Modulhandbuch
Studiengang Master of Science WASTE
Prüfungsordnung: 2015

Sommersemester 2016

Universität Stuttgart
Keplerstr. 7
70174 Stuttgart
Kontaktpersonen:

<table>
<thead>
<tr>
<th>Rolle</th>
<th>Name</th>
<th>Tel.</th>
<th>E-Mail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studiendekan/in</td>
<td>Univ.-Prof. Andreas Kronenburg</td>
<td></td>
<td>andreas.kronenburg@itv.uni-stuttgart.de</td>
</tr>
<tr>
<td></td>
<td>Institut für Technische Verbrennung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Studiengangsmanager/in</td>
<td>Jessica Hahn-Ebner</td>
<td></td>
<td>Jessica.Ebner@ifk.uni-stuttgart.de</td>
</tr>
<tr>
<td></td>
<td>Thermische Kraftwerkstechnik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prüfungsausschussvorsitzende/r</td>
<td>Univ.-Prof. Eckart Laurien</td>
<td>0711-68562138</td>
<td>eckart.laurien@ike.uni-stuttgart.de</td>
</tr>
<tr>
<td></td>
<td>Institut für Kernenergetik und Energiesysteme</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fachstudienberater/in</td>
<td>Jessica Hahn-Ebner</td>
<td></td>
<td>Jessica.Ebner@ifk.uni-stuttgart.de</td>
</tr>
<tr>
<td></td>
<td>Thermische Kraftwerkstechnik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stundenplanverantwortliche/r</td>
<td>Jessica Hahn-Ebner</td>
<td></td>
<td>Jessica.Ebner@ifk.uni-stuttgart.de</td>
</tr>
<tr>
<td></td>
<td>Thermische Kraftwerkstechnik</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Inhaltsverzeichnis

Präambel

- **110 Compulsory Modules** .. 6
 - 19100 Chemistry and Biology for Environmental Engineers ... 7
 - 19080 Pollutant Formation and Air Quality Control ... 11
 - 19290 Process Engineering ... 15
 - 19120 Sanitary Engineering ... 17
 - 67050 Technology Assessment and Presentation Techniques .. 21
 - 19200 Thermo and Fluid Dynamics .. 23

19 Auflagenmodule des Masters

- **120 Elective Modules** ... 8
 - 121 Elective Modules 6 CP ... 9
 - 1211 Elective Modules 6 CP (in english language) .. 27
 - 19320 Design of Solid Waste Treatment Plants ... 34
 - 30580 Einführung in die numerische Simulation von Verbrennungsprozessen 31
 - 15440 Firing Systems and Flue Gas Cleaning .. 34
 - 19330 Industrial Waste Water .. 36
 - 19350 Industrial Waste and Contaminated Sites .. 38
 - 15380 International Waste Management .. 40
 - 15430 Measurement of Air Pollutants ... 42
 - 59620 Mechanical, Biological and Thermal Waste Treatment .. 44
 - 30590 Modellierung und Simulation turbulenter reaktiver Strömungen ... 46
 - 15970 Modellierung und Simulation von Technischen Feuerungsanlagen 48
 - 59610 Primary Environmental Technologies and Emissions Reduction in Industrial Processes . 51
 - 36450 Special Aspects of Urban Water Management ... 53
 - 19310 Urban Drainage and Design of Wastewater Treatment Plants ... 55
 - 19360 Water Quality and Treatment .. 57
 - 1212 Elective Modules 6 CP (in german language) .. 59
 - 36930 Maschinen und Apparate der Trenntechnik ... 60
 - 36500 Ressourcenmanagement ... 62
 - 16060 Umweltanalytik - Wasser und Boden .. 64
 - 34540 Ökobilanz und Nachhaltigkeit ... 66
 - 122 Elective Modules 3 CP .. 69
 - 1221 Elective Modules 3 CP (in english language) .. 70
 - 39110 Air Quality Management .. 71
 - 39650 Basics of Membrane Technology ... 72
 - 39660 Biological Waste Air Purification ... 74
 - 59600 Chemical Reaction Engineering ... 76
 - 36550 Chemistry of the Atmosphere .. 78
 - 58100 Constructed wetlands for wastewater treatment ... 80
 - 39130 Engine Combustion and Emissions .. 82
 - 41010 Modellierung von Zweiphasenströmungen .. 83
 - 39140 Sustainable Production Processes .. 85
 - 1222 Elective Modules 3 CP (in german language) .. 86
 - 15400 Biogas ... 86
 - 67040 Kraftwerksanlagen I .. 88
 - 30660 Luftreinhaltung am Arbeitsplatz .. 89
 - 38720 Meteorologie ... 90

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>36560</td>
<td>Raumklima</td>
<td>92</td>
</tr>
<tr>
<td>15390</td>
<td>Umweltrelevanz abfalltechnischer Anlagen</td>
<td>94</td>
</tr>
<tr>
<td>123</td>
<td>Practical Works</td>
<td>96</td>
</tr>
<tr>
<td>36540</td>
<td>Praktikum Luftreinhaltung</td>
<td>97</td>
</tr>
<tr>
<td>67060</td>
<td>Sanitary Engineering - Practical Class I for WASTE students</td>
<td>99</td>
</tr>
<tr>
<td>67080</td>
<td>Sanitary Engineering - Practical Class II for WASTE students</td>
<td>101</td>
</tr>
<tr>
<td>81320</td>
<td>Student Research Project</td>
<td>103</td>
</tr>
</tbody>
</table>

200 Specialized Area

<table>
<thead>
<tr>
<th>Code</th>
<th>Course Title</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>210</td>
<td>Air Quality Control</td>
<td>105</td>
</tr>
<tr>
<td>211</td>
<td>Core Modules</td>
<td>106</td>
</tr>
<tr>
<td>15440</td>
<td>Firing Systems and Flue Gas Cleaning</td>
<td>107</td>
</tr>
<tr>
<td>212</td>
<td>Elective Modules 6 CP</td>
<td>109</td>
</tr>
<tr>
<td>30580</td>
<td>Einführung in die numerische Simulation von Verbrennungsprozessen</td>
<td>110</td>
</tr>
<tr>
<td>15430</td>
<td>Measurement of Air Pollutants</td>
<td>113</td>
</tr>
<tr>
<td>30590</td>
<td>Modellierung und Simulation turbulenter reaktiver Strömungen</td>
<td>115</td>
</tr>
<tr>
<td>15970</td>
<td>Modellierung und Simulation von Technischen Feuerungsanlagen</td>
<td>117</td>
</tr>
<tr>
<td>59610</td>
<td>Primary Environmental Technologies and Emissions Reduction in Industrial Processes</td>
<td>120</td>
</tr>
<tr>
<td>213</td>
<td>Elective Modules or Industrial Internship (6 CP)</td>
<td>122</td>
</tr>
<tr>
<td>2131</td>
<td>Elective Modules 3 CP</td>
<td>123</td>
</tr>
<tr>
<td>21311</td>
<td>Elective Modules (in english language)</td>
<td>124</td>
</tr>
<tr>
<td>39110</td>
<td>Air Quality Management</td>
<td>125</td>
</tr>
<tr>
<td>39660</td>
<td>Biological Waste Air Purification</td>
<td>126</td>
</tr>
<tr>
<td>36550</td>
<td>Chemistry of the Atmosphere</td>
<td>128</td>
</tr>
<tr>
<td>39130</td>
<td>Engine Combustion and Emissions</td>
<td>130</td>
</tr>
<tr>
<td>41010</td>
<td>Modellierung von Zweiphasenströmungen</td>
<td>131</td>
</tr>
<tr>
<td>21312</td>
<td>Elective Modules (in german language)</td>
<td>133</td>
</tr>
<tr>
<td>67040</td>
<td>Kraftwerksanlagen I</td>
<td>134</td>
</tr>
<tr>
<td>30660</td>
<td>Luftreinhaltung am Arbeitsplatz</td>
<td>135</td>
</tr>
<tr>
<td>38720</td>
<td>Meteorologie</td>
<td>136</td>
</tr>
<tr>
<td>36560</td>
<td>Raumklima</td>
<td>138</td>
</tr>
<tr>
<td>2132</td>
<td>Practical Work</td>
<td>140</td>
</tr>
<tr>
<td>36540</td>
<td>Praktikum Luftreinhaltung</td>
<td>141</td>
</tr>
<tr>
<td>67070</td>
<td>Industrial Internship</td>
<td>143</td>
</tr>
<tr>
<td>220</td>
<td>Solid Waste</td>
<td>144</td>
</tr>
<tr>
<td>221</td>
<td>Core Modules</td>
<td>145</td>
</tr>
<tr>
<td>59620</td>
<td>Mechanical, Biological and Thermal Waste Treatment</td>
<td>146</td>
</tr>
<tr>
<td>222</td>
<td>Elective Modules 6 CP</td>
<td>148</td>
</tr>
<tr>
<td>2221</td>
<td>Elective Modules (in english language)</td>
<td>149</td>
</tr>
<tr>
<td>19320</td>
<td>Design of Solid Waste Treatment Plants</td>
<td>150</td>
</tr>
<tr>
<td>19350</td>
<td>Industrial Waste and Contaminated Sites</td>
<td>152</td>
</tr>
<tr>
<td>15380</td>
<td>International Waste Management</td>
<td>154</td>
</tr>
<tr>
<td>2222</td>
<td>Elective Modules (in german language)</td>
<td>156</td>
</tr>
<tr>
<td>36500</td>
<td>Ressourcenmanagement</td>
<td>157</td>
</tr>
<tr>
<td>16060</td>
<td>Umweltanalytik - Wasser und Boden</td>
<td>159</td>
</tr>
<tr>
<td>223</td>
<td>Elective Modules or Industrial Internship (6 CP)</td>
<td>161</td>
</tr>
<tr>
<td>2231</td>
<td>Elective Modules 3 CP</td>
<td>162</td>
</tr>
<tr>
<td>22311</td>
<td>Elective Modules (in english language)</td>
<td>163</td>
</tr>
<tr>
<td>39660</td>
<td>Biological Waste Air Purification</td>
<td>164</td>
</tr>
<tr>
<td>39140</td>
<td>Sustainable Production Processes</td>
<td>166</td>
</tr>
<tr>
<td>22312</td>
<td>Elective Modules (in german language)</td>
<td>167</td>
</tr>
<tr>
<td>15400</td>
<td>Biogas</td>
<td>168</td>
</tr>
<tr>
<td>15390</td>
<td>Umweltrelevanz abfalltechnischer Anlagen</td>
<td>169</td>
</tr>
<tr>
<td>2232</td>
<td>Practical Work</td>
<td>171</td>
</tr>
<tr>
<td>67060</td>
<td>Sanitary Engineering - Practical Class I for WASTE students</td>
<td>172</td>
</tr>
<tr>
<td>67070</td>
<td>Industrial Internship</td>
<td>174</td>
</tr>
<tr>
<td>230</td>
<td>Waste Water</td>
<td>175</td>
</tr>
</tbody>
</table>
231 Core Modules ... 176
 19310 Urban Drainage and Design of Wastewater Treatment Plants .. 177
232 Elective Modules 6 CP .. 179
 2321 Elective Modules (in english language) ... 180
 19330 Industrial Waste Water ... 181
 36450 Special Aspects of Urban Water Management ... 183
 19360 Water Quality and Treatment ... 185
 2322 Elective Modules (in german language) ... 187
 16060 U mweltanalytik - Wasser und Boden .. 188
233 Elective Modules or Industrial Internship (6 CP) .. 190
 2331 Elective Modules 3 CP .. 191
 23311 Elective Modules (in english language) ... 192
 39650 Basics of Membrane Technology .. 193
 59600 Chemical Reaction Engineering .. 195
 58100 Constructed wetlands for wastewater treatment .. 197
 41010 Modellierung von Zweiphasenströmungen ... 199
 2332 Practical Work ... 201
 67080 Sanitary Engineering - Practical Class Part II for WASTE students 202
 67070 Industrial Internship ... 204

300 German Language Courses and Key Qualifications .. 205
 900 Key Qualifications .. 206
 60940 German as Foreign Language Part I .. 207
 60950 German as Foreign Language Part II ... 208

81310 Master Thesis WASTE ... 209

81320 Student Research Project ... 210
Präambel

Das Profil des Masterstudiengangs WASTE ist weitestgehend forschungsorientiert ausgeprägt und richtet sich insbesondere an internationale Studierende, die ihre Fachkenntnisse in der Luftreinhaltung, Abfall- und Abwassertechnik vertiefen wollen.

Die Studierenden weisen in der Regel einen qualifizierten Bachelorabschluss vor, den sie an einer ausländischen Hochschule, an einer deutschen Universität oder an einer gleichgestellten Hochschule in einem der Studiengänge Bauingenieurwesen, Chemieingenieurwesen, Maschinenbau, Umwelttechnik, Verfahrenstechnik oder in einem fachverwandten Studiengang erworben haben.

Die im Masterstudiengang Air Quality Control, Solid Waste and Waste Water Process Engineering (WASTE) ausgebildeten Ingenieurinnen und Ingenieure

- haben vertiefte Kenntnisse über Luftreinhaltung, Abfalltechnik, Abfallwirtschaft, Abwassertechnik und Umweltverfahrenstechnik und verstehen die dabei grundlegenden natur- und ingenieurwissenschaftlichen Zusammenhänge.

- kennen sowohl die Möglichkeiten und Strategien zur Vermeidung von Luftschadstoffen, Abfällen und Abwasser, als auch die Konzepte und Verfahren zu deren Verwertung und Behandlung und können diese zielgerichtet planen und umsetzen.

- sind in der Lage dazu, potenzielle und tatsächliche Umweltschäden zu erkennen und diese kritisch zu bewerten.

- verfügen über die ingenieurwissenschaftliche Fertigkeit zur Entwicklung, Konzeption und zum Betrieb von Anlagen und kennen dabei zugleich die nicht-technischen Auswirkungen ihrer Tätigkeit.

- können komplexe Fragestellungen konstruktiv bearbeiten und haben gelernt, hierfür Erkenntnisse und Methoden des Fachs zielorientiert einzusetzen.

- können Konzepte, Vorgehensweisen und Ergebnisse vor dem Hintergrund kultureller, wirtschaftlicher und politischer Rahmenbedingungen bedarfsgerecht kommunizieren und im Team bearbeiten.

- können im internationalen Kontext mit Spezialisten verschiedener Disziplinen zusammenarbeiten.

- sind fähig, die erworbenen natur- und ingenieurwissenschaftlichen Methoden zur Abstraktion, Formulierung und Lösung komplexer Aufgabenstellungen in Forschung und Entwicklung, in der Industrie oder in Forschungseinrichtungen erfolgreich einzusetzen, sie kritisch zu hinterfragen und sie bei Bedarf weiterzuentwickeln.

- können analytische, modellhafte und experimentelle Untersuchungen planen und
Qualifikationsziele

19 Auflagenmodule des Masters
100 Advanced Modules

Zugeordnete Module:
110 Compulsory Modules
120 Elective Modules
110 Compulsory Modules

<table>
<thead>
<tr>
<th>Zugeordnete Module</th>
<th>Module Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>19080</td>
<td>Pollutant Formation and Air Quality Control</td>
</tr>
<tr>
<td>19100</td>
<td>Chemistry and Biology for Environmental Engineers</td>
</tr>
<tr>
<td>19120</td>
<td>Sanitary Engineering</td>
</tr>
<tr>
<td>19200</td>
<td>Thermo and Fluid Dynamics</td>
</tr>
<tr>
<td>19290</td>
<td>Process Engineering</td>
</tr>
<tr>
<td>67050</td>
<td>Technology Assessment and Presentation Techniques</td>
</tr>
</tbody>
</table>
Modul: 19100 Chemistry and Biology for Environmental Engineers

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>021230502</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>6.0</td>
<td>7. Sprache:</td>
<td>-</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Jörg Metzger</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Jörg Metzger
• Karl Heinrich Engesser
• Brigitte Schwederski
• Bertram Kuch
• Daniel Dobslaw |
→ Advanced Modules --> Compulsory Modules |
| 11. Empfohlene Voraussetzungen: | |
| 12. Lernziele: | |

Lecture: Inorganic chemistry

The students

- know the fundamental concepts of chemistry (atomic structure, periodic system, chemical formulae, stoichiometry, molecular structures) and are able to use them,
- know the principle types of chemical substances and chemical reactions and can apply their knowledge to synthetic problems,
- know about the most important industrial compounds, their preparation and environmental aspects in their application.

Lecture: Organic chemistry

The students

- can identify important functional groups in organic molecules
- know the main compound classes in organic chemistry and the common rules for their nomenclature
- know the most important representatives thereof and are able to draw their structural formulae
- know the structure and properties of important bio-molecules such as fats, carbohydrates, proteins, nucleic acids, ATP, lignin and humic acids
- know the most important reactions involved in chemical and microbial degradation of organic matter
- know summary parameters used to characterize water quality
- know the properties of bio-molecules and can explain their general function with respect to cell structures, enzymatic and immune reactions
- knows selected environmental organic contaminants (PAH, dioxins, pesticides etc.) and their properties

Lecture: Biology and ecology of water, soil and air systems

The students
- know about the relation between water, soil and air compartments and many diseases, happening especially in developing countries
- know about the reasons for break out of diseases, the structure and function of prokaryotic and eucaryotic cells as well as the methods for identification and determination of growth conditions and possible growth limitations
- comprehend microbial metabolism, energy production, release and conservation, enzyme syntheses and their regulation.
- know important events and scientists in the history of biology
- know basics in ecology of natural and artificial ('technical') ecosystems as well as selected methods to detect distorted equilibria in technical ecosystems influenced by mankind

Lecture: Technical and medical microbiology for engineers

The students
- know the most important microorganisms being active in plants treating waste water, air and contaminated soil
- know the kind of participation in purification and thus the procedures used to make them feel happy as well as the problems associated with excess biomass
- are aware of a detailed overview of the kind of medically important microorganisms and of the most relevant agents of illness met in these plants; this holds also for the compartments ‘drinking water’ and ‘sewage sludge’.

13. Inhalt: **Lecture: Inorganic chemistry**

- atomic structure: stable nuclear particles, atomic nuclei, isotopes and radioactivity, atomic spectra and the hydrogen atom, heavier atoms
- the periodic system of the elements: the sequence of elements, the electronic configuration of some elements, the periodicity of some properties
• chemical bonding: the ionic bond, the metallic bond, the covalent bond, hydrogen bonding, van der Waals forces
• quantitative Relationships and Stoichiometric Equations
• characterizing chemical reactions: the chemical equilibrium, water: the solvent, acid/base reactions, redox reactions
• descriptive part: selected chemical compounds and their preparation and properties

Lecture: Organic chemistry
• functional groups and compound classes
• classification of chemical reactions in organic chemistry
• organic bio-molecules (e.g. proteins, carbohydrates, nucleic acids, fats, humic acids, lignin): structure and function
• chemical and microbial degradation of organic matter in the environment
• summary parameters
• organic environmental contaminants

Lecture: Biology and ecology of water, soil and air systems
The following topics are presented within the lecture:
• Introduction in history of microbiology
• Important water based/water related diseases
• Function of microscopy of staining techniques
• Structure and function of prokaryotic cells
• Structure and function of eucaryotic cells
• Necessity and effects of microbial nutrition
• Microbial growth relations and possible limitations
• Microbial metabolism: Energy production, conservation and release
• Microbial metabolism: Enzymes syntheses and regulation.

Lecture: Technical and medical microbiology for engineers
• Important (sewage) water based/water related diseases/detection and possible countermeasures
• Important soil and air connected diseases
• (micro)biological principles in application of engineering techniques
• Implication of engineer work on ecosystems/environment protection problems

Some test systems for estimation of (bio)degradability of chemicals will be evaluated

14. Literatur:
Lecture notes
pdf download of powerpoint slides for lectures
Exercises as hand-out or download (pdf)
15. Lehrveranstaltungen und -formen:

- 191001 Lecture Inorganic chemistry
- 191002 Lecture Organic chemistry
- 191003 Lecture Biology and ecology of water, soil and air systems
- 191004 Lecture Technical and medical microbiology for engineers

16. Abschätzung Arbeitsaufwand:

Time of attendance:
Inorganic chemistry (Schwederski): Lecture, 1 SWS = 14 hours
Organic chemistry (Metzger/Kuch): Lecture, 1 SWS = 14 hours
Biology and ecology of water, soil and air systems (Engesser): Lecture, 1 SWS = 14 hours
Technical and medical microbiology for engineers (Engesser): Lecture, 1 SWS = 14 hours
Exercises for Chemistry and Biology for environmental engineers, 2 SWS = 28 hours
Exam: 2 hours
Sum of attendance: 86 hours
Exercises (group work with presentations): 28 hours
Self-study: 94 hours

17. Prüfungsnummer/n und -name:

19101 Chemistry and Biology for Environmental Engineers (PL), schriftlich oder mündlich, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:
Video projector (powerpoint) presentation
explanations on blackboard, group work with presentations

20. Angeboten von:
Hydrochemie und Hydrobiologie in der Siedlungswasserwirtschaft
Modul: 19080 Pollutant Formation and Air Quality Control

2. Modulkürzel: 04250027
3. Leistungspunkte: 6.0 LP
4. SWS: 5.0
5. Moduldauer: 1 Semester
7. Sprache: Englisch
9. Dozenten: • Ulrich Vogt • Andreas Kronenburg
 ✓ Advanced Modules --> Compulsory Modules
11. Empfohlene Voraussetzungen: Fundamental knowledge in Chemistry, Thermodynamics and Meteorology
12. Lernziele: The graduates of the module have understood the physics and chemistry of combustion and subsequently the air pollutants formation. Thus the student has acquired the basis for further understanding and application of air pollution control studies and measures.
13. Inhalt:
 I: Chemistry and Physics of Combustion (Kronenburg):
 • Definitions and phenomena
 • Conservation laws
 • Laminar flames
 • Chemical reaction
 • Reaction mechanisms
 • Laminar premixed flames, Laminar non-premixed flames
 • NO-formation, NO-reduction
 • Unburned hydrocarbons
 • Soot formation
 • Phenomena on turbulent flames
 II: Basics of Air Quality Control (Vogt):
 • Clean Air and air pollution, definitions
 • Natural Sources of Air Pollutants
 • History of air pollution and air quality control
 • Pollutant formation during combustion and industrial processes
 • Dispersion of air pollutants in the atmosphere: Meteorological influences, inversions
 • Atmospheric chemical transformations
 • Ambient air quality
14. Literatur:
 • Text book "Air Quality Control" (Günter Baumbach, Springer Verlag);
 • Scripts of the lectures; News on topics from internet (e.g. UBA, LUBW)
15. Lehrveranstaltungen und -formen:
 • 190801 Lecture Chemistry and Physics of Combustion
 • 190802 Lecture Basics of Air Quality Control
16. Abschätzung Arbeitsaufwand:
 Time of attendance:
 I Chemistry and Physics of Combustion, lecture: 2.0 SWS = 28 hours, exercises: 1.0 SWS = 14 hours
 II Basics of Air Quality Control: 2 SWS = 28 hours + 62 hours self study exam: 2hours
sum of attendance: 80 hours
self-study: 100 hours
total: 180 hours

17. Prüfungsnummer/n und -name: 19081 Pollutant Formation and Air Quality Control (PL), schriftlich oder mündlich, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform: PPT slides, black board, ILIAS

20. Angeboten von: Institut für Feuerungs- und Kraftwerkstechnik
Modul: 19290 Process Engineering

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>Waste</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>5.0</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>-</td>
</tr>
</tbody>
</table>

| 8. Modulverantwortlicher: | Univ.-Prof. Manfred Piesche |

| 9. Dozenten: | • Ulrich Eiden
• Pius Trautmann |

➡ Advanced Modules -->Compulsory Modules |

Formal: keine |

| 12. Lernziele: | The students know about the physical basics and the unit operations in mechanical process engineering which are used in plants worldwide: Students are able to select the appropriate unit operations according to the given frame conditions. They have the competence for the first calculation and design of apparatuses in mechanical process engineering.
The students have knowledge about the fundamentals of thermal process engineering, especially balances and kinetics. They are familiar to the main unit operations, especially vapour/liquid-separation processes (striping, absorption and distillation). Thus they are able to select the appropriate unit operations according to the given frame conditions. They have the competence for the first calculation and design of apparatuses. |

| 13. Inhalt: | Mechanical Process Engineering (Dr.-Ing. Pius Trautmann):
• Characterisation of dispersed systems
• Adhesion mechanisms in dispersed systems
• Resistance behaviour of particles in flows
• Flow through packed beds
• Separation processes and characterisation of separation
• Mixing processes (mixing of disperse and non-disperse mediums)
• Crushing and agglomeration processes
• Conveying processes

II) Thermal Process Engineering (Dr.-Ing. Ulrich Eiden)
3) Vapour/Liquid separations: Counter Current theoretical stage concept, Absorption, Stripping, Distillation, column internals
4) Heat exchanger, condenser, evaporator
5) Liquid/Liquid Extraction
6) Adsorption |

| 14. Literatur: | Mechanical Process Engineering:
• Lecture notes, ppt-printout |
Thermal Process Engineering:

- Lecture notes (ppt-printout)
- Recommended literature:

15. Lehrveranstaltungen und -formen:

- 192901 Vorlesung Mechanical Process Engineering
- 192903 Vorlesung Thermal Process Engineering

16. Abschätzung Arbeitsaufwand:

- Time of attendance: 60 hours
- Private study: 120 hours

17. Prüfungsnummer/n und -name:

- 19291 Mechanical Process Engineering (PL), schriftlich oder mündlich, 60 Min., Gewichtung: 1.0
- 19292 Thermal Process Engineering (PL), schriftlich oder mündlich, 60 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

- Mech. Process Engineering:
 - PPT-Presentation, Course Scriptum, Life Notes on the Board
- Thermal Process Engineering:
 - Life notes with Chalk on black board: about 20 %
 - Animated ppt-presentations with Beamer: about 80 %

20. Angeboten von:
Modul: 19120 Sanitary Engineering

2. Modulkürzel: 021220012
5. Modulduer: 1 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0
7. Sprache: Englisch

8. Modulverantwortlicher: Klaus Fischer

9. Dozenten: • Klaus Fischer • Heidrun Steinmetz

10. Zuordnung zum Curriculum in diesem Studiengang: M.Sc. WASTE, PO 2015 ➞ Advanced Modules --> Compulsory Modules

11. Empfohlene Voraussetzungen:

12. Lernziele: The students have detailed knowledge about waste avoidance procedures in household and industry. Waste avoidance includes the ecology - oriented daily shopping, the substitution of contaminated materials in the industrial production as well as the Zero Emission Society. In the case of unavoidable waste fractions, the students acquire the competence to establish collection and transportation systems for these wastes, within the logistic, economic and legal frame. Main emphasis is given to the collection of recyclables. The students know the relevant factors which influence the waste amount and waste composition in general and in particular within the separate collection of recyclables. The students are acquainted with the state of the art of recycling technologies for separate collected paper, glass, metal and plastic including the pretreatment process. They have knowledge of the aerobic and anaerobic treatment and utilization of separate collected biowaste. Not avoided and recycled waste has to be treated before disposing off e.g. in a landfill site. The students possess a general knowledge of the mechanical and biological treatment technology as well as of the thermal waste treatment. They are able to evaluate the different treatment and recycling processes from an ecological and economic point of view. The students have knowledge about the most important components of the urban drainage and the basic treatment processes of wastewater. Thus they are able to compare different systems in dependence of changing boundary conditions and assess the effectiveness and pros and cons of the systems, e.g. concerning impacts on the environment, economical and operational aspects. They obtain an understanding for system connections between the urban drainage system and the wastewater treatment system as well as between the urban water system and the environment.

13. Inhalt: Solid Waste Management:
• Waste generation and waste composition
• National and international regulations for waste
• Waste avoidance
• Collection and transport of waste
• Separate collection of recyclables
• Sorting of recyclables
• Recycling technologies for paper, glass, metal, plastic
• Biological treatment of waste
• Waste Disposal
• Ecological indicator systems
Waste Water Technology:
• Basics of urban drainage and municipal wastewater treatment
• Quantity and Composition of Wastewater
• Urban drainage systems
• stormwater treatment
• mechanical wastewater treatment
• biological wastewater treatment
• sludge treatment
• natural close and ECOSAN systems

14. Literatur:
Lecture Manuscripts Solid Waste Management
G. Tchobanoglous et. Al.: Handbook of solid waste management;
Butler, D., Davies, J.W: Urban drainage, Spon press London,
Henze, M., Harremoes, J., la Coour Jansen, J., Arvin, E: Wastewater treatment. Springer Verlag Berlin

15. Lehrveranstaltungen und -formen:
• 191201 Vorlesung Solid Waste Management
• 191202 Vorlesung Waste Water
• 191203 Exkursion Sanitary Engineering

16. Abschätzung Arbeitsaufwand:
Time of attendance:
I Solid Waste Management, lecture: 2.0 SWS = 28 hours
II Waste Water: 2 SWS = 28 hours
excursion: 12 hours
exam: 2 hours
sum of attendance: 70 hours
self-study: 110 hours
total: 180 hours

17. Prüfungsnummer/n und -name:
• 19121 Solid Waste Management and Waste Water Technology (PL),
 schriftliche Prüfung, 120 Min., Gewichtung: 1.0
• V Vorleistung (USL-V), schriftlich, eventuell mündlich

18. Grundlage für ...
• 19310 Urban Drainage and Design of Wastewater Treatment Plants
• 19330 Industrial Waste Water

19. Medienform:

20. Angeboten von:
Modul 67050 Technology Assessment and Presentation Techniques

2. Modulkürzel: [pord.modulcode] 5. Modulduauer: 1 Semester
4. SWS: 4.0 7. Sprache: Englisch

8. Modulverantwortlicher: Apl. Prof. Rainer Friedrich
9. Dozenten: • Rainer Friedrich • Agatha Teresa Chojnacki

 ➞ Advanced Modules --> Compulsory Modules

11. Empfohlene Voraussetzungen:

12. Lernziele:
I Students know the basic theories of environmental economics and understand the meaning of sustainable development and welfare optimisation. They understand and can apply the relevant methods of technology assessment including the cost benefit analysis. They can thus deduce environmental objectives, assess alternative technologies and defend the application of measures and techniques for environmental protection.

II By practising writing various academic texts concerning technology assessment and other related fields, students are able to express themselves clearly and appropriately on a number of different technical topics. They understand how to research and structure an academic paper, reference works consulted, cite other texts, as well as compile a bibliography.

Students are able to organize and deliver an academic presentation on a topic related to their field of study in a rhetorically and didactically effective manner.

13. Inhalt:
I Technology Assessment and Environmental Economics:

Principles of environmental economics; health and environmental protection as sub-goal to welfare optimisation and indicator for sustainable development; intertemporal comparison of costs and benefits by discounting; investment appraisal; economics of resources; methods for technology assessment; decisions with multiple criteria; life cycle assessment; multi attribute utility analysis; cost-effectiveness and cost-benefit-analysis; ecopolitical instruments.

II Academic Communication Skills

• structuring and writing a scientific publication
• delivering an academic presentation
• course-related and technically oriented academic communication
• general academic skills: referencing and citing works, compiling a bibliography
• practising to develop students’ power of expression both orally and in writing in an academic setting, in particular in the areas of environmental and process engineering, e.g. air quality control, waste water and solid waste management and treatment

14. Literatur: Script, online-tutorial

English for Academics 1 und 2

Cambridge University Press / British Council

| 15. Lehrveranstaltungen und -formen: | • 670501 Vorlesung Technology Assessment
• 670502 Seminar Presentations Techniques |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>I: Technology Assessment and Environmental Economics, lecture:</td>
</tr>
</tbody>
</table>
| | 2.0 SWS = 28 hours
Self-study = 62 hours |
| | II Presentations Techniques: 2 SWS = 28 hours
Self-study: 62 hours |
| | Total: 180 hours |
| 17. Prüfungsnummer/n und -name: | 67051 Technology Assessment and Presentation Techniques (LBP),
Sonstiges, Gewichtung: 1.0 |
| 18. Grundlage für ... : | |
| 19. Medienform: | |
| 20. Angeboten von: | |
Modul: 19200 Thermo and Fluid Dynamics

2. Modulkürzel: 041600203 5. Moduldaurer: 1 Semester
4. SWS: 5.5 7. Sprache: Englisch
8. Modulverantwortlicher: Univ.-Prof. Eckart Laurien
9. Dozenten: • Ulrich Eiden
• Eckart Laurien
→ Advanced Modules -->Compulsory Modules
11. Empfohlene Voraussetzungen: Knowledge in mechanical, chemical, or civil engineering
12. Lernziele: The students are able to identify the physical mechanism of diffusion, convection and heat conduction within flows of fluid mixtures and establish a mathematical formulation for their description. They are able to select mathematical and numerical procedures for their solution, estimate the uncertainties, and perform numerical simulations using state-of-the-art simulation tools. The students are familiar with the fundamental thermodynamic laws and processes and are able to formulate single and multicomponent phase equilibria. Therefore they are able to investigate, understand, optimize, and evaluate the elements of complex technical processes of water and/or air treatment.

13. Inhalt:

I Thermodynamics of Fluid Mixtures (Dr. U. Eiden)
-- first and second law of thermodynamics
-- reversible and irreversible systems
-- essential thermodynamic process
-- single component phase equilibria
-- description of homogeneous and heterogeneous mixtures

II Adsorption (Dr. U. Eiden):
-- technical adsorbents
-- fundamentals of adsorption equilibrium
-- desorption methods
-- industrial application
-- design criteria
-- short-cut methods
III Flow with Heat Transfer (Prof. E. Laurien):
-- convection and conduction, heat transfer coefficient
-- dimension analysis, non-dimensional parameters
-- conservation equations and boundary conditions
-- fully developed laminar channel and pipe flows, dissipation
-- boundary-layer theory, thermal boundary layers
-- turbulent pipe flow with heat transfer

IV Computational Fluid Dynamics (Prof. E. Laurien):
-- multidimensional conservation equations for turbulent flows
-- computational examples using Ansys-CFX
-- numerical integration using the Finite-Volume Method
-- accuracy and error estimation
-- k-epsilon turbulence model

14. Literatur: Lecture Material available in ILIAS

15. Lehrveranstaltungen und -formen:
• 192001 Lecture Thermodynamics of Fluid Mixtures
• 192002 Lecture Flow with Heat Transfer
• 192003 Lecture Computational Fluid Dynamics
• 192004 Lecture Adsorption

16. Abschätzung Arbeitsaufwand:
I Thermodynamics of Fluid Mixtures, lecture: 1.5 SWS = 21 hours, exercises: 0.5 SWS = 7 hours
II Adsorption, lecture: 0.5 SWS = 7 hours
III Flow with Heat Transfer, lecture: 1.0 SWS = 14 hours, exercise: 0.5 SWS = 7 hours
IV Computational Fluid Dynamics, lecture: 1.0 SWS = 14 hours, exercise: 0.5 SWS = 7 hours
exam: 2 hours
sum of attendance: 79 hours
self-study: 101 hours

total: 180 hours

17. Prüfungsnummer/n und -name: 19201 Thermo and Fluid Dynamics (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0, Thermodynamics of Fluid Mixtures
<table>
<thead>
<tr>
<th>18. Grundlage für ... :</th>
</tr>
</thead>
<tbody>
<tr>
<td>19. Medienform:</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
</tr>
</tbody>
</table>
120 Elective Modules

<table>
<thead>
<tr>
<th>Module</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>121</td>
<td>Elective Modules 6 CP</td>
</tr>
<tr>
<td>122</td>
<td>Elective Modules 3 CP</td>
</tr>
<tr>
<td>123</td>
<td>Practical Works</td>
</tr>
<tr>
<td>81320</td>
<td>Student Research Project</td>
</tr>
</tbody>
</table>
121 Elective Modules 6 CP

Zugeordnete Module:
1211 Elective Modules 6 CP (in english language)
1212 Elective Modules 6 CP (in german language)
1211 Elective Modules 6 CP (in english language)

Zugeordnete Module:

15380 International Waste Management
15430 Measurement of Air Pollutants
15440 Firing Systems and Flue Gas Cleaning
15970 Modellierung und Simulation von Technischen Feuerungsanlagen
19310 Urban Drainage and Design of Wastewater Treatment Plants
19320 Design of Solid Waste Treatment Plants
19330 Industrial Waste Water
19350 Industrial Waste and Contaminated Sites
19360 Water Quality and Treatment
30580 Einführung in die numerische Simulation von Verbrennungsprozessen
30590 Modellierung und Simulation turbulenter reaktiver Strömungen
36450 Special Aspects of Urban Water Management
59610 Primary Environmental Technologies and Emissions Reduction in Industrial Processes
59620 Mechanical, Biological and Thermal Waste Treatment
Modul: 19320 Design of Solid Waste Treatment Plants

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>021220015</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher:	Univ.-Prof. Martin Kranert
9. Dozenten:	• Martin Kranert
	• Helmut Seifert

| 10. Zuordnung zum Curriculum in diesem Studiengang: |
| M.Sc. WASTE, PO 2015 |
| → Elective Modules -->Elective Modules 6 CP -->Elective Modules 6 CP (in english language) |
| M.Sc. WASTE, PO 2015 |
| → Solid Waste -->Elective Modules 6 CP -->Elective Modules (in english language) |

11. Empfohlene Voraussetzungen:

12. Lernziele:

For the design of biological waste treatment plants the students know the basics of process design and the relevant steps, which according to HOAI must be followed in the design of waste treatment plants.

In the planning of a composting plant they are able to identify the relevant Parameters, they know the techniques of preparation and composting processes and can design and verify the process steps, including aggregates, composting systems, mass balances, air and water emissions, as well as preliminary cost estimation.

They can present the waste treatment plant graphically in layout plans, sketches and cross sections and provide an explanatory report.

For the design of thermal waste treatment plants the students are acquainted with the different technologies of thermal waste treatment which are used in plants worldwide. They know the operating mode of the single elements of an incineration plant and they can effectively combine them in the planning procedure. The students have the knowledge to preliminary design and dimension a thermal waste treatment plant, with emphasis on the firing systems and the flue gas cleaning.

13. Inhalt:

Design of Biological Waste Treatment Plants:

Design process
Design process according to HOAI - design of biological treatment plants - basic parameters und frame conditions - principle configuration of a composting plant - technical composting systems - process aggregates - dimensioning of aggregates and plants - mass balance

Technical drawings
floor plan, process flow, aggregate plan

Emission from Biological Treatment Plants
Source of emissions - emission concentration and freight - calculation of emission freight - reduction of emissions - waste air and water management

Cost Calculation
DIN 276, Investment costs - operation costs - guidelines for cost estimation

Design of Thermal Waste Treatment Plants:
- firing system for thermal waste treatment
- flue gas cleaning systems
- calculations for thermal waste treatment
- calculations for design of a plant

14. **Literatur:**
Lecture Manuscripts
E-Learning-Program "Virtual Composting Plant"
G. Tchobanoglous et. al.: Handbook of solid waste management;
Haug: Compost Engineering

15. **Lehrveranstaltungen und -formen:**
- 193201 Lecture Design of Biological Waste Treatment Plants
- 193202 Exercise Design of Biological Waste Treatment Plants
- 193203 Lecture Design of Thermal Waste Treatment Plants

16. **Abschätzung Arbeitsaufwand:**

17. **Prüfungsnummer/n und -name:**
- 19321 Design of Biological Waste Treatment Plants (PL), schriftlich oder mündlich, 120 Min., Gewichtung: 1.0,
- 19322 Design of Thermal Waste Treatment Plants (PL), schriftliche Prüfung, 30 Min., Gewichtung: 1.0

18. **Grundlage für ... :**

19. **Medienform:**

20. **Angeboten von:**
Modul: 30580 Einführung in die numerische Simulation von Verbrennungsprozessen

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>042200102</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modul:</td>
<td>Einführung in die numerische Simulation von Verbrennungsprozessen</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Nach Ankuendigung</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Andreas Kronenburg</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Andreas Kronenburg
• Oliver Thomas Stein |
→ Elective Modules --> Elective Modules 6 CP --> Elective Modules 6 CP (in english language) |
| 11. Empfohlene Voraussetzungen: | Fundierte Grundlagen in Matematik, Physik, Informatik
Vertiefungsmodul: Grundlagen technischer Verbrennungsvorgänge I + II (begleitend)
Fundamentals of thermodynamics, chemistry, mathematics, computer science
Core module: Combustion Fundamentals I+II or Chemistry and Physics of Combustion |

12. Lernziele: Studierende kennen die Grundlagen der numerischen Simulation vereinfachter Verbrennungsprozesse. Sie haben erste Erfahrungen mit der Modellbildung von Verbrennungssystemen und deren Implementierung. Sie können selbstständig einfachste Modellsysteme programmieren und Simulationen durchführen. Diese sind zur Vertiefung in Form von Studien-/Masterarbeiten geeignet. Participants shall know the fundamentals of the numerical simulations of simplified combustion processes. They have gained a first experience in the modelling of combustion systems and model implementation. Students are able to program simple reactors, carry out simulations and evaluate the results. These skills can be extended within Bachelor-/Master projects.

13. Inhalt:
• Vereinfachte Reaktorbeschreibungen: Rührreaktoren (0D), Plug Flow Reaktor (1D), einfache laminare Vormisch- und Diffusionsflammen (1D)
• Grundlagen der numerischen Simulation: Grundgleichungen, Modellbildung, Diskretisierung, Implementierung
• Orts-/Zeitdiskretisierung, Anfangs-/Randbedingungen, explizite/implizite Lö-sungsverfahren
Übung: Implementierung und Simulation einfacher Probleme mit Matlab

- Revision of combustion fundamentals: thermodynamics, (ideal) gas mixtures, chemical kinetics/equilibrium, stoichiometry, combustion modes, conservation principles (mass, momentum, energy), heat and mass transfer
- Simplified reactors: batch reactors/well-stirred flow reactors (0D), plug flow reactors, laminar premixed and non-premixed flames (1D)
- Fundamentals of numerical simulation: conservation equations, modelling, discretisation, implementation, solution algorithms
- Spatial/temporal discretisation: Initial/boundary conditions, explicit/implicit solvers, stability criteria

Tutorials: Modelling, implementation and simulation of basic algorithms and reactors (MATLAB/Cantera)

14. Literatur:
- Vorlesungsfolien

15. Lehrveranstaltungen und -formen:
- 305801 Vorlesung Einführung in die numerische Simulation von Verbrennungsprozessen
- 305802 Computerübungen in Kleingruppen Einführung in die numerische Simulation von Verbrennungsprozessen

16. Abschätzung Arbeitsaufwand:
Präsenzzeit:
I Einführung in die numerische Simulation von Verbrennungsprozessen, Vorlesung: 2.0 SWS = 28 Stunden
II Computerübungen in Kleingruppen Einführung in die numerische Simulation von Verbrennungsprozessen, Übung: 2.0 SWS = 28 Stunden
Summe Präsenzzeit: 56 Stunden
Selbststudium: 134 Stunden
Gesamt: 180 Stunden

Time of attendance:
I Introduction to numerical simulation of combustion processes, lecture: 2.0 SWS = 28 hours
II Introduction to numerical simulation of combustion processes, exercise: 2.0 SWS = 28 hours
sum of attendance: 56 hours
self-study: 134 hours
total: 180 hours

17. Prüfungsnummer/n und -name: 30581 Einführung in die numerische Simulation von Verbrennungsprozessen (PL), schriftlich oder mündlich, 40 Min., Gewichtung: 1.0, unbenotete Prüfungsvorleistung: schriftliche Hausaufgaben/Tests

18. Grundlage für ... :

19. Medienform:
Tafelanschrieb, PPT-Präsentationen, Skripte zu Vorlesungen, Computeranwendungen
20. Angeboten von:
Modul: 15440 Firing Systems and Flue Gas Cleaning

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>042500003</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Günter Scheffknecht</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Günter Scheffknecht</td>
</tr>
</tbody>
</table>
 ➔ Elective Modules --> Elective Modules 6 CP --> Elective Modules 6 CP (in english language)
 ➔ M.Sc. WASTE, PO 2015
 ➔ Specialized Area --> Air Quality Control --> Core Modules |
| 12. Lernziele: | The students of the module have understood the principles of heat generation with combustion plants and can assess which combustion plants for the different fuels - oil, coal, natural gas, biomass and waste - and for different capacity ranges are best suited, and how furnaces and firing systems need to be designed that a high energy efficiency with low pollutant emissions could be achieved. In addition, they know which flue gas cleaning techniques have to be applied to control the remaining pollutant emissions. Thus, the students acquired the necessary competence for the application and evaluation of air quality control measures in combustion plants for further studies in the fields of Air Quality Control, Energy and Environment and, finally, they got the competence for combustion plants’ manufactures, operators and supervisory authorities. |
| 13. Inhalt: | I: **Combustion and Firing Systems**: Characterisation of fuels, combustion fundamentals, gasification principles, design of firing and gasification systems
 II: **Flue Gas Cleaning**: Methods for dust removal, nitrogen oxide reduction (catalytic/ non-catalytic), flue gas desulfurisation (dry and wet), processes for the separation of specific pollutants |
| 14. Literatur: | I:
 • Lecture notes „Combustion and Firing Systems”
 • Skript
 • Notes for practical work
 II:
 • Lecture notes "Flue gas cleaning”
 • Skript
 • Notes for practical work |
| 15. Lehrveranstaltungen und -formen: | 154402 Lecture: Firing Systems and Flue Gas Cleaning |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 56 h V |

Selbststudiumszeit / Nacharbeitszeit: 124 h

| Gesamt: | 180 h |

| 17. Prüfungsnummer/n und -name: | 15441 Firing Systems and Flue Gas Cleaning (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0 |

| 18. Grundlage für ... : |

| 19. Medienform: | PowerPoint Presentations, Black board, ILIAS |

| 20. Angeboten von: | Institut für Feuerungs- und Kraftwerkstechnik |
Modul: 19330 Industrial Waste Water

2. Modulkürzel: 021210151

5. Modulduer: 1 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0

7. Sprache: Englisch

8. Modulverantwortlicher: Prof./Uni.Reg.deBlumenau Uwe Menzel

9. Dozenten: • Uwe Menzel
 • Michael Koch

10. Zuordnung zum Curriculum in diesem Studiengang:
 M.Sc. WASTE, PO 2015
 → Elective Modules -->Elective Modules 6 CP -->Elective Modules 6 CP (in english language)
 →
 M.Sc. WASTE, PO 2015
 → Waste Water -->Elective Modules 6 CP -->Elective Modules (in english language)
 →

11. Empfohlene Voraussetzungen:

12. Lernziele: Students have:
 • a basic understanding for the problems and requirements of industrial waste water treatment
 • an overview of measures for production integrated environmental protection, relevant treatment methods for process water and its characterization
 • an overview of water analysis including sampling, the main principles of different analytical techniques and the ways to assure the quality of chemical analysis

13. Inhalt: Fundamentals of industrial waste water treatment
 Determiniation of current situation possible process integrated measures, arrangements for reuse and recirculation of water mass and concentration balance
 Basic elements and examples for applications of advanced purification processes
 Biological waste water treatment
 Sampling and analytical techniques using on-site measurements, oxidation - reduction, acids and bases, sum parameters, photometry, spectrometry and chromatography
 Analytical quality assurance

14. Literatur:
 • lecture notes (approx. 400 pages)
 • exercises
 • ATV V: Lehr- und Handbuch der Abwassertechnik, volume v: Organisch verschmutzte Abwasser der Lebensmittelindustrie, Wilhelm Ernst & Sohn Verlag, Berlin.
• Deutsche Einheitsverfahren zur Wasser-, Abwasser und Schlammuntersuchung -Standard Methods for the Examination of Water and Wastewater

15. Lehrveranstaltungen und -formen:
• 193301 Lecture Treatment of Industrial Waste Water
• 193302 Lecture Water Analysis and Analytical Quality Control

16. Abschätzung Arbeitsaufwand:
Time of attendance:
I Treatment of Industrial Waste Water: 2 SWS = 24 hours
II Water Analysis and Analytical Quality Control: 2 SWS = 24 hours
Exam: 2 hours
sum of attendance: 50 hours
self-study: 130 hours
total: 180 hours

17. Prüfungsnummer/n und -name: 19331 Industrial Waste Water (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ...:

19. Medienform: power-point-presentation, blackboard and over-head projector

20. Angeboten von: Siedlungswasserwirtschaft und Wasserrecycling
Modul: 19350 Industrial Waste and Contaminated Sites

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>Waste</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Matthias Rapf</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Matthias Rapf</td>
</tr>
</tbody>
</table>
→ Elective Modules --> Elective Modules 6 CP --> Elective Modules 6 CP (in english language)

M.Sc. WASTE, PO 2015
→ Solid Waste --> Elective Modules 6 CP --> Elective Modules (in english language)

| 11. Empfohlene Voraussetzungen: | Chemistry and Biology for Environmental Engineers |
| 12. Lernziele: | The students will acquire knowledge in collecting, recycling, treatment and disposal of industrial hazardous waste, as well as about legal means to achieve a proper and efficient industrial waste management. They will know the methods of hazardous waste handling and processing as well as the economic conditions. Furthermore they have the scientific competence to find out and to assess the harmfulness of a waste. Based on this knowledge, the students can create multi-stage industrial waste management concepts, name their advantages and disadvantages and show alternatives.

Based on the technical knowledge about formerly used disposal techniques, the students understand the present brownfield problems and the today’s waste legislation. Therefore the students are able to develop environmental precautionary sanitation concepts and appropriate problem solving.

The students will increase their knowledge about waste-innate chemical processes that are often different to other materials, e.g. pure substances, natural resources or products. The knowledge will help them to judge the meaning of chemical waste analyses, and to evaluate wastes and waste treatment techniques from a chemical point of view.

Knowledge will be obtained about the origins, treatment and utilisation of the mass-wise most significant industrial waste, wastewater sludges, including sewage sludge; awareness about the problems these sludges pose to human health and the environment, if not appropriately treated or disposed of; influence of politics and financial aspects on technical decisions.

Chemical aspects of selected waste-related topics - sampling and analysis, special thermal waste treatment, self ignition, advanced
oxidation processes, phosphorus recovery. Safety-related chemical issues.

Origin and treatment of wastewater sludges - wastewater treatment; dewatering, drying and incineration of sludges; phosphorus recovery.

14. Literatur:
Skript; to be downloaded via ILIAS

15. Lehrveranstaltungen und -formen:
- 193501 Lecture Hazardous Waste and Contaminated Sites
- 193502 Lecture Chemistry of Waste
- 193503 Lecture Treatment of Sludge
- 193504 Excursion

16. Abschätzung Arbeitsaufwand:
| Time of attendance: 52 h | Private Study: 128 h |

17. Prüfungsnummer/n und -name:
19351 Industrial Waste and Contaminated Sites (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ...:

19. Medienform:
Power point presentation, blackboard, videos

20. Angeboten von:
Siedlungswasserbau und Wassergütwirtschaft
Modul: 15380 International Waste Management

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>021220006</th>
<th>5. Modul dauert:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>5.0</td>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Detlef Clauß

9. Dozenten:
- Martin Kranert
- Detlef Clauß

10. Zuordnung zum Curriculum in diesem Studiengang:
- M.Sc. WASTE, PO 2015
 - Elective Modules --> Elective Modules 6 CP --> Elective Modules 6 CP (in English language)
- M.Sc. WASTE, PO 2015
 - Solid Waste --> Elective Modules 6 CP --> Elective Modules (in English language)

12. Lernziele:
The students have detailed knowledge about the waste management problems in low and middle income countries. They are able to develop appropriate and sustainable solutions to optimize the waste management in these countries. They can evaluate existing waste management concepts in low-income countries and to enhance them to a resource oriented integrated waste management system. In the sector of municipal solid waste collection, the students acquire the competence to assess the different possible collection systems, within the logistic, economic, social and infrastructural frame. These includes the integration of the informal waste sector. Landfilling of waste is in low and middle income countries the main method to dispose off municipal and industrial waste. These normally uncontrolled landfill sites have an enormous impact on the environment. The students receive the theoretical and technical skills to minimize these emissions by appropriate measures, e.g. leachate collection and treatment or landfill gas collection. Beyond the theoretical scientific knowledge about waste, the students are able to process and summarise waste related topics and to present them to an scientific auditory.

13. Inhalt:

Waste Management in low and middle income countries:
Main focus on collection and transportation of waste:
- Waste generation
- Collection and transport
- Informal sector

Landfill
- Landfill emissions
- Landfill technology
- Landfill operation

Waste Management in Practice
- Special Topics related to low and middle income countries. Presented by external lecturer.
Seminar: International Waste Management

- Special Topics related to waste.

Exercise: Waste Management Concepts

- Waste Management Concept
- Group work: Development of a waste management concept for a municipality

14. Literatur:

Lesson Manuscripts

Secondary literature:

- G. Tchobanoglous et. al.: Handbook of solid waste management;

Internet:

- e.g. World bank - Urban Solid Waste Management

15. Lehrveranstaltungen und -formen:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>153801</td>
<td>Lecture Waste Management in Low and Middle Income Countries</td>
</tr>
<tr>
<td>153802</td>
<td>Lecture Landfill</td>
</tr>
<tr>
<td>153803</td>
<td>Lecture Waste Management in Practice</td>
</tr>
<tr>
<td>153804</td>
<td>Lecture International Waste Management</td>
</tr>
<tr>
<td>153805</td>
<td>Exercise Waste Management Concepts</td>
</tr>
</tbody>
</table>

16. Abschätzung Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Course Title</th>
<th>Time of Attendance</th>
<th>Self study</th>
</tr>
</thead>
<tbody>
<tr>
<td>Waste Management in low and middle income countries, lecture</td>
<td>14 h</td>
<td>21 h</td>
</tr>
<tr>
<td>Landfill, lecture</td>
<td>14 h</td>
<td>21 h</td>
</tr>
<tr>
<td>Waste Management in Practice, lecture</td>
<td>14 h</td>
<td>12 h</td>
</tr>
<tr>
<td>International Waste Management, seminar</td>
<td>14 h</td>
<td>21 h</td>
</tr>
<tr>
<td>Waste Management Concepts, exercise</td>
<td>14 h</td>
<td>35 h</td>
</tr>
<tr>
<td>Total</td>
<td>70 h</td>
<td>110 h</td>
</tr>
</tbody>
</table>

17. Prüfungsnummer/n und -name:

<table>
<thead>
<tr>
<th>Course Code</th>
<th>Course Title</th>
<th>Prüfung</th>
<th>Gewichtung</th>
</tr>
</thead>
<tbody>
<tr>
<td>15381</td>
<td>International Waste Management (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>V</td>
<td>Vorleistung (USL-V), schriftlich, eventuell mündlich</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

18. Grundlage für ...

19. Medienform: Multimedia Presentation

Modul: 15430 Measurement of Air Pollutants

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>042500022</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>2.5</td>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>• Ulrich Vogt</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Martin Reiser</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Fundamentals in “Air Quality Control”</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>The graduates of the module can identify and describe air quality problems, formulate the corresponding tasks and requirements for air quality measurements, select the appropriate measurement techniques and solve the measurement tasks with practical implementation of the measurements.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>I: Measurement of Air Pollutants Part I, 1 SWS (Vogt):</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Measurement tasks:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Discontinuous and continuous measurement techniques, different requirements for emission and ambient air measurements</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Measurement principles for gases:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• IR- and UV Photometer, Colorimetry, UV fluorescence, Chemiluminescence, Flame Ionisation, Potentiometry</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Measurement principle for Particulate Matter (PM):</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Gravimetry, Optical methods, Particle size distribution, PM deposition, PM composition</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Assessment of measured values</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• data storage an processing</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• graphical presentation of data</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>II: Measurement of Air Pollutants Part II, 1 SWS (Reiser):</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Gas Chromatography, Olfactometry</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>III: Planning of measurements (Vogt):</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Introducing lecture (0,5 SWS), office hours, project work and presentation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Content:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

• Definition and description of the measurement task
• Measurement strategy
• Site of measurements, measurement period and measurement times
• Parameters to be measured
• Measurement techniques, calibration and uncertainties
• Evaluation of measurements
• Quality control and quality assurance
• Documentation and report
• Personal and instrumental equipment

14. Literatur:
• Text book “Air Quality Control” (Günter Baumbach, Springer Verlag);
• Scripts for practical measurements; News on topics from internet (e.g. UBA, LUBW)

15. Lehrveranstaltungen und -formen:
• 154301 Vorlesung Measurement of Air Pollutants Part I
• 154302 Vorlesung Measurement of Air Pollutants Part II
• 154303 Seminar Planung von Messungen / Planning

16. Abschätzung Arbeitsaufwand:
Present time: 39 h (= 35 h Lecture + 4 h Presentation)
Self study time (inkl. Project work): 141 h
Total: 180h

17. Prüfungsnummer/n und -name:
15431 Measurement of Air Pollutants Part I + II (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0, I, II: Measurement of Air Pollutants Part I + II, PL written 60 min., weight 0,5 III: Planning of measurements (project work and presentation), weight 0,5 • Projekt work: 0,5 presentation, 0,5 project report
The participation in 60 % of all presentations of this module in the relevant semester is compulsory.

18. Grundlage für ... :

19. Medienform:
Black board, PowerPoint Presentations, Practical Measurements, ILIAS

20. Angeboten von:
Institut für Feuerungs- und Kraftwerkstechnik
Modul: 59620 Mechanical, Biological and Thermal Waste Treatment

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>042500056</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>0.0</td>
</tr>
<tr>
<td>5. Modulduer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Günter Scheffknecht</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Klaus Fischer
• Martin Reiser
• Hans-Joachim Gehrmann |
→ Elective Modules ---> Elective Modules 6 CP ---> Elective Modules 6 CP (in english language)
→ M.Sc. WASTE, PO 2015
→ Specialized Area ---> Solid Waste ---> Core Modules |
| 11. Empfohlene Voraussetzungen: | Knowledge of chemical and mechanical engineering, combustion and waste economics |
| 12. Lernziele: | I: Solid Waste Treatment, Emissions from Solid Waste Treatment Plants (Fischer / Reiser):
The students are acquainted with the functions, the effectiveness and the limits of municipality waste treatment procedures, can assess them from a technical and economical point of view, and are able to design them. The emphasis is set on mechanical processes for material separation, biowaste treatments, and residual waste treatments. The students acquire in particular methodical and technical skills in the aerobic and anaerobic biowaste treatments, with stress on process engineering and biochemistry aspects. The students thoroughly know about all kind off emissions and the typical sources at different types of waste treatment plants. They know the limit values of the typical gases that are given by law and the measurement methods to examine if they are met or not.
Thermal Waste Treatment (Gehrmann):
The students know about the different technologies for thermal waste treatment which are used in plants worldwide: The functions of the facilities of thermal treatment plan and the combination for an efficient planning are present. They are able to select the appropriate treatment system according to the given frame conditions. They have the competence for the first calculation and design of a thermal treatment plant including the decision regarding firing system and flue gas cleaning. |
| 13. Inhalt: | I: Solid Waste Treatment (Fischer):
Introduction to grinding and waste sorting processes, reaction engineering. Aerobic and anaerobic treatment of bio and green wastes
Mechanical and biological treatment of residual waste (MBT)
II: Emissions from Solid Waste Treatment Plants (Reiser):
The lecture gives detailed description of different kind of emissions and emission sources in the field of solid waste treatment such as |
Landfill sites, Composting and Fermentation Plants, Combustion and Mechanical-biological treatment of Municipal solid waste. Different measurement methods are described. The legislation concerning emissions is discussed.

II: Thermal Waste Treatment (Gehrmann):

In addition to an overview about the waste treatment possibilities, the students get a detailed insight to the different kinds of thermal waste treatment. The legal aspects for thermal treatment plants regarding operation of the plants and emission limits are part of the lecture as well as the basic combustion processes and calculations.

Lecture Thermal Waste Treatment:

Legal and statistical aspects of thermal waste treatment Development and state of the art of the different technologies for thermal waste treatment Firing system for thermal waste treatment Technological for flue gas treatment and observation of emission limits Flue gas cleaning systems Calculations of waste combustion Calculations for thermal waste treatment Calculations for design of a plant

III: Excursion:

Thermal Waste Treatment Plant, Composting plant, fermentation plant

14. Literatur:

Lecture Script „Thermal Waste Treatment”

Lecture Script “Solid Waste Treatment”

Lecture Script “Emissions from Solid Waste Treatment Plants”

15. Lehrveranstaltungen und -formen:

• 596201 Vorlesung Solid Waste Treatment
• 596202 Vorlesung Emissions from Solid Waste Treatment Plants
• 596203 Vorlesung Thermal Waste Treatment
• 596204 Exkursion Biological & Thermal Waste Treatment Plant

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 80h
Selbststudiumszeit/ Nachbearbeitungszeit: 100h
Gesamt: 180h

17. Prüfungsnummer/n und -name:

59621 Mechanical, Biological and Thermal Waste Treatment (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 30590 Modellierung und Simulation turbulenter reaktiver Strömungen

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>042200103</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Nach Anmeldung</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Andreas Kronenburg</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Andreas Kronenburg
• Oliver Thomas Stein |
• Grundlagen der Turbulenz und Turbulenzsimulation: Reynoldszahl, turbulente Skalen, Energiekaskade, Kolmogorov, RANS / LES / DNS
• Ansätze zur Modellierung turbulenter Flammen, u.a. Mixedis-Burnt, Gleichgewichtsschemik, Flamelets, CMC, EBU, BML, FSD, G-Gleichung, PDF, LEM
• Modellierung komplexer Geometrien von praktischer Relevanz
• Schwerpunkt LES: gefilterte Gleichungen, Feinskalenmodellierung, Schließung
• Beispiele: Verdrallte Gasflammen, Simulation von Kohle-Verbrennung
Übung: Implementierung und Simulation mit Matlab/OpenFOAM |
| 14. Literatur: | • Vorlesungsmanuskript
| 15. Lehrveranstaltungen und -formen: | • 305901 Vorlesung Modellierung und Simulation turbulenter reaktiver Strömungen
• 305902 Computerübungen in Kleingruppen Modellierung und Simulation turbulenter reaktiver Strömungen |

16. Abschätzung Arbeitsaufwand: Präsenzzeit: 42 h
Selbststudiumszeit/Nachbearbeitungszeit: 138 h
Summe: 180 h

17. Prüfungsnummer/n und -name: 30591 Modellierung und Simulation turbulenter reaktiver Strömungen (PL), mündliche Prüfung, 40 Min., Gewichtung: 1.0, unbenotete Prüfungsvorleistung: schriftliche Hausaufgaben/Tests

18. Grundlage für ... :

19. Medienform: Tafelanschrieb, PPT-Präsentationen, Skripte zu Vorlesungen, Computeranwendungen

20. Angeboten von: Institut für Technische Verbrennung
Modul: 15970 Modellierung und Simulation von Technischen Feuerungsanlagen

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>042500012</th>
<th>5. Modulduauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Nach Ankündigung</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Apl. Prof. Uwe Schnell</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Uwe Schnell
• Benedetto Risio
• Oliver Thomas Stein |
→ Elective Modules -->Elective Modules 6 CP -->Elective Modules 6 CP (in english language)
→ M.Sc. WASTE, PO 2015
→ Specialized Area -->Air Quality Control -->Elective Modules 6 CP |
Fundamentals of engineering sciences and profound knowledge of mathematics, physics, and information technology. |
Students will learn the principles and the possibilities of modelling and simulation of technical combustion systems. They will study which models and which simulation methods are suitable for different applications. They will be able to perform simple combustion simulations, and based on this knowledge they will have the prerequisites for applying these fundamentals, e.g. in the frame of a student's project. |
| 13. Inhalt: | I: Verbrennung und Feuerungen II (Schnell):
• Strömung, Strahlungswärmeaustausch, Brennstoffabbrand und Schadstoffentstehung in Flammen und Feuerräumen: Grundlagen, Berechnung und Modellierung.
II: Simulations- und Optimierungsmethoden für die Feuerungstechnik (Risio):
• Einsatzfelder für technische Flammen in der Energie- und Verfahrenstechnik, Techniken zur Abbildung industrieller Feuerungssysteme, Aufbau und Funktion moderner Höchstleistungsrechner, Algorithmen und Programmiertechnik für die Beschreibung von technischen Flammen auf Höchstleistungsrechnern, Besuch des Virtual-Reality (VR)-Labors des HLRS und Demonstration der VR-Visualisierung für industrielle Feuerungen, Methoden zur |
Bestimmung der Verlässlichkeit feuerungstechnischer Vorhersagen (Validierung) an Praxis-Beispielen, Optimierung in der Feuerungstechnik: Gradientenverfahren, Evolutionäre Verfahren und Genetische Algorithmen

III: Grundlagen technischer Verbrennungsvorgänge III (Stein):
• Lösung nicht-linearer Gleichungssysteme
• Verfahren zur Zeitdiskretisierung
• Homogene Reaktoren
• Eindimensionale Reaktoren/Flammen

I: Combustion and Firing Systems II (Schnell):
Fundamentals of model descriptions for turbulent reacting fluid flow, radiative heat transfer, combustion of fuels, and pollutant formation in flames and furnaces.

II: Simulation and Optimization Methods for Combustion Systems (Risio):
Applications of technical flames in energy technology and process engineering, techniques for "mapping" of industrial combustion systems on computers, design and operation of state-of-the art super computers at HLRS University of Stuttgart, algorithms and programming paradigms for modelling technical flames on super computers, visit of the Virtual Reality (VR) laboratory at HLRS, demonstration of VR visualization of industrial flames, methods for determining the reliability of predictions ("validation") using exemplary technical flames, and optimization methods (gradient methods, evolutionary methods and genetic algorithms).

III: Fundamentals of Technical Combustion Processes III (Stein):
Solution of non-linear equation systems
Methods for temporal discretization
Homogeneous reactors
One-dimensional reactors/flames

14. Literatur:
• Vorlesungsmanuskript „Verbrennung & Feuerungen II“
• Vorlesungsmanuskript „Simulations- und Optimierungsmethoden für die Feuerungstechnik“
• Vorlesungsskript „Grundlagen technischer Verbrennungsvorgänge III“

15. Lehrveranstaltungen und -formen:
• 159701 Vorlesung Verbrennung und Feuerungen II
• 159702 Vorlesung Simulations- und Optimierungsmethoden für die Feuerungstechnik
• 159703 Vorlesung Grundlagen technischer Verbrennungsvorgänge III

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 62 h
Selbststudium: 118 h
Gesamt: 180 h
Time of attendance: 62 hrs
Time outside classes: 118 hrs
Total time: 180 hrs

<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>15971 Modellierung und Simulation von Technischen Feuerungsanlagen (PL), schriftlich oder mündlich, Gewichtung: 1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Tafelanschrieb, PPT-Präsentationen, Skripte zu Vorlesungen und Praktikum, ILIAS, Computeranwendungen</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td></td>
</tr>
</tbody>
</table>
Modul: 59610 Primary Environmental Technologies and Emissions Reduction in Industrial Processes

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>042500055</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>3.5</td>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Herbert Kohler
• Günter Baumbach |
→ Elective Modules --> Elective Modules 6 CP --> Elective Modules 6 CP (in english language)
→ M.Sc. WASTE, PO 2015
→ Specialized Area --> Air Quality Control --> Elective Modules 6 CP |
| 12. Lernziele: | The students have deep knowledge in primary environmental technologies and possibilities of emissions reduction in industrial processes. They learnt during excursions the practical dimensions of environmental aspects in industrie plants. They have got the competence in independent solving of emissions reduction problems. |
| 13. Inhalt: | I Lecture; Prof. Kohler: **Primary environmental technologies in industrial processes:**
Definition of primary technologies and end of pipe applications; total energy and material balance; advantages and risks of both solutions; primary technologies in product and production; examples and study results; consequences for product lifetime and quality; hierarchy regarding environmental technologies.
II Project Work; Prof. Baumbach: **Emissions reduction at selected industrial processes:**
II.1 Introducing lecture:
Discussion of the general subject and procedure of the project work
II.2 Office hours:
Individual discussion of the subject in office hours (2 - 3 visits)
II.3 Project work with presentations
Working out of possibilities of emissions reduction measures for a special case of industrial processes:
Description of the selected industrial processDescription of the emissions sources and pollutant formation within this processPossibilities of emissions reduction for this specific processPresentation of the work in a seminar
II.4 Excursion to an industrial plant to illustrate the subjects |
Examples: Cement factory, steel factory, mineral oil refinery, pulp and paper production, chipboard factory, lacquering plant

14. Literatur:
- Prof. Kohler:
 - Lecture script: Primary Environmental Technologies in Industrial Processes, Part I and Part II
 - Actual to the subject from internet (e.g. BAT (Best Available Technics), UBA, LUBW)
- Prof. Baumbach:
 - G. Baumbach, Lehrbuch „Luftreinhaltung“, Springer Verlag or
 - G. Baumbach, Text book “Air Quality Control“, Springer Verlag
 - VDI-Handbuch Reinhaltung der Luft mit den entsprechenden VDI-Richtlinien, available via „Perinorm“ of the Universities Librar
 - Actual to the subject from internet, e.g. BAT (Best Available Techniques, Sevilla Commission)
 - Umweltbundesamt via UBA homepage

15. Lehrveranstaltungen und -formen:
- 596101 Vorlesung Primary environmental technologies in industrial processes
- 596102 Project Emissions reduction at selected industrial processes

16. Abschätzung Arbeitsaufwand:
I Primary environmental technologies in industrial processes, lecture:
Presence time: 28 h Self study time: 61 h Exam: 1 h

II Emissions reduction at selected industrial processes, Project work
Presence time (Introducing lecture, office hours, Seminar, Excursion): 18 h Self study resp. Group work (project work): 72 h
In total: 180 h

17. Prüfungsnummer/n und -name:
- 59611 Primary Environmental Technologies and Emissions Reduction in Industrial Processes (LBP), schriftlich und mündlich, Gewichtung: 1.0, Primary environmental technologies in industrial processes: written 60 minutes; weight: 0.5; Emissions reduction at selected industrial processes: Seminar presentation of the project work: 8 minutes; weight: 0.25; Report of the project work in Emissions reduction: weight: 0.25 The participation in 70 % (max. 7) of all presentations in the relevant semester is compulsory; The participation in one excursion offered for this module is compulsory

18. Grundlage für ...:

19. Medienform:
- PowerPoint lecture, Oral advices in office hours, PowerPoint presentation of the project works, Written report, ILIAS

20. Angeboten von:
- Institut für Feuerungs- und Kraftwerkstechnik
Modul: 36450 Special Aspects of Urban Water Management

2. Modulkürzel: 021210006
5. Moduldauer: 1 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0
7. Sprache: Englisch

8. Modulverantwortlicher: Ralf Minke

9. Dozenten:
• Ralf Minke
• Ulrich Dittmer
• Klaus Werner König

10. Zuordnung zum Curriculum in diesem Studiengang:

M.Sc. WASTE, PO 2015
→ Elective Modules -->Elective Modules 6 CP -->Elective Modules 6 CP (in english language)

M.Sc. WASTE, PO 2015
→ Waste Water -->Elective Modules 6 CP -->Elective Modules (in english language)

11. Empfohlene Voraussetzungen:

Inhaltlich:
Grundlegende Kenntnisse der Gesamt-zusammenhänge der Siedlungswasser- und Wasserwirtschaft.
Vertiefte Kenntnisse der Abwassertechnik, der Wassergütewirtschaft, der Wasserversorgung oder des allgemeinen Managements von Wasserressourcen.
Formal:
Wasserversorgungstechnik I oder Abwassertechnik I oder Waste Water Technology oder Water Quality and Treatment

12. Lernziele:

Fachlich:
Die Studierenden entwickeln ein Verständnis für Zusammenhänge über ihre Teildisziplin hinaus. Sie können bei Entscheidungen und Planungen zwischen konkurrierenden Belangen der Siedlungswasserwirtschaft, Wasserwirtschaft und anderer Infrastrukturbereiche fachlich fundiert abwägen.
Methodisch:
Die Studierenden können selbständig mit internationaler wissenschaftlicher Literatur zu ihrem jeweiligen Fachgebiet umgehen, Ergebnisse kritisch bewerten und so ein eigenes Bild des Standes der Wissenschaft erarbeiten und präsentieren.

13. Inhalt:

- Wechselwirkungen zwischen Teilbereichen der Siedlungswasserwirtschaft am Beispiel des Umgangs mit Regenwasser
- Jährlich wechselnde Spezialthemen entsprechend dem wissenschaftlichen und technischen Fortschritt

14. Literatur:

Gujer, W. Siedlungswasserwirtschaft, Springer Verlag GmbH
Mutschmann, J; Stimmelmayr, F.: Taschenbuch der Wasserversorgung, Vieweg-Verlag
Jeweils die aktuellen Auflagen
Diverse Merk- und Arbeitsblätter des DVGW und der DWA

| 15. Lehrveranstaltungen und -formen: | • 364501 Scientific Seminar
| | • 364502 Lecture Rainwater Harvesting and Management
| | • 364503 Excursions |

| 16. Abschätzung Arbeitsaufwand: | |

| 17. Prüfungsnummer/n und -name: | 36451 Special Aspects of Urban Water Management (Seminar presentation) (LBP), schriftlich, eventuell mündlich, Gewichtung: 1.0 |

| 18. Grundlage für ... : | |

| 19. Medienform: | |

| 20. Angeboten von: | Siedlungswasserwirtschaft und Wasserrecycling |
Modul: 19310 Urban Drainage and Design of Wastewater Treatment Plants

2. Modulkürzel: 021210251
5. Moduldauer: 1 Semester
3. Leistungspunkte: 6.0 LP
6. Turnus: jedes 2. Semester, SoSe
4. SWS: 5.0
7. Sprache: Englisch

8. Modulverantwortlicher: Ulrich Dittmer
9. Dozenten: • Heidrun Steinmetz
• Ulrich Dittmer

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. WASTE, PO 2015
 → Elective Modules -->Elective Modules 6 CP -->Elective Modules 6 CP (in english language)
 → M.Sc. WASTE, PO 2015
 → Specialized Area -->Waste Water -->Core Modules

11. Empfohlene Voraussetzungen:
Chemistry and Biology for Environmental Engineers
Sanitary Engineering

12. Lernziele:
Advanced knowledge of processes and concepts for urban drainage and municipal wastewater treatment systems
Basics of construction and dimensioning of different urban drainage systems, stormwater treatment facilities and wastewater treatment plants as a base for dimensioning and discussion of proved and innovative technologies
Deeper understanding for system connections as base for a decisions during the planning process

13. Inhalt:
Design of sewer systems and stormwater treatment
(Dr.-Ing. Ulrich Dittmer)
 principles of collection and disposal
design of combined and separate sewer systems
Sustainable urban drainage systems (SUDS) and low impact design(LID)
Application of rainfall runoff models (computer exercise using U.S. EPA Stormwater Management Model)
different techniques for treatment and retention
design of treatment facilities

Design of wastewater treatment plants (Prof. Dr.-Ing. Heidrun Steinmetz)
Municipal wastewater treatment
different techniques for advanced biological wastewater treatment (nitrogen and phosphorous removal)
principles of process engineering
design of biological wastewater treatment plants and the main important aggregates
design of sludge treatment plants
Seminar: feasibility studies
special examples for sanitation concepts for world wide application
Ecological sanitation and resource orientated systems

case studies

14. Literatur:

- Different German standards (DWA, Hennef)
- Lecture notes

15. Lehrveranstaltungen und -formen:

- 193101 Vorlesung und Übung Design of Sewer System and Stormwater Treatment
- 193102 Vorlesung und Übung Design of Wastewater Treatment Plants
- 193103 Seminar Case Study
- 193104 Exkursion

16. Abschätzung Arbeitsaufwand:

Time of attendance: approx. 70 hours (including 4*4hours for excursion)
1,5 SWS

Private Study: approx. 110 hours

Lecture 1 Presence time: 28 hours, self study 30 hours, project 0, Sum: **58 hours**

Lecture 2: Presence time: 28 hours, self study 30 hours, project 40, Sum: **58 hours**

Case study: Presence time: 14 hours, self study 10 hours, project 0, Sum: **25 hours**

17. Prüfungsnummer/n und -name:

19311 Urban Drainage and Design of Wastewater Treatment Plants (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:

Siedlungswasserwirtschaft und Wasserrecycling
Modul: 19360 Water Quality and Treatment

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>021210051</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Carsten Meyer</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Heidrun Steinmetz
• Carsten Meyer |
→ Elective Modules -->Elective Modules 6 CP -->Elective Modules 6 CP (in english language)
→ M.Sc. WASTE, PO 2015
→ Waste Water -->Elective Modules 6 CP -->Elective Modules (in english language) |
| 11. Empfohlene Voraussetzungen: | Knowledge in Sanitary Engineering, Water Supply and Hydraulics
Contents of Water and Power Supply |
| 12. Lernziele: | • The students learn how to characterize and protect water bodies as well as to improve the water quality
• Students understand the contribution of wastewater treatment to the preventive protection of receiving waters and they learn the basic methods of water quality management instruments
• Students understand the necessity of water treatment as essential element of drinking water supply
• Students learn the chemical, physical and biological background of water treatment technologies, their possibilities and boundaries and they are able to develop, design and dimension treatment schemes for different raw water qualities |
| 13. Inhalt: | Water Quality Management:
• Terms and introduction: environmental data from Germany
• Characterisation and assessment of flowing waters, stagnant waters and groundwater
• Water quality parameters, WHO drinking water guidelines, targets for drinking water and sanitation, description of water quality in relation to use
• Improvement of water quality, reduction of pollution load, point pollutants and diffuse loads, improving the self-purification capacity of waters, technical helps, assessment of progress
• Water quality management; the European Union Framework Directive; quality planning and maintenance, monitoring networks

Water Treatment:
• Water supply and water treatment: basic requirements, drinking water standards
• Mechanical treatment: Screening, Sieving, Sedimentation, (Membrane)Filtration, Gas-Exchange, Flotation
• Carbondioxide-Carbonate-Balance: relevance, chemical background
• Deacidification: mechanical and chemical methods |
• Removal of iron, manganese and arsenic: methods
• Decarbonization: chemical methods
• Flocculation
• Adsorption
• Disinfection: chemical and physical methods

14. Literatur: Lecture notes and material for exercises will be provided during the lecture. Hints are given for additional literature from the internet as well as libraries, e.g.

• American Water Works Assoc.: Water Quality and Treatment, McGraw-Hill Inc., 1999
• Nicholas P. Cheremisinoff: Handbook of Water and Wastewater Treatment Technologies, Bitterworth & Heinemann, Boston Oxford Auckland Johannesburg Melbourne New Delhi, 2002
• WHO Guidelines, 2006
• Mutschmann, J; Stimmelmayr, F.: Taschenbuch der Wasserversorgung, Vieweg-Verlag

15. Lehrveranstaltungen und -formen:
• 193601 Lecture Water Treatment
• 193602 Lecture Water Quality Management

16. Abschätzung Arbeitsaufwand:
Time of attendance: ca. 42 h
Private study: ca. 138 h

1) Lecture: presence time = 34,0; self study = 106,0; Sum = 140,0
2) Exercise: presence time = 8,0; self study = 32,0; Sum = 40,0
Sum Lecture (140) + Sum Exercise (40) = 180,0

17. Prüfungsnummer/n und -name:
19361 Water Quality and Treatment (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Siedlungswasserwirtschaft und Wasserrecycling
1212 Elective Modules 6 CP (in german language)

Zugeordnete Module:
- 16060 Umweltanalytik - Wasser und Boden
- 34540 Ökobilanz und Nachhaltigkeit
- 36500 Ressourcenmanagement
- 36930 Maschinen und Apparate der Trenntechnik
Modul: 36930 Maschinen und Apparate der Trenntechnik

2. Modulkürzel: 041900005
5. Modulduauer: 1 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Manfred Piesche

9. Dozenten: Manfred Piesche

 ➔ Elective Modules --> Elective Modules 6 CP --> Elective Modules 6 CP (in german language)
 ➔

11. Empfohlene Voraussetzungen: Inhaltlich: Mechanische Verfahrenstechnik, Strömungsmechanik
 Formal: keine

12. Lernziele: Die Studierenden sind am Ende der Lehrveranstaltung in der Lage,
 mechanische Trennprozesse bei gegebenen Fragestellungen geeignet
 auszulegen, zu konzipieren und bestehende Prozesse hinsichtlich ihrer
 Funktionalität zu beurteilen.

13. Inhalt:
 Trenntechnik:
 • Flüssig-Feststoff-Trennverfahren: Sedimentation im Schwerefeld,
 Filtration, Zentrifugation, Flotation
 • Gas-Feststoff-Trennverfahren: Zentrifugation, Nassabscheidung,
 Filtration, Elektrische Abscheidung
 • Beschreibung der in der Praxis gebräuchlichen Auslegungskriterien
 und Apparate zu den genannten Themengebieten
 • Abhandlung zahlreicher Beispiele aus der Trenntechnik
 Seminar „Filtrationsaufgaben in automobilen Anwendungen“:
 • Aufgaben, Funktionsweise und Bauformen von Filtersystemen,
 Filterelementen und Filtermedien in Fahrzeugen
 • Anforderungen an die Filter in der Anwendung
 • Projektablauf in der Komponentenentwicklung
 • Schwerpunktmodule zu den Filtrationsaufgaben Motorluftfiltration,
 Kabinenluftfiltration, Kraftstofffiltration und Ölfiltration

14. Literatur:
 • Müller, E.: Mechanische Trennverfahren, Bd. 1 u. 2, Salle und
 Sauerlasender, Frankfurt, 1980 u. 1983
 • Stieß, M.: Mechanische Verfahrenstechnik, Springer Verlag, 1994

15. Lehrveranstaltungen und -formen:
 • 369301 Vorlesung F&E Maschinen und Apparate der Trenntechnik
 • 369302Freiwillige Übungen F&E Maschinen und Apparate der
 Trenntechnik
 • 369303 Seminar Filtrationsaufgaben in automobilen Anwendungen

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 56 h
 Selbststudium: 124 h
 Summe: 180 h

17. Prüfungsnummer/n und -name: 36931 Maschinen und Apparate der Trenntechnik (PL), mündliche
 Prüfung, 30 Min., Gewichtung: 1.0

18. Grundlage für ... :
19. Medienform: Vorlesungsskript, Entwicklung der Grundlagen durch kombinierten Einsatz von Tafelanschrieb und Präsentationsfolien sowie Animationen

20. Angeboten von:
Modul: 36500 Ressourcenmanagement

2. Modulkürzel: 021220016
5. Modulduauer: 1 Semester
3. Leistungspunkte: 6.0 LP
4. SWS: 5.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Gerold Hafner
9. Dozenten: • Gerold Hafner
• Claudia Maurer

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. WASTE, PO 2015
→ Elective Modules -->Elective Modules 6 CP -->Elective Modules 6 CP (in german language)

M.Sc. WASTE, PO 2015
→ Solid Waste -->Elective Modules 6 CP -->Elective Modules (in german language)

12. Lernziele:

13. Inhalt:

Bewirtschaftung relevanter Ressourcen im Rahmen der Abfallwirtschaft; Ressourcen- und Klimaschutz durch Substitution und Einsparung von Primärressourcen.

14. Literatur:
Vorlesungsmanuskripte, Literaturlisten in den Skripten

15. Lehrveranstaltungen und -formen:
• 365001 Vorlesung Stoffstromanalyse und Bilanzierung
• 365002 Übung Stoffstromanalyse und Bilanzierung
• 365003 Vorlesung Recycling
• 365004 Vorlesung Ressourcenwirtschaft unter Energie und Klimaspektren
<table>
<thead>
<tr>
<th>16. Abschätzung Arbeitsaufwand:</th>
<th>Stoffstromanalyse und Bilanzierung, Vorlesung + Übung (2 SWh)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Präsenzzeit: 28 h; Selbststudium / Nacharbeit: 44 h</td>
</tr>
<tr>
<td>Ressourcenwirtschaft unter Energie und Klimaspekten, Vorlesung + Übung (2 SWh)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Präsenzzeit: 28 h; Selbststudium / Nacharbeit: 44 h</td>
</tr>
<tr>
<td>Recycling, Vorlesung (1 SWh)</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Präsenzzeit: 14 h; Selbststudium / Nacharbeit: 22 h</td>
</tr>
<tr>
<td>Gesamt:</td>
<td>Präsentzeit: 70 h; Selbststudium / Nacharbeit: 110h</td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>36501 Ressourcenmanagement (PL), schriftlich, eventuell mündlich, Gewichtung: 1.0</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td>Tafel, Beamer, praktische Übung</td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Institut für Siedlungswasserbau, Wassergüte- und Abfallwirtschaft</td>
</tr>
</tbody>
</table>
Modul: 16060 Umweltanalytik - Wasser und Boden

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>021230002</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Modulduauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>3.0</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Bertram Kuch</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Bertram Kuch
• Michael Koch
• Jörg Metzger |
→ Elective Modules ---> Elective Modules 6 CP ---> Elective Modules 6 CP (in german language)
→ M.Sc. WASTE, PO 2015
→ Solid Waste ---> Elective Modules 6 CP ---> Elective Modules (in german language)
→ M.Sc. WASTE, PO 2015
→ Waste Water ---> Elective Modules 6 CP ---> Elective Modules (in german language) |
| 11. Empfohlene Voraussetzungen: | keine |
| 12. Lernziele: | Die Studierenden
- beherrschen die Theorie der wichtigsten instrumentell-analytischen (chromatographischen und spektroskopischen) Verfahren für die Umweltkompartimente Wasser und Boden.
- besitzen grundlegendes Wissen über die Vor-gehensweise und den Methoden zur Bestimmung von Umweltchemikalien und Schadstoffen in Wasser und Boden.
- haben grundlegende Kenntnisse über die Methoden der internen und externen analytischen Qualitätssicherung.
- sind in der Lage, chemisch-analytische Daten auszuwerten und zu bewerten.
- kennen die wichtigsten (genormten) Analysenmethoden für anorganische und organische Schadstoffe und Umweltchemikalien und sind in der Lage, diese zu beschreiben. |
Die Vorlesung „Instrumentelle Analytik“ behandelt die Theorie und Praxis chromatographischer Trennverfahren (GC und HPLC) sowie wichtiger Detektionsmethoden (UV-VIS, Fluoreszenz, Infrarot, Massenspektrometrie).
In der Vorlesung „Analytik von Schadstoffen in Wasser und Boden“ werden genormte Verfahren (DIN, ISO oder andere) zur Quantifizierung von Umweltchemikalien, einerseits summarisch (Gesamtkohlenstoff, AOX etc.), andererseits als Einzelstoff (z.B. PAK, polychlorierte Dibenzodioxine etc.) behandelt. |
Die Vorlesung „Qualitätssicherung in der chemischen Analytik“ behandelt die Methoden der internen und externen Qualitätssicherung. Dabei werden auch Begriffe wie Validierung, zertifizierte Standards, Ringversuche, Messunsicherheit etc. an praktischen Beispielen erläutert.

Im „Praktikum Umweltanalytik“ werden ausgewählte analytische Methoden durchgeführt und die Ergebnisse ausgewertet und bewertet.

14. Literatur:

15. Lehrveranstaltungen und -formen:
• 160601 Vorlesung Instrumentelle Analytik
• 160602 Vorlesung Analytik von Schadstoffen in Wasser und Boden
• 160603 Vorlesung Qualitätssicherung in der chemischen Analytik
• 160604 Praktikum Umweltanalytik

16. Abschätzung Arbeitsaufwand:
1. Instrumentelle Analytik, Vorlesung, 1 SWS:
 Präsenzzeit: 10,5 h
 Selbstdieumszeit: 27,0 h
 Gesamt: 37,5 h
2. Analytik von Schadstoffen in Wasser und Boden, Vorlesung 1 SWS:
 Präsenzzeit: 10,5 h
 Selbstdieumszeit: 27,0 h
 Gesamt: 37,5 h
3. Qualitätssicherung in der chemischen Analytik, Vorlesung, 1 SWS:
 Präsenzzeit: 10,5 h
 Selbstdieumszeit: 27,0 h
 Gesamt: 37,5 h
4. Praktikum Umweltanalytik, Laborpraktikum, wöchentlich
 Präsenzzeit (14 Halbtage á 4 h): 56,0 h
 Selbstdieumszeit

17. Prüfungsnummer/n und -name:
• 16061 Umweltanalytik - Wasser und Boden (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0
• V Vorleistung (USL-V), schriftlich, eventuell mündlich

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Hydrochemie und Hydrobiologie in der Siedlungswasserwirtschaft
Modul: 34540 Ökobilanz und Nachhaltigkeit

2. Modulkürzel: 020800036 5. Moduldauler: 1 Semester

4. SWS: 4.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Hon.-Prof. Schew-Ram Mehra

9. Dozenten: • Jan Paul Lindner
• Stefan Albrecht
• Aleksandar Lozanovski
• Sarah Schneider

→ Elective Modules -->Elective Modules 6 CP -->Elective Modules 6 CP (in german language)
→

11. Empfohlene Voraussetzungen: keine

12. Lernziele: **Ganzheitliche Bilanzierung**

 Studierende
 • kennen den Lebenszyklusgedanken als Grundlage der Ökobilanz
 • können die Methode der Ökobilanz und der Ganzheitlichen Bilanzierung umsetzen und darstellen.
 • kennen die Einsatzbereiche der Ökobilanz und können deren Stärken und Schwächen einordnen. Sie kennen den Nutzen von LCA und LCE Studien.
 • können umweltliche Auswirkungen der Material- und Prozessauswahl in der Produktentwicklung einschätzen, einordnen und diese in die Entscheidungsfindung einzubeziehen.
 • haben Kenntnisse im Umgang mit dem Softwaresystem GaBi zur Erstellung von Lebenszyklusbilanzen

 Nachhaltigkeit in den Ingenieurwissenschaften

 Studierende
 • kennen die Komponenten der Nachhaltigkeit
 • können nachhaltige Konzepte entwickeln und bewerten
 • kennen unterschiedliche Zertifizierungssysteme und Standards.

13. Inhalt: Lehrveranstaltungen Ganzheitliche Bilanzierung:

 • Einführung in die Lebenszyklusanalyse und Übersicht anhand definierter Problemstellung Definition von Nachhaltigkeit und Einordnung der Ökobilanz in den Kontext der Nachhaltigkeit
 • Einführung in die Methode der Ökobilanz nach DIN ISO 14040:2006 und 14044:2006
 • Problematik vereinfachter Modelle der Ökobilanz Anwendung und
 • Anwendbarkeit der Methode der Ökobilanz und der Ganzheitlichen Bilanzierung
 • Technische, ökologische und ökonomische Parameter innerhalb der Ganzheitlichen Bilanzierung
• Einführung in die erweiterte Anwendung / neue Themenfelder der Ökobilanz, wie z.B. Sozial, Biodiversität
• Einblick in die Konzepte zum Design for Environment
• Einblick in aktuelle Studien zur Vertiefung des theoretischen Verständnisses und der Anwendungsfelder der Ökobilanzen
• Umsetzung der Methode mit Hilfe des Softwaresystems GaBi
 Anwendung zur Identifizierung und Bewertung von Schwachstellen und des Verbesserungspotentials im gesamten Lebenszyklus

Inhalt Lehrveranstaltung Nachhaltigkeit in den Ingenieurwissenschaften:

• Definition und Grundbegriffe der Nachhaltigkeit
• existierende Zertifizierungssysteme und Standards
• Methodische Prinzipien der Zertifizierung Einzelaspekte der Nachhaltigkeit

14. Literatur:
Einführung/Anwendung Ganzheitliche Bilanzierung:

• DIN EN ISO 14001 Umweltmanagementsysteme - Anforderungen mit Anleitung zur Anwendung.(2004)

15. Lehrveranstaltungen und -formen:

• 345401 Vorlesung Einführung in die Ganzheitliche Bilanzierung
• 345402 Vorlesung Anwendung der Ganzheitlichen Bilanzierung
• 345403 Übung zur Ganzheitlichen Bilanzierung
• 345404 Vorlesung Nachhaltigkeit in den Ingenieurwissenschaften

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: ca. 56 h
Selbststudium: ca. 112 h

Einführung in die Ganzheitliche Bilanzierung
14 h Präsenzzeit
28 h Selbststudium

Anwendung der Ganzheitlichen Bilanzierung,
14 h Präsenzzeit
28 h Selbststudium

Übung zur Ganzheitlichen Bilanzierung
14 h Präsenzzeit
28 h Selbststudium

Nachhaltigkeit in den Ingenieurwissenschaften
14 h Präsenzzeit
28 h Selbststudium

17. Prüfungsnummer/n und -name:

• 34541 Ökobilanz und Nachhaltigkeit PL (PL), schriftlich oder mündlich, 45 Min., Gewichtung: 1.0
• 34542 Ökobilanz und Nachhaltigkeit USL (USL), schriftlich, eventuell mündlich, Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:
Powerpointpräsentation und Folien
20. Angeboten von: Lehrstuhl für Bauphysik
122 Elective Modules 3 CP

Zugeordnete Module:
1221 Elective Modules 3 CP (in english language)
1222 Elective Modules 3 CP (in german language)
1221 Elective Modules 3 CP (in english language)

Zugeordnete Module:

36550 Chemistry of the Atmosphere
39110 Air Quality Management
39130 Engine Combustion and Emissions
39140 Sustainable Production Processes
39650 Basics of Membrane Technology
39660 Biological Waste Air Purification
41010 Modellierung von Zweiphasenströmungen
58100 Constructed wetlands for wastewater treatment
59600 Chemical Reaction Engineering
Modul: 39110 Air Quality Management

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>041210011</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Apl. Prof. Rainer Friedrich</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Rainer Friedrich</td>
</tr>
</tbody>
</table>
→ Elective Modules --> Elective Modules 3 CP --> Elective Modules 3 CP (in english language)
→ M.Sc. WASTE, PO 2015
→ Elective Modules or Industrial Internship (6 CP) --> Elective Modules 3 CP --> Elective Modules (in english language) |
| 11. Empfohlene Voraussetzungen: | Students can generate emission inventories and emission scenarios, operate atmospheric models, estimate health and environmental impacts and exceedances of thresholds, establish clean air plans and carry out cost-effectiveness and cost-benefit analyses to identify efficient air pollution control strategies. |
| 12. Lernziele: | Students can generate emission inventories and emission scenarios, operate atmospheric models, estimate health and environmental impacts and exceedances of thresholds, establish clean air plans and carry out cost-effectiveness and cost-benefit analyses to identify efficient air pollution control strategies. |
| 13. Inhalt: | Sources of air pollutants and greenhouse gases, generation of emission inventories, scenario development, atmospheric (chemistry-transport) processes and models, indoor pollution, exposure modelling, impacts of air pollutants, national and international regulations, instruments and techniques for air pollution control, clean air plans, integrated assessment, cost-effectiveness and cost benefit analyses. |
| 14. Literatur: | Script |
| | Online-tutorial |
| 15. Lehrveranstaltungen und -formen: | 391101 Vorlesung Air Quality Management |
Private Study: 62 h
Total: 90 h |
| 17. Prüfungsnummer/n und -name: | 39111 Air Quality Management (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0 |
| 18. Grundlage für ... : | |
| 19. Medienform: | PowerPoint slides, blackboard |
| 20. Angeboten von: | Institut für Energiewirtschaft und Rationelle Energieanwendung |
Modul: 39650 Basics of Membrane Technology

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>041110777</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Jochen Kerres</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Jochen Kerres</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- M.Sc. WASTE, PO 2015
 - Elective Modules --> Elective Modules 3 CP --> Elective Modules 3 CP (in english language)
 - M.Sc. WASTE, PO 2015
 - Elective Modules or Industrial Internship (6 CP) --> Elective Modules 3 CP --> Elective Modules (in english language)

11. Empfohlene Voraussetzungen:

- Thermo and Fluid Dynamics
- Chemistry and Biology for Environmental Engineers

12. Lernziele:

After completion of this module, students have basic knowledge in membrane technologies and their physicochemical basics available (thermodynamics and kinetics (transport properties) of membrane processes, basic types and functionalities of porous membrane types, solution diffusion membranes and ion exchange membranes.

13. Inhalt:

- Basics of membrane processes (thermodynamics, transport processes)
- Types of membrane processes: pressure-driven (MF, UF, NF)
- Chemical potential-driven (RO, PV, GS, DD, dialysis)
- Electrical potential-driven (ED, EDBP)
- Membrane preparation:
 - Dense membranes
 - Porous membranes
 - Charged membranes
- Membrane characterization

14. Literatur:

- Skript
- Text book:
 - Heiner Strathmann, Lidietta Giorno, Enrico Drioli
 An Introduction to Membrane Science and Technology
 CNR-ITM
 ISBN 88-8080-063-9
 - Marcel Mulder
 Basic Principles of Membrane Technology
15. Lehrveranstaltungen und -formen: 396501 Lecture Basics of Membrane Technology

Self study: 62 h = 90 h

17. Prüfungsnummer/n und -name: 39651 Basics of Membrane Technology (BSL), mündliche Prüfung, 30 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform: Tafel, PowerPoint Präsentation

20. Angeboten von:
Modul: 39660 Biological Waste Air Purification

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>021221201</th>
<th>5. Moduldauer:</th>
<th>[pord.modu Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Karl Heinrich Engesser

9. Dozenten: • Karl Heinrich Engesser • Daniel Dobslaw

 ➔ Elective Modules --> Elective Modules 3 CP --> Elective Modules 3 CP (in english language)
 ➔ M.Sc. WASTE, PO 2015
 ➔ Elective Modules or Industrial Internship (6 CP) --> Elective Modules 3 CP --> Elective Modules (in english language)

11. Empfohlene Voraussetzungen: Basics of biology, chemistry and air quality control
 Basics of thermodynamics, kinetics and mathematics
 Formally: none

12. Lernziele: The students know about actual legislation in USA, Canada, European Union, Australia as well as Germany related to emissions, ambient air quality as well as the legislative process of building up biological waste air cleaning plants.
 Basic knowledge about non-biological techniques is delivered.
 The students get knowledge about chemical and biological basics to estimate biodegradability of different pollutants and pollutant classes and mixtures of themselves.
 The functions of different kinds of biological air treatment techniques and relevant process parameters are presented.
 Thus students are able to select the appropriate treatment system according to the given frame conditions.
 Sum up, they have the competence for the first calculation and design of a biological waste air treatment system.

13. Inhalt:
 • Air related legislation in Germany, EU, Australia, Canada and USA
 • Types of waste air treatment
 • Types of bioreactors systems for biological waste air purification
 • Biodegradability of typical waste air compounds
 • Basic processes in biofiltration
 • Operating conditions and operating costs
 • Definitions and terminology for examination in efficiency
 • Use of filter materials Examples for typical problems and for extreme use of biological waste air treatment.
 • Analytical methods for air and odorimetric analyses.

 An additional exercise delves into the contents of the lecture, especially as a preparation to examination.
14. Literatur:
- Script for lecture (addition to slides)
- Powerpoint slides for lecture
- Board notices
- Internet

15. Lehrveranstaltungen und -formen:
- 396601 Lecture Biological Waste Air Purification
- 396602 Excursion to a nearby biological waste air purification facility

16. Abschätzung Arbeitsaufwand:

17. Prüfungsnummer/n und -name:
- 39661 Biological Waste Air Purification (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 59600 Chemical Reaction Engineering

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher:
Jochen Kerres

9. Dozenten:
Jochen Kerres

10. Zuordnung zum Curriculum in diesem Studiengang:
- M.Sc. WASTE, PO 2015
 - Elective Modules --> Elective Modules 3 CP --> Elective Modules 3 CP (in english language)
 - Elective Modules or Industrial Internship (6 CP) --> Elective Modules 3 CP --> Elective Modules (in english language)

11. Empfohlene Voraussetzungen:
Thermo- and Fluid Dynamics

12. Lernziele:
After completion of this module, students have basic knowledge about Chemical Reaction Engineering and their physicochemical basics available (thermodynamics and kinetics of chemical reactions, basic types and functionalities as well as physicochemistry of basic reactors such as Stirred Tank Reactor (STR), Plug-Flow and Continuously Stirred Tank Reactor (CSTR))

13. Inhalt:
- Conversion of measure units
- Stoichiometry and global mass balances
- Global energy balances
- Chemical equilibrium
- Chemical reaction kinetics
- Description and calculation of basic reactor types and their thermodynamics and kinetics

14. Literatur:
- Skript
textbook: Chemical Reaction Engineering (hardcover edition) by Octave Levenspiel (Autor)
hardcover edition: 688 Seiten
language: English
ISBN-10: 047125424X

15. Lehrveranstaltungen und -formen:
596001 Vorlesung Chemische Reaktionstechnik

16. Abschätzung Arbeitsaufwand:
Time of Attendance: 28 h Lecture
Self study: 62 h = 90 h
<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>59601 Chemical Reaction Engineering (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td></td>
</tr>
</tbody>
</table>
Modul: 36550 Chemistry of the Atmosphere

4. SWS: 2.5 7. Sprache: Englisch

8. Modulverantwortlicher: Univ.-Prof. Cosima Stubenrauch
9. Dozenten: • Cosima Stubenrauch • Ulrich Vogt

➞ Elective Modules -->Elective Modules 3 CP -->Elective Modules 3 CP (in english language)

➞ M.Sc. WASTE, PO 2015

➞ Elective Modules or Industrial Internship (6 CP) -->Elective Modules 3 CP -->Elective Modules (in english language)

11. Empfohlene Voraussetzungen: Basics in Chemistry, Physics, and Air Quality Control
12. Lernziele: The graduates of the module understand the basic physical and chemical processes in the tropo- and the stratosphere. The influence of air pollutants in the ambient air and on a global scale can be explained, which, in turn, allows classifying and assessing the air quality in a defined area. This is the basis for the understanding and justification of air pollution abatement measures.

13. Inhalt: I: Chemistry of the Atmosphere (Stubenrauch)

• Structure of the atmosphere
• Radiation balance of the Earth
• Global balances of trace gases
• OH radical
• Chemical degradation mechanisms
• Stratospheric chemistry, ozone hole
• Tropospheric chemistry
• Greenhouse effect, climate

II: Air Pollutants in Urban and Rural Areas and Meteorological Influences (Vogt)

• Spatial distribution of air pollutants in urban and rural areas
• Temporal variation and trends in air quality
• Carbon compounds, sulfur dioxide, particulate matter, nitrogen oxides, tropospheric ozone
• Meteorological influences

14. Literatur:

• Introduction to Atmospheric Chemistry, D.J. Jacob, Princeton University Press, Princeton, 1999
• Chemistry of the Natural Atmosphere, P. Warneck, Academic Press, San Diego, 2000
• Air Quality Control, G. Baumbach, Springer Verlag, Berlin, 1996
• News on Topics from Internet (e.g. UBA, LUBW)

15. Lehrveranstaltungen und -formen: • 365501 Vorlesung Chemie der Atmosphäre
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
</table>
| 16. Abschätzung Arbeitsaufwand: | Attendance: 35 h (28 h Lectures & 7 h Exkursion)
Autonomous Student Learning: 55 h
Total: 90 h |
| 17. Prüfungsnummer/n und -name: | 36551 Chemistry of the Atmosphere (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0 |
| 18. Grundlage für ... : | |
| 19. Medienform: | blackboard, PowerPoint presentations, demonstration of measurements |
| 20. Angeboten von: | |
Modul: 58100 Constructed wetlands for wastewater treatment

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>-</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Anne Weiß

9. Dozenten:

10. Zuordnung zum Curriculum in diesem Studiengang:

 M.Sc. WASTE, PO 2015
 → Elective Modules -->Elective Modules 3 CP -->Elective Modules 3 CP (in english language)
 →

 M.Sc. WASTE, PO 2015
 → Elective Modules or Industrial Internship (6 CP) -->Elective Modules 3 CP -->Elective Modules (in english language)

11. Empfohlene Voraussetzungen:

 Chemistry and Biology for Engineers
 Sanitary Engineering

12. Lernziele:

 The goal of this course is to provide advanced knowledge of the processes and concepts of constructed wetlands systems to the students. They will get familiar with the existing scientific, technical, and economic practices of using constructed wetlands for wastewater and sewage sludge treatment. For this reason all late scientific developments concerning municipal industrial and agro-industrial wastewater treatment and sewage sludge treatment will be presented. At the end of the course the students will be able to:

 - Understanding constructed wetlands’ main mechanisms.
 - Perform a rough design of constructed wetlands treating various wastewaters and sewage sludge

13. Inhalt:

 Basic principles of constructed wetlands

 - Attached growth treatment systems
 - Constructed wetlands (basic principles, types, vegetation, porous media, etc)
 - Pollutant removal mechanisms and kinetics (organic matter, nitrogen, phosphorus, heavy metals, suspended solids)
 - Sewage sludge treatment (dewatering mechanisms, mineralization processes)

 Design of constructed wetlands

 - Constructed wetlands’ design models (hydrodynamic and pollutant removal models)
 - Determination of required constructed wetland area
 - Sewage sludge treatment (sludge loading rates, duration of loading and resting periods)

 Case studies

 - Municipal wastewater treatment
 - Agro-industrial wastewater treatment
Sewage sludge treatment

14. Literatur:

Kadlec, R.H., Wallace, S. *Treatment wetlands*, send ed. CRC Press Lecture notes

15. Lehrveranstaltungen und -formen:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>581001</td>
<td>Vorlesung Design of constructed wetlands</td>
</tr>
</tbody>
</table>

16. Abschätzung Arbeitsaufwand:

90 h

17. Prüfungsnummer/n und -name:

<table>
<thead>
<tr>
<th>Code</th>
<th>Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>58101</td>
<td>Constructed wetlands for wastewater treatment (BSL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0</td>
</tr>
</tbody>
</table>

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 39130 Engine Combustion and Emissions

2. Modulkürzel: 070800101 5. Moduldauer: 1 Semester
4. SWS: 2.0 7. Sprache: Englisch
8. Modulverantwortlicher: Dietmar Schmidt
9. Dozenten: Dietmar Schmidt
10. Zuordnung zum Curriculum in diesem Studiengang:

 M.Sc. WASTE, PO 2015
 ➞ Elective Modules --> Elective Modules 3 CP --> Elective Modules 3 CP (in english language)
 ➞

 M.Sc. WASTE, PO 2015
 ➞ Elective Modules or Industrial Internship (6 CP) --> Elective Modules 3 CP --> Elective Modules (in english language)
 ➞

11. Empfohlene Voraussetzungen:

12. Lernziele:

 The students know the physical-chemistry processes of combustion in Otto- and Diesel engines (e.g. kinetics, fuels, turbulence-chemistry interactions) and newer strategies (e.g. HCCI). Pollutant formation path ways and reduction techniques of pollutant formation, exhaust gas aftertreatment in engines. The students are able to transport new ideas or modifications onto engine behaviour, like e. g. power, efficiency, pollutant formation, etc.

13. Inhalt:

 • Fundamentals of combustion and thermodynamics related to engine combustion
 • Fuels
 • Combustion of spark ignited engines (Otto-engines): combustion, ignition, flame propagation, turbulence effects, knock
 • Combustion in Diesel-engines: combustion, turbulence effects, auto-ignition, spray combustion
 • Combustion in HCCI-engines, low-temperature kinetics
 • Exhaust gases in Otto-engines: emissions and aftertreatment
 • Exhaust gases in Diesel-engines: emissions and aftertreatment

14. Literatur:

 • Turns, An Introduction to Combustion, Mc Graw Hill
 • Manuscript

15. Lehrveranstaltungen und -formen: 391301 Lecture Engine Combustion and Emissions

16. Abschätzung Arbeitsaufwand:

 Time of attendance: 21 h
 private study: 69 h
 overall: 90 h

17. Prüfungsnummer/n und -name: 39131 Engine Combustion and Emissions (BSL), schriftlich, eventuell mündlich, 60 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform: Blackboard, ppt-presentation

20. Angeboten von: Institut für Verbrennungsmotoren und Kraftfahrwesen
Modul: 41010 Modellierung von Zweiphasenströmungen

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>041600614</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Eckart Laurien</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Eckart Laurien</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

13. Inhalt:

1. Introduction
2. Characterization of Two-Phase Flows
 2.1 Two-Phase Flows, Examples
 2.2 Classification of Two-Phase Flows
 2.3 Stokes Number
 2.4 Turbulence in Two-Phase Flows
3. Euler-Lagrange Model
 3.1 Model Equations
 3.2 Computation of Particle-Laden Flow
 3.3 Numerical Integration of Particle Trajectories
4. Lagrangian Turbulence Modeling
 4.1 Adiabatic Two-Phase Flows (Gas-Liquid)
5. Bubble Plume
 5.1 Mechanisms of Momentum Transfer
 5.2 Fundamental Equations
 5.3 Numerical Simulation of a Bubble Plume
6. Bubbly Pipe Flow
 6.1 Experimental Observations
 6.2 Numerical Simulation of Bubbly Pipe Flows
7. Bubbly Pipe Flows
 7.1 Bubble Dynamics
 7.2 Derivation of the Two-Fluid Equations
8. Single-Phase Turbulence Modelling Overview
 8.1 Prandtl's Mixing-Length Model
9. The K-epsilon Turbulence Model
10. Two-Phase Turbulence Models
11. Extended Continuum Models
12. Stratified Flow
13. Countercurrent Flow Experiments
14. Forces at a Wavy Surface
15. Two-Phase Turbulence Transport Models
16. Direct Numerical Simulation
2.4.1 Volume-of-Fluid Method
2.4.2 Example: Determination of the Virtual Mass Coefficient

15. Lehrveranstaltungen und -formen: 410101 Vorlesung Modellierung von Zweiphasenströmungen

16. Abschätzung Arbeitsaufwand: Präsenzzeit 22,5 h + Nachbearbeitungszeit 67 h + Prüfungszeit 0,5 h = 90 h

17. Prüfungsnummer/n und -name: 41011 Modellierung von Zweiphasenströmungen (BSL), mündliche Prüfung, 30 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform: ppt-Präsentation, alle Folien online verfügbar unter http://www.ike.uni-stuttgart.de/lehre/M2P-index.html

20. Angeboten von: Institut für Kernenergetik und Energiesysteme
Modul: 39140 Sustainable Production Processes

2. Modulkürzel: 074300030
5. Modulduauer: 1 Semester

3. Leistungspunkte: 3.0 LP

4. SWS: 2.0
7. Sprache: Englisch

8. Modulverantwortlicher: Apl. Prof. Günter Tovar

9. Dozenten: Steffen Schütz

 → Elective Modules -->Elective Modules 3 CP -->Elective Modules 3 CP (in english language)
 → M.Sc. WASTE, PO 2015
 → Elective Modules or Industrial Internship (6 CP) -->Elective Modules 3 CP -->Elective Modules (in english language)

11. Empfohlene Voraussetzungen: Good knowledge of basics of process engineering, chemistry and environmental engineering

12. Lernziele:
 • The students know the principles of sustainability and sustainable production.
 • The students have understood the needs for sustainable production.
 • The students are able to analyze and assess production processes with respect to sustainability.
 • The students have the competence of sustainable process development.
 • The students can identify opportunities for process optimization and improvement and describe the sustainable processes.

13. Inhalt:
 • Introduction to sustainable development and sustainable production.
 • Impact of production processes on the environment.
 • Sustainable production processes in the chemical industries.
 • Sustainable production processes in the metal industries.
 • Sustainable production processes in the ceramic industries

14. Literatur:
 • Chemical Technology and the Environment - Volume 1 Kirk Othmer,
 John Wiley & Sons, New Jersey 2007
 • P. Eyerer, Th. Hirth, J. Woidasky, Nachhaltige rohstoffnahe Produktion,
 IRB-Verlag, 2007
 • Lecture notes

15. Lehrveranstaltungen und -formen: 391401 Vorlesung Sustainable Production Processes

 Private study: approx. 69 h

17. Prüfungszahl/n und -name: 39141 Sustainable Production Processes (BSL), schriftliche Prüfung,
 60 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform: Blackboard, PPT-presentation, manuscript of the lecture

Seite 85 von 210
1222 Elective Modules 3 CP (in german language)

<table>
<thead>
<tr>
<th>Zugeordnete Module</th>
<th>Code</th>
<th>Module Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>15390</td>
<td>Umweltrelevanz abfalltechnischer Anlagen</td>
<td></td>
</tr>
<tr>
<td>15400</td>
<td>Biogas</td>
<td></td>
</tr>
<tr>
<td>30660</td>
<td>Luftreinhaltung am Arbeitsplatz</td>
<td></td>
</tr>
<tr>
<td>36560</td>
<td>Raumklima</td>
<td></td>
</tr>
<tr>
<td>38720</td>
<td>Meteorologie</td>
<td></td>
</tr>
<tr>
<td>67040</td>
<td>Kraftwerksanlagen I</td>
<td></td>
</tr>
</tbody>
</table>
Modul: 15400 Biogas

2. Modulkürzel: 021220008
5. Modulsdauer: 1 Semester

3. Leistungspunkte: 3.0 LP
6. Turnus: jedes 2. Semester, SoSe

4. SWS: 3.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Detlef Clauß

9. Dozenten: Gerhard Rettenberger

 ➔ Elective Modules -->Elective Modules 3 CP -->Elective Modules 3 CP (in german language)
 ➔
 M.Sc. WASTE, PO 2015
 ➔ Elective Modules or Industrial Internship (6 CP) -->Elective Modules 3 CP -->Elective Modules (in german language)

12. Lernziele:

13. Inhalt:

14. Literatur:
Eigenes Manuskript

15. Lehrveranstaltungen und -formen:
• 154001 Vorlesung Biogasverwertung
• 154002 Exkursion Biogasverwertung

16. Abschätzung Arbeitsaufwand:
 Präsenz: 38 h
 Selbststudium: 52 h
 Gesamt: 90 h

17. Prüfungsnummer/n und -name: 15401 Biogas (BSL), mündliche Prüfung, 20 Min., Gewichtung: 1.0

18. Grundlage für... :

19. Medienform:
 Tafel, Beamer, Exkursion

20. Angeboten von:
Modul: 67040 Kraftwerksanlagen I

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Apl. Prof. Uwe Schnell</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:
- M.Sc. WASTE, PO 2015
 - Elective Modules --> Elective Modules 3 CP --> Elective Modules 3 CP (in german language)
 - M.Sc. WASTE, PO 2015
 - Elective Modules or Industrial Internship (6 CP) --> Elective Modules 3 CP --> Elective Modules (in german language)

11. Empfohlene Voraussetzungen:
Ingenieurwissenschaftliche und naturwissenschaftliche Grundlagen, Grundlagen in Maschinenbau, Verfahrenstechnik, Thermodynamik

12. Lernziele:
Die Studierenden des Moduls haben die Energieerzeugung mit Kohle und/oder Erdgas in Kraftwerken verstanden. Sie kennen die verschiedenen Kraftwerks-, Kombiprozesse und CO2-Abscheideprozesse. Sie sind in der Lage, die Klimawirksamkeit und die Wirtschaftlichkeit der einzelnen Kraftwerksprozesse zu beurteilen und für den jeweiligen Fall die optimierte Technik anzuwenden.

13. Inhalt:

14. Literatur:
Vorlesungsmanuskript „Kraftwerksanlagen I“

15. Lehrveranstaltungen und -formen:
670401 Vorlesung Kraftwerksanlagen I

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 28h
Selbststudium / Nacharbeitszeit: 62 h
Gesamt: 90 h

17. Prüfungsnummer/n und -name:

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 30660 Luftreinhaltung am Arbeitsplatz

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>041310004</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Armin Ruppert</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Michael Schmidt</td>
</tr>
</tbody>
</table>
 ➞ Elective Modules -->Elective Modules 3 CP -->Elective Modules 3 CP (in german language)
 ➞ M.Sc. WASTE, PO 2015
 ➞ Elective Modules or Industrial Internship (6 CP) -->Elective Modules 3 CP -->Elective Modules (in german language) |
| 11. Empfohlene Voraussetzungen: |
| 12. Lernziele: | Im Modul Luftreinhaltung am Arbeitsplatz haben die Studenten die Systematik der Lösungen zur Luftreinhaltung am Arbeitsplatz sowie dazu erforderlichen Anlagen kennen gelernt und die zugehörigen ingenieurwissenschaftlichen Grundlagen erworben. Erworbene Kompetenzen:
 Die Studenten
 • sind mit den Methoden zur Luftreinhaltung am Arbeitsplatz vertraut,
 • können für die jeweiligen Anforderungen die technischen Lösungen konzipieren,
 • können die notwendigen Anlagen auslegen |
| 13. Inhalt: |
 • Arten, Ausbreitung und Grenzwerte von Luftfremdstoffen
 • Bewertung der Schadstofferfassung
 • Luftströmung an Erfassungseinrichtungen
 • Luftführung, Luftdurchlässe
 • Auslegung nach Wärme- und Stofflasten
 • Bewertung der Luftführung
 • Abnahme von Leitungsmessungen |
| 14. Literatur: |
| 15. Lehrveranstaltungen und -formen: | 306601 Vorlesung Luftreinhaltung am Arbeitsplatz |
 Selbststudium: 69 Stunden
 Summe: 90 Stunden |
| 17. Prüfungsnummer/n und-name: | 30661 Luftreinhaltung am Arbeitsplatz (BSL), mündliche Prüfung, 30 Min., Gewichtung: 1.0 |
| 18. Grundlage für ... : |
| 19. Medienform: | Vorlesungsskript |
| 20. Angeboten von: |
Modul: 38720 Meteorologie

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Modulkürzel:</td>
<td>042500051</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>5. Modulduer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

→ Elective Modules -->Elective Modules 3 CP -->Elective Modules 3 CP (in german language)

→ M.Sc. WASTE, PO 2015

→ Elective Modules or Industrial Internship (6 CP) -->Elective Modules 3 CP -->Elective Modules (in german language)

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Keine</td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>Die Studenten haben die Grundkenntnisse der Meteorologie und der atmosphärischen Prozesse erworben, die zum Verständnis des Verhaltens von Luftverunreinigungen und der Niederschläge in der Atmosphäre, die auch auf andere Bereiche der Umwelt einwirken (Wasser, Vegetation) erforderlich sind.</td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>In der Vorlesung „Meteorologie“ werden die folgenden Themen behandelt:</td>
</tr>
<tr>
<td></td>
<td>• Strahlung und Strahlungsbilanz,</td>
</tr>
<tr>
<td></td>
<td>• Meteorologische Elemente (Luftdichte, Luftdruck, Lufttemperatur, Luftfeuchtigkeit, Wind) und ihre Messung,</td>
</tr>
<tr>
<td></td>
<td>• allgemeine Gesetze,</td>
</tr>
<tr>
<td></td>
<td>• Aufbau der Erdatmosphäre,</td>
</tr>
<tr>
<td></td>
<td>• klein- und großräumige Zirkulationssysteme in der Atmosphäre,</td>
</tr>
<tr>
<td></td>
<td>• Wetterkarte und Wettervorsorge,</td>
</tr>
<tr>
<td></td>
<td>• Ausbreitung von Schadstoffen in der Atmosphäre,</td>
</tr>
<tr>
<td></td>
<td>• Stadtklimatologie,</td>
</tr>
<tr>
<td></td>
<td>• Globale Klimaveränderungen und ihre Auswirkungen, „Ozonloch“.</td>
</tr>
<tr>
<td>14. Literatur:</td>
<td>Vorlesungsmanuskript</td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>387201 Vorlesung Meteorologie</td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Präsenzzeit: 28 h</td>
</tr>
<tr>
<td></td>
<td>Selbststudiumsszeit / Nacharbeitszeit: 62 h</td>
</tr>
<tr>
<td></td>
<td>Gesamt: 90 h</td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>38721 Meteorologie (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Tafelanschrieb, PPT-Präsentationen, ILIAS</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Institut für Feuerungs- und Kraftwerkstechnik</td>
</tr>
</tbody>
</table>
Modul: 36560 Raumklima

2. Modulkürzel: 020800061
5. Modulduer: 1 Semester

3. Leistungspunkte: 3.0 LP
6. Turnus: jedes 2. Semester, SoSe

4. SWS: 2.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Hon.-Prof. Schew-Ram Mehra
9. Dozenten: Marcus Hermes

10. Zuordnung zum Curriculum in diesem Studiengang:
 M.Sc. WASTE, PO 2015
 ➔ Elective Modules -->Elective Modules 3 CP -->Elective Modules 3 CP (in german language)
 ➔
 M.Sc. WASTE, PO 2015
 ➔ Elective Modules or Industrial Internship (6 CP) -->Elective Modules 3 CP -->Elective Modules (in german language)

11. Empfohlene Voraussetzungen: keine
12. Lernziele:
 Studierende
 • verstehen den Menschen als Mittelpunkt aller raumklimatischen Maßnahmen und können raumklimatisch behaglich entwerfen bzw. Behaglichkeit in Räumen herstellen
 • beherrschen die Wechselwirkungen des Menschen mit dem Klima und umgekehrt insbesondere für den praktischen Einsatz
 • haben ein vertieftes Verständnis bzgl. der Beurteilung der Innenluftqualität

13. Inhalt:

 Inhalt der Lehrveranstaltung Raumklima:
 • Raumklima, Einführung und physiologische Grundlagen
 • Thermische Behaglichkeit, Grundlagen und Behaglichkeitsdiagramme
 • Wärmebilanzgleichung, konvektiver und strahlungsbedingter Anteil, Zugluft
 • Klimasummengrößen, Äquivalent- und Operativtemperatur
 • Fanger, Klimabewertungsskala, PMV und PPD
 • Thermische Behaglichkeitsmodelle, Alternativen zum Fanger-Modell
 • Innenluftqualität, Einführung, Zusammensetzung Atmosphäre, CO₂, Staub
 • Flüchtige organische Verbindungen (VOC) und Radon
 • Gerüche, Weber-Fechner-Gesetz
 • Düfte, Zusammensetzung, Einsatzbereiche, Gefährdungspotential
 • Fanger, Komfortgleichung zur Luftqualität, Einheiten Olf und Dezipol
 • Natürliche Lüftung von Räumen

14. Literatur:

 Skript: Raumklima

15. Lehrveranstaltungen und -formen: 365601 Vorlesung Raumklima und Innenluftqualität
16. Abschätzung Arbeitsaufwand: Präsenzzeit: ca. 28 h
Selbststudium: ca. 62 h
Gesamt: ca. 90 h
17. Prüfungsnummer/n und -name: 36561 Raumklima (BSL), mündliche Prüfung, 20 Min., Gewichtung: 1.0
18. Grundlage für ... : Tafelaufschrieb, Powerpointpräsentation
19. Medienform: Lehrstuhl für Bauphysik
Modul: 15390 Umweltrelevanz abfalltechnischer Anlagen

2. Modulkürzel: 021220007
3. Leistungspunkte: 3.0 LP
4. SWS: 3.0
5. Modulduar: 1 Semester
6. Turnus: jedes 2. Semester, SoSe
7. Sprache: Deutsch
8. Modulverantwortlicher: Detlef Clauß
9. Dozenten: Hans-Dieter Huber
 → Elective Modules -->Elective Modules 3 CP -->Elective Modules 3 CP (in german language)
 → M.Sc. WASTE, PO 2015
 → Elective Modules or Industrial Internship (6 CP) -->Elective Modules 3 CP -->Elective Modules (in german language)
14. Literatur: Eigenes Manuskript
15. Lehrveranstaltungen und -formen: • 153901 Vorlesung Umweltrelevanz abfalltechnischer Anlagen
 • 153902 Exkursion Umweltrelevanz abfalltechnischer Anlagen
16. Abschätzung Arbeitsaufwand: Präsenz: 38 h
 Selbststudium: 52 h
 Gesamt: 90 h
17. Prüfungsnummer/n und -name: 15391 Umweltrelevanz abfalltechnischer Anlagen (BSL), mündliche Prüfung, 20 Min., Gewichtung: 1.0
18. Grundlage für ... :
<table>
<thead>
<tr>
<th>19. Medienform:</th>
<th>Tafel, Beamer, Exkursion</th>
</tr>
</thead>
<tbody>
<tr>
<td>20. Angeboten von:</td>
<td></td>
</tr>
<tr>
<td>21. Modulleiter:</td>
<td></td>
</tr>
<tr>
<td>22. Veranstaltungszeiten:</td>
<td></td>
</tr>
<tr>
<td>23. Raum:</td>
<td></td>
</tr>
<tr>
<td>24. Begleitmaterial:</td>
<td></td>
</tr>
<tr>
<td>25. Literaturhinweise:</td>
<td></td>
</tr>
<tr>
<td>26. Weitere Hinweise:</td>
<td></td>
</tr>
</tbody>
</table>
123 Practical Works

Zugeordnete Module:

<table>
<thead>
<tr>
<th>Module</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>36540</td>
<td>Praktikum Luftreinhalting</td>
</tr>
<tr>
<td>67060</td>
<td>Sanitary Engineering - Practical Class Part I for WASTE students</td>
</tr>
<tr>
<td>67080</td>
<td>Sanitary Engineering - Practical Class Part II for WASTE students</td>
</tr>
</tbody>
</table>
Modul: 36540 Praktikum Luftreinhaltung

2. Modulkürzel: 042500020
3. Leistungspunkte: 3.0 LP
4. SWS: 2.0
5. Moduldaauer: 1 Semester
6. Turnus: jedes Semester
7. Sprache: Nach Ankuendigung
9. Dozenten: • Ulrich Vogt
 • Martin Reiser
 • Michael Schmidt
10. Zuordnung zum Curriculum in diesem Studiengang:
 M.Sc. WASTE, PO 2015
 → Advanced Modules -->Elective Modules -->Practical Works
 → M.Sc. WASTE, PO 2015
 → Air Quality Control -->Elective Modules or Industrial Internship (6 CP) -->Practical Work
12. Lernziele:
 -/- Practical intensification of the taught contents of the lectures.
13. Inhalt:
 In diesem Modul sind die folgenden 5 Versuche am IFK, am ISWA und am IGE zu absolvieren. Es ist außerdem jeweils eine Ausarbeitung anzufertigen:
 1. Bestimmung von Schadgasen in der Außenluft (IFK)
 2. Bestimmung von Abgasemissionen aus Kleinfeuerungen (IFK)
 3. NOx-Minderung bei der Kohlenstaubverbrennung (IFK)
 4. Bestimmung von Gerüchen und Geruchsstoffen (ISWA)
 5. Freie Lüftung (IGE)

Versuchsbeispiele:
NOx-Minderung bei der Kohlenstaubverbrennung:
• Möglichkeiten der NOx Minderung (Luft- und Brennstoffstufung)
• Technische Daten der Versuchsanlage
• Berechnung des Luftbedarfs bei ungestufter Verbrennung mit Lambda = 1,15
• Berechnung Primär-/Sekundärluft und einzustellender Ausbrandluftmengen bei lufgestufter Verbrennung
• Berechnung von Strömungsgeschwindigkeit und Verweilzeit im Reaktor
• Auswertung: Korrektur der NOx-Emissionen auf 6 % im O2 im Abgas

Freie Lüftung:
The following 5 experiments must be taken at the corresponding institutes; a written elaboration is also required:

1. Determination of air pollutants in the ambient air (IFK)
2. Determination of air pollutants in the flue gas of a wood firing (IFK)
3. Reduction of NOx in a pulverized coal furnace (IFK)
4. Odor and odor compounds determination (ISWA)
5. Natural ventilation (IGE)

Examples of experiments:

NOx reduction in a pulverized coal combustion:

- Instruments to reduce NOx (air and fuel staging)
- Technical data of the test plant
- Calculation of the air required during an unstaged combustion with lambda = 1.15
- Calculation of the primary/secondary air and burnout air amounts during an air-staged combustion
- Calculation of the flow velocity and residence time within the reactor
- Evaluation: Correction of NOx emissions to 6 % O2 in the exhaust gas

Natural ventilation:

Ventilation technologies provide air-conditioning and ventilation options for indoor use. The indoor air flow must be adjusted as to meet the thermal requirements of the surroundings and/or limit values. This makes it inevitable to know the influence of the incoming air flow and the type of air-flow routing on the indoor air flow. The conception and planning of indoor air installations is based on the simulation of indoor air flows in a laboratory. This helps to determine the best possible arrangement and dimensioning of air passages within specified conditions. Different air-flow routing options are discussed.

14. Literatur: Praktikumsunterlagen (online verfügbar)

15. Lehrveranstaltungen und -formen:

- 365401 Spezialisierungsfachversuch 1
- 365402 Spezialisierungsfachversuch 2
- 365403 Spezialisierungsfachversuch 3
- 365404 Spezialisierungsfachversuch 4
- 365405 Spezialisierungsfachversuch 5

16. Abschätzung Arbeitsaufwand:

Time of attendance:
- 24 hours (5 times 4 hours each)
- self-study: 70 hours

total: 90 hours

17. Prüfungsnummer/n und -name: 36541 Praktikum Luftreinhaltung (USL), Sonstiges, Gewichtung: 1.0, schriftliche Ausarbeitung

18. Grundlage für ...

19. Medienform: ILIAS

20. Angeboten von: Institut für Feuerungs- und Kraftwerkstechnik
Modul: 67060 Sanitary Engineering - Practical Class Part I for WASTE students

2. Modulkürzel: [pord.modulcode]
5. Moduldauer: 1 Semester

3. Leistungspunkte: 3.0 LP

4. SWS: 0.0
7. Sprache: Englisch

8. Modulverantwortlicher: Bertram Kuch

9. Dozenten:

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. WASTE, PO 2015
 → Advanced Modules -->Elective Modules -->Practical Works
 →
M.Sc. WASTE, PO 2015
 → Solid Waste -->Elective Modules or Industrial Internship (6 CP) -->
 >Practical Work
 →

11. Empfohlene Voraussetzungen: Prerequisite Modules:
Sanitary Engineering (Waste: 021220012; Warem: 508 ME)
Urban drainage and design of Wastewater treatment plants
(Waste: 021210251; Warem: 542 ME)
Chemistry and Biology for Environmental Engineers
(Waste: 021230502; Warem: 546 ME)

12. Lernziele:
The student knows and understands in theory and practice
 - the most important parameters to characterize water and waste
 water and the analytical methods to determine them (e.g. pH, nitrate,
 ammonium, phosphorus, alkalinity, acidity, permanganate index,
 conductivity, oxygen, loss of ignition, filterable matter).
 - important techniques for removal of water contaminants (e.g. ion
 exchange, precipitation, coagulation, sorption, neutralization, aerobic,
 anoxic and anaerobic degradation)

 The student
 - is capable of interpreting and evaluating analytical data and based on
 these data to draw conclusions in order to evaluate the quality of water
 and the efficiency of processes for treatment of water.

13. Inhalt:
This course serves to the intensification of the theoretical knowledge in
sanitary engineering with focus on water and wastewater by practical
work in the laboratory and an accompanying student seminar. The
experiments offered belong thematically to the main areas:

 water and waste water

 water chemistry and analysis

 The experiments are mainly performed directly by the students in groups
 of 3 to max. 6 or offered as demonstration experiments.
14. Literatur: Description of Experiments (available as download, pdf) Handouts for seminar work

15. Lehrveranstaltungen und -formen: • 670601 Übung Sanitary Engineering Practical Class I for WASTE Students - Water/Chemistry • 670602 Seminar Sanitary Engineering Practical Class I for WASTE Students - Solid Water/Chemistry

16. Abschätzung Arbeitsaufwand: Time of attendance: 7 days of practical work; ca. 6 h/day = 42 h Preparation time (seminar; before/after practical work): 34 h Seminar: 1 SWS, 14 h Total: 90 hours (3 LP)

17. Prüfungsnummer/n und -name: 67061 Sanitary Engineering - Practical Class Part I for WASTE students (USL), Sonstiges, Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 67080 Sanitary Engineering - Practical Class Part II for WASTE students

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>[pord.modulcode]</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>0.0</td>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Martin Reiser</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. WASTE, PO 2015

- Advanced Modules --> Elective Modules --> Practical Works

M.Sc. WASTE, PO 2015

- Waste Water --> Elective Modules or Industrial Internship (6 CP) --> Practical Work

Empfohlene Voraussetzungen:
Prerequisite Modules:
- Sanitary Engineering (Waste: 021220012; Warem: 508 ME)
- Chemistry and Biology for Environmental Engineers (Waste: 021230502; Warem: 546 ME)

Lernziele:
The student knows and understands in theory and practice
- how to take representative samples out of the different waste streams and the relevant sampling errors
- The student is aware of the most important microbiological tools to detect, handle and use microorganisms in environmental engineering systems
- The student
- is capable of interpreting and evaluating analytical data and based on these data to draw conclusions in order to evaluate the efficiency of processes for treatment of solid waste.
- is able to apply the relevant laboratory test procedures to analyze compost within the quality assurance system and to interpret the results.
- has the competence to develop a sampling procedure for household waste and to determine the waste composition by a sorting analyses
- is able to apply selected test procedures in the field of hazardous waste and the analyses of odor samples

Inhalt:
This course serves to the intensification of the theoretical knowledge in sanitary engineering with focus on solid waste and environmental microbiology by practical work in the laboratory and an accompanying student seminar. The experiments offered belong thematically to the two main areas:
- solid waste
- microbiology
The experiments are mainly performed directly by the students in groups of 3 to max. 6 or are offered as demonstration experiments.

14. Literatur:

- Description of Experiments (available as download, pdf)
- Handouts for seminar work

15. Lehrveranstaltungen und -formen:

- 670801 Übung Sanitary Engineering Practical Class II for WASTE Students - Solid Waste/Microbiology
- 670802 Seminar Sanitary Engineering Practical Class II for WASTE Students - Solid Waste /Microbiology

16. Abschätzung Arbeitsaufwand:

17. Prüfungsnummer/n und -name:

<table>
<thead>
<tr>
<th>Prüfungsnummer/n und -name</th>
<th>Bescpeption of Experiments (available as download, pdf)</th>
</tr>
</thead>
<tbody>
<tr>
<td>67081</td>
<td>Sanitary Engineering - Practical Class Part II for WASTE students (USL), Sonstiges, Gewichtung: 1.0, written records of practical experiments, weighted: 0.5; oral presentation of practical experiments, weighted: 0.5.</td>
</tr>
</tbody>
</table>

18. Grundlage für ...:

19. Medienform:

20. Angeboten von:
Modul: 81320 Student Research Project

2. Modulkürzel: [pord.modulcode] 5. Moduldauer: 1 Semester
3. Leistungspunkte: 12.0 LP 6. Turnus: jedes Semester
4. SWS: 0.0 7. Sprache: Englisch

8. Modulverantwortlicher: Univ.-Prof. Andreas Kronenburg
9. Dozenten:

 → Advanced Modules --> Elective Modules

11. Empfohlene Voraussetzungen:
The examiner will issue the topic of the student research project. Every professor of the study program WASTE as well as assistants/lecturers with the permission to be an examiner are eligible examiners. Doctoral candidates, scientific assistants or persons without the official legitimation to be an examiner can be the supervisor of the work, but not the examiner. Other professors of the University of Stuttgart or assistants/lecturers with the permission to be an examiner who do not teach in the WASTE program can also become examiners of a student research project with special permission of the head of the examination committee.

12. Lernziele:
The student is capable of independently carrying out a scientific thesis. This includes:

 • Identification and clear description of a given task,
 • Design of an experiment and implementation of such with practical experiments or the application of simulation programs,
 • Evaluation and graphical depiction of experimental results and their assessment.

 The student is capable of identifying, describing and assessing problems in the field of Environmental and Process Engineering. Further, the student is able to plan and to independently carry out the according research, experimental or model solutions. Generally, the student has gained the basics for independent scientific work. The student is able to present her/his work in a concise way within a scientific presentation.

13. Inhalt:
To be developed individually. Depends on chosen subject.

14. Literatur:
Depends on chosen subject

15. Lehrveranstaltungen und -formen:

16. Abschätzung Arbeitsaufwand: 360 h

17. Prüfungsnummer/n und -name: 81321 Student Research Project (PL), Sonstiges, Gewichtung: 1.0, Submission of a report (print version + digital version) about the work done in the frame of the Student Research Project + 20-30 minutes presentation of the results with subsequent discussion. Graded Report + presentation, weight: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
200 Specialized Area

<table>
<thead>
<tr>
<th>Zugeordnete Module</th>
<th>Air Quality Control</th>
<th>Solid Waste</th>
<th>Waste Water</th>
</tr>
</thead>
<tbody>
<tr>
<td>210</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>220</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>230</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
210 Air Quality Control

<table>
<thead>
<tr>
<th>Zugeordnete Module</th>
<th>CP</th>
</tr>
</thead>
<tbody>
<tr>
<td>Core Modules</td>
<td>211</td>
</tr>
<tr>
<td>Elective Modules 6 CP</td>
<td>212</td>
</tr>
<tr>
<td>Elective Modules or Industrial Internship (6 CP)</td>
<td>213</td>
</tr>
</tbody>
</table>
211 Core Modules

Zugeordnete Module: 15440 Firing Systems and Flue Gas Cleaning
Modul: 15440 Firing Systems and Flue Gas Cleaning

2. Modulkürzel: 042500003
5. Modulduer: 1 Semester
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0
7. Sprache: Englisch

8. Modulverantwortlicher: Univ.-Prof. Günter Scheffknecht
9. Dozenten: Günter Scheffknecht

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. WASTE, PO 2015
→ Elective Modules -->Elective Modules 6 CP -->Elective Modules 6 CP (in english language)
→
M.Sc. WASTE, PO 2015
→ Specialized Area -->Air Quality Control -->Core Modules
→

11. Empfohlene Voraussetzungen:
Fundamentals of Engineering Science and Natural Science, fundamentals of Mechanical Engineering, Process Engineering, Reaction Kinetics as well as Air Quality Control

12. Lernziele:
The students of the module have understood the principles of heat generation with combustion plants and can assess which combustion plants for the different fuels - oil, coal, natural gas, biomass and waste - and for different capacity ranges are best suited, and how furnaces and firing systems need to be designed that a high energy efficiency with low pollutant emissions could be achieved. In addition, they know which flue gas cleaning techniques have to be applied to control the remaining pollutant emissions. Thus, the students acquired the necessary competence for the application and evaluation of air quality control measures in combustion plants for further studies in the fields of Air Quality Control, Energy and Environment and, finally, they got the competence for combustion plants’ manufactures, operators and supervisory authorities.

13. Inhalt:
I: Combustion and Firing Systems: Characterisation of fuels, combustion fundamentals, gasification principles, design of firing and gasification systems
II: Flue Gas Cleaning: Methods for dust removal, nitrogen oxide reduction (catalytic/ non-catalytic), flue gas desulfurisation (dry and wet), processes for the separation of specific pollutants.

14. Literatur:
I:
• Lecture notes „Combustion and Firing Systems"
• Skript
• Notes for practical work
II:
• Lecture notes "Flue gas cleaning"
• Skript
• Notes for practical work

15. Lehrveranstaltungen und -formen: 154402 Lecture: Firing Systems and Flue Gas Cleaning

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 56 h V

Selbststudiumszeit / Nacharbeitszeit: 124 h
Gesamt: 180 h

<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>15441 Firing Systems and Flue Gas Cleaning (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>PowerPoint Presentations, Black board, ILIAS</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Institut für Feuerungs- und Kraftwerkstechnik</td>
</tr>
</tbody>
</table>
212 Elective Modules 6 CP

<table>
<thead>
<tr>
<th>Zugeordnete Module</th>
<th>Course Code</th>
<th>Course Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>15430</td>
<td>Measurement of Air Pollutants</td>
<td></td>
</tr>
<tr>
<td>15970</td>
<td>Modellierung und Simulation von Technischen Feuerungsanlagen</td>
<td></td>
</tr>
<tr>
<td>30580</td>
<td>Einführung in die numerische Simulation von Verbrennungsprozessen</td>
<td></td>
</tr>
<tr>
<td>30590</td>
<td>Modellierung und Simulation turbulenter reaktiver Strömungen</td>
<td></td>
</tr>
<tr>
<td>59610</td>
<td>Primary Environmental Technologies and Emissions Reduction in Industrial Processes</td>
<td></td>
</tr>
</tbody>
</table>
Modul: 30580 Einführung in die numerische Simulation von Verbrennungsprozessen

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Nach Ankuendigung</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Andreas Kronenburg
9. Dozenten: • Andreas Kronenburg • Oliver Thomas Stein

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. WASTE, PO 2015
→ Elective Modules --> Elective Modules 6 CP --> Elective Modules 6 CP (in english language)

M.Sc. WASTE, PO 2015
→ Specialized Area --> Air Quality Control --> Elective Modules 6 CP

11. Empfohlene Voraussetzungen:
Fundierte Grundlagen in Mathematik, Physik, Informatik
Vertiefungsmodul: Grundlagen technischer Verbrennungsvorgänge I + II (begleitend)

Fundamentals of thermodynamics, chemistry, mathematics, computer science
Core module: Combustion Fundamentals I+II or Chemistry and Physics of Combustion

12. Lernziele:
Participants shall know the fundamentals of the numerical simulations of simplified combustion processes. They have gained a first experience in the modelling of combustion systems and model implementation. Students are able to program simple reactors, carry out simulations and evaluate the results. These skills can be extended within Bachelor-/Master projects.

13. Inhalt:
• Wiederholung der Grundlagen der Verbrennung: Thermodynamik, Gas-gemische, Chemische Reaktionen/Gleichgewicht, Stöchiometrie, Flammen-typen, Mathematische Beschreibung von Massen-/Impulserhaltung, Wärme-/Stofftransport
• Vereinfachte Reaktorbeschreibungen: Rührreaktoren (0D), Plug Flow Reaktor (1D), einfache laminare Vormisch- und Diffusionsflammen (1D)
• Grundlagen der numerischen Simulation: Grundgleichungen, Modellbildung, Diskretisierung, Implementierung
• Orts-/Zeitdiskretisierung, Anfangs-/Randbedingungen, explizite/implizite Lösungsverfahren
Übung: Implementierung und Simulation einfacher Probleme mit Matlab

- Revision of combustion fundamentals: thermodynamics, (ideal) gas mixtures, chemical kinetics/equilibrium, stoichiometry, combustion modes, conservation principles (mass, momentum, energy), heat and mass transfer
- Simplified reactors: batch reactors/well-stirred flow reactors (0D), plug flow reactors, laminar premixed and non-premixed flames (1D)
- Fundamentals of numerical simulation: conservation equations, modelling, discretisation, implementation, solution algorithms
- Spatial/temporal discretisation: Initial/boundary conditions, explicit/implicit solvers, stability criteria

Tutorials: Modelling, implementation and simulation of basic algorithms and reactors (MATLAB/Cantera)

14. Literatur:
- Vorlesungsfolien

15. Lehrveranstaltungen und -formen:
- 305801 Vorlesung Einführung in die numerische Simulation von Verbrennungsprozessen
- 305802 Computerübungen in Kleingruppen Einführung in die numerische Simulation von Verbrennungsprozessen

16. Abschätzung Arbeitsaufwand:
Präsenzzeit:
I Einführung in die numerische Simulation von Verbrennungsprozessen, Vorlesung: 2.0 SWS = 28 Stunden
II Computerübungen in Kleingruppen Einführung in die numerische Simulation von Verbrennungsprozessen, Übung: 2.0 SWS = 28 Stunden
Summe Präsenzzeit: 56 Stunden
Selbststudium: 134 Stunden
Gesamt: 180 Stunden

Time of attendance:
I Introduction to numerical simulation of combustion processes, lecture: 2.0 SWS = 28 hours
II Introduction to numerical simulation of combustion processes, exercise: 2.0 SWS = 28 hours
sum of attendance: 56 hours
self-study: 134 hours
total: 180 hours

17. Prüfungsnummer/n und -name:
30581 Einführung in die numerische Simulation von Verbrennungsprozessen (PL), schriftlich oder mündlich, 40 Min., Gewichtung: 1.0, unbenotete Prüfungsvorleistung: schriftliche Hausaufgaben/Tests

18. Grundlage für ... :

19. Medienform:
Tafelanschrieb, PPT-Präsentationen, Skripte zu Vorlesungen, Computeranwendungen
20. Angeboten von:
Modul: 15430 Measurement of Air Pollutants

2. Modulkürzel: 042500022
5. Moduldauer: 1 Semester

3. Leistungspunkte: 6.0 LP
6. Turnus: jedes 2. Semester, SoSe

4. SWS: 2.5
7. Sprache: Englisch

9. Dozenten:
 • Ulrich Vogt
 • Martin Reiser

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. WASTE, PO 2015
 → Elective Modules --> Elective Modules 6 CP --> Elective Modules 6 CP (in english language)
 →
M.Sc. WASTE, PO 2015
 → Specialized Area --> Air Quality Control --> Elective Modules 6 CP

11. Empfohlene Voraussetzungen:
Fundamentals in “Air Quality Control”

12. Lernziele:
The graduates of the module can identify and describe air quality problems, formulate the corresponding tasks and requirements for air quality measurements, select the appropriate measurement techniques and solve the measurement tasks with practical implementation of the measurements.

13. Inhalt:

I: Measurement of Air Pollutants Part I, 1 SWS (Vogt):
Measurement tasks:
 • Discontinuous and continuous measurement techniques, different requirements for emission and ambient air measurements

Measurement principles for gases:
 • IR- and UV Photometer, Colorimetry, UV fluorescence, Chemiluminescence, Flame Ionisation, Potentiometry

Measurement principle for Particulate Matter (PM):
 • Gravimetry, Optical methods, Particle size distribution, PM deposition, PM composition
 • Assessment of measured values
 • data storage an processing
 • graphical presentation of data

II: Measurement of Air Pollutants Part II, 1 SWS (Reiser):
 • Gas Chromatography, Olfactometry

III: Planning of measurements (Vogt):
Introducing lecture (0,5 SWS), office hours, project work and presentation

Content:
• Definition and description of the measurement task
• Measurement strategy
• Site of measurements, measurement period and measurement times
• Parameters to be measured
• Measurement techniques, calibration and uncertainties
• Evaluation of measurements
• Quality control and quality assurance
• Documentation and report
• Personal and instrumental equipment

14. Literatur:
• Text book “Air Quality Control” (Günter Baumbach, Springer Verlag);
• Scripts for practical measurements; News on topics from internet (e.g. UBA, LUBW)

15. Lehrveranstaltungen und -formen:
• 154301 Vorlesung Measurement of Air Pollutants Part I
• 154302 Vorlesung Measurement of Air Pollutants Part II
• 154303 Seminar Planung von Messungen / Planning

16. Abschätzung Arbeitsaufwand:
Present time: 39 h (= 35 h Lecture + 4 h Presentation)
Self study time (inkl. Project work): 141 h
Total: 180 h

17. Prüfungsnummer/n und -name:
15431 Measurement of Air Pollutants Part I + II (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0, I, II: Measurement of Air Pollutants Part I + II, PL written 60 min., weight 0,5 III: Planning of measurements (project work and presentation), weight 0,5 • Projekt work: 0,5 presentation, 0,5 project report
The participation in 60 % of all presentations of this module in the relevant semester is compulsory.

18. Grundlage für ... :

19. Medienform:
Black board, PowerPoint Presentations, Practical Measurements, ILIAS

20. Angeboten von:
Institut für Feuerungs- und Kraftwerkstechnik
Modul: 30590 Modellierung und Simulation turbulenter reaktiver Strömungen

2. Modulkürzel: 042200103 5. Modulduer: 1 Semester

4. SWS: 4.0 7. Sprache: Nach Anmeldung

8. Modulverantwortlicher: Univ.-Prof. Andreas Kronenburg

9. Dozenten: • Andreas Kronenburg • Oliver Thomas Stein

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>M.Sc. WASTE, PO 2015</th>
<th>Elective Modules --> Elective Modules 6 CP --> Elective Modules 6 CP (in english language)</th>
</tr>
</thead>
<tbody>
<tr>
<td>M.Sc. WASTE, PO 2015</td>
<td>Specialized Area --> Air Quality Control --> Elective Modules 6 CP</td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen: Vertiefungsmodul: Grundlagen technischer Verbrennungsvorgänge I + II
Modul: Einführung in die numerische Simulation von Verbrennungsprozessen

12. Lernziele:
Die Studierenden haben sich mit der Komplexität der Modellierung realer Verbrennungssysteme auseinandergesetzt. Sie sind mit den Grundzügen der Turbulenz und deren numerischen Simulation vertraut. Sie kennen verschiedene Ansätze zur Modellierung technischer Flammen und sind in der Lage dieses Wissen in vertiefenden Arbeiten umzusetzen.

13. Inhalt:
- Wiederholung der Grundlagen der numerischen Strömungssimulation: Kontinuumsgleichungen/Skalarlgleichungen, Orts-/Zeitdiskretisierung, Stabilität - Grundzüge reaktiver Strömungen: Reaktionskinetik, Verbrennungsmoden: vorgemischt / nicht-vorgemischt / teilvorgemischt, Phänomenologie / mathematische Beschreibung
- Grundlagen der Turbulenz und Turbulenzsimulation: Reynoldszahl, turbulente Skalen, Energiekaskade, Kolmogorov, RANS / LES / DNS
- Ansätze zur Modellierung turbulenter Flammen, u.a. Mixedis-Burnt, Gleichgewichtsschemie, Flamelets, CMC, EBU, BML, FSD, G-Gleichung, PDF, LEM
- Modellierung komplexer Geometrien von praktischer Relevanz
- Schwerpunkt LES: gefilterte Gleichungen, Feinskalenmodellierung, Schließung
- Beispiele: Verdrallte Gasflammen, Simulation von Kohle-Verbrennung

Übung: Implementierung und Simulation mit Matlab/OpenFOAM

14. Literatur:
- Vorlesungsmanuskript

15. Lehrveranstaltungen und -formen:
- 305901 Vorlesung Modellierung und Simulation turbulenter reaktiver Strömungen
- 305902 Computerübungen in Kleingruppen Modellierung und Simulation turbulenter reaktiver Strömungen
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 42 h
Selbststudiumszeit/Nachbearbeitungszeit: 138 h
Summe: 180 h |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>30591 Modellierung und Simulation turbulenter reaktiver Strömungen (PL), mündliche Prüfung, 40 Min., Gewichtung: 1.0, unbenotete Prüfungsvorleistung: schriftliche Hausaufgaben/Tests</td>
</tr>
<tr>
<td>18. Grundlage für ...:</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Tafelanschrieb, PPT-Präsentationen, Skripte zu Vorlesungen, Computeranwendungen</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Institut für Technische Verbrennung</td>
</tr>
</tbody>
</table>
Modul: 15970 Modellierung und Simulation von Technischen Feuerungsanlagen

2. Modulkürzel: 042500012

5. Modulduer: 1 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0

7. Sprache: Nach Ankuendigung

8. Modulverantwortlicher: Apl. Prof. Uwe Schnell

9. Dozenten:
 - Uwe Schnell
 - Benedetto Risio
 - Oliver Thomas Stein

10. Zuordnung zum Curriculum in diesem Studiengang:
 M.Sc. WASTE, PO 2015
 → Elective Modules -->Elective Modules 6 CP -->Elective Modules 6 CP (in english language)
 →
 M.Sc. WASTE, PO 2015
 → Specialized Area -->Air Quality Control -->Elective Modules 6 CP

11. Empfohlene Voraussetzungen:
 Ingenieurwissenschaftliche Grundlagen, fundierte Grundlagen in Mathematik, Physik und Informatik.
 Fundamentals of engineering sciences and profound knowledge of mathematics, physics, and information technology.

12. Lernziele:
 Die Studierenden des Moduls haben die Prinzipien und Möglichkeiten der Modellierung und Simulation von Feuerungsanlagen sowie insbesondere der Turbulenzmodellierung verstanden. Sie können beurteilen für welchen Verwendungszweck, welche Simulationsmethode am besten geeignet ist. Sie können erste einfache Anwendungen der Verbrennungs- und Feuerungssimulation realisieren und verfügen über die Basis zur vertieften Anwendung der Methoden, z.B. in einer studentischen Arbeit.

 Students will learn the principles and the possibilities of modelling and simulation of technical combustion systems. They will study which models and which simulation methods are suitable for different applications. They will be able to perform simple combustion simulations, and based on this knowledge they will have the prerequisites for applying these fundamentals, e.g. in the frame of a student's project.

13. Inhalt:
 I: Verbrennung und Feuerungen II (Schnell):
 • Strömung, Strahlungswärmestaustausch, Brennstoffabbrand und Schadstoffentstehung in Flammen und Feuerräumen: Grundlagen, Berechnung und Modellierung.

 II: Simulations- und Optimierungsmethoden für die Feuerungstechnik (Risio):
 • Einsatzfelder für technische Flammen in der Energie- und Verfahrenstechnik, Techniken zur Abbildung industrieller Feuerungssysteme, Aufbau und Funktion moderner Höchstleistungsrechner, Algorithmen und Programmiertechnik für die Beschreibung von technischen Flammen auf Höchstleistungsrechnern, Besuch des Virtual-Reality (VR)-Labors des HLRS und Demonstration der VR-Visualisierung für industrielle Feuerungen, Methoden zur
Bestimmung der Verlässlichkeit feuerungstechnischer Vorhersagen (Validierung) an Praxis-Beispielen, Optimierung in der Feuerungstechnik: Gradientenverfahren, Evolutionäre Verfahren und Genetische Algorithmen

III: Grundlagen technischer Verbrennungsvorgänge III (Stein):
- Lösung nicht-linearer Gleichungssysteme
- Verfahren zur Zeitdiskretisierung
- Homogene Reaktoren
- Eindimensionale Reaktoren/Flammen

I: Combustion and Firing Systems II (Schnell):
Fundamentals of model descriptions for turbulent reacting fluid flow, radiative heat transfer, combustion of fuels, and pollutant formation in flames and furnaces.

II: Simulation and Optimization Methods for Combustion Systems (Risio):
Applications of technical flames in energy technology and process engineering, techniques for "mapping" of industrial combustion systems on computers, design and operation of state-of-the art super computers at HLRS University of Stuttgart, algorithms and programming paradigms for modelling technical flames on super computers, visit of the Virtual Reality (VR) laboratory at HLRS, demonstration of VR visualization of industrial flames, methods for determining the reliability of predictions ("validation") using exemplary technical flames, and optimization methods (gradient methods, evolutionary methods and genetic algorithms).

III: Fundamentals of Technical Combustion Processes III (Stein):
Solution of non-linear equation systems
Methods for temporal discretization
Homogeneous reactors
One-dimensional reactors/flames

14. Literatur:
- Vorlesungsmanuskript „Verbrennung & Feuerungen II“
- Vorlesungsmanuskript „Simulations- und Optimierungsmethoden für die Feuerungstechnik“
- Vorlesungsfolien „Grundlagen technischer Verbrennungsvorgänge III“

15. Lehrveranstaltungen und -formen:
- 159701 Vorlesung Verbrennung und Feuerungen II
- 159702 Vorlesung Simulations- und Optimierungsmethoden für die Feuerungstechnik
- 159703 Vorlesung Grundlagen technischer Verbrennungsvorgänge III

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 62 h
Selbststudium: 118 h
Gesamt: 180 h
Time of attendance: 62 hrs
<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>15971</th>
<th>Modellierung und Simulation von Technischen Feuerungsanlagen (PL), schriftlich oder mündlich, Gewichtung: 1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
<td>Tafelanschrieb, PPT-Präsentationen, Skripte zu Vorlesungen und Praktikum, ILIAS, Computeranwendungen</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Modul: 59610 Primary Environmental Technologies and Emissions Reduction in Industrial Processes

2. Modulkürzel: 042500055
5. Moduldauer: 1 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 3.5
7. Sprache: Englisch

9. Dozenten:
 • Herbert Kohler
 • Günter Baumbach

10. Zuordnung zum Curriculum in diesem Studiengang:
 M.Sc. WASTE, PO 2015
 → Elective Modules --> Elective Modules 6 CP --> Elective Modules 6 CP (in english language)
 →
 M.Sc. WASTE, PO 2015
 → Specialized Area --> Air Quality Control --> Elective Modules 6 CP

11. Empfohlene Voraussetzungen:
 Recommended: Modules: “Basics of Air Quality Control” or “Luftreinhaltung I”, “Firing Systems and Flue Gas Cleaning”.

12. Lernziele:
 The students have deep knowledge in primary environmental technologies and possibilities of emissions reduction in industrial processes. They learnt during excursions the practical dimensions of environmental aspects in industry plants. They have got the competence in independent solving of emissions reduction problems.

13. Inhalt:
 I Lecture; Prof. Kohler: Primary environmental technologies in industrial processes:
 Definition of primary technologies and end of pipe applications; total energy and material balance; advantages and risks of both solutions; primary technologies in product and production; examples and study results; consequences for product lifetime and quality; hierarchy regarding environmental technologies.

 II Project Work; Prof. Baumbach: Emissions reduction at selected industrial processes:
 II.1 Introducing lecture:
 Discussion of the general subject and procedure of the project work

 II.2 Office hours:
 Individual discussion of the subject in office hours (2 - 3 visits)

 II.3 Project work with presentations
 Working out of possibilities of emissions reduction measures for a special case of industrial processes:
 Description of the selected industrial processDescription of the emissions sources and pollutant formation within this processPossibilities of emissions reduction for this specific processPresentation of the work in a seminar

 II.4 Excursion to an industrial plant to illustrate the subjects

Examples: Cement factory, steel factory, mineral oil refinery, pulp and paper production, chipboard factory, lacquering plant

14. Literatur:

Prof. Kohler:
- Lecture script: Primary Environmental Technologies in Industrial Processes, Part I and Part II
- Actual to the subject from internet (e.g. BAT (Best Available Technics), UBA, LUBW)

Prof. Baumbach:
- G. Baumbach, Lehrbuch „Luftreinhaltung“, Springer Verlag or
- G. Baumbach, Text book “Air Quality Control“, Springer Verlag
- VDI-Handbuch Reinhaltung der Luft mit den entsprechenden VDI-Richtlinien, available via „Perinorm“ of the Universities Librar
- Actual to the subject from internet, e.g. BAT (Best Available Techniques, Sevilla Commission)
- Umweltbundesamt via UBA homepage

15. Lehrveranstaltungen und -formen:

• 596101 Vorlesung Primary environmental technologies in industrial processes
• 596102 Project Emissions reduction at selected industrial processes

16. Abschätzung Arbeitsaufwand:

I Primary environmental technologies in industrial processes, lecture:
Presence time: 28 hSelf study time: 61 hExam: 1 h

II Emissions reduction at selected industrial processes, Project work
Presence time (Introducing lecture, office hours, Seminar, Excursion): 18 hSelf studyresp. Group work (project work):72 h
In total: 180 h

17. Prüfungsnummer/n und -name:

59611 Primary Environmental Technologies and Emissions Reduction in Industrial Processes (LBP), schriftlich und mündlich, Gewichtung: 1.0, Primary environmental technologies in industrial processes: written 60 minutes; weight: 0.5; Emissions reduction at selected industrial processes:• Seminar presentation of the project work: 8 minutes; weight: 0.25• Report of the project work in Emissions reduction; weight: 0.25 The participation in 70 % (max. 7) of all presentations in the relevant semester is compulsory;The participation in one excursion offered for this module is compulsory

18. Grundlage für ... :

19. Medienform:

PowerPoint lecture, Oral advices in office hours, PowerPoint presentation of the project works, Written report, ILIAS

20. Angeboten von:

Institut für Feuerungs- und Kraftwerkstechnik
213 Elective Modules or Industrial Internship (6 CP)

Zugeordnete Module:

- 2131 Elective Modules 3 CP
- 2132 Practical Work
- 67070 Industrial Internship
2131 Elective Modules 3 CP

<table>
<thead>
<tr>
<th>Zugeordnete Module</th>
<th>21311 Elective Modules (in english language)</th>
<th>21312 Elective Modules (in german language)</th>
</tr>
</thead>
</table>
Modul: 21311 Elective Modules (in english language)

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>-</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>0.0 LP</td>
<td>6. Turnus:</td>
<td>jedes 2. Semester, WiSe</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>0.0</td>
<td>7. Sprache:</td>
<td>-</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Zuordnung zum Curriculum in diesem Studiengang:</td>
<td>M.Sc. WASTE, PO 2015 → Air Quality Control --> Elective Modules or Industrial Internship (6 CP) --> Elective Modules 3 CP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Literatur:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Modul: 39110 Air Quality Management

2. Modulkürzel: 041210011 5. Moduldauer: 1 Semester
4. SWS: 2.0 7. Sprache: Englisch

8. Modulverantwortlicher: Apl. Prof. Rainer Friedrich
9. Dozenten: Rainer Friedrich

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. WASTE, PO 2015
→ Elective Modules -->Elective Modules 3 CP -->Elective Modules 3 CP (in english language)
→
M.Sc. WASTE, PO 2015
→ Elective Modules or Industrial Internship (6 CP) -->Elective Modules 3 CP -->Elective Modules (in english language)

11. Empfohlene Voraussetzungen:

12. Lernziele:
Students can generate emission inventories and emission scenarios, operate atmospheric models, estimate health and environmental impacts and exceedances of thresholds, establish clean air plans and carry out cost-effectiveness and cost-benefit analyses to identify efficient air pollution control strategies.

13. Inhalt:
Sources of air pollutants and greenhouse gases, generation of emission inventories, scenario development, atmospheric (chemistry-transport) processes and models, indoor pollution, exposure modelling, impacts of air pollutants, national and international regulations, instruments and techniques for air pollution control, clean air plans, integrated assessment, cost-effectiveness and cost benefit analyses.

14. Literatur:
Script
Online-tutorial

15. Lehrveranstaltungen und -formen: 391101 Vorlesung Air Quality Management

16. Abschätzung Arbeitsaufwand:
Time of attendance: 28 h
Private Study: 62 h
Total: 90 h

17. Prüfungsnummer/n und -name: 39111 Air Quality Management (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform: PowerPoint slides, blackboard

20. Angeboten von: Institut für Energiewirtschaft und Rationelle Energieanwendung
Modul: 39660 Biological Waste Air Purification

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>021221201</th>
<th>5. Moduldauer:</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
<td>7. Sprache:</td>
</tr>
</tbody>
</table>

| 8. Modulverantwortlicher: | Univ.-Prof. Karl Heinrich Engesser |
| 9. Dozenten: | Karl Heinrich Engesser, Daniel Dobslaw |

10. Zuordnung zum Curriculum in diesem Studiengang:

- M.Sc. WASTE, PO 2015
 - Elective Modules --> Elective Modules 3 CP --> Elective Modules 3 CP (in english language)
 - M.Sc. WASTE, PO 2015
 - Elective Modules or Industrial Internship (6 CP) --> Elective Modules 3 CP --> Elective Modules (in english language)

11. Empfohlene Voraussetzungen:

Basics of biology, chemistry and air quality control

Basics of thermodynamics, kinetics and mathematics

Formally: none

12. Lernziele:

- The students know about actual legislation in USA, Canada, European Union, Australia as well as Germany related to emissions, ambient air quality as well as the legislative process of building up biological waste air cleaning plants.

- Basic knowledge about non-biological techniques is delivered.

- The students get knowledge about chemical and biological basics to estimate biodegradability of different pollutants and pollutant classes and mixtures of themselves.

- The functions of different kinds of biological air treatment techniques and relevant process parameters are presented.

- Thus students are able to select the appropriate treatment system according to the given frame conditions.

- Sum up, they have the competence for the first calculation and design of a biological waste air treatment system.

13. Inhalt:

- Air related legislation in Germany, EU, Australia, Canada and USA
- Types of waste air treatment
- Types of bioreactors systems for biological waste air purification
- Biodegradability of typical waste air compounds
- Basic processes in biofiltration
- Operating conditions and operating costs
- Definitions and terminology for examination in efficiency
- Use of filter materials Examples for typical problems and for extreme use of biological waste air treatment.
- Analytical methods for air and odorimetric analyses.

An additional exercise delves into the contents of the lecture, especially as a preparation to examination.
14. Literatur:
- Script for lecture (addition to slides)
- Powerpoint slides for lecture
- Board notices
- Internet

15. Lehrveranstaltungen und -formen:
- 396601 Lecture Biological Waste Air Purification
- 396602 Excursion to a nearby biological waste air purification facility

16. Abschätzung Arbeitsaufwand:

17. Prüfungsnummer/n und -name:
- 39661 Biological Waste Air Purification (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 36550 Chemistry of the Atmosphere

2. Modulkürzel: 030701929
3. Leistungspunkte: 3.0 LP
4. SWS: 2.5
5. Moduldauer: 1 Semester
7. Sprache: Englisch
8. Modulverantwortlicher: Univ.-Prof. Cosima Stubenrauch
9. Dozenten:
 • Cosima Stubenrauch
 • Ulrich Vogt
10. Zuordnung zum Curriculum in diesem Studiengang:
 M.Sc. WASTE, PO 2015
 ➞ Elective Modules -->Elective Modules 3 CP -->Elective Modules 3 CP (in english language)
 ➞ M.Sc. WASTE, PO 2015
 ➞ Elective Modules or Industrial Internship (6 CP) -->Elective Modules 3 CP -->Elective Modules (in english language)
11. Empfohlene Voraussetzungen: Basics in Chemistry, Physics, and Air Quality Control
12. Lernziele: The graduates of the module understand the basic physical and chemical processes in the tropo- and the stratosphere. The influence of air pollutants in the ambient air and on a global scale can be explained, which, in turn, allows classifying and assessing the air quality in a defined area. This is the basis for the understanding and justification of air pollution abatement measures.
13. Inhalt:
 I: Chemistry of the Atmosphere (Stubenrauch)
 • Structure of the atmosphere
 • Radiation balance of the Earth
 • Global balances of trace gases
 • OH radical
 • Chemical degradation mechanisms
 • Stratospheric chemistry, ozone hole
 • Tropospheric chemistry
 • Greenhouse effect, climate
 II: Air Pollutants in Urban and Rural Areas and Meteorological Influences (Vogt)
 • Spatial distribution of air pollutants in urban and rural areas
 • Temporal variation and trends in air quality
 • Carbon compounds, sulfur dioxide, particulate matter, nitrogen oxides, tropospheric ozone
 • Meteorological influences
14. Literatur:
 • Introduction to Atmospheric Chemistry, D.J. Jacob, Princeton University Press, Princeton, 1999
 • Chemistry of the Natual Atmosphere, P. Warneck, Academic Press, San Diego, 2000
 • Air Quality Control, G. Baumbach, Springer Verlag, Berlin, 1996
 • News on Topics from Internet (e.g. UBA, LUBW)
15. Lehrveranstaltungen und -formen:
 • 365501 VorlesungChemie der Atmosphäre
16. Abschätzung Arbeitsaufwand: Attendance: 35 h (28 h Lectures & 7 h Exkursion)
Autonomous Student Learning: 55 h
Total: 90 h

17. Prüfungsnummer/n und -name: 36551 Chemistry of the Atmosphere (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0

19. Medienform: blackboard, PowerPoint presentations, demonstration of measurements

20. Angeboten von:
Modul: 39130 Engine Combustion and Emissions

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>070800101</th>
<th>5. Modulduauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Dietmar Schmidt
9. Dozenten: Dietmar Schmidt

10. Zuordnung zum Curriculum in diesem Studiengang:
- M.Sc. WASTE, PO 2015
 - Elective Modules --> Elective Modules 3 CP --> Elective Modules 3 CP (in english language)
- M.Sc. WASTE, PO 2015
 - Elective Modules or Industrial Internship (6 CP) --> Elective Modules 3 CP --> Elective Modules (in english language)

11. Empfohlene Voraussetzungen:

12. Lernziele:
The students know the physical-chemistry processes of combustion in Otto- and Diesel engines (e.g. kinetics, fuels, turbulence-chemistry interactions) and newer strategies (e.g. HCCI). Pollutant formation path ways and reduction techniques of pollutant formation, exhaust gas aftertreatment in engines. The students are able to transport new ideas or modifications onto engine behaviour, like e.g. power, efficiency, pollutant formation, etc.

13. Inhalt:
- Fundamentals of combustion and thermodynamics related to engine combustion
- Fuels
- Combustion of spark ignited engines (Otto-engines): combustion, ignition, flame propagation, turbulence effects, knock
- Combustion in Diesel-engines: combustion, turbulence effects, auto-ignition, spray combustion
- Combustion in HCCI-engines, low-temperature kinetics
- Exhaust gases in Otto-engines: emissions and aftertreatment
- Exhaust gases in Diesel-engines: emissions and aftertreatment

14. Literatur:
- Turns, An Introduction to Combustion, Mc Graw Hill
- Manuscript

15. Lehrveranstaltungen und -formen: 391301 Lecture Engine Combustion and Emissions

16. Abschätzung Arbeitsaufwand:
- Time of attendance: 21 h
- private study: 69 h
- overall: 90 h

17. Prüfungsnummer/n und -name: 39131 Engine Combustion and Emissions (BSL), schriftlich, eventuell mündlich, 60 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform: Blackboard, ppt-presentation

20. Angeboten von: Institut für Verbrennungsmotoren und Kraftfahrwesen
Modul: 41010 Modellierung von Zweiphasenströmungen

2. Modulkürzel: 041600614
3. Leistungspunkte: 3.0 LP
4. SWS: 2.0
5. Moduldauer: 1 Semester
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Eckart Laurien
9. Dozenten: Eckart Laurien
10. Zuordnung zum Curriculum in diesem Studiengang:
 M.Sc. WASTE, PO 2015
 → Elective Modules -->Elective Modules 3 CP -->Elective Modules 3 CP (in english language)
 →
 M.Sc. WASTE, PO 2015
 → Elective Modules or Industrial Internship (6 CP) -->Elective Modules 3 CP -->Elective Modules (in english language)

11. Empfohlene Voraussetzungen:
 Ingenieurwissenschaftliche Grundlagen, fundierte Grundlagen aus Modul „Numerische Strömungs-simulation“

12. Lernziele:
 Die Studierenden besitzen benötigte Ansätze und Methoden der mehrdimensionalen, numerischen Modellierung von Zweiphasenströmungen mit Berücksichtigung von Verdampfungs- und Kondensationsvorgängen.

13. Inhalt:
 1 Introduction
 1.1 Characterization of Two-Phase Flows
 1.1.1 Two-Phase Flows, Examples
 1.1.2 Classification of Two-Phase Flows
 1.1.3 Stokes Number
 1.1.4 Turbulence in Two-Phase Flows
 1.2 Euler-Lagrange Model
 1.2.1 Model Equations
 1.2.2 Computation of Particle-Laden Flow
 1.2.3 Numerical Integration of Particle Trajectories
 1.2.4 Lagrangian Turbulence Modeling
 2 Adiabatic Two-Phase Flows (Gas-Liquid)
 2.1 Bubble Plume
 2.1.1 Mechanisms of Momentum Transfer
 2.1.2 Fundamental Equations
 2.1.3 Numerical Simulation of a Bubble Plume
 2.2 Bubbly Pipe Flow
 2.2.1 Experimental Observations
 2.2.2 Numerical Simulation of Bubbly Pipe Flows
 2.2.3 Bubble Dynamics
 2.2.4 Derivation of the Two-Fluid Equations
 2.2.5 Single-Phase Turbulence Modelling Overview
 2.2.6 Prandtls Mixing-Length Model
 2.2.7 The K-epsilon Turbulence Model
 2.2.8 Two-Phase Turbulence Models
 2.2.9 Extended Continuum Models
 2.3 Stratified Flow
 2.3.1 Countercurrent Flow Experiments
 2.3.2 Forces at a Wavy Surface
 2.3.3 Two-Phase Turbulence Transport Models
 2.4 Direct Numerical Simulation
2.4.1 Volume-of-Fluid Method

2.4.2 Example: Determination of the Virtual Mass Coefficient

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>410101 Vorlesung Modellierung von Zweiphasenströmungen</td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Präsenzzeit 22,5 h + Nachbearbeitungszeit 67 h + Prüfungszeit 0,5 h = 90 h</td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>41011 Modellierung von Zweiphasenströmungen (BSL), mündliche Prüfung, 30 Min., Gewichtung: 1.0</td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>ppt-Präsentation, alle Folien online verfügbar unter http://www.ike.uni-stuttgart.de/lehre/M2P-index.html</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Institut für Kernenergetik und Energiesysteme</td>
</tr>
</tbody>
</table>
Modul: 21312 Elective Modules (in german language)

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>-</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>0.0 LP</td>
<td>6. Turnus:</td>
<td>jedes 2. Semester, WiSe</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>0.0</td>
<td>7. Sprache:</td>
<td>-</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher:

9. Dozenter:

 → Air Quality Control -->Elective Modules or Industrial Internship (6 CP) -->Elective Modules 3 CP

11. Empfohlene Voraussetzungen:

12. Lernziele:

13. Inhalt:

14. Literatur:

15. Lehrveranstaltungen und -formen:

16. Abschätzung Arbeitsaufwand:

17. Prüfungsnummer/n und -name:

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 67040 Kraftwerksanlagen I

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>-</th>
<th>5. Modulduer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Apl. Prof. Uwe Schnell

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>M.Sc. WASTE, PO 2015</th>
</tr>
</thead>
<tbody>
<tr>
<td>→ Elective Modules -->Elective Modules 3 CP -->Elective Modules 3 CP (in german language)</td>
</tr>
<tr>
<td>M.Sc. WASTE, PO 2015</td>
</tr>
<tr>
<td>→ Elective Modules or Industrial Internship (6 CP) -->Elective Modules 3 CP -->Elective Modules (in german language)</td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen: Ingenieurwissenschaftliche und naturwissenschaftliche Grundlagen, Grundlagen in Maschinenbau, Verfahrenstechnik, Thermodynamik

14. Literatur: Vorlesungsmanuskript „Kraftwerksanlagen I“

15. Lehrveranstaltungen und -formen: 670401 Vorlesung Kraftwerksanlagen I

16. Abschätzung Arbeitsaufwand:

| Präsenzzeit: 28h |
| Selbststudiumszeit / Nacharbeitszeit: 62 h |
| Gesamt: 90 h |

17. Prüfungsnummer/n und -name:

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 30660 Luftreinhaltung am Arbeitsplatz

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>041310004</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>5. Modulduer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Armin Ruppert</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Michael Schmidt</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>Im Modul Luftreinhaltung am Arbeitsplatz haben die Studenten die Systematik der Lösungen zur Luftreinhaltung am Arbeitsplatz sowie dazu erforderlichen Anlagen kennen gelernt und die zugehörigen ingenieurwissenschaftlichen Grundlagen erworben. Erworbene Kompetenzen: Die Studenten • sind mit den Methoden zur Luftreinhaltung am Arbeitsplatz vertraut, • können für die jeweiligen Anforderungen die technischen Lösungen konzipieren, • können die notwendigen Anlagen auslegen</td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>• Arten, Ausbreitung und Grenzwerte von Luftfremdstoffen • Bewertung der Schadstofffassung • Luftströmung an Erfassungseinrichtungen • Luftführung, Luftdurchlässe • Auslegung nach Wärme- und Stofflasten • Bewertung der Luftführung • Abnahme von Leitungs messungen</td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>306601 Vorlesung Luftreinhaltung am Arbeitsplatz</td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>30661 Luftreinhaltung am Arbeitsplatz (BSL), mündliche Prüfung, 30 Min., Gewichtung: 1.0</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Vorlesungsskript</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td></td>
</tr>
</tbody>
</table>
Modul: 38720 Meteorologie

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>042500051</th>
<th>5. Modulduauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:
- M.Sc. WASTE, PO 2015
 - Elective Modules --> Elective Modules 3 CP --> Elective Modules 3 CP (in german language)

 - M.Sc. WASTE, PO 2015
 - Elective Modules or Industrial Internship (6 CP) --> Elective Modules 3 CP --> Elective Modules (in german language)

11. Empfohlene Voraussetzungen:
Keine

12. Lernziele:
Die Studenten haben die Grundkenntnisse der Meteorologie und der atmosphärischen Prozesse erworben, die zum Verständnis des Verhaltens von Luftverunreinigungen und der Niederschläge in der Atmosphäre, die auch auf andere Bereiche der Umwelt einwirken (Wasser, Vegetation) erforderlich sind.

13. Inhalt:
In der Vorlesung „Meteorologie“ werden die folgenden Themen behandelt:
- Strahlung und Strahlungsbilanz,
- Meteorologische Elemente (Luftdichte, Luftdruck, Lufttemperatur, Luftfeuchtigkeit, Wind) und ihre Messung,
- allgemeine Gesetze,
- Aufbau der Erdatmosphäre,
- klein- und großräumige Zirkulationssysteme in der Atmosphäre,
- Wetterkarte und Wettervorschlags,
- Ausbreitung von Schadstoffen in der Atmosphäre,
- Stadtklimatologie,
- Globale Klimaveränderungen und ihre Auswirkungen, „Ozonloch“.

14. Literatur:
- Vorlesungsmanuskript

15. Lehrveranstaltungen und -formen:
- 387201 Vorlesung Meteorologie

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 28 h
- Selbstdstudiumszeit / Nacharbeitszeit: 62 h
- Gesamt: 90 h
<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>38721 Meteorologie (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Tafelanschrieb, PPT-Präsentationen, ILIAS</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Institut für Feuerungs- und Kraftwerkstechnik</td>
</tr>
</tbody>
</table>
Modul: 36560 Raumklima

2. Modulkürzel: 020800061 5. Modulduer: 1 Semester
4. SWS: 2.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Hon.-Prof. Schew-Ram Mehra
9. Dozenten: Marcus Hermes

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. WASTE, PO 2015
→ Elective Modules -->Elective Modules 3 CP -->Elective Modules 3
CP (in german language)
→ M.Sc. WASTE, PO 2015
→ Elective Modules or Industrial Internship (6 CP) -->Elective Modules
3 CP -->Elective Modules (in german language)

11. Empfohlene Voraussetzungen: keine
12. Lernziele: Studierende
• verstehen den Menschen als Mittelpunkt aller raumklimatischen
 Maßnahmen und können raumklimatisch behaglich entwerfen bzw.
 Behaglichkeit in Räumen herstellen
• beherrschen die Wechselwirkungen des Menschen mit dem Klima und
 umgekehrt insbesondere für den praktischen Einsatz
• haben ein vertieftes Verständnis bzgl. der Beurteilung der
 Innenluftqualität

13. Inhalt: Inhalt der Lehrveranstaltung Raumklima:
• Raumklima, Einführung und physiologische Grundlagen
• Thermische Behaglichkeit, Grundlagen und Behaglichkeitsdiagramme
• Wärmemangelgleichung, konvektiver und strahlungsbedingter Anteil,
 Zugluft
• Klimasummengrößen, Äquivalent- und Operativtemperatur
• Fanger, Klimabezugszahlsskala, PMV und PPD
• Thermische Behaglichkeitsmodelle, Alternativen zum Fanger-Modell
• Innenluftqualität, Einführung, Zusammensetzung Atmosphäre, CO2,
 Staub
• Flüchtige organische Verbindungen (VOC) und Radon
• Gerüche, Weber-Fechner-Gesetz
• Düfte, Zusammensetzung, Einsatzbereiche, Gefährdungspotential
• Fanger, Komfortgleichung zur Luftqualität, Einheiten Olf und Dezipol
• Natürliche Lüftung von Räumen

14. Literatur: Skript: Raumklima
• Bekanntmachung des Umweltbundesamtes: Gesundheitliche
 Bedeutung von Feinstaub in der Innenraumluft. Bundesgesundheitsbl-
• Etheridge, D.: Natural Ventilation of Buildings. Theory, Mesasurement
• Fanger P. O.: Thermal Comfort. Analysis and Applications in
 Environmental Engineering. Danish Technical Press, Copenhagen

15. Lehrveranstaltungen und -formen: 365601 Vorlesung Raumklima und Innenluftqualität

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: ca. 28 h
 Selbststudium: ca. 62 h
 Gesamt: ca. 90 h

17. Prüfungsnummer/n und -name: 36561 Raumklima (BSL), mündliche Prüfung, 20 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform: Tafelaufschrift, Powerpointpräsentation

20. Angeboten von: Lehrstuhl für Bauphysik

2132 Practical Work

Zugeordnete Module: 36540 Praktikum Luftreinhaltung
Modul: 36540 Praktikum Luftreinhaltung

2. Modulkürzel: 042500020
3. Leistungspunkte: 3.0 LP
4. SWS: 2.0
5. Moduldauer: 1 Semester
6. Turnus: jedes Semester
7. Sprache: Nach Ankündigung
9. Dozenten: • Ulrich Vogt
• Martin Reiser
• Michael Schmidt
10. Zuordnung zum Curriculum in diesem Studiengang:
 M.Sc. WASTE, PO 2015
 → Advanced Modules --› Elective Modules --› Practical Works
 → M.Sc. WASTE, PO 2015
 → Air Quality Control --› Elective Modules or Industrial Internship (6 CP) --› Practical Work

11. Empfohlene Voraussetzungen:
 Modul: Measurement of Air Pollutants

12. Lernziele:
 Praktische Vertiefung der in den Vorlesungen vermittelten Lehrinhalten.
 -/- Practical intensification of the taught contents of the lectures.

13. Inhalt:
 In diesem Modul sind die folgenden 5 Versuche am IFK, am ISWA und am IGE zu absolvieren. Es ist außerdem jeweils eine Ausarbeitung anzufertigen:
 1. Bestimmung von Schadgasen in der Außenluft (IFK)
 2. Bestimmung von Abgasemissionen aus Kleinfeuerungen (IFK)
 3. NOx-Minderung bei der Kohlenstaubverbrennung (IFK)
 4. Bestimmung von Gerüchen und Geruchsstoffen (ISWA)
 5. Freie Lüftung (IGE)

 Versuchsbeispiele: NOx-Minderung bei der Kohlenstaubverbrennung:
 • Möglichkeiten der NOx Minderung (Luft- und Brennstoffstufung)
 • Technische Daten der Versuchsanlage
 • Berechnung des Luftbedarfs bei ungestufter Verbrennung mit Lambda = 1,15
 • Berechnung Primär-/Sekundärluft und einzustellender Ausbrandluftmengen bei luftgestufter Verbrennung
 • Berechnung von Strömungsgeschwindigkeit und Verweilzeit im Reaktor
 • Auswertung: Korrektur der NOx-Emissionen auf 6 % im O2 im Abgas

 Freie Lüftung:
The following 5 experiments must be taken at the corresponding institutes; a written elaboration is also required:

1. Determination of air pollutants in the ambient air (IFK)
2. Determination of air pollutants in the flue gas of a wood firing (IFK)
3. Reduction of NOx in a pulverized coal furnace (IFK)
4. Odor and odor compounds determination (ISWA)
5. Natural ventilation (IGE)

Examples of experiments:
NOx reduction in a pulverized coal combustion:

- Instruments to reduce NOx (air and fuel staging)
- Technical data of the test plant
- Calculation of the air required during an unstaged combustion with lambda = 1.15
- Calculation of the primary/secondary air and burnout air amounts during an air-staged combustion
- Calculation of the flow velocity and residence time within the reactor
- Evaluation: Correction of NOx emissions to 6 % O2 in the exhaust gas

Natural ventilation:
Ventilation technologies provide air-conditioning and ventilation options for indoor use. The indoor air flow must be adjusted as to meet the thermal requirements of the surroundings and/or limit values. This makes it inevitable to know the influence of the incoming air flow and the type of air-flow routing on the indoor air flow. The conception and planning of indoor air installations is based on the simulation of indoor air flows in a laboratory. This helps to determine the best possible arrangement and dimensioning of air passages within specified conditions. Different air-flow routing options are discussed.

14. Literatur: Praktikumsunterlagen (online verfügbar)

15. Lehrveranstaltungen und -formen:

- 365401 Spezialisierungsfachversuch 1
- 365402 Spezialisierungsfachversuch 2
- 365403 Spezialisierungsfachversuch 3
- 365404 Spezialisierungsfachversuch 4
- 365405 Spezialisierungsfachversuch 5

16. Abschätzung Arbeitsaufwand:

Time of attendance:
24 hours (5 times 4 hours each)
self-study: 70 hours
total: 90 hours

17. Prüfungsnummer/n und -name:
36541 Praktikum Luftreinhaltung (USL), Sonstiges, Gewichtung: 1.0, schriftliche Ausarbeitung

18. Grundlage für ... :

19. Medienform: ILLIAS

20. Angeboten von: Institut für Feuerungs- und Kraftwerkstechnik
Modul: 67070 Industrial Internship

2. Modulkürzel: [pord.modulcode] 5. Moduldauer: 1 Semester
4. SWS: 0.0 7. Sprache: Englisch

8. Modulverantwortlicher: Univ.-Prof. Andreas Kronenburg

10. Zuordnung zum Curriculum in diesem Studiengang:
 M.Sc. WASTE, PO 2015
 → Specialized Area -->Air Quality Control -->Elective Modules or Industrial Internship (6 CP)
 →
 M.Sc. WASTE, PO 2015
 → Specialized Area -->Solid Waste -->Elective Modules or Industrial Internship (6 CP)
 →
 M.Sc. WASTE, PO 2015
 → Specialized Area -->Waste Water -->Elective Modules or Industrial Internship (6 CP)
 →

11. Empfohlene Voraussetzungen:

12. Lernziele:
 In the course of the study program, the Industrial Internship is supposed to complement the acquired theoretical knowledge with practical relevance. Interns are provided with the possibility to learn not only about e.g. the manufacturing sector but also to understand and participate in the sociological aspects of a company therefore being able to thoroughly understand their future role in a business of their choice.

13. Inhalt:
 Please refer to the Guidelines for Internships issued by the Internship Office for Mechanical Engineering

14. Literatur:

15. Lehrveranstaltungen und -formen:

16. Abschätzung Arbeitsaufwand: 180h

17. Prüfungsnummer/n und -name: 67071 Industrial Internship (USL), Sonstiges, Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
220 Solid Waste

Zugeordnete Module:

- 221 Core Modules
- 222 Elective Modules 6 CP
- 223 Elective Modules or Industrial Internship (6 CP)
221 Core Modules

Zugeordnete Module: 59620 Mechanical, Biological and Thermal Waste Treatment
Modul: 59620 Mechanical, Biological and Thermal Waste Treatment

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>0.0</td>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Günter Scheffknecht

9. Dozenten: • Klaus Fischer • Martin Reiser • Hans-Joachim Gehrmann

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. WASTE, PO 2015
→ Elective Modules --> Elective Modules 6 CP --> Elective Modules 6 CP (in english language)

M.Sc. WASTE, PO 2015
→ Specialized Area --> Solid Waste --> Core Modules

11. Empfohlene Voraussetzungen: Knowledge of chemical and mechanical engineering, combustion and waste economics

12. Lernziele:
I: Solid Waste Treatment, Emissions from Solid Waste Treatment Plants (Fischer / Reiser):

The students are acquainted with the functions, the effectiveness and the limits of municipality waste treatment procedures, can assess them from a technical and economical point of view, and are able to design them. The emphasis is set on mechanical processes for material separation, biowaste treatments, and residual waste treatments. The students acquire in particular methodical and technical skills in the aerobic and anaerobic biowaste treatments, with stress on process engineering and biochemistry aspects. The students thoroughly know about all kind of emissions and the typical sources at different types of waste treatment plants. They know the limit values of the typical gases that are given by law and the measurement methods to examine if they are met or not.

Thermal Waste Treatment (Gehrmann):

The students know about the different technologies for thermal waste treatment which are used in plants worldwide: The functions of the facilities of thermal treatment plan and the combination for an efficient planning are present. They are able to select the appropriate treatment system according to the given frame conditions. They have the competence for the first calculation and design of a thermal treatment plant including the decision regarding firing system and flue gas cleaning.

13. Inhalt:
I: Solid Waste Treatment (Fischer):

Introduction to grinding and waste sorting processes, reaction engineering. Aerobic and anaerobic treatment of bio and green wastes. Mechanical and biological treatment of residual waste (MBT)

II: Emissions from Solid Waste Treatment Plants (Reiser):

The lecture gives detailed description of different kind of emissions and emission sources in the field of solid waste treatment such as
Landfill sites, Composting and Fermentation Plants, Combustion and Mechanical-biological treatment of Municipal solid waste. Different measurement methods are described. The legislation concerning emissions is discussed.

II: Thermal Waste Treatment (Gehrmann):

In addition to an overview about the waste treatment possibilities, the students get a detailed insight to the different kinds of thermal waste treatment. The legal aspects for thermal treatment plants regarding operation of the plants and emission limits are part of the lecture as well as the basic combustion processes and calculations.

Lecture Thermal Waste Treatment:

Legal and statistical aspects of thermal waste treatment Development and state of the art of the different technologies for thermal waste treatment Firing system for thermal waste treatment Technologies for flue gas treatment and observation of emission limits Flue gas cleaning systems Calculations of waste combustion Calculations for thermal waste treatment Calculations for design of a plant

III: Excursion:

Thermal Waste Treatment Plant, Composting plant, fermentation plant

14. Literatur:

Lecture Script „Thermal Waste Treatment“
Lecture Script “Solid Waste Treatment”
Lecture Script “Emissions from Solid Waste Treatment Plants”

15. Lehrveranstaltungen und -formen:

• 596201 Vorlesung Solid Waste Treatment
• 596202 Vorlesung Emissions from Solid Waste Treatment Plants
• 596203 Vorlesung Thermal Waste Treatment
• 596204 Exkursion Biological & Thermal Waste Treatment Plant

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 80h
Selbststudiumszeit/ Nachbearbeitungszeit: 100h
Gesamt: 180h

17. Prüfungsnummer/n und -name:

59621 Mechanical, Biological and Thermal Waste Treatment (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für … :

19. Medienform:

20. Angeboten von:
222 Elective Modules 6 CP

Zugeordnete Module:
- 2221 Elective Modules (in english language)
- 2222 Elective Modules (in german language)
2221 Elective Modules (in english language)

<table>
<thead>
<tr>
<th>Zugeordnete Module</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>15380</td>
<td>International Waste Management</td>
</tr>
<tr>
<td>19320</td>
<td>Design of Solid Waste Treatment Plants</td>
</tr>
<tr>
<td>19350</td>
<td>Industrial Waste and Contaminated Sites</td>
</tr>
</tbody>
</table>
Modul: 19320 Design of Solid Waste Treatment Plants

2. Modulkürzel: 021220015
5. Modulduauer: 1 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0
7. Sprache: Englisch

8. Modulverantwortlicher: Univ.-Prof. Martin Kranert

9. Dozenten: • Martin Kranert
 • Helmut Seifert

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. WASTE, PO 2015
 → Elective Modules -->Elective Modules 6 CP -->Elective Modules 6 CP (in english language)
 →
M.Sc. WASTE, PO 2015
 → Solid Waste -->Elective Modules 6 CP -->Elective Modules (in english language)
 →

11. Empfohlene Voraussetzungen:

12. Lernziele:
For the design of biological waste treatment plants the students know the basics of process design and the relevant steps, which according to HOAI must be followed in the design of waste treatment plants.

In the planning of a composting plant they are able to identify the relevant Parameters, they know the techniques of preparation and composting processes and can design and verify the process steps, including aggregates, composting systems, mass balances, air and water emissions, as well as preliminary cost estimation.

They can present the waste treatment plant graphically in layout plans, sketches and cross sections and provide an explanatory report.

For the design of thermal waste treatment plants the students are acquainted with the different technologies of thermal waste treatment which are used in plants worldwide. They know the operating mode of the single elements of an incineration plant and they can effectively combine them in the planning procedure. The students have the knowledge to preliminary design and dimension a thermal waste treatment plant, with emphasis on the firing systems and the flue gas cleaning

13. Inhalt:

Design of Biological Waste Treatment Plants:

Design process
Design process according to HOAI - design of biological treatment plants - basic parameters and frame conditions - principle configuration of a composting plant - technical composting systems - process aggregates - dimensioning of aggregates and plants - mass balance

Technical drawings
floor plan, process flow, aggregate plan

Emission from Biological Treatment Plants
Source of emissions - emission concentration and freight - calculation of emission freight - reduction of emissions - waste air and water management

Cost Calculation
DIN 276, Investment costs - operation costs - guidelines for cost estimation

Design of Thermal Waste Treatment Plants:
- firing system for thermal waste treatment
- flue gas cleaning systems
- calculations for thermal waste treatment
- calculations for design of a plant

14. **Literatur:**
- Lecture Manuscripts
- E-Learning-Program "Virtual Composting Plant"
- Haug: Compost Engineering

15. **Lehrveranstaltungen und -formen:**
- 193201 Lecture Design of Biological Waste Treatment Plants
- 193202 Exercise Design of Biological Waste Treatment Plants
- 193203 Lecture Design of Thermal Waste Treatment Plants

16. **Abschätzung Arbeitsaufwand:**

17. **Prüfungsnummer/n und -name:**
- 193211 Design of Biological Waste Treatment Plants (PL), schriftlich oder mündlich, 120 Min., Gewichtung: 1.0
- 193222 Design of Thermal Waste Treatment Plants (PL), schriftliche Prüfung, 30 Min., Gewichtung: 1.0

18. **Grundlage für ... :**

19. **Medienform:**

20. **Angeboten von:**
Modul: 19350 Industrial Waste and Contaminated Sites

2. Modulkürzel: Waste

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0

5. Modulaußen: 1 Semester

6. Turnus: jedes 2. Semester, SoSe

7. Sprache: Englisch

8. Modulverantwortlicher: Matthias Rapf

9. Dozenten: Matthias Rapf

10. Zuordnung zum Curriculum in diesem Studiengang:

M.Sc. WASTE, PO 2015

→ Elective Modules --> Elective Modules 6 CP --> Elective Modules 6 CP (in english language)

→

M.Sc. WASTE, PO 2015

→ Solid Waste --> Elective Modules 6 CP --> Elective Modules (in english language)

→

11. Empfohlene Voraussetzungen:

Chemistry and Biology for Environmental Engineers

12. Lernziele:

The students will acquire knowledge in collecting, recycling, treatment and disposal of industrial hazardous waste, as well as about legal means to achieve a proper and efficient industrial waste management. They will know the methods of hazardous waste handling and processing as well as the economic conditions. Furthermore they have the scientific competence to find out and to assess the harmfulness of a waste. Based on this knowledge, the students can create multi-stage industrial waste management concepts, name their advantages and disadvantages and show alternatives.

Based on the technical knowledge about formerly used disposal techniques, the students understand the present brownfield problems and the today’s waste legislation. Therefore the students are able to develop environmental precautionary sanitation concepts and appropriate problem solving.

The students will increase their knowledge about waste-innate chemical processes that are often different to other materials, e.g. pure substances, natural resources or products. The knowledge will help them to judge the meaning of chemical waste analyses, and to evaluate wastes and waste treatment techniques from a chemical point of view.

Knowledge will be obtained about the origins, treatment and utilisation of the mass-wise most significant industrial waste, wastewater sludges, including sewage sludge; awareness about the problems these sludges pose to human health and the environment, if not appropriately treated or disposed of; influence of politics and financial aspects on technical decisions.

13. Inhalt:

Chemical aspects of selected waste-related topics - sampling and analysis, special thermal waste treatment, self ignition, advanced
oxidation processes, phosphorus recovery. Safety-related chemical issues.

Origin and treatment of wastewater sludges - wastewater treatment; dewatering, drying and incineration of sludges; phosphorus recovery.

<table>
<thead>
<tr>
<th>14. Literatur:</th>
<th>Skript; to be downloaded via ILIAS</th>
</tr>
</thead>
</table>
| 15. Lehrveranstaltungen und -formen: | 193501 Lecture Hazardous Waste and Contaminated Sites
193502 Lecture Chemistry of Waste
193503 Lecture Treatment of Sludge
193504 Excursion |
| 16. Abschätzung Arbeitsaufwand: | Time of attendance: 52 h
Private Study: 128 h |
| 17. Prüfungsnummer/n und -name: | 19351 Industrial Waste and Contaminated Sites (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0 |
| 18. Grundlage für ... : | |
| 19. Medienform: | Power point presentation, blackboard, videos |
| 20. Angeboten von: | Siedlungswasserbau und Wassergütwirtschaft |
Modul: 15380 International Waste Management

2. Modulkürzel: 021220006 5. Moduldaurer: 1 Semester
4. SWS: 5.0 7. Sprache: Englisch

8. Modulverantwortlicher: Detlef Clauß
9. Dozenten: • Martin Kranert • Detlef Clauß

 ➔ Elective Modules -->Elective Modules 6 CP -->Elective Modules 6 CP (in english language)
 ➔ M.Sc. WASTE, PO 2015
 ➔ Solid Waste -->Elective Modules 6 CP -->Elective Modules (in english language)

12. Lernziele: The students have detailed knowledge about the waste management problems in low and middle income countries. They are able to develop appropriate and sustainable solutions to optimize the waste management in these countries. They can evaluate existing waste management concepts in low-income countries and to enhance them to a resource oriented integrated waste management system. In the sector of municipal solid waste collection, the students acquire the competence to assess the different possible collection systems, within the logistic, economic, social and infrastructural frame. These includes the integration of the informal waste sector. Landfilling of waste is in low and middle income countries the main method to dispose of municipal and industrial waste. These normally uncontrolled landfill sites have an enormous impact on the environment. The students receive the theoretical and technical skills to minimize these emissions by appropriate measures, e.g. leachate collection and treatment or landfill gas collection. Beyond the theoretical scientific knowledge about waste, the students are able to process and summarise waste related topics and to present them to an scientific auditory.

13. Inhalt: Waste Management in low and middle income countries:
Main focus on collection and transportation of waste:

• Waste generation
• Collection and transport
• Informal sector

Landfill

• Landfill emissions
• Landfill technology
• Landfill operation

Waste Management in Practice

• Special Topics related to low and middle income countries. Presented by external lecturer.
Seminar: International Waste Management

- Special Topics related to waste.

Exercise: Waste Management Concepts

- Waste Management Concept
- Group work: Development of an waste management concept for a municipality

14. Literatur:

Lesson Manuscripts

Secondary literature:

- G. Tchobanoglous et. al.: Handbook of solid waste management;

Internet:

- e.g. World bank - Urban Solid Waste Management

15. Lehrveranstaltungen und -formen:

- 153801 Lecture Waste Management in Low and Middle Income Countries
- 153802 Lecture Landfill
- 153803 Lecture Waste Management in Practice
- 153804 Lecture International Waste Management
- 153805 Exercise Waste Management Concepts

16. Abschätzung Arbeitsaufwand:

Waste Management in low and middle income countries, lecture
[Time of Attendance: 14 h; Self study: 21 h]
Landfill, lecture
[Time of Attendance: 14 h; Self study: 21 h]
Waste Management in Practice, lecture
[Time of Attendance: 14 h; Self study: 12 h]
International Waste Management, seminar
[Time of Attendance: 14 h; Self study: 21 h]
Waste Management Concepts, exercise
[Time of Attendance: 14 h; Self study: 35 h]

Total:
[Time of Attendance: 70 h; Self study: 110 h]

17. Prüfungsnummer/n und -name:

- 15381 International Waste Management (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0
- V Vorleistung (USL-V), schriftlich, eventuell mündlich

18. Grundlage für ... :

19. Medienform:

Multimedia Presentation

20. Angeboten von:

Air Quality, Solid Waste and Waste Water Process Engineering (WASTE)
2222 Elective Modules (in german language)

Zugeordnete Module: 16060 Umweltanalytik - Wasser und Boden
36500 Ressourcenmanagement
Modul: 36500 Ressourcenmanagement

2. Modulkürzel: 021220016
5. Modulduer: 1 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 5.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Gerold Hafner

9. Dozenten: • Gerold Hafner
• Claudia Maurer

 ➔ Elective Modules --> Elective Modules 6 CP --> Elective Modules 6 CP (in german language)
 ➔ M.Sc. WASTE, PO 2015
 ➔ Solid Waste --> Elective Modules 6 CP --> Elective Modules (in german language)

Bewirtschaftung relevanter Ressourcen im Rahmen der Abfallwirtschaft; Ressourcen- und Klimaschutz durch Substitution und Einsparung von Primärressourcen.

14. Literatur: Vorlesungsmanuskripte, Literaturlisten in den Skripten

15. Lehrveranstaltungen und -formen: • 365001 Vorlesung Stroffstromanalyse und Bilanzierung
• 365002 Übung Stoffstromanalyse und Bilanzierung
• 365003 Vorlesung Recycling
• 365004 Vorlesung Ressourcenwirtschaft unter Energie und Klimaspekten
• 365005 Übung Ressourcenwirtschaft unter Energie und Klimaspekten

16. Abschätzung Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Modulbeschreibung</th>
<th>Präsenzzeit</th>
<th>Selbststudium / Nacharbeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stoffstromanalyse und Bilanzierung, Vorlesung + Übung (2 SWh)</td>
<td>28 h</td>
<td>44 h</td>
</tr>
<tr>
<td>Ressourcenwirtschaft unter Energie und Klimaspekten, Vorlesung + Übung (2 SWh)</td>
<td>28 h</td>
<td>44 h</td>
</tr>
<tr>
<td>Recycling, Vorlesung (1 SWh)</td>
<td>14 h</td>
<td>22 h</td>
</tr>
</tbody>
</table>

Gesamt:
Präsenzzeit: 70 h; Selbststudium / Nacharbeit: 110h

17. Prüfungsnummer/n und -name: 36501 Ressourcenmanagement (PL), schriftlich, eventuell mündlich, Gewichtung: 1.0

18. Grundlage für ...:

19. Medienform: Tafel, Beamer, praktische Übung

20. Angeboten von: Institut für Siedlungswasserbau, Wassergüte- und Abfallwirtschaft
Modul: 16060 Umweltanalytik - Wasser und Boden

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>021230002</th>
<th>5. Modulduauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>3.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Bertram Kuch

9. Dozenten:
- Bertram Kuch
- Michael Koch
- Jörg Metzger

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. WASTE, PO 2015
→ Elective Modules -->Elective Modules 6 CP -->Elective Modules 6 CP (in german language)
→
M.Sc. WASTE, PO 2015
→ Solid Waste -->Elective Modules 6 CP -->Elective Modules (in german language)
→
M.Sc. WASTE, PO 2015
→ Waste Water -->Elective Modules 6 CP -->Elective Modules (in german language)
→

11. Empfohlene Voraussetzungen: keine

12. Lernziele:
- beherrschen die Theorie der wichtigsten instrumentell-analytischen (chromatographischen und spektroskopischen) Verfahren für die Umweltkompartimente Wasser und Boden.
- besitzen grundlegendes Wissen über die Vor-gehensweise und den Methoden zur Bestimmung von Umweltchemikalien und Schadstoffen in Wasser und Boden.
- haben grundlegende Kenntnisse über die Methoden der internen und externen analytischen Qualitätssicherung.
- sind in der Lage, chemisch-analytische Daten auszuwerten und zu bewerten.
- kennen die wichtigsten (genormten) Analysenmethoden für anorganische und organische Schadstoffe und Umweltchemikalien und sind in der Lage, diese zu beschreiben.

13. Inhalt:
Das Modul vermittelt theoretisches und praktisches Wissen auf dem Gebiet der Analytik von Wasser- und Bodeninhaltstoffen und -kontaminanten.

Die Vorlesung „Instrumentelle Analytik“ behandelt die Theorie und Praxis chromatographischer Trennverfahren (GC und HPLC) sowie wichtiger Detektionsmethoden (UV-VIS, Fluoreszenz, Infrarot, Massenspektrometrie).

In der Vorlesung „Analytik von Schadstoffen in Wasser und Boden“ werden genormte Verfahren (DIN, ISO oder andere) zur Quantifizierung von Umweltchemikalien, einerseits summarisch (Gesamtkohlenstoff, AOX etc.), andererseits als Einzelstoff (z.B. PAK, polychlorierte Dibenzodioxine etc.) behandelt.
Die Vorlesung „Qualitätssicherung in der chemischen Analytik“ behandelt die Methoden der internen und externen Qualitätssicherung. Dabei werden auch Begriffe wie Validierung, zertifizierte Standards, Ringversuche, Messunsicherheit etc. an praktischen Beispielen erläutert.

Im „Praktikum Umweltanalytik“ werden ausgewählte analytische Methoden durchgeführt und die Ergebnisse ausgewertet und bewertet.

14. Literatur:

15. Lehrveranstaltungen und -formen:
• 160601 Vorlesung Instrumentelle Analytik
• 160602 Vorlesung Analytik von Schadstoffen in Wasser und Boden
• 160603 Vorlesung Qualitätssicherung in der chemischen Analytik
• 160604 Praktikum Umweltanalytik

16. Abschätzung Arbeitsaufwand:
1. Instrumentelle Analytik, Vorlesung, 1 SWS:
Präsenzzeit: 10,5 h
Selbststudiumszeit: 27,0 h
Gesamt: 37,5 h
2. Analytik von Schadstoffen in Wasser und Boden, Vorlesung 1 SWS:
Präsenzzeit: 10,5 h
Selbststudiumszeit: 27,0 h
Gesamt: 37,5 h
3. Qualitätssicherung in der chemischen Analytik, Vorlesung, 1 SWS:
Präsenzzeit: 10,5 h
Selbststudiumszeit: 27,0 h
Gesamt: 37,5 h
4. Praktikum Umweltanalytik, Laborpraktikum, wöchentlich
Präsenzzeit (14 Halbtage á 4 h): 56,0 h
Selbststudiumszeit

17. Prüfungsnummer/n und -name:
• 16061 Umweltanalytik - Wasser und Boden (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0
• V Vorleistung (USL-V), schriftlich, eventuell mündlich

18. Grundlage für ...:

19. Medienform:

20. Angeboten von: Hydrochemie und Hydrobiologie in der Siedlungswasserwirtschaft
223 Elective Modules or Industrial Internship (6 CP)

Zugeordnete Module:

<table>
<thead>
<tr>
<th>Code</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>2231</td>
<td>Elective Modules 3 CP</td>
</tr>
<tr>
<td>2232</td>
<td>Practical Work</td>
</tr>
<tr>
<td>67070</td>
<td>Industrial Internship</td>
</tr>
</tbody>
</table>
2231 Elective Modules 3 CP

Zugeordnete Module:

- 22311 Elective Modules (in english language)
- 22312 Elective Modules (in german language)
Modul: 22311 Elective Modules (in english language)

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Modulkürzel:</td>
<td>-</td>
<td>5. Moduldauer: 1 Semester</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>0.0 LP</td>
<td>6. Turnus: jedes 2. Semester, WiSe</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>0.0</td>
<td>7. Sprache: -</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher:

9. Dozenten:

 → Solid Waste --> Elective Modules or Industrial Internship (6 CP) --
 > Elective Modules 3 CP

11. Empfohlene Voraussetzungen:

12. Lernziele:

13. Inhalt:

14. Literatur:

15. Lehrveranstaltungen und -formen:

16. Abschätzung Arbeitsaufwand:

17. Prüfungsnummer/n und -name:

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
Modul: 39660 Biological Waste Air Purification

2. Modulkürzel: 021221201
5. Modulduauer: [pord.modu Semester

3. Leistungspunkte: 3.0 LP

4. SWS: 2.0
7. Sprache: Englisch

8. Modulverantwortlicher: Univ.-Prof. Karl Heinrich Engesser

9. Dozenten: • Karl Heinrich Engesser
• Daniel Dobslaw

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. WASTE, PO 2015

→ Elective Modules -->Elective Modules 3 CP -->Elective Modules 3 CP (in english language)

→ M.Sc. WASTE, PO 2015

→ Elective Modules or Industrial Internship (6 CP) -->Elective Modules 3 CP -->Elective Modules (in english language)

11. Empfohlene Voraussetzungen:
Basics of biology, chemistry and air quality control
Basics of thermodynamics, kinetics and mathematics
Formally: none

12. Lernziele:
The students know about actual legislation in USA, Canada, European Union, Australia as well as Germany related to emissions, ambient air quality as well as the legislative process of building up biological waste air cleaning plants.

Basic knowledge about non-biological techniques is delivered.

The students get knowledge about chemical and biological basics to estimate biodegradability of different pollutants and pollutant classes and mixtures of themselves.

The functions of different kinds of biological air treatment techniques and relevant process parameters are presented.

Thus students are able to select the appropriate treatment system according to the given frame conditions.

Sum up, they have the competence for the first calculation and design of a biological waste air treatment system.

13. Inhalt:
• Air related legislation in Germany, EU, Australia, Canada and USA
• Types of waste air treatment
• Types of bioreactors systems for biological waste air purification
• Biodegradability of typical waste air compounds
• Basic processes in biofiltration
• Operating conditions and operating costs
• Definitions and terminology for examination in efficiency
• Use of filter materials Examples for typical problems and for extreme use of biological waste air treatment.
• Analytical methods for air and odorimetric analyses.

An additional exercise delves into the contents of the lecture, especially as a preparation to examination.
14. Literatur:
- Script for lecture (addition to slides)
- Powerpoint slides for lecture
- Board notices
- Internet

15. Lehrveranstaltungen und -formen:
- 396601 Lecture Biological Waste Air Purification
- 396602 Excursion to a nearby biological waste air purification facility

16. Abschätzung Arbeitsaufwand:

17. Prüfungsnummer/n und -name:
39661 Biological Waste Air Purification (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 39140 Sustainable Production Processes

4. SWS: 2.0 7. Sprache: Englisch

8. Modulverantwortlicher: Apl. Prof. Günter Tovar

9. Dozenten: Steffen Schütz

 ➔ Elective Modules --> Elective Modules 3 CP --> Elective Modules 3 CP (in english language)
 ➔ M.Sc. WASTE, PO 2015
 ➔ Elective Modules or Industrial Internship (6 CP) --> Elective Modules 3 CP --> Elective Modules (in english language)

11. Empfohlene Voraussetzungen: Good knowledge of basics of process engineering, chemistry and environmental engineering

12. Lernziele: • The students know the principles of sustainability and sustainable production.
 • The students have understood the needs for sustainable production.
 • The students are able to analyze and assess production processes with respect to sustainability.
 • The students have the competence of sustainable process development.
 • The students can identify opportunities for process optimization and improvement and describe the sustainable processes.

13. Inhalt: • Introduction to sustainable development and sustainable production.
 • Impact of production processes on the environment.
 • Sustainable production processes in the chemical industries.
 • Sustainable production processes in the metal industries.
 • Sustainable production processes in the ceramic industries

14. Literatur:
 • Chemical Technology and the Environment - Volume 1 Kirk Othmer, John Wiley & Sons, New Jersey 2007
 • P. Eyerer, Th. Hirth, J. Woidasky, Nachhaltige rohstoffnahe Produktion, IRB-Verlag, 2007
 • Lecture notes

15. Lehrveranstaltungen und -formen: 391401 Vorlesung Sustainable Production Processes

 Private study: approx. 69 h

17. Prüfungsnnummer/n und -name: 39141 Sustainable Production Processes (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0

18. Grundlage für ...:

19. Medienform: Blackboard, PPT-presentation, manuscript of the lecture

Modul: 22312 Elective Modules (in german language)

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>-</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>0.0 LP</td>
<td>6. Turnus:</td>
<td>jedes 2. Semester, WiSe</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>0.0</td>
<td>7. Sprache:</td>
<td>-</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher:

9. Dozenten:

 → Solid Waste --> Elective Modules or Industrial Internship (6 CP) -> Elective Modules 3 CP

11. Empfohlene Voraussetzungen:

12. Lernziele:

13. Inhalt:

14. Literatur:

15. Lehrveranstaltungen und -formen:

16. Abschätzung Arbeitsaufwand:

17. Prüfungsnummer/n und -name:

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 15400 Biogas

2. Modulkürzel: 021220008 5. Modulduauer: 1 Semester
4. SWS: 3.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Detlef Clauß
9. Dozenten: Gerhard Rettenberger

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. WASTE, PO 2015
→ Elective Modules -->Elective Modules 3 CP -->Elective Modules 3 CP (in german language)
→
M.Sc. WASTE, PO 2015
→ Elective Modules or Industrial Internship (6 CP) -->Elective Modules 3 CP -->Elective Modules (in german language)

14. Literatur: Eigenes Manuskript

15. Lehrveranstaltungen und -formen: • 154001 Vorlesung Biogasverwertung
• 154002 Exkursion Biogasverwertung

16. Abschätzung Arbeitsaufwand:
Präsenz: 38 h
Selbststudium: 52 h
Gesamt: 90 h

17. Prüfungsnummer/n und -name: 15401 Biogas (BSL), mündliche Prüfung, 20 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform: Tafel, Beamer, Exkursion

20. Angeboten von:
Modul: 15390 Umweltrelevanz abfalltechnischer Anlagen

2. Modulkürzel: 021220007

3. Leistungspunkte: 3.0 LP

4. SWS: 3.0

5. Modul dauer: 1 Semester

6. Turnus: jedes 2. Semester, SoSe

7. Sprache: Deutsch

8. Modulverantwortlicher: Detlef Clauß

9. Dozenten: Hans-Dieter Huber

→ Elective Modules --> Elective Modules 3 CP --> Elective Modules 3 CP (in german language)

M.Sc. WASTE, PO 2015

→ Elective Modules or Industrial Internship (6 CP) --> Elective Modules 3 CP --> Elective Modules (in german language)

14. Literatur: Eigenes Manuskript

15. Lehrveranstaltungen und -formen:

• 153901 Vorlesung Umweltrelevanz abfalltechnischer Anlagen
• 153902 Exkursion Umweltrelevanz abfalltechnischer Anlagen

16. Abschätzung Arbeitsaufwand:

Präsenz:	38 h
Selbststudium:	52 h
Gesamt:	90 h

17. Prüfungsnummer/n und -name: 15391 Umweltrelevanz abfalltechnischer Anlagen (BSL), mündliche Prüfung, 20 Min., Gewichtung: 1.0

18. Grundlage für ... :
<table>
<thead>
<tr>
<th>19. Medienform:</th>
<th>Tafel, Beamer, Exkursion</th>
</tr>
</thead>
<tbody>
<tr>
<td>20. Angeboten von:</td>
<td></td>
</tr>
</tbody>
</table>
2232 Practical Work

Zugeordnete Module: 67060 Sanitary Engineering - Practical Class Part I for WASTE students
Modul: 67060 Sanitary Engineering - Practical Class Part I for WASTE students

2. Modulkürzel: [pord.modulcode] 5. Moduldauer: 1 Semester

4. SWS: 0.0 7. Sprache: Englisch

8. Modulverantwortlicher: Bertram Kuch

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. WASTE, PO 2015
→ Advanced Modules -->Elective Modules -->Practical Works

→ M.Sc. WASTE, PO 2015
→ Solid Waste --->Elective Modules or Industrial Internship (6 CP) -->Practical Work

11. Empfohlene Voraussetzungen:
Prerequisite Modules :

Sanitary Engineering (Waste: 021220012; Warem: 508 ME)

Urban drainage and design of Wastewater treatment plants
(Waste: 021210251; Warem: 542 ME)

Chemistry and Biology for Environmental Engineers
(Waste: 021230502; Warem: 546 ME)

12. Lernziele:
The student knows and understands in theory and practice
- the most important parameters to characterize water and waste water and the analytical methods to determine them (e.g. pH, nitrate, ammonium, phosphorus, alkalinity, acidity, permanganate index, conductivity, oxygen, loss of ignition, filterable matter).

- important techniques for removal of water contaminants (e.g. ion exchange, precipitation, coagulation, sorption, neutralization, aerobic, anoxic and anaerobic degradation)

The student
- is capable of interpreting and evaluating analytical data and based on these data to draw conclusions in order to evaluate the quality of water and the efficiency of processes for treatment of water.

13. Inhalt:
This course serves to the intensification of the theoretical knowledge in sanitary engineering with focus on water and wastewater by practical work in the laboratory and an accompanying student seminar. The experiments offered belong thematically to the main areas:

water and waste water

water chemistry and analysis

The experiments are mainly performed directly by the students in groups of 3 to max. 6 or offered as demonstration experiments.
14. Literatur: Description of Experiments (available as download, pdf)
Handouts for seminar work

15. Lehrveranstaltungen und -formen: • 670601 Übung Sanitary Engineering Practical Class I for WASTE Students - Water/Chemistry
• 670602 Seminar Sanitary Engineering Practical Class I for WASTE Students - Solid Water/Chemistry

16. Abschätzung Arbeitsaufwand:
Time of attendance: 7 days of practical work; ca. 6 h/day = 42 h
Preparation time (seminar; before/after practical work): 34 h
Seminar: 1 SWS, 14 h
Total: 90 hours (3 LP)

17. Prüfungsnummer/n und -name: 67061 Sanitary Engineering - Practical Class Part I for WASTE students (USL), Sonstiges, Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:

20. Angeboten von:

Modul: 67070 Industrial Internship

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>[pord.modulcode]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>0.0</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Andreas Kronenburg</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Specialized Area -->Air Quality Control -->Elective Modules or Industrial Internship (6 CP)</td>
</tr>
<tr>
<td></td>
<td>→ M.Sc. WASTE, PO 2015</td>
</tr>
<tr>
<td></td>
<td>→ Specialized Area -->Solid Waste -->Elective Modules or Industrial Internship (6 CP)</td>
</tr>
<tr>
<td></td>
<td>→ M.Sc. WASTE, PO 2015</td>
</tr>
<tr>
<td></td>
<td>→ Specialized Area -->Waste Water -->Elective Modules or Industrial Internship (6 CP)</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>In the course of the study program, the Industrial Internship is supposed to complement the acquired theoretical knowledge with practical relevance. Interns are provided with the possibility to learn not only about e.g. the manufacturing sector but also to understand and participate in the sociological aspects of a company therefore being able to thoroughly understand their future role in a business of their choice.</td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>Please refer to the Guidelines for Internships issued by the Internship Office for Mechanical Engineering</td>
</tr>
<tr>
<td>14. Literatur:</td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td></td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>180h</td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>67071 Industrial Internship (USL), Sonstiges, Gewichtung: 1.0</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td></td>
</tr>
</tbody>
</table>
230 Waste Water

Zugeordnete Module:

<table>
<thead>
<tr>
<th></th>
<th>231</th>
<th>Core Modules</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>232</td>
<td>Elective Modules 6 CP</td>
</tr>
<tr>
<td></td>
<td>233</td>
<td>Elective Modules or Industrial Internship (6 CP)</td>
</tr>
</tbody>
</table>
231 Core Modules

Zugeordnete Module: 19310 Urban Drainage and Design of Wastewater Treatment Plants
Modul: 19310 Urban Drainage and Design of Wastewater Treatment Plants

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>021210251</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>5.0</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Ulrich Dittmer</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Heidrun Steinmetz
| | • Ulrich Dittmer |
| 11. Empfohlene Voraussetzungen: | Chemistry and Biology for Environmental Engineers
| | Sanitary Engineering |
| 12. Lernziele: | Advanced knowledge of processes and concepts for urban drainage and municipal wastewater treatment systems
| | Basics of construction and dimensioning of different urban drainage systems, stormwater treatment facilities and wastewater treatment plants as a base for dimensioning and discussion of proved and innovative technologies
| | Deeper understanding for system connections as base for a decisions during the planning process |
| 13. Inhalt: | Design of sewer systems and stormwater treatment
| | (Dr.-Ing. Ulrich Dittmer)
| | principles of collection and disposal
| | design of combined and separate sewer systems
| | Sustainable urban drainage systems (SUDS) and low impact design (LID)
| | Application of rainfall runoff models (computer exercise using U.S. EPA Stormwater Management Model)
| | different techniques for treatment and retention
| | design of treatment facilities
| | Design of wastewater treatment plants (Prof. Dr.-Ing. Heidrun Steinmetz)
| | Municipal wastewater treatment
| | different techniques for advanced biological wastewater treatment (nitrogen and phosphorous removal)
| | principles of process engineering
| | design of biological wastewater treatment plants and the main important aggregates
| | design of sludge treatment plants
| | Seminar: feasibility studies |
special examples for sanitation concepts for world wide application
Ecological sanitation and resource orientated systems

case studies

14. Literatur:

- Different German standards (DWA, Hennef)
- Lecture notes

15. Lehrveranstaltungen und -formen:

- 193101 Vorlesung und Übung Design of Sewer System and Stormwater Treatment
- 193102 Vorlesung und Übung Design of Wastewater Treatment Plants
- 193103 Seminar Case Study
- 193104 Exkursion

16. Abschätzung Arbeitsaufwand:

Time of attendance: approx. 70 hours (including 4*4 hours for excursion)
1.5 SWS

Private Study: approx. 110 hours

Lecture 1: Presence time: 28 hours, self study 30 hours, project 0, Sum: **58 hours**

Lecture 2: Presence time: 28 hours, self study 30 hours, project 40, Sum: **58 hours**

Case study: Presence time: 14 hours, self study 10 hours, project 0, Sum: **25 hours**

17. Prüfungsnr/n und -name:

19311 Urban Drainage and Design of Wastewater Treatment Plants (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ...:

19. Medienform:

20. Angeboten von:

Siedlungswasserwirtschaft und Wasserrecycling
232 Elective Modules 6 CP

Zugeordnete Module:

2321 Elective Modules (in english language)
2322 Elective Modules (in german language)
2321 Elective Modules (in english language)

Zugeordnete Module:
19330 Industrial Waste Water
19360 Water Quality and Treatment
36450 Special Aspects of Urban Water Management
Modul: 19330 Industrial Waste Water

2. Modulkürzel: 021210151 5. Moduldauer: 1 Semester

4. SWS: 4.0 7. Sprache: Englisch

8. Modulverantwortlicher: Prof./Uni.Reg.deBlumenau Uwe Menzel

9. Dozenten: • Uwe Menzel • Michael Koch

10. Zuordnung zum Curriculum in diesem Studiengang:

M.Sc. WASTE, PO 2015

→ Elective Modules

→ Elective Modules 6 CP

→ Elective Modules 6 CP (in english language)

M.Sc. WASTE, PO 2015

→ Waste Water

→ Elective Modules 6 CP

→ Elective Modules (in english language)

11. Empfohlene Voraussetzungen:

12. Lernziele:

Students have:

• a basic understanding for the problems and requirements of industrial waste water treatment
• an overview of measures for production integrated environmental protection, relevant treatment methods for process water and its characterization
• an overview of water analysis including sampling, the main principles of different analytical techniques and the ways to assure the quality of chemical analysis

13. Inhalt:

Fundamentals of industrial waste water treatment

Determiniation of current situation possible process integrated measures, arrangements for reuse and recirculation of water mass and concentration balance

Basic elements and examples for applications of advanced purification processes

Biological waste water treatment

Sampling and analytical techniques using on-site measurements, oxidation - reduction, acids and bases, sum parameters, photometry, spectrometry and chromatography

Analytical quality assurance

14. Literatur:

• lecture notes (approx. 400 pages)
• exercises
• ATV V: Lehr- und Handbuch der Abwassertechnik, volume v: Organisch verschmutzte Abwässer der Lebensmittelindustrie, Wilhelm Ernst & Sohn Verlag, Berlin.
15. Lehrveranstaltungen und -formen:

| 193301 Lecture Treatment of Industrial Waste Water |
| 193302 Lecture Water Analysis and Analytical Quality Control |

16. Abschätzung Arbeitsaufwand:

| Time of attendance: |
| Treatment of Industrial Waste Water: 2 SWS = 24 hours |
| Water Analysis and Analytical Quality Control: 2 SWS = 24 hours |
| Exam: 2 hours |

sum of attendance: 50 hours

self-study: 130 hours

total: 180 hours

17. Prüfungsnummer/n und -name:

| 19331 Industrial Waste Water (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0 |

18. Grundlage für ... :

19. Medienform:

| power-point-presentation, blackboard and over-head projector |

20. Angeboten von:

| Siedlungswasserwirtschaft und Wasserrecycling |
Modul: 36450 Special Aspects of Urban Water Management

2. Modulkürzel: 021210006
5. Moduldauer: 1 Semester
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0
7. Sprache: Englisch
8. Modulverantwortlicher: Ralf Minke
9. Dozenten: • Ralf Minke
• Ulrich Dittmer
• Klaus Werner König

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. WASTE, PO 2015
 ➞ Elective Modules -->Elective Modules 6 CP -->Elective Modules 6 CP (in english language)
 ➞ M.Sc. WASTE, PO 2015
 ➞ Waste Water -->Elective Modules 6 CP -->Elective Modules (in english language)

11. Empfohlene Voraussetzungen:
Inhaltlich:
Grundlegende Kenntnisse der Gesamt-zusammenhänge der Siedlungswasser- und Wasserwirtschaft.
Vertiefte Kenntnisse der Abwassertechnik, der Wassergütwirtschaft, der Wasserversorgung oder des allgemeinen Managements von Wasserressourcen.
Formal:
Wasserversorgungstechnik I oder Abwassertechnik I oder Waste Water Technology oder Water Quality and Treatment

12. Lernziele:
Fachlich:
Die Studierenden entwickeln ein Verständnis für Zusammenhänge über ihre Teildisziplin hinaus. Sie können bei Entscheidungen und Planungen zwischen konkurrierenden Belangen der Siedlungswasserwirtschaft, Wasserwirtschaft und anderer Infrastrukturbereiche fachlich fundiert abwägen.
Methodisch:
Die Studierenden können selbständig mit internationaler wissenschaftlicher Literatur zu ihrem jeweiligen Fachgebiet umgehen, Ergebnisse kritisch bewerten und so ein eigenes Bild des Standes der Wissenschaft erarbeiten und präsentieren.

13. Inhalt:
- Wechselwirkungen zwischen Teilbereichen der Siedlungswasserwirtschaft am Beispiel des Umgangs mit Regenwasser
- Jährlich wechselnde Spezialthemen entsprechend dem wissenschaftlichen und technischen Fortschritt

14. Literatur:
Gujer, W. Siedlungswasserwirtschaft, Springer Verlag GmbH
Mutschmann, J; Stimmelmayr, F.: Taschenbuch der Wasserversorgung, Vieweg-Verlag
Jeweils die aktuellen Auflagen
Diverse Merk- und Arbeitsblätter des DVGW und der DWA

| 15. Lehrveranstaltungen und -formen: | • 364501 Scientific Seminar
| | • 364502 Lecture Rainwater Harvesting and Management
| | • 364503 Excursions |

| 16. Abschätzung Arbeitsaufwand: | |

| 17. Prüfungsnummer/n und -name: | 36451 Special Aspects of Urban Water Management (Seminar presentation) (LBP), schriftlich, eventuell mündlich, Gewichtung: 1.0 |

| 18. Grundlage für ... : | |

| 19. Medienform: | |

| 20. Angeboten von: | Siedlungswasserwirtschaft und Wasserrecycling |
Modul: 19360 Water Quality and Treatment

2. Modulkürzel: 021210051 5. Modulsdauer: 1 Semester
4. SWS: 4.0 7. Sprache: Englisch

8. Modulverantwortlicher: Carsten Meyer
9. Dozenten: • Heidrun Steinmetz • Carsten Meyer

10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. WASTE, PO 2015
→ Elective Modules -->Elective Modules 6 CP -->Elective Modules 6 CP (in english language)
→
M.Sc. WASTE, PO 2015
→ Waste Water -->Elective Modules 6 CP -->Elective Modules (in english language)

11. Empfohlene Voraussetzungen:
Knowledge in Sanitary Engineering, Water Supply and Hydraulics
Contents of Water and Power Supply

12. Lernziele:
• The students learn how to characterize and protect water bodies as well as to improve the water quality
• Students understand the contribution of wastewater treatment to the preventive protection of receiving waters and they learn the basic methods of water quality management instruments
• Students understand the necessity of water treatment as essential element of drinking water supply
• Students learn the chemical, physical and biological background of water treatment technologies, their possibilities and boundaries and they are able to develop, design and dimension treatment schemes for different raw water qualities

13. Inhalt:
Water Quality Management:
• Terms and introduction: environmental data from Germany
• Characterisation and assessment of flowing waters, stagnant waters and groundwater
• Water quality parameters, WHO drinking water guidelines, targets for drinking water and sanitation, description of water quality in relation to use
• Improvement of water quality, reduction of pollution load, point pollutants and diffuse loads, improving the self-purification capacity of waters, technical helps, assessment of progress
• Water quality management; the European Union Framework Directive; quality planning and maintenance, monitoring networks

Water Treatment:
• Water supply and water treatment: basic requirements, drinking water standards
• Mechanical treatment: Screening, Sieving, Sedimentation, (Membrane)Filtration, Gas-Exchange, Flotation
• Carbondioxide-Carbonate-Balance: relevance, chemical background
• Deacidification: mechanical and chemical methods
• Removal of iron, manganese and arsenic: methods
• Decarbonization: chemical methods
• Flocculation
• Adsorption
• Disinfection: chemical and physical methods

14. Literatur:
Lecture notes and material for exercises will be provided during the lecture. Hints are given for additional literature from the internet as well as libraries, e.g.
• American Water Works Assoc.: Water Quality and Treatment, McGraw-Hill Inc., 1999
• Nicholas P. Cheremisinoff: Handbook of Water and Wastewater Treatment Technologies, Bitterworth & Heinemann, Boston Oxford Auckland Johannesburg Melbourne New Delhi, 2002
• WHO Guidelines, 2006
• Mutschmann, J; Stimmelmayr, F.: Taschenbuch der Wasserversorgung, Vieweg-Verlag

15. Lehrveranstaltungen und -formen:
• 193601 Lecture Water Treatment
• 193602 Lecture Water Quality Management

16. Abschätzung Arbeitsaufwand:
Time of attendance: ca. 42 h
Private study: ca. 138 h

1) Lecture: presence time = 34,0; self study = 106,0; Sum = 140,0
2) Exercise: presence time = 8,0; self study = 32,0; Sum = 40,0

Sum Lecture (140) + Sum Exercise (40) = 180,0

17. Prüfungsnummer/n und -name: 19361 Water Quality and Treatment (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Siedlungswasserwirtschaft und Wasserrecycling
2322 Elective Modules (in german language)

Zugeordnete Module: 16060 Umweltanalytik - Wasser und Boden
Modul: 16060 Umweltanalytik - Wasser und Boden

2. Modulkürzel: 021230002
5. Modulda: 1 Semester
3. Leistungspunkte: 6.0 LP
4. SWS: 3.0
7. Sprache: Deutsch
8. Modulverantwortlicher: Bertram Kuch
9. Dozenten:
 - Bertram Kuch
 - Michael Koch
 - Jörg Metzger
10. Zuordnung zum Curriculum in diesem Studiengang:
M.Sc. WASTE, PO 2015
 → Elective Modules -->Elective Modules 6 CP -->Elective Modules 6 CP (in german language)
 →
M.Sc. WASTE, PO 2015
 → Solid Waste -->Elective Modules 6 CP -->Elective Modules (in german language)
 →
M.Sc. WASTE, PO 2015
 → Waste Water -->Elective Modules 6 CP -->Elective Modules (in german language)
 →
11. Empfohlene Voraussetzungen: keine
12. Lernziele:
 Die Studierenden
 - beherrschen die Theorie der wichtigsten instrumentell-analytischen (chromatographischen und spektroskopischen) Verfahren für die Umweltkompartimente Wasser und Boden.
 - besitzen grundlegendes Wissen über die Vor-gehensweise und den Methoden zur Bestim-mung von Umweltchemikalien und Schadstoffen in Wasser und Boden.
 - haben grundlegende Kenntnisse über die Me-thoden der internen und externen analytischen Qualitätssicherung.
 - sind in der Lage, chemisch-analytische Daten auszuwerten und zu bewerten.
 - kennen die wichtigsten (genormten) Analysenmethoden für anorganische und organische Schadstoffe und Umweltchemikalien und sind in der Lage, diese zu beschreiben.
13. Inhalt:
 Das Modul vermittelt theorethisches und praktisches Wissen auf dem Gebiet der Analytik von Wasser- und Bodeninhaltstoffen und -kontaminanten.

 Die Vorlesung „Instrumentelle Analytik“ behandelt die Theorie und Praxis chromatographischer Trennverfahren (GC und HPLC) sowie wichtiger Detektionsmetho-den (UV-VIS, Fluoreszenz, Infrarot, Massenspektrometrie).

 In der Vorlesung „Analytik von Schadstoffen in Wasser und Boden“ werden genormte Verfahren (DIN, ISO oder andere) zur Quantifizierung von Umweltchemika-lien, einerseits summarisch (Gesamtkohlenstoff, AOX etc.), andererseits als Einzelstoff (z.B. PAK, polychlo-rierte Dibenzodioxine etc.) behandelt.
Die Vorlesung „Qualitätssicherung in der chemischen Analytik“ behandelt die Methoden der internen und externen Qualitätssicherung. Dabei werden auch Begriffe wie Validierung, zertifizierte Standards, Ringversuche, Messunsicherheit etc. an praktischen Beispielen erläutert.

Im „Praktikum Umweltanalytik“ werden ausgewählte analytische Methoden durchgeführt und die Ergebnisse ausgewertet und bewertet.

14. Literatur:

15. Lehrveranstaltungen und -formen:
• 160601 Vorlesung Instrumentelle Analytik
• 160602 Vorlesung Analytik von Schadstoffen in Wasser und Boden
• 160603 Vorlesung Qualitätssicherung in der chemischen Analytik
• 160604 Praktikum Umweltanalytik

16. Abschätzung Arbeitsaufwand:
1. Instrumentelle Analytik, Vorlesung, 1 SWS:
 Präsenzzeit: 10,5 h
 Selbststudiumszeit: 27,0 h
 Gesamt: 37,5 h
2. Analytik von Schadstoffen in Wasser und Boden, Vorlesung 1 SWS:
 Präsenzzeit: 10,5 h
 Selbststudiumszeit: 27,0 h
 Gesamt: 37,5 h
3. Qualitätssicherung in der chemischen Analytik, Vorlesung, 1 SWS:
 Präsenzzeit: 10,5 h
 Selbststudiumszeit: 27,0 h
 Gesamt: 37,5 h
4. Praktikum Umweltanalytik, Laborpraktikum, wöchentlich
 Präsenzzeit (14 Halbtage á 4 h): 56,0 h
 Selbststudiumszeit

17. Prüfungsnummer/n und -name:
• 16061 Umweltanalytik - Wasser und Boden (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0
• V Vorleistung (USL-V), schriftlich, eventuell mündlich

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Hydrochemie und Hydrobiologie in der Siedlungswasserwirtschaft
233 Elective Modules or Industrial Internship (6 CP)

Zugeordnete Module:

2331 Elective Modules 3 CP
2332 Practical Work
67070 Industrial Internship
2331 Elective Modules 3 CP

Zugeordnete Module: 23311 Elective Modules (in english language)
Module: 23311 Elective Modules (in english language)

2. Modulkürzel:	-
3. Leistungspunkte:	0.0 LP
4. SWS:	0.0
5. Moduldauer:	1 Semester
7. Sprache:	-

8. Modulverantwortlicher:

9. Dozenten:

 ➔ Waste Water --> Elective Modules or Industrial Internship (6 CP)
 ➔ Elective Modules 3 CP

11. Empfohlene Voraussetzungen:

12. Lernziele:

13. Inhalt:

14. Literatur:

15. Lehrveranstaltungen und -formen:

16. Abschätzung Arbeitsaufwand:

17. Prüfungsnummer/n und -name:

18. Grundlage für ...:

19. Medienform:

20. Angeboten von:

Modul: 39650 Basics of Membrane Technology

<table>
<thead>
<tr>
<th>Modulkürzel:</th>
<th>041110777</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>Modulverantwortlicher:</td>
<td>Jochen Kerres</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Jochen Kerres</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:
- M.Sc. WASTE, PO 2015
 - Elective Modules --> Elective Modules 3 CP --> Elective Modules 3 CP (in english language)
 - M.Sc. WASTE, PO 2015
 - Elective Modules or Industrial Internship (6 CP) --> Elective Modules 3 CP --> Elective Modules (in english language)

11. Empfohlene Voraussetzungen:
- Thermo and Fluid Dynamics
- Chemistry and Biology for Environmental Engineers

12. Lernziele:
After completion of this module, students have basic knowledge in membrane technologies and their physicochemical basics available (thermodynamics and kinetics (transport properties) of membrane processes, basic types and functionalities of porous membrane types, solution diffusion membranes and ion exchange membranes.

13. Inhalt:
Basics of membrane processes (thermodynamics, transport processes)

- Types of membrane processes: pressure-driven (MF, UF, NF)
- Chemical potential-driven (RO, PV, GS, DD, dialysis)
- Electrical potential-driven (ED, EDBP)

Membrane preparation:
- Dense membranes
- Porous membranes
- Charged membranes

Membrane characterization

14. Literatur:
- Skript

Text book:
- *Heiner Strathmann, Lidietta Giorno, Enrico Drioli*
 An Introduction to Membrane Science and Technology
 CNR-ITM
 ISBN 88-8080-063-9

- *Marcel Mulder*
 Basic Principles of Membrane Technology
15. Lehrveranstaltungen und -formen:
 396501 Lecture Basics of Membrane Technology

16. Abschätzung Arbeitsaufwand:
 Time of Attendance: 28 h Lecture
 Self study: 62 h = 90 h

17. Prüfungsnummer/n und -name:
 39651 Basics of Membrane Technology (BSL), mündliche Prüfung,
 30 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:
 Tafel, PowerPoint Präsentation

20. Angeboten von:
Modul: 59600 Chemical Reaction Engineering

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Jochen Kerres</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Jochen Kerres</td>
</tr>
</tbody>
</table>
 → Elective Modules --> Elective Modules 3 CP --> Elective Modules 3 CP (in english language)
 → M.Sc. WASTE, PO 2015
 → Elective Modules or Industrial Internship (6 CP) --> Elective Modules 3 CP --> Elective Modules (in english language) |
| 11. Empfohlene Voraussetzungen: | Thermo- and Fluid Dynamics |
| 12. Lernziele: | After completion of this module, students have basic knowledge about Chemical Reaction Engineering and their physicochemical basics available (thermodynamics and kinetics of chemical reactions, basic types and functionalities as well as physicochemistry of basic reactors such as Stirred Tank Reactor (STR), Plug-Flow and Continuously Stirred Tank Reactor (CSTR)) |
| 13. Inhalt: | Conversion of measure units
Stoichiometry and global mass balances
Global energy balances
Chemical equilibrium
Chemical reaction kinetics
Description and calculation of basic reactor types and their thermodynamics and kinetics |
| 14. Literatur: | Skript
textbook: Chemical Reaction Engineering (hardcover edition)
by Octave Levenspiel (Autor)
hardcover edition: 688 Seiten
language: English
ISBN-10: 047125424X
| 15. Lehrveranstaltungen und -formen: | 596001 Vorlesung Chemische Reaktionstechnik |
Self study: 62 h = 90 h |
17. Prüfungsnummer/n und -name: 59601 Chemical Reaction Engineering (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 58100 Constructed wetlands for wastewater treatment

2. Modulkürzel: - 5. Moduldauer: 1 Semester
4. SWS: 2.0 7. Sprache: Englisch

8. Modulverantwortlicher: Anne Weiß

 → Elective Modules -->Elective Modules 3 CP -->Elective Modules 3 CP (in english language)
 → M.Sc. WASTE, PO 2015
 → Elective Modules or Industrial Internship (6 CP) -->Elective Modules 3 CP -->Elective Modules (in english language)

11. Empfohlene Voraussetzungen: Chemistry and Biology for Engineers
 Sanitary Engineering

12. Lernziele: The goal of this course is to provide advanced knowledge of the processes and concepts of constructed wetlands systems to the students. They will get familiar with the existing scientific, technical, and economic practices of using constructed wetlands for wastewater and sewage sludge treatment. For this reason all late scientific developments concerning municipal industrial and agro-industrial wastewater treatment and sewage sludge treatment will be presented. At the end of the course the students will be able to:

• Understanding constructed wetlands’ main mechanisms.
• Perform a rough design of constructed wetlands treating various wastewaters and sewage sludge

13. Inhalt: Basic principles of constructed wetlands

• Attached growth treatment systems
• Constructed wetlands (basic principles, types, vegetation, porous media, etc)
• Pollutant removal mechanisms and kinetics (organic matter, nitrogen, phosphorus, heavy metals, suspended solids)
• Sewage sludge treatment (dewatering mechanisms, mineralization processes)

Design of constructed wetlands

• Constructed wetlands’ design models (hydrodynamic and pollutant removal models)
• Determination of required constructed wetland area
• Sewage sludge treatment (sludge loading rates, duration of loading and resting periods)

Case studies

• Municipal wastewater treatment
• Agro-industrial wastewater treatment
Sewage sludge treatment

15. Lehrveranstaltungen und -formen: 581001 Vorlesung Design of constructed wetlands

16. Abschätzung Arbeitsaufwand: 90 h

17. Prüfungsnummer/n und -name: 58101 Constructed wetlands for wastewater treatment (BSL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 41010 Modellierung von Zweiphasenströmungen

2. Modulkürzel: 041600614
5. Moduldauer: 1 Semester
3. Leistungspunkte: 3.0 LP
4. SWS: 2.0
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Eckart Laurien
9. Dozenten: Eckart Laurien
10. Zuordnung zum Curriculum in diesem Studiengang:

M.Sc. WASTE, PO 2015
 → Elective Modules -->Elective Modules 3 CP -->Elective Modules 3 CP (in english language)

M.Sc. WASTE, PO 2015
 → Elective Modules or Industrial Internship (6 CP) -->Elective Modules 3 CP -->Elective Modules (in english language)

13. Inhalt:

1 Introduction
1.1 Characterization of Two-Phase Flows
1.1.1 Two-Phase Flows, Examples
1.1.2 Classification of Two-Phase Flows
1.1.3 Stokes Number
1.1.4 Turbulence in Two-Phase Flows
1.2 Euler-Lagrange Model
1.2.1 Model Equations
1.2.2 Computation of Particle-Laden Flow
1.2.3 Numerical Integration of Particle Trajectories
1.2.4 Lagrangian Turbulence Modeling
2 Adiabatic Two-Phase Flows (Gas-Liquid)
2.1 Bubble Plume
2.1.1 Mechanisms of Momentum Transfer
2.1.2 Fundamental Equations
2.1.3 Numerical Simulation of a Bubble Plume
2.2 Bubbly Pipe Flow
2.2.1 Experimental Observations
2.2.2 Numerical Simulation of Bubbly Pipe Flows
2.2.3 Bubble Dynamics
2.2.4 Derivation of the Two-Fluid Equations
2.2.5 Single-Phase Turbulence Modelling Overview
2.2.6 Prandtls Mixing-Length Model
2.2.7 The K-epsilon Turbulence Model
2.2.8 Two-Phase Turbulence Models
2.2.9 Extended Continuum Models
2.3 Stratified Flow
2.3.1 Countercurrent Flow Experiments
2.3.2 Forces at a Wavy Surface
2.3.3 Two-Phase Turbulence Transport Models
2.4 Direct Numerical Simulation
2.4.1 Volume-of-Fluid Method
2.4.2 Example: Determination of the Virtual Mass Coefficient

15. Lehrveranstaltungen und -formen: 410101 Vorlesung Modellierung von Zweiphasenströmungen

16. Abschätzung Arbeitsaufwand: Präsenzzeit 22,5 h + Nachbearbeitungszeit 67 h + Prüfungszeit 0,5 h = 90 h

17. Prüfungsnummer/n und -name: 41011 Modellierung von Zweiphasenströmungen (BSL), mündliche Prüfung, 30 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform: ppt-Präsentation, alle Folien online verfügbar unter http://www.ike.uni-stuttgart.de/lehre/M2P-index.html

20. Angeboten von: Institut für Kernenergetik und Energiesysteme
2332 Practical Work

Zugeordnete Module: 67080 Sanitary Engineering - Practical Class Part II for WASTE students
Modul: 67080 Sanitary Engineering - Practical Class Part II for WASTE students

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>[pord.modulcode]</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>0.0</td>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Martin Reiser</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>M.Sc. WASTE, PO 2015</td>
<td>➞ Waste Water --> Elective Modules or Industrial Internship (6 CP) --> Practical Work</td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Prerequisite Modules:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Sanitary Engineering (Waste: 021220012; Warem: 508 ME)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chemistry and Biology for Environmental Engineers (Waste: 021230502; Warem: 546 ME)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>The student knows and understands in theory and practice</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- how to take representative samples out of the different waste streams and the relevant sampling errors</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The student is aware of the most important microbiological tools to detect, handle and use microorganisms in environmental engineering systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>The student</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- is capable of interpreting and evaluating analytical data and based on these data to draw conclusions in order to evaluate the efficiency of processes for treatment of solid waste.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- is able to apply the relevant laboratory test procedures to analyze compost within the quality assurance system and to interpret the results.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- has the competence to develop a sampling procedure for household waste and to determine the waste composition by a sorting analyses.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- is able to apply selected test procedures in the field of hazardous waste and the analyses of odor samples</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>This course serves to the intensification of the theoretical knowledge in sanitary engineering with focus on solid waste and environmental microbiology by practical work in the laboratory and an accompanying student seminar. The experiments offered belong thematically to the two main areas:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- solid waste</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- microbiology</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
The experiments are mainly performed directly by the students in groups of 3 to max. 6 or are offered as demonstration experiments.

14. Literatur:
- Description of Experiments (available as download, pdf)
- Handouts for seminar work

15. Lehrveranstaltungen und -formen:
- 670801 Übung Sanitary Engineering Practical Class II for WASTE Students - Solid Waste/Microbiolog
- 670802 Seminar Sanitary Engineering Practical Class II for WASTE Students - Solid Waste /Microbiology

16. Abschätzung Arbeitsaufwand:

17. Prüfungsnummer/n und -name:
- 67081 Sanitary Engineering - Practical Class Part II for WASTE students (USL), Sonstiges, Gewichtung: 1.0, written records of practical experiments, weighted: 0.5; oral presentation of practical experiments, weighted: 0.5.

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 67070 Industrial Internship

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>[pord.modulcode]</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>0.0</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Andreas Kronenburg</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td></td>
</tr>
</tbody>
</table>

Zuordnung zum Curriculum in diesem Studiengang:
- M.Sc. WASTE, PO 2015
 - Specialized Area -->Air Quality Control -->Elective Modules or Industrial Internship (6 CP)
- M.Sc. WASTE, PO 2015
 - Specialized Area --Solid Waste -->Elective Modules or Industrial Internship (6 CP)
- M.Sc. WASTE, PO 2015
 - Specialized Area -->Waste Water -->Elective Modules or Industrial Internship (6 CP)

Empfohlene Voraussetzungen:

Lernziele:
In the course of the study program, the Industrial Internship is supposed to complement the acquired theoretical knowledge with practical relevance. Interns are provided with the possibility to learn not only about e.g. the manufacturing sector but also to understand and participate in the sociological aspects of a company therefore being able to thoroughly understand their future role in a business of their choice.

Inhalt:
Please refer to the Guidelines for Internships issued by the Internship Office for Mechanical Engineering

Literatur:

Lehrveranstaltungen und -formen:

Abschätzung Arbeitsaufwand:
180h

Prüfungsnummer/n und -name:
67071 Industrial Internship (USL), Sonstiges, Gewichtung: 1.0

Grundlage für ...

Medienform:

Angeboten von:
300 German Language Courses and Key Qualifications

<table>
<thead>
<tr>
<th>Zugeordnete Module</th>
<th>Course Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>60940</td>
<td>German as Foreign Language Part I</td>
</tr>
<tr>
<td>60950</td>
<td>German as Foreign Language Part II</td>
</tr>
<tr>
<td>900</td>
<td>Key Qualifications</td>
</tr>
</tbody>
</table>
900 Key Qualifications
Modul: 60940 German as Foreign Language Part I

<table>
<thead>
<tr>
<th>Modulkürzel:</th>
<th>310230001</th>
<th>Modulverantwortlicher:</th>
<th>Karin Herrmann</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leistungspunkte:</td>
<td>3.0 LP</td>
<td>Modulverantwortlicher:</td>
<td>Karin Herrmann</td>
</tr>
<tr>
<td>SWS:</td>
<td>4.0</td>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Modul: 60940 German as Foreign Language Part I</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2. Modulkürzel:</td>
<td>310230001</td>
<td>5. Modul:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td></td>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Intensive German course or the equivalent of A1</td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>Students are able to converse about everyday situations in their studies and home, read and understand more advanced texts, have a command of basic grammar structures, and write about life and culture in the German speaking countries.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>The course continues to develop the four communication skills listening, speaking, reading, and writing, with an increased emphasis on conversational German. Students are exposed to everyday and professional situations. Students learn frequently used expressions related to areas of most immediate relevance (e.g. very basic personal and family information, shopping, local geography, employment).</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Literatur:</td>
<td>Textbook „Begegnungen“</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>609401 Seminar German as Foreign Language I</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Time of attendance: approx. 84 h (Strict attendance is required) Private Study: approx. 96 h (since most exercises and drills take place during class, private study requires less time)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>60941 German as Foreign Language Part I (USL), Sonstiges, Gewichtung: 1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Modul: 60950 German as Foreign Language Part II

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>310230001</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. Modulverantwortlicher:</th>
<th>Karin Herrmann</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>9. Dozenten:</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>10. Zuordnung zum Curriculum in diesem Studiengang:</th>
<th>M.Sc. WASTE, PO 2015 ➔ German Language Courses and Key Qualifications</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>11. Empfohlene Voraussetzungen:</th>
<th>Intensive German course or the equivalent of A1</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>12. Lernziele:</th>
<th>Students are able to converse about everyday situations in their studies and home, read and understand more advanced texts, have a command of basic grammar structures, and write about life and culture in the German speaking countries.</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>13. Inhalt:</th>
<th>The course continues to develop the four communication skills listening, speaking, reading, and writing, with an increased emphasis on conversational German. Students are exposed to everyday and professional situations. Students learn frequently used expressions related to areas of most immediate relevance (e.-g. very basic personal and family information, shopping, local geography, employment)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>14. Literatur:</th>
<th>Textbook "Begegnungen"</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>15. Lehrveranstaltungen und -formen:</th>
<th>609501 Seminar German as Foreign Language II</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>16. Abschätzung Arbeitsaufwand:</th>
<th>Time of attendance: approx. 84 h (Strict attendance is required) Private Study: approx. 96 h (since most exercises and drills take place during class, private study requires less time)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>60951 German as Foreign Language Part II (USL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>18. Grundlage für ... :</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>19. Medienform:</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>20. Angeboten von:</th>
<th></th>
</tr>
</thead>
</table>
Modul: 81310 Master Thesis WASTE

2. Modulkürzel: - 5. Moduldauer: 1 Semester
4. SWS: 0.0 7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Andreas Kronenburg
11. Empfohlene Voraussetzungen: At least 72 ECTS Points
12. Lernziele: The student is capable of independently carrying out a scientific thesis. This includes:
 • Identification and clear description of a given task,
 • Design of an experiment and implementation of such with practical experiments or the application of simulation programs,
 • Evaluation and graphical depiction of experimental results and their assessment.

 The student is capable of identifying, describing and assessing problems in the field of Environmental and Process Engineering. Further, the students is able to plan and to independently carry out the according research, experimental or model solutions. Generally, the student has gained the basics for independent scientific work. The student is able to present her/his work in a concise way within a scientific presentation.
13. Inhalt: To be developed individually. Depends on chosen subject.
14. Literatur: Depends on chosen subject
15. Lehrveranstaltungen und -formen:
16. Abschätzung Arbeitsaufwand:
17. Prüfungsnummer/n und -name: 81311 Master Thesis WASTE (PL), Sonstiges, Gewichtung: 1.0, Submission of a report (print version + digital version) about the work done in the frame of the Master Thesis + 20 minutes presentation of the results with subsequent discussion. Graded Report + presentaion, weight: 1.0
Modul: 81320 Student Research Project

2. Modulkürzel: [pord.modulcode] 5. Moduldauer: 1 Semester
3. Leistungspunkte: 12.0 LP 6. Turnus: jedes Semester
4. SWS: 0.0 7. Sprache: Englisch
8. Modulverantwortlicher: Univ.-Prof. Andreas Kronenburg

11. Empfohlene Voraussetzungen: The examiner will issue the topic of the student research project. Every professor of the study program WASTE as well as assistants/lecturers with the permission to be an examiner are eligible examiners. Doctoral candidates, scientific assistants or persons without the official legitimation to be an examiner can be the supervisor of the work, but not the examiner. Other professors of the University of Stuttgart or assistants/lecturers with the permission to be an examiner who do not teach in the WASTE program can also become examiners of a student research project with special permission of the head of the examination committee.

12. Lernziele: The student is capable of independently carrying out a scientific thesis. This includes:
• Identification and clear description of a given task,
• Design of an experiment and implementation of such with practical experiments or the application of simulation programs,
• Evaluation and graphical depiction of experimental results and their assessment.

The student is capable of identifying, describing and assessing problems in the field of Environmental and Process Engineering. Further, the student is able to plan and to independently carry out the according research, experimental or model solutions. Generally, the student has gained the basics for independent scientific work. The student is able to present her/his work in a concise way within a scientific presentation.

13. Inhalt: To be developed individually. Depends on chosen subject.

14. Literatur: Depends on chosen subject

15. Lehrveranstaltungen und -formen:

16. Abschätzung Arbeitsaufwand: 360 h

17. Prüfungsnummer/n und -name: 81321 Student Research Project (PL), Sonstiges, Gewichtung: 1.0, Submission of a report (print version + digital version) about the work done in the frame of the Student Research Project + 20-30 minutes presentation of the results with subsequent discussion. Graded Report + presentation, weight: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: