td>→ Zusatzmodul</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester</td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester</td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester</td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 6. Semester</td>
</tr>
<tr>
<td>→ Ergänzungsmodul --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 6. Semester</td>
</tr>
<tr>
<td>→ Ergänzungsmodul --> Schwerpunkt: Elektromobilität --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester</td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte</td>
</tr>
<tr>
<td>B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 6. Semester</td>
</tr>
<tr>
<td>→ Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte</td>
</tr>
</tbody>
</table>
11. Empfohlene Voraussetzungen:
Empfohlen werden Kenntnisse, wie sie beispielsweise in der Lehrveranstaltung *Signale und Systeme* vermittelt werden.

12. Lernziele:

13. Inhalt:
- Filter und Anwendungen, FIR- und IIR-Filter, Blockdiagramm und Signalflossgraph
- Entwurf von FIR-Filtern: linearphasige FIR-Filter, Fenstermethode, Frequenzabtastmethode, Methode der kleinsten Quadrate, Remez-Algorithmus
- Entwurf von IIR-Filtern: analoge Referenzfilter (Butterworth, Tschebyscheff I und II, Cauer), Frequenztransformation, Methode der invarianten Impulsantwort, Bilineartransformation
- Struktur von FIR-Filtern (Direkt, Kaskade, Lattice), Struktur von IIR-Filtern (Direkt, Kaskade, Parallel, Lattice-Ladder), Levinson-Durbin-Rekursion, Schur-Cohen-Rekursion
- Quantisierungseffekte
- Zahlendarstellung, Fließkomma und Festkomma, Koeffizientenempfindlichkeit, Überlauf und Sättigung, Rundungsverfahren, Polglitter, Rundungsrauschen, Signal-zu-Rausch-Abstand, Grenzyklen
- Entwurf digitaler Filter mit MATLAB
- Abtastratenumsetzung, Dezimation, Interpolation

14. Literatur:
- Skript

15. Lehrveranstaltungen und -formen:
- 171301 Vorlesung Entwurf digitaler Filter
- 171302 Übung Entwurf digitaler Filter

16. Abschätzung Arbeitsaufwand:
- Präsenzzzeit: 56 h
- Selbststudium/Nacharbeitszeit: 124 h
- Gesamt: 180 h
17. Prüfungsnummer/n und -name: 17131 Entwurf digitaler Filter (PL), Schriftlich oder Mündlich, 90 Min., Gewichtung: 1
Schriftliche Prüfung (90 Min.), Prüfung wird zwei mal im Jahr angeboten. Bei geringer Hörerzahl kann die Prüfung mündlich sein, dies wird am Anfang der Vorlesung bekanntgegeben. Im Fall einer mündlichen Prüfung kann dies auch eine mündliche Gruppenprüfung (max. 3 zu prüfende Personen pro Gruppe, ca. 15 Min. pro zu prüfender Person) sein.

18. Grundlage für ...

19. Medienform: Tafel, Projektor, Beamer, CIP-Pool

20. Angeboten von: Institutsverbund Elektrotechnik und Informationstechnik
Modul: 17170 Elektrische Antriebe

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Jörg Roth-Stielow</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Jörg Roth-Stielow</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester**
 - → Ergänzungsmodule --> Schwerpunkt: Technische Informatik → Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
 - → Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
 - → Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
 - → Ergänzungsmodule --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
 - → Ergänzungsmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
 - → Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
 - → Ergänzungsmodule --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
 - → Ergänzungsmodule --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
 - → Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
 - → Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
 - → Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester
 - → Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte
 - B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester
Ergänzungsmodul: Schwerpunkt: Elektrische Energiesysteme

11. Empfohlene Voraussetzungen:

- Kenntnisse vergleichbar "Einführung in die Elektrotechnik I"

12. Lernziele:

<table>
<thead>
<tr>
<th>Studierende...</th>
</tr>
</thead>
<tbody>
<tr>
<td>...kennen den Aufbau, die Komponenten und die Auslegungskriterien von geregelten elektrischen Antrieben.</td>
</tr>
<tr>
<td>...können mechanische Antriebsstränge eines elektromechanischen Antriebssystems mathematisch beschreiben und einfache Aufgabenstellungen lösen.</td>
</tr>
<tr>
<td>...können leistungselektronische Stellgliedereines elektromechanischen Antriebssystems mathematisch beschreiben und einfache Aufgabenstellungen lösen.</td>
</tr>
<tr>
<td>...können elektrische Maschinen eines elektromechanischen Antriebssystems mathematisch beschreiben und einfache Aufgabenstellungen lösen.</td>
</tr>
</tbody>
</table>

13. Inhalt:

Grundlagen der Antriebstechnik
Elektronische Stellglieder
Gleichstrommaschine
Drehfeldmaschinen

14. Literatur:

| Kremser, Andreas: Elektrische Maschinen und Antriebe, B. G. Teubner, Stuttgart, 2004 |

15. Lehrveranstaltungen und -formen:

| 171701 Vorlesung Elektrische Antriebe |
| 171702 Übung Elektrische Antriebe |

16. Abschätzung Arbeitsaufwand:

| Frontalvorlesung |

17. Prüfungsnummer/n und -name:

| 17171 Elektrische Antriebe (PL), Schriftlich, 120 Min., Gewichtung: 1 |
| Klausur (120 min., 2x pro Jahr) |

18. Grundlage für ...

19. Medienform:

| Tafel, Folien, Beamer |

20. Angeboten von:

| Leistungselektronik und Regelungstechnik |
Modul: 25940 Verstärkertechnik I+II

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050200013</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>Zweisemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Manfred Berroth</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Markus Grözing</td>
</tr>
</tbody>
</table>

Zuordnung zum Curriculum in diesem Studiengang:

- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester**
 - Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte
 - Ergänzungsmodule --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester**
 - Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
 - Wahlfächer --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
 - Ergänzungsmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester**
 - Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte
 - Ergänzungsmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte
- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester**
 - Ergänzungsmodule --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
 - Ergänzungsmodule --> Schwerpunkt: Elektromobilität --> Schwerpunkte
 - Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte
- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 4. Semester**
 - Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
 - Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
- **B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 4. Semester**
11. Empfohlene Voraussetzungen: Grundkenntnisse in Elektrotechnik, Grundkenntnisse in Schaltungstechnik, Grundkenntnisse von elektronischen Bauelementen

13. Inhalt:
- Analoge Grundschaltungen
- Stromspiegel
- Innerer Aufbau von Operationsverstärkern
- Anwendung von Operationsverstärkern
- Rauscharme Verstärker
- Oszillatoren
- Frequenzumsetzung
- Leistungsverstärker

14. Literatur:
- Zusatzblätter zum Selbststudium
- Aufgaben zur Selbstbearbeitung
- Bücher:
 - B. Razavi: RF Microelectronics, Prentice Hall, 1997

15. Lehrveranstaltungen und -formen:
- 259401 Vorlesung Verstärkertechnik I
- 259402 Vorlesung Verstärkertechnik II

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 56 h
- Selbststudium: 124 h
- Gesamt: 180 h

17. Prüfungsnummer/n und -name:
- 25941 Verstärkertechnik I (PL), Schriftlich, 60 Min., Gewichtung: 1
- 25942 Verstärkertechnik II (PL), Schriftlich, 60 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform: Tafel, Beamer

20. Angeboten von: Elektrische und Optische Nachrichtentechnik
Modul: 29310 Regenerative Energiesysteme

4. SWS: 5 7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Stefan Tenbohlen
9. Dozenten: Stefan Tenbohlen
 Silke Wieprecht
 Harald Drück
 Andreas Rettenmeier
 Albert Ruprecht
 Günter Scheffknecht

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Wahlfächer --> Schwerpunkt: Elektrotechnische Systeme --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Vorlesung Regenerative Energiesysteme --> Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 → Ergänzungsmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 → Vorlesung Regenerative Energiesysteme
 --> Ergänzungsmodule --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Wahlfächer --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester
 → Ergänzungsmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Wahlfächer --> Schwerpunkt: Elektromobilität --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Wahlfächer --> Schwerpunkt: Technische Informatik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
 → Vorlesung Regenerative Energiesysteme --> Wahlfächer --> Schwerpunkt: Automatisierungs- und Regelungstechnik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester

→ Vorlesung Regenerative Energiesysteme
 → Ergänzungsmodul -- Schwerpunkt: Technische Informatik
 → Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester

→ Vorlesung Regenerative Energiesysteme
 → Ergänzungsmodul -- Schwerpunkt: Mikro- und Optoelektronik
 → Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester

→ Vorlesung Regenerative Energiesysteme
 → Ergänzungsmodul -- Schwerpunkt: Elektromobilität
 → Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester

→ Ergänzungsmodul -- Schwerpunkt: Automatisierungs- und Regelungstechnik
 → Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester

→ Vorlesung Regenerative Energiesysteme
 → Wahlfächer -- Schwerpunkt: Elektromobilität
 → Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester

→ Vorlesung Regenerative Energiesysteme
 → Wahlfächer -- Schwerpunkt: Elektrische Energiesysteme
 → Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester

→ Vorlesung Regenerative Energiesysteme
 → Wahlfächer -- Schwerpunkt: Mikro- und Optoelektronik
 → Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester

→ Vorlesung Regenerative Energiesysteme
 → Wahlfächer -- Schwerpunkt: Elektrotechnische Systeme
 → Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester

→ Vorlesung Regenerative Energiesysteme
 → Ergänzungsmodul -- Schwerpunkt: Automatisierungs- und Regelungstechnik
 → Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester

→ Wahlfächer -- Schwerpunkt: Automatisierungs- und Regelungstechnik
 → Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester

→ Wahlfächer -- Schwerpunkt: Elektrische Energiesysteme
 → Schwerpunkte

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester

→ Vorlesung Regenerative Energiesysteme
 → Wahlfächer -- Schwerpunkt: Technische Informatik
 → Schwerpunkte
11. Empfohlene Voraussetzungen:

12. Lernziele:
Die Veranstaltung gibt eine Einführung in Erneuerbaren Energien.

Die Studierenden sind anschließend in der Lage:

• die Bedeutung und die Potenziale verschiedener Erneuerbarer Energien (Solarthermie, Windenergie, Wasserkraft, Biomasse) quantitativ einzuschätzen,
• Berechnungen des Energieertrags und des Wirkungsgrades durchzuführen,
• Erneuerbarer Energien in unterschiedliche Energieanwendungen und ins Energiesystem einzuordnen

13. Inhalt:
• Energiedaten, Umwelt- u. Klimaschutz und erneuerbare Energien, persönlicher Energieverbrauch, Globale Kreisläufe und -bilanzen
• Sonneneinstrahlung, Potentiale der Solarenergienutzung
• Solarthermie
• Windenergie
• Wasserkraft, Meeresströmungs- und Wellenenergie
• Therm. Nutzung von Biomasse, Biotreibstoffe

14. Literatur:
• V. Quaschning, Regenerative Energiesysteme, 6. Aufl., Hanser
• ergänzendes Skriptum und online-Materialien

15. Lehrveranstaltungen und -formen:
• 293102 Übung Regenerative Energiesysteme
• 29310 Vorlesung Regenerative Energiesysteme

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 70 Stunden
Selbststudium: 110 Stunden
Summe: 180 Stunden

17. Prüfungsnummer/n und -name:
29311 Regenerative Energiesysteme (PL), Schriftlich, 90 Min., Gewichtung: 1

18. Grundlage für ... :

19. Medienform:
PowerPoint, Tafel

20. Angeboten von:
Energieübertragung und Hochspannungstechnik
Modul: 69050 Technologien und Methoden der Softwaresysteme I

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050501002</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Modulname:</td>
<td>Technologien und Methoden der Softwaresysteme I</td>
</tr>
<tr>
<td>6. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Michael Weyrich</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Turnus:</td>
<td>Wintersemester</td>
</tr>
</tbody>
</table>

Empfohlene Voraussetzungen: Grundlagen der Softwaretechnik

Lernziele:

Inhalt:
Grundbegriffe der Softwaretechnik, Softwareentwicklungsprozesse und Vorgehensmodelle, Requirements Engineering, Systemanalyse, Softwareentwurf, Implementierung,
Softwareprüfung, Projektmanagement, Softwaretechnik-Werkzeuge, Dokumentation

Wiegers, K.: Software-Requirements, Microsoft Press, 2005
Vorlesungsportal mit Vorlesungsaufzeichnung auf http://www.ias.uni-stuttgart.de/st1/ |

| 15. Lehrveranstaltungen und -formen: | • 690501 Vorlesung Technologien und Methoden der Softwaresysteme I
• 690502 Übung Technologien und Methoden der Softwaresysteme I |

| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 56 h
Selbststudium: ca. 124 h |

| 17. Prüfungsnummer/n und -name: | • 69051 Technologien und Methoden der Softwaresysteme I (PL), Schriftlich, 120 Min., Gewichtung: 1
• 69052 Technologien und Methoden der Softwaresysteme I (USL), Sonstige, Gewichtung: 1
Erfolgreiche Bearbeitung eines Kleinprojekts während des Semesters |

| 18. Grundlage für ... : | |

| 19. Medienform: | |

| 20. Angeboten von: | Automatisierungstechnik und Softwaresysteme |
Modul: 41170 Speichertechnik für elektrische Energie I

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050513050</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Moduldaus:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Kai Peter Birke</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Kai Peter Birke</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester	→ Ergänzungsmodule --> Schwerpunkt: Technische Informatik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester	→ Ergänzungsmodule --> Schwerpunkt: Mikro- und Optoelektronik --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester	→ Ergänzungsmodule --> Schwerpunkt: Elektrische Energiesysteme --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester	→ Zusatzmodule
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2016, 5. Semester	→ Ergänzungsmodul --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester	→ Wahlfächer --> Schwerpunkt: Kommunikationssysteme und Signalverarbeitung --> Schwerpunkte
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester	→ Schwerpunkt: Elektromobilität --> Schwerpunkte
11. Empfohlene Voraussetzungen:

12. Lernziele: Die Studierenden lernen die Speichertechniken für elektrische Energie kennen.

13. Inhalt: Aufbau und Funktionsweise von:
- Elektrischen Speichern (Spule, supraleitende Spule, Kondensator, Doppelschichtkondensator)
- Elektromechanischen Speichern (Schwungrad, Gas, Wasser)

Charakterisierung der Speicher anhand charakteristischer Größen wie:
- Energieinhalt
- Leistung (dynamisch/stationär)
- Kosten
- Betriebssicherheit

Überblick über die wichtigsten Messverfahren
Einführung in Ersatzschaltbilder und Modellierung

15. Lehrveranstaltungen und -formen:
- 411702 Übung Speicher für elektrische Energie
- 411701 Vorlesung Speicher für elektrische Energie

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 56 h
Selbststudium: ca. 124 h
Summe: 180h

17. Prüfungsnummer/n und -name: 41171 Speichertechnik für elektrische Energie (PL), Schriftlich, 90 Min., Gewichtung: 1

18. Grundlage für ...

19. Medienform: Beamer, Tafel

20. Angeboten von: Elektrische Energiespeichersysteme
600 Schlüsselqualifikation fachaffin

<table>
<thead>
<tr>
<th>Zugeordnete Module</th>
<th>Übungen im Labor</th>
</tr>
</thead>
<tbody>
<tr>
<td>14500</td>
<td>"Softwaretechnik"</td>
</tr>
<tr>
<td>14520</td>
<td>"Elektromechanische Energiewandlung I"</td>
</tr>
<tr>
<td>14530</td>
<td>"Leistungselektronik und Regelungstechnik"</td>
</tr>
<tr>
<td>14540</td>
<td>"Feldnumerik"</td>
</tr>
<tr>
<td>14550</td>
<td>"Halbleiter: PDBFET"</td>
</tr>
<tr>
<td>14560</td>
<td>"Photovoltaik und Energiespeicher"</td>
</tr>
<tr>
<td>14570</td>
<td>"Rechnerarchitektur und Kommunikationssysteme I"</td>
</tr>
<tr>
<td>14580</td>
<td>"Multimedia Communications"</td>
</tr>
<tr>
<td>14600</td>
<td>"Wettersatellit"</td>
</tr>
<tr>
<td>14610</td>
<td>"Hochfrequenztechnik"</td>
</tr>
<tr>
<td>37780</td>
<td>"Entwurf integrierter Schaltungen"</td>
</tr>
<tr>
<td>56760</td>
<td>"Hochspannungstechnik"</td>
</tr>
<tr>
<td>56770</td>
<td>"Energieübertragung - Projekt"</td>
</tr>
</tbody>
</table>
Modul: 14500 Praktische Übungen im Labor "Softwaretechnik"

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Michael Weyrich</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Michael Weyrich</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Softwaretechnik I bzw. vergleichbare Kenntnisse</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 12. Lernziele: | Die Studierenden
| | • gehen methodisch bei der Softwareentwicklung vor
| | • können im Team arbeiten
| | • kennen die Grundlagen des Projektmanagement
| | • führen eine grundlegende Qualitätssicherung durch |
| | Die Aufgabe der Software ist es, den Fahrroboter durch einen Hindernisparcours in einen Zielbereich zu steuern.
| 14. Literatur: | Vorlesungsskript zur Vorlesung Softwaretechnik I
| | Portal auf http://www.ias.uni-stuttgart.de/stp |
| 15. Lehrveranstaltungen und -formen: | 145001 Projektpraktikum Softwaretechnik |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 40 h |
| 17. Prüfungsnummer/n und -name: | 14501 Praktische Übungen im Labor "Softwaretechnik" (LBP), Sonstige, Gewichtung: 1
| | • aktive Teilnahme und selbständiges Arbeiten
| | • Durchführung der Tests
| | • Präsentation der Ergebnisse |
| 18. Grundlage für ... : |
| 19. Medienform: | Beamerpräsentation mit Aufzeichnung der Seminare |
| 20. Angeboten von: | Automatisierungstechnik und Softwaresysteme |
Modul: 14520 Praktische Übungen im Labor "Elektromechanische Energiewandlung I"

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

12. Lernziele:

- Studierende kennen den Aufbau und die Funktion elektrischer Maschinen sowie die Komponenten eines elektrischen Antriebes und besitzen die Fähigkeit diesen in Betrieb zu nehmen.
- Studierende kennen den Aufbau und Funktion der berührungslosen Energieübertragung. Sie besitzen die Fähigkeit das Verhalten induktiv gekoppelter Spulen sowie deren Betrieb mit leistungs- und signalelektronische Komponenten zu beschreiben und umzusetzen.
- Studierende können die einzelnen Arbeitsschritte im Team planen und organisieren und abschließend über die erreichten Ergebnisse berichten.

13. Inhalt:

- Magnetisch gekoppelte Spulen
- Aufbau und Inbetriebnahme einer Leistungselektronik für die berührungslose, induktive Energieübertragung als Projektarbeit
- Finite Elemente Methode (FEM) Simulation einer Reluktanzmaschine
- Stationäres und dynamisches Verhalten der elektrisch erregten Gleichstrommaschine
- Stationäres und dynamisches Verhalten der elektrisch erregte Synchronmaschine
- Stationäres und dynamisches Verhalten der Asynchronmaschine

14. Literatur:

siehe Modul "Elektrische Maschinen I"

15. Lehrveranstaltungen und -formen:

- 145201 Praktische Übungen im Labor "Elektrische Maschinen"
16. Abschätzung Arbeitsaufwand: Präsenzzeit: 42h, verteilt auf 10 Versuchsnachmittage
Selbststudium/Nacharbeitungszeit: 138h
Gesamt: 180 h

17. Prüfungsnummer/n und -name: 14521 Praktische Übungen im Labor "Elektromechanische
Energiewandlung I" (LBP), Schriftlich oder Mündlich, 60 Min.,
Gewichtung: 1

18. Grundlage für ... :

19. Medienform: Umdrucke zur Versuchsvorbereitung

20. Angeboten von: Elektrische Energiewandlung
Modul: 14530 Praktische Übungen im Labor "Leistungselektronik und Regelungstechnik"

2. Modulkürzel: 051010014
5. Modulduer: Einsemestrig
3. Leistungspunkte: 6 LP
6. Turnus: Wintersemester
4. SWS: 4
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Jörg Roth-Stielow
9. Dozenten: wiss. MA
 ➞ Schlüsselqualifikation fachaffin
12. Lernziele: Studierende...
 • ...können eine konkrete Aufgabenstellung aus dem Bereich der Leistungselektronik und Regelungstechnik in einer Kleingruppe strukturieren, Teilaufgaben und Schritte definieren, diese bearbeiten und lösen.
 • ...können die erzielten Ergebnisse wissenschaftlich nachvollziehbar dokumentieren und in einem Kolloquium darüber berichten.
13. Inhalt: Projekt-Beispiele:
 • Eigenschaften von Leistungshalbleitern
 • Schaltungstopologien und Modulationsverfahren
 • Regelung eines Gleichstromantriebs
 • Regelung einer Schiebetür
 Vorgehen:
 • Vorbereitung, Berechnungen
 • Strukturierung der Aufgabe, Gliederung in Arbeitspakete, Arbeitsplanung.
 • Durchführung der Arbeitsschritte
 • Dokumentation der Ergebnisse
 • Abschlusskolloquium
14. Literatur: siehe Module "Leistungselektronik" und "Regelungstechnik"
15. Lehrveranstaltungen und -formen:
 • 145301 Praktische Übungen im Labor "Leistungselektronik und Regelungstechnik"
16. Abschätzung Arbeitsaufwand: Präsenzzeit: 56 h
 Selbststudium: 124 h
 Gesamt: 180 h
17. Prüfungsnummer/n und -name: 14531 Praktische Übungen im Labor "Leistungselektronik und Regelungstechnik" (LBP), Schriftlich oder Mündlich, Gewichtung: 1
 • Aktive Teilnahme und selbständiges Arbeiten
 • Qualität der erzielten Ergebnisse
 • Qualität der Dokumentation
 • Ergebnis der Befragung im Kolloquium
<table>
<thead>
<tr>
<th>Nr.</th>
<th>Beschreibung</th>
<th>Informationen</th>
</tr>
</thead>
<tbody>
<tr>
<td>18.</td>
<td>Grundlage für ...</td>
<td></td>
</tr>
<tr>
<td>19.</td>
<td>Medienform:</td>
<td></td>
</tr>
<tr>
<td>20.</td>
<td>Angeboten von:</td>
<td>Leistungselektronik und Regelungstechnik</td>
</tr>
</tbody>
</table>
Modul: 14540 Praktische Übungen im Labor "Feldnumerik"

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Jens Anders</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Prof. Dr. Jens Anders Wissenschaftliche Mitarbeiter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>Die Studierenden:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>• besitzen vertiefte Kenntnisse auf dem Gebiet der Modellierung und der numerischen Simulation von Feldproblemen in der Elektrotechnik,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Literatur:</td>
<td>• sind in der Lage, komplexe Fragestellungen im Team zu analysieren,</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>14541 Praktische Übungen im Labor "Feldnumerik" (LBP), Mündlich, Gewichtung: 1 aktive Teilnahme und selbstständiges Arbeiten Qualität und Diskussion der im Team durchgeführten numerischen Simulation Präsentation der Ergebnisse im Seminarvortrag</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Elektrotechnik bionischer Systeme</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Modul: 14550 Praktische Übungen im Labor "Halbleitertechnologie: PDBFET"

2. Modulkürzel: 050500004
5. Modulordnung: Einsemestrig
3. Leistungspunkte: 6 LP
6. Turnus: Wintersemester
4. SWS: 4
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Jörg Schulze
9. Dozenten: Jörg Schulze wiss. MA
12. Lernziele: Die Studierenden besitzen praktische Grundkenntnisse über die Herstellung eines Planar-Doped Barrier MOSFETs (PDBFETs), eines MOSFETs mit einer Kanallänge im Sub-10 nm-Bereich. Sie können die prinzipielle Funktionsweise eines PDBFETs erklären, kennen seine Charakteristika und können diese herleiten. Sie können selbstständig im Reinraum und in den Labors arbeiten und die elektrische Charakterisierung eines PDBFETs eigenständig vornehmen.

Die folgenden Inhalte werden besprochen:
• Einweisung in die Arbeit im Reinraum
• Einführung in das Wachstum von Halbleiterschichten mittels Molekularstrahlepitaxie (MBE)
• Durchführung der Strukturierungs-, Aufdampf- und Schichtmesstechnik in Reinraumumgebung
• Messtechnische Charakterisierung mittels On-Wafer-Messtechnik, Einbau des PDBFETs in ein standardisiertes Gehäuse (Aufbau- und Verbindungstechnik)

14. Literatur: Der IHT-Laborzyklus dient zur Vorbereitung und zur Vertiefung der IHT-Vorlesungzyklen zur Halbleitertechnik (HL), Halbleitertechnologie (HLT) und Quantenelektronik (QE). Dementsprechend sei hier auf die jeweils relevante Literatur verwiesen.

HL-relevante Literatur:
• Chang: ULSI Devices, Wiley, 2000
• Deleonibus (Ed.): Electronic Device Architectures for the Nano-CMOS Era, World Scientific, 2008
• Hoffmann: Systemintegration, Oldenbourg, 2003
• Linder: Power Semiconductors, CRC Press, 2006
• Löcherer: Halbleiterbauelemente, Teubner, 1992
• Lutz: Halbleiter-Leistungsbauwerke, Springer, 2006
• Ng: Complete Guide to Semiconductor Devices, Wiley, 2002
• Razavi: Microelectronics, Wiley, 2015
• Roulsten: An Introduction to the Physics of Semiconductor Devices, Oxford University Press, 1999
• Schaumburg: Halbleiter, Teubner, 1991
• Schulze: Konzepte Silizium-basierter MOS-Bauelemente, Springer, 2005
• Sze: Semiconductor Devices - Physics and Technology, Wiley, 1985
• Thuselt: Physik der Halbleiterbauelemente, Springer, 2005
• Treitinger, Miura-Mattausch (Ed.): Ultra-Fast Silicon Bipolar Technology, Springer, 1988

HLT-relevante Literatur:
• Beneking: Halbleitertechnologie, Eine Einführung in die Prozesstechnik von Silizium und III-V Verbindungen, Teubner Verlag, 1984
• Chan, Sze: ULSI-Technology, Mc Graw Hill, 1996
• Hattori (Ed.): Ultraclean Surface Processing of Silicon Wafers, Springer, 1998
• Herman, Sitter: Molecular Beam Epitaxy, Springer, 1989
• Hilleringmann: Silizium-Halbleitertechnologie, Teubner Verlag, 1996
• Kasper, Bean: Silicon-Molecular Beam Epitaxy, CRC Press, 1988
• Kasper, Lyutovich: Properties of Silicon Germanium and SiGe: Carbon, INSPEC, 2000
• v. Münch: Einführung in die Halbleitertechnologie, Teubner Verlag, 1993
• Nijs (Ed.): Advanced Silicon and Semiconducting Silicon-Alloy Based Materials and Devices, Institute of Physics Publishing, 1994
• Siffert, Krimmel (Ed.): Silicon - Evolution and Future of a Technology, Springer, 2004

QE-relevante Literatur:
• Barnham, Vvedensky (Ed.): Low-dimensional semiconductor structures, Cambridge University Press, 2001 (Kapitel 10)
• Durrani: Single-Electron Devices and Circuits in Silicon, Imperial College Press, 2010
• Harrison: Quantum Wells, Wires and Dots, Wiley, 2000
• Kasper, Paul: Silicon Quantum Integrated Circuits, Springer, 2005
• Kawakami, McCreary, Li: Fundamentals of Spintronics in Metal and Semiconductor Systems, Kapitel 5 in "Nanoelectronics and Photonics: From Atoms to Materials, Devices, and Architectures" (Ed.: Korkin, Rosei)
• Levi: Applied Quantum Mechanics, Cambridge University Press, 2006
• Oda, Ferry (Ed.): Silicon Nanoelectronics, CRC Press, 2005
• Schwabl: Quantenmechanik, Springer, 2007
• Sturm, Schulze: Quantum Computation aus algorithmischer Sicht, Oldenbourg, 2008
• Yu, Cardona: Fundamentals of Semiconductors, Springer, 2005

15. Lehrveranstaltungen und -formen:
• 145501 Projektpraktikum Halbleitertechnologie

16. Abschätzung Arbeitsaufwand:
Gesamtaufwand: 180 h
Dabei:
• 45 h (12 Termine a 5 SWS) Präsenz
• 135 h Selbststudium

17. Prüfungsnummer/n und -name:
14551 Praktische Übungen im Labor "Halbleitertechnologie: PDBFET" (LBP), Mündlich, 30 Min., Gewichtung: 1
Prüfungsvorleistungen: Kolloquien während der Laborarbeit, Abschlusspräsentation der Ergebnisse

18. Grundlage für ...

19. Medienform:
• PowerPoint-Präsentationen zur Einführung in das Praktikum und das Thema (Beamer)
• Lehrbriefe zu den einzelnen Themenschwerpunkten
• Ausgedrucktes Praktikumsskript mit sämtlichen Folien und Lehrbriefen (zum Selbstkostenpreis erhältlich)
• Sämtliche Unterlagen werden elektronisch über ILIAS zum Download bereitgestellt.

20. Angeboten von:
Halbleitertechnik
Modul: 14560 Praktische Übungen im Labor "Photovoltaik und Energiespeicher"

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Jürgen Heinz Werner</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Jürgen Heinz Werner, Jürgen Köhler, Renate Zapf-Gottwick</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>- Photovoltaik I, - Grundkenntnisse in Leistungselektronik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>Die Studierenden können</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- photovoltaische Materialien, Zellen, Systeme unterscheiden, herstellen, aufbauen und charakterisieren</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- im Team arbeiten und die Ergebnisse präsentieren</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>• Verschiedene Projekte zur Herstellung von Solarzellen, -materialien, und -systemen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Gruppenarbeit von 2 bis 4 Studierenden</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Beispiele: Herstellung von Siebdrucksolarzellen, Herstellung von Solarzellen aus amorphem oder kristallinem Silizium, Vermessung der Zellen, Berechnung der Jahresenergieerträge, Aufbau von photovoltaischen Stromversorgungen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Literatur:</td>
<td>- Vorlesungsmanuskript "Photovoltaik I"</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- M. A. Green, Solar Cells (University of New South Wales, Sydney, 1986)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- A. Goetzberger, B. Voß, J. Knobloch, Sonnenergie - Photovoltaik (Teubner, Stuttgart, 1996)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 145601 Praktische Übungen im Labor "Photovoltaik und Energiespeicher"</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>14561 Praktische Übungen im Labor "Photovoltaik und Energiespeicher" (LBP), Schriftlich oder Mündlich, Gewichtung: 1</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Physikalische Elektronik</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Modul: 14570 Praktische Übungen im Labor "Rechnerarchitektur und Kommunikationssysteme I"

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050901007</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Modulcode:</td>
<td>050901007</td>
</tr>
<tr>
<td>6. Moduldauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Turnus:</td>
<td>Wintersemester</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Matthias Meyer wiss. MA</td>
</tr>
</tbody>
</table>
| 13. Inhalt: | Das Praktikum wird in zwei Ausprägungen angeboten, die bei der Anmeldung ausgewählt werden:
• Die Ausprägung Rechnerarchitektur baut auf den Veranstaltungen Technische Informatik I und Entwurf digitaler Systeme auf und besteht aus verschiedenen Projekten, in denen umfassende Fragestellungen im Team bearbeitet werden.
• Die Ausprägung Kommunikationsnetze baut auf der Veranstaltung Kommunikationsnetze I auf und behandelt in mehreren Teilversuchen Aspekte der Kommunikationsnetze.
Für nähere Informationen, aktuelle Ankündigungen und Material siehe http://www.ikr.uni-stuttgart.de/Xref/CC/P_TI (für die Ausprägung Rechnerarchitektur) und http://www.ikr.uni-stuttgart.de/Xref/CC/P_CN (für die Ausprägung Kommunikationsnetze). |
| 14. Literatur: | • Manuskripte zu Technische Informatik I, Entwurf digitaler Systeme, Kommunikationsnetze I
• Versuchsunterlagen
• Selbstantändige Erschließung von Literatur (Bücher, Zeitschriften, Internet) |
| 15. Lehrveranstaltungen und -formen: | • 145701 Projektpraktikum Rechnerarchitektur und Kommunikationssysteme |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 50 h
Selbststudium: 130 h |
<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>14571 Praktische Übungen im Labor "Rechnerarchitektur und Kommunikationssysteme I" (LBP), Sonstige, Gewichtung: 1 Durchführung, Demonstrator, Vortrag</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Kommunikationsnetze und Rechnersysteme</td>
</tr>
</tbody>
</table>
Modul: 14580 Praktische Übungen im Labor "Multimedia Communications"

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Weitere Sprachen</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Dr. Stephan ten Brink

9. Dozenten: Stephan Brink

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Schlüsselqualifikation fachaffin
B.Sc. Elektrotechnik und Informationstechnik, PO 048-2011, 5. Semester
→ Zusatzmodule

11. Empfohlene Voraussetzungen:

12. Lernziele: To be proficient in lab experiments using measurement equipment and simulation tools

13. Inhalt:

• Video coding and processing, MPEGx, H.26x
• Optical transmission system
• Digital quadrature amplitude modulation (QAM)
• DVB - Digital Video Broadcast
• Simulation of mobile and fixed communication systems
• ADSL - Asymmetric Digital Subscriber Line

14. Literatur:

• Detailed Description
• Kammeyer, K. D.: Nachrichtenübertragung. Verlag Teubner

15. Lehrveranstaltungen und -formen:

• 145801 Praktische Übungen im Labor "Multimedia Communications"

16. Abschätzung Arbeitsaufwand:

Presence 42h
Self study 138h
Total 180h

17. Prüfungsnummer/n und -name:

14581 Praktische Übungen im Labor "Multimedia Communications" (LBP), Sonstige, Gewichtung: 1
Test, written report, once per semester

18. Grundlage für ...

19. Medienform: Lab. exercises guided by academic staff

20. Angeboten von: Nachrichtenübertragung
Modul: 14600 Praktische Übungen im Labor "Wettersatellit"

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. Modulverantwortlicher:</th>
<th>Univ.-Prof. Dr.-Ing. Bin Yang</th>
</tr>
</thead>
<tbody>
<tr>
<td>9. Dozenten:</td>
<td>wiss. MA</td>
</tr>
</tbody>
</table>

| 11. Empfohlene Voraussetzungen: | Grundkenntnisse aus der digitalen Signalverarbeitung und Nachrichtenübertragung sind notwendig. |

<table>
<thead>
<tr>
<th>12. Lernziele:</th>
<th>Die Studierenden</th>
</tr>
</thead>
<tbody>
<tr>
<td>• können eine konkrete Aufgabenstellung aus dem Bereich der Signalverarbeitung in einer 2er-Gruppe strukturieren, Teilaufgaben und Schritte definieren, diese bearbeiten und lösen,</td>
<td></td>
</tr>
<tr>
<td>• beherrschen Selbststudium von Fachliteratur und können eigene Literaturrecherche durchführen,</td>
<td></td>
</tr>
<tr>
<td>• können die erzielten Ergebnisse wissenschaftlich nachvollziehbar dokumentieren und in einem Vortrag präsentieren.</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13. Inhalt:</th>
<th>• Einarbeitung in die Aufgabenstellung durch Literaturrecherche</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Durchführung der beiden Projekte Dekodierung vom Wettersatellitenbild und Lokalisierung der Messantenne in einer 2er-Gruppe</td>
</tr>
<tr>
<td></td>
<td>• Implementierung in MATLAB und Auswertung</td>
</tr>
<tr>
<td></td>
<td>• Zusammenfassung der Ergebnisse in einer Ausarbeitung</td>
</tr>
<tr>
<td></td>
<td>• Präsentation der Ergebnisse in einem Seminarvortrag</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• http://www.noaa.gov</td>
</tr>
<tr>
<td></td>
<td>• Skript zur Praktischen Übung im Labor</td>
</tr>
</tbody>
</table>

| 15. Lehrveranstaltungen und -formen: | • 146001 Praktische Übungen im Labor "Wettersatellit" |

<table>
<thead>
<tr>
<th>16. Abschätzung Arbeitsaufwand:</th>
<th>Präsenzzeit: 30 h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Selbststudium: 150 h</td>
</tr>
<tr>
<td></td>
<td>Gesamt: 180 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>14601 Praktische Übungen im Labor "Wettersatellit" (LBP), Sonstige, Gewichtung: 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>aktive Teilnahme und selbständiges Arbeiten Qualität der erzielten Ergebnisse sowie Qualität und Dokumentation der MATLAB-Implementierungen Schriftliche Ausarbeitung der Ergebnisse Präsentation der Ergebnisse im Seminarvortrag</td>
</tr>
</tbody>
</table>

| 18. Grundlage für ... : | |

| 19. Medienform: | |

| 20. Angeboten von: | Netzwerk- und Systemtheorie |
Modul: 14610 Praktische Übungen im Labor "Hochfrequenztechnik"

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4</td>
<td>7. Sprache:</td>
<td>Weitere Sprachen</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr. Jan Hesselbarth</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>wiss. MA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

12. Lernziele:
Die Studierenden lernen Effekte der Hochfrequenztechnik kennen und erlernen den Umgang sowie die Funktionsweise typischer Messgeräte eines Hochfrequenzlabors.

13. Inhalt:
Durchführung praktischer Versuche mit Messtechnik und Entwurfs- / Simulationssoftware in Kleingruppen (deutsch oder englisch):
- **Elektromagnetische Verträglichkeit:** Grundzüge der Kopplung zwischen Schaltungsteilen und Standardisierung nach CE-Norm.
- **Mobilfunknetzplanung:** Grundzüge der Planung von Mobilfunknetzen im indoor und urbanen Bereich: Datenbankerstellung, Vorverarbeitung, Prognosemodelle, Bestimmung von Feldstärkeverteilungen und Strahlwegen.
- **Numerische Berechnung elektromagnetischer Felder:** Anwendung des Programms FEKO zur Analyse von elektromagnetischen Strahlungsproblemen: Dipolantenne, Gruppenantenne, Optimierung einer Hornantenne, Berechnung der Schirmwirkung eines Gehäuses, Stromverteilung in einem Hohlraumresonator, Antennencharakteristik bei einer Fahrzeugantenne.
- **Netzwerkanalysator-Messungen:** S-Parameter-Bestimmung von verschiedenen Baugruppen und Messungen zum Verhalten "handelsüblicher" Widerstände oder Kondensatoren mit Drahtanschlüssen bei Frequenzen bis zu 300 MHz mit einem WILTRON-Netzwerkanalysator. Vermessung von Richtkoppler, Interdigitalfilter, Double-Stub Tuner, D-Netz Antenne im Frequenzbereich und Impulsausbreitung auf Kabeln im Zeitbereich.
- **Antennenmessungen:** Einführung in die Messprinzipien der Antennenmessung in der Antennenmesskammer. Messung von Antennen im W-Band (75-110 GHz).
- **Hohlleiter:** Grundsätzliches zur Wellenausbreitung im Hohlleiter (Wellenlängenbestimmung, Dämpfungsverhalten), Messung der Eigenschaften verschiedener Hohlleiterbauelemente (Richtkoppler, Magisches T, Kreuzkoppler, Blenden und Filter).
- **Messung von Streu- und Rauschparametern:** Messung der Streuparameter (Reflection und Transmission) eines Transistors mit einem Vektorvoltmeter und Bestimmung der Rauschgrößen derselben Schaltung mit der 3-dB-Methode.
• Advanced Design System: Anwendung eines aktuellen Softwarewerkzeugs zum Schaltungsentwurf. Analyse eines Filterentwurfs und Entwurf eines rauscharmen Verstärkers.

14. Literatur:
• Detlefsen, Siart: Grundlagen der Hochfrequenztechnik, 3. Auflage, Oldenbourg Verlag, 2009,
• Meinke, Gundlach: Taschenbuch der Hochfrequenztechnik, 5. Auflage, Springer-Verlag, 1992,
• Zinke, Brunswig: Lehrbuch der Hochfrequenztechnik, 6. Auflage, Springer-Verlag, Berlin, 2000,
• Schiek: Grundlagen der Hochfrequenzmesstechnik, Springer Verlag, 1999,

15. Lehrveranstaltungen und -formen:
• 146101 Practical exercises in radio frequency laboratory

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 56 h
Selbststudium/Nacharbeitszeit: 124 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
14611 Praktische Übungen im Labor "Hochfrequenztechnik" (LBP), Sonstige, Gewichtung: 1
Durchführung, Versuchsbericht, Test

18. Grundlage für ...

19. Medienform:

20. Angeboten von: Hochfrequenztechnik
Modul: 37780 Praktische Übungen im Labor "Entwurf integrierter Schaltungen"

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050501004</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>5. Modulda...</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Sommersemester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Manfred Berroth</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Manfred Berroth</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Grundkenntnisse in Schaltungstechnik Grundkenntnisse in integrierten Schaltungen</td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>Erlangung von praktischen Kenntnissen im Umgang mit Entwurfswerkzeugen für die IC-Entwicklung</td>
</tr>
<tr>
<td>14. Literatur:</td>
<td>Vorlesungsmanuskripte, Versuchsbeschreibungen, Handbücher und Online-Hilfe zur Software Selbständige Erschließung von Literatur (Bücher, Zeitschriften, Internet)</td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 377801 Entwurf integrierter Schaltungen</td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Präsenzzeit: 40 h Selbststudium: 140 h Gesamt: 180 h</td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>37781 Praktische Übungen im Labor "Entwurf integrierter Schaltungen" (LBP), Schriftlich oder Mündlich, Gewichtung: 1</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Elektrische und Optische Nachrichtentechnik</td>
</tr>
</tbody>
</table>
Modul: 56760 Praktische Übungen im Labor "Hochspannungstechnik"

2. Modulkürzel: 050310013
5. Modulduer: Einsemestrig

3. Leistungspunkte: 6 LP
6. Turnus: Wintersemester

4. SWS: 4
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dr.-Ing. Stefan Tenbohlen

9. Dozenten: Stefan Tenbohlen

11. Empfohlene Voraussetzungen: Elektrische Energietechnik

12. Lernziele:
Der Studierende kann eine hochspannungstechnische Problemstellung strukturiert und selbständig lösen. (Definition eines komplexen Problems, Aufteilung in einzelne Teilaufgaben, Zeitplanung und Schnittstellendefinitionen)

Der Studierende kann im Team arbeiten und die Ergebnisse wissenschaftlich nachvollziehbar dokumentieren und präsentieren.

13. Inhalt:
Durchführung von Laborversuchen, z.B.:
- Erzeugung, Messung und Anwendung hoher Wechselspannungen
- Erzeugung und Anwendung hoher Stoßspannungen
- Ermittlung von elektrostatischen Feldern
- Wanderwellen
- Gasentladung, Isolierstoffe
- Elektromagnetische Verträglichkeit (EMV)
- Lastflussrechnung
- und weitere

Eingangstests, Abgabe von Versuchprotokollen, evt. mit Präsentation

14. Literatur:
- Vorlesungsmanuskripte zu "Hochspannungstechnik I" und "Elektrische Energienetze 1"
- Selbständiges Auffinden von Literatur-/Informationsstellen (Bücher, Zeitschriften, Internet)

15. Lehrveranstaltungen und -formen:
- 567601 Praktische Übungen im Labor "Hochspannungstechnik"

16. Abschätzung Arbeitsaufwand:
Präsenz: 40 h
Selbststudium: 140 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name: 56761 Praktische Übungen im Labor "Hochspannungstechnik" (LBP), Sonstige, Gewichtung: 1
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Versuchsdurchführung im Labor</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Energieübertragung und Hochspannungstechnik</td>
</tr>
</tbody>
</table>
Modul: 56770 Praktische Übungen im Labor, Energieübertragung - Projekt

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050310028</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Moduldauer:</td>
<td>Einsemestrig</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>6 LP</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>Wintersemester/Sommersemester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Krzysztof Rudion</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Krzysztof Rudion</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Elektrische Energienetze I</td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>Der Studierende kann eine Problemstellung aus dem Bereich der Energieübertragung strukturiert und selbständig lösen. (Definition eines komplexen Problems, Aufteilung in einzelne Teilaufgaben, Zeitplanung und Schnittstellendefinitionen). Der Studierende kann im Team arbeiten und die Ergebnisse wissenschaftlich nachvollziehbar dokumentieren und in einem Vortrag präsentieren.</td>
</tr>
</tbody>
</table>
• Projektdefinition
• Einarbeitung in die Aufgabenstellung durch Literaturrecherche
• Aufteilung des Projektes in Teilprojekte mit definierten Schnittstellen
• einzelne Gruppenmitglieder bearbeiten Teilprojekte parallel
• praktische Realisierung und Inbetriebnahme des Systems
• praxisnahes Arbeiten mit "state-of-the-art Entwurfswerkzeugen
• Präsentation der Ergebnisse in einem Abschlusskolloquium |
| 14. Literatur: |
• A. Schwab: Elektroenergiesysteme, Springer-Verlag, 2009/2015
• Selbständiges Auffinden von Literatur-/Informationsstellen (Bücher, Zeitschriften, Internet) |
| 15. Lehrveranstaltungen und -formen: |
• 567701 Praktische Übungen im Labor, Energieübertragung - Projekt |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzzeit: 40 Stunden
Selbststudium: 140 Stunden
Summe: 180 Stunden |
| 17. Prüfungsnummer/n und -name: | 56771 Praktische Übungen im Labor, Energieübertragung - Projekt (LBP), Sonstige, Gewichtung: 1 |
| 18. Grundlage für ...: | |
| 19. Medienform: | |
| 20. Angeboten von: | Netzintegration erneuerbarer Energien |
Modul: 80030 Bachelorarbeit Elektrotechnik und Informationstechnik

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>8</td>
<td>7. Sprache:</td>
<td>Weitere Sprachen</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Dr.-Ing. Bin Yang</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Manfred Berroth, Joachim Burghartz, Norbert Frühauf, Peter Göhner, Andreas Kirstädter, Nejila Parspour, Jörg Roth-Stielow, Jörg Schulze, Jürgen Heinz Werner, Bin Yang, Jan Hesselbarth, Stefan Tenbohlen, Stephan Brink, Michael Weyrich, Ingmar Kallfass</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Erwerb von mind. 120 Leistungspunkten im Bachelor-Studiengang Elektrotechnik und Informationstechnik</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
• Einarbeitung in die Aufgabenstellung durch Literaturrecherche und Erstellung eines Arbeitsplanes.
• Durchführung und Auswertung der eigenen Untersuchungen
• Diskussion der Ergebnisse
• Zusammenfassung der Ergebnisse in einer wissenschaftlichen Arbeit

Präsentation und Verteidigung der Ergebnisse in einem Seminarvortag

13. Inhalt:
• Einarbeitung in die Aufgabenstellung durch Literaturrecherche und Erstellung eines Arbeitsplanes.
• Durchführung und Auswertung der eigenen Untersuchungen
• Diskussion der Ergebnisse
• Zusammenfassung der Ergebnisse in einer wissenschaftlichen Arbeit

Präsentation und Verteidigung der Ergebnisse in einem Seminarvortag

14. Literatur:
• Plümper: Effizient Schreiben: Leitfaden zum Verfassen von Qualifizierungsarbeiten und wissenschaftlichen Texten, Oldenbourg, 2012
• Weitere: Je nach gewählter Bachelorarbeit

15. Lehrveranstaltungen und -formen:

16. Abschätzung Arbeitsaufwand: Gesamtaufwand: 360 h
 Dabei:
 • 22,5 h (2 SWS) Präsenz im Kolloquium
 • 47,5 h Erstellung des Kolloquiumsvortrags
 • 290 h Erstellung der Bachelorarbeit

17. Prüfungsnummer/n und -name:

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Netzwerk- und Systemtheorie