Modulhandbuch
Studiengang Double Masters Degrees
Materialwissenschaft (Materials Science)
Prüfungsordnung: 2014

Sommersemester 2016
Stand: 07. April 2016

Universität Stuttgart
Keplerstr. 7
70174 Stuttgart
Inhaltsverzeichnis

Qualifikationsziele .. 4

100 Chalmers .. 5

110 Incoming .. 6
 111 Options 1 .. 7
 1111 Option A ... 8
 55750 Materials Science - Seminar and Practical/Laboratory .. 9
 17700 Synthesis and Properties of Ceramic Materials ... 10
 1112 Option B ... 12
 55760 Materials Science - Seminar and Practical/Laboratory .. 13
 17560 Phase Transformations ... 14

112 Options 2 ... 16
 1121 Option A ... 17
 121 Option B ... 18
 37100 Diffraction methods in Materials Science .. 19
 50080 Physikalische Chemie von Polymeren .. 21

1122 Option B .. 23
 1211 Option A ... 32
 17650 New Materials and Materials Characterization Methods .. 25
 50080 Physikalische Chemie von Polymeren .. 27

80510 Master's Thesis Material Science ... 29

120 Outgoing ... 30
 121 Options .. 31
 1211 Option A ... 32
 38150 Material Science Seminar .. 33
 38140 Materials Science Laboratory ... 34
 17650 New Materials and Materials Characterization Methods .. 35
 17560 Phase Transformations ... 37
 17660 Polymer Chemistry Laboratory ... 39
 39190 Polymer Materials Science .. 41
 17690 Statistische Thermodynamik ... 43

1212 Option B .. 45
 38150 Material Science Seminar .. 46
 38140 Materials Science Laboratory ... 47
 17710 Nanocomposite Materials .. 48
 17660 Polymer Chemistry Laboratory ... 50
 39190 Polymer Materials Science .. 52
 17690 Statistische Thermodynamik ... 54
 17700 Synthesis and Properties of Ceramic Materials ... 56

122 Electives ... 58
 410 Compulsory Optional (unrelated to the subject) .. 59
 32480 Deutsches und europäisches Patentrecht (Gewerblicher Rechtsschutz I) 60
 13940 Energie- und Umwelttechnik ... 62
 13540 Grundlagen der Mikrotechnik .. 64
 33400 Optische Phänomene in Natur und Alltag .. 66

420 Compulsory Optional (related to the subject) ... 68
 17740 Computational Chemistry .. 69
 60530 Condensed Matter Physics for Material Scientists ... 71
 35620 Diffractions- und Streumethoden (mit Übung und Praktikum) ... 73
 32760 Diodenlaser ... 75
 40460 Fertigungstechnik keramischer Bauteile I .. 76
 41490 Fortgeschrittene Molekül- und Festkörperphysik ... 78
 39370 Grundlagen der Experimentalphysik V: Molekül- und Festkörperphysik 80
 13550 Grundlagen der Umformtechnik ... 82
39960 Grundlagen der zerstörungsfreien Prüfung ... 84
14010 Kunststofftechnik - Grundlagen und Einführung ... 85
14150 Leichtbau .. 87
28560 Mikroelektronik I ... 89
3030 Molekular Quantum Mechanics ... 91
25470 Nanotechnologie II - Technische Prozesse und Anwendungen 93
32500 Neue Werkstoffe und Verfahren in der Fertigungstechnik ... 95
32460 Oberflächen- und Beschichtungstechnik I ... 97
11710 Optoelectronics I ... 99
29270 Organische Transistoren .. 101
11590 Photovoltaik I .. 102
21930 Photovoltaik II ... 104
37290 Semiconductor Physics .. 106
40400 Symmetrien und Gruppentheorie .. 109
42990 Vertiefende Mikroanalytik von Werkstoffen .. 110

80510 Master`s Thesis Material Science ... 111
Qualifikationsziele

Die Absolventinnen und Absolventen des Master Studiengangs „Materialwissenschaft“

• verfügen über ein vertieftes mathematisch-, natur- und materialwissenschaftliches Wissen, dass Sie befähigt materialwissenschaftliche Problemstellungen richtig einzustufen, zu verstehen und vor dem Hintergrund der multidisziplinären Ausrichtung des Fachgebietes auf wissenschaftlichem Niveau zu lösen.
• Haben sowohl ein breites als auch grundlegendes Verständnis über die Beziehung zwischen Eigenschaften und dem Aufbau/Mikrostruktur von Materialien erworben, und sind somit in der Lage gezielt Eigenschaften von Materialien durch kontrollierte Prozesse einzustellen.
• Haben Kenntnisse über die wesentlichen und neuesten Materialcharakterisierungsmethoden und sind somit in der Lage ein sehr breites Spektrum materialwissenschaftliche Fragestellungen systematisch zu lösen bzw. neue Verfahren für neue Fragestellungen zu entwickeln.
• Sind in der Lage mit Fachleuten und Spezialisten aus dem materialwissenschaftlichen Kernspektrum und anderen naturwissenschaftlichen und ingenieurwissenschaftlichen Disziplinen zu kommunizieren.
• Sind durch die naturwissenschaftlich grundlegend geprägte Ausbildung in der Lage Ihre Kenntnisse zu vertiefen, sich neue Wissensgebiete im naturwissenschaftlichen Spektrum zu erschließen und wesentlich beizutragen an der wissenschaftlichen Entwicklung des Fachgebiets.
• Sind in der Lage selbständig Projekte aus dem Bereich Forschung und Entwicklung zu Planen und durchzuführen.
100 Chalmers

<table>
<thead>
<tr>
<th>Zugeordnete Module</th>
<th>110</th>
<th>Incoming</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>120</td>
<td>Outgoing</td>
</tr>
</tbody>
</table>
110 Incoming

<table>
<thead>
<tr>
<th>Zugeordnete Module</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>111</td>
<td>Options 1</td>
<td></td>
</tr>
<tr>
<td>112</td>
<td>Options 2</td>
<td></td>
</tr>
<tr>
<td>80510</td>
<td>Master’s Thesis Material Science</td>
<td></td>
</tr>
</tbody>
</table>
111 Options 1

Zugeordnete Module:
1111 Option A
1112 Option B
1111 Option A

Zugeordnete Module: 17700 Synthesis and Properties of Ceramic Materials
55750 Materials Science - Seminar and Practical/Laboratory
Modul: 55750 Materials Science - Seminar and Practical/Laboratory

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>9.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Ralf Schacherl</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td></td>
</tr>
</tbody>
</table>
 ➞ Chalmers -->Incoming
 ➞ DoubleM.D. Materialwissenschaft (Materials Science), PO 2014
 ➞ Incoming -->Options 1 -->Option A |
| 11. Empfohlene Voraussetzungen: | |
| 12. Lernziele: | |
| 13. Inhalt: | |
| 14. Literatur: | |
| 15. Lehrveranstaltungen und -formen: | • 557501 Materials Science - Seminar
 • 557502 Materials Science - Practical/Laboratory |
| 16. Abschätzung Arbeitsaufwand: | |
| 17. Prüfungsnummer/n und -name: | • 55751 Materials Science - Seminar and Practical/Laboratory (USL), schriftlich, eventuell mündlich, Gewichtung: 1.0
 • 55752 Materials Science - Seminar and Practical/Laboratory (USL), schriftlich, eventuell mündlich, Gewichtung: 1.0 |
| 18. Grundlage für ... : | |
| 19. Medienform: | |
| 20. Angeboten von: | |
Modul: 17700 Synthesis and Properties of Ceramic Materials

2. Modulkürzel: 030500014 5. Modulduauer: 1 Semester
4. SWS: 4.0 7. Sprache: Deutsch

9. Dozenten: • Joachim Bill
 • Anke Weidenkaff
10. Zuordnung zum Curriculum in diesem Studiengang:
 - Double M.D. Materialwissenschaft (Materials Science), PO 2011, 3. Semester
 ➔ Chalmers -->Incoming ➔
 Double M.D. Materialwissenschaft (Materials Science), PO 2011, 3. Semester
 ➔ Chalmers -->Outgoing -->Compulsory Modules ➔
 Double M.D. Materialwissenschaft (Materials Science), PO 2014, 3. Semester
 ➔ Incoming -->Options 1 -->Option A ➔
 Double M.D. Materialwissenschaft (Materials Science), PO 2014, 3. Semester
 ➔ Outgoing -->Options -->Option B ➔

11. Empfohlene Voraussetzungen: BSc Materialwissenschaft (Materials Science)
12. Lernziele:
 - The students
 - have knowledge about ceramics produced by powder technology and by molecular precursors
 - have knowledge about biomineralization processes and biominerals
 - are able to understand bio-inspired processes and materials

13. Inhalt:
 Ceramics produced by powder technology, ceramics derived from molecular precursors, biomineralization, bio-inspired processes and materials.

14. Literatur:
 • Colombo, R. et al. (Eds.): Polymer Derived Ceramics, DEStech Publication, 2010.

15. Lehrveranstaltungen und -formen:
 • 177001 Lecture Synthesis and Properties of Ceramic Materials
 • 177002 Exercise Synthesis and Properties of Ceramic Materials

16. Abschätzung Arbeitsaufwand:
 - Lecture
 Presence hours: 28h
 Self-study: 63 h
 - Exercises
 Present hours: 28h
 Self-study: 56h
17. Prüfungsnummer/n und -name: • 17701 Synthesis and Properties of Ceramic Materials (PL), schriftlich oder mündlich, Gewichtung: 1.0, Accreditation: presence during exercises
• V Vorleistung (USL-V), Sonstiges

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
1112 Option B

Zugeordnete Module:
17560 Phase Transformations
55760 Materials Science - Seminar and Practical/Laboratory
Modul: 55760 Materials Science - Seminar and Practical/Laboratory

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>-</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modul:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. Modulverantwortlicher:</th>
<th>Ralf Schacherl</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>9. Dozenten:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>10. Zuordnung zum Curriculum in diesem Studiengang:</th>
</tr>
</thead>
</table>
| DoubleM.D. Materialwissenschaft (Materials Science), PO 2011
 ➞ Chalmers --->Incoming
 ➞ DoubleM.D. Materialwissenschaft (Materials Science), PO 2014
 ➞ Incoming --->Options 1 --->Option B |

<table>
<thead>
<tr>
<th>11. Empfohlene Voraussetzungen:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>12. Lernziele:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>13. Inhalt:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>14. Literatur:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>15. Lehrveranstaltungen und -formen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 557601 Materials Science - Seminar</td>
</tr>
<tr>
<td>• 557602 Materials Science - Practical/Laboratory</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16. Abschätzung Arbeitsaufwand:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 55761 Materials Science - Seminar and Practical/Laboratory (USL) (USL), schriftlich, eventuell mündlich, Gewichtung: 1.0</td>
</tr>
<tr>
<td>• 55762 Materials Science - Seminar and Practical/Laboratory (USL), schriftlich, eventuell mündlich, Gewichtung: 1.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>18. Grundlage für ...:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>19. Medienform:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>20. Angeboten von:</th>
</tr>
</thead>
</table>
Modul: 17560 Phase Transformations

2. Modulkürzel: 031400010
5. Modulduer: 2 Semester

3. Leistungspunkte: 9.0 LP

4. SWS: 7.0
7. Sprache: Englisch

8. Modulverantwortlicher: Univ.-Prof. Eric Jan Mittemeijer

9. Dozenten: Eric Jan Mittemeijer

10. Zuordnung zum Curriculum in diesem Studiengang:
 DoubleM.D. Materialwissenschaft (Materials Science), PO 2011, 1. Semester
 Chalmers --> Incoming
 Chalmers --> Outgoing --> Compulsory Modules
 incoming --> Options 1 --> Option B
 Outgoing --> Options --> Option A

11. Empfohlene Voraussetzungen: BSc Materialwissenschaft (Materials Science)

12. Lernziele:
 The students
 - are proficient in the field of thermodynamics and solid state kinetics of materials;
 - know the most important surface-treatment methods of materials and the properties obtained after the treatment;
 - are able to apply the concepts of thermodynamics, solid state kinetics and surface-treatment methods in the research and development of advanced materials;
 - have the competence to communicate, on a high level, with experts in the field of science and engineering about the topics of this module (e.g. on symposia).

13. Inhalt:
 Thermodynamics of Materials
 Thermodynamics of mixed phases (integral mixing functions, partial mixing functions); general definition of partial state variables, solution models (ideal, regular, real); melting equilibria; solid-liquid equilibria; partial vapour pressure; EMF methods; calorimeter; order-transition in mixed crystals; piezoelectricity; thermodynamic properties of alloys; influence of atom-volume differences; Miedema model; analytical description of thermodynamic mixing functions; calculation and description of phase equilibria; potential-partial pressure diagram; Ellingham diagram; electron theoretical "first principle" calculation of thermodynamic mixing functions.

 Solid state kinetics: diffusion and phase transformation kinetics
 Meaning of diffusion for the microstructure, defects;
Fick's laws, thermodynamic factor, examples, Boltzmann-Matano analysis;
Substitutional and interstitial diffusion, experiment of Simmons and Balluffi;
Kirkendall-effect; Darken-equation; Onsager-relations;
Grain-boundary diffusion (Fisher, Suzoka, Whipple), diffusion along dislocations; diffusion-induced grain boundary migration;
Schottky- and Frenkel-defects, mass transport in chemical and electrical potential fields, effect of impurities;
Diffusion in ionic semiconductors; diffusion in semiconductors;
Electromigration; interstitials in metals # electromigration; homogenous and heterogeneous reactions; Johnson-Mehl-Avrami equation;
nucleation, growth and impingement; analysis of transformation kinetics;

Surface Engineering
Thermochemical processes: carburizing, nitriding, oxidation, CVD etc.
PVD.
Characterisation of surfaces and thin layers: development and measurement of residual stresses; depth-profile analysis.

14. Literatur:
- E.J. Mittemeijer; Fundamentals of Materials Science; Springer (2010)
- D.R. Gaskell; Introduction to the Thermodynamics of Materials; Taylor & Francis (2009)
- C.H.P. Lupis; Chemical Thermodynamics of Materials; North Holland (1983)
- M. Hillert; Phase Equilibria, Phase Diagrams and Phase Transformations: Their Thermodynamic Basis; Cambridge University Press (2007)
- D.A. Porter, K.E. Easterling, M.Y. Sherif; Phase Transformations in Metals and Alloys; CRC Press (2009)
- P. Shewmon; Diffusion in Solids; John Wiley & Sons (1988)
- J. Crank; The Mathematics of Diffusion; Oxford University Press (1979)

15. Lehrveranstaltungen und -formen:
- 175601 Lecture Phase Transformations
- 175602 Exercise Phase Transformations

16. Abschätzung Arbeitsaufwand:
Presence time: 100 h
Self-study: 161 h
Total: 261 h

17. Prüfungsnummer/n und -name:
- 17561 Phase Transformations (PL), mündliche Prüfung, Gewichtung: 1.0, Zulassung: Übungsklausur bestanden
- V Vorleistung (USL-V), schriftliche Prüfung

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Institut für Materialwissenschaft
112 Options 2

Zugeordnete Module: 1121 Option A
 1122 Option B
1121 Option A

Zugeordnete Module:
17710 Nanocomposite Materials
37100 Diffraction methods in Materials Science
50080 Physikalische Chemie von Polymeren
Modul: 37100 Diffraction methods in Materials Science

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>031400025</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Eric Jan Mittemeijer

9. Dozenten:

10. Zuordnung zum Curriculum in diesem Studiengang:
- DoubleM.D. Materialwissenschaft (Materials Science), PO 2011
 - Chalmers --
 - Incoming
- DoubleM.D. Materialwissenschaft (Materials Science), PO 2014
 - Incoming --
 - Options 2 --
 - Option A
- DoubleM.D. Materialwissenschaft (Materials Science), PO 2014
 - Incoming --
 - Options 2 --
 - Option B
- DoubleM.D. Materialwissenschaft (Materials Science), PO 2014
 - Zusatzmodule

11. Empfohlene Voraussetzungen: BSc Materialwissenschaft (Materials Science)

12. Lernziele: The students will be able to:
- Perform themselves diffraction experiments
- Interpret diffraction data
- Extract relevant microstructural information from the diffraction data

13. Inhalt: The course covers the application of different diffraction methods for the study of basic and advanced materials. Topics covered include:
- Classification of Materials
- Defects in Solids
- Basics of X-ray and neutron scattering
- Diffraction studies of Polycrystalline Materials
- Microstructural Analysis by Diffraction
- Diffraction studies of Thin Films
- Diffraction studies of Nanomaterials
- Diffraction studies of Amorphous and Composite Materials

15. Lehrveranstaltungen und -formen: 371001 Vorlesung mit Übungen Diffraction Methods in Material Science

16. Abschätzung Arbeitsaufwand: Präsenzzeit 4 SWS
Selbststudium 2 SWS

17. Prüfungsnummer/n und -name: • 37101 Diffraction methods in Materials Science (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0
• V Vorleistung (USL-V), schriftliche Prüfung

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
Modul: 17710 Nanocomposite Materials

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
</tbody>
</table>

9. Dozenten: Joachim Bill

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>DoubleM.D. Materialwissenschaft (Materials Science), PO 2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>Chalmers --> Incoming</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>DoubleM.D. Materialwissenschaft (Materials Science), PO 2011</td>
</tr>
<tr>
<td>Chalmers --> Outgoing --> Compulsory Modules</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>DoubleM.D. Materialwissenschaft (Materials Science), PO 2014</td>
</tr>
<tr>
<td>Incoming --> Options 2 --> Option A</td>
</tr>
<tr>
<td>---</td>
</tr>
<tr>
<td>DoubleM.D. Materialwissenschaft (Materials Science), PO 2014</td>
</tr>
<tr>
<td>Outgoing --> Options --> Option B</td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen: BSc Materialwissenschaft (Materials Science)

12. Lernziele:
The students:
- have knowledge of preparation of nanocomposite materials and organic/inorganic hybrids
- are able to identify correlations between the structure and properties of materials
- are able to create new application fields based on determined structure/property correlation

13. Inhalt:
- bionic principles
- biomineralization
- bio-inspired materials
- nanocomposites derived from molecular precursors

14. Literatur:

15. Lehrveranstaltungen und -formen:
- 177101 Lecture Nanocomposite Materials
- 177102 Excercise Nanocomposite Materials

16. Abschätzung Arbeitsaufwand:
- Lecture
 Presence hours: 28h
 Self-study: 63h
- Exercises
 Present hours: 28h
 Self-study: 56h
17. Prüfungsnummer/n und -name: • 17711 Nanocomposite Materials (PL), schriftlich oder mündlich,
Accreditation: presence during exercises
• V Vorleistung (USL-V), Sonstiges

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 50080 Physikalische Chemie von Polymeren

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>031210803</th>
<th>5. Moduldaurer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>1.5</td>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Sabine Ludwigs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Sabine Ludwigs</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>The students have knowledge in solution and solid properties of polymers. Furthermore the students have competence in polymer engineering and modification of technical important polymers.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>• Statistical thermodynamics (Flory-Huggins-theory, solubility parameters, phase equilibrium and phase transition) • Morphologies of homo-, block copolymers and polymer blends • Amorphous and crystalline polymer state • Rubber elasticity • Polymer viscoelasticity • Polymer topics (polyelectrolytes, polymer surfaces, conducting polymers, nanolithography)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>U. W. Gedde, Polymer Physics, Chapman & Hall</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>500801 Vorlesung Physikalische Chemie von Polymeren</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Lecture</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Presence hours 10 x 3 h = 30 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>examination 2 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Self-study 58 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Summe: 90 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>50081 Physikalische Chemie von Polymeren (BSL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
20. Angeboten von:
1122 Option B

Zugeordnete Module:
- 17650 New Materials and Materials Characterization Methods
- 37100 Diffraction methods in Materials Science
- 50080 Physikalische Chemie von Polymeren
Modul: 37100 Diffraction methods in Materials Science

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>031400025</th>
<th>5. Modulduauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. Modulverantwortlicher:</th>
<th>Univ.-Prof. Eric Jan Mittemeijer</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>10. Zuordnung zum Curriculum in diesem Studiengang:</th>
</tr>
</thead>
<tbody>
<tr>
<td>DoubleM.D. Materialwissenschaft (Materials Science), PO 2011 ➔ Chalmers -->Incoming ➔</td>
</tr>
<tr>
<td>DoubleM.D. Materialwissenschaft (Materials Science), PO 2014 ➔ Incoming -->Options 2 -->Option A ➔</td>
</tr>
<tr>
<td>DoubleM.D. Materialwissenschaft (Materials Science), PO 2014 ➔ Incoming -->Options 2 -->Option B ➔</td>
</tr>
<tr>
<td>DoubleM.D. Materialwissenschaft (Materials Science), PO 2014 ➔ Zusatzmodule</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11. Empfohlene Voraussetzungen:</th>
<th>BSc Materialwissenschaft (Materials Science)</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>12. Lernziele:</th>
<th>The students will be able to:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Perform themselves diffraction experiments</td>
<td></td>
</tr>
<tr>
<td>Interpret diffraction data</td>
<td></td>
</tr>
<tr>
<td>Extract relevant microstructural information from the diffraction data</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13. Inhalt:</th>
<th>The course covers the application of different diffraction methods for the study of basic and advanced materials. Topics covered include:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Classification of Materials</td>
<td></td>
</tr>
<tr>
<td>• Defects in Solids</td>
<td></td>
</tr>
<tr>
<td>• Basics of X-ray and neutron scattering</td>
<td></td>
</tr>
<tr>
<td>• Diffraction studies of Polycrystalline Materials</td>
<td></td>
</tr>
<tr>
<td>• Microstructural Analysis by Diffraction</td>
<td></td>
</tr>
<tr>
<td>• Diffraction studies of Thin Films</td>
<td></td>
</tr>
<tr>
<td>• Diffraction studies of Nanomaterials</td>
<td></td>
</tr>
<tr>
<td>• Diffraction studies of Amorphous and Composite Materials</td>
<td></td>
</tr>
</tbody>
</table>

|---------------|---|

<table>
<thead>
<tr>
<th>15. Lehrveranstaltungen und -formen:</th>
<th>371001 Vorlesung mit Übungen Diffraction Methods in Material Science</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>16. Abschätzung Arbeitsaufwand:</th>
<th>Präsenzzeit 4 SWS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selbststudiumszeit 2 SWS</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>• 37101 Diffraction methods in Materials Science (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>• V Vorleistung (USL-V), schriftliche Prüfung</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>19. Medienform:</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>20. Angeboten von:</th>
<th></th>
</tr>
</thead>
</table>
Modul: 17650 New Materials and Materials Characterization Methods

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>031420056</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>6.5</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Guido Schmitz</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Eduard Arzt</td>
</tr>
</tbody>
</table>

Zuordnung zum Curriculum in diesem Studiengang:

- DoubleM.D. Materialwissenschaft (Materials Science), PO 2011, 2. Semester
 - Chalmers -->Incoming
 - Chalmers -->Outgoing -->Compulsory Modules
 - PO 2014, 2. Semester
 - Incoming -->Options 2 -->Option B
 - PO 2014, 2. Semester
 - Outgoing -->Options -->Option A

11. Empfohlene Voraussetzungen:

- BSc Materialwissenschaft (Materials Science)

12. Lernziele:

- The students
 - have knowledge of the structure and function of biological and nano-structured materials
 - have knowledge of the basic principles of testing and characterization techniques
 - are able to select a proper means of testing/analysis for a given problem.
 - are able to communicate with experts in this field about biological and nano-structured materials as well as testing and characterization methods

13. Inhalt:

- Biological materials: wood, bone, teeth, silk, resilin
- Bio-inspired materials: functional surfaces
- Biological strategies : self-cleaning (lotus effect), reduction of flow resistance (shark skin), adhesion design (insects and reptiles), self-organization (cytoskeleton)
- Nanostructured materials: nano-crystalline metals, nano-particles, nanorods, quantum dots & lines, thin films, structuring, applications
- Characterization methods: high resolution microscopy, synchrotron techniques

14. Literatur:

15. Lehrveranstaltungen und -formen:

- 176501 Lecture New Materials and Materials Characterization Methods
| 16. Abschätzung Arbeitsaufwand: | Presence time: 92h
Self-Study: 88h
Total: 180h |
|---|---|
| 17. Prüfungsnummer/n und -name: | • 17651 New Materials and Materials Characterization Methods (PL), mündliche Prüfung, 30 Min., Gewichtung: 1.0, Zulassung: Praktikum bestanden
• V Vorleistung (USL-V), mündliche Prüfung, 30 Min. |
| 18. Grundlage für ... : | |
| 19. Medienform: | |
| 20. Angeboten von: | |
Modul: 50080 Physikalische Chemie von Polymeren

2. Modulkürzel: 031210803
5. Moduldauer: 1 Semester
3. Leistungspunkte: 3.0 LP
6. Turnus: jedes 2. Semester, SoSe
4. SWS: 1.5
7. Sprache: Englisch

8. Modulverantwortlicher: Univ.-Prof. Sabine Ludwigs

9. Dozenten: Sabine Ludwigs

10. Zuordnung zum Curriculum in diesem Studiengang:
 DoubleM.D. Materialwissenschaft (Materials Science), PO 2011
 → Chalmers → Incoming
 →
 DoubleM.D. Materialwissenschaft (Materials Science), PO 2014
 → Incoming → Options 2 → Option A
 →
 DoubleM.D. Materialwissenschaft (Materials Science), PO 2014
 → Incoming → Options 2 → Option B
 →

12. Lernziele: The students have knowledge in solution and solid properties of polymers. Furthermore the students have competence in polymer engineering and modification of technical important polymers.

13. Inhalt:
 - Statistical thermodynamics (Flory-Huggins-theory, solubility parameters, phase equilibrium and phase transition)
 - Morphologies of homo-, block copolymers and polymer blends
 - Amorphous and crystalline polymer state
 - Rubber elasticity
 - Polymer viscoelasticity
 - Polymer topics (polyelectrolytes, polymer surfaces, conducting polymers, nanolithography)

14. Literatur:
 L. H. Sperling, Introduction to Physical Polymer Science, Wiley-VCH
 U. W. Gedde, Polymer Physics, Chapman & Hall

15. Lehrveranstaltungen und -formen:
 500801 Vorlesung Physikalische Chemie von Polymeren

16. Abschätzung Arbeitsaufwand:
 Presence hours 10 x 3 h = 30 h
 examination 2 h
 Self-study 58 h
 Summe: 90 h

17. Prüfungsnummer/n und -name:
 50081 Physikalische Chemie von Polymeren (BSL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
Modul: 80510 Master's Thesis Material Science

2. Modulkürzel: 031400016
5. Moduldauer: 2 Semester
3. Leistungspunkte: 30.0 LP
6. Turnus: jedes Semester
4. SWS: 0.0
7. Sprache: Englisch

8. Modulverantwortlicher: Univ.-Prof. Eric Jan Mittemeijer

9. Dozenten:

 ➔
 DoubleM.D. Materialwissenschaft (Materials Science), PO 2014 ➔ Chalmers -->Incoming
 ➔

11. Empfohlene Voraussetzungen:

12. Lernziele:
 The students:
 • Can oversee independently a small scientific project and evaluate the results.
 • Are able to summarize the results in a scientific report and present these in a talk

13. Inhalt:
 • Familiarization in the project by literature research and preparation of a work plan.
 • Performance and evaluation of the own experiments.
 • Discussion of the results.
 • Summarization of the results in a scientific report.
 • Presentation and defence of the results

14. Literatur:

15. Lehrveranstaltungen und -formen:

16. Abschätzung Arbeitsaufwand:

17. Prüfungsnummer/n und -name:

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
120 Outgoing

<table>
<thead>
<tr>
<th>Zugeordnete Module</th>
<th>121</th>
<th>Options</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>122</td>
<td>Electives</td>
</tr>
</tbody>
</table>
121 Options

Zugeordnete Module: 1211 Option A
 1212 Option B
1211 Option A

<table>
<thead>
<tr>
<th>Zugeordnete Module</th>
<th>Modulbezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>17560</td>
<td>Phase Transformations</td>
</tr>
<tr>
<td>17650</td>
<td>New Materials and Materials Characterization Methods</td>
</tr>
<tr>
<td>17660</td>
<td>Polymer Chemistry Laboratory</td>
</tr>
<tr>
<td>17690</td>
<td>Statistische Thermodynamik</td>
</tr>
<tr>
<td>38140</td>
<td>Materials Science Laboratory</td>
</tr>
<tr>
<td>38150</td>
<td>Material Science Seminar</td>
</tr>
<tr>
<td>39190</td>
<td>Polymer Materials Science</td>
</tr>
</tbody>
</table>
Modul: 38150 Material Science Seminar

2. Modulkürzel: 031400012 5. Modulduauer: 1 Semester
4. SWS: 4.0 7. Sprache: Englisch

8. Modulverantwortlicher: Univ.-Prof. Eric Jan Mittemeijer
9. Dozenten: • Eric Jan Mittemeijer
 • Guido Schmitz
 • Anke Weidenkaff
 ➔ Outgoing --> Options --> Option A
 ➔ Double M.D. Materialwissenschaft (Materials Science), PO 2014
 ➔ Outgoing --> Options --> Option B

11. Empfohlene Voraussetzungen:

12. Lernziele: The students
 • are able to become acquainted with a complex topic in the field of materials science;
 • can present a topic within a limited time span in front of a professional audience;
 • have the competence to apply suitable presentation techniques.

13. Inhalt: • Literature research of a given topic of materials science
 • Presentation of the topic in a talk
 • Preparation of an abstract about the topic

15. Lehrveranstaltungen und -formen: 381501 Material Science Seminar

16. Abschätzung Arbeitsaufwand: Lecture
 Presence hours: 56h
 Self-study: 120h
 Total: 176

17. Prüfungsnummer/n und -name: 38151 Material Science Seminar (USL), Sonstiges, Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
Modul: 38140 Materials Science Laboratory

2. Modulkürzel: 031400089 5. Moduldaurer: 1 Semester
4. SWS: 18.0 7. Sprache: Englisch

8. Modulverantwortlicher: Univ.-Prof. Eric Jan Mittemeijer
9. Dozenten:
 • Eric Jan Mittemeijer
 • Guido Schmitz
 • Anke Weidenkaff

10. Zuordnung zum Curriculum in diesem Studiengang:
 DoubleM.D. Materialwissenschaft (Materials Science), PO 2014
 → Outgoing → Options → Option A
 → DoubleM.D. Materialwissenschaft (Materials Science), PO 2014
 → Outgoing → Options → Option B
 →

11. Empfohlene Voraussetzungen:

12. Lernziele: The students
 • are able to perform independently complex experiments in the field of Materials Science;
 • can evaluate the results, obtained from the experiments;
 • are able to interpret the results, against the background of existing (theoretical) knowledge (including assessments of possible sources of experimental errors).

13. Inhalt: The laboratory course covers:
 • Thermodynamics of materials
 • Phase-transformations
 • Advanced characterization methods of materials
 • Mechanical properties of materials
 • Synthesis of advanced materials

14. Literatur:
 • E.J. Mittemeijer; Fundamentals of Materials Science; Springer (2010)

15. Lehrveranstaltungen und -formen: 381401 Materials Science Laboratory

16. Abschätzung Arbeitsaufwand:
 Presence time: 216h
 Self-study: 144h
 Total: 360

17. Prüfungsnummer/n und -name: 38141 Materials Science Laboratory (USL), Sonstiges, Gewichtung: 1.0

18. Grundlage für ...:

19. Medienform:

20. Angeboten von:
Modul: 17650 New Materials and Materials Characterization Methods

2. Modulkürzel: 031420056 5. Moduldauer: 1 Semester
4. SWS: 6.5 7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Guido Schmitz
9. Dozenten: Eduard Arzt
10. Zuordnung zum Curriculum in diesem Studiengang:

DoubleM.D. Materialwissenschaft (Materials Science), PO 2011, 2. Semester
 → Chalmers -->Incoming
 → Chalmers -->Outgoing -->Compulsory Modules
 →
DoubleM.D. Materialwissenschaft (Materials Science), PO 2014, 2. Semester
 → Incoming -->Options 2 -->Option B
 →
DoubleM.D. Materialwissenschaft (Materials Science), PO 2014, 2. Semester
 → Outgoing -->Options -->Option A
 →

11. Empfohlene Voraussetzungen: BSc Materialwissenschaft (Materials Science)
12. Lernziele:
 The students
 • have knowledge of the structure and function of biological and nano-
 structured materials
 • have knowledge of the basic principles of testing and characterization
 techniques
 • are able to select a proper means of testing/analysis for a given prob-
 lem.
 • are able to communicate with experts in this field about biological and
 nano-structured materials as well as testing and characterization meth-
 ods

13. Inhalt:
 Biological materials: wood, bone, teeth, silk, resilin
 Bio-inspired materials: functional surfaces
 Biological strategies : self-cleaning (lotus effect), reduction of flow
 resistance (shark skin), adhesion design (insects and reptiles), self-
 organization (cytoskeleton)
 nanostructured materials: nano-crystalline metals, nano-particles,
 nanorods, quantum dots & lines, thin films, structuring, applications
 characterization methods: high resolution microscopy, synchrotron
 techniques

14. Literatur:
 Julian Vincent, "Structural Biomaterials", revised edition, Princeton
 University Press, Princeton, 1991

15. Lehrveranstaltungen und -formen: 176501 Lecture New Materials and Materials Characterization
 Methods
16. Abschätzung Arbeitsaufwand:
Presence time: 92h
Self-Study: 88h
Total: 180h

17. Prüfungsnummer/n und -name:
• 17651 New Materials and Materials Characterization Methods (PL), mündliche Prüfung, 30 Min., Gewichtung: 1.0, Zulassung: Praktikum bestanden
• V Vorleistung (USL-V), mündliche Prüfung, 30 Min.

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 17560 Phase Transformations

4. SWS: 7.0 7. Sprache: Englisch
8. Modulverantwortlicher: Univ.-Prof. Eric Jan Mittemeijer
9. Dozenten: Eric Jan Mittemeijer
10. Zuordnung zum Curriculum in diesem Studiengang:
 DoubleM.D. Materialwissenschaft (Materials Science), PO 2011, 1. Semester
 ➔ Chalmers -->Incoming
 ➔ DoubleM.D. Materialwissenschaft (Materials Science), PO 2011, 1. Semester
 ➔ Chalmers -->Outgoing -->Compulsory Modules
 ➔ DoubleM.D. Materialwissenschaft (Materials Science), PO 2014, 1. Semester
 ➔ Incoming -->Options 1 -->Option B
 ➔ DoubleM.D. Materialwissenschaft (Materials Science), PO 2014, 1. Semester
 ➔ Outgoing -->Options -->Option A
11. Empfohlene Voraussetzungen: BSC Materialwissenschaft (Materials Science)
12. Lernziele:
 The students
 • are proficient in the field of thermodynamics and solid state kinetics of materials;
 • know the most important surface-treatment methods of materials and the properties obtained after the treatment;
 • are able to apply the concepts of thermodynamics, solid state kinetics and surface-treatment methods in the research and development of advanced materials;
 • have the competence to communicate, on a high level, with experts in the field of science and engineering about the topics of this module (e.g. on symposia).
13. Inhalt:
 Thermodynamics of Materials
 Thermodynamics of mixed phases (integral mixing functions, partial mixing functions); general definition of partial state variables, solution models (ideal, regular, real); melting equilibria; solid-liquid equilibria; partial vapour pressure; EMF methods; calorimeter; order-transition in mixed crystals; piezoelectricity; thermodynamic properties of alloys; influence of atom-volume differences; Miedema model; analytical description of thermodynamic mixing functions; calculation and description of phase equilibria; potential -partial pressure diagram; Ellingham diagram; electron theoretical "first principle" calculation of thermodynamic mixing functions.

 Solid state kinetics: diffusion and phase transformation kinetics
 Meaning of diffusion for the microstructure, defects;
Fick's laws, thermodynamic factor, examples, Boltzmann-Matano analysis;
Substitutional and interstitial diffusion, experiment of Simmons and Balluffi;
Kirkendall-effect; Darken-equation; Onsager-relations;
Grain-boundary diffusion (Fisher, Suzoka, Whipple), diffusion along dislocations; diffusion-induced grain boundary migration;
Schottky- and Frenkel-defects, mass transport in chemical and electrical potential fields, effect of impurities;
Diffusion in ionic semiconductors; diffusion in semiconductors;

Electromigration; interstitials in metals # electromigration; homogenous and heterogeneous reactions; Johnson-Mehl-Avrami equation;
nucleation, growth and impingement; analysis of transformation kinetics;

Surface Engineering
Thermochemical processes: carburizing, nitriding, oxidation, CVD etc. PVD.
Characterisation of surfaces and thin layers: development and measurement of residual stresses; depth- profile analysis.

14. Literatur:
 - E.J. Mittemeijer; Fundamentals of Materials Science; Springer (2010)
 - D.R. Gaskell; Introduction to the Thermodynamics of Materials; Taylor & Francis (2009)
 - C.H.P. Lupis; Chemical Thermodynamics of Materials; North Holland (1983)
 - M. Hillert; Phase Equilibria, Phase Diagrams and Phase Transformations: Their Thermodynamic Basis; Cambridge University Press (2007)
 - D.A. Porter, K.E. Easterling, M.Y. Sherif; Phase Transformations in Metals and Alloys; CRC Press (2009)
 - P. Shewmon; Diffusion in Solids; John Wiley & Sons (1988)
 - J. Crank; The Mathematics of Diffusion; Oxford University Press (1979)

15. Lehrveranstaltungen und -formen:
 - 175601 Lecture Phase Transformations
 - 175602 Excercise Phase Transformations

16. Abschätzung Arbeitsaufwand:
 - Presence time: 100 h
 - Self-study: 161 h
 - Total: 261 h

17. Prüfungsnummer/n und -name:
 - 17561 Phase Transformations (PL), mündliche Prüfung, Gewichtung: 1.0, Zulassung: Übungsklausur bestanden
 - V Vorleistung (USL-V), schriftliche Prüfung

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Institut für Materialwissenschaft
Modul: 17660 Polymer Chemistry Laboratory

2. Modulkürzel: 031210099
3. Leistungspunkte: 6.0 LP
4. SWS: 9.0
5. Moduldaurer: 1 Semester
6. Turnus: unregelmäßig
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Sabine Ludwigs

9. Dozenten: • Klaus Dirnberger
• Michael Buchmeiser
• Sabine Ludwigs

10. Zuordnung zum Curriculum in diesem
Studiengang:

DoubleM.D. Materialwissenschaft (Materials Science), PO 2011, 2.
Semester
➞ Chalmers -->Incoming

DoubleM.D. Materialwissenschaft (Materials Science), PO 2011, 2.
Semester
➞ Chalmers -->Outgoing -->Compulsory Modules

DoubleM.D. Materialwissenschaft (Materials Science), PO 2014, 2.
Semester
➞ Outgoing -->Options -->Option A

DoubleM.D. Materialwissenschaft (Materials Science), PO 2014, 2.
Semester
➞ Outgoing -->Options -->Option B

11. Empfohlene Voraussetzungen: Pflichtveranstaltung „Grundlagen der Makromolekularen Chemie“ (6 ECTS) im Bachelor-Studium

12. Lernziele: The Students
• Have the ability to understand synthesis processes of polymers in the
laboratory and praxis.
• Can characterize polymers and determine their properties.
• Have the ability to transfer the acquired knowledge and skills into the
polymer technology.
• Can communicate on the field of polymer chemistry and similar disci-
plines with specialists about synthesis, characterization and properties of
polymers.

13. Inhalt:
• Polymer analog reaction
• Polycondensation and polyaddition
• Radical polymerization
• Radical copolymerization
• Ionic polymerization
• Insertion polymerization
• Emulsion polymerization
• Viscosimetry
• Size Exclusion Chromatography (SEC)
• Differential Scanning Calorimetry (DSC)
• Polymer Rheology

15. Lehrveranstaltungen und -formen: • 176601 Polymer Chemistry Laboratory
16. Abschätzung Arbeitsaufwand:
- Presence time: 105h
- Self-study: 75h
- Total: 90h

17. Prüfungsnummer/n und -name:
- 176602 Polymer Chemistry Laboratory
- 17661 Polymer Chemistry Laboratory (BSL), mündliche Prüfung, Gewichtung: 1.0
- V Vorleistung (USL-V), mündliche Prüfung

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 39190 Polymer Materials Science

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>031210088</th>
<th>5. Modulduauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>6.0</td>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. Modulverantwortlicher:</th>
<th>Univ.-Prof. Michael Buchmeiser</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>9. Dozenten:</th>
<th>• Michael Buchmeiser</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Sabine Ludwigs</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

DoubleM.D. Materialwissenschaft (Materials Science), PO 2011
- Chalmers -->Outgoing --> Compulsory Modules

DoubleM.D. Materialwissenschaft (Materials Science), PO 2014
- Outgoing -->Options -->Option A

DoubleM.D. Materialwissenschaft (Materials Science), PO 2014
- Outgoing -->Options -->Option B

11. Empfohlene Voraussetzungen:

12. Lernziele:

The students have knowledge in solution and solid properties of polymers. Furthermore the students have competence in polymer engineering and modification of technical important polymers.

13. Inhalt:

- Statistical thermodynamics (Flory-Huggins-theory, solubility parameters, phase equilibrium and phase transition)
- Morphologies of homo-, block copolymers and polymer blends
- Amorphous and crystalline polymer state
- Rubber elasticity
- Polymer viscoelasticity
- Polymer topics (polyelectrolytes, polymer surfaces, conducting polymers, nanolithography)
- technical applications of polymers
- chem./phys. aids (softeners, anti-microbials, fire retardants,...)
- coatings (nanocomposites, ((V)UV curing, electron beam curing, surface-structuring
- inert gas processing
- adhesives
- polymers in analytical chemistry
- polymers in heterogeneous and micellar catalysis
- primary spinning techniques
- textiles and textile finishing
- carbon fibers, ceramic fibers, fiber-matrix composites
- polymeric high-performance fibers (PBI, PBO, PBTZ, M5,...)
- printing technologies
- electrically conductive polymers
- gas barrier coatings

14. Literatur:

L. H. Sperling, Introduction to Physical Polymer Science, Wiley-VCH
U. W. Gedde, Polymer Physics, Chapman & Hall
M. R. Buchmeiser (Editor), Polymeric Materials in Organic Synthesis and Catalysis, Wiley-VCH
15. Lehrveranstaltungen und -formen: 391901 Vorlesung Physikalische Chemie und Physik der Polymeren

16. Abschätzung Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Lecture</th>
<th>Presence hours</th>
<th>14 x 6 h = 84 h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>examination</td>
<td>2 h</td>
</tr>
<tr>
<td>Self-study</td>
<td></td>
<td>184 h</td>
</tr>
<tr>
<td></td>
<td>Summe:</td>
<td>270 h</td>
</tr>
</tbody>
</table>

17. Prüfungsnummer/n und -name: 39191 Polymer Materials Science (PL), schriftlich oder mündlich, Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 17690 Statistische Thermodynamik

2. Modulkürzel: 030710022
3. Leistungspunkte: 6.0 LP
4. SWS: 5.0
5. Modulcode: 17690 Statistische Thermodynamik
6. Turnus: jedes 2. Semester, SoSe
7. Sprache: Nach Ankündigung
8. Modulverantwortlicher: Univ.-Prof. Frank Gießelmann
9. Dozenten: Dozenten der Physikalischen Chemie
10. Zuordnung zum Curriculum in diesem Studiengang:
 DoubleM.D. Materialwissenschaft (Materials Science), PO 2011, 2. Semester
 → Chalmers -->Incoming
 → Chalmers -->Outgoing -->Compulsory Modules
 → DoubleM.D. Materialwissenschaft (Materials Science), PO 2014, 2. Semester
 → Outgoing -->Options -->Option A
 → DoubleM.D. Materialwissenschaft (Materials Science), PO 2014, 2. Semester
 → Outgoing -->Options -->Option B
11. Empfohlene Voraussetzungen:
 B.Sc. in Chemie oder Materialwissenschaft (Materials Science)
12. Lernziele:
 Die Studierenden
 • beherrschen die Grundzüge der statistischen Thermodynamik,
 • erkennen ihre Brückenfunktion zwischen molekularer und makroskopischer Theorie und
 • können mit ihren Anwendungen umgehen
13. Inhalt:
 • Reale Gase und Flüssigkeiten: Konfigurationsintegral, Virialkoeffizienten, intermolekulare Wechselwirkungen, Debye-Hückel-Theorie.
 • Festkörper: Spezifische Wärme, Einstein- und Debye-Theorie.
 • Transportphänomene: Diffusion, Viskosität, elektrische Leitfähigkeit und Wärmeleitung, Kreuzeffekte.
 • Schwankungerscheinungen: Thermische Fluktuationen und Theorie der Brownscben Bewegung, kritische Phänomene.
 • Grundzüge der molekularen Reaktionsdynamik: Stoßtheorie, Theorie des aktivierten Komplexes, Potentialhyperflächen
14. Literatur:
15. Lehrveranstaltungen und -formen:
• 176901 Vorlesung Statistische Thermodynamik
• 176902 Übung Statistische Thermodynamik
• 176903 Praktikum Statistische Thermodynamik

16. Abschätzung Arbeitsaufwand:
Vorlesung:
Präsenzzeit: 28 h;
Vor- und Nachbereitung (2 h pro Präsenzstunde): 56 h
Übung:
Präsenzzeit: 14 h;
Vor- und Nachbereitung (1 h pro Präsenzstunde): 14 h
Praktikum:
4 Versuche à 6 h: 24 h;
Vorbereitung und Protokoll: 6 h pro Versuch: 24 h
Abschlussprüfung:
Prüfung, inkl. Vorbereitung: 20 h

Gesamt: 180 h

17. Prüfungsnummer/n und -name:
• 17691 Statistische Thermodynamik (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0
• V Vorleistung (USL-V), schriftlich, eventuell mündlich, erfolgreiche Übungsteilnahme, alle Versuchsprotokolle testiert

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Physikalische Chemie I
1212 Option B

Zugeordnete Module:

- 17660 Polymer Chemistry Laboratory
- 17690 Statistische Thermodynamik
- 17700 Synthesis and Properties of Ceramic Materials
- 17710 Nanocomposite Materials
- 38140 Materials Science Laboratory
- 38150 Material Science Seminar
- 39190 Polymer Materials Science
Modul: 38150 Material Science Seminar

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>031400012</th>
<th>5. Modulduer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Eric Jan Mittemeijer</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Eric Jan Mittemeijer
• Guido Schmitz
• Anke Weidenkaff |
-- Outgoing -- Options -- Option A
DoubleM.D. Materialwissenschaft (Materials Science), PO 2014
-- Outgoing -- Options -- Option B |
| 11. Empfohlene Voraussetzungen: | |
| 12. Lernziele: | The students
• are able to become acquainted with a complex topic in the field of materials science;
• can present a topic within a limited time span in front of a professional audience;
• have the competence to apply suitable presentation techniques. |
| 13. Inhalt: | • Literature research of a given topic of materials science
• Presentation of the topic in a talk
• Preparation of an abstract about the topic |
| 15. Lehrveranstaltungen und -formen: | 381501 Material Science Seminar |
| 16. Abschätzung Arbeitsaufwand: | Lecture
Presence hours: 56h
Self-study: 120h
Total: 176 |
| 17. Prüfungsnummer/n und -name: | 38151 Material Science Seminar (USL), Sonstiges, Gewichtung: 1.0 |
| 18. Grundlage für ... : | |
| 19. Medienform: | |
| 20. Angeboten von: | |
Modul: 38140 Materials Science Laboratory

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>031400089</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>12.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>18.0</td>
</tr>
<tr>
<td>5. Modulduer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Eric Jan Mittemeijer

9. Dozenten:
- Eric Jan Mittemeijer
- Guido Schmitz
- Anke Weidenkaff

10. Zuordnung zum Curriculum in diesem Studiengang:
- DoubleM.D. Materialwissenschaft (Materials Science), PO 2014
 → Outgoing -->Options -->Option A
 →
- DoubleM.D. Materialwissenschaft (Materials Science), PO 2014
 → Outgoing -->Options -->Option B
 →

11. Empfohlene Voraussetzungen:

12. Lernziele:
The students
- are able to perform independently complex experiments in the field of Materials Science;
- can evaluate the results, obtained from the experiments;
- are able to to interpret the results, against the background of existing (theoretical) knowledge (including assessments of possible sources of experimental errors).

13. Inhalt:
The laboratory course covers:
- Thermodynamics of materials
- Phase-transformations
- Advanced characterization methods of materials
- Mechanical properties of materials
- Synthesis of advanced materials

14. Literatur:
- E.J. Mittemeijer; Fundamentals of Materials Science; Springer (2010)

15. Lehrveranstaltungen und -formen:
- 381401 Materials Science Laboratory

16. Abschätzung Arbeitsaufwand:
- Presence time: 216h
- Self-study: 144h
- Total: 360

17. Prüfungsnummer/n und -name:
- 38141 Materials Science Laboratory (USL), Sonstiges, Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 17710 Nanocomposite Materials

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>031400061</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
</tbody>
</table>

9. Dozenten: Joachim Bill

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>DoubleM.D. Materialwissenschaft (Materials Science), PO 2011</th>
<th>Chalmers → Incoming</th>
</tr>
</thead>
<tbody>
<tr>
<td>DoubleM.D. Materialwissenschaft (Materials Science), PO 2011</td>
<td>Chalmers → Outgoing → Compulsory Modules</td>
</tr>
<tr>
<td>DoubleM.D. Materialwissenschaft (Materials Science), PO 2014</td>
<td>Incoming → Options 2 → Option A</td>
</tr>
<tr>
<td>DoubleM.D. Materialwissenschaft (Materials Science), PO 2014</td>
<td>Outgoing → Options → Option B</td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen: BSc Materialwissenschaft (Materials Science)

12. Lernziele: The students:

- have knowledge of preparation of nanocomposite materials and organic/inorganic hybrids
- are able to identify correlations between the structure and properties of materials
- are able to create new application fields based on determined structure/property correlation

13. Inhalt: - bionic principles

- biomineralization

- bio-inspired materials

- nanocomposites derived from molecular precursors

14. Literatur:

15. Lehrveranstaltungen und -formen:

- 177101 Lecture Nanocomposite Materials
- 177102 Exercise Nanocomposite Materials

16. Abschätzung Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Lecture</th>
<th>Presence hours: 28h</th>
<th>Self-study: 63h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Exercises</td>
<td>Present hours: 28h</td>
<td>Self-study: 56h</td>
</tr>
</tbody>
</table>
17. Prüfungsnummer/n und -name: • 17711 Nanocomposite Materials (PL), schriftlich oder mündlich, Accreditation: presence during exercises
 • V Vorleistung (USL-V), Sonstiges

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 17660 Polymer Chemistry Laboratory

2. Modulkürzel: 031210099 5. Modulduauer: 1 Semester
4. SWS: 9.0 7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Sabine Ludwigs
9. Dozenten: • Klaus Dirnberger
 • Michael Buchmeiser
 • Sabine Ludwigs
10. Zuordnung zum Curriculum in diesem Studiengang:
 DoubleM.D. Materialwissenschaft (Materials Science), PO 2011, 2. Semester
 → Chalmers -->Incoming
 → DoubleM.D. Materialwissenschaft (Materials Science), PO 2011, 2. Semester
 → Chalmers -->Outgoing -->Compulsory Modules
 → DoubleM.D. Materialwissenschaft (Materials Science), PO 2014, 2. Semester
 → Outgoing -->Options -->Option A
 → DoubleM.D. Materialwissenschaft (Materials Science), PO 2014, 2. Semester
 → Outgoing -->Options -->Option B
11. Empfohlene Voraussetzungen: Pflichtveranstaltung „Grundlagen der Makromolekularen Chemie“ (6 ECTS) im Bachelor-Studium
12. Lernziele: The Students
 • Have the ability to understand synthesis processes of polymers in the laboratory and praxis.
 • Can characterize polymers and determine their properties.
 • Have the ability to transfer the acquired knowledge and skills into the polymer technology.
 • Can communicate on the field of polymer chemistry and similar disciplines with specialists about synthesis, characterization and properties of polymers.
13. Inhalt:
 • Polymer analog reaction
 • Polycondensation and polyaddition
 • Radical polymerization
 • Radical copolymerization
 • Ionic polymerization
 • Insertion polymerization
 • Emulsion polymerization
 • Viscosimetry
 • Size Exclusion Chromatography (SEC)
 • Differential Scanning Calorimetry (DSC)
 • Polymer Rheology
15. Lehrveranstaltungen und -formen: • 176601 Polymer Chemistry Laboratory
• 176602 Polymer Chemistry Laboratory

| 16. Abschätzung Arbeitsaufwand: | Presence time: 105h
| | Self-study: 75h
| | Total: 90h |

| 17. Prüfungsnummer/n und -name: | • 17661 Polymer Chemistry Laboratory (BSL), mündliche Prüfung, Gewichtung: 1.0
| | • V Vorleistung (USL-V), mündliche Prüfung |

18. Grundlage für ...:

19. Medienform:

20. Angeboten von:
Modul: 39190 Polymer Materials Science

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>031210088</th>
<th>5. Modulduer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>6.0</td>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Michael Buchmeiser

9. Dozenten: • Michael Buchmeiser
• Sabine Ludwigs

10. Zuordnung zum Curriculum in diesem Studiengang:
- DoubleM.D. Materialwissenschaft (Materials Science), PO 2011
 ➔ Chalmers ➔ Outgoing ➔ Compulsory Modules
- DoubleM.D. Materialwissenschaft (Materials Science), PO 2014
 ➔ Outgoing ➔ Options ➔ Option A
- DoubleM.D. Materialwissenschaft (Materials Science), PO 2014
 ➔ Outgoing ➔ Options ➔ Option B

11. Empfohlene Voraussetzungen:

12. Lernziele:
The students have knowledge in solution and solid properties of polymers. Furthermore the students have competence in polymer engineering and modification of technical important polymers.

13. Inhalt:
- Statistical thermodynamics (Flory-Huggins-theory, solubility parameters, phase equilibrium and phase transition)
- Morphologies of homo- , block copolymers and polymer blends
- Amorphous and crystalline polymer state
- Rubber elasticity
- Polymer viscoelasticity
- Polymer topics (polyelectrolytes, polymer surfaces, conducting polymers, nanolithography)
- Technical applications of polymers
- Chem./phys. aids (softeners, anti-microbals, fire retardants,...)
- Coatings (nanocomposites, ((V)UV curing, electron beam curing, surface-structuring
- Inert gas processing
- Adhesives
- Polymers in analytical chemistry
- Polymers in heterogeneous and micellar catalysis
- Primary spinning techniques
- Textiles and textile finishing
- Carbon fibers, ceramic fibers, fiber-matrix composites
- Polymeric high-performance fibers (PBI, PBO, PBTZ, M5,...)
- Printing technologies
- Electrically conductive polymers
- Gas barrier coatings

14. Literatur:
- L. H. Sperling, Introduction to Physical Polymer Science, Wiley-VCH
- U. W. Gedde, Polymer Physics, Chapman & Hall
- M. R. Buchmeiser (Editor), Polymeric Materials in Organic Synthesis and Catalysis, Wiley-VCH
<table>
<thead>
<tr>
<th>15. Lehrveranstaltungen und -formen:</th>
<th>391901 Vorlesung Physikalische Chemie und Physik der Polymeren</th>
</tr>
</thead>
<tbody>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Lecture</td>
</tr>
<tr>
<td></td>
<td>Presence hours 14 x 6 h = 84 h</td>
</tr>
<tr>
<td></td>
<td>examination 2 h</td>
</tr>
<tr>
<td></td>
<td>Self-study 184 h</td>
</tr>
<tr>
<td></td>
<td>Summe: 270 h</td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>39191 Polymer Materials Science (PL), schriftlich oder mündlich, Gewichtung: 1.0</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td></td>
</tr>
</tbody>
</table>
Modul: 17690 Statistische Thermodynamik

2. Modulkürzel: 030710022 5. Moduldauer: 1 Semester

4. SWS: 5.0 7. Sprache: Nach Ankuendigung

8. Modulverantwortlicher: Univ.-Prof. Frank Gießelmann

10. Zuordnung zum Curriculum in diesem Studiengang:

DoubleM.D. Materialwissenschaft (Materials Science), PO 2011, 2. Semester
➞ Chalmers -->Incoming

DoubleM.D. Materialwissenschaft (Materials Science), PO 2011, 2. Semester
➞ Chalmers -->Outgoing -->Compulsory Modules

DoubleM.D. Materialwissenschaft (Materials Science), PO 2014, 2. Semester
➞ Outgoing -->Options -->Option A

DoubleM.D. Materialwissenschaft (Materials Science), PO 2014, 2. Semester
➞ Outgoing -->Options -->Option B

11. Empfohlene Voraussetzungen: B.Sc. in Chemie oder Materialwissenschaft (Materials Science)

12. Lernziele: Die Studierenden

• beherrschen die Grundzüge der statistischen Thermodynamik,
• erkennen ihre Brückenfunktion zwischen molekularer und makroskopischer Theorie und
• können mit ihren Anwendungen umgehen

13. Inhalt:

• Reale Gase und Flüssigkeiten: Konfigurationsintegral, Virialkoefzienten, intermolukleare Wechselwirkungen, Debye-Hückel-Theorie.

• Festkörper: Spezifische Wärme, Einstein- und Debye-Theorie.

• Transportphänomene: Diffusion, Viskosität, elektrische Leitfähigkeit und Wärmeleitung, Kreuzeffekte.

• Schwankungserheinehungen: Thermische Fluktuationen und Theorie der Brownschen Bewegung, kritische Phänomene.

• Grundzüge der molekularen Reaktionsdynamik: Stoßtheorie, Theorie des aktivierten Komplexes, Potentialhyperflächen

15. Lehrveranstaltungen und -formen:

- 176901 Vorlesung Statistische Thermodynamik
- 176902 Übung Statistische Thermodynamik
- 176903 Praktikum Statistische Thermodynamik

16. Abschätzung Arbeitsaufwand:

Vorlesung:
- Präsenzzeit: 28 h;
- Vor- und Nachbereitung (2 h pro Präsenzstunde): 56 h

Übung:
- Präsenzzeit: 14 h;
- Vor- und Nachbereitung (1 h pro Präsenzstunde): 14 h

Praktikum:
- 4 Versuche à 6 h: 24 h;
- Vorbereitung und Protokoll: 6 h pro Versuch: 24 h

Abschlussprüfung:
- Prüfung, inkl. Vorbereitung: 20 h

Gesamt: 180 h

17. Prüfungsnummer/n und -name:

- 17691 Statistische Thermodynamik (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0
- V Vorleistung (USL-V), schriftlich, eventuell mündlich, erfolgreiche Übungsteilnahme, alle Versuchsprotokolle testiert

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Physikalische Chemie I
Modul: 17700 Synthesis and Properties of Ceramic Materials

2. Modulkürzel: 030500014
5. Modulduauer: 1 Semester
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0
7. Sprache: Deutsch

9. Dozenten: • Joachim Bill
 • Anke Weidenkaff

 ➞ Chalmers -->Incoming
 ➞ DoubleM.D. Materialwissenschaft (Materials Science), PO 2011, 3. Semester
 ➞ Chalmers -->Outgoing -->Compulsory Modules
 ➞ DoubleM.D. Materialwissenschaft (Materials Science), PO 2014, 3. Semester
 ➞ Incoming -->Options 1 -->Option A
 ➞ DoubleM.D. Materialwissenschaft (Materials Science), PO 2014, 3. Semester
 ➞ Outgoing -->Options -->Option B

11. Empfohlene Voraussetzungen: BSc Materialwissenschaft (Materials Science)

12. Lernziele:
 The students
 - have knowledge about ceramics produced by powder technology and by molecular precursors
 - have knowledge about biomineralization processes and biominerals
 - are able to understand bio-inspired processes and materials

13. Inhalt:
 Ceramics produced by powder technology, ceramics derived from molecular precursors, biomineralization, bio-inspired processes and materials.

14. Literatur:
 • Colombo, R. et al. (Eds.): Polymer Derived Ceramics, DEStech Publication, 2010.

15. Lehrveranstaltungen und -formen: • 177001 Lecture Synthesis and Properties of Ceramic Materials
 • 177002 Exercise Synthesis and Properties of Ceramic Materials

16. Abschätzung Arbeitsaufwand:
 Lecture
 Presence hours: 28h
 Self-study: 63 h

 Exercises
 Present hours: 28h
 Self-study: 56h
17. Prüfungsnummer/n und -name:
- 17701 Synthesis and Properties of Ceramic Materials (PL), schriftlich oder mündlich, Gewichtung: 1.0, Accreditation: presence during exercises
- V Vorleistung (USL-V), Sonstiges

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
122 Electives

<table>
<thead>
<tr>
<th>Zugeordnete Module</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>410</td>
<td>Compulsory Optional (unrelated to the subject)</td>
</tr>
<tr>
<td>420</td>
<td>Compulsory Optional (related to the subject)</td>
</tr>
</tbody>
</table>
410 Compulsory Optional (unrelated to the subject)

<table>
<thead>
<tr>
<th>Zugeordnete Module</th>
<th>Module Title</th>
</tr>
</thead>
<tbody>
<tr>
<td>13540</td>
<td>Grundlagen der Mikrotechnik</td>
</tr>
<tr>
<td>13940</td>
<td>Energie- und Umwelttechnik</td>
</tr>
<tr>
<td>32480</td>
<td>Deutsches und europäisches Patentrecht (Gewerblicher Rechtsschutz I)</td>
</tr>
<tr>
<td>33400</td>
<td>Optische Phänomene in Natur und Alltag</td>
</tr>
</tbody>
</table>
Modul: 32480 Deutsches und europäisches Patentrecht (Gewerblicher Rechtsschutz I)

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>100410110</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Moduldauner:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Alexander Bulling</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Alexander Bulling</td>
</tr>
<tr>
<td>10. Zuordnung zum Curriculum in diesem Studiengang:</td>
<td>DoubleM.D. Materialwissenschaft (Materials Science), PO 2011 → Outgoing -->Electives -->Compulsory Optional (unrelated to the subject) → DoubleM.D. Materialwissenschaft (Materials Science), PO 2014 → Outgoing -->Electives -->Compulsory Optional (unrelated to the subject) →</td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>Grundkenntnisse im Umgang mit Erfindungen beherrschen und daraus resultierende Patente erkennen.</td>
</tr>
</tbody>
</table>
| 13. Inhalt: | • Sinn und Zweck von Schutzrechten
• Wirkungen und Schutzbereich eines Patents
• Unmittelbare und Mittelbare Patentverletzung, Vorbenutzungsrecht, Erschöpfung, Verwirkung
• Patentfähigkeit und Erfindungsbegriff
• Schutzvoraussetzungen
• Von der Erfindung zur Patentanmeldung
• Das Recht auf das Patent (Erfinder/Anmelder)
• Das Patenterteilungsverfahren
• Priorität und Nachanmeldungen: Europäisches und internationales Anmeldeverfahren.
• Rechtsbehelfe und Prozesswege
• Vorgehensweise bei Patentverletzung
• Übertragung, Lizenzen, Schutzrechtsbewertung
• Das Arbeitnehmererfindergesetz
• EXKURSION: Patentinformationszentrum im Haus der Wirtschaft/ Stuttgart |
| 15. Lehrveranstaltungen und -formen: | 324801 Vorlesung Deutsches und europäisches Patentrecht |
Selbststudium: 69 Stunden
Summe: 90 Stunden |
| 17. Prüfungsnummer/n und -name: | 32481 Deutsches und europäisches Patentrecht (Gewerblicher Rechtsschutz I) (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0 |
| 18. Grundlage für ...: | |
| 19. Medienform: | |
20. Angeboten von:
Modul: 13940 Energie- und Umwelttechnik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>042510001</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Günter Scheffknecht

9. Dozenten: Günter Scheffknecht

10. Zuordnung zum Curriculum in diesem Studiengang:

- DoubleM.D. Materialwissenschaft (Materials Science), PO 2011, 2. Semester
 - Outgoing --> Electives --> Compulsory Optional (unrelated to the subject)
 - DoubleM.D. Materialwissenschaft (Materials Science), PO 2014, 2. Semester
 - Outgoing --> Electives --> Compulsory Optional (unrelated to the subject)

11. Empfohlene Voraussetzungen:

13. Inhalt: Vorlesung und Übung, 4 SWS

 1) Grundlagen zur Energieumwandlung: Einheiten, energetische Eigenschaften, verschiedene Formen von Energie, Transport und Speicherung von Energie, Energiebilanzen verschiedener Systeme
 2) Energiebedarf: Statistik, Reserven und Ressourcen, Primärenergieversorgung und Endenergieverbrauch
 3) Primärenergieträger: Charakterisierung, Verarbeitung und Verwendung
 4) Bereitstellungstechnologien für Wärme, Strom und Kraftstoffe
 5) Transport und Speicherung von Energie in unterschiedlichen Formen
 6) Energieintensive industrielle Prozesse: Stahlerzeugung, Zementherstellung, Ammoniakherstellung, Papierindustrie
 7) Techniken zur Begrenzung der Umweltbeeinflussungen
 8) Treibhausgasemissionen
 9) Rahmenbedingungen: Emissionsbegrenzung, Klimaschutz, Förderung erneuerbarer Energien

14. Literatur: - Vorlesungsmanuskript
 - Unterlagen zu den Übungen

15. Lehrveranstaltungen und -formen: 139401 Vorlesung und Übung Energie- und Umwelttechnik

16. Abschätzung Arbeitsaufwand: Präsenzzeit: 56 h
 Selbststudiumszeit / Nacharbeitszeit: 124 h
<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>13941 Energie- und Umwelttechnik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>• Skripte zu den Vorlesungen und zu den Übungen</td>
</tr>
<tr>
<td></td>
<td>• Tafelanschrieb</td>
</tr>
<tr>
<td></td>
<td>• ILIAS</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Institut für Feuerungs- und Kraftwerkstechnik</td>
</tr>
</tbody>
</table>
Modul: 13540 Grundlagen der Mikrotechnik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>073400001</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. André Zimmermann</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • André Zimmermann
• Eugen Ermantraut |
→ Outgoing -->Electives -->Compulsory Optional (unrelated to the subject) |
| 11. Empfohlene Voraussetzungen: | keine |
| 13. Inhalt: | • Eigenschaften der wichtigsten Werkstoffe der Mikrosystemtechnik
• Silizium-Mikromechanik
• Einführung in die Vakuumtechnik
• Herstellung und Eigenschaften dünner Schichten (PVD- und CVD-Technik, Thermische Oxidation)
• Lithographie und Maskentechnik
• Ätztechniken zur Strukturierung (Nasschemisches Ätzen, RIE, IE, Plasmäten)
• Reindraumtechnik
• Elemente der Aufbau- und Verbindungstechnik für Mikrosysteme (Bondverfahren, Chipgehäusetecniken)
• LIGA-Technik
• Mikrotechnische Bauteile aus Kunststoff (z.B. Mikrospritzguss)
• Mikrobearbeitung von Metallen (z.B. spanende Mikrobearbeitung)
• Messmethoden der Mikrotechnik
• Prozessketten der Mikrotechnik |
| 14. Literatur: | Vorlesungsmanuskript und Literaturangaben darin |
| 15. Lehrveranstaltungen und -formen: | • 135401 Vorlesung Grundlagen der Mikrotechnik
• 135402 Freiwillige Übung zur Vorlesung Grundlagen der Mikrotechnik |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 42 h
Selbststudiumszeit / Nacharbeitszeit: 138 h
Gesamt: 180 h |
| 17. Prüfungsnummer/n und -name: | 13541 Grundlagen der Mikrotechnik (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0 |
| 18. Grundlage für ... : |
19. Medienform: | Beamerpräsentation, Overhead-Projektor-Anschrieb, Tafelanschrieb, Demonstrationsobjekte |
20. Angeboten von: Mikrosystemtechnik
Modul: 33400 Optische Phänomene in Natur und Alltag

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>073100005</th>
<th>5. Modulduauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
<td>6. Turnus:</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Tobias Haist</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Tobias Haist</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Zuordnung zum Curriculum in diesem Studiengang:</td>
<td>DoubleM.D. Materialwissenschaft (Materials Science), PO 2011 ➔ Outgoing -->Electives -->Compulsory Optional (unrelated to the subject) ➔ DoubleM.D. Materialwissenschaft (Materials Science), PO 2014 ➔ Outgoing -->Electives -->Compulsory Optional (unrelated to the subject)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>Die Studierenden</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• verstehen die optischen Grundgesetze</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• erlangen einen Einblick in die Problematik der Frage „Was ist Licht“ und lernen übliche Lichtmodelle und die Beschreibung von „Licht“ kennen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• können die klassischen, mit unbewaffnetem Auge erfassbaren optischen Phänomene erkennen und erklären</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• verstehen die Grundzüge des menschlichen Sehvorgangs</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• kennen die Möglichkeiten der Lichtentstehung</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• erkennen die Bedeutung des Lichts im Rahmen des physikalischen Weltbils</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Physiologie (Mensch und Tier) des Sehsystems</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Optische Täuschungen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Atmosphärische Optik (Regenbogen, Halos, Luftspiegelungen, Himmelsfärbungen, Glisten, Korona, Irisierung)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Schattenphänomene</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Farbe (u.a. Farbmischung, Farbentstehung, Physiologie)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Optische Phänomene an Alltagsgegenständen (viele verschiedene)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Polarisation</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kurzüberblick: Photonen (Quanteneffekte, Quantenkryptographie, Quantencomputer)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Kurzüberblick: Licht in der Relativitätstheorie (u.a. Lichtuhr, Dopplereffekt, Gravitationslinsen, schwarze Löcher)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Literatur:</td>
<td>www.optipina.de dort ausführliches eBook mit vielen weiteren Literaturhinweisen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>334001 Vorlesung Optische Phänomene in Natur und Alltag</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Selbststudium: 69 Stunden</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Summe: 90 Stunden</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name: 33401 Optische Phänomene in Natur und Alltag (BSL), mündliche Prüfung, 20 Min., Gewichtung: 1.0</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Grundlage für ...:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Medienform: Powerpoint-Vorlesung mit zahlreichen Demonstrations- Versuchen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
420 Compulsory Optional (related to the subject)

Zugeordnete Module:

- 11590 Photovoltaik I
- 11710 Optoelectronics I
- 13550 Grundlagen der Umformtechnik
- 14010 Kunststofftechnik - Grundlagen und Einführung
- 14150 Leichtbau
- 17740 Computational Chemistry
- 21930 Photovoltaik II
- 25470 Nanotechnologie II - Technische Prozesse und Anwendungen
- 28560 Mikroelektronik I
- 29270 Organische Transistoren
- 32460 Oberflächen- und Beschichtungstechnik I
- 32500 Neue Werkstoffe und Verfahren in der Fertigungstechnik
- 32760 Diodenlaser
- 35620 Diffraktions- und Streumethoden (mit Übung und Praktikum)
- 36030 Molecular Quantum Mechanics
- 37290 Semiconductor Physics
- 39370 Grundlagen der Experimentalphysik V: Molekül- und Festkörperphysik
- 39960 Grundlagen der zerstörungsfreien Prüfung
- 40400 Symmetrien und Gruppentheorie
- 40460 Fertigungstechnik keramischer Bauteile I
- 41490 Fortgeschrittene Molekül- und Festkörperphysik
- 42990 Vertiefende Mikroanalytik von Werkstoffen
- 60530 Condensed Matter Physics for Material Scientists
Modul: 17740 Computational Chemistry

2. Modulkürzel: 031110024
5. Modulddauer: 1 Semester

3. Leistungspunkte: 6.0 LP
6. Turnus: jedes 2. Semester, SoSe

4. SWS: 5.0
7. Sprache: Nach Ankündigung

8. Modulverantwortlicher: Univ.-Prof. Andreas Köhn

9. Dozenten:
• Andreas Köhn
• Johannes Kästner

10. Zuordnung zum Curriculum in diesem Studiengang:
DoubleM.D. Materialwissenschaft (Materials Science), PO 2011, 2. Semester
➞ Outgoing -->Electives -->Compulsory Optional (related to the subject)

DoubleM.D. Materialwissenschaft (Materials Science), PO 2014, 2. Semester
➞ Outgoing -->Electives -->Compulsory Optional (related to the subject)

11. Empfohlene Voraussetzungen: B.Sc. in Chemie

12. Lernziele:
Die Studierenden
• erkennen die Möglichkeiten der Computational Chemistry sowie ihr Zusammenspiel mit experimentellen Methoden und der statistischen Thermodynamik
• können quantenchemische Berechnungen selbständig durchführen, beurteilen und interpretieren
• können quantenchemische Berechnungen in der Literatur beurteilen und interpretieren

13. Inhalt:

14. Literatur: Vorlesungsskript
F. Jensen, Introduction to computational chemistry, 2nd ed, 2007, John Wiley

15. Lehrveranstaltungen und -formen:
• 177401 Vorlesung Computational Chemistry
• 177402 Übung Computational Chemistry
16. Abschätzung Arbeitsaufwand: Präsenzzeit:
Vorlesung: 2 x 14 = 28 h, Computer-Praktikum: 4 x 14 = 56 h
Selbststudiumszeit / Nacharbeitszeit:
Vorlesung: 2 h pro Präsenzstunde 56 h, Praktikum: Vorbereitung und Protokolle 28 h
Abschlussprüfung incl. Vorbereitung 12 h
Gesamt: 180 h

17. Prüfungsnr/n und -name:
• 177403 Praktikum Computational Chemistry
• 17741 Computational Chemistry (PL), schriftliche Prüfung, 120 Min.
• V Vorleistung (USL-V), schriftlich, eventuell mündlich, Testat aller Computerübungen

18. Grundlage für ...:

19. Medienform:

20. Angeboten von: Theoretische Chemie
Modul: 60530 Condensed Matter Physics for Material Scientists

2. Modulkürzel: [pord.modulcode] 5. Modulduauer: 1 Semester
4. SWS: 3.0 7. Sprache: Englisch
8. Modulverantwortlicher: Univ.-Prof. Guido Schmitz
9. Dozenten: Guido Schmitz
10. Zuordnung zum Curriculum in diesem Studiengang: DoubleM.D. Materialwissenschaft (Materials Science), PO 2014 ➔ Outgoing -->Electives -->Compulsory Optional (related to the subject)
11. Empfohlene Voraussetzungen:
12. Lernziele: Students
 • know important aspects of the physics of condensed matter, namely the concept of phonons and the electron structure
 • Can understand the basic ideas of modern theoretical studies of solid materials
 • Acquire a theoretical framework to also understand the electronics of structural defects.
13. Inhalt: Lattice dynamics
 • Dulong-Petit, Einstein and Debye Model of lattice vibrations
 • Accustic and optical phonons
 • Bose-Einstein-Distribution and Quasi-particles
 • Heat capacity of the atomic lattice
 Electronic structure
 • The LCAO concept
 • From atoms, molecules, chain molecules to the 3D lattice
 • Band gaps, metals, semi-conductors and insulators
 • s-p hybrid states
 • metals and the theory of free electrons
 • The limits of band theory: Disordered structures and localized electrons
 • The origin of modern ab-initio description of structure stability
 Sutton, “Electronic Structure of Materials”
 Kopitzki, Herzog, “Einführung in die Festkörperphysik”
 Charles Kittel,“Introduction to Solid State Physics”
15. Lehrveranstaltungen und -formen:
 • 605301 Vorlesung Condensed Matter Physics for Material Scientists
 • 605302 Übung Condensed Matter Physics for Material Scientists
16. Abschätzung Arbeitsaufwand:
 Vorlesung: classroom work: 14*3 h=42 h, Selbststudium: 48 h
17. Prüfungsnummer/n und -name:
 60531 Condensed Matter Physics for Material Scientists (BSL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0
18. Grundlage für ...:
19. Medienform:

20. Angeboten von:
Modul: 35620 Diffraktions- und Streumethoden (mit Übung und Praktikum)

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>030710023</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>6.0</td>
</tr>
<tr>
<td>5. Moduldaurer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Frank Gießelmann</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Robert Dinnebier
• Dozenten der Physikalischen Chemie |
→ Outgoing -->Electives -->Compulsory Optional (related to the subject)

DoubleM.D. Materialwissenschaft (Materials Science), PO 2014
→ Outgoing -->Electives -->Compulsory Optional (related to the subject)

<table>
<thead>
<tr>
<th>11. Empfohlene Voraussetzungen:</th>
</tr>
</thead>
</table>
Streumethoden: Komponenten und Aufbau eines Streuexperiments, statische und dynamische Lichtstreuung, Prinzipien der Röntgen- und Neutronenstreuung.
Kristallstrukturanalyse:
• Aufbau von Kristallen, Kristallsymmetrie (Bravaisgitter, Kristallsysteme und -klassen, Raumgruppen),
• Röntgenstrukturanalyse mit Einkristallmethoden (Präparation von Einkristallen, Mess- und Detektionsmethoden, Streu-, Atom- und Formfaktoren, Auslöschungsbedingungen, Strukturfaktoren, Strukturlösung und Verfeinerung) |
| 14. Literatur: |
| 15. Lehrveranstaltungen und -formen: | • 356201 Vorlesung Diffraktions- und Streumethoden
• 356202 Praktikum Diffraktions- und Streumethoden
• 356203 Übung Diffraktions- und Streumethoden |
| 16. Abschätzung Arbeitsaufwand: Vorlesung:
• Präsenzstunden: 2 SWS * 14 Wochen 28 h
• Vor- und Nachbereitung: 2 h pro Präsenzstunde 56 h |
| Laborpraktikum:
• 6 Versuchstage à 8 h 48 h
• Vorbereitung u. Protokoll: 6 h pro Versuchstag 36 h
• Abschlussprüfung incl. Vorbereitung: 12 h |
| Summe: 180 h |
| 17. Prüfungsnummer/n und -name: | • 35621 Diffraktions- und Streumethoden (mit Übung und Praktikum) (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0
• V Vorleistung (USL-V), schriftlich, eventuell mündlich |
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Physikalische Chemie I</td>
</tr>
</tbody>
</table>
Modul: 32760 Diodenlaser

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>073000008</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
<td>6. Turnus:</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Thomas Graf</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Uwe Brauch</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>keine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Literatur:</td>
<td>Skript und Folien der Vorlesung</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>327601 Vorlesung Diodenlaser</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>32761 Diodenlaser (BSL), mündliche Prüfung, 20 Min., Gewichtung: 1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Institut für Strahlwerkzeuge</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Modul: 40460 Fertigungstechnik keramischer Bauteile I

2. Modulkürzel: 072200011 5. Moduldauer: 1 Semester
4. SWS: 2.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Rainer Gadow
9. Dozenten: Rainer Gadow

 → Outgoing -->Electives -->Compulsory Optional (related to the subject)
 →
 DoubleM.D. Materialwissenschaft (Materials Science), PO 2014
 → Outgoing -->Electives -->Compulsory Optional (related to the subject)
 →

11. Empfohlene Voraussetzungen:

12. Lernziele: Die Studenten können:
 • Merkmale und Eigenheiten keramischer Werkstoffe unterscheiden, beschreiben und beurteilen.
 • werkstoffspezifische Unterschiede zwischen metallischen und keramischen Werkstoffen wiedergeben und erklären.
 • Technologien zur Verstärkung von Werkstoffen sowie die wirkenden Mechanismen benennen, vergleichen und erklären.
 • Verfahren und Prozesse zur Herstellung von massivkeramischen Werkstoffen benennen, erklären, bewerten, gegenüberstellen, auswählen und anwenden.

 Stichpunkte:
 • Grundlagen von Festkörpern im Allgemeinen und der Keramik.
 • Einteilung der Keramik nach anwendungs-technischen und stofflichen Kriterien, Trennung in Oxid-/ Nichtoxidkeramiken und Struktur-/ Funktionskeramiken.
 • Abgrenzung Keramik zu Metallen.
 • Klassische Herstellungsverfahren vom Rohstoff bis zum keramischen Endprodukt.
 • Formgebungsverfahren keramischer Massen.
 • Industrielle Anwendungen (Überblick und Fallbeispiele).

14. Literatur: Skript, Literaturempfehlungen, z.B.:
15. Lehrveranstaltungen und -formen:
• 404601 Vorlesung Fertigungstechnik keramischer Bauteile I
• 404602 Übung Fertigungstechnik keramischer Bauteile I

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 21 Stunden
Selbststudium: 69 Stunden
Summe: 90 Stunden

17. Prüfungsnummer/n und -name:
40461 Fertigungstechnik keramischer Bauteile I (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 41490 Fortgeschrittene Molekül- und Festkörperphysik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>081700401</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>9.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>6.0</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. Modulverantwortlicher:</th>
<th>Univ.-Prof. Peter Michler</th>
</tr>
</thead>
<tbody>
<tr>
<td>9. Dozenten:</td>
<td>Jörg Wrachtrup</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10. Zuordnung zum Curriculum in diesem Studiengang:</th>
</tr>
</thead>
<tbody>
<tr>
<td>DoubleM.D. Materialwissenschaft (Materials Science), PO 2011</td>
</tr>
<tr>
<td>→ Outgoing --> Electives --> Compulsory Optional (related to the subject)</td>
</tr>
<tr>
<td>DoubleM.D. Materialwissenschaft (Materials Science), PO 2014</td>
</tr>
<tr>
<td>→ Outgoing --> Electives --> Compulsory Optional (related to the subject)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11. Empfohlene Voraussetzungen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• BA Physik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12. Lernziele:</th>
</tr>
</thead>
<tbody>
<tr>
<td>* Die Studierenden sollen ein gründliches Verständnis der Struktur der Materie bis zur atomaren Skala erwerben.</td>
</tr>
<tr>
<td>* Kenntnis der grundlegenden Konzepte der Molekül- und Festkörperphysik, Verständnis der Molekul- und Materialeigenschaften, Grundlagen der Materialwissenschaften.</td>
</tr>
<tr>
<td>* Übungen fördern auch die Kommunikationsfähigkeit und die Methodenkompetenz bei der Umsetzung von Fachwissen.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>13. Inhalt:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung und Übung Molekülphysik:</td>
</tr>
<tr>
<td>• Wechselwirkung von Molekülen mit Licht</td>
</tr>
<tr>
<td>• Moderne Methoden der Molekülspektroskopie</td>
</tr>
<tr>
<td>• Kern- und Elektronenspinresonanz</td>
</tr>
<tr>
<td>Vorlesung und Übung Festkörperphysik:</td>
</tr>
<tr>
<td>• Halbleiter</td>
</tr>
<tr>
<td>• Supraleiter</td>
</tr>
<tr>
<td>• Dia- und Paramagnetismus</td>
</tr>
<tr>
<td>• Ferro- und Antiferromagnetismus</td>
</tr>
<tr>
<td>• Optische Prozesse und Exzitonen</td>
</tr>
<tr>
<td>• Dielektrische und ferroelektrische Festkörper</td>
</tr>
<tr>
<td>• Nanostrukturen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>14. Literatur:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Molekülphysik:</td>
</tr>
<tr>
<td>• Haken Wolf, Molekülsphysik und Quantenchemie, Springer</td>
</tr>
<tr>
<td>• Atkins, Friedmann, Molecular Quantum Mechanics, Oxford</td>
</tr>
<tr>
<td>Festkörperphysik:</td>
</tr>
<tr>
<td>• Kittel, „Einführung in die Festkörperphysik“, Oldenbourg-Verlag</td>
</tr>
<tr>
<td>• Ibach/Lüth, „Festkörperphysik, Einführung in die Grundlagen“, Springer-Verlag</td>
</tr>
<tr>
<td>• Ashcroft/Mermin: „Festkörperphysik“, Oldenbourg-Verlag</td>
</tr>
<tr>
<td>• Hunklinger, „Festkörperphysik“, Oldenbourg-Verlag</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15. Lehrveranstaltungen und -formen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 414901 Vorlesung Molekül- und Festkörperphysik</td>
</tr>
</tbody>
</table>
• 414902 Übung Molekül- und Festkörperphysik

16. Abschätzung Arbeitsaufwand:

Vorlesung:
Präsenzstunden: 3 h (4 SWS) * 14 Wochen = 42h
Vor- und Nachbereitung: 2 h pro Präsenzstunde = 84h

Übungen:
Präsenzstunden: 1,5 h (2 SWS) * 14 Wochen = 21h
Vor- und Nachbereitung: 3 h pro Präsenzstunde = 63h
Prüfung inkl. Vorbereitung = 70h

Gesamt: 280h

17. Prüfungsnummer/n und -name:

• 41491 Fortgeschrittene Molekül- und Festkörperphysik (PL),
mündliche Prüfung, 30 Min., Gewichtung: 1.0
• V Vorleistung (USL-V), Sonstiges, erfolgreiche Teilnahme in den
 Übungen, Hauptseminarvortrag

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
Modul: 39370 Grundlagen der Experimentalphysik V: Molekül- und Festkörperphysik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>-</th>
<th>5. Modulduer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>6.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Elektrische und magnetische Eigenschaften der Moleküle</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Chemische Bindung</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Molekülspektroskopie (Rotation- und Schwingungsspektren)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Elektronenzustände und Molekülspektren (Franck-Condon Prinzip, Auswahlregeln)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Festkörperphysik</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Bindungsverhältnisse in Kristallen</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Reziprokes Gitter und Kristallstrukturanalyse</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Kristallwachstum und Fehlordnung in Kristallen</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Gitterdynamik (Phononenspektroskopie, Spezifische Wärme, Wärmeleitung)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Fermi-Gas freier Elektronen</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Energiebänder</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Halbleiterkristalle</td>
</tr>
<tr>
<td>14. Literatur:</td>
<td></td>
<td></td>
<td>• Haken/Wolf, "Molekülphysik und Quantenchemie", Springer</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Atkins, Friedmann, "Molecular Quantum Mechanics", Oxford</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Kittel, "Einführung in die Festkörperphysik", Oldenbourg</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Ibach/Lüth, "Festkörperphysik, Einführung in die Grundlagen", Springer</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Ashcroft/Mermin, "Festkörperphysik", Oldenbourg</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>• Kopitzki/Herzog, "Einführung in die Festkörperphysik", Teubner</td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td></td>
<td>393701 Vorlesung Grundlagen der Experimentalphysik V</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>393702 Übung Grundlagen der Experimentalphysik V</td>
<td></td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Präsenzzzeit: 84 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Selbststudiumszeit: 186 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Gesamt: 270 h</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
17. Prüfungsnummer/n und -name:

- V Vorleistung (USL-V), schriftlich, eventuell mündlich
- 39372 Grundlagen der Experimentalphysik V: Molekül- und Festkörperphysik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform: Overhead, Projektion, Tafel, Demonstration

20. Angeboten von:
Modul: 13550 Grundlagen der Umformtechnik

2. Modulkürzel: 073210001
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0
5. Modulnamen: Grundlagen der Umformtechnik
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Mathias Liewald
9. Dozenten: Mathias Liewald

10. Zuordnung zum Curriculum in diesem Studiengang:
DoubleM.D. Materialwissenschaft (Materials Science), PO 2011, 5. Semester
 → Outgoing -->Electives -->Compulsory Optional (related to the subject)
 →
DoubleM.D. Materialwissenschaft (Materials Science), PO 2014, 5. Semester
 → Outgoing -->Electives -->Compulsory Optional (related to the subject)

11. Empfohlene Voraussetzungen: Ingenieurwissenschaftliche Grundlagen: vor allem Werkstoffkunde, aber auch Technische Mechanik und Konstruktionslehre

12. Lernziele:
Erworbene Kompetenzen: Die Studierenden
 • kennen die Grundlagen und Verfahren der spanlosen Formgebung von Metallen in der Blech- und Massivumformung
 • können telespezifisch die zur Herstellung optimalen Verfahren auswählen
 • kennen die Möglichkeiten und Grenzen einzelner Verfahren, sowie ihre stückzahlabhängige Wirtschaftlichkeit
 • können die zur Formgebung notwendigen Kräfte und Leistungen abschätzen
 • sind mit dem Aufbau und der Herstellung von Werkzeugen vertraut

13. Inhalt:
Grundlagen:

Freiwillige Exkursionen: 1 Tag im WS, 1 Woche im SS, jeweils zu Firmen und Forschungseinrichtungen.

14. Literatur:
• Download: Folien „Einführung in die Umformtechnik 1/2“
• K. Lange: Umformtechnik, Band 1 - 3
• K. Siegert: Strangpressen
• H. Kugler: Umformtechnik
15. Lehrveranstaltungen und -formen:
- 135501 Vorlesung Grundlagen der Umformtechnik I
- 135502 Vorlesung Grundlagen der Umformtechnik II

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 42 h
- Selbststudiumszeit / Nacharbeitszeit: 138 h
- Gesamt: 180 h

17. Prüfungsnummer/n und -name:
- 13551 Grundlagen der Umformtechnik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

19. Medienform:
- Download-Skript, Beamerpräsentation, Tafelaufschrift

20. Angeboten von:
- Institut für Umformtechnik
Modul: 39960 Grundlagen der zerstörungsfreien Prüfung

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>041711023</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>5. Modulgruppe:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Marc Kreutzbruck</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Marc Kreutzbruck</td>
</tr>
</tbody>
</table>
| 10. Zuordnung zum Curriculum in diesem Studiengang: | DoubleM.D. Materialwissenschaft (Materials Science), PO 2011 → Outgoing -->Electives -->Compulsory Optional (related to the subject)
DoubleM.D. Materialwissenschaft (Materials Science), PO 2014 → Outgoing -->Electives -->Compulsory Optional (related to the subject) |
| 11. Empfohlene Voraussetzungen: | keine |
| 12. Lernziele: | Die Studierenden sind mit dem Prinzip und den typischen Anwendungsbereichen der einzelnen zerstörungsfreien Prüfverfahren vertraut, sie kennen die Besonderheiten, so daß sie die am besten geeigneten Verfahren für spezifische Anwendungen auswählen und die damit erzielten Ergebnisse zuverlässig interpretieren können. |
| 14. Literatur: | • Detailliertes Vorlesungsskript
• Spezielle und aktuelle Veröffentlichungen, die im Laufe der Vorlesungen verteilt werden.
• Weiterführende Literaturzitate. |
| 15. Lehrveranstaltungen und -formen: | 399601 Vorlesung Zerstörungsfreie Prüfverfahren |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 21 h
Selbststudiumszeit / Nacharbeitszeit: 69 h
Gesamt: 90 h |
| 17. Prüfungsnummer/n und -name: | 39961 Grundlagen der zerstörungsfreien Prüfung (BSL), mündliche Prüfung, 30 Min., Gewichtung: 1.0 |
| 18. Grundlage für ... : | |
| 20. Angeboten von: | Institut für Kunststofftechnik |
Modul: 14010 Kunststofftechnik - Grundlagen und Einführung

2. Modulkürzel: 041710001
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0
5. Modulduauer: 1 Semester
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Christian Bonten
9. Dozenten: Christian Bonten

➞ Outgoing --> Electives --> Compulsory Optional (related to the subject)

11. Empfohlene Voraussetzungen:

13. Inhalt:

- Einführung der Grundlagen: Einleitung zur Kunststoffgeschichte, die Unterteilung und wirtschaftliche Bedeutung von Polymerwerkstoffen; chemischer Aufbau und Struktur vom Monomer zu Polymer
- Erstarrung und Kraftübertragung der Kunststoffe
- Rheologie und Rheometrie der Polymerschmelze
- Eigenschaften des Polymerfestkörpers: elastisches, viskoelastisches Verhalten der Kunststoffe; thermische, elektrische und weitere Eigenschaften; Methoden zur Beeinflussung der Polymereigenschaften; Alterung der Kunststoffe
- Grundlagen zur analytischen Beschreibung von Fließprozessen: physikalische Grundgleichungen, rheologische und thermische Zustandsgleichungen
- Einführung in die Kunststoffverarbeitung: Extrusion, Spritzgießen und Verarbeitung vernetzender Kunststoffe
- Einführung in die Faserkunststoffverbunde und formlose Formgebungsverfahren
- Einführung der Weiterverarbeitungstechniken: Thermoformen, Beschichten; Fügetechnik
- Nachhaltigkeitsaspekte: Biokunststoffe und Recycling

14. Literatur:

- Präsentation in pdf-Format
- W. Michaeli, E. Haberstroh, E. Schmachtenberg, G. Menges: Werkstoffkunde Kunststoffe, Hanser Verlag
- W. Michaeli: Einführung in die Kunststoffverarbeitung, Hanser Verlag
15. Lehrveranstaltungen und -formen: 140101 Vorlesung Kunststofftechnik - Grundlagen und Einführung

16. Abschätzung Arbeitsaufwand: Präsenzzzeit: 56 Stunden
Nachbearbeitungszeit: 124 Stunden
Summe: 180 Stunden

Es gibt keine alten Prüfungsaufgaben

17. Prüfungsnummer/n und -name: 14011 Kunststofftechnik - Grundlagen und Einführung (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :
• 37690 Konstruieren mit Kunststoffen
• 37700 Kunststoffverarbeitungstechnik
• 18380 Kunststoffverarbeitung 1
• 39420 Kunststoffverarbeitungstechnik 1
• 18390 Kunststoffverarbeitung 2
• 39430 Kunststoffverarbeitungstechnik 2
• 41150 Kunststoff-Werkstofftechnik
• 18400 Auslegung von Extrusions- und Spritzgießwerkzeugen
• 32690 Auslegung von Extrusions- und Spritzgießwerkzeugen
• 18410 Kunststoffaufbereitung und Kunststoffrecycling
• 39450 Kunststoffaufbereitung und Kunststoffrecycling
• 18420 Rheologie und Rheometrie der Kunststoffe
• 32700 Rheologie und Rheometrie der Kunststoffe

19. Medienform:
• Beamer-Präsentation
• Tafelanschriebe

20. Angeboten von: Institut für Kunststofftechnik
Modul: 14150 Leichtbau

<table>
<thead>
<tr>
<th>2. Modulkürzel: 041810002</th>
<th>5. Moduldauer: 1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS: 4.0</td>
<td>7. Sprache: Deutsch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. Modulverantwortlicher: Michael Seidenfuß</th>
</tr>
</thead>
<tbody>
<tr>
<td>9. Dozenten: • Stefan Weihe • Michael Seidenfuß</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

DoubleM.D. Materialwissenschaft (Materials Science), PO 2011, . Semester
→ Outgoing -- Electives --> Compulsory Optional (related to the subject)

DoubleM.D. Materialwissenschaft (Materials Science), PO 2014, . Semester
→ Outgoing --> Electives --> Compulsory Optional (related to the subject)

11. Empfohlene Voraussetzungen:

• Einführung in die Festigkeitslehre
• Werkstoffkunde I und II

12. Lernziele:

13. Inhalt:

• Werkstoffe im Leichtbau
• Festigkeitsberechnung
• Konstruktionsprinzipien
• Stabilitätsprobleme: Knicken und Beulen
• Verbindungstechnik
• Zuverlässigkeit
• Recycling

14. Literatur:

- Manuskript zur Vorlesung
- Ergänzende Folien (online verfügbar)
- Klein, B.: Leichtbau-Konstruktion, Vieweg Verlagsgesellschaft
- Petersen, C.: Statik und Stabilität der Baukonstruktionen, Vieweg Verlagsgesellschaft

15. Lehrveranstaltungen und -formen:

• 141501 Vorlesung Leichtbau
• 141502 Leichtbau Übung

16. Abschätzung Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Präsenzzeit:</th>
<th>42 h</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selbststudiumszeit / Nacharbeitszeit:</td>
<td>138 h</td>
</tr>
<tr>
<td>Gesamt:</td>
<td>180 h</td>
</tr>
</tbody>
</table>

17. Prüfungsnummer/n und -name: 14151 Leichtbau (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :
<table>
<thead>
<tr>
<th>19. Medienform:</th>
<th>PPT auf Tablet PC, Animationen u. Simulationen</th>
</tr>
</thead>
<tbody>
<tr>
<td>20. Angeboten von:</td>
<td>Institut für Materialprüfung, Werkstoffkunde und Festigkeitslehre</td>
</tr>
</tbody>
</table>
Modul: 28560 Mikroelektronik I

2. Modulkürzel: 050513005
5. Moduldauer: 1 Semester
3. Leistungspunkte: 6.0 LP
6. Turnus: jedes 2. Semester, WiSe
4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Jürgen Heinz Werner
9. Dozenten: Jürgen Heinz Werner

10. Zuordnung zum Curriculum in diesem Studiengang:
DoubleM.D. Materialwissenschaft (Materials Science), PO 2011, 3. Semester
→ Outgoing -->Electives -->Compulsory Optional (related to the subject)
→ DoubleM.D. Materialwissenschaft (Materials Science), PO 2014, 3. Semester
→ Outgoing -->Electives -->Compulsory Optional (related to the subject)

11. Empfohlene Voraussetzungen:

12. Lernziele: Die Studierenden kennen
- die Unterschiede zwischen Metallen, Halbleitern und Isolatoren
- die gesamte Prozesskette der Herstellung von Silizium für die Mikroelektronik und Photovoltaik
- die elementaren Eigenschaften von Elektronen und Löchern in Halbleitern
- Feld- und Diffusionsströme in Halbleitern
- die Fermi-Verteilung
- die Funktionsweise und Beschreibung von pn-Übergängen in Gleichgewicht und Nichtgleichgewicht
- die Anwendungsmöglichkeiten von Dioden

13. Inhalt:
- Silizium als Werkstoff der Mikroelektronik
- Elektronen und Löcher
- Ströme in Halbleitern
- Elektrostatik und Kennlinie des pn-Übergangs
- Anwendungen von pn-Dioden

14. Literatur:

15. Lehrveranstaltungen und -formen:
• 285601 Vorlesung Mikroelektronik I
• 285602 Übung Mikroelektronik I

16. Abschätzung Arbeitsaufwand:
Präsenzzeit:	56 h
Selbststudium:	124 h
Gesamt:	180

17. Prüfungsnummer/n und -name:
28561 Mikroelektronik I (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0
<table>
<thead>
<tr>
<th>Ausprägung</th>
<th>Beschreibung</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ...</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Powerpoint, Tafel</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Institut für Photovoltaik</td>
</tr>
</tbody>
</table>
Modul: 36030 Molecular Quantum Mechanics

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Andreas Köhn</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Johannes Kästner
 | • Andreas Köhn |
| 11. Empfohlene Voraussetzungen: | The students:
 | • Understand the techniques used in quantum theory
 | • Can solve Schrödinger's equation for special one-dimensional problems
 | • Understand the quantization of the angular momentum and its additions
 | • Can derive and apply perturbation theory
 | • Know the consequences of relativity on quantum-mechanical systems
 | • Are able to calculate reaction rates by using transition state theory
 | • Understand the basis of scattering theory |
| 13. Inhalt: | Vector spaces, function spaces, and operators; operators and observables. Angular momentum, creation- and destruction operators, eigenfunctions (spherical harmonics), addition of angular momentum, application of the algebra of the angular momentum in spectroscopy and dynamics. Time-dependent perturbation theory, interaction of electromagnetic radiation with molecules, intensities, Einstein-coefficients, oscillator strengths. Quantum statistics (bosons, fermions). Relativistic effects (scalar, spin-orbit coupling). Chemical Kinetics and Tunneling: partition functions, transition state theory, RRKM; wave packets, one-dimensional potential problems, basis of scattering theory; Feynman path integrals and instanton theory. Other topics in theoretical chemistry. |
| 14. Literatur: | • Atkins, Molecular Quantum Mechanics
 | • Cohen-Tannoudji, Quantum Mechanics |
| 15. Lehrveranstaltungen und -formen: | • 360301 Lecture Molecular Quantummechanics
 | • 360302 Exercise Molecular Quantummechanics |
| 17. Prüfungsnummer/n und -name: | 36031 Molecular Quantum Mechanics (PL), schriftlich, eventuell mündlich, 120 Min., Gewichtung: 1.0 |

Modul: 25470 Nanotechnologie II - Technische Prozesse und Anwendungen

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>041400012</th>
<th>5. Modulduauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. Modulverantwortlicher:</th>
<th>Apl. Prof. Günter Tovar</th>
</tr>
</thead>
<tbody>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Grundlagen der Grenzflächenverfahrenstechnik, Grundlagen der Physikalischen Chemie, Grundlagen der Prozess- und Anlagentechnik</td>
</tr>
</tbody>
</table>

12. Lernziele:

- verstehen technische Prozesse zur Synthese und Verarbeitung von Nanomaterialien unterschiedlicher Dimensionalität (3 D, 2 D, 1 D und 0 D) und aus unterschiedlichen physikalischen Phasen (gasförmig, flüssig, fest) und können Prozessketten illustrieren.

- können Anwendungen von Nanomaterialien mit besonderen mechanischen, chemischen, Biochemischen, elektrischen, optischen, magnetischen, biologischen und medizinischen Eigenschaften verstehen und bewerten.

- interpretieren die öffentliche Wahrnehmung von Nanotechnologien und Nanomaterialien und können reale Chancen und Risiken von Nanotechnologien und Nanomaterialien bewerten.

13. Inhalt:

Technische Prozesse zur Synthese und Verarbeitung von Nanomaterialien unterschiedlicher Dimensionalität (3 D, 2 D, 1 D und 0 D) und aus unterschiedlichen physikalischen Phasen (gasförmig, flüssig, fest)

- Anwendung von Nanomaterialien mit besonderen mechanischen, chemischen, Biochemischen, elektrischen, optischen, magnetischen, biologischen und medizinischen Eigenschaften.

- Öffentliche Wahrnehmung und reale Chancen und Risiken von Nanotechnologien und Nanomaterialien.

14. Literatur:

- Vorlesungsmanuskript.
- Tovar, Günter, Nanotechnologie II - Technische Prozesse und Anwendungen,
- Köhler, Michael; Fritzsche, Wolfgang, Nanotechnology, Wiley-VCH.
- Ulmann, Encyclopedia of Industrial Chemistry, Wiley-VCH.
<table>
<thead>
<tr>
<th></th>
<th>Lehrveranstaltungen und -formen:</th>
<th>254701 Vorlesung Nanotechnologie II - Technische Prozesse und Anwendungen</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.</td>
<td>Abschätzung Arbeitsaufwand:</td>
<td>21 h Präsenzzeit</td>
</tr>
<tr>
<td></td>
<td></td>
<td>69 h Selbststudium</td>
</tr>
<tr>
<td>17.</td>
<td>Prüfungsnummer/n und -name:</td>
<td>25471 Nanotechnologie II - Technische Prozesse und Anwendungen (BSL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0</td>
</tr>
<tr>
<td>18.</td>
<td>Grundlage für ... :</td>
<td>80130 Masterarbeit Verfahrenstechnik</td>
</tr>
<tr>
<td>20.</td>
<td>Angeboten von:</td>
<td>Institut für Grenzflächenverfahrenstechnik und Plasmatechnologie</td>
</tr>
</tbody>
</table>
Modul: 32500 Neue Werkstoffe und Verfahren in der Fertigungstechnik

2. Modulkürzel: 072200004 5. Moduldaeuer: 1 Semester
4. SWS: 4.0 7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Rainer Gadow
9. Dozenten: • Andreas Killinger
• Frank Kern

→ Outgoing -->Electives -->Compulsory Optional (related to the subject)
→ DoubleM.D. Materialwissenschaft (Materials Science), PO 2014
→ Outgoing -->Electives -->Compulsory Optional (related to the subject)

11. Empfohlene Voraussetzungen:

12. Lernziele: Die Studenten können:
• Funktionsprinzipien thermokinetischer Beschichtungsverfahren beschreiben und erklären.
• Verfahrensspezifische Eigenschaften von Schichten auflisten und benennen.
• Unterschiede der einzelnen Verfahrensvarianten untereinander wiedergeben und gegenüberstellen.
• Eignung einer bestimmten Verfahrensvariante hinsichtlich vorgegebener Schichteigenschaften beurteilen und begründen.
• Herstellverfahren für Pulver und Drähte wiedergeben, vergleichen und Beispiele geben.
• Einfluss der Pulvereigenschaften auf den Prozess vorhersagen und bewerten.
• Einfluss der Pulvereigenschaften auf die Schichteigenschaften verstehen und ableiten.
• Industrielle Anwendungsfelder im Maschinenbau benennen und wiedergeben.
• Chemie des Kohlenstoffs beschreiben und erklären.
• Pulverrohstoffe und Bindemittel auflisten und benennen.
• Rohstoffquellen, Rohstoffgewinnung und Aufbereitung wiedergeben und veranschaulichen.
• Elektrodenmaterialien und deren Fertigung auflisten, unterscheiden und beschreiben.
• Strukturwerkstoffe für Ingenieuranwendungen benennen und beurteilen.
• Kohlenstoffwerkstoffe für den Leichtbau aufzeigen und Beispiele geben.
• Eigenschaften, Herstellung und Anwendung von Carbon Nanotubes beschreiben und erklären.

aktuelle Forschungsschwerpunkte gegeben. Des Weiteren wird auf
die Chemie des Kohlenstoffs, Rohstoffquellen, Rohstoffgewinnung
und Aufbereitung eingegangen. Es werden Elektrodenmaterialien und
deren Fertigung für die Stahlund Aluminiumindustrie erläutert. Anhand
von Beispielen aus der industriellen Praxis werden die Einsatzgebiete
von Strukturwerkstoffen für Ingenieuranwendungen und Kohlenstoffen
im Leichtbau beleuchtet. Des Weiteren wird auf die Herstellung,
Eigenschaften und Anwendungen neuer Werkstoffe wie Carbon
Nanotubes eingegangen.

Stichpunkte:
• Flammspritzen, Elektrolichtbogendrahtspritzen,
Überschallpulverflammspritzen, Suspensionsflammspritzen,
Plasmaspritzen.
• Herstellung und Eigenschaften von Spritzzusatzwerkstoffen.
• Fertigungs- und Anlagentechnik.
• Industrielle Anwendungen (Überblick).
• Grundlagen der Schichtcharakterisierung.
• Chemie des Kohlenstoffs.
• Pulverrohstoffe und Bindemittel.
• Feinkorngraphite (FG) und Sinterkohlenstoffe.
• Endkonturnahe Fertigung von FG-Komponenten.
• Kohlenstofffasern.
• Beschichtung von Kohlenstofffasern.
• Feuerfestmaterialien aus Kohlenstoff.
• Kohlenstofffaserverstärkte Verbundwerkstoffe.
• Kohlenstoff-Kohlenstoff-Faserverbunde.
• Carbon Nanotubes.

14. Literatur: Skript, Literaturliste

15. Lehrveranstaltungen und -formen:
• 325001 Vorlesung Thermokinetische Beschichtungsverfahren
• 325002 Vorlesung Werkstoffe und Fertigungstechnik technischer
 Kohlenstoffe

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 Stunden
Selbststudium: 138 Stunden
Summe: 180 Stunden

17. Prüfungsnummer/n und -name:
32501 Neue Werkstoffe und Verfahren in der Fertigungstechnik
(PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0, bei
weniger als 5 Kandidaten: mündlich, 40 min Als Kern- oder
Ergänzungsfach im Rahmen des Spezialisierungsfachs:
mündlich, 40 min Anmeldung zur mündlichen Modulprüfung
im LSF und zusätzlich per Email am IFKB beim
Ansprechpartner Lehre

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 32460 Oberflächen- und Beschichtungstechnik I

2. Modulkürzel: 072410011
5. Modulduauer: 1 Semester

3. Leistungspunkte: 3.0 LP

4. SWS: 2.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Thomas Bauernhansl

9. Dozenten: Wolfgang Klein

10. Zuordnung zum Curriculum in diesem Studiengang:
 DoubleM.D. Materialwissenschaft (Materials Science), PO 2011
 ➞ Outgoing -->Electives -->Compulsory Optional (related to the subject)
 ➞ DoubleM.D. Materialwissenschaft (Materials Science), PO 2014
 ➞ Outgoing -->Electives -->Compulsory Optional (related to the subject)

11. Empfohlene Voraussetzungen:

12. Lernziele: Studierende können:
 • Grundlagen und Verfahren der Oberflächen- und Beschichtungstechnik benennen, unterscheiden, einordnen und beurteilen.
 • Die physikalischen u. chemischen Grundlagen für spez. Oberflächeneigenschaften benennen und darstellen.
 • Verfahren der Oberflächentechnik vergleichen und hinterfragen.
 • In Produktentwicklung und Konstruktion geeignete Verfahren und Stoffsysteme identifizieren.
 • Unter Berücksichtigung ökonomischer und ökologischer Gesichtspunkte Verfahren und Anlagen auswählen, um gezielt funktionelle Oberflächeneigenschaften zu erzeugen.

 Stichpunkte:
 • Einführung Oberflächentechnik
 • Grundlagen Lackauftragsverfahren
 • Funktionelle Oberflächeneigenschaften
 • Vorbehandlungsverfahren und -anlagen
 • Galvanische Abscheideverfahren
 • Industrielle Nass- und Pulver-Lackierverfahren und -anlagen
 • Grundlagen der numerischen Simulationsverfahren

14. Literatur: Bücher:
 1) Jahrbuch Besser Lackieren, Herausgeber: D. Ondratschek, Vincentz-Verlag, Hannover
2) Obst, M.: Lackierereien planen und optimieren, Vincentz Verlag, Hannover 2002
3) P. Svejda: Prozesse und Applikationsverfahren in der industriellen Lackiertechnik, Vincentz-Verlag, Hannover

Zeitschriften:
1) JOT-Journal für Oberflächentechnik, Vieweg-Verlag Wiesbaden
2) MO-Metalloberfläche, IGT-Informationsgesellschaft Technik München
3) Farbe und Lack, Vincentz-Verlag, Hannover
4) besser lackieren! Vincentz Network, Hannover

15. Lehrveranstaltungen und -formen: 324601 Vorlesung Oberflächen- und Beschichtungstechnik I
Selbststudium: 69 Stunden
Summe: 90 Stunden

17. Prüfungsnummer/n und -name: 32461 Oberflächen- und Beschichtungstechnik I (BSL), mündliche Prüfung, 20 Min., Gewichtung: 1.0

18. Grundlage für ... :
19. Medienform:
20. Angeboten von: Institut für Industrielle Fertigung und Fabrikbetrieb
Modul: 11710 Optoelectronics I

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050513001</th>
<th>5. Modulduer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Jürgen Heinz Werner</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Jürgen Heinz Werner</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zuordnung zum Curriculum in diesem Studiengang:
- DoubleM.D. Materialwissenschaft (Materials Science), PO 2011, 6. Semester
 → Outgoing -->Electives -->Compulsory Optional (related to the subject)
- DoubleM.D. Materialwissenschaft (Materials Science), PO 2014, 6. Semester
 → Outgoing -->Electives -->Compulsory Optional (related to the subject)

Empfohlene Voraussetzungen:
- The students know
 - the fundamentals of incoherent and coherent radiation
 - the generation of radiation by light emitting diodes and semiconductor laser diodes
 - the transport of radiation via glass fibers and its detection using photodetectors

Inhalt:
- Basics of incoherent and coherent radiation
- Semiconductor basics
- Excitation and recombination processes in semiconductors
- Light emitting diodes
- Semiconductor lasers
- Glass fibers
- Photodetectors

Literatur:
- W. Bludau, Halbleiteroptoelektronik: Die physikalischen Grundlagen der LEDs, Diodenlaser und pn-Photodioden (Carl Hanser, München, 1995).
- W. L. Leigh, Devices for Optoelectronics (Dekker, New York, 1996).

Lehrveranstaltungen und -formen:
- 117101 Vorlesung Optoelectronics I
- 117102 Übung Optoelectronics I
16. Abschätzung Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Activity</th>
<th>Hours</th>
</tr>
</thead>
<tbody>
<tr>
<td>Presence time</td>
<td>56 h</td>
</tr>
<tr>
<td>Self studies</td>
<td>124 h</td>
</tr>
<tr>
<td>Total</td>
<td>180 h</td>
</tr>
</tbody>
</table>

17. Prüfungsnummer/n und -name: 11711 Optoelectronics I (PL), schriftlich und mündlich, 120 Min., Gewichtung: 1.0, group presentation in seminar (60 min, once per year) written exam (60 min, twice per year)

18. Grundlage für ... :

19. Medienform: - Powerpoint, blackboard

20. Angeboten von: Institut für Photovoltaik
Modul: 29270 Organische Transistoren

2. Modulkürzel: 051620011 5. Modulduauer: 1 Semester
4. SWS: 2.0 7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Norbert Frühauf
9. Dozenten: Hagen Klauk

10. Zuordnung zum Curriculum in diesem Studiengang:
 DoubleM.D. Materialwissenschaft (Materials Science), PO 2011, 1. Semester
 → Outgoing -->Electives -->Compulsory Optional (related to the subject)
 → DoubleM.D. Materialwissenschaft (Materials Science), PO 2014, 1. Semester
 → Outgoing -->Electives -->Compulsory Optional (related to the subject)

11. Empfohlene Voraussetzungen:

12. Lernziele: Die Studierenden
 • kennen die molekulare Struktur und die elektronischen Eigenschaften konjugierter organischer Halbleitermaterialien und können sie beschreiben
 • kennen den Aufbau organischer Dünnschichttransistoren und können die zugehörigen Herstellungsverfahren beschreiben und beurteilen
 • können die elektrischen Eigenschaften und ihren Einfluss auf den Einsatz organischer Transistoren beurteilen

13. Inhalt: • Elektronische Eigenschaften konjugierter Kohlenwasserstoffe;
 • Kristallstruktur molekularer organischer Festkörper;
 • Elektronische Eigenschaften organischer Festkörper;
 • Aufbau und Herstellung organischer Transistoren;
 • Funktionsweise organischer Transistoren;
 • Frequenzverhalten organischer Transistoren;
 • Einsatz organischer Transistoren in Flachbildschirmen

14. Literatur: • Skript

15. Lehrveranstaltungen und -formen: 292701 Vorlesung Organische Transistoren

 Selbststudium: 62 Stunden
 Summe: 90 Stunden

17. Prüfungsnummer/n und -name: 29271 Organische Transistoren (BSL), schriftlich, eventuell mündlich, 30 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform: Tafel, Beamer, ILIAS

20. Angeboten von: Institut für Großflächige Mikroelektronik
Modul: 11590 Photovoltaik I

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050513002</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Jürgen Heinz Werner</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Jürgen Heinz Werner</td>
</tr>
</tbody>
</table>

.gms | Outgoing -->Electives -->Compulsory Optional (related to the subject)

.gms | DoubleM.D. Materialwissenschaft (Materials Science), PO 2014

.gms | Outgoing -->Electives -->Compulsory Optional (related to the subject)

| 11. Empfohlene Voraussetzungen: | Grundkenntnisse über Halbleitermaterialien und Halbleiterdioden, z.B. aus "Mikroelektronik I" |
| 12. Lernziele: | Die Studierenden kennen

.abs | - das Potential der Sonnenstrahlung
| | - die Funktionsweise von Solarzellen
| | - die wichtigsten Technologien der Herstellung von Solarmodulen
| | - die Grundprinzipien von Wechselrichtern
| | - die Energieerträge verschiedener Photovoltaik-Technologien
| | - den aktuellen Stand des Photovoltaikmarktes und der Kosten von Photovoltaik-Strom |
| 13. Inhalt: | - Der photovoltaische Effekt
| | - Sonnenleistung und Energieumsätze in Deutschland
| | - Maximaler Wirkungsgrad von Solarzellen
| | - Grundprinzip von Solarzellen
| | - Ersatzschaltbilder von Solarzellen
| | - Photovoltaik-Materialien und -technologien
| | - Modultechnik- Erträge von Photovoltaik-Systemen
| | - Photovoltaik-Markt |
| | • P. Würfel, Physik der Solarzellen, Spektrum, 1995
| | • M. A. Green, Solar Cells - Operating Principles, Technology and System Applications, Centre for Photovoltaic Devices and Systems, Sydney, 1986
| | • F. Staß, Photovoltaik - Technik, Potentiale und Perspektiven der solaren Stromerzeugung, Vieweg, 1996 |
| 15. Lehrveranstaltungen und -formen: | • 115901 Vorlesung Photovoltaik I
| | • 115902 Übungen Photovoltaik I |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 56 h
| | Selbststudium/Nacharbeitszeit: 142 h
<p>| | Gesamt: 180 h |
| 17. Prüfungsnr/n und -name: | 11591 Photovoltaik I (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0 |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td>21930 Photovoltaik II</td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Powerpoint, Tafel</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Institut für Photovoltaik</td>
</tr>
</tbody>
</table>
Modul: 21930 Photovoltaik II

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050513020</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modul:</td>
<td>Photovoltaik II</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>-</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Jürgen Heinz Werner</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Jürgen Heinz Werner
• Markus Schubert |
→ Outgoing -->Electives -->Compulsory Optional (related to the subject) →
DoubleM.D. Materialwissenschaft (Materials Science), PO 2014, 1. Semester
→ Outgoing -->Electives -->Compulsory Optional (related to the subject) → |
| 11. Empfohlene Voraussetzungen: | Photovoltaik I |
| 12. Lernziele: | Kenntnisse über den Aufbau, die Leistungsfähigkeit, Charakterisierung und Wirtschaftlichkeit von Photovoltaikanlagen |
| 13. Inhalt: | 1. Solarstrahlung
2. Solarzellen: Alternativen zu konventionellem, kristallinen Silizium
3. Solarmodule: Temperatur, Verschaltung, Schutzdioden
4. Bestandteile von Photovoltaikanlagen
5. Standort und Verschattung
6. Planung und Dimensionierung von Photovoltaikanlagen, Elektrische Sicherheit
7. Montagesysteme
8. Simulationswerkzeug für Photovoltaikanlagen
9. Installation und Inbetriebnahme von Photovoltaikanlagen
10. Betrieb, Wartung, Monitoring
11. Photovoltaische Messtechnik
12. Wirtschaftlichkeit von Photovoltaikanlagen |
- DGS-Leitfaden, Photovoltaische Anlagen (Deutsche Gesellschaft für Sonnenenergie, Berlin, 2012) |
| 15. Lehrveranstaltungen und -formen: | • 219301 Vorlesung Photovoltaik II
• 219302 Übung Photovoltaik II |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 56 h
Selbststudium: 124 h
Gesamt: 180 h |
| 17. Prüfungsnummer/n und -name: | 21931 Photovoltaik II (PL), schriftlich oder mündlich, 90 Min., Gewichtung: 1.0 |
| 18. Grundlage für …: | Powerpoint, Tafel |

20. Angeboten von: Institut für Photovoltaik
Modul: 37290 Semiconductor Physics

2. Modulkürzel: 081400314
5. Moduldauer: 1 Semester

3. Leistungspunkte: 9.0 LP
6. Turnus: jedes 2. Semester, SoSe

4. SWS: 0.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Apl. Prof. Jürgen Weis

9. Dozenten: Jürgen Weis

 → Outgoing -->Electives -->Compulsory Optional (related to the subject)

 →

 DoubleM.D. Materialwissenschaft (Materials Science), PO 2014
 → Outgoing -->Electives -->Compulsory Optional (related to the subject)

11. Empfohlene Voraussetzungen:

12. Lernziele:

 Vorlesung Halbleiterphysik I und Übungen für Masterstudierende:

 Die Studierenden erwerben spezielle Grundlagenkenntnisse zur Halbleiterphysik

 Vorlesung Halbleiterphysik II und Übungen für Masterstudierende:

13. Inhalt:
* Kristallstruktur (chem. Bindung, Grundbegriffe, reales/reziprokes Gitter, Brillouinzone)

* Methoden der Bandstrukturberechnung (Symmetrien, Kronig-Penny-Modell, Brillouin- / Blochnäherung, APW(OPW-Methode, Pseudopotentiale, kp-Methode)

* Experimentelle Bestimmung der Bandstruktur (optische Spektroskopie, Röntgenstreuexperimente, Resonanzexperimente)

* Statistik (Zustandsdichte und Dimension, Besetzungszahlfunktionen für Elektronen und Löcher, Thermodynamik der freien Elektronen, Störstellenstatistik, Dotierung)

* Nichtgleichgewicht (Abweichungen vom thermodynamischen Gleichgewicht, Feldeffekt, Ströme, Rekombinationsmechanismen)

* Transport (Beweglichkeit der Ladungsträger (Phonon-Störstellenstreuung), Ladungsträgerstreuung in niederdimensionalen Halbleitern)

* Optische Eigenschaften (Absorption, Emission, niederdimensionale Halbleiter)

Vorlesung Halbleiterphysik II und Übungen für Masterstudierende:

* Bauelementtechnologien (Kristallzucht, Dotierverfahren, Strukturierung (Lithographie, Ätzverfahren))

* Bipolare Technik (on-Übergang (DC- und Hochfrequenzverhalten), Ausführungsformen von Dioden, Heteroübergänge, bipolar Transistor (DC- und Hochfrequenzverhalten), bipolare Integration)

* Unipolare Technik (Schottky-Diode, Feldeffekttransistor (DC- und Hochfrequenzverhalten), Kennlinie JFET, MOSFET, Rauschen)

* Optoelektronik (Leuchtdioden, Detektoren, Halbleiterlaser)

14. Literatur:

* Yu/Cardona, Fundamentals of Semiconductors, Springer Verlag

* Weissbuch/Winter, Quantum Semiconductor Structures, Academic Press Inc.

* Ashcroft/Mermin, Solid State Physics, Holt-Saunders, New York

* Kittel, Introduction to Solid State Phasics, John Wiley & Sons
15. Lehrveranstaltungen und -formen:
- 372901 Vorlesung Halbleiterphysik I
- 372902 Übung Halbleiterphysik I
- 372903 Vorlesung Halbleiterphysik II
- 372904 Übung Halbleiterphysik II

16. Abschätzung Arbeitsaufwand:
Halbleiterphysik I: 134 h (Contact time: 32 h; self study: 102 h)

17. Prüfungsnummer/n und -name:
- 37291 Semiconductor Physics (PL), mündliche Prüfung, 60 Min., Gewichtung: 3.0
- V Vorleistung (USL-V), Sonstiges, erfolgreiche Teilnahme in den Übungen beider Vorlesungsteile

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
Modul: 40400 Symmetrien und Gruppentheorie

2. Modulkürzel: 081100412
5. Modulduer: 1 Semester

3. Leistungspunkte: 3.0 LP

4. SWS: 2.0
7. Sprache: -

8. Modulverantwortlicher: Univ.-Prof. Martin Dressel

9. Dozenten: Manfred Fähnle

10. Zuordnung zum Curriculum in diesem Studiengang:
 DoubleM.D. Materialwissenschaft (Materials Science), PO 2011
 ➞ Outgoing ---> Electives ---> Compulsory Optional (related to the subject)
 ➞ DoubleM.D. Materialwissenschaft (Materials Science), PO 2014
 ➞ Outgoing ---> Electives ---> Compulsory Optional (related to the subject)

11. Empfohlene Voraussetzungen: Molekül- und Festkörperphysik, Quantenmechanik, Mathematik (Matrizen usw)

12. Lernziele: Aufbau der Materie, Struktur und Eigenschaften von Molekülen und Festkörpfern

13. Inhalt:
 • Symmetrie-Elemente und -Operationen
 • Mathematische Definition einer Gruppe
 • Reduzible und Irreduzible Darstellungen
 • Charaktertafeln
 • Punktgruppen- und Raumgruppensymmetrie
 • Anwendungen der Gruppentheorie

14. Literatur:
 • Atkins/Friedman: Molecular Quantum Mechanics, Oxford University Press
 • Böhm, Symmetrien in Festkörpern, VCH Berlin
 • Wagner, Gruppentheoretische Methoden in der Physik, Vieweg Braunschweig
 • Sternberg, Group Theory and Physics, Cambridge University Press
 • Jacobs, Group theory with applications in chemical physics, Cambridge University Press

15. Lehrveranstaltungen und -formen: 404001 Vorlesung Festkörperphysik: Symmetrien und Gruppentheorie

16. Abschätzung Arbeitsaufwand: Präsenzstunden und Selbststudium: 180h

17. Prüfungsnummer/n und -name:
 • 40401 Symmetrien und Gruppentheorie (BSL), mündliche Prüfung, 30 Min., Gewichtung: 1.0
 • V Vorleistung (USL-V), schriftlich, eventuell mündlich, 30 Min.

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
Modul: 42990 Vertiefende Mikroanalytik von Werkstoffen

2. Modulkürzel: 031300010

5. Modul dauert: 1 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0

7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Hans-Joachim Massonne

10. Zuordnung zum Curriculum in diesem Studiengang:

DoubleM.D. Materialwissenschaft (Materials Science), PO 2011

→ Outgoing -- Electives -- Compulsory Optional (related to the subject)

→ DoubleM.D. Materialwissenschaft (Materials Science), PO 2014

→ Outgoing -- Electives -- Compulsory Optional (related to the subject)

11. Empfohlene Voraussetzungen: keine

12. Lernziele:

Die Studierenden sollen in ausgewählte mikrochemische Methoden zur hoch ortsauflösenden Festkörperanalytik (z.B. Diffusionsprofile) eingeführt werden. An ausgewählten Fallbeispielen sollen praktische Übungen an den Geräten erfolgen, wobei die Möglichkeiten und Grenzen der Methoden erarbeitet werden.

13. Inhalt:

Vorlesung:

Vertiefende Einführung in ausgewählte mikrochemische Methoden

Übung:

Praktische Arbeit mit der Elektronenstrahl-Mikrosonde, Laser-gekoppelten ICP-MS sowie am Raman-Mikroskop mit Erarbeitung der methodischen Grundlagen

14. Literatur:

15. Lehrveranstaltungen und -formen:

• 429901 Vorlesung Vertiefende Mikroanalytik von Werkstoffen

• 429902 Übung Vertiefende Mikroanalytik von Werkstoffen

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 42 Stunden
Selbststudium: 138 Stunden
Summe: 180 Stunden

17. Prüfungsnummer/n und -name:

• 42991 Protokoll Vertiefende Mikroanalytik (PL), mündliche Prüfung, Gewichtung: 1.0

• V Vorleistung (USL-V), schriftliche Prüfung

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
Modul: 80510 Master’s Thesis Material Science

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>30.0 LP</td>
<td>6. Turnus:</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>0.0</td>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Eric Jan Mittemeijer

9. Dozenten:

10. Zuordnung zum Curriculum in diesem Studiengang:

- DoubleM.D. Materialwissenschaft (Materials Science), PO 2011
 - Chalmers → Incoming
- DoubleM.D. Materialwissenschaft (Materials Science), PO 2014
 - Chalmers → Incoming

11. Empfohlene Voraussetzungen:

12. Lernziele: The students:
- Can oversee independently a small scientific project and evaluate the results.
- Are able to summarize the results in a scientific report and present these in a talk

13. Inhalt: • Familiarization in the project by literature research and preparation of a work plan.
- Performance and evaluation of the own experiments.
- Discussion of the results.
- Summarization of the results in a scientific report.
- Presentation and defence of the results

14. Literatur:

15. Lehrveranstaltungen und -formen:

16. Abschätzung Arbeitsaufwand:

17. Prüfungsnummer/n und -name:

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: