Inhaltsverzeichnis

Präambel

- 5

200 Studium der Technik

<table>
<thead>
<tr>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>6</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Modul</th>
<th>Titel</th>
</tr>
</thead>
<tbody>
<tr>
<td>210</td>
<td>Grundlagen</td>
</tr>
<tr>
<td>11530</td>
<td>Einführung Erneuerbare Energien</td>
</tr>
<tr>
<td>26290</td>
<td>Einführung in die Technik- und Umweltsoziologie</td>
</tr>
<tr>
<td>49900</td>
<td>Messtechnik - Anlagenmesstechnik</td>
</tr>
<tr>
<td>220</td>
<td>Profil 1</td>
</tr>
<tr>
<td>221</td>
<td>Profilbereich 1 (Stoff- und Energieflüsse)</td>
</tr>
<tr>
<td>51660</td>
<td>Grundzüge der Maschinenkonstruktion I+II mit Einführung in die Festigkeitslehre</td>
</tr>
<tr>
<td>10540</td>
<td>Technische Mechanik I</td>
</tr>
<tr>
<td>222</td>
<td>Vertiefung zu Profil 1</td>
</tr>
<tr>
<td>12040</td>
<td>Einführung in die Regelungstechnik</td>
</tr>
<tr>
<td>13840</td>
<td>Fabrikbetriebslehre</td>
</tr>
<tr>
<td>12200</td>
<td>Fertigungslehre mit Einführung in die Fabrikorganisation</td>
</tr>
<tr>
<td>13950</td>
<td>Grundlagen der Energiewirtschaft und -versorgung</td>
</tr>
<tr>
<td>11390</td>
<td>Grundlagen der Verbrennungsmotoren</td>
</tr>
<tr>
<td>13590</td>
<td>Kraftfahrzeuge I + II</td>
</tr>
<tr>
<td>14130</td>
<td>Kraftfahrzeugmechatronik I + II</td>
</tr>
<tr>
<td>13780</td>
<td>Regelungs- und Steuerungstechnik</td>
</tr>
<tr>
<td>12170</td>
<td>Werkstoffkunde I+II mit Werkstoffpraktikum</td>
</tr>
<tr>
<td>3570</td>
<td>Werkzeugmaschinen und Produktionssysteme</td>
</tr>
<tr>
<td>230</td>
<td>Profil 2</td>
</tr>
<tr>
<td>231</td>
<td>Profilbereich 2 (Informations- und Energieflüsse)</td>
</tr>
<tr>
<td>11440</td>
<td>Grundlagen der Elektrotechnik</td>
</tr>
<tr>
<td>31760</td>
<td>Grundlagenpraktikum</td>
</tr>
<tr>
<td>11450</td>
<td>Informatik I</td>
</tr>
<tr>
<td>232</td>
<td>Vertiefung zu Profil 2</td>
</tr>
<tr>
<td>11500</td>
<td>Elektrische Energietechnik</td>
</tr>
<tr>
<td>11740</td>
<td>Elektromagnetische Verträglichkeit</td>
</tr>
<tr>
<td>11670</td>
<td>Grundlagen integrierter Schaltungen</td>
</tr>
<tr>
<td>31750</td>
<td>Informatikpraktikum</td>
</tr>
<tr>
<td>11490</td>
<td>Nachrichtentechnik</td>
</tr>
<tr>
<td>49960</td>
<td>Teamarbeit - IEH</td>
</tr>
<tr>
<td>49970</td>
<td>Teamarbeit - INÜ</td>
</tr>
<tr>
<td>240</td>
<td>Profil 3</td>
</tr>
<tr>
<td>241</td>
<td>Profilbereich 3 (Bautechnik und Gestaltung)</td>
</tr>
<tr>
<td>10580</td>
<td>Bauphysik und Baukonstruktion</td>
</tr>
<tr>
<td>34170</td>
<td>Einführung in das Bauingenieurwesen</td>
</tr>
<tr>
<td>13520</td>
<td>Technische Grundlagen III: Einführung in die Technische Mechanik</td>
</tr>
<tr>
<td>242</td>
<td>Vertiefung zu Profil 3</td>
</tr>
<tr>
<td>42380</td>
<td>Angewandte Bauphysik</td>
</tr>
<tr>
<td>11030</td>
<td>Einführung in das computergestützte Entwerfen und Konstruieren</td>
</tr>
<tr>
<td>14450</td>
<td>Fertigungsverfahren in der Bauwirtschaft II</td>
</tr>
<tr>
<td>10950</td>
<td>Geologie</td>
</tr>
<tr>
<td>10640</td>
<td>Geotechnik I: Bodenmechanik</td>
</tr>
<tr>
<td>10590</td>
<td>Grundlagen der Darstellung und Konstruktion</td>
</tr>
<tr>
<td>10570</td>
<td>Werkstoffe im Bauwesen I</td>
</tr>
<tr>
<td>250</td>
<td>Praktikum</td>
</tr>
<tr>
<td>26320</td>
<td>Praktikum für NwT (Hauptfach)</td>
</tr>
<tr>
<td>260</td>
<td>Fachdidaktik</td>
</tr>
<tr>
<td>26310</td>
<td>Gestaltung von Lehr- / Lernprozessen im naturwissenschaftlichen - technischen Unterricht, Projekt</td>
</tr>
<tr>
<td>26300</td>
<td>Grundlagen der Fachdidaktik NwT (Hauptfach)</td>
</tr>
</tbody>
</table>
300 Studium der Naturwissenschaften

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulbeschreibung</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>26230</td>
<td>Allgemeine und Molekulare Biologie I</td>
<td>85</td>
</tr>
<tr>
<td>26260</td>
<td>Einführung in die Chemie für NwT Studenten</td>
<td>86</td>
</tr>
<tr>
<td>26270</td>
<td>Einführung in die Physik für Lehramt NwT</td>
<td>89</td>
</tr>
<tr>
<td>26280</td>
<td>Physikalisches Praktikum für Lehramt NwT</td>
<td>91</td>
</tr>
<tr>
<td>26240</td>
<td>Physiologie</td>
<td>92</td>
</tr>
<tr>
<td>25620</td>
<td>Praktische Einführung in die Chemie - Lehramt</td>
<td>93</td>
</tr>
<tr>
<td>26250</td>
<td>Ökologie</td>
<td>94</td>
</tr>
</tbody>
</table>

450 Profil abgewählt

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulbeschreibung</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>500</td>
<td>Erweiterung</td>
<td>97</td>
</tr>
</tbody>
</table>

500 Erweiterung

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulbeschreibung</th>
<th>Seite</th>
</tr>
</thead>
<tbody>
<tr>
<td>42380</td>
<td>Angewandte Bauphysik</td>
<td>99</td>
</tr>
<tr>
<td>11030</td>
<td>Einführung in das computergestützte Entwerfen und Konstruieren</td>
<td>101</td>
</tr>
<tr>
<td>12040</td>
<td>Einführung in die Regelungstechnik</td>
<td>102</td>
</tr>
<tr>
<td>11740</td>
<td>Elektromagnetische Verträglichkeit</td>
<td>104</td>
</tr>
<tr>
<td>13840</td>
<td>Fabrikbetriebslehre</td>
<td>105</td>
</tr>
<tr>
<td>12200</td>
<td>Fertigungslehre mit Einführung in die Fabrikorganisation</td>
<td>107</td>
</tr>
<tr>
<td>14450</td>
<td>Fertigungsverfahren in der Bauwirtschaft II</td>
<td>109</td>
</tr>
<tr>
<td>10950</td>
<td>Geologie</td>
<td>111</td>
</tr>
<tr>
<td>10640</td>
<td>Geotechnik I: Bodenmechanik</td>
<td>113</td>
</tr>
<tr>
<td>10590</td>
<td>Grundlagen der Darstellung und Konstruktion</td>
<td>116</td>
</tr>
<tr>
<td>13950</td>
<td>Grundlagen der Energiewirtschaft und -versorgung</td>
<td>118</td>
</tr>
<tr>
<td>11390</td>
<td>Grundlagen der Verbrennungsmotoren</td>
<td>120</td>
</tr>
<tr>
<td>11670</td>
<td>Grundlagen integrierter Schaltungen</td>
<td>121</td>
</tr>
<tr>
<td>31750</td>
<td>Informatikpraktikum</td>
<td>122</td>
</tr>
<tr>
<td>13590</td>
<td>Kraftfahrzeuge I + II</td>
<td>123</td>
</tr>
<tr>
<td>14130</td>
<td>Kraftfahrzeugmechatronik I + II</td>
<td>124</td>
</tr>
<tr>
<td>13780</td>
<td>Regelungs- und Steuerungstechnik</td>
<td>126</td>
</tr>
<tr>
<td>49960</td>
<td>Teamarbeit - IEH</td>
<td>128</td>
</tr>
<tr>
<td>49970</td>
<td>Teamarbeit - INÜ</td>
<td>129</td>
</tr>
<tr>
<td>10570</td>
<td>Werkstoffe im Bauwesen I</td>
<td>131</td>
</tr>
<tr>
<td>12170</td>
<td>Werkstoffkunde I-II mit Werkstoffpraktikum</td>
<td>133</td>
</tr>
<tr>
<td>13570</td>
<td>Werkzeugmaschinen und Produktionssysteme</td>
<td>135</td>
</tr>
</tbody>
</table>
Präambel

Dies sind die Module des Lehramtsstudiengangs NwT.
200 Studium der Technik

Zugeordnete Module:

- 210 Grundlagen
- 220 Profil 1
- 230 Profil 2
- 240 Profil 3
- 250 Praktikum
- 260 Fachdidaktik
210 Grundlagen

Zugeordnete Module:
11530 Einführung Erneuerbare Energien
26290 Einführung in die Technik- und Umweltsoziologie
49900 Messtechnik - Anlagenmesstechnik
Modul: 11530 Einführung Erneuerbare Energien

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050310014</th>
<th>5. Modulduauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>6.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Christoph Kattmann</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>• Silke Wieprecht</td>
<td>• Po Wen Cheng</td>
<td>• Harald Drück</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

11. Empfohlene Voraussetzungen:

12. Lernziele: Die Veranstaltung gibt eine Einführung in Erneuerbare Energien. Die Studierenden sind anschließend in der Lage:

• die Bedeutung und die Potenziale verschiedener Erneuerbarer Energien (Solarthermie, Photovoltaik, Windenergie, Wasserkraft, Biomasse) quantitativ einzuschätzen,
• Berechnungen des Energieertrags und des Wirkungsgrades durchzuführen,
• Erneuerbarer Energien in unterschiedliche Energieanwendungen und ins internationale Energiesystem einzuordnen.

13. Inhalt: Vorlesung:

• Energiedaten, Umwelt- u. Klimaschutz und erneuerbare Energien, persönlicher Energieverbrauch, Globale Kreisläufe und -bilanzen (Solar, Wind, Wasser, CO₂, etc.)
• Sonneneinstrahlung, Potentiale der Solarenergienutzung
• Solarthermie
• Photovoltaik
• Windenergie
• Wasserkraft, Meeresströmungs- und Wellenenergie
• Therm. Nutzung von Biomasse, Biotreibstoffe
• Smart Grids,
• Energienszenarien
• Exkursionen zu Beispielanlagen, Unternehmen, Instituten in der Region

Übung:

• Hörsaalübungen zu den Vorlesungsinhalten

14. Literatur:

• V. Quaschning, *Regenerative Energiesysteme*, Hanser-Verlag,
• V. Quaschning, *Erneuerbare Energien und Klimaschutz*, Hanser-Verlag
• ergänzendes Skriptum und online-Materialien

15. Lehrveranstaltungen und -formen:

• 115301 Vorlesung Erneuerbare Energien
• 115302 Übung Erneuerbare Energien
16. Abschätzung Arbeitsaufwand: Präsentzeit: 84 h
Selbststudiumszeit / Nacharbeitszeit: 186 h
Gesamt: 270 h

17. Prüfungsnummer/n und -name: 11531 Einführung Erneuerbare Energien (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform: PowerPoint, Tafelanschrieb

20. Angeboten von: Institut für Energieübertragung und Hochspannungstechnik
Modul: 26290 Einführung in die Technik- und Umweltsoziologie

2. Modulkürzel: 100200950

3. Leistungspunkte: 3.0 LP

4. SWS: 2.0

5. Modul dauer: 1 Semester

6. Turnus: jedes 2. Semester, SoSe

7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Ortwin Renn

9. Dozenten:
 • Ortwin Renn
 • Dieter Fremdling
 • Jürgen Hampel
 • Michael Zwick

10. Zuordnung zum Curriculum in diesem Studiengang:

11. Empfohlene Voraussetzungen:

12. Lernziele:

 Die Studierenden kennen die einschlägigen sozialwissenschaftlichen Konzepte der Techniksoziologie, vor allem Theorien zur techniksoziologischen Innovations- und Diffusionsforschung sowie die wichtigsten Probleme und Lösungsansätze der Technikfolgenabschätzung inklusive der Katastrophenforschung.

 Sie sind in der Lage, gesellschaftliche Auseinandersetzungen um neue Technologien begrifflich und konzeptionell adäquat zu beschreiben und zu erklären, und sie kennen die sozialwissenschaftliche Diskussion über die Möglichkeiten, den gesellschaftlichen Umgang mit neuen Technologien zu gestalten.

 Sie verfügen über grundlegende Kenntnisse der Risikoforschung und kennen die zentralen theoretischen Forschungskonzepte zur Risikowahrnehmung und Risikokommunikation.

 Sie sind in der Lage, Untersuchungen zu Umwelteinstellungen angemessen zu interpretieren und zu erklären, welche Zusammenhänge zwischen Umwelteinstellungen und umweltbezogenem Handeln gibt.

 Sie sind mit der Nachhaltigkeitsforschung vertraut und kennen insbesondere Konzepte zur Erfassung der sozialen Dimension von Nachhaltigkeit.

 Sie kennen die Komponenten des Umweltbewusstseins. Sie sind in der Lage, die Kluft zwischen Umweltbewusstsein und umweltgerechtem Verhalten zu erklären. Sie können eine Reihe umweltpolitischer Maßnahmen hinsichtlich ihrer Vorteile und Grenzen realistisch einschätzen.

 Sie kennen die konstruktiven Merkmale - Komplexität und Kopplung - von Technik, die Technikversagen begünstigen und u.U. zu Technikkatastrophen führen können.

13. Inhalt:

 In der Vorlesung werden diese Inhalte im Überblick vorgestellt. Im dazu gehörenden Seminar dieses Moduls werden ausgewählte
Themenbereiche vertieft behandelt, so etwa Risikoforschung, Techniksoziologie, sozialwissenschaftliche Umweltforschung.

14. Literatur:
RENN, Ortwin 2014: Das Risikoparadox. Warum wir uns vor dem Falschen fürchten. Frankfurt am Main: Fischer

15. Lehrveranstaltungen und -formen: 262901 Vorlesung Einführung in die Technik- und Umweltsoziologie

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 21 Stunden
Selbststudium: 69 Stunden
Summe: 90 Stunden

17. Prüfungsnummer/n und -name: 26291 Einführung in die Technik- und Umweltsoziologie (LBP), schriftlich, eventuell mündlich, Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Soziologie mit Schwerpunkt sozialwissenschaftliche Risiko- und Technikforschung
Modul: 49900 Messtechnik - Anlagenmesstechnik

2. Modulkürzel: 042310002
5. Modulduauer: 2 Semester
3. Leistungspunkte: 6.0 LP
4. SWS: 5.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Damian Vogt
9. Dozenten: • Gerhard Eyb
• Jürgen Mayer
• Markus Schatz

10. Zuordnung zum Curriculum in diesem Studiengang:

11. Empfohlene Voraussetzungen:

12. Lernziele:

Teil A: MT

Der Studierende
• hat Grundkenntnisse der Messtechnik
• kann mit Messgrößen und Messverfahren umgehen
• erkennt Messunsicherheiten und kann diese bewerten
• kennt Techniken zur Messung verschiedenster Größen
• kennt moderne Verfahren zur Erfassung und Auswertung von Messgrößen
• kann die gewonnenen Kenntnisse in der Praxis umsetzen

Teil B: AM

Der Studierende
• kennt komplexe Messverfahren, die im Bereich der Entwicklung von Energiemaschinen sowie bei Messungen in Anlagen Anwendung finden
• ist in der Lage, geeignete Messverfahren auszuwählen, zu bewerten und anzuwenden
• kann komplexe Messungen auswerten und deren Gültigkeitsbereiche zu definieren

13. Inhalt:

Teil A: MT (2 SWS)
• Grundlagen der Messtechnik
• Messkette, Messmethoden
• Messunsicherheiten
• Messverfahren für mechanische, thermische, akustische, elektrische Größen
• Strömungs- und Durchflussmessung
• Schadstoffmessung, Gasanalyse
• rechnergestützte Messwerterfassung und -auswertung

Teil B: AM (1 SWS V + 0,5 Ü)
• Messverfahren für Messungen an Maschinen und Anlagen
• Schwimgungsanalyse
• Strömungsmeßtechnik
• Auswertetechniken
Praktikum:

Erprobung und Einübung des theoretisch gelernten Wissens an praktischen Messaufgaben im Labor

14. Literatur:

Teil A

Manuskript zur Vorlesung

Ergänzende Literatur:

- J. Hofmann: Taschenbuch der Messtechnik, Fachbuchverlag Leipzig
- P. Profos: Handbuch der industriellen Messtechnik, Oldenbourg-Verlag
- R. Müller: Mechanische Größen elektrisch gemessen, Expert-Verlag
- K. Bonfig: Durchflussmessung von Flüssigkeiten und Gasen, Expert-Verlag
- F. Adunka: Messunsicherheiten, Vulkan-Verlag Aktualisierte Literaturlisten im Rahmen der Vorlesung

Teil B

Literaturliste wird im Rahmen der Vorlesung vorgestellt.

15. Lehrveranstaltungen und -formen:

- 499001 Vorlesung Messtechnik - Anlagenmesstechnik - Teil A: Grundlagen
- 499002 Vorlesung Messtechnik - Anlagenmesstechnik - Teil B: Anlagenmesstechnik
- 499003 Praktikum Messtechnik

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 37h + Nacharbeitszeit: 143h = 180h

17. Prüfungsnummer/n und -name:

- 49901 Messtechnik - Anlagenmesstechnik (PL), schriftliche Prüfung, Gewichtung: 1.0
- 49902 Messtechnik - Anlagenmesstechnik (USL), Sonstiges, Gewichtung: 1.0, Praktikum

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
220 Profil 1

Zugeordnete Module:

- 221 Profilbereich 1 (Stoff- und Energieflüsse)
- 222 Vertiefung zu Profil 1
221 Profilbereich 1 (Stoff- und Energieflüsse)

Zugeordnete Module: 10540 Technische Mechanik I
51660 Grundzüge der Maschinenkonstruktion I+II mit Einführung in die Festigkeitslehre
Modul: 51660 Grundzüge der Maschinenkonstruktion I+II mit Einführung in die Festigkeitslehre

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>07271100</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Modulduer:</td>
<td>2 Semester</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>12.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>9.0</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Thomas Maier</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Thomas Maier
• Siegfried Schmauder |
| 10. Zuordnung zum Curriculum in diesem Studiengang: |
| 11. Empfohlene Voraussetzungen: |
| 13. Inhalt: | Die Vorlesung und die Übungen vermitteln die Grundlagen
• der räumlichen Darstellung und des Technischen Zeichnens
• Einführung in die Produktentwicklung mit Übersicht über Produkte und Produktprogramme;
• der Festigkeitsberechnung (Zug und Druck, Biegung, Schub, Torsion (Verdrehung), Schwingende Beanspruchung, Allgemeiner Spannungs- und Verformungszustand, Kerbwirkung) und der konstruktiven Gestaltung;
• Grundlagen der Antriebstechnik;
| 14. Literatur: | • Maier: Grundzüge der Maschinen-konstruktion I + II und Einführung ins Technische Zeichnen, Skripte zur Vorlesung u. Übungsunterlagen;
• Schmauder: Einführung in die Festigkeitslehre, Skript zur Vorlesung und ergänzenden Folien im Internet;
Ergänzende Lehrbücher:
• Roloff, Matek: Maschinenelemente, Vieweg-Verlag;
• Dietmann: Einführung in die Festigkeitslehre, Kröner-Verlag;
• Hoischen, Hesser: Technisches Zeichnen, Cornelsen-Verlag. |
15. Lehrveranstaltungen und -formen:

- 516601 Vorlesung Grundzüge der Maschinenkonstruktion I
- 516602 Übung Grundzüge der Maschinenkonstruktion I
- 516603 Vorlesung Einführung in die Festigkeitslehre
- 516604 Einführung in die Festigkeitslehre Vortragsübung
- 516605 Vorlesung Grundzüge der Maschinenkonstruktion II
- 516606 Übung Grundzüge der Maschinenkonstruktion II

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 95 h
Selbststudiumszeit / Nacharbeitszeit: 265 h

Gesamt: 360 h

17. Prüfungsnummer/n und -name:

- 51661 Grundzüge der Maschinenkonstruktion I und II (PL), schriftliche Prüfung, 120 Min., Gewichtung: 2.0
- 51662 Einführung in die Festigkeitslehre (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0
- 51663 Grundzüge der Maschinenkonstruktion I (USL) (USL), schriftliche Prüfung, Gewichtung: 1.0
- 51664 Grundzüge der Maschinenkonstruktion II (USL) (USL), schriftliche Prüfung, Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
Modul: 10540 Technische Mechanik I

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072810001</th>
<th>5. Modulduauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Peter Eberhard</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Peter Eberhard
• Michael Hanss |
| 11. Empfohlene Voraussetzungen: | Grundlagen in Mathematik und Physik |
| 12. Lernziele: | Nach erfolgreichem Besuch des Moduls Technische Mechanik I haben die Studierenden ein grundlegendes Verständnis und Kenntnis der wichtigsten Zusammenhänge in der Stereo-Statik. Sie beherrschen selbständig, sicher, kritisch und kreativ einfache Anwendungen der grundlegendsten mechanischen Methoden der Statik. |
• Stereo-Statik: Kräftesysteme und Gleichgewicht, Gewichtskraft und Schwerpunkt, ebene Kräftesysteme, Lagerung von Mehrkörpersystemen, Innere Kräfte und Momente am Balken, Fachwerke, Seilstatik, Reibung |
| 14. Literatur: | • Vorlesungsmitschrieb
• Vorlesungs- und Übungsunterlagen
• Hibbeler, R.C.: Technische Mechanik 1 - Statik. München: Pearson Studium, 2005
| 15. Lehrveranstaltungen und -formen: | • 105401 Vorlesung Technische Mechanik I
• 105402 Übung Technische Mechanik I |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 42 h
Selbststudiumszeit / Nacharbeitszeit: 138 h
Gesamt: 180 h |
| 17. Prüfungsnummer/n und -name: | 10541 Technische Mechanik I (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0 |
| 20. Angeboten von: | Institut für Technische und Numerische Mechanik |
222 Vertiefung zu Profil 1

Zugeordnete Module:

11390 Grundlagen der Verbrennungsmotoren
12040 Einführung in die Regelungstechnik
12170 Werkstoffkunde I+II mit Werkstoffpraktikum
12200 Fertigungslehre mit Einführung in die Fabrikorganisation
13570 Werkzeugmaschinen und Produktionssysteme
13590 Kraftfahrzeuge I + II
13780 Regelungs- und Steuerungstechnik
13840 Fabrikbetriebslehre
13950 Grundlagen der Energiewirtschaft und -versorgung
14130 Kraftfahrzeugmechatronik I + II
Modul: 12040 Einführung in die Regelungstechnik

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>6.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Frank Allgöwer</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Frank Allgöwer
 • Matthias Müller |
| 10. Zuordnung zum Curriculum in diesem Studiengang: |
| 11. Empfohlene Voraussetzungen: | HM I-III, Grundlagen der Systemdynamik |
| 12. Lernziele: | Die Studierenden
 • haben umfassende Kenntnisse zur Analyse und Synthese einschleifiger linearer Regelkreise im Zeit- und Frequenzbereich
 • können auf Grund theoretischer Überlegungen Regler und Beobachter für dynamische Systeme entwerfen und validieren
 • können entworfene Regler und Beobachter an praktischen Laborversuchen implementieren |
| 13. Inhalt: |
| Vorlesung: | Systemtheoretische Konzepte der Regelungstechnik, Stabilität, Beobachtbarkeit, Steuerbarkeit, Robustheit, Reglerentwurfsverfahren im Zeit- und Frequenzbereich, Beobachterentwurf |
| Praktikum: | Implementierung der in der Vorlesung Einführung in die Regelungstechnik erlernten Reglerentwurfsverfahren an praktischen Laborversuchen |
| Projektwettbewerb: | Lösen einer konkreten Regelungsaufgabe in einer vorgegebenen Zeit in Gruppen |
| 15. Lehrveranstaltungen und -formen: | • 120401 Vorlesung Einführung in die Regelungstechnik
 • 120402 Gruppenübung Einführung in die Regelungstechnik
 • 120403 Praktikum Einführung in die Regelungstechnik
 • 120404 Projektwettbewerb Einführung in die Regelungstechnik |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 63h
 Selbststudiumszeit / Nacharbeitszeit: 117h
 Gesamt: 180h |
| 17. Prüfungsnummer/n und -name: | • 12041 Einführung in die Regelungstechnik (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0 |
• 12042 Einführung in die Regelungstechnik - Praktikum: Anwesenheit mit Kurztest (USL), schriftlich, eventuell mündlich, Gewichtung: 1.0
• 12043 Einführung in die Regelungstechnik - Projektwettbewerb: erfolgreiche Teilnahme (USL), schriftlich, eventuell mündlich, Gewichtung: 1.0

<table>
<thead>
<tr>
<th>18. Grundlage für ...</th>
<th>12260 Mehrgrößenregelung</th>
</tr>
</thead>
</table>

19. Medienform:

20. Angeboten von:
Modul: 13840 Fabrikbetriebslehre

4. SWS: 6.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Thomas Bauernhansl
9. Dozenten: Thomas Bauernhansl
10. Zuordnung zum Curriculum in diesem Studiengang:
11. Empfohlene Voraussetzungen: Kernmodul „Fertigungslehre mit Einführung in die Fabrikorganisation“
12. Lernziele:

Fabrikbetriebslehre - Management in der Produktion (Fabrikbetriebslehre I): Der Studierende kennt die einzelnen Unternehmensbereiche und beherrscht Methodenwissen in denen einzelnen Bereichen um diese von der Produktentwicklung bis zum Fabrikbetrieb optimal zu gestalten.

13. Inhalt:

14. Literatur:
- Vorlesungsskript als PDF-Dokument online bereitgestellt,
- Wandlungsfähige Unternehmensstrukturen
- Das Stuttgarter Unternehmensmodell, Westkämper Engelbert, Berlin Springer 2007,
15. Lehrveranstaltungen und -formen:

- 138401 Vorlesung Fabrikbetriebslehre Management in der Produktion (Fabrikbetriebslehre I)
- 138402 Übung Fabrikbetriebslehre Management in der Produktion (Fabrikbetriebslehre I)
- 138403 Vorlesung Fabrikbetriebslehre Kosten- und Leistungsrechnung (Fabrikbetriebslehre II)
- 138404 Übung Fabrikbetriebslehre Kosten- und Leistungsrechnung (Fabrikbetriebslehre II)

16. Abschätzung Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Präsenzzeit: 63 Stunden</th>
</tr>
</thead>
<tbody>
<tr>
<td>Selbststudium: 117 Stunden</td>
</tr>
</tbody>
</table>

17. Prüfungsnummer/n und -name:

13841 Fabrikbetriebslehre (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlege für ...:

19. Medienform:

PowerPoint, Folien (Overhead), Video, Animation

20. Angeboten von:

Institut für Industrielle Fertigung und Fabrikbetrieb
Modul: 12200 Fertigungslehre mit Einführung in die Fabrikorganisation

2. Modulkürzel: 072410001 5. Moduldauer: 1 Semester
4. SWS: 3.0 7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Thomas Bauernhansl
9. Dozenten: Thomas Bauernhansl

10. Zuordnung zum Curriculum in diesem Studiengang:
11. Empfohlene Voraussetzungen: keine
12. Lernziele:

Der Studierende kennt die Struktur und Abläufe sowie Prozessketten eines produzierenden Unternehmens. Er beherrscht die Grundlagen der Kosten- sowie der Investitionsrechnung. Der Studierende besitzt einen ersten Eindruck bezüglich digitaler Werkzeuge für die Planung und Simulation der Produktion.

13. Inhalt:

14. Literatur:
• Vorlesungs skripte;
• "Einführung in die Fertigungstechnik", Westkämper/ Warnecke, Teubner Lehrbuch;
• "Einführung in die Organisation der Produktion", Westkämper, Springer Lehrbuch
| 15. Lehrveranstaltungen und -formen: | • 122001 Vorlesung Fertigungslehre
• 122002 Vorlesung Einführung in die Fabrikorganisation
• 122003 Freiwillige Übungen Fertigungslehre mit Einführung in die Fabrikorganisation |
|-------------------------------------|--|
Selbststudium: 58 Stunden
Gesamt: 90 Stunden |
| 17. Prüfungsnummer/n und -name: | 12203 Fertigungslehre mit Einführung in die Fabrikorganisation (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0 |
| 18. Grundlage für ... : | |
| 19. Medienform: | PowerPoint, Video, Animation, Simulation |
| 20. Angeboten von: | Institut für Industrielle Fertigung und Fabrikbetrieb |
Modul: 13950 Grundlagen der Energiewirtschaft und -versorgung

2. Modulkürzel: 041210001 5. Moduldauer: 1 Semester
4. SWS: 4.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Kai Hufendiek
9. Dozenten: Kai Hufendiek
10. Zuordnung zum Curriculum in diesem Studiengang:

11. Empfohlene Voraussetzungen:
• Grundlagen der Thermodynamik (Zustandsänderungen, Kreisprozesse, 1. und 2. Hauptsatz)
• Kenntnisse in Physik und Chemie

12. Lernziele:
Die Studierenden kennen die fundamentalen Zusammenhänge in Energiesystemen/der Energiewirtschaft:

Die Studierenden verstehen die Grundlagen der Kosten und Wirtschaftlichkeitsrechnung als eine wesentliche Planungsgrundlage für Entscheidungen in der Energiewirtschaft.

Die Studierenden lernen die physikalisch-technischen Grundlagen der Energiewandlung und können diese im Hinblick auf die Bereitstellung von Energieträgern und die Energienutzung anwenden. Dabei werden die einzelnen Energieträger, die für unsere Energiewirtschaft bedeutsam sind betrachtet.

Darüber hinaus verstehen Sie die komplexen Zusammenhänge der Energiewirtschaft und Energieversorgung, d.h. ihre technischen, wirtschaftlichen und umweltseitigen Dimension und können diese analysieren.

13. Inhalt:
• Energie und ihre volkswirtschaftliche sowie gesellschaftliche Bedeutung
• Energienachfrage und die Entwicklung der Energiesysteme/der Energiewirtschaft
• Bilanzierung technischer Systeme und Energiebilanzen von Volkswirtschaften
• Einführung in die betriebswirtschaftliche Kosten- und Wirtschaftlichkeitsrechnung, um Energiesysteme ökonomisch bewerten zu können
• Herkunft, Ressourcensituation und Techniken zur Umwandlung und Nutzung der einzelnen Energieträger: Mineralöl, Erdgas, Kohle, Kernenergie und erneuerbare Energien
• Technische Grundlagen, Organisation und Struktur der Elektrizitäts- und Fernwärmeversorgung
• Umweltbelastungen und -wirkungen der Energienutzung, Möglichkeiten der Bewertung und Technologien zur Reduktion energiebedingter Umweltbelastungen

14. Literatur: Online-Manuskript
15. Lehrveranstaltungen und -formen:
- 139501 Vorlesung: Grundlagen der Energiewirtschaft und -versorgung
- 139502 Übung: Grundlagen der Energiewirtschaft und -versorgung

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 h
Selbststudiumszeit / Nacharbeitszeit: 138 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
13951 Grundlagen der Energiewirtschaft und -versorgung (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ...:
- 29200 Energiesysteme und effiziente Energieanwendung
- 29190 Planungsmethoden in der Energiewirtschaft
- 30800 Kraft-Wärme-Kopplung und Versorgungskonzepte
- 17500 Energiemärkte und Energiepolitik

19. Medienform:
- Beamergestützte Vorlesung
- teilweise Anschrieb
- begleitendes Manuskript bzw. Unterlagen
- Vortrags-Übungen

20. Angeboten von:
Institut für Energiewirtschaft und Rationelle Energieanwendung
Modul: 11390 Grundlagen der Verbrennungsmotoren

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>070800003</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. Modulverantwortlicher:</th>
<th>Univ.-Prof. Michael Bargende</th>
</tr>
</thead>
<tbody>
<tr>
<td>9. Dozenten:</td>
<td>Michael Bargende</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10. Zuordnung zum Curriculum in diesem Studiengang:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>11. Empfohlene Voraussetzungen:</th>
<th>Grundkenntnisse aus 1. bis 4. Fachsemester</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>12. Lernziele:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>13. Inhalt:</th>
</tr>
</thead>
</table>

Informationen zur Prüfung:
Verständnis: keine Hilfsmittel zugelassen
Berechnung: alle Hilfsmittel außer programmierbare Taschenrechner, Laptops, Handy, etc.

<table>
<thead>
<tr>
<th>14. Literatur:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Vorlesungsmanuskript</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15. Lehrveranstaltungen und -formen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>113901 Grundlagen der Verbrennungsmotoren</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16. Abschätzung Arbeitsaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzzeit:</td>
</tr>
<tr>
<td>Selbststudium / Nacharbeitszeit:</td>
</tr>
<tr>
<td>Gesamt:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
</tr>
</thead>
<tbody>
<tr>
<td>11391 Grundlagen der Verbrennungsmotoren (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>18. Grundlage für ... :</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>19. Medienform:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tafelanschrieb, PPT-Präsentationen, Overheadfolien</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>20. Angeboten von:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Verbrennungsmotoren</td>
</tr>
</tbody>
</table>

Stand: 13. April 2016
Modul: 13590 Kraftfahrzeuge I + II

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>070800001</th>
<th>5. Modulduauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td></td>
<td>Univ.-Prof. Jochen Wiedemann</td>
<td></td>
</tr>
</tbody>
</table>
| 9. Dozenten: | | • Jochen Wiedemann
 | | • Nils Widdecke | |
| 11. Empfohlene Voraussetzungen: | | Kenntnisse aus den Fachsemestern 1 bis 4 |
| | | Wichtig: Ab WS2015/16 ist die Prüfung ohne Hilfsmittel zu absolvieren. |
| 14. Literatur: | | • Wiedemann, J.: Kraftfahrzeuge I-II, Vorlesungsumdruck, |
| | | • Reimpell, J.: Fahrwerktechnik: Grundlagen, Vogel-Fachbuchverlag, 2005 |
| 15. Lehrveranstaltungen und -formen: | | • 135901 Vorlesung Kraftfahrzeuge I + II |
| | | • 135902 Übung Kraftfahrzeuge I + II |
| 16. Abschätzung Arbeitsaufwand: | | Präsenzzeit: 42 h |
| | | Selbststudium / Nacharbeitszeit: 138 h |
| | | Gesamt: 180 h |
| 17. Prüfungsnummer/n und -name: | 13591 | Kraftfahrzeuge I + II (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0 |
| | 13590 | Kraftfahrzeuge I + II |
| 18. Grundlage für ... : | | 13590 Kraftfahrzeuge I + II |
| 19. Medienform: | | Beamer, Tafel |
| 20. Angeboten von: | | Kraftfahrwesen |
Modul: 14130 Kraftfahrzeugmechatronik I + II

4. SWS: 4.0 7. Sprache: Deutsch

10. Zuordnung zum Curriculum in diesem Studiengang:
11. Empfohlene Voraussetzungen: Grundkenntnisse aus den Fachsemestern 1 bis 4
12. Lernziele:
 Die Studenten kennen mechatronische Komponenten in Automobilen, können Funktionsweisen und Zusammenhänge erklären.
 Die Studenten können Entwicklungsmethoden für mechatronische Komponenten im Automobil einordnen und anwenden. Wichtige Entwicklungswerkzeuge können sie nutzen.

13. Inhalt:
 VL Kfz-Mech I:
 - kraftfahrzeugspezifische Anforderungen an die Elektronik
 - Bordnetz (Energiemanagement, Generator, Starter, Batterie, Licht)
 - Motorelektronik (Zündung, Einspritzung)
 - Getriebeelektronik
 - Lenkung
 - ABS, ASR, ESP, elektromechanische Bremse, Dämpfungsregelung, Reifendrucküberwachung
 - Sicherheitssysteme (Airbag, Gurt, Alarmanlage, Wegfahrsperrre)
 - Komfortsysteme (Tempomat, Abstandsregelung, Klimaanlage)

 VL Kfz-Mech II:
 - Grundlagen mechatronischer Systeme (Steuerung/Regelung, diskrete Systeme, Echtzeitsysteme, eingebettete Systeme, vernetzte Systeme)
 - Systemarchitektur und Fahrzeugentwicklungsprozesse
 - Kernprozess zur Entwicklung von mechatronischen Systemen und Software (Schwerpunkt V-Modell)

 Laborübungen Kraftfahrzeugmechatronik
 - Rapid Prototyping (Simulink)
 - Modellbasierte Funktionsentwicklung mit TargetLink
 - Elektronik

14. Literatur:
 Vorlesungsumdruck: „Kraftfahrzeugmechatronik I“ (Reuss)

15. Lehrveranstaltungen und -formen:
 - 141301 Vorlesung Kraftfahrzeugmechatronik I
 - 141302 Vorlesung Kraftfahrzeugmechatronik II
 - 141303 Laborübungen Kraftfahrzeugmechatronik

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 42 h
 Selbststudiumszeit / Nacharbeitszeit: 138 h
<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>14131 Kraftfahrzeugmechatronik I + II (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Vorlesung (Beamer), Laborübungen (am PC, betreute Zweiergruppen)</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Kraftfahrzeugmechatronik</td>
</tr>
</tbody>
</table>
Modul: 13780 Regelungs- und Steuerungstechnik

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

| 8. Modulverantwortlicher: | Univ.-Prof. Frank Allgöwer |

| 9. Dozenten: | • Frank Allgöwer
• Christian Ebenbauer
• Oliver Sawodny
• Matthias Müller
• Armin Lechler |

| 10. Zuordnung zum Curriculum in diesem Studiengang: |

| 11. Empfohlene Voraussetzungen: | HM I-III |

| 12. Lernziele: | Die Studierenden
• können lineare dynamische Systeme analysieren,
• können lineare dynamische Systeme auf deren Struktureigenschaften untersuchen und Aussagen über mögliche Regelungs- und Steuerungskonzepte treffen,
• können einfache Regelungs- und Steuerungsaufgaben für lineare Systeme lösen. |

| 13. Inhalt: | Vorlesung „Systemdynamische Grundlagen der Regelungstechnik“:
Fourier-Reihe, Fourier-Transformation, Laplace-Transformation, Testsignale, Blockdiagramme, Zustandsraumdarstellung
Vorlesung „Einführung in die Regelungstechnik“:
Systemtheoretische Konzepte der Regelungstechnik, Stabilität (Nyquist-, Hurwitz- und Small-Gain-Kriterium,...), Beobachtbarkeit, Steuerbarkeit, Robustheit, Reglerentwurfsgen im Zeit- und Frequenzbereich (PID, Polvorgabe, Vorfilter,...), Beobachterentwurf
Vorlesung „Steuerungstechnik mit Antriebstechnik“:
Steuerungsarten (mechanisch, fluidisch, Kontaktsteuerung, SPS, Motion Control, Numerische Steuerung, Roboterteuerung, Leitsteuerung): Aufbau, Architektur, Funktionsweise, Programmierung, Darstellung und Lösung steuerungstechnischer Problemstellungen. Grundlagen der in der Automatisierungstechnik verwendeten Antriebssysteme |

Bemerkung 1: Es ist einer der beiden folgenden Blöcke zu wählen:
Block 1: "Systemdynamische Grundlagen der Regelungstechnik" und "Einführung in die Regelungstechnik"
Block 2: "Systemdynamische Grundlagen der Regelungstechnik" und "Steuerungstechnik mit Antriebstechnik"
Bemerkung 2 (Prüfungsanmeldung):

- Studierende der Erneuerbaren Energien müssen die Prüfung "Systemdynamische Grundlagen der Regelungstechnik" bei Univ.-Prof. Oliver Sawodny ablegen.
- Studierende anderer in Punkt 10 genannten Studiengänge müssen die Prüfung "Systemdynamische Grundlagen der Regelungstechnik" bei Univ.-Prof. Christian Ebenbauer ablegen.

14. Literatur:

Vorlesung „Systemdynamische Grundlagen der Regelungstechnik“

- Föllinger, O.: Laplace-, Fourier- und z-Transformation. 7. Aufl., Hüthig Verlag 1999

Vorlesung „Einführung in die Regelungstechnik“

Vorlesung „Steuerungstechnik mit Antriebstechnik“

- Pritschow, G.: Einführung in die Steuerungstechnik, Carl Hanser Verlag, München, 2006

15. Lehrveranstaltungen und -formen:

- 137801 Vorlesung Systemdynamische Grundlagen der Regelungstechnik
- 137802 Vorlesung Einführung in die Regelungstechnik
- 137803 Vorlesung Steuerungstechnik mit Antriebstechnik

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 42h
Selbststudiumszeit / Nacharbeitszeit: 138h
Gesamt: 180h

17. Prüfungsnummer/n und -name:

- 13781 Systemdynamische Grundlagen der Regelungstechnik (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0
- 13782 Einführung in die Regelungstechnik (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0
- 13783 Steuerungstechnik mit Antriebstechnik (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0, Ermittlung der Modulnote: Block 1: Systemdynamische Grundlagen der Regelungstechnik 50%, Einführung in die Regelungstechnik 50%, Block 2: Systemdynamische Grundlagen der Regelungstechnik 50%, Steuerungstechnik mit Antriebstechnik 50%

18. Grundlage für:

19. Medienform:

20. Angeboten von:
Modul: 12170 Werkstoffkunde I+II mit Werkstoffpraktikum

2. Modulkürzel: 041810001
5. Moduldauer: 2 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 6.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Michael Seidenfuß

9. Dozenten: Michael Seidenfuß

10. Zuordnung zum Curriculum in diesem Studiengang: keine

12. Lernziele:

13. Inhalt:

Vorlesung
Atomarer Aufbau kristalliner Werkstoffe, Legierungsbildung, Thermisch aktivierte Vorgänge, Mechanische Eigenschaften, Eisenwerkstoffe, Nichteisenmetalle, Kunststoffe, Keramische Werkstoffe, Verbundwerkstoffe, Korrosion, Tribologie, Recycling

Praktikum
Thermische Analyse, Kerbschlagbiegeversuch, Härteprüfung, Zugversuch, Schwingfestigkeitsuntersuchung Korrosion, Metallographie, Wärmebehandlung, Dillatometer

14. Literatur:
- ergänzende Folien zur Vorlesung (online verfügbar)
- Lecturnity Aufzeichnungen der Übungen (online verfügbar)
- Skripte zum Praktikum (online verfügbar)
- interaktive multimediale praktikumsbegleitende-CD

15. Lehrveranstaltungen und -formen:
- 121701 Vorlesung Werkstoffkunde I
- 121702 Vorlesung Werkstoffkunde II
- 121703 Werkstoffpraktikum I
- 121704 Werkstoffpraktikum II
- 121705 Werkstoffkunde Übung II
- 121706 Werkstoffkunde Übung I

16. Abschätzung Arbeitsaufwand:
Präsenzzeit Vorlesungen (2x 2 SWS): 42 h
Präsenzzeit Übung (2x 0,5 SWS): 12 h
Präsenzzeit Praktikum (2x Blockveranstaltung): 8 h
Präsenzzeit gesamt: 62h

Stand: 13. April 2016
Selbststudium: 120 h
GESAMT: 182h

17. Prüfungsnummer/n und -name:
• V Vorleistung (USL-V), schriftlich, eventuell mündlich

18. Grundlage für ... :

19. Medienform:
PPT auf Tablet PC, Skripte zu den Vorlesungen und zum Praktikum (online verfügbar), Animationen und Simulationen, interaktive multimediale praktikumsbegleitende CD, online Lecturnity Aufzeichnungen der Übungen, Abruf über Internet

20. Angeboten von:
Institut für Materialprüfung, Werkstoffkunde und Festigkeitslehre
Modul: 13570 Werkzeugmaschinen und Produktionssysteme

2. Modulkürzel: 073310001
5. Moduldauer: 1 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Prof. Uwe Heisel

9. Dozenten: Uwe Heisel

12. Lernziele: Die Studierenden kennen den konstruktiven Aufbau und die Funktionseinheiten von spanenden Werkzeugmaschinen und Produktionssystemen sowie die Formeln zu deren Berechnung, sie wissen, wie Werkzeugmaschinen und deren Funktionseinheiten funktionieren, sie können deren Aufbau und Funktionsweise erklären und die Formeln zur Berechnung von Werkzeugmaschinen anwenden.

14. Literatur: Skript, Vorlesungsunterlagen im Internet, alte Prüfungsaufgaben

15. Lehrveranstaltungen und -formen: 135701 Vorlesung Werkzeugmaschinen und Produktionssysteme

16. Abschätzung Arbeitsaufwand: Präsenzzeit: 42 h

Selbststudiumszeit / Nacharbeitszeit: 138 h

Gesamt: 180 h
<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>13571 Werkzeugmaschinen und Produktionssysteme (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td>Medienmix: Präsentation, Tafelanschrieb, Videoclips</td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Medienmix: Präsentation, Tafelanschrieb, Videoclips</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Institut für Werkzeugmaschinen</td>
</tr>
</tbody>
</table>
230 Profil 2

Zugeordnete Module: 231 Profilbereich 2 (Informations- und Energieflüsse)
 232 Vertiefung zu Profil 2
231 Profilbereich 2 (Informations- und Energieflüsse)

Zugeordnete Module:

- 11440 Grundlagen der Elektrotechnik
- 11450 Informatik I
- 31760 Grundlagenpraktikum
Modul: 11440 Grundlagen der Elektrotechnik

2. Modulkürzel: 051800001
5. Modulduer: 2 Semester

3. Leistungspunkte: 9.0 LP

4. SWS: 8.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Wolfgang Rucker

9. Dozenten:

10. Zuordnung zum Curriculum in diesem Studiengang:

11. Empfohlene Voraussetzungen:

12. Lernziele: Die Studierenden:

- besitzen die Kenntnisse der physikalischen Grundlagen der Elektrotechnik
- beherrschen die analytischen Verfahren zur Analyse elektronischer Schaltungen

13. Inhalt:

- Physikalische Größen, Einheiten und Gleichungen
- Grundbegriffe, Elektrische Ladungen, Ströme und Spannungen
- Elektrische Gleichstromkreise, Ohm’sches Gesetz, Kirchhoff’sche Gesetze
- Elektrischer Widerstand, Reihen- und Parallelschaltung von Widerständen
- Strom- und Spannungsquellen
- Verfahren zur Netzwerkanalyse, Maschen- und Knotenanalyse
- Statisches elektrisches Feld, Coulomb’sches Gesetz
- Kapazität eines Kondensators, Lade- und Entladevorgänge
- Stationäres magnetisches Feld, Durchflutungsgesetz, magnetische Kreise
- Zeitlich veränderliche Magnetfelder, Induktionsgesetz
- Induktivität einer Spule
- Sinusförmige Wechselgrößen, komplexe Darstellung
- Wechselstromkreise
- Allgemeine Zweipole, Ersatzschaltungen, komplexe Leistung
- Übertrager
- Vierpolquellen, gesteuerte Strom- und Spannungsquellen
- Bipolarer Transistor, Feldeffekttransistor, Operationsverstärker
- Schwingkreise

14. Literatur:

- Albach M.: Grundlagen der Elektrotechnik 1-3, Pearson, München, 2004
- Hagmann G.: Grundlagen der Elektrotechnik, Aula-Verlag, Wiebelsheim, 2006
- Nerreter W.: Grundlagen der Elektrotechnik, Hanser, München, 2006
- Unbehauen R.: Grundlagen der Elektrotechnik 1, Springer, 1999

15. Lehrveranstaltungen und -formen:

- 114401 Vorlesung Grundlagen der Elektrotechnik 1
16. Abschätzung Arbeitsaufwand: Präsenzzeit: 112 h
Selbststudium: 158 h
Gesamt: 270 h

17. Prüfungsnummer/n und -name: • 11441 Grundlagen der Elektrotechnik (PL), schriftliche Prüfung, 150 Min., Gewichtung: 1.0, Prüfungsvorleistung: Art und Umfang wird in der Vorlesung bekannt gegeben
• V Vorleistung (USL-V), schriftlich, eventuell mündlich

18. Grundlage für ...

19. Medienform: Tafel, Beamer, Projektor

20. Angeboten von: Institut für Theorie der Elektrotechnik
Modul: 31760 Grundlagenpraktikum

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050310010</th>
<th>5. Modulduer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Marc Wilke

9. Dozenten: Marc Wilke, Ulrich Schärli

10. Zuordnung zum Curriculum in diesem Studiengang:

11. Empfohlene Voraussetzungen: keine

12. Lernziele:

13. Inhalt:
 Im 3. Semester (empfohlen): Sicherheitsseminar (Dr. Schärli) und vier grundlegende Versuche.
 - Sicherheitsbelehrung über die Gefahren des elektrischen Stromes.
 - Kennlernen von und Messen der Eigenschaften von Bauelementen.
 - Grundlagen analoger Schaltungen.
 - Grundlagen digitaler Schaltungen.
 - Energie-Übertragungsstrecken.

 Im 5. Semester (empfohlen): Durchführung von weiteren fünf vertiefenden Versuchen aus dem fachlichen Angebot der Institute. Homepage des Grundlagenpraktikums (GP) mit Hinweisen für LAGym sowie zu den erforderlichen Anmeldungen zum GP der beiden Wintersemester:
 - http://www.uni-stuttgart.de/etit/gp

14. Literatur: Umdrucke und Anleitungen zu den Versuchen

15. Lehrveranstaltungen und -formen: 317601 Vorlesung Sicherheitsseminar, 317602 Praktikum Grundlagenpraktikum

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 21 h
 Selbststudium/Vorbereitungszeit: 69 h
 Gesamt: 90 h

17. Prüfungsnummer/n und -name:
 - 31761 Grundlagenpraktikum (USL), schriftlich, eventuell mündlich, Gewichtung: 1.0
 - 31762 Grundlagenpraktikum (PL), schriftlich, eventuell mündlich, Gewichtung: 1.0

18. Grundlage für ...

19. Medienform: Praxis im Labor

20. Angeboten von: Institut für Energieübertragung und Hochspannungstechnik
Modul: 11450 Informatik I

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050901010</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>2 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Andreas Kirstädter</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Andreas Kirstädter</td>
</tr>
<tr>
<td>10. Zuordnung zum Curriculum in diesem Studiengang:</td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>Der Studierende besitzt das Grundverständnis und beherrscht die Grundlagen formaler Konzepte der Informatik, hat die Fähigkeit, Problemlösungen algorithmisch zu formulieren und mit Hilfe einer objektorientierten Programmiersprache (Java) zu formulieren.</td>
</tr>
</tbody>
</table>
| 14. Literatur: | • Vorlesungsskript
• Rembold, U., Levi, P.: Einführung in die Informatik für Naturwissenschaftler und Ingenieure, Hanser-Verlag
• Barnes, D.J.: Object-Oriented Programming with Java: An Introduction, Prentice Hall
• Weiss, M.A.: Data Structures and Algorithm Analysis in Java, Addison-Wesley
• Merzenich, W., Zeidler, Chr.: Informatik für Ingenieure, B.G. Teubner
• Meyer, Bertrand: Object-Oriented Software Construction, Prentice Hall |
| 15. Lehrveranstaltungen und -formen: | • 114501 Vorlesung Informatik I, Teil 1
• 114502 Übung Informatik I, Teil 1
• 114503 Vorlesung Informatik I, Teil 2
• 114504 freie Übungen am Rechnerpool zur Programmierung Informatik I |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 56 h
Selbststudium: 124 h
Gesamt: 180 h |
| 17. Prüfungsnummer/n und -name: | 11451 Informatik I (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0 |
| 18. Grundlage für ...: | |
| 19. Medienform: | Notebook-Präsentation und Übungen am Rechner |
| 20. Angeboten von: | Institut für Kommunikationsnetze und Rechnersysteme |
232 Vertiefung zu Profil 2

Zugeordnete Module:

11490 Nachrichtentechnik
11500 Elektrische Energietechnik
11670 Grundlagen integrierter Schaltungen
11740 Elektromagnetische Verträglichkeit
31750 Informatikpraktikum
49960 Teamarbeit - IEH
49970 Teamarbeit - INÜ
Modul: 11500 Elektrische Energietechnik

2. Modulkürzel: 051010001
5. Modulsdauer: 2 Semester

3. Leistungspunkte: 9.0 LP
6. Turnus: jedes 2. Semester, SoSe

4. SWS: 6.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Jörg Roth-Stielow

9. Dozenten:
 • Stefan Tenbohlen
 • Jörg Roth-Stielow

10. Zuordnung zum Curriculum in diesem Studiengang:

11. Empfohlene Voraussetzungen:

12. Lernziele:
 Studierende...
 • ...kennen die grundlegenden Prinzipien der elektrischen Energieerzeugung, -übertragung und -verteilung.
 • ...können einfache Berechnungen von Größen in Systemen der elektrischen Energieerzeugung, -übertragung und -verteilung vornehmen.
 • ...kennen die grundlegenden Prinzipien der elektrischen Maschinen und Transformatoren.
 • ...können einfache Berechnungen von Größen in elektrischen Maschinen und Transformatoren vornehmen.

13. Inhalt:
 • Aufgabe und Bedeutung der elektrischen Energieversorgung,
 • Energieumwandlung in Kraftwerken,
 • Elektrizitätswirtschaft und Investitionstheorie,
 • Aufbau von elektrischen Energieversorgungsnetzen und Bordnetzen,
 • Lastflüsse, Kurzschlussströme, Überspannungen in elektrischen Versorgungsnetzen,
 • Sicherheitstechnik,
 • elektrischer Unfall,
 • Elektrischer Energiefluss als Informations- und Arbeitsmedium,
 • Leistungselektronik u. Regelungstechnik als Teilgebiete der Energietechnik,
 • Gleichstrommaschine,
 • Transformator,
 • Asynchronmaschine, Synchronmaschine

14. Literatur:
 • Vorlesungsskripte
 • Heuck, Dettmann: Elektrische Energieversorgung, Vieweg, Braunschweig/Wiesbaden, 2005
 • Schwab: Elektroenergiesysteme, Springer, 2009/2015
 • Heumann, K.: Grundlagen der Leistungselektronik, B. G. Teubner, Stuttgart, 1989

15. Lehrveranstaltungen und -formen:
 • 115001 Vorlesung Energietechnik I
 • 115002 Übung Energietechnik I
 • 115003 Vorlesung Energietechnik II
 • 115004 Übung Energietechnik II
<table>
<thead>
<tr>
<th>16. Abschätzung Arbeitsaufwand:</th>
<th>Präsenzzeit: 84 h</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Selbststudium: 186 h</td>
</tr>
<tr>
<td></td>
<td>Gesamt: 270 h</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>• 11501 Elektrische Energietechnik I (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• 11502 Elektrische Energietechnik II (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>18. Grundlage für ...:</th>
</tr>
</thead>
</table>

| 19. Medienform: | Tafel, Folien, Beamer |

| 20. Angeboten von: | Informatik, Elektrotechnik und Informationstechnik |
Modul: 11740 Elektromagnetische Verträglichkeit

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050310006</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. Modulverantwortlicher:</th>
<th>Univ.-Prof. Stefan Tenbohlen</th>
</tr>
</thead>
<tbody>
<tr>
<td>9. Dozenten:</td>
<td>• Daniel Schneider</td>
</tr>
<tr>
<td></td>
<td>• Stefan Tenbohlen</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- Grundlagen der Elektrotechnik

11. Empfohlene Voraussetzungen:

- Studierender hat Kenntnisse der Messverfahren und Messausrüstungen der Elektromagnetischen Verträglichkeit. Er kennt praktische Abhilfemaßnahmen zur Beherrschung der EMV-Problematik und die Besonderheiten in der Automobil-EMV

12. Lernziele:

- Einführung
- Begriffsbestimmungen
- EMV-Umgebung
- Allgemeine Maßnahmen zur Sicherstellung der EMV
- Aktive Schutzmaßnahmen
- Nachweis der EMV (Messverfahren, Messumgebung)
- Einwirkung elektromagnetischer Felder auf biologische Systeme
- EMV im Automobilbereich

14. Literatur:

- Schwab, Adolf J.: Elektromagnetische Verträglichkeit Springer Verlag, 1996
- Habiger, Ernst: Elektromagnetische Verträglichkeit Hüthig Verlag, 3. Aufl., 1998
- Gonschorek, K.-H.: EMV für Geräteentwickler und Systemintegratoren Springer Verlag, 2005
- Wiesinger, J. u.a.: EMV-Blitzschutz von elektrischen und elektronischen Systemen in baulichen Anlagen VDE-Verlag, Oktober 2004

15. Lehrveranstaltungen und -formen:

- 117401 Vorlesung Elektromagnetische Verträglichkeit
- 117402 Übung Elektromagnetische Verträglichkeit

16. Abschätzung Arbeitsaufwand:

- Präsenzzeit: 56 h
- Selbststudium/Nacharbeitszeit: 124 h
- Gesamt: 180 h

17. Prüfungsnummer/n und -name:

- 11741 Elektromagnetische Verträglichkeit (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:

- PowerPoint, Tafelanschrieb

20. Angeboten von:

- Institut für Energieübertragung und Hochspannungstechnik
Modul: 11670 Grundlagen integrierter Schaltungen

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050200002</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Manfred Berroth</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Manfred Berroth</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Kenntnisse in Schaltungstechnik</td>
</tr>
<tr>
<td></td>
<td>Kenntnisse in höherer Mathematik</td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>Die Studierenden besitzen Grundkenntnisse über integrierte Schaltungen der Digitaltechnik basierend auf Silizium-MOSFETs</td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>• Bauelemente der Digitaltechnik</td>
</tr>
<tr>
<td></td>
<td>• Digitale Grundschaltungen</td>
</tr>
<tr>
<td></td>
<td>• CMOS-Logikschaltungen</td>
</tr>
<tr>
<td></td>
<td>• Schaltwerke</td>
</tr>
<tr>
<td>14. Literatur:</td>
<td>• Vorlesungsskript,</td>
</tr>
<tr>
<td></td>
<td>• Hoffmann: VLSI-Entwurf - Modelle und Schaltungen, Oldenbourg Verlag, München, 1998</td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 116701 Vorlesung Grundlagen Integrierter Schaltungen</td>
</tr>
<tr>
<td></td>
<td>• 116702 Übung Grundlagen Integrierter Schaltungen</td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Präsenzzeit: 56 h</td>
</tr>
<tr>
<td></td>
<td>Selbststudium: 124 h</td>
</tr>
<tr>
<td></td>
<td>Gesamt: 180 h</td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>11671 Grundlagen integrierter Schaltungen (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0</td>
</tr>
<tr>
<td>18. Grundlage für ...:</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Tafel, Beamer</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Institut für Elektrische und Optische Nachrichtentechnik</td>
</tr>
</tbody>
</table>
Modul: 31750 Informatikpraktikum

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050901002</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

Modulverantwortlicher:
Univ.-Prof. Andreas Kirstädter

Dozenten:
Ulrich Gemkow

Zuordnung zum Curriculum in diesem Studiengang:

Empfohlene Voraussetzungen:
Kenntnisse, wie sie im Modul "Informatik I" vermittelt werden vorrausgesetzt.

Lernziele:
Der Studierende kann Algorithmen und Programme selbstständig entwerfen und in der objektorientierten Programmiersprache Java implementieren.

Inhalt:
- Programmierumgebung,
- Programmietechnische Grundlagen (Java),
- Vererbung und Polymorphismus,
- Heterogene Datenstrukturen und dynamische Bindung,
- Problemstrukturierung und Programmentwurf,
- Verwendung der Java-Standard-Klassenbibliothek,
- Ein-/Ausgaber verwaltung und Oberflächenprogrammierung,
- Anwendungsbeispiele: Entwurf und Implementierung von Algorithmen (Suchen, Sortieren, Graphen) und Objektorientierter Programmentwurf am Beispiel einer Spielprogrammierung

Für nähere Informationen, aktuelle Ankündigungen und Material siehe http://www.ikr.uni-stuttgart.de/Xref/CC/P_Info

Literatur:
- Unterlagen zum Modul "Informatik I"

Lehrveranstaltungen und -formen:
317501 Praktikum Informatikpraktikum

Abschätzung Arbeitsaufwand:
- Präsenzzeit: 30 h
- Selbststudium: 60 h
- Gesamt: 90 h

Prüfungsnummer/n und -name:
- 31751 Informatikpraktikum (USL), schriftlich, eventuell mündlich, Gewichtung: 1.0
- 31752 Informatikpraktikum (PL), schriftlich, eventuell mündlich, Gewichtung: 1.0

Grundlage für ...

Medienform:
Übung am Rechner

Angeboten von:
Modul: 11490 Nachrichtentechnik

2. Modulkürzel: 050600003
5. Modulduer: 2 Semester
3. Leistungspunkte: 9.0 LP
4. SWS: 6.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Stephan Brink

9. Dozenten: • Jan Hesselbarth
• Stephan Brink

10. Zuordnung zum Curriculum in diesem Studiengang:

11. Empfohlene Voraussetzungen:

12. Lernziele: Die Studierenden besitzen schaltungs- und informations-
technische Grundkenntnisse der Nachrichtentechnik. Sie verstehen die
grundsätzliche Funktionsweise von nachrichtentechnischen Systemen.

13. Inhalt:

 Teil I:
 Schaltungen bei höheren Frequenzen, Grundlagen der Sender- und
 Empfangstechnik, Leitungen, Einführung in Antennen, Wellenausbreitung
 und Empfängerraschungen, Übersicht wichtiger Funksysteme

 Teil II:
 Grundzüge der Informationstheorie, Codierung und Modulation,
 Signalübertragung über elektrische Leitungen

14. Literatur:
 • Vorlesungsskripte,
 • Meinke, Gundlach: Taschenbuch der Hochfrequenztechnik, 5. Auflage,
 Springer-Verlag, 1992,
 • Tietze, Schenk: Halbleiterschaltungstechnik, 12. Auflage, Springer-
 Verlag, 2002,
 • Zinke, Brunswig: Lehrbuch der Hochfrequenztechnik, 3. Auflage,
 Springer-Verlag, Berlin, 1986
 • Herter, Lörcher: Nachrichtentechnik, 9. Auflage, Hanser-Verlag, 2004,
 • Proakis, J.; Salehi, M.: Grundlagen der Kommunikationstechnik. Verlag
 Pearson Studium, 2004
 • Unger, H. G.: Elektromagnetische Wellen auf Leitungen. Verlag Hüttig,
 Heidelberg, 1996

15. Lehrveranstaltungen und -formen:
 • 114901 Vorlesung Nachrichtentechnik 1
 • 114902 Übung Nachrichtentechnik 1
 • 114903 Vorlesung Nachrichtentechnik 2
 • 114904 Übung Nachrichtentechnik 2

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 84 h
 Selbststudium/Nacharbeitszeit: 186 h
 Gesamt: 270 h

17. Prüfungsnummer/n und -name: 11491 Nachrichtentechnik (PL), schriftlich, eventuell mündlich, 180
 Min., Gewichtung: 1.0

18. Grundlage für ...:
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>20. Angeboten von:</td>
<td>Institut für Hochfrequenztechnik</td>
</tr>
</tbody>
</table>
Modul: 49960 Teamarbeit - IEH

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050310008</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Ulrich Schärli

9. Dozenten: • Ulrich Schärli
 • wiss. MA

10. Zuordnung zum Curriculum in diesem Studiengang:

11. Empfohlene Voraussetzungen: Die Teilnahme am Grundlagenpraktikum und am Sicherheitsseminar wird dringend empfohlen.

Jede Gruppe präsentiert am Schluss der Teamarbeit ihre Ergebnisse und führt den entwickelten Aufbau vor.

14. Literatur: Fachliteratur, Versuchsumdruck

15. Lehrveranstaltungen und -formen: 499601 Praktikum Teamarbeit - IEH

16. Abschätzung Arbeitsaufwand: Präsenzzeit: 20 h
Selbststudium: 70 h
Gesamt: 90 h

17. Prüfungsnummer/n und -name: 49961 Teamarbeit - IEH (LBP), schriftlich, eventuell mündlich, Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Institut für Energieübertragung und Hochspannungstechnik
Modul: 49970 Teamarbeit - INÜ

2. Modulkürzel: - 5. Modulduer: 1 Semester
4. SWS: 2.0 7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Stephan Brink
9. Dozenten: • wiss. MA
• Stephan Brink
10. Zuordnung zum Curriculum in diesem Studiengang:
11. Empfohlene Voraussetzungen: Grundlagen der Elektrotechnik

• Der Betreuer umreißt zu Beginn des Projekts die Aufgabenstellung und gibt dem Team geeignete schriftliche Unterlagen.
• Das Team erstellt auf dieser Grundlage eine Feinspezifikation und einen Projektplan.
• Das Team teilt die Aufgaben unter seinen Mitgliedern auf.
• Ein Team-Mitglied kann dabei die laufende und abschließende schriftliche Dokumentation erstellen. Dabei sollen gängige Textsysteme verwendet werden, wie LaTeX, OpenOffice oder Word. Das schafft gute Voraussetzungen für die spätere Bachelorarbeit.
• Das Team trifft sich regelmäßig, um den Fortgang der Arbeiten zu besprechen.
• Das Team trifft sich regelmäßig mit dem Betreuer, gibt einen mündlichen Zwischenbericht und erörtert die nächsten Schritte.
• Am Ende der Arbeit berichtet das Team über die Ergebnisse in einem 15-minütigen Vortrag.

14. Literatur: Wird zu Beginn des Projekts genannt
15. Lehrveranstaltungen und -formen: 499701 Praktikum Teamarbeit - INÜ
16. Abschätzung Arbeitsaufwand: Präsenzzeit 20 h, Selbststudium/Nacharbeitszeit 70 h, insgesamt 90 h
17. Prüfungsnummer/n und -name: 49971 Teamarbeit - INÜ (LBP), Sonstiges, Gewichtung: 1.0, Abschlussbericht, Vortrag

18. Grundlage für ... :
19. Medienform:
20. Angeboten von:
240 Profil 3

Zugeordnete Module: 241 Profilbereich 3 (Bautechnik und Gestaltung)
242 Vertiefung zu Profil 3
241 Profilbereich 3 (Bautechnik und Gestaltung)

Zugeordnete Module:

- 10580 Bauphysik und Baukonstruktion
- 13520 Technische Grundlagen III: Einführung in die Technische Mechanik
- 34170 Einführung in das Bauingenieurwesen
Modul: 10580 Bauphysik und Baukonstruktion

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>020800001</th>
<th>5. Modulduauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>6.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Hon.-Prof. Schew-Ram Mehra</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Schew-Ram Mehra
 • Werner Sobek
 • Nadine Harder
 • Oliver Gericke |
| 11. Empfohlene Voraussetzungen: | keine |
| 12. Lernziele: | **Bauphysik:**
 Studierende
 • kennen die Grundlagen der Bauphysik in den Bereichen Wärme, Feuchte, Tageslicht, Brandschutz, Schall und Stadtbauphysik und können diese anwenden.
 • können Energiebilanzen aufstellen und Einsparpotentiale ermitteln.
 • kennen die Wechselwirkungen und Abhängigkeiten einzelne Bereiche und haben gelernt diese zu vermitteln.
 • verstehen Transportvorgänge und können notwendige Maßnahmen ergreifen.
 • beherrschen die bauphysikalischen Anforderungen.
 Baukonstruktion:
 Studierende
 • können Tragelemente nach unterschiedlichen Kriterien klassifizieren (Geometrie, Lastabtrag und Beanspruchungsart)
 • kennen die Definitionen von Begriffen der Baukonstruktion wie die Kraft, das Moment, die Verformung, die Verschiebung, die Verzerrung
 • verstehen den Zusammenhang zwischen Kraft und Verformung
 • kennen und verstehen die baukonstruktiven Eigenschaften sowie bevorzugte Einsatzgebiete der Baustoffe Stahl, Beton/Stahlbeton, Holz, Mauerwerk, Glas, Kunststoff und Textilien
 • kennen unterschiedliche Verfahren zum Fügen und Formen von Bauteilen
 • verstehen das Tragverhalten und die Entwurfsprinzipien von axial- und biegebeanspruchten Bauteilen
 • verstehen das Tragverhalten und die Entwurfsprinzipien von Scheiben, Platten, Schalen, Membranen und Netzen
 • beherrschen die Grundsätze zur Aussteifung von Gebäuden |
| 13. Inhalt: | **Inhalt Lehrveranstaltung Bauphysik:**
 • Grundgesetze der Wärmeübertragung
 • Wärmeverluste, Wärmeleitung, Wärmekonvektion, Wärmestrahlung
 • Energiebilanzen
 • Thermisches Verhalten von Räumen und Außenbauteilen |
• Energieeinsparungspotentiale
• Instationäre Wärmeübertragung
• Binder-Schmidt-Verfahren
• Wärmebrücken
• Feuchtetechnische Grundbegriffe
• Feuchtetransport
• Vermeidung von Oberflächentauwasser
• Glaser-Verfahren
• Lichttechnische Grundbegriffe
• Tageslichtquotient
• Praktische Anforderungen
• Brandschutzziele
• Brandverlauf ETK
• Klassifizierung von Baustoffen und Bauteilen
• Akustische Grundbergriffe
• Raumakustik
• Luft- und Trittschalldämmung
• Akustische Phänomene
• Straßenverkehrslärm
• Installationsgeräusche
• Klimagerechtes Bauen
• Städtische Energiebilanz und Emissionen
• Gebäudeaerodynamik

Inhalt Lehrveranstaltung Baukonstruktion:

Allgemeines:
• Bestandteile eines Tragwerks
• Klassifikation der Tragwerkselemente nach ihrer Geometrie und ihres Lastabtrags
• Begriff der Kraft, des Momentes, der Verformung, der Verschiebung, der Verzerrung
• Kräfteoperationen im zentralen und allgemeinen ebenen Kraftsystem
• Begriff der Spannung
• Zusammenhang zwischen Kraft und Verformung

Baustoffe:
• Baustoff: Mauerwerk; unterschiedliche Ausführungsarten, Materialien, Tragverhalten
• Baustoff: Holz; Aufbau, Tragverhalten, Verwendungsarten
• Baustoff: Beton/Stahlbeton; Zusammensetzung, Tragverhalten und Verformungen, Ausführung
• Baustoff: Stahl; Herstellung, Umformverfahren, Tragverhalten, Anwendungen
• Baustoff: Glas; Herstellung, Tragverhalten, Besonderheiten
• Baustoff: Kunststoff; Unterscheidungen, Herstellung, Tragverhalten
• Baustoff: Textilien/Membrane; Begriffe, Unterscheidungen Tragelemente und Tragstrukturen:
• Formen und Fügen von Bauteilen
• Axialbeanspruchte Bauteile: Tragverhalten, baukonstruktive Ausbildung
• Biegebeanspruchte Bauteile; Tragverhalten und baukonstruktive Ausbildung diverser Tragstrukturen (Einfeldträger, Kragträger, Gelenkträger, Durchlaufträger, Rahmen, Fachwerke)
• Scheiben
• Platten
• Schalen - Membrane - Netze
14. Literatur:
- Skript: Bauphysik
- Skript: Tragwerkslehre

15. Lehrveranstaltungen und -formen:
- 105801 Vorlesung Bauphysik
- 105802 Übung Bauphysik
- 105803 Vorlesung Baukonstruktion
- 105804 Übung Baukonstruktion

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 63 h
- Selbststudium / Nacharbeitszeit: 117 h
- Gesamt: 180 h

17. Prüfungsnummer/n und -name:
- 10581 Bauphysik (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0
- 10582 Baukonstruktion (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0

18. Grundlage für ...:

19. Medienform:
- Powerpointpräsentation

20. Angeboten von:
- Lehrstuhl für Bauphysik
Modul: 34170 Einführung in das Bauingenieurwesen

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>020200011</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>6.0</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Fritz Berner</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Fritz Berner
• Wolfram Ressel
• Ullrich Martin
• Markus Friedrich
• Silke Wieprecht
• Heidrun Steinmetz
• Stefan Siedentop |
| 10. Zuordnung zum Curriculum in diesem Studiengang: |
| 11. Empfohlene Voraussetzungen: | keine |
| 13. Inhalt: | **Fertigungsverfahren in der Bauwirtschaft**
Ablauf und Beteiligte beim Bauen
• Am Bau Beteiligte
• Bauablauf
• HOAI
• Voraussetzungen zum Baubeginn
• Vergabe an Bauunternehmen
Baustelleneinrichtung
• Grundlagen
• Vorschriften
• Sozial- und Büroeinrichtungen, Lagerräume
• Verkehrsflächen und Transportwege
• Medienversorgung der Baustelle
Hebezeuge
• Turmkrane
• Autokrane, Mobilkrane
• Portalkrane
• Kabelkrane |
• Bauaufzüge
• Kranwahl

Beton
• Grundlagen
• Betonmischanlagen
• Betontransport
• Betonverarbeitung
• Betonstahlbearbeitung

Schalung und Rüstung
• Aufgaben einer Schalung
• Aufbau von Schalungen
• Schalungsarten
• Spezialschalungen
• Schalungsentwurf
• Gerüste

Raum- und Verkehrsplanung

Einführung in die Raum- und Umweltplanung
• Aufgaben der Raum- und Umweltplanung
• Überblick über verfügbare Planungsinstrumente

"Macht und Ohnmacht der Planer" - Steuerungs- und Aufgabenverständnis staatlicher Planung im 21. Jahrhundert
• Ordnungs- und Entwicklungsplanung
• Planung zwischen Staat und Markt
• Planung durch Projekte?
• Planerinnen und Planer als Moderatoren widerstreitender gesellschaftlicher Interessen?
• Diese Lehrinhalte werden anhand von zwei "Leitthemen" vertieft:
 - Anpassung von Infrastrukturen an veränderte demographische und infrastrukturpolitische Bedingungen
 - Anpassung von Siedlungsräumen an erwartete Klimafolgen

Wasserwirtschaft

Es werden folgende Punkte behandelt:
• Entstehung von Hochwasser
• Möglichkeiten des Schutzes (Rückhalt in der Fläche, Objektschutz, Rückhaltebecken)
• Bau und Funktionsweise von Rückhaltebecken (Trockenbecken, Becken im Dauerstau, Talsperren)

Zum anderen werden siedlungswasserwirtschaftliche Aspekte der Wasserver- und Abwasserentsorgungssysteme sowie der Gewässergüterwirtschaft besprochen, wie
• Gewässer- und Grundwasserschutz
• Eignung von Wasserressourcen zur Trinkwassernutzung
• Trinkwasserversorgung (Fassung, Aufbereitung, Verteilungsinfrastruktur)
• Abwasserentsorgung (Charakteristik von Abwasser, erforderliche Infrastruktursysteme)
• Infrastruktursysteme vor dem Hintergrund sich wandelnder Randbedingungen

Generell wird im Rahmen der Vorlesung neben fachlichen Aspekten auch das Berufsbild des Bauingenieurs im Bereich der Wasserwirtschaft vermittelt.

14. Literatur:
• Manuskript: Fertigungsverfahren in der Bauwirtschaft
• Siedentop, S.: Raum- und Verkehrsplanung, Vorlesungsskript.
• Gujer, W. Siedlungswasserwirtschaft, Springer Verlag GmbH, Vorlesungsskript

15. Lehrveranstaltungen und -formen:
• 341701 Vorlesung mit Übungen Fertigungsverfahren in der Bauwirtschaft
• 341702 Vorlesung mit Übungen Raum und Verkehrsplanung
• 341703 Vorlesung Wasserwirtschaft

16. Abschätzung Arbeitsaufwand:

| Präsenzzeit: | 63 h |
| Selbststudium / Nacharbeitszeit: | 117 h |

Gesamt: 180 h

17. Prüfungsnummer/n und -name:
• 34171 Einführung in das Bauingenieurwesen (PL), schriftlich, eventuell mündlich, 120 Min., Gewichtung: 1.0
• V Vorleistung (USL-V), schriftlich oder mündlich

18. Grundlage für ... :
• 10610 Baubetriebslehre I

19. Medienform:

20. Angeboten von:
Institut für Baubetriebslehre
Modul: 13520 Technische Grundlagen III: Einführung in die Technische Mechanik

| 2. Modulkürzel: | 021020009 | 5. Modulduer: | 1 Semester |
| 4. SWS: | 4.0 | 7. Sprache: | Deutsch |

| 8. Modulverantwortlicher: | Univ.-Prof. Wolfgang Ehlers |
| 9. Dozenten: | Wolfgang Ehlers |

10. Zuordnung zum Curriculum in diesem Studiengang:

11. Empfohlene Voraussetzungen: Keine

- Mathematische Grundlagen: Vektorrechnung
- Grundbegriffe: Kraft, Starrkörper, Schnittprinzip
- Grundaufgaben der Starrkörpermechanik für zentrale und nichtzentrale Kräftesysteme
- Schwerpunkt und Massen-, Volumen- und Flächenmittelpunkt
- Verschieblichkeitsuntersuchungen
- Statik starrer Körper: Auflagerreaktionen, Schnittgrößen
- Ebene Fachwerke: Auflagerreaktionen, Schnittgrößen
- Haftreibung, Gleitreibung
- Stoffgesetz der linearen Elastizitätstheorie
- Einführung in die Elastostatik der Stäbe und Balken

| 15. Lehrveranstaltungen und -formen: | 135201 Vorlesung Einführung in die Technische Mechanik
| | 135202 Übung Einführung in die Technische Mechanik |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 42 h
| | Selbststudiumszeit / Nacharbeitszeit: 138 h
| | Gesamt: 180 h |
| 17. Prüfungsnummer/n und -name: | 13521 Technische Grundlagen III: Einführung in die Technische Mechanik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0 |
| 18. Grundlage für ... : |
| 19. Medienform: |
| 20. Angeboten von: | Institut für Mechanik (Bauwesen) |
242 Vertiefung zu Profil 3

Zugeordnete Module:

10570 Werkstoffe im Bauwesen I
10590 Grundlagen der Darstellung und Konstruktion
10640 Geotechnik I: Bodenmechanik
10950 Geologie
11030 Einführung in das computergestützte Entwerfen und Konstruieren
14450 Fertigungsverfahren in der Bauwirtschaft II
42380 Angewandte Bauphysik
Modul: 42380 Angewandte Bauphysik

2. Modulkürzel: 020800010 5. Modulduauer: 1 Semester
4. SWS: 5.3 7. Sprache: Deutsch

8. Modulverantwortlicher: Hon.-Prof. Schew-Ram Mehra
9. Dozenten: • Eva Veres
 • Susanne Urlaub
 • Simone Eitele

10. Zuordnung zum Curriculum in diesem Studiengang:
11. Empfohlene Voraussetzungen: Modul 020800001 Bauphysik und Baukonstruktion
12. Lernziele:

 Konstruktive Bauphysik
 Studierende
 • beherrschen die Grundlagen stationärer und instationärer bauphysikalischer Vorgänge.
 • kennen das Verhalten von Bauprodukten (Gebäude, Räume, Bauteile, Werkstoffe) unter verschiedenen Einwirkungen.
 • können Ausführungsbeispiele hinsichtlich ihrer bauphysikalischen Eigenschaften beurteilen.
 • sind in der Lage bauphysikalisch richtig zu konstruieren, kritische Details zu erkennen und konstruktive Lösungen zu entwickeln.

 Technische Bauphysik
 Studierende
 • beherrschen die Planungsprinzipien und Wirkungsweise haustechnischer Anlagen.
 • kennen die wechselseitigen Einflüsse haustechnischer Anlagen.
 • sind in der Lage bau- und haustechnische Maßnahmen aufeinander abzustimmen.
 • beherrschen die Auslegung und Dimensionierung.

 Bauphysikalischer Diskurs
 Studierende
 • lernen die methodische Vorgehensweise bei der Behandlung bauphysikalischer Problemstellungen kennen und können diese anwenden.
 • bekommen Einblicke in wissenschaftliche Arbeitsweisen.
 • haben einen Überblick über praxisrelevante bauphysikalische Aufgabenstellungen.

13. Inhalt: Inhalt Lehrveranstaltung Konstruktive und Technische Bauphysik:

 • stationäres und instationäres thermisches und hygrisches Verhalten von Bauteilen
 • schalltechnisches Verhalten von Bauteilen
 • Wechselwirkung bauphysikalischer Phänomene
• Ausführungsbeispiele für konstruktive Details im Bestand und im Neubau
• bauphysikalische Schwerpunkte bei der Konstruktion von Außenwänden, Fenstern, Dächern, erdberührten Bauteilen, Decken, Treppen und Innenwänden
• Heizungstechnik
• Nutzung erneuerbarer Energie
• Wärmrückgewinnung
• Erdwärme
• Lüftungstechnik
• Klimatechnik
• natürliche und künstliche Beleuchtung
• Installationsgeräusche

Inhalt der Lehrveranstaltung Bauphysikalischer Diskurs:

• Anwendung aus/in der Praxis,
• Innovationen und Ausblicke sowie neue Materialien/Bauteile/ Ausführungen
• Schwachstellen und Fehlerquellen bei der Ausführung

14. Literatur:

Vorlesungsunterlagen Konstruktive Bauphysik
Vorlesungsunterlagen Technische Bauphysik
Unterlagen zur Vortragsreihe Bauphysikalischer Diskurs

15. Lehrveranstaltungen und -formen:

• 423801 Vorlesung Konstruktive Bauphysik
• 423802 Vorlesung Technische Bauphysik
• 423803 Vortragsreihe Bauphysikalischer Diskurs

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 56 h
Selbststudium / Nacharbeitszeit: 124 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:

• 42381 Konstruktive und Technische Bauphysik (PL), mündliche Prüfung, 25 Min., Gewichtung: 1.0
• V Vorleistung (USL-V), schriftlich, eventuell mündlich, Abgabe von jeweils vier von fünf Teilen der Projektarbeiten in den Fächern Konstruktive Bauphysik sowie Technische Bauphysik.

18. Grundlage für ... :

19. Medienform:

Powerpointpräsentation, Anschauungsmaterial (Material-Muster)

20. Angeboten von:

Lehrstuhl für Bauphysik
Modul: 11030 Einführung in das computergestützte Entwerfen und Konstruieren

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>020900002</th>
<th>5. Moduldaurer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
<td>6. Turnus:</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Balthasar Novak
• Jose Luis Moro
• Ulrike Kuhlmann |

10. Zuordnung zum Curriculum in diesem Studiengang:

11. Empfohlene Voraussetzungen:

12. Lernziele:

Die Studierenden können mit CAD-Programmen umgehen und einfache Aufgaben im Bereich des Entwerfens und des Planens von Tragwerken bewältigen. Sie können 2-D Zeichnungen erstellen, sowie die Übertragung in entsprechende Schnitte durchführen einschließlich der Bemaßung.

13. Inhalt:

Folgende Inhalte werden vermittelt:
- Kennenlernen von CAD-Software
- Erstellen diverser Layouts und Zeichensätze
- Erstellen unterschiedlicher Grundriss- und Schnitttypen
- Entwerfen und Ändern einfacher Tragstrukturen
- Visualisierung von einfachen Situationen mit CAD

14. Literatur:

ACAD-Software

15. Lehrveranstaltungen und -formen:

| 110301 | Vorlesung Einführung in das computergestützte Entwerfen und Konstruieren |

16. Abschätzung Arbeitsaufwand:

- Präsenzzeit: ca. 20 h
- Selbststudium: ca. 70 h
- Gesamt: ca. 90 h

17. Prüfungsnummer/n und -name:

18. Grundlage für ...:

19. Medienform:

20. Angeboten von:
Modul: 14450 Fertigungsverfahren in der Bauwirtschaft II

2. Modulkürzel: 020200200
5. Moduldauer: 1 Semester

3. Leistungspunkte: 3.0 LP

4. SWS: 2.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Fritz Berner

9. Dozenten: Fritz Berner

10. Zuordnung zum Curriculum in diesem Studiengang: keine

12. Lernziele: Grundbau

• Wasserpumpen
• Rammen und Ziehen
• Bohren
• Baugruben und Verbauarten

Erdbau

• Grundlagen
• Bagger
• Maschinen für Erdtransport
• Maschinen für Bodeneinbau und Bodenverdichtung
• Kompaktgeräte

Straßenbau

• Asphaltherstellung
• Herstellung von Straßendeckung
• Wiederverwertung von Straßenbaustoffen
• Bodenstabilisierung und Bodenverbesserung

Leitungs- und Untertagebau

• Vortriebsverfahren im Tunnelbau
• Bauverfahren zur Herstellung von Rohrleitungen

Brückenbau

• Brückensysteme
• Herstellungsverfahren von Brücken

Abbruch und Recycling

• Abbruchmethoden und -verfahren
• Recyclinganlagen zur Aufbereitung der Altbaustoffe

13. Inhalt:

Grundbau

• Wasserpumpen
• Rammen und Ziehen
• Bohren
• Baugruben und Verbauarten

Erdbau

• Grundlagen
• Bagger
• Maschinen für Erdtransport
• Maschinen für Bodeneinbau und Bodenverdichtung
• Kompaktgeräte

Straßenbau

• Asphaltherstellung
• Herstellung von Straßendeckung
• Wiederverwertung von Straßenbaustoffen
• Bodenstabilisierung und Bodenverbesserung

Leitungs- und Untertagebau

• Vortriebsverfahren im Tunnelbau
• Bauverfahren zur Herstellung von Rohrleitungen

Brückenbau

• Brückensysteme
• Herstellungsverfahren von Brücken

Abbruch und Recycling

• Abbruchmethoden und -verfahren
• Recyclinganlagen zur Aufbereitung der Altbaustoffe

14. Literatur: Manuskript: "Fertigungsverfahren in der Bauwirtschaft"
15. Lehrveranstaltungen und -formen:

<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung Fertigungsverfahren in der Bauwirtschaft II</td>
<td>144501</td>
</tr>
<tr>
<td>Übung Fertigungsverfahren in der Bauwirtschaft II</td>
<td>144502</td>
</tr>
</tbody>
</table>

16. Abschätzung Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Zeitart</th>
<th>Zeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzzeit</td>
<td>21 h</td>
</tr>
<tr>
<td>Selbststudiumszeit / Nachbereitungszeit</td>
<td>69 h</td>
</tr>
<tr>
<td>Gesamt</td>
<td>90 h</td>
</tr>
</tbody>
</table>

17. Prüfungsnummer/n und -name:

<table>
<thead>
<tr>
<th>Prüfungsnummer/n und -name</th>
<th>Prüfungseinzelheiten</th>
</tr>
</thead>
<tbody>
<tr>
<td>14451 Fertigungsverfahren in der Bauwirtschaft II (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0, Prüfungsvoraussetzung: 1 Hausübung + 1 Kolloquium</td>
<td></td>
</tr>
</tbody>
</table>

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Institut für Baubetriebslehre
Modul: 10950 Geologie

2. Modulkürzel: 020600003 5. Moduldauer: 1 Semester
4. SWS: 2.0 7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Christian Moormann
9. Dozenten: Bernd Zweschper
10. Zuordnung zum Curriculum in diesem Studiengang: keine

Mit elementaren Grundlagen der Mineralogie und der Petrographie sind den Studierenden vertraut. Sie sind in der Lage, verschiedene Gesteine zu unterscheiden, zu klassifizieren und kennen ihre wesentlichen Eigenschaften. Grundlagen der regionalen Geologie Südwestdeutschlands sind den Studierenden geläufig.

Aus ingenieurgeologischer Sichtweise relevante Eigenschaften sowie ihre auf ihre Gesteinsgenese zurückgehenden Ausprägungen sind den Studierenden geläufig. Sie können diese Kenntnisse auf bautechnische und umweltschutztechnische Problemstellungen anwenden.

Letztlich verstehen die Studierenden die Bedeutung der Geologie als anwendungsorientierte Naturwissenschaft und ihren Bezug zum täglichen Leben.

13. Inhalt:
- System Erde, Einführung und Überblick
- Schalenbau der Erde, Plattentektonik
- Seismologie, Erdbeben
- Vulkanismus, magmatische Gesteine
- Verwitterung, Erosion, Transportvorgänge
- Sedimente und Sedimentgesteine
- metamorphe Gesteine
- Gebirgsbildung
- Massenbewegungen, Kreislauf des Wassers
- Regionale Geologie von Südwestdeutschland
- Ingenieurgeologie: Festgesteine und Lockergesteine - Eigenschaften und Klassifikation
- Baugrundkundungsverfahren

14. Literatur: Skripte und Übungsunterlagen werden in der Vorlesung ausgegeben, außerdem:

<table>
<thead>
<tr>
<th>15. Lehrveranstaltungen und -formen:</th>
<th>109501 Vorlesung Geologie</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Selbststudium / Nacharbeitszeit (2 h pro Präsenzstunde): 56 h</td>
</tr>
<tr>
<td></td>
<td>Gesamt: 84 h</td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>10951 Geologie (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td>10640 Geotechnik I: Bodenmechanik</td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Beamer-Präsentationen, Tafelaufschriften, Film</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Institut für Geotechnik</td>
</tr>
</tbody>
</table>
Modul: 10640 Geotechnik I: Bodenmechanik

2. Modulkürzel: 020600001
5. Modulduer: 1 Semester

3. Leistungspunkte: 6.0 LP
6. Turnus: jedes 2. Semester, SoSe

4. SWS: 5.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Christian Moormann

9. Dozenten: Christian Moormann

10. Zuordnung zum Curriculum in diesem Studiengang: keine

11. Empfohlene Voraussetzungen: keine

12. Lernziele:

 Die Studierenden kennen die grundlegenden geologischen Prozesse, die zur Entstehung verschiedener Bodenarten führen. Sie kennen die wesentlichen Klassifikationsmerkmale und können diese zur stofflichen Unterscheidung bzw. bautechnischen Gruppeneinteilung von Böden anwenden. Sie wissen um die Notwendigkeit geotechnischer Untersuchungen für bautechnische Zwecke, kennen die gebräuchlichen Verfahren (Feld- und Laborversuche) und sind sich des Stichprobencharakters jeder Baugrunderkundung, bedingt durch die natürliche Heterogenität des Untergrundaufbaus, bewusst.

 Die elementaren Standsicherheitsnachweise bei Flachgründungen (Sicherheiten gegen Kippen, gegen Gleiten und gegen Grundbruch), die jeweils zu Grunde liegenden Versagensmechanismen sowie die in Ansatz gebrachten Einwirkungen und Widerstände sind den Studierenden bekannt. Sie sind auch in der Lage, diese Nachweise in einfachen Fällen unter Anwendung der entsprechenden Berechnungsverfahren zu führen. Weiter ist Ihnen auch der Versagensmechanismus des Böschungs- bzw. Geländebruchs
13. Inhalt:

- Entstehung von Böden und deren Klassifikation
- Baugrunderkundung, Feld- und Laborversuche
- Wasser im Boden, Boden als 3-Phasen-System
- Ein- und mehrdimensionale Grundwasserströmung
- Grundwasserhaltung mit Brunnen
- Spannungen im Boden: das Konzept der effektiven Spannungen
- Steifigkeit des Bodens
- Grundlagen der Setzungsermittlung
- Eindimensionale Konsolidation
- Scherfestigkeit und Mohr'scher Spannungskreis
- Erddruckermittlung
- Grundbruchwiderstand von Flachgründungen
- Beurteilung der Böschungsbruchsicherheit
- Einführung Grundbau, Spezialtiefbau in der Anwendung

14. Literatur:

Vorlesungs- und Übungsunterlagen werden über ILIAS bereitgestellt, außerdem:

15. Lehrveranstaltungen und -formen:

- 106401 Vorlesung Geotechnik I: Bodenmechanik
- 106402 Übung Geotechnik I: Bodenmechanik

16. Abschätzung Arbeitsaufwand:

Präsenzzeit (5 SWS): 70 h
Selbststudium / Nacharbeitszeit (1,5 h pro Präsenzstunde): ca. 105 h
Gesamt: ca. 175 h

17. Prüfungsnummer/n und -name:

- 10641 Geotechnik I: Bodenmechanik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0, Teil 1: 30 Minuten, ohne Hilfsmittel Teil 2: 90 Minuten, mit zugelassenen Hilfsmitteln
- V Vorleistung (USL-V), schriftlich, eventuell mündlich, 6 Hausübungen, 2 Kolloquien und die Teilnahme an vier Vorträgen im Rahmen des Geotechnik-Seminars

18. Grundlage für ...:

- 10750 Geotechnik II: Grundbau
- 12630 Geotechnik III
<table>
<thead>
<tr>
<th>19. Medienform:</th>
<th>Beamerpräsentationen, Tafelaufschrifte</th>
</tr>
</thead>
<tbody>
<tr>
<td>20. Angeboten von:</td>
<td>Institut für Geotechnik</td>
</tr>
</tbody>
</table>

Stand: 13. April 2016
Modul: 10590 Grundlagen der Darstellung und Konstruktion

2. **Modulkürzel:** 010600490
5. **Moduldauer:** 1 Semester

3. **Leistungspunkte:** 6.0 LP
6. **Turnus:** jedes 2. Semester, SoSe

4. **SWS:** 5.0
7. **Sprache:** Deutsch

8. **Modulverantwortlicher:** Univ.-Prof. Jose Luis Moro

10. **Zuordnung zum Curriculum in diesem Studiengang:**

11. **Empfohlene Voraussetzungen:** Modul Bauphysik/Tragwerkslehre

12. **Lernziele:**
- In Bezug auf die Planung und die Konstruktion im Hochbau haben die Studierenden sowohl den Planungsprozess als auch das Produkt Hochbau in seinen wesentlichen Teilen kennen gelernt. Die Studierenden haben dabei einerseits Kenntnis über die Rahmenbedingungen und Einflussfaktoren erworben, die innerhalb der Entwicklungsphasen eines Gebäudeprojekts auf das spätere Ergebnis einwirken. Ferner haben sich die Teilnehmer mit den grundlegenden Entwicklungsschritten des Planungs- und Konstruktionsprozesses vertraut gemacht. Durch die Baukonstruktionslehre ist die Basis für weiterführende konstruktiv orientierte Fächer des Hochbaus gelegt worden. Darüber haben die Studierenden verschiedene Beispiele zeitgenössischer Hochbauten in der Vorlesung kennen gelernt.

13. **Inhalt:**

Folgende Inhalte werden vermittelt:

Grundlagen der technischen Darstellung:

- Einführung in die darstellende Geometrie
- Einführung in das technische Zeichnen
- Einführung in das technische Skizzieren
- Zeichenmaterial, CAD
- Eintafelprojektion/Kotierte Projektion
- Zweitafelprojektion
- Mehrtafelprojektion
- Komplexe Formen
- Räumliche Darstellung (Axonometrie, Perspektive)
- Technisches Zeichnen im Bauwesen
- Freihandskizze
- Modellbau

Planung und Konstruktion im Hochbau
• Organismus Bauwerk
• Herstellung von Gebäuden
• Bauen und Umwelt
• Bauprodukte
• Grundlagen des Konstruierens
• Fügen und Verbinden
• Hü lle

14. Literatur:
• Vorlesungsskripte/
• Ü bungsskripte
• Literaturliste

15. Lehrveranstaltungen und -formen:
• 105901 Vorlesung Grundlagen der technischen Darstellung
• 105902 Ü bung Grundlagen der technischen Darstellung
• 105903 Vorlesung Planung und Konstruktion im Hochbau
• 105904 Ü bung Planung und Konstruktion im Hochbau

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 52,5 h
Selbststudium / Nacharbeitzeit: 127,5 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
• 10591 Planung und Konstruktion im Hochbau I (PL),
 schriftliche Prüfung, 60 Min., Gewichtung: 1.0,
 Prüfungs ergänzungsleistungen/Übungen: 4 Übungen in
technischer Darstellung und 1 planerische Übung in Planung
 und Konstruktion im Hochbau (müssen zum Bestehen des
 Moduls erbracht werden)
• 10592 Grundlagen der Darstellung und Konstruktion (USL),
 schriftlich, eventuell mündlich, Gewichtung: 1.0

18. Grundlage für ... :
10700 Planung und Konstruktion im Hochbau II (PlaKo II)

19. Medienform:
Digitale Folien, CAD, Podcasts

20. Angeboten von:
Architektur und Stadtplanung
Modul: 10570 Werkstoffe im Bauwesen I

2. Modulkürzel: 021500101
5. Modulduauer: 2 Semester
3. Leistungspunkte: 6.0 LP
6. Turnus: jedes 2. Semester, SoSe
4. SWS: 6.0
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Harald Garrecht
9. Dozenten: • Harald Garrecht
• Ulf Nürnberger
• Joachim Schwarte
10. Zuordnung zum Curriculum in diesem Studiengang:
11. Empfohlene Voraussetzungen: keine
12. Lernziele:
Vorlesung:
Die Studierenden kennen nach dem Besuch der Veranstaltung das Spektrum der im Bauwesen verwendeten Werkstoffe, beherrschen die Grundlagen hinsichtlich der charakteristischen Werkstoffeigenschaften, erkennen den Bezug dieser grundlegenden Werkstoffeigenschaften zur Baupraxis und sind fähig, die Werkstoffe angemessen im Hinblick auf das Gebrauchs- und Versagensverhalten sowie die Dauerhaftigkeit der damit erstellten Konstruktionen auszuwählen.

Übungen:
Die Studierenden können die im Bauwesen verwendeten Werkstoffe erkennen, ihre Eigenschaften abschätzen, sind insbesondere mit der Herstellung von Beton und der damit verbundenen Ingenieurverantwortung vertraut und sind mit den messtechnischen Methoden vertraut, mit denen die in der Vorlesung behandelten charakteristischen Werkstoffeigenschaften in der Materialprüfung ermittelt werden.

13. Inhalt:

2. Semester:
- Allgemeine Werkstoffeigenschaften
- Stahl
- Korrosion und Korrosionsschutz von Stahl
- Glas
- Kunststoffe
- Holz

3. Semester:
- Mineralische Bindemittel
- Gesteinskörnung
- Betonzusätze
- Frischbeton
- Festbeton
- Mischungsentwurf
- Spezialbetone

Laborübungen (3.Semester):
- Stahl
• Holz
• Kunststoffe
• Frischbeton
• Festbeton

14. Literatur:
Foliengestaltung, ausgewählte Fachliteratur, Umdrucke zu den Übungen
unterstützende Literatur:
• Grübl, P.; Weigler, H.; Karl, S.: Beton, Arten-Herstellung-
Eigenschaften, Ernst & Sohn, Berlin 2001
Auflage, 2013
• Scholz, W.: Baustoffkenntnis, 17. Auflage, Bundesanzeiger, 2011

15. Lehrveranstaltungen und -formen:
• 105701 Vorlesung Werkstoffe im Bauwesen I (SS)
• 105702 Vorlesung Werkstoffe im Bauwesen I (WS)
• 105703 Übung Werkstoffe im Bauwesen I

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 84 h
Selbststudium / Nacharbeitszeit: 96 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
• 10571 Werkstoffe im Bauwesen I (PL), schriftliche Prüfung, 180 Min.,
Gewichtung: 1.0, Prüfungsvorleistung: 4 Laborübungen
• V Vorleistung (USL-V), schriftlich, eventuell mündlich

18. Grundlage für ... :
• 10710 Werkstoffe im Bauwesen II

19. Medienform:

20. Angeboten von:
Institut für Werkstoffe im Bauwesen
250 Praktikum

Zugeordnete Module: 26320 Praktikum für NwT (Hauptfach)
Modul: 26320 Praktikum für NwT (Hauptfach)

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>101010080</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>0.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Bernd Zinn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Reinhold Nickolaus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>Erwerb grundlegender Kenntnisse und Fertigkeiten in der Materialbearbeitung; fachgerechte Handhabung von Werkzeugen und Maschinen; Grundkenntnisse zur Arbeitssicherheit und Fähigkeit diese Kenntnisse situationsadäquat einzusetzen.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>Bearbeitung von metallischen und nichtmetallischen Werkstoffen; Elektrotechnische Schaltungen; Sicherheitsvorkehrungen an technischen Anlagen; Technik und Arbeitsorganisation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Literatur:</td>
<td>Arbeitsmaterialien, Sicherheitsbestimmungen, Handreichungen am Praktikumsort</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>263201 Praktikum für NwT (Hauptfach)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>4 Wochen Praktikumszeit</td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>26321 Praktikum für NwT (Hauptfach) (PL), schriftlich, eventuell mündlich, Gewichtung: 1.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stand: 13. April 2016
260 Fachdidaktik

Zugeordnete Module:
26300 Grundlagen der Fachdidaktik NwT (Hauptfach)
26310 Gestaltung von Lehr-/Lernprozessen im naturwissenschaftlichen - technischen Unterricht, Projekt
Modul: 26310 Gestaltung von Lehr- / Lernprozessen im naturwissenschaftlichen - technischen Unterricht, Projekt

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>101010070</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>4.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>5. Modulduer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Reinhold Nickolaus</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Bernd Zinn</td>
</tr>
<tr>
<td>10. Zuordnung zum Curriculum in diesem Studiengang:</td>
<td>Grundlagen der Fachdidaktik NwT</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Vertiefte Kenntnisse zu Lernzielen/Lernzielstrukturen, Unterrichtsmethoden und Medien im naturwissenschaftlich-technischen Unterricht und Fähigkeit,</td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>Das Seminar baut auf den Grundlagen der Fachdidaktik NWT auf und ergänzt bzw.</td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>Einstiegsliteratur:</td>
</tr>
<tr>
<td>14. Literatur:</td>
<td>Seminar Gestaltung von Lehr- / Lernprozessen im naturwissenschaftlichen - technischen Unterricht, Projekt</td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>263101 Seminar Gestaltung von Lehr- / Lernprozessen im naturwissenschaftlichen - technischen Unterricht, Projekt</td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>12 h Präsenzzeit und 108 h Vor- und Nachbearbeitungszeit (Gesamtzeit 120 h)</td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>26311 Gestaltung von Lehr- / Lernprozessen im naturwissenschaftlichen - technischen Unterricht, Projekt (PL), schriftlich, eventuell mündlich, Gewichtung: 1.0, Studienleistungen (unbenotet): Präsentation der Projektarbeit</td>
</tr>
</tbody>
</table>

18. Grundlage für ...:

19. Medienform: Texte, Anschauungsmittel, Präsentationsmaterial

20. Angeboten von:
Modul: 26300 Grundlagen der Fachdidaktik NwT (Hauptfach)

2. Modulkürzel: 101010060
5. Modulduauer: 2 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Bernd Zinn

9. Dozenten: Bernd Geißel

10. Zuordnung zum Curriculum in diesem Studiengang:

11. Empfohlene Voraussetzungen: keine, allgemeine didaktische Grundkenntnisse sind vorteilhaft

13. Inhalt: Konzepte und curriculare Grundlagen der Didaktik der Naturwissenschaft und Technik; Gestaltung von Lehr-Lernprozessen; Ausgewählte Ergebnisse der bereichsspezifischen Lehr-Lernforschung; Kompetenzmodelle und Kompetenzentwicklung

14. Literatur:
• Bonz, B./Ott, B. (Hrsg.): Allgemeine Technikdidaktik - Theorieansätze und Praxisbezüge. Hohengehren 2003;
• Nickolaus, R.: Didaktik beruflicher Bildung. 3. Aufl. Hohengehren 2008

15. Lehrveranstaltungen und -formen: • 263001 Vorlesung Einführung in die Technikdidaktik • 263002 Seminar Vertiefung zur Einführung in die Technikdidaktik

16. Abschätzung Arbeitsaufwand: In beiden Veranstaltungen sind jeweils 21 h Präsenzzeit und 69 h Vor- und Nachbearbeitungszeit vorgesehen (Gesamtzeit 180 h)

17. Prüfungsnummer/n und -name: • 26301 Grundlagen der Fachdidaktik NwT (Hauptfach) (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0 • 26302 Grundlagen der Fachdidaktik NwT (Hauptfach), Ausarbeitung incl. Präsentation (USL), schriftlich, eventuell mündlich, Gewichtung: 1.0

18. Grundlage für ...

19. Medienform: Vorträge, Präsentationen, Diskussionen

20. Angeboten von:
300 Studium der Naturwissenschaften

Zugeordnete Module:

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Kurs</th>
</tr>
</thead>
<tbody>
<tr>
<td>25620</td>
<td>Praktische Einführung in die Chemie - Lehramt</td>
</tr>
<tr>
<td>26230</td>
<td>Allgemeine und Molekulare Biologie I</td>
</tr>
<tr>
<td>26240</td>
<td>Physiologie</td>
</tr>
<tr>
<td>26250</td>
<td>Ökologie</td>
</tr>
<tr>
<td>26260</td>
<td>Einführung in die Chemie für NwT Studenten</td>
</tr>
<tr>
<td>26270</td>
<td>Einführung in die Physik für Lehramt NwT</td>
</tr>
<tr>
<td>26280</td>
<td>Physikalisches Praktikum für Lehramt NwT</td>
</tr>
</tbody>
</table>
Modul: 26230 Allgemeine und Molekulare Biologie I

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>Hohenheim</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>10. Zuordnung zum Curriculum in diesem Studiengang:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>Die Studierenden</td>
<td></td>
<td></td>
</tr>
<tr>
<td>- können Zusammenhänge zwischen Struktur und Funktion belebter Systeme erläutern.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- können Steuer- und Regelprozesse sowie Prozesse der Stoff- und Energieumwandlung auf verschiedenen Organisationsebenen darstellen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- kennen die chemischen Grundlagen des Lebens</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- kennen die Bedeutung von Wasser für die Biosphäre</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- kennen Bau und Funktion, Einheit und Vielfalt von Zellen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- kennen die Prinzipien der Embryonalentwicklung von Tieren</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- kennen die Grundlagen der Photosynthese</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- kennen Transportvorgänge bei Pflanzen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- kennen die Grundlagen der Mikrobiologie.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Struktur und Funktion belebter Systeme auf verschiedenen Organisationsebenen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Elemente und Verbindungen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Atome</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- chemische Bindungen</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Bedeutung des Kohlenstoffs (organische Verbindungen, Stereochemie, funktionelle Gruppen)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Struktur und Funktion von Makromolekülen (Polymerprinzipien, Kohlenhydrate, Lipide, Proteine, Nukleinsäuren)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Einführung in den Stoffwechsel (Energieumwandlung, Gesetze der Thermodynamik, Rolle von ATP und NAD, Enzyme, Regultionsprinzipien)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Zelltheorie</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>- Mikroskopie</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
- Pro-/Eukaryonten, Endosymbiontentheorie
- Bau und Funktion von Membranen
- Zellorganellen
- Zelladhäsion
- Cytoskelett
- intrazellulärer Transport
- Zellkommunikation, Signalmoleküle und Signaltransduktion
- Übersicht über die Embryonalentwicklung (Befruchtung, Furchung, Gastrulation, Neurulation, Musterbildung, Organogenese)
- Dipol "Wasser": Kohäsion, Adhäsion, Kapillarkräfte, Phasendiagramm, Membranbildung, Osmose, Wärmekapazität und Verdunstungsenergie
- Dictyosomen, Zellwand, Plastiden, Vakuole
- Zellzyklus: Bau der Chromosomen, Mitose, Meiose
- Zellteilung und Zelldifferenzierung
- Zell- und molekularbiologische Forschungsmethoden
- C3-, C4-Photosynthese, Lichtatmung, CAM, Anpassungsvor- und -nachteile
- Transportwege, -typen, Transpiration, Transpirationsstrom, Stomata, Assimilat-transport, Source-Sink-Beziehung, Nährstoffaufnahme, -transport, -assimilation
- die Meilensteine der Mikrobiologie von 2000 v. Chr. bis 2000
- Morphologie und Systematik der Mikroorganismen
- die innere und äußere Membran der Bakterien
- Bakterielle DNA und Nucleotide
- Genexpression
- Genregulation bei Prokaryonten
- Flagellen und Chemotaxis
- genetische Instabilität: Mutation
- Reparatursysteme von DNA-Schäden
- Zelladhäsion und Pili
- Zellteilung bei Bakterien
- Bakteriophagen I und II
- Sporenbildung
- Colizine und Bacteriozine

15. Lehrveranstaltungen und -formen: 262301 Vorlesung Allgemeine und Molekulare Biologie I

16. Abschätzung Arbeitsaufwand: 58 h Präsenz + 122 h Eigenanteil = 180 h workload

17. Prüfungsnummer/n und -name: 26231 Allgemeine und Molekulare Biologie I (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
Modul: 26260 Einführung in die Chemie für NwT Studenten

2. Modulkürzel: 030201952 5. Moduldaurer: 1 Semester
4. SWS: 4.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dietrich Gudat
9. Dozenten: Dietrich Gudat

11. Empfohlene Voraussetzungen: Schulkenntnisse in Mathematik, Physik und Chemie (gymnasiale Oberstufe)

12. Lernziele:
 - beherrschen grundlegende Konzepte der Chemie (Atomismus, Periodensystem, Formelsprache, Stöchiometrie) und können diese eigenständig anwenden
 - kennen Grundtypen chemischer Stoffe (Substanzklassen), Reaktionen und Reaktionsmechanismen und können sie auf wissenschaftliche Problemstellungen übertragen
 - wissen um Anwendungen der Chemie

13. Inhalt:
 - **Grundbegriffe**: Aggregatzustände, Elemente, Verbindungen, Lösungen
 - **Struktur und Quantennatur der Atome**: Aufbau und Linienspektren der Atome, Atommodelle und Quantenzahlen, Atomorbitale, atomare Eigenschaften
 - Periodensystem der Elemente
 - **Stöchiometrische Grundgesetze**: Erhalt von Masse und Ladung, chemische Stoffmengen, Reaktionsgleichungen
 - **Thermodynamik und Kinetik chemischer Reaktionen**: Gasgesetze, Arbeit und Wärme, Geschwindigkeitsgesetze, Arrhenius-Beziehung, Katalyse
 - **Grundlegende Konzepte in der Chemie**: Elektronegativität, ionische und kovalente Bindungen, Moleküle und ihre räumliche Struktur, intermolekulare Wechselwirkungen, Leiter, Halbleiter und Isolatoren, Massenwirkungsgesetz und chemische Gleichgewichte
 - **Chemische Elementarreaktionen**: Säure-Base- (pH-, pK⁺, pK⁻-Wert), Redox- (galvanische Zellen, Elektrolyse, Spannungsreihe, Nernst'sche Gleichung), Komplexbildungs- und Fällungsreaktionen, Radikalreaktionen
 - **spezielle Themen**: Chemie wässriger Lösungen (Wasser als Solvens, Elektrolytlösungen, Hydratation, Aquakomplexe)
 - **Metalle** und ihre Darstellung, Komplexbildung, optische und magnetische Eigenschaften von Metallen und Metallkomplexen
 - **wichtige Elemente und ihre Verbindungen**: Wasserstoff, Sauerstoff, Stickstoff, Schwefel, Phosphor, Silizium, Halogene
 - **Kohlenstoffverbindungen und organische Verbindungen**: Allgemeine Themen: Elektronenkongfiguration und Hybridisierung beim Kohlenstoff; Grundtypen von Kohlenstoffgerüsten mit Einfach-, Doppel-, Dreifachbindungen, cyclische Strukturen, Nomenklatur (IUPAC); Isomerie: Konstitution, Konfiguration (Chiralität), Konformation
14. Literatur:
 - Mortimer/Müller: Chemie
 - Skript zur Vorlesung „Einführung in die Chemie für Naturwissenschaftler"

15. Lehrveranstaltungen und -formen:
<table>
<thead>
<tr>
<th>Lehrveranstaltung</th>
<th>Code</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorlesung Einführung in die Chemie für Naturwissenschaftler</td>
<td>262601</td>
</tr>
</tbody>
</table>

16. Abschätzung Arbeitsaufwand:
 - **Präsenzzeit**: 56 Stunden
 - **Selbststudium**: 124 Stunden
 - **Summe**: 180 Stunden

17. Prüfungsnummer/n und -name:
 - 26261 Einführung in die Chemie für NwT Studenten (PL), schriftlich, eventuell mündlich, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
 - Anorganische Chemie
Modul: 26270 Einführung in die Physik für Lehramt NwT

2. Modulkürzel: 081400501

5. Moduldauer: 1 Semester

3. Leistungspunkte: 9.0 LP

4. SWS: 6.0

7. Sprache: Deutsch

8. Modulverantwortlicher: Apl. Prof. Wolfgang Bolse

9. Dozenten: Wolfgang Bolse

10. Zuordnung zum Curriculum in diesem Studiengang:

11. Empfohlene Voraussetzungen:

12. Lernziele:

13. Inhalt:

14. Literatur:

15. Lehrveranstaltungen und -formen:
 - 262701 Vorlesung Einführung in die Physik (Teil 1)
 - 262702 Tutorium (freiwillig) Einführung in die Physik (Teil 1)
 - 262703 Vorlesung Einführung in die Physik (Teil 2)
 - 262704 Tutorium (freiwillig) Einführung in die Physik (Teil 2)

16. Abschätzung Arbeitsaufwand:

17. Prüfungsnummer/n und -name: 26271 Einführung in die Physik für Lehramt NwT (PL), schriftlich, eventuell mündlich, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 26280 Physikalisches Praktikum für Lehramt NwT

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>081000502</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>5. Moduldaier:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Arthur Grupp</td>
</tr>
<tr>
<td>10. Zuordnung zum Curriculum in diesem Studiengang:</td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td></td>
</tr>
<tr>
<td>14. Literatur:</td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>262801 Praktikum Physikalisches Praktikum für Lehramt NwT</td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>26281 Physikalisches Praktikum für Lehramt NwT (PL), schriftlich, eventuell mündlich, Gewichtung: 1.0</td>
</tr>
<tr>
<td>18. Grundlage für ...:</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td></td>
</tr>
</tbody>
</table>
Modul: 26240 Physiologie

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>2301021</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>5. Modulduer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Apl. Prof. Wolfgang Bolse</td>
</tr>
<tr>
<td>10. Zuordnung zum Curriculum in diesem Studiengang:</td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td></td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td></td>
</tr>
<tr>
<td>14. Literatur:</td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>262401 Vorlesung Physiologie</td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>26241 Physiologie (PL), schriftlich, eventuell mündlich, Gewichtung: 1.0</td>
</tr>
<tr>
<td>18. Grundlage für ...:</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td></td>
</tr>
</tbody>
</table>
Modul: 25620 Praktische Einführung in die Chemie - Lehramt

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>030230501</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>9.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Thomas Schleid</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Ingo Hartenbach</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>Atombau und Periodisches System der Elemente: Gasgesetz, Molmassenbestimmung, Teilchen im Kasten, Spektroskopie, Periodensystem der Elemente, Haupt- und Nebengruppen, Bindungstheorie und Physikalische Eigenschaften (7 Versuche)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Chemisches Gleichgewicht, Thermodynamik und Reaktionskinetik: Massenwirkungsgesetz, Säure-Base-Gleichgewichte, Fällungs- und Löslichkeitsgleichgewichte, Redox-Gleichgewichte, Komplexgleichgewichte, Kalorimetrie, Reaktionskinetik (7 Versuche)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Organische Chemie und Arbeitstechniken: Destillation, Sublimation, Chromatographie, Extraktion, Umkristallisation, Synthese einfacher Präparate, Sicheres Arbeiten im Labor (7 Versuche)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Das Praktikum wird von einem freiwilligen Seminar (2 SWS) begleitet</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Literatur:</td>
<td>Physikalische Chemie:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anorganische Chemie:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Organische Chemie:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• K. Schwetlick, Organikum, 23. Aufl. 2009</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>256201 Praktikum Praktische Einführung in die Chemie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Praktikum</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
21 Praktikumsnachmittage à 4 h = 84 h
Vorbereitung u. Protokolle: 3,5 h pro Praktikumstag = 73,5 h
Prüfung und Prüfungsvorbereitung: 22h

Summe: 179,5 h

freiwilliges Seminar:
Präsenzstunden: 9 Seminartage à 2 h = 18 h
Vor- und Nachbereitung 0.5 h pro Seminarvortrag = 4,5 h
(Besuch des Seminars dient zur Prüfungsvorbereitung)

17. Prüfungsnummer/n und -name: 25621
Praktische Einführung in die Chemie - Lehramt (LBP), schriftlich, eventuell mündlich, Gewichtung: 1.0,
Prüfungsvorleistung: Testat aller Versuchsprotokolle lehrveranstaltungs begleitende Prüfung, Art und Umfang der LBP wird zu Beginn des Moduls/der Lehrveranstaltung bekannt gegeben

18. Grundlage für ... :
• 10380 Grundlagen der Anorganischen und Analytischen Chemie
• 10390 Thermodynamik, Elektrochemie und Kinetik
• 10400 Organische Chemie I

19. Medienform:

20. Angeboten von:
Modul: 26250 Ökologie

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>2203031</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Günter Wunner</td>
<td></td>
<td></td>
</tr>
<tr>
<td>10. Zuordnung zum Curriculum in diesem Studiengang:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Literatur:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>262501 Vorlesung Ökologie</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>26251 Ökologie (PL), schriftlich, eventuell mündlich, Gewichtung: 1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
450 Profil abgewählt
500 Erweiterung

Zugeordnete Module:

10570 Werkstoffe im Bauwesen I
10590 Grundlagen der Darstellung und Konstruktion
10640 Geotechnik I: Bodenmechanik
10950 Geologie
11030 Einführung in das computergestützte Entwerfen und Konstruieren
11390 Grundlagen der Verbrennungsmotoren
11670 Grundlagen integrierter Schaltungen
11740 Elektromagnetische Verträglichkeit
12040 Einführung in die Regelungstechnik
12170 Werkstoffkunde I+II mit Werkstoffpraktikum
12200 Fertigungslehre mit Einführung in die Fabrikorganisation
13570 Werkzeugmaschinen und Produktionssysteme
13590 Kraftfahrzeuge I + II
13780 Regelungs- und Steuerungstechnik
13840 Fabrikbetriebslehre
13950 Grundlagen der Energiewirtschaft und -versorgung
14130 Kraftfahrzeugmechatronik I + II
14450 Fertigungsverfahren in der Bauwirtschaft II
31750 Informatikpraktikum
42380 Angewandte Bauphysik
49960 Teamarbeit - IEH
49970 Teamarbeit - INÜ

Modul: 42380 Angewandte Bauphysik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>020800010</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>5.3</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Hon.-Prof. Schew-Ram Mehra</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>• Eva Veres</td>
</tr>
<tr>
<td></td>
<td>• Susanne Urlaub</td>
</tr>
<tr>
<td></td>
<td>• Simone Eitele</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

11. Empfohlene Voraussetzungen: Modul 020800001 Bauphysik und Baukonstruktion

12. Lernziele:

Konstruktive Bauphysik

Studierende

• beherrschen die Grundlagen stationärer und instationärer bauphysikalischer Vorgänge.
• kennen das Verhalten von Bauprodukten (Gebäude, Räume, Bauteile, Werkstoffe) unter verschiedenen Einwirkungen.
• können Ausführungsbeispiele hinsichtlich ihrer bauphysikalischen Eigenschaften beurteilen.
• sind in der Lage bauphysikalisch richtig zu konstruieren, kritische Details zu erkennen und konstruktive Lösungen zu entwickeln.

Technische Bauphysik

Studierende

• beherrschen die Planungsprinzipien und Wirkungsweise haustechnischer Anlagen.
• kennen die wechselseitigen Einflüsse haustechnischer Anlagen.
• sind in der Lage bau- und haustechnische Maßnahmen aufeinander abzustimmen.
• beherrschen die Auslegung und Dimensionierung.

Bauphysikalischer Diskurs

Studierende

• lernen die methodische Vorgehensweise bei der Behandlung bauphysikalischer Problemstellungen kennen und können diese anwenden.
• bekommen Einblicke in wissenschaftliche Arbeitsweisen.
• haben einen Überblick über praxisrelevante bauphysikalische Aufgabenstellungen.

13. Inhalt:

Inhalt Lehrveranstaltung Konstruktive und Technische Bauphysik:

• stationäres und instationäres thermisches und hygrisches Verhalten von Bauteilen
• schalltechnisches Verhalten von Bauteilen
• Wechselwirkung bauphysikalischer Phänomene
• Ausführungsbeispiele für konstruktive Details im Bestand und im Neubau
• bauphysikalische Schwerpunkte bei der Konstruktion von Außenwänden, Fenstern, Dächern, erdberührten Bauteilen, Decken, Treppen und Innenwänden
• Heizungstechnik
• Nutzung erneuerbarer Energie
• Wärmerückgewinnung
• Erdwärme
• Lüftungstechnik
• Klimatechnik
• natürliche und künstliche Beleuchtung
• Installationsgeräusche

Inhalt der Lehrveranstaltung Bauphysikalischer Diskurs:

• Anwendung aus/in der Praxis,
• Innovationen und Ausblicke sowie neue Materialien/Bauteile/ Ausführungen
• Schwachstellen und Fehlerquellen bei der Ausführung

14. Literatur:
Vorlesungsunterlagen Konstruktive Bauphysik
Vorlesungsunterlagen Technische Bauphysik
Unterlagen zur Vortragsreihe Bauphysikalischer Diskurs

15. Lehrveranstaltungen und -formen:
• 423801 Vorlesung Konstruktive Bauphysik
• 423802 Vorlesung Technische Bauphysik
• 423803 Vortragsreihe Bauphysikalischer Diskurs

16. Abschätzung Arbeitsaufwand:
Präsenzzzeit: 56 h
Selbststudium / Nacharbeitszeit: 124 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
• 42381 Konstruktive und Technische Bauphysik (PL), mündliche Prüfung, 25 Min., Gewichtung: 1.0
• V Vorleistung (USL-V), schriftlich, eventuell mündlich, Abgabe von jeweils vier von fünf Teilen der Projektarbeiten in den Fächern Konstruktive Bauphysik sowie Technische Bauphysik.

18. Grundlage für ... :

19. Medienform:
Powerpointpräsentation, Anschauungsmaterial (Material-Muster)

20. Angeboten von:
Lehrstuhl für Bauphysik
Modul: 11030 Einführung in das computergestützte Entwerfen und Konstruieren

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>020900002</th>
<th>5. Moduldaurer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
<td>6. Turnus:</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>• Balthasar Novak • Jose Luis Moro • Ulrike Kuhlmann</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

11. Empfohlene Voraussetzungen:

12. Lernziele:
Die Studierenden können mit CAD-Programmen umgehen und einfache Aufgaben im Bereich des Entwerfens und des Planens von Tragwerken bewältigen. Sie können 2-D Zeichnungen erstellen, sowie die Übertragung in entsprechende Schnitte durchführen einschließlich der Bemaßung.

13. Inhalt:
Folgende Inhalte werden vermittelt:
• Kennenlernen von CAD-Software
• Erstellen diverser Layouts und Zeichensätze
• Erstellen unterschiedlicher Grundriss- und Schnitte
• Entwerfen und Ändern einfacher Tragstrukturen
• Visualisierung von einfachen Situationen mit CAD

14. Literatur:
ACAD-Software

15. Lehrveranstaltungen und -formen:
110301 Vorlesung Einführung in das computergestützte Entwerfen und Konstruieren

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: ca. 20 h
Selbststudium: ca. 70 h
Gesamt: ca. 90 h

17. Prüfungsnummer/n und -name:
• 11031 Einführung in das computergestützte Entwerfen und Konstruieren (PL), Sonstiges, Gewichtung: 1.0, Unbenotete Studienleistung als Vorleistung (USL-V): Pflichtteilnahme an Übungsterminen Lehrveranstaltungsbegleitende Prüfung (LBP): Abgabe einer großen Konstruktionsaufgabe Vorleistung (USL-V), schriftlich, eventuell mündlich, Die Teilnahme an allen fünf Übungsterminen ist verpflichtend, um zur Prüfung zugelassen zu werden.

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
Modul: 12040 Einführung in die Regelungstechnik

2. Modulkürzel: 074810010
5. Modulduauer: 2 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 6.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Frank Allgöwer

9. Dozenten: • Frank Allgöwer
 • Matthias Müller

10. Zuordnung zum Curriculum in diesem Studiengang:

11. Empfohlene Voraussetzungen: HM I-III, Grundlagen der Systemdynamik

12. Lernziele:

Die Studierenden

• haben umfassende Kenntnisse zur Analyse und Synthese
einschleifiger linearer Regelkreise im Zeit- und Frequenzbereich

• können auf Grund theoretischer Überlegungen Regler und Beobachter
für dynamische Systeme entwerfen und validieren

• können entworfene Regler und Beobachter an praktischen
Laborversuchen implementieren

13. Inhalt:

Vorlesung:
Systemtheoretische Konzepte der Regelungstechnik, Stabilität,
Beobachtbarkeit, Steuerbarkeit, Robustheit, Reglerentwurfsverfahren im
Zeit- und Frequenzbereich, Beobachterentwurf

Praktikum:
Implementierung der in der Vorlesung Einführung in die
Regelungstechnik erlernten
Reglerentwurfsverfahren an praktischen Laborversuchen

Projektwettbewerb:
Lösen einer konkreten Regelungsaufgabe in einer vorgegebenen Zeit in
Gruppen

14. Literatur:

• Lunze, J.. Regelungstechnik 1. Springer Verlag, 2004

• Horn, M. und Dourdoumas, N. Regelungstechnik., Pearson Studium,
2004.

15. Lehrveranstaltungen und -formen:

• 120401 Vorlesung Einführung in die Regelungstechnik
• 120402 Gruppenübung Einführung in die Regelungstechnik
• 120403 Praktikum Einführung in die Regelungstechnik
• 120404 Projektwettbewerb Einführung in die Regelungstechnik

16. Abschätzung Arbeitsaufwand:

Präsenzzzeit: 63h
Selbststudiumszeit / Nacharbeitszeit: 117h
Gesamt: 180h

17. Prüfungsnr/n und -name:

• 12041 Einführung in die Regelungstechnik (PL), schriftliche Prüfung,
90 Min., Gewichtung: 1.0
18. Grundlage für ...:

19. Medienform:

20. Angeboten von:

- 12042 Einführung in die Regelungstechnik - Praktikum: Anwesenheit mit Kurztest (USL), schriftlich, eventuell mündlich, Gewichtung: 1.0
- 12043 Einführung in die Regelungstechnik - Projektwettbewerb: erfolgreiche Teilnahme (USL), schriftlich, eventuell mündlich, Gewichtung: 1.0

12260 Mehrgrößenregelung
Modul: 11740 Elektromagnetische Verträglichkeit

2. Modulkürzel: 050310006 5. Moduldauer: 1 Semester
4. SWS: 4.0 7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Stefan Tenbohlen
9. Dozenten: • Daniel Schneider • Stefan Tenbohlen
10. Zuordnung zum Curriculum in diesem Studiengang:
11. Empfohlene Voraussetzungen: Grundlagen der Elektrotechnik
12. Lernziele: Studierender hat Kenntnisse der Messverfahren und Messausrüstungen der Elektromagnetischen Verträglichkeit. Er kennt praktische Abhilfemaßnahmen zur Beherrschung der EMV-Problematik und die Besonderheiten in der Automobil-EMV
13. Inhalt:
 • Einführung
 • Begriffsbestimmungen
 • EMV-Umgebung
 • Allgemeine Maßnahmen zur Sicherstellung der EMV
 • Aktive Schutzmaßnahmen
 • Nachweis der EMV (Messverfahren, Messumgebung)
 • Einwirkung elektromagnetischer Felder auf biologische Systeme
 • EMV im Automobilbereich
14. Literatur:
 • Schwab, Adolf J.: Elektromagnetische Verträglichkeit Springer Verlag, 1996
 • Habiger, Ernst: Elektromagnetische Verträglichkeit Hüthig Verlag, 3. Aufl., 1998
 • Gonschorek, K.-H.: EMV für Geräteentwickler und Systemintegratoren Springer Verlag, 2005
 • Kohling, A.: EMV von Gebäuden, Anlagen und Geräten VDE-Verlag, Dezember 1998
 • Wiesinger, J. u.a.: EMV-Blitzschutz von elektrischen und elektronischen Systemen in baulichen Anlagen VDE-Verlag, Oktober 2004
15. Lehrveranstaltungen und -formen:
 • 117401 Vorlesung Elektromagnetische Verträglichkeit
 • 117402 Übung Elektromagnetische Verträglichkeit
16. Abschätzung Arbeitsaufwand:
 • Präsenzzeit: 56 h
 • Selbstdstudium/Nacharbeitszeit: 124 h
 • Gesamt: 180 h
17. Prüfungsnummer/n und -name:
 • 11741 Elektromagnetische Verträglichkeit (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0
18. Grundlage für ...
19. Medienform: PowerPoint, Tafelanschrieb
20. Angeboten von: Institut für Energieübertragung und Hochspannungstechnik
Modul: 13840 Fabrikbetriebslehre

4. SWS: 6.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Thomas Bauernhansl
9. Dozenten: Thomas Bauernhansl

10. Zuordnung zum Curriculum in diesem Studiengang:

11. Empfohlene Voraussetzungen: Kernmodul „Fertigungslehre mit Einführung in die Fabrikorganisation“

12. Lernziele:

Fabrikbetriebslehre - Management in der Produktion (Fabrikbetriebslehre I): Der Studierende kennt die einzelnen Unternehmensbereiche und beherrscht Methodenwissen in den einzelnen Bereichen um diese von der Produktentwicklung bis zum Fabrikbetrieb optimal zu gestalten.

Fabrikbetriebslehre - Kosten- und Leistungsrechnung (Fabrikbetriebslehre II): Der Studierende hat nach diesem Modul detaillierte Kenntnisse über das Thema Kosten- und Leistungsrechnung, LifeCycle Management und Optimierung der Produktion. Er beherrscht Methodenwissen, um die Inhalte in die Praxis umzusetzen.

13. Inhalt:

Fabrikbetriebslehre - Management in der Produktion (Fabrikbetriebslehre I): Ausgehend von der Bedeutung, den Treibern und den Optimierung philosophien der Produktion werden im Verlauf der Vorlesung die einzelnen Elemente von produzierenden Unternehmen erläutert, wobei der Schwerpunkt auf den eingesetzten Methoden liegt. Nach der Produktentwicklung (Innovation und Entwicklung) werden die Arbeitsplanung, die Fertigungs- und Montagesystemplanung, die Fabrikplanung, das Auftragsmanagement sowie das Supply Chain Management betrachtet. Abschließend werden zum Thema Produktionsmanagement die Grundlagen von ganzheitlichen Produktionssystemen, die Wertstrommethode sowie Methoden zur Prozessoptimierung und Führungs instrumente erläutert.

14. Literatur:

- Vorlesungsskript als PDF-Dokument online bereitgestellt,
- Wandlungsfähige Unternehmensstrukturen
- Das Stuttgarter Unternehmensmodell, Westkämper Engelbert, Berlin Springer 2007,
15. Lehrveranstaltungen und -formen:

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Veranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>138401</td>
<td>Vorlesung Fabrikbetriebslehre Management in der Produktion (Fabrikbetriebslehre I)</td>
</tr>
<tr>
<td>138402</td>
<td>Übung Fabrikbetriebslehre Management in der Produktion (Fabrikbetriebslehre I)</td>
</tr>
<tr>
<td>138403</td>
<td>Vorlesung Fabrikbetriebslehre Kosten- und Leistungsrechnung (Fabrikbetriebslehre II)</td>
</tr>
<tr>
<td>138404</td>
<td>Übung Fabrikbetriebslehre Kosten- und Leistungsrechnung (Fabrikbetriebslehre II)</td>
</tr>
</tbody>
</table>

16. Abschätzung Arbeitsaufwand:

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzzeit</td>
<td>63 Stunden</td>
</tr>
<tr>
<td>Selbststudium</td>
<td>117 Stunden</td>
</tr>
</tbody>
</table>

17. Prüfungsnummer/n und -name:

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Prüfungszusammenfassung</th>
</tr>
</thead>
<tbody>
<tr>
<td>13841</td>
<td>Fabrikbetriebslehre (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0</td>
</tr>
</tbody>
</table>

18. Grundlage für ...

19. Medienform:

<table>
<thead>
<tr>
<th>Mediennachrichten</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>PowerPoint, Folien (Overhead), Video, Animation</td>
</tr>
</tbody>
</table>

20. Angeboten von:

| Institut für Industrielle Fertigung und Fabrikbetrieb |
Modul: 12200 Fertigungslehre mit Einführung in die Fabrikorganisation

2. Modulkürzel: 072410001 5. Moduldaudier: 1 Semester
4. SWS: 3.0 7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Thomas Bauernhansl
9. Dozenten: Thomas Bauernhansl

Der Studierende kennt die Struktur und Abläufe sowie Prozessketten eines produzierenden Unternehmens. Er beherrscht die Grundlagen der Kosten- sowie der Investitionsrechnung. Der Studierende besitzt einen ersten Eindruck bezüglich digitaler Werkzeuge für die Planung und Simulation der Produktion.

14. Literatur:

- Vorlesungsskripte;
- "Einführung in die Fertigungstechnik", Westkämper/Varnecke, Teubner Lehrbuch;
- "Einführung in die Organisation der Produktion", Westkämper, Springer Lehrbuch
15. Lehrveranstaltungen und -formen:

<table>
<thead>
<tr>
<th>Kursnummer</th>
<th>Kursname</th>
</tr>
</thead>
<tbody>
<tr>
<td>122001</td>
<td>Vorlesung Fertigungslehre</td>
</tr>
<tr>
<td>122002</td>
<td>Vorlesung Einführung in die Fabrikorganisation</td>
</tr>
<tr>
<td>122003</td>
<td>Freiwillige Übungen Fertigungslehre mit Einführung in die Fabrikorganisation</td>
</tr>
</tbody>
</table>

16. Abschätzung Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Tätigkeit</th>
<th>Zeit (Stunden)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzzeit</td>
<td>32</td>
</tr>
<tr>
<td>Selbststudium</td>
<td>58</td>
</tr>
<tr>
<td>Gesamt</td>
<td>90</td>
</tr>
</tbody>
</table>

17. Prüfungsnummer/n und -name:

<table>
<thead>
<tr>
<th>Prüfungsnummer</th>
<th>Kursname</th>
</tr>
</thead>
<tbody>
<tr>
<td>12203</td>
<td>Fertigungslehre mit Einführung in die Fabrikorganisation (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0</td>
</tr>
</tbody>
</table>

18. Grundlage für ...:

19. Medienform:

<table>
<thead>
<tr>
<th>Medienform</th>
</tr>
</thead>
<tbody>
<tr>
<td>PowerPoint, Video, Animation, Simulation</td>
</tr>
</tbody>
</table>

20. Angeboten von:

<table>
<thead>
<tr>
<th>Institution</th>
</tr>
</thead>
<tbody>
<tr>
<td>Institut für Industrielle Fertigung und Fabrikbetrieb</td>
</tr>
</tbody>
</table>
Modul: 14450 Fertigungsverfahren in der Bauwirtschaft II

2. Modulkürzel: 020200200
5. Modulduer: 1 Semester

3. Leistungspunkte: 3.0 LP

4. SWS: 2.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Fritz Berner

9. Dozenten: Fritz Berner

10. Zuordnung zum Curriculum in diesem Studiengang:

11. Empfohlene Voraussetzungen: keine

13. Inhalt:

Grundbau
- Wasserpumpen
- Rammen und Ziehen
- Bohren
- Baugruben und Verbauarten

Erdbau
- Grundlagen
- Bagger
- Maschinen für Erdtransport
- Maschinen für Bodeneinbau und Bodenverbesserung
- Kompaktgeräte

Straßenbau
- Asphaltabdeckung
- Herstellung von Straßendeckung
- Wiederverwertung von Straßenbaustoffen
- Bodenstabilisierung und Bodenverbesserung

Leitungs- und Untertagebau
- Vortriebsverfahren im Tunnelbau
- Bauverfahren zur Herstellung von Rohrleitungen

Brückenbau
- Brückensysteme
- Herstellungsverfahren von Brücken

Abbruch und Recycling
- Abbruchmethoden und -verfahren
- Recyclinganlagen zur Aufbereitung der Altbaustoffe

14. Literatur:
- Manuskript: "Fertigungsverfahren in der Bauwirtschaft"
15. Lehrveranstaltungen und -formen:

<table>
<thead>
<tr>
<th>Nr.</th>
<th>Veranstaltung/Unterlagen</th>
</tr>
</thead>
<tbody>
<tr>
<td>144501</td>
<td>Vorlesung Fertigungsverfahren in der Bauwirtschaft II</td>
</tr>
<tr>
<td>144502</td>
<td>Übung Fertigungsverfahren in der Bauwirtschaft II</td>
</tr>
</tbody>
</table>

16. Abschätzung Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Zeit (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzzeit</td>
<td>21</td>
</tr>
<tr>
<td>Selbststudiumszeit / Nachbereitungszeit</td>
<td>69</td>
</tr>
<tr>
<td>Gesamt</td>
<td>90</td>
</tr>
</tbody>
</table>

17. Prüfungsnummer/n und -name:

<table>
<thead>
<tr>
<th>Prüfung</th>
<th>Details</th>
</tr>
</thead>
<tbody>
<tr>
<td>14451</td>
<td>Fertigungsverfahren in der Bauwirtschaft II (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0, Prüfungsvoraussetzung: 1 Hausübung + 1 Kolloquium</td>
</tr>
</tbody>
</table>

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Institut für Baubetriebslehre
Modul: 10950 Geologie

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>020600003</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Christian Moormann

9. Dozenten: Bernd Zweschper

10. Zuordnung zum Curriculum in diesem Studiengang: keine

11. Empfohlene Voraussetzungen:

12. Lernziele:

Mit elementaren Grundlagen der Mineralogie und der Petrographie sind den Studierenden vertraut. Sie sind in der Lage, verschiedene Gesteine zu unterscheiden, zu klassifizieren und kennen ihre wesentlichen Eigenschaften. Grundlagen der regionalen Geologie Süddeutschlands sind den Studierenden geläufig.

Aus ingenieurgeologischer Sichtweise relevante Eigenschaften sowie ihre auf ihre Gesteinsgenese zurückgehenden Ausprägungen sind den Studierenden geläufig. Sie können diese Kenntnisse auf bautechnische und umweltschutztechnische Problemstellungen anwenden.

Letztlich verstehen die Studierenden die Bedeutung der Geologie als anwendungsorientierte Naturwissenschaft und ihren Bezug zum täglichen Leben.

<table>
<thead>
<tr>
<th>13. Inhalt:</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>• System Erde, Einführung und Überblick</td>
<td></td>
</tr>
<tr>
<td>• Schalenaufbau der Erde, Plattentektonik</td>
<td></td>
</tr>
<tr>
<td>• Seismologie, Erdbeben</td>
<td></td>
</tr>
<tr>
<td>• Vulkanismus, magmatische Gesteine</td>
<td></td>
</tr>
<tr>
<td>• Verwitterung, Erosion, Transportvorgänge</td>
<td></td>
</tr>
<tr>
<td>• Sedimente und Sedimentgesteine</td>
<td></td>
</tr>
<tr>
<td>• metamorphe Gesteine</td>
<td></td>
</tr>
<tr>
<td>• Gebirgsbildung</td>
<td></td>
</tr>
<tr>
<td>• Massenbewegungen, Kreislauf des Wassers</td>
<td></td>
</tr>
<tr>
<td>• Regionale Geologie von Südwestdeutschland</td>
<td></td>
</tr>
<tr>
<td>• Ingenieurgeologie: Festgesteine und Lockergesteine - Eigenschaften und Klassifikation</td>
<td></td>
</tr>
<tr>
<td>• Baugrundkundungsverfahren</td>
<td></td>
</tr>
</tbody>
</table>

| 14. Literatur: | Skripte und Übungsunterlagen werden in der Vorlesung ausgegeben, außerdem: |
15. Lehrveranstaltungen und -formen: 109501 Vorlesung Geologie

Selbststudium / Nacharbeitszeit (2 h pro Präsenzstunde): 56 h
Gesamt: 84 h

17. Prüfungsnummer/n und -name: 10951 Geologie (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0

18. Grundlage für ...: 10640 Geotechnik I: Bodenmechanik

19. Medienform: Beamer-Präsentationen, Tafelaufschriften, Film

20. Angeboten von: Institut für Geotechnik
Modul: 10640 Geotechnik I: Bodenmechanik

2. Modulkürzel: 020600001
5. Modulsdauer: 1 Semester
3. Leistungspunkte: 6.0 LP
6. Turnus: jedes 2. Semester, SoSe
4. SWS: 5.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Christian Moormann
9. Dozenten: Christian Moormann

10. Zuordnung zum Curriculum in diesem Studiengang: keine

Die Studierenden kennen die grundlegenden geologischen Prozesse, die zur Entstehung verschiedener Bodenarten führen. Sie kennen die wesentlichen Klassifikationsmerkmale und können diese zur stofflichen Unterscheidung bzw. bautechnischen Gruppeneinteilung von Böden anwenden. Sie wissen um die Notwendigkeit geotechnischer Untersuchungen für bautechnische Zwecke, kennen die gebräuchlichen Verfahren (Feld- und Laborversuche) und sind sich des Stichprobencharakters jeder Baugrunderkundung, bedingt durch die natürliche Heterogenität des Untergrundaufbaus, bewusst.

Die Studierenden kennen die grundlegenden geologischen Prozesse, die zur Entstehung verschiedener Bodenarten führen. Sie kennen die wesentlichen Klassifikationsmerkmale und können diese zur stofflichen Unterscheidung bzw. bautechnischen Gruppeneinteilung von Böden anwenden. Sie wissen um die Notwendigkeit geotechnischer Untersuchungen für bautechnische Zwecke, kennen die gebräuchlichen Verfahren (Feld- und Laborversuche) und sind sich des Stichprobencharakters jeder Baugrunderkundung, bedingt durch die natürliche Heterogenität des Untergrundaufbaus, bewusst.

Die Studierenden kennen die grundlegenden geologischen Prozesse, die zur Entstehung verschiedener Bodenarten führen. Sie kennen die wesentlichen Klassifikationsmerkmale und können diese zur stofflichen Unterscheidung bzw. bautechnischen Gruppeneinteilung von Böden anwenden. Sie wissen um die Notwendigkeit geotechnischer Untersuchungen für bautechnische Zwecke, kennen die gebräuchlichen Verfahren (Feld- und Laborversuche) und sind sich des Stichprobencharakters jeder Baugrunderkundung, bedingt durch die natürliche Heterogenität des Untergrundaufbaus, bewusst.

Die Studierenden kennen die grundlegenden geologischen Prozesse, die zur Entstehung verschiedener Bodenarten führen. Sie kennen die wesentlichen Klassifikationsmerkmale und können diese zur stofflichen Unterscheidung bzw. bautechnischen Gruppeneinteilung von Böden anwenden. Sie wissen um die Notwendigkeit geotechnischer Untersuchungen für bautechnische Zwecke, kennen die gebräuchlichen Verfahren (Feld- und Laborversuche) und sind sich des Stichprobencharakters jeder Baugrunderkundung, bedingt durch die natürliche Heterogenität des Untergrundaufbaus, bewusst.

13. Inhalt:
• Entstehung von Böden und deren Klassifikation
• Baugrunderkundung, Feld- und Laborversuche
• Wasser im Boden, Boden als 3-Phasen-System
• Ein- und mehrdimensionale Grundwasserströmung
• Grundwasserhaltung mit Brunnen
• Spannungen im Boden: das Konzept der effektiven Spannungen
• Steifigkeit des Bodens
• Grundlagen der Setzungsermittlung
• Eindimensionale Konsolidation
• Scherfestigkeit und Mohr’scher Spannungskreis
• Erddruckermittlung
• Grundbruchwiderstand von Flachgründungen
• Beurteilung der Böschungsbrücksicherheit
• Einführung Grundbau, Spezialtiefbau in der Anwendung

14. Literatur:
Vorlesungs- und Übungsunterlagen werden über ILIAS bereitgestellt, außerdem:
• Witt, K.J. (Hrsg.): Grundbau-Taschenbuch Teil 1: Geotechnische Grundlagen, 7. Aufl., Ernst & Sohn, Berlin, 2009

15. Lehrveranstaltungen und -formen:
• 106401 Vorlesung Geotechnik I: Bodenmechanik
• 106402 Übung Geotechnik I: Bodenmechanik

16. Abschätzung Arbeitsaufwand:
Präsenzzeit (5 SWS): 70 h
Selbststudium / Nacharbeitszeit (1,5 h pro Präsenzstunde): ca. 105 h
Gesamt: ca. 175 h

17. Prüfungsnummer/n und -name:
• 10641 Geotechnik I: Bodenmechanik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0, Teil 1: 30 Minuten, ohne Hilfsmittel Teil 2: 90 Minuten, mit zugelassenen Hilfsmitteln
• V Vorleistung (USL-V), schriftlich, eventuell mündlich, 6 Hausübungen, 2 Kolloquien und die Teilnahme an vier Vorträgen im Rahmen des Geotechnik-Seminars

18. Grundlage für ... :
• 10750 Geotechnik II: Grundbau
• 12630 Geotechnik III
<table>
<thead>
<tr>
<th>19. Medienform:</th>
<th>Beamerpräsentationen, Tafelaufschriften</th>
</tr>
</thead>
<tbody>
<tr>
<td>20. Angeboten von:</td>
<td>Institut für Geotechnik</td>
</tr>
</tbody>
</table>
Modul: 10590 Grundlagen der Darstellung und Konstruktion

2. Modulkürzel: 010600490 5. Modulduauer: 1 Semester
4. SWS: 5.0 7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Jose Luis Moro
10. Zuordnung zum Curriculum in diesem Studiengang:
11. Empfohlene Voraussetzungen: Modul Bauphysik/Tragwerkslehre
12. Lernziele:
• Die Studierenden haben sich die geometrischen Werkzeuge für das Erfassen dreidimensionaler Objekte und für ihre zweidimensionale Abbildung in Form der Projektion für ihre künftige Arbeit angeneigt. Die Lehre im technischen Zeichnen hat die Studierenden dazu befähigt, Informationen zu technischen Objekten für den Planungs- und Konstruktionsprozess fachgerecht mit Hilfe der „Sprache Zeichnung“ zu vermitteln. Darüber hinaus wurde durch die Übungen die räumliche Vorstellungskraft der Teilnehmer geschult. Schließlich haben die Studierenden durch ihre eigene Erfahrung den Wert einer intellektuell klar strukturierten und ästhetisch anspruchsvollen Zeichnung als ein wichtiges Ausdrucksmittel des Ingenieurs und Bauschaffenden erkannt.
• In Bezug auf die Planung und die Konstruktion im Hochbau haben die Studierenden sowohl den Planungsprozess als auch das Produkt Hochbau in seinen wesentlichen Teilen kennen gelernt. Die Studierenden haben dabei einerseits Kenntnis über die Rahmenbedingungen und Einflussfaktoren erworben, die innerhalb der Entwicklungphasen eines Gebäudeprojekts auf das spätere Ergebnis einwirken. Ferner haben sich die Teilnehmer mit den grundlegenden Entwicklungsschritten des Planungs- und Konstruktionsprozesses vertraut gemacht. Durch die Baukonstruktionslehre ist die Basis für weiterführende konstruktiv orientierte Fächer des Hochbaus gelegt worden. Darüber haben die Studierenden verschiedene Beispiele zeitgenössischer Hochbauten in der Vorlesung kennen gelernt.

13. Inhalt: Folgende Inhalte werden vermittelt:

Grundlagen der technischen Darstellung:
• Einführung in die darstellende Geometrie
• Einführung in das technische Zeichnen
• Einführung in das technische Skizzieren
• Zeichenmaterial, CAD
• Eintafelprojektion/Kotierte Projektion
• Zweitafelprojektion
• Mehrtafelprojektion
• Komplexe Formen
• Räumliche Darstellung (Axonometrie, Perspektive)
• Technisches Zeichnen im Bauwesen
• Freihandskizze
• Modellbau

Planung und Konstruktion im Hochbau
• Organismus Bauwerk
• Herstellung von Gebäuden
• Bauen und Umwelt
• Bauprodukte
• Grundlagen des Konstruierens
• Fügen und Verbinden
• Hülle

14. Literatur:
• Vorlesungsskripte/
• Übungsskripte
• Literaturliste

15. Lehrveranstaltungen und -formen:
• 105901 Vorlesung Grundlagen der technischen Darstellung
• 105902 Übung Grundlagen der technischen Darstellung
• 105903 Vorlesung Planung und Konstruktion im Hochbau
• 105904 Übung Planung und Konstruktion im Hochbau

16. Abschätzung Arbeitsaufwand:
• Präsenzzeit: 52,5 h
• Selbststudium / Nacharbeitszeit: 127,5 h
• Gesamt: 180 h

17. Prüfungsnummer/n und -name:
• 10591 Planung und Konstruktion im Hochbau I (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0, Prüfungsergänzungsleistungen/Übungen: 4 Übungen in technischer Darstellung und 1 planerische Übung in Planung und Konstruktion im Hochbau (müssen zum Bestehen des Moduls erbracht werden)
• 10592 Grundlagen der Darstellung und Konstruktion (USL), schriftlich, eventuell mündlich, Gewichtung: 1.0

18. Grundlage für ...:
• 10700 Planung und Konstruktion im Hochbau II (PlaKo II)

19. Medienform:
• Digitale Folien, CAD, Podcasts

20. Angeboten von:
• Architektur und Stadtplanung

Stand: 13. April 2016
Modul: 13950 Grundlagen der Energiewirtschaft und -versorgung

2. Modulkürzel: 041210001
5. Modulduauer: 1 Semester
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Kai Hufendiek
9. Dozenten: Kai Hufendiek

10. Zuordnung zum Curriculum in diesem Studiengang:

11. Empfohlene Voraussetzungen:
- Grundlagen der Thermodynamik (Zustandsänderungen, Kreisprozesse, 1. und 2. Hauptsatz)
- Kenntnisse in Physik und Chemie

12. Lernziele:
Die Studierenden kennen die fundamentalen Zusammenhänge in Energiesystemen/der Energiewirtschaft:
- Die Studierenden verstehen die Grundlagen der Kosten und Wirtschaftlichkeitsrechnung als eine wesentliche Planungsgrundlage für Entscheidungen in der Energiewirtschaft.
- Die Studierenden lernen die physikalisch-technischen Grundlagen der Energiewandlung und können diese im Hinblick auf die Bereitstellung von Energieträgern und die Energienutzung anwenden. Dabei werden die einzelnen Energieträger, die für unsere Energiewirtschaft bedeutsam sind betrachtet.
- Darüber hinaus verstehen Sie die komplexen Zusammenhänge der Energiewirtschaft und Energieversorgung, d.h. ihre technischen, wirtschaftlichen und umweltseitigen Dimension und können diese analysieren.

13. Inhalt:
- Energie und ihre volkswirtschaftliche sowie gesellschaftliche Bedeutung
- Energienachfrage und die Entwicklung der Energiesystemen/der Energiewirtschaftsstrukturen
- Bilanzierung technischer Systeme und Energiebilanzen von Volkswirtschaften
- Einführung in die betriebswirtschaftliche Kosten- und Wirtschaftlichkeitsrechnung, um Energiesysteme ökonomisch bewerten zu können
- Herkunft, Ressourcensituation und Techniken zur Umwandlung und Nutzung der einzelnen Energieträger: Mineralöl, Erdgas, Kohle, Kernenergie und erneuerbare Energiequellen
- Technische Grundlagen, Organisation und Struktur der Elektrizitäts- und Fernwärmeversorgung
- Umwelteffekte und -wirkungen der Energienutzung, Möglichkeiten der Bewertung und Technologien zur Reduktion energiebedingter Umweltbelastungen

14. Literatur:
Online-Manuskript
15. Lehrveranstaltungen und -formen:

- 139501 Vorlesung: Grundlagen der Energiewirtschaft und -versorgung
- 139502 Übung: Grundlagen der Energiewirtschaft und -versorgung

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 42 h
Selbststudiumszeit / Nacharbeitszeit: 138 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:

13951 Grundlagen der Energiewirtschaft und -versorgung (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

- 29200 Energiesysteme und effiziente Energieanwendung
- 29190 Planungsmethoden in der Energiewirtschaft
- 30800 Kraft-Wärme-Kopplung und Versorgungskonzepte
- 17500 Energiemärkte und Energiepolitik

19. Medienform:

- Beamergestützte Vorlesung
- teilweise Anschrieb
- begleitendes Manuskript bzw. Unterlagen
- Vortrags-Übungen

20. Angeboten von:

Institut für Energiewirtschaft und Rationelle Energieanwendung
Modul: 11390 Grundlagen der Verbrennungsmotoren

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>070800003</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Michael Bargende

9. Dozenten: Michael Bargende

Informationen zur Prüfung:
Verständnis: keine Hilfsmittel zugelassen
Berechnung: alle Hilfsmittel außer programmierbare Taschenrechner, Laptops, Handy, etc.

13. Inhalt:

14. Literatur:
- Vorlesungsmanuskript

15. Lehrveranstaltungen und -formen:

113901 Grundlagen der Verbrennungsmotoren

16. Abschätzung Arbeitsaufwand:

Präsenzzeit:	42 h
Selbststudiumszeit / Nacharbeitszeit:	138 h
Gesamt:	180 h

17. Prüfungsnummer/n und -name:

11391 Grundlagen der Verbrennungsmotoren (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:
Tafelanschrieb, PPT-Präsentationen, Overheadfolien

20. Angeboten von: Verbrennungsmotoren
Modul: 11670 Grundlagen integrierter Schaltungen

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>5. Moduldauer:</th>
</tr>
</thead>
<tbody>
<tr>
<td>050200002</td>
<td>1 Semester</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>3. Leistungspunkte:</th>
<th>6. Turnus:</th>
</tr>
</thead>
<tbody>
<tr>
<td>6.0 LP</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>4. SWS:</th>
<th>7. Sprache:</th>
</tr>
</thead>
<tbody>
<tr>
<td>4.0</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Manfred Berroth

9. Dozenten: Manfred Berroth

10. Zuordnung zum Curriculum in diesem Studiengang:

11. Empfohlene Voraussetzungen:

<table>
<thead>
<tr>
<th>Kenntnisse in Schaltungstechnik</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kenntnisse in höherer Mathematik</td>
</tr>
</tbody>
</table>

12. Lernziele:

| Die Studierenden besitzen Grundkenntnisse über integrierte Schaltungen der Digitaltechnik basierend auf Silizium-MOSFETs |

13. Inhalt:

- Bauelemente der Digitaltechnik
- Digitale Grundschalungen
- CMOS-Logikschaltungen
- Schaltwerke

14. Literatur:

<table>
<thead>
<tr>
<th>Vorlesungsskript,</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hoffmann: VLSI-Entwurf - Modelle und Schaltungen, Oldenbourg Verlag, München, 1998</td>
</tr>
</tbody>
</table>

15. Lehrveranstaltungen und -formen:

| 116701 Vorlesung Grundlagen Integrerter Schaltungen |
| 116702 Übung Grundlagen Integrerter Schaltungen |

16. Abschätzung Arbeitsaufwand:

| Präsenzzeit: 56 h |
| Selbststudium: 124 h |
| Gesamt: 180 h |

17. Prüfungsnummer/n und -name:

| 11671 Grundlagen integrierter Schaltungen (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0 |

18. Grundlage für ... :

19. Medienform: Tafel, Beamer

20. Angeboten von: Institut für Elektrische und Optische Nachrichtentechnik
Modul: 31750 Informatikpraktikum

2. Modulkürzel: 050901002
5. Moduldauber: 1 Semester

3. Leistungspunkte: 3.0 LP
6. Turnus: jedes 2. Semester, SoSe

4. SWS: 2.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Andreas Kirstädtner

9. Dozenten: Ulrich Gemkow

10. Zuordnung zum Curriculum in diesem Studiengang:

11. Empfohlene Voraussetzungen: Kenntnisse, wie sie im Modul "Informatik I" vermittelt werden vorrausgesetzt.

12. Lernziele: Der Studierende kann Algorithmen und Programme selbstständig entwerfen und in der objektorientierten Programmiersprache Java implementieren.

13. Inhalt:
 • Programmierumgebung,
 • Programmier-technische Grundlagen (Java),
 • Vererbung und Polymorphismus,
 • Heterogene Datenstrukturen und dynamische Bindung,
 • Problemstrukturierung und Programmentwurf,
 • Verwendung der Java-Standard-Klassenbibliothek,
 • Ein-/Ausgabeverwaltung und Oberflächenprogrammierung,
 • Anwendungsbeispiele: Entwurf und Implementierung von Algorithmen (Suchen, Sortieren, Graphen) und Objektorientierter Programmentwurf am Beispiel einer Spielprogrammierung

Für nähere Informationen, aktuelle Ankündigungen und Material siehe http://www.ikr.uni-stuttgart.de/Xref/CC/P_Info

14. Literatur:
 • Unterlagen zum Modul "Informatik I"

15. Lehrveranstaltungen und -formen: 317501 Praktikum Informatikpraktikum

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 30 h
 Selbststudium: 60 h
 Gesamt: 90 h

17. Prüfungsnummer/n und -name:
 • 31751 Informatikpraktikum (USL), schriftlich, eventuell mündlich, Gewichtung: 1.0
 • 31752 Informatikpraktikum (PL), schriftlich, eventuell mündlich, Gewichtung: 1.0

18. Grundlage für ...

19. Medienform: Übung am Rechner

20. Angeboten von:
Modul: 13590 Kraftfahrzeuge I + II

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>070800001</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Jochen Wiedemann</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>• Jochen Wiedemann</td>
</tr>
<tr>
<td></td>
<td>• Nils Widdecke</td>
</tr>
<tr>
<td>10. Zuordnung zum Curriculum in diesem Studiengang:</td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Kenntnisse aus den Fachsemestern 1 bis 4</td>
</tr>
<tr>
<td></td>
<td>Wichtig: Ab WS2015/16 ist die Prüfung ohne Hilfsmittel zu absolvieren.</td>
</tr>
<tr>
<td>14. Literatur:</td>
<td>• Wiedemann, J.: Kraftfahrzeuge I+II, Vorlesungsumdruck,</td>
</tr>
<tr>
<td></td>
<td>• Reimpell, J.: Fahrwerkstechnik: Grundlagen, Vogel-Fachbuchverlag, 2005</td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 135901 Vorlesung Kraftfahrzeuge I + II</td>
</tr>
<tr>
<td></td>
<td>• 135902 Übung Kraftfahrzeuge I + II</td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Präsenzzeit: 42 h</td>
</tr>
<tr>
<td></td>
<td>Selbststudiumszeit / Nacharbeitszeit: 138 h</td>
</tr>
<tr>
<td></td>
<td>Gesamt: 180 h</td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>13591 Kraftfahrzeuge I + II (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td>13590 Kraftfahrzeuge I + II</td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Beamer, Tafel</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Kraftfahrwesen</td>
</tr>
</tbody>
</table>
Modul: 14130 Kraftfahrzeugmechatronik I + II

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>10. Zuordnung zum Curriculum in diesem Studiengang:</td>
<td>Grundkenntnisse aus den Fachsemestern 1 bis 4</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>VL Kfz-Mech I:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• kraftfahrzeugspezifische Anforderungen an die Elektronik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Bordnetz (Energiemanagement, Generator, Starter, Batterie, Licht)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Motorelektronik (Zündung, Einspritzung)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Getriebeelektronik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Lenkung</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• ABS, ASR, ESP, elektromechanische Bremse, Dämpfungsregelung, Reifendrucküberwachung</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Sicherheitssysteme (Airbag, Gurt, Alarmanlage, Wegfahrsperrer)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Komfortsysteme (Tempomat, Abstandsregelung, Klimaanlage)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VL Kfz-Mech II:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Grundlagen mechatronischer Systeme (Steuerung/Regelung, diskrete Systeme, Echtzeitsysteme, eingebettete Systeme, vernetzte Systeme)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Systemarchitektur und Fahrzeugentwicklungsprozesse</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Kernprozess zur Entwicklung von mechatronischen Systemen und Software (Schwerpunkt V-Modell)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>Laborübungen Kraftfahrzeugmechatronik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Rapid Prototyping (Simulink)</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Modellbasierte Funktionsentwicklung mit TargetLink</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Elektronik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Literatur:</td>
<td>Vorlesungsumdruck: „Kraftfahrzeugmechatronik I“ (Reuss)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>141301 Vorlesung Kraftfahrzeugmechatronik I</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>141302 Vorlesung Kraftfahrzeugmechatronik II</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>141303 Laborübungen Kraftfahrzeugmechatronik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Präsenzzeit: 42 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Selbststudiumszeit / Nacharbeitszeit: 138 h</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stand: 13. April 2016
<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>14131 Kraftfahrzeugmechatronik I + II (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Vorlesung (Beamer), Laborübungen (am PC, betreute Zweiergruppen)</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Kraftfahrzeugmechatronik</td>
</tr>
</tbody>
</table>
Modul: 13780 Regelungs- und Steuerungstechnik

4. SWS: 4.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Frank Allgöwer
9. Dozenten: • Frank Allgöwer
 • Christian Ebenbauer
 • Oliver Sawodny
 • Matthias Müller
 • Armin Lechler

10. Zuordnung zum Curriculum in diesem Studiengang:
11. Empfohlene Voraussetzungen: HM I-III
12. Lernziele:
 Die Studierenden
 • können lineare dynamische Systeme analysieren,
 • können lineare dynamische Systeme auf deren Struktureigenschaften untersuchen und Aussagen über mögliche Regelungs- und Steuerungskonzepte treffen,
 • können einfache Regelungs- und Steuerungsaufgaben für lineare Systeme lösen.

13. Inhalt:
 Vorlesung „Systemdynamische Grundlagen der Regelungstechnik“:
 Fourier-Reihe, Fourier-Transformation, Laplace-Transformation, Testsignale, Blockdiagramme, Zustandsraumdarstellung
 Vorlesung „Einführung in die Regelungstechnik“:
 Systemtheoretische Konzepte der Regelungstechnik, Stabilität (Nyquist-, Hurwitz- und Small-Gain-Kriterium,...), Beobachtbarkeit, Steuerbarkeit, Robustheit, Reglerentwurfsverfahren im Zeit- und Frequenzbereich (PID, Polvorgabe, Vorfilter,...), Beobachterentwurf
 Vorlesung „Steuerungstechnik mit Antriebstechnik“:
 Steuerungsarten (mechanisch, fluidisch, Kontaktsteuerung, SPS, Motion Control, Numerische Steuerung, Robotersteuerung, Leitsteuerung): Aufbau, Architektur, Funktionsweise, Programmierung, Darstellung und Lösung steuerungstechnischer Problemstellungen. Grundlagen der in der Automatisierungstechnik verwendeten Antriebssysteme

Bemerkung 1: Es ist einer der beiden folgenden Blöcke zu wählen:
Block 1: "Systemdynamische Grundlagen der Regelungstechnik" und "Einführung in die Regelungstechnik"
Block 2: "Systemdynamische Grundlagen der Regelungstechnik" und "Steuerungstechnik mit Antriebstechnik"
Bemerkung 2 (Prüfungsanmeldung):

• Studierende der **Erneuerbaren Energien** müssen die Prüfung "**Systemdynamische Grundlagen der Regelungstechnik**" bei Univ.-Prof. Oliver Sawodny ablegen.

• Studierende **anderer in Punkt 10 genannter Studiengänge** müssen die Prüfung "**Systemdynamische Grundlagen der Regelungstechnik**" bei Univ.-Prof. Christian Ebenbauer ablegen.

14. Literatur:

Vorlesung „Systemdynamische Grundlagen der Regelungstechnik“

- Föllinger, O.: Laplace-, Fourier- und z-Transformation. 7. Aufl., Hüthig Verlag 1999

Vorlesung „Einführung in die Regelungstechnik“

Vorlesung „Steuerungstechnik mit Antriebstechnik“

- Pritschow, G.: Einführung in die Steuerungstechnik, Carl Hanser Verlag, München, 2006

15. Lehrveranstaltungen und -formen:

- 137801 Vorlesung Systemdynamische Grundlagen der Regelungstechnik
- 137802 Vorlesung Einführung in die Regelungstechnik
- 137803 Vorlesung Steuerungstechnik mit Antriebstechnik

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 42h
Selbststudiumszeit / Nacharbeitszeit: 138h
Gesamt: 180h

17. Prüfungsnummer/n und -name:

- 13781 Systemdynamische Grundlagen der Regelungstechnik (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0
- 13782 Einführung in die Regelungstechnik (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0
- 13783 Steuerungstechnik mit Antriebstechnik (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0, Ermittlung der Modulnote: Block 1: Systemdynamische Grundlagen der Regelungstechnik 50% Einführung in die Regelungstechnik 50% Block 2: Systemdynamische Grundlagen der Regelungstechnik 50% Steuerungstechnik mit Antriebstechnik 50%

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
Modul: 49960 Teamarbeit - IEH

2. Modulkürzel: 050310008
5. Moduldauber: 1 Semester

3. Leistungspunkte: 3.0 LP
6. Turnus: jedes 2. Semester, SoSe

4. SWS: 2.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Ulrich Schärli

9. Dozenten:
• Ulrich Schärli
• wiss. MA

10. Zuordnung zum Curriculum in diesem Studiengang:

11. Empfohlene Voraussetzungen: Die Teilnahme am Grundlagenpraktikum und am Sicherheitsseminar wird dringend empfohlen.

12. Lernziele:

13. Inhalt:

Jede Gruppe präsentiert am Schluss der Teamarbeit ihre Ergebnisse und führt den entwickelten Aufbau vor.

14. Literatur: Fachliteratur, Versuchsumdruck

15. Lehrveranstaltungen und -formen: 499601 Praktikum Teamarbeit - IEH

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 20 h
Selbststudium: 70 h
Gesamt: 90 h

17. Prüfungsnummer/n und -name: 49961 Teamarbeit - IEH (LBP), schriftlich, eventuell mündlich, Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Institut für Energieübertragung und Hochspannungs-technik

Stand: 13. April 2016
Seite 128 von 136
Modul: 49970 Teamarbeit - INÜ

2. Modulkürzel: - 5. Modulduauer: 1 Semester
4. SWS: 2.0 7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Stephan Brink
9. Dozenten: • wiss. MA
• Stephan Brink
11. Empfohlene Voraussetzungen: Grundlagen der Elektrotechnik
12. Lernziele:

13. Inhalt:

• Der Betreuer umreißt zu Beginn des Projekts die Aufgabenstellung und gibt dem Team geeignete schriftliche Unterlagen.
• Das Team erstellt auf dieser Grundlage eine Feinspezifikation und einen Projektplan.
• Das Team teilt die Aufgaben unter seinen Mitgliedern auf.
• Ein Team-Mitglied kann dabei die laufende und abschließende schriftliche Dokumentation erstellen. Dabei sollen gängige Textsysteme verwendet werden, wie LaTeX, OpenOffice oder Word. Das schafft gute Voraussetzungen für die spätere Bachelorarbeit.
• Das Team trifft sich regelmäßig, um den Fortgang der Arbeiten zu besprechen.
• Das Team trifft sich regelmäßig mit dem Betreuer, gibt einen mündlichen Zwischenbericht und erörtert die nächsten Schritte.
• Am Ende der Arbeit berichtet das Team über die Ergebnisse in einem 15-minütigen Vortrag.

14. Literatur: Wird zu Beginn des Projekts genannt
15. Lehrveranstaltungen und -formen: 499701 Praktikum Teamarbeit - INÜ
16. Abschätzung Arbeitsaufwand: Präsenzzeit 20 h, Selbstdstudium/Nacharbeitszeit 70 h, insgesamt 90 h
17. Prüfungsnummer/n und -name: 49971 Teamarbeit - INÜ (LBP), Sonstiges, Gewichtung: 1.0, Abschlussbericht, Vortrag
18. Grundlage für ... :
19. Medienform:
20. Angeboten von:
Modul: 10570 Werkstoffe im Bauwesen I

2. Modulkürzel: 021500101
3. Leistungspunkte: 6.0 LP
4. SWS: 6.0
5. Modulduer: 2 Semester
6. Turnus: jedes 2. Semester, SoSe
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Harald Garrecht
9. Dozenten:
 • Harald Garrecht
 • Ulf Nürnberg
 • Joachim Schwarte
10. Zuordnung zum Curriculum in diesem Studiengang:
11. Empfohlene Voraussetzungen: keine
12. Lernziele:
 Vorlesung:
 Die Studierenden kennen nach dem Besuch der Veranstaltung das Spektrum der im Bauwesen verwendeten Werkstoffe, beherrschen die Grundlagen hinsichtlich der charakteristischen Werkstoffeigenschaften, erkennen den Bezug dieser grundlegenden Werkstoffeigenschaften zur Baupraxis und sind fähig, die Werkstoffe angemessen im Hinblick auf das Gebrauchs- und Versagensverhalten sowie die Dauerhaftigkeit der damit erstellten Konstruktionen auszuwählen.

 Übungen:
 Die Studierenden können die im Bauwesen verwendeten Werkstoffe erkennen, ihre Eigenschaften abschätzen, sind insbesondere mit der Herstellung von Beton und der damit verbundenen Ingenieurverantwortung vertraut und sind mit den messtechnischen Methoden vertraut, mit denen die in der Vorlesung behandelten charakteristischen Werkstoffeigenschaften in der Materialprüfung ermittelt werden.

13. Inhalt:

 2. Semester:
 • Allgemeine Werkstoffeigenschaften
 • Stahl
 • Korrosion und Korrosionsschutz von Stahl
 • Glas
 • Kunststoffe
 • Holz

 3. Semester:
 • Mineralische Bindemittel
 • Gesteinskörnung
 • Betonzusätze
 • Frischbeton
 • Festbeton
 • Mischungsentwurf
 • Spezialbetone

 Laborübungen (3.Semester):
 • Stahl
• Holz
• Kunststoffe
• Frischbeton
• Festbeton

14. Literatur: Folienausdrucke, ausgewählte Fachliteratur, Umdrucke zu den Übungen
unterstützende Literatur:
• Scholz, W.: Baustoffkenntnis, 17. Auflage, Bundesanzeiger, 2011

15. Lehrveranstaltungen und -formen:
• 105701 Vorlesung Werkstoffe im Bauwesen I (SS)
• 105702 Vorlesung Werkstoffe im Bauwesen I (WS)
• 105703 Übung Werkstoffe im Bauwesen I

16. Abschätzung Arbeitsaufwand:
| Präsenzzeit: | 84 h |
| Selbststudium / Nacharbeit: | 96 h |
| **Gesamt:** | **180 h** |

17. Prüfungsnummer/-name:
• 10571 Werkstoffe im Bauwesen I (PL), schriftliche Prüfung, 180 Min., Gewichtung: 1.0, Prüfungsvorleistung: 4 Laborübungen
• V Vorleistung (USL-V), schriftlich, eventuell mündlich

18. Grundlage für ...:
• 10710 Werkstoffe im Bauwesen II

19. Medienform:

20. Angeboten von:
• Institut für Werkstoffe im Bauwesen
Modul: 12170 Werkstoffkunde I+II mit Werkstoffpraktikum

2. Modulkürzel: 041810001 5. Moduldauer: 2 Semester
4. SWS: 6.0 7. Sprache: Deutsch
8. Modulverantwortlicher: Michael Seidenfuß
9. Dozenten: Michael Seidenfuß
11. Empfohlene Voraussetzungen: keine
12. Lernziele:

13. Inhalt:
 Vorlesung
 Atomarer Aufbau kristalliner Werkstoffe, Legierungsbildung, Thermisch aktivierte Vorgänge, Mechanische Eigenschaften, Eisenwerkstoffe, Nichteisenmetalle, Kunststoffe, Keramische Werkstoffe, Verbundwerkstoffe, Korrosion, Tribologie, Recycling
 Praktikum
 Thermische Analyse, Kerbschlagbiegeversuch, Härteprüfung, Zugversuch, Schwingfestigkeitsuntersuchung Korrosion, Metallographie, Wärmebehandlung, Dillatometer

14. Literatur:
 - ergänzende Folien zur Vorlesung (online verfügbar)
 - Lecturnity Aufzeichnungen der Übungen (online verfügbar)
 - Skripte zum Praktikum (online verfügbar)
 - interaktive multimediale praktikumsbegleitende-CD

15. Lehrveranstaltungen und -formen:
 • 121701 Vorlesung Werkstoffkunde I
 • 121702 Vorlesung Werkstoffkunde II
 • 121703 Werkstoffpraktikum I
 • 121704 Werkstoffpraktikum II
 • 121705 Werkstoffkunde Übung II
 • 121706 Werkstoffkunde Übung I

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit Vorlesungen (2x 2 SWS): 42 h
 Präsenzzeit Übung (2x 0,5 SWS): 12 h
 Präsenzzeit Praktikum (2x Blockveranstaltung): 8 h
 Präsenzzeit gesamt: 62h
Selbststudium: 120 h
GESAMT: 182 h

17. Prüfungsnummer/n und -name:
 • V Vorleistung (USL-V), schriftlich, eventuell mündlich

18. Grundlage für ... :

19. Medienform:
 PPT auf Tablet PC, Skripte zu den Vorlesungen und zum Praktikum (online verfügbar), Animationen und Simulationen, interaktive multimediale praktikumsbegleitende CD, online Lecturnity Aufzeichnungen der Übungen, Abruf über Internet

20. Angeboten von:
 Institut für Materialprüfung, Werkstoffkunde und Festigkeitslehre
Modul: 13570 Werkzeugmaschinen und Produktionssysteme

2. Modulkürzel: 073310001
5. Modulduauer: 1 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Prof. Uwe Heisel
9. Dozenten: Uwe Heisel

10. Zuordnung zum Curriculum in diesem Studiengang:

12. Lernziele:
Die Studierenden kennen den konstruktiven Aufbau und die Funktionseinheiten von spanenden Werkzeugmaschinen und Produktionssystemen sowie die Formeln zu deren Berechnung, sie wissen, wie Werkzeugmaschinen und deren Funktionseinheiten funktionieren, sie können deren Aufbau und Funktionsweise erklären und die Formeln zur Berechnung von Werkzeugmaschinen anwenden.

13. Inhalt:

14. Literatur:
Skript, Vorlesungsunterlagen im Internet, alte Prüfungsaufgaben

15. Lehrveranstaltungen und -formen: 135701 Vorlesung Werkzeugmaschinen und Produktionssysteme

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 h
Selbststudiumszeit / Nacharbeitszeit: 138 h
Gesamt: 180 h
<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>13571 Werkzeugmaschinen und Produktionssysteme (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Medienmix: Präsentation, Tafelanschrieb, Videoclips</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Institut für Werkzeugmaschinen</td>
</tr>
</tbody>
</table>