Kontaktpersonen:

<table>
<thead>
<tr>
<th>Position</th>
<th>Name</th>
<th>Institution</th>
<th>Tel.</th>
<th>E-Mail</th>
</tr>
</thead>
<tbody>
<tr>
<td>Studiendekan/in</td>
<td>Univ.-Prof. Frank Allgöwer</td>
<td>Institut für Systemtheorie und Regelungstechnik</td>
<td></td>
<td>frank.allgoewer@ist.uni-stuttgart.de</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Studiengangsmanager/in</td>
<td>Steffen Linsenmayer</td>
<td></td>
<td></td>
<td>steffen.linsenmayer@ist.uni-stuttgart.de</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prüfungsausschussvorsitzende/r</td>
<td>Univ.-Prof. Arnold Kistner</td>
<td>Institut für Nichtlineare Mechanik</td>
<td>685-66198</td>
<td>arnold.kistner@iam.uni-stuttgart.de</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fachstudienberater/in</td>
<td>Apl. Prof. Michael Hanss</td>
<td>Institut für Technische und Numerische Mechanik</td>
<td>66273</td>
<td>michael.hanss@itm.uni-stuttgart.de</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Stundenplanverantwortliche/r</td>
<td>Eckhard Arnold</td>
<td>Institut für Systemdynamik</td>
<td>685-65928</td>
<td>eckhard.arnold@isys.uni-stuttgart.de</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Inhaltsverzeichnis

Qualifikationsziele

- 100 Vertiefungsmodule

Auflagenmodule des Masters

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>Seitenzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>12040</td>
<td>Einführung in die Regelungstechnik</td>
<td>12</td>
</tr>
<tr>
<td>12230</td>
<td>Höhere Mathematik für Physiker, Kybernetiker und Mechatroniker Teil 3</td>
<td>14</td>
</tr>
<tr>
<td>38850</td>
<td>Mehrgrößenregelung</td>
<td>15</td>
</tr>
<tr>
<td>12270</td>
<td>Simulationstechnik</td>
<td>17</td>
</tr>
<tr>
<td>38780</td>
<td>Systemdynamik</td>
<td>19</td>
</tr>
<tr>
<td>11950</td>
<td>Technische Mechanik II + III</td>
<td>20</td>
</tr>
</tbody>
</table>

100 Vertiefungsmodule

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
<th>Seitenzahl</th>
</tr>
</thead>
<tbody>
<tr>
<td>110</td>
<td>Mathematische Methoden der Kybernetik</td>
<td>23</td>
</tr>
<tr>
<td>111</td>
<td>Mathematische Methoden der Kybernetik anerkannt</td>
<td>24</td>
</tr>
<tr>
<td>112</td>
<td>Mathematische Methoden der Kybernetik anerkannt 9LP</td>
<td>25</td>
</tr>
<tr>
<td>113</td>
<td>Mathematische Methoden der Kybernetik anerkannt 6LP</td>
<td>26</td>
</tr>
<tr>
<td>14770</td>
<td>Approximation und Geometrische Modellierung</td>
<td>27</td>
</tr>
<tr>
<td>29940</td>
<td>Convex Optimization</td>
<td>29</td>
</tr>
<tr>
<td>14720</td>
<td>Dynamische Systeme</td>
<td>31</td>
</tr>
<tr>
<td>34910</td>
<td>Einführung in die Numerik partieller Differentialgleichungen</td>
<td>33</td>
</tr>
<tr>
<td>33820</td>
<td>Flache Systeme</td>
<td>34</td>
</tr>
<tr>
<td>11860</td>
<td>Höhere Analysis</td>
<td>36</td>
</tr>
<tr>
<td>42370</td>
<td>Höhere Mathematik IV für Kybernetiker</td>
<td>38</td>
</tr>
<tr>
<td>35000</td>
<td>Linear Matrix Inequalities in Control</td>
<td>40</td>
</tr>
<tr>
<td>24840</td>
<td>Mathematische Modellierung mit gewöhnlichen Differentialgleichungen</td>
<td>42</td>
</tr>
<tr>
<td>24860</td>
<td>Mathematische Modellierung mit partiellen Differentialgleichungen</td>
<td>44</td>
</tr>
<tr>
<td>41120</td>
<td>Mathematisches Seminar für Studenten der technischen Kybernetik</td>
<td>46</td>
</tr>
<tr>
<td>14880</td>
<td>Modellierung mit Differentialgleichungen</td>
<td>47</td>
</tr>
<tr>
<td>11820</td>
<td>Numerische Mathematik 1</td>
<td>49</td>
</tr>
<tr>
<td>11850</td>
<td>Numerische Mathematik 2</td>
<td>51</td>
</tr>
<tr>
<td>33190</td>
<td>Numerische Methoden der Optimierung und Optimalen Steuerung</td>
<td>53</td>
</tr>
<tr>
<td>14740</td>
<td>Partielle Differentialgleichungen (Modellierung, Analysis, Simulation)</td>
<td>55</td>
</tr>
<tr>
<td>120</td>
<td>Advanced Control</td>
<td>57</td>
</tr>
<tr>
<td>18640</td>
<td>Nonlinear Control</td>
<td>58</td>
</tr>
<tr>
<td>18620</td>
<td>Optimal Control</td>
<td>60</td>
</tr>
<tr>
<td>18630</td>
<td>Robust Control</td>
<td>62</td>
</tr>
<tr>
<td>140</td>
<td>Modellierung II</td>
<td>64</td>
</tr>
<tr>
<td>16750</td>
<td>Business Dynamics</td>
<td>65</td>
</tr>
<tr>
<td>16720</td>
<td>Dynamik biologischer Systeme</td>
<td>67</td>
</tr>
<tr>
<td>58270</td>
<td>Dynamik mechanischer Systeme</td>
<td>69</td>
</tr>
<tr>
<td>59950</td>
<td>Mechanik nichtlinearer Kontinua</td>
<td>71</td>
</tr>
<tr>
<td>30010</td>
<td>Modellierung und Simulation in der Mechatronik</td>
<td>73</td>
</tr>
<tr>
<td>15910</td>
<td>Modellierung verfahrenstechnischer Prozesse</td>
<td>75</td>
</tr>
<tr>
<td>59990</td>
<td>Nichtglatte Dynamik</td>
<td>77</td>
</tr>
<tr>
<td>58280</td>
<td>Nichtlineare Dynamik mechanischer Systeme</td>
<td>79</td>
</tr>
<tr>
<td>150</td>
<td>Systemanalyse II</td>
<td>81</td>
</tr>
<tr>
<td>33830</td>
<td>Dynamik ereignisdiskreter Systeme</td>
<td>82</td>
</tr>
<tr>
<td>33100</td>
<td>Modellierung und Identifikation dynamischer Systeme</td>
<td>84</td>
</tr>
<tr>
<td>30100</td>
<td>Nichtlineare Dynamik</td>
<td>86</td>
</tr>
<tr>
<td>29900</td>
<td>Dynamik verfehltparametrischer Systeme</td>
<td>88</td>
</tr>
<tr>
<td>18610</td>
<td>Konzepte der Regelungstechnik</td>
<td>90</td>
</tr>
<tr>
<td>29930</td>
<td>Projektarbeit Regelungstechnik</td>
<td>92</td>
</tr>
<tr>
<td>Kursnummer</td>
<td>Kursname</td>
<td></td>
</tr>
<tr>
<td>------------</td>
<td>----------</td>
<td></td>
</tr>
<tr>
<td>2103</td>
<td>Systembiologie</td>
<td></td>
</tr>
<tr>
<td>2117</td>
<td>Spez.Fach. anerkannt 6LP</td>
<td></td>
</tr>
<tr>
<td>2118</td>
<td>Spez.Fach. anerkannt 6LP</td>
<td></td>
</tr>
<tr>
<td>2119</td>
<td>Spez.Fach. anerkannt 6LP</td>
<td></td>
</tr>
<tr>
<td>31700</td>
<td>Ausgewählte Probleme der Dynamik</td>
<td></td>
</tr>
<tr>
<td>31710</td>
<td>Ausgewählte Probleme der Mechanik</td>
<td></td>
</tr>
<tr>
<td>30020</td>
<td>Biomechanik</td>
<td></td>
</tr>
<tr>
<td>31690</td>
<td>Experimentelle Modalanalyse</td>
<td></td>
</tr>
<tr>
<td>30030</td>
<td>Fahrzeugdynamik</td>
<td></td>
</tr>
<tr>
<td>30040</td>
<td>Flexible Mehrkörpersysteme</td>
<td></td>
</tr>
<tr>
<td>33360</td>
<td>Fuzzy Methoden</td>
<td></td>
</tr>
<tr>
<td>30010</td>
<td>Modellierung und Simulation in der Mechatronik</td>
<td></td>
</tr>
<tr>
<td>50270</td>
<td>Modellreduktion in der Mechanik</td>
<td></td>
</tr>
<tr>
<td>33330</td>
<td>Nichtlineare Schwingungen</td>
<td></td>
</tr>
<tr>
<td>41080</td>
<td>Nichtlineare Schwingungen und Experimentelle Modalanalyse</td>
<td></td>
</tr>
<tr>
<td>30060</td>
<td>Optimization of Mechanical Systems</td>
<td></td>
</tr>
<tr>
<td>30070</td>
<td>Praktikum Technische Dynamik</td>
<td></td>
</tr>
<tr>
<td>2118</td>
<td>Spez.Fach. anerkannt 6LP</td>
<td></td>
</tr>
<tr>
<td>2117</td>
<td>Spez.Fach. anerkannt 6LP</td>
<td></td>
</tr>
<tr>
<td>2119</td>
<td>Spez.Fach. anerkannt 6LP</td>
<td></td>
</tr>
<tr>
<td>37250</td>
<td>Bioreaktionstechnik</td>
<td></td>
</tr>
<tr>
<td>32220</td>
<td>Grundlagen der Biomedizinischen Technik</td>
<td></td>
</tr>
<tr>
<td>40230</td>
<td>Industrielle Biotechnologie und Biokatalyse</td>
<td></td>
</tr>
<tr>
<td>30080</td>
<td>Introduction to Systems Biology</td>
<td></td>
</tr>
<tr>
<td>36810</td>
<td>Metabolic Engineering</td>
<td></td>
</tr>
<tr>
<td>50030</td>
<td>Multiskalensimulation biologischer Prozesse</td>
<td></td>
</tr>
<tr>
<td>37240</td>
<td>Prinzipien der Stoffwechselregulation</td>
<td></td>
</tr>
<tr>
<td>46680</td>
<td>Rechnerübung: Modellierung und Simulation in der Systembiologie</td>
<td></td>
</tr>
<tr>
<td>43910</td>
<td>Statistische Lernverfahren und stochastische Modellierung</td>
<td></td>
</tr>
<tr>
<td>56830</td>
<td>Stoffwechselregulation biotechnisch relevanter Mikroorganismen</td>
<td></td>
</tr>
<tr>
<td>51940</td>
<td>Systems Theory in Systems Biology</td>
<td></td>
</tr>
<tr>
<td>46700</td>
<td>Thermodynamik biochemischer Netzwerke</td>
<td></td>
</tr>
<tr>
<td>2104</td>
<td>Automatisierung in der Energietechnik</td>
<td></td>
</tr>
<tr>
<td>2117</td>
<td>Spez.Fach. anerkannt 6LP</td>
<td></td>
</tr>
<tr>
<td>2118</td>
<td>Spez.Fach. anerkannt 6LP</td>
<td></td>
</tr>
<tr>
<td>2119</td>
<td>Spez.Fach. anerkannt 6LP</td>
<td></td>
</tr>
<tr>
<td>29180</td>
<td>Dynamik elektrischer Verbundsysteme</td>
<td></td>
</tr>
<tr>
<td>21760</td>
<td>Elektrische Energienetze II</td>
<td></td>
</tr>
<tr>
<td>36840</td>
<td>Energiewirtschaft in Verbundsystemen</td>
<td></td>
</tr>
<tr>
<td>15440</td>
<td>Firing Systems and Flue Gas Cleaning</td>
<td></td>
</tr>
<tr>
<td>15960</td>
<td>Kraftwerksanlagen</td>
<td></td>
</tr>
<tr>
<td>15970</td>
<td>Modellierung und Simulation von Technischen Feuerungsanlagen</td>
<td></td>
</tr>
<tr>
<td>Modulnummer</td>
<td>Modulname</td>
<td>Leistungspunkte</td>
</tr>
<tr>
<td>-------------</td>
<td>---</td>
<td>-----------------</td>
</tr>
<tr>
<td>37010</td>
<td>Netzintegration von Windenergie</td>
<td>189</td>
</tr>
<tr>
<td>21930</td>
<td>Photovoltaik II</td>
<td>191</td>
</tr>
<tr>
<td>28550</td>
<td>Regelung von Kraftwerken und Netzen</td>
<td>193</td>
</tr>
<tr>
<td>30610</td>
<td>Regelungstechnik für Kraftwerke</td>
<td>195</td>
</tr>
<tr>
<td>2105</td>
<td>Biomedizinische Technik</td>
<td>197</td>
</tr>
<tr>
<td>2117</td>
<td>SpezialFH. anerkannt 6LP</td>
<td>198</td>
</tr>
<tr>
<td>2118</td>
<td>SpezialFH. anerkannt 6LP</td>
<td>199</td>
</tr>
<tr>
<td>2119</td>
<td>SpezialFH. anerkannt 6LP</td>
<td>200</td>
</tr>
<tr>
<td>32920</td>
<td>Bildgebende Verfahren und Bildverarbeitung in der Medizin</td>
<td>201</td>
</tr>
<tr>
<td>32930</td>
<td>Biologische Informations-, Kommunikations- und Regelssysteme</td>
<td>204</td>
</tr>
<tr>
<td>33480</td>
<td>Biomedizinische Geräteotechnik</td>
<td>207</td>
</tr>
<tr>
<td>32220</td>
<td>Grundlagen der Biomedizinischen Technik</td>
<td>209</td>
</tr>
<tr>
<td>33550</td>
<td>Grundlagen der medizinischen Strahltentechnik</td>
<td>212</td>
</tr>
<tr>
<td>33490</td>
<td>Klinische Dosimetrie und Bestrahlungsplanung</td>
<td>215</td>
</tr>
<tr>
<td>33510</td>
<td>Praktikum Biomedizinischen Technik</td>
<td>217</td>
</tr>
<tr>
<td>40810</td>
<td>Strahlenschutz</td>
<td>219</td>
</tr>
<tr>
<td>33470</td>
<td>Übungen zur Biomedizinischen Technik</td>
<td>222</td>
</tr>
<tr>
<td>2106</td>
<td>Energiesysteme und Energiewirtschaft</td>
<td>224</td>
</tr>
<tr>
<td>2117</td>
<td>SpezialFH. anerkannt 6LP</td>
<td>225</td>
</tr>
<tr>
<td>2118</td>
<td>SpezialFH. anerkannt 6LP</td>
<td>226</td>
</tr>
<tr>
<td>2119</td>
<td>SpezialFH. anerkannt 6LP</td>
<td>227</td>
</tr>
<tr>
<td>16020</td>
<td>Brennstoffzellentechnik - Grundlagen, Technik und Systeme</td>
<td>228</td>
</tr>
<tr>
<td>36850</td>
<td>Elektrochemische Energiespeicherung in Batterien</td>
<td>231</td>
</tr>
<tr>
<td>36820</td>
<td>Energie und Umwelt</td>
<td>233</td>
</tr>
<tr>
<td>45710</td>
<td>Energieeffizienz in der Industrie</td>
<td>235</td>
</tr>
<tr>
<td>17500</td>
<td>Energiemarkt und Energiepolitik</td>
<td>237</td>
</tr>
<tr>
<td>29200</td>
<td>Energiesysteme und effiziente Energieanwendung</td>
<td>240</td>
</tr>
<tr>
<td>36840</td>
<td>Energiewirtschaft in Verbundsystemen</td>
<td>242</td>
</tr>
<tr>
<td>16000</td>
<td>Erneuerbare Energien</td>
<td>244</td>
</tr>
<tr>
<td>30800</td>
<td>Kraft-Wärme-Kopplung und Versorgungskonzepte</td>
<td>246</td>
</tr>
<tr>
<td>29190</td>
<td>Planungsmethoden in der Energiewirtschaft</td>
<td>248</td>
</tr>
<tr>
<td>32030</td>
<td>Strategische Unternehmensplanung in der Energiewirtschaft</td>
<td>250</td>
</tr>
<tr>
<td>2107</td>
<td>Kraftfahrzeugmechatronik</td>
<td>252</td>
</tr>
<tr>
<td>2117</td>
<td>SpezialFH. anerkannt 6LP</td>
<td>253</td>
</tr>
<tr>
<td>2118</td>
<td>SpezialFH. anerkannt 6LP</td>
<td>254</td>
</tr>
<tr>
<td>2119</td>
<td>SpezialFH. anerkannt 6LP</td>
<td>255</td>
</tr>
<tr>
<td>30920</td>
<td>Elektronikmotor</td>
<td>256</td>
</tr>
<tr>
<td>32950</td>
<td>Embedded Controller und Datennetze in Fahrzeugen</td>
<td>258</td>
</tr>
<tr>
<td>11390</td>
<td>Grundlagen der Verbrennungsmotoren</td>
<td>261</td>
</tr>
<tr>
<td>13590</td>
<td>Kraftfahrzeuge I + II</td>
<td>263</td>
</tr>
<tr>
<td>14130</td>
<td>Kraftfahrzeugmechatronik I + II</td>
<td>265</td>
</tr>
<tr>
<td>21750</td>
<td>Softwaretechnik II</td>
<td>267</td>
</tr>
<tr>
<td>33980</td>
<td>Spezielle Kapitel der KFZ-Mechatronik</td>
<td>269</td>
</tr>
<tr>
<td>2108</td>
<td>Simulation kerntechnischer Anlagen</td>
<td>272</td>
</tr>
<tr>
<td>2117</td>
<td>SpezialFH. anerkannt 6LP</td>
<td>273</td>
</tr>
<tr>
<td>2118</td>
<td>SpezialFH. anerkannt 6LP</td>
<td>274</td>
</tr>
<tr>
<td>2119</td>
<td>SpezialFH. anerkannt 6LP</td>
<td>275</td>
</tr>
<tr>
<td>51810</td>
<td>Angewandte Strömungsmesstechnik und Versuchtechnik</td>
<td>276</td>
</tr>
<tr>
<td>51790</td>
<td>Fluid Dynamik der Atmosphäre</td>
<td>278</td>
</tr>
<tr>
<td>14110</td>
<td>Kerntechnische Anlagen zur Energieerzeugung</td>
<td>280</td>
</tr>
<tr>
<td>38360</td>
<td>Methoden der Numerischen Strömungssimulation</td>
<td>284</td>
</tr>
<tr>
<td>30730</td>
<td>Praktikum Kernenergietechnik</td>
<td>286</td>
</tr>
<tr>
<td>30700</td>
<td>Reaktorphysik und -sicherheit</td>
<td>288</td>
</tr>
<tr>
<td>31450</td>
<td>Simulation kerntechnischer Anlagen (Anlagendynamik)</td>
<td>292</td>
</tr>
<tr>
<td>30690</td>
<td>Thermofluidodynamik kerntechnischer Anlagen</td>
<td>294</td>
</tr>
<tr>
<td>2109</td>
<td>Steuerungstechnik</td>
<td>297</td>
</tr>
<tr>
<td>2117</td>
<td>SpezialFH. anerkannt 6LP</td>
<td>298</td>
</tr>
<tr>
<td>2118</td>
<td>SpezialFH. anerkannt 6LP</td>
<td>299</td>
</tr>
</tbody>
</table>

Stand: 09. April 2015
<table>
<thead>
<tr>
<th>Modulbezeichnung</th>
<th>Standorte</th>
<th>LP</th>
</tr>
</thead>
<tbody>
<tr>
<td>2119 Spez.Fach. anerkannt 6LP</td>
<td></td>
<td></td>
</tr>
<tr>
<td>41660 Angewandte Regelungstechnik in Produktionsanlagen</td>
<td></td>
<td>301</td>
</tr>
<tr>
<td>33430 Anwendungen von Roboteranlagentechnik</td>
<td></td>
<td>303</td>
</tr>
<tr>
<td>32470 Automatisierung in der Montage- und Handhabungstechnik</td>
<td></td>
<td>305</td>
</tr>
<tr>
<td>41880 Grundlagen der Bionik</td>
<td></td>
<td>307</td>
</tr>
<tr>
<td>41670 Grundlagen der Prozessrechentechnik und Softwaretechnik</td>
<td></td>
<td>309</td>
</tr>
<tr>
<td>37270 Mechatronische Systeme in der Medizin - Anwendungen aus Orthopädie und Rehabilitation</td>
<td></td>
<td>311</td>
</tr>
<tr>
<td>41820 Modellierung, Analyse und Entwurf neuer Roboterkinematiken</td>
<td></td>
<td>313</td>
</tr>
<tr>
<td>17160 Prozessplanung und Leitechnik</td>
<td></td>
<td>315</td>
</tr>
<tr>
<td>43940 Roboteranlagentechnik - Anwendungen aus der Industrierobotik</td>
<td></td>
<td>317</td>
</tr>
<tr>
<td>43930 Roboteranlagentechnik - Anwendungen aus der Servicerobotik</td>
<td></td>
<td>319</td>
</tr>
<tr>
<td>16250 Steuerungstechnik</td>
<td></td>
<td>321</td>
</tr>
<tr>
<td>37320 Steuerungstechnik II</td>
<td></td>
<td>323</td>
</tr>
<tr>
<td>14230 Steuerungstechnik der Werkzeugmaschinen und Industrieroboter</td>
<td></td>
<td>325</td>
</tr>
<tr>
<td>37280 Ölhundyskal und Pneumatisik in der Steuerungstechnik</td>
<td></td>
<td>327</td>
</tr>
<tr>
<td>2110 Verfahrenstechnik</td>
<td></td>
<td>329</td>
</tr>
<tr>
<td>2117 Spez.Fach. anerkannt 6LP</td>
<td></td>
<td>330</td>
</tr>
<tr>
<td>2118 Spez.Fach. anerkannt 6LP</td>
<td></td>
<td>331</td>
</tr>
<tr>
<td>2119 Spez.Fach. anerkannt 6LP</td>
<td></td>
<td>332</td>
</tr>
<tr>
<td>15570 Chemische Reaktionstechnik II</td>
<td></td>
<td>333</td>
</tr>
<tr>
<td>15580 Membrantechnik und Elektromembran-Anwendungen</td>
<td></td>
<td>335</td>
</tr>
<tr>
<td>18260 Polymer-Reaktionstechnik</td>
<td></td>
<td>338</td>
</tr>
<tr>
<td>15930 Prozess- und Anlagentechnik</td>
<td></td>
<td>341</td>
</tr>
<tr>
<td>2111 Verkehr</td>
<td></td>
<td>344</td>
</tr>
<tr>
<td>2117 Spez.Fach. anerkannt 6LP</td>
<td></td>
<td>345</td>
</tr>
<tr>
<td>2118 Spez.Fach. anerkannt 6LP</td>
<td></td>
<td>346</td>
</tr>
<tr>
<td>2119 Spez.Fach. anerkannt 6LP</td>
<td></td>
<td>347</td>
</tr>
<tr>
<td>15720 Gestaltung von öffentlichen Verkehrssystemen</td>
<td></td>
<td>348</td>
</tr>
<tr>
<td>15730 Infrastrukturen im öffentlichen Verkehr</td>
<td></td>
<td>350</td>
</tr>
<tr>
<td>15740 Projektstudie zur Gestaltung von öffentlichen Verkehrssystemen</td>
<td></td>
<td>352</td>
</tr>
<tr>
<td>25030 Prozessgestaltung im öffentlichen Verkehr</td>
<td></td>
<td>355</td>
</tr>
<tr>
<td>15680 Rechnergestützte Angebotsplanung</td>
<td></td>
<td>358</td>
</tr>
<tr>
<td>46270 Verkehr in der Praxis</td>
<td></td>
<td>360</td>
</tr>
<tr>
<td>34100 Verkehrsrechnungen</td>
<td></td>
<td>363</td>
</tr>
<tr>
<td>15700 Verkehrsführungsmodelle</td>
<td></td>
<td>365</td>
</tr>
<tr>
<td>15660 Verkehrsplanung und Verkehrsmodelle</td>
<td></td>
<td>367</td>
</tr>
<tr>
<td>15750 Verkehrssicherung</td>
<td></td>
<td>369</td>
</tr>
<tr>
<td>15670 Verkehrstechnik und Verkehrstechnik</td>
<td></td>
<td>371</td>
</tr>
<tr>
<td>2112 Wirtschaftskybernetik</td>
<td></td>
<td>373</td>
</tr>
<tr>
<td>2117 Spez.Fach. anerkannt 6LP</td>
<td></td>
<td>374</td>
</tr>
<tr>
<td>2118 Spez.Fach. anerkannt 6LP</td>
<td></td>
<td>375</td>
</tr>
<tr>
<td>2119 Spez.Fach. anerkannt 6LP</td>
<td></td>
<td>376</td>
</tr>
<tr>
<td>16750 Business Dynamics</td>
<td></td>
<td>377</td>
</tr>
<tr>
<td>56130 Konzepte und Methoden in der Wirtschaftskybernetik</td>
<td></td>
<td>379</td>
</tr>
<tr>
<td>31440 Methoden der Wirtschaftskybernetik</td>
<td></td>
<td>381</td>
</tr>
<tr>
<td>31430 Seminar "Wirtschaftskybernetik"</td>
<td></td>
<td>383</td>
</tr>
<tr>
<td>15230 Spezielle Anwendungen der Wirtschaftskybernetik / Wirtschaftskybernetik III</td>
<td></td>
<td>385</td>
</tr>
<tr>
<td>31420 Wahlmodule Wirtschaftskybernetik</td>
<td></td>
<td>387</td>
</tr>
<tr>
<td>2113 Systemdynamik/Automatisierungstechnik</td>
<td></td>
<td>389</td>
</tr>
<tr>
<td>2117 Spez.Fach. anerkannt 6LP</td>
<td></td>
<td>390</td>
</tr>
<tr>
<td>2118 Spez.Fach. anerkannt 6LP</td>
<td></td>
<td>391</td>
</tr>
<tr>
<td>2119 Spez.Fach. anerkannt 6LP</td>
<td></td>
<td>392</td>
</tr>
<tr>
<td>33850 Automatisierungstechnik</td>
<td></td>
<td>393</td>
</tr>
<tr>
<td>33830 Dynamik ereignisdiskreter Systeme</td>
<td></td>
<td>395</td>
</tr>
<tr>
<td>33840 Dynamische Filterverfahren</td>
<td></td>
<td>397</td>
</tr>
<tr>
<td>46770 Einführung in die Funktionale Sicherheit</td>
<td></td>
<td>399</td>
</tr>
<tr>
<td>33820 Flache Systeme</td>
<td></td>
<td>401</td>
</tr>
<tr>
<td>Modulnummer</td>
<td>Modulname</td>
<td></td>
</tr>
<tr>
<td>-------------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>33100</td>
<td>Modellierung und Identifikation dynamischer Systeme</td>
<td></td>
</tr>
<tr>
<td>33190</td>
<td>Numerische Methoden der Optimierung und Optimalen Steuerung</td>
<td></td>
</tr>
<tr>
<td>33860</td>
<td>Objektorientierte Modellierung und Simulation</td>
<td></td>
</tr>
<tr>
<td>33880</td>
<td>Praktikum Systemdynamik</td>
<td></td>
</tr>
<tr>
<td>37000</td>
<td>Prozessführung und Production IT in der Verfahrenstechnik</td>
<td></td>
</tr>
<tr>
<td>2114</td>
<td>Autonome Systeme und Regelungstechnik</td>
<td></td>
</tr>
<tr>
<td>2117</td>
<td>Spez.Fach. anerkannt 6LP</td>
<td></td>
</tr>
<tr>
<td>2118</td>
<td>Spez.Fach. anerkannt 6LP</td>
<td></td>
</tr>
<tr>
<td>2119</td>
<td>Spez.Fach. anerkannt 6LP</td>
<td></td>
</tr>
<tr>
<td>57860</td>
<td>Advanced Methods in Systems and Control Theory</td>
<td></td>
</tr>
<tr>
<td>56970</td>
<td>Analysis and Control of Multi-agent Systems</td>
<td></td>
</tr>
<tr>
<td>32770</td>
<td>Angewandte Regelung und Optimierung in der Prozessindustrie</td>
<td></td>
</tr>
<tr>
<td>29940</td>
<td>Convex Optimization</td>
<td></td>
</tr>
<tr>
<td>59940</td>
<td>Dynamik Nichtglatter Systeme</td>
<td></td>
</tr>
<tr>
<td>57680</td>
<td>Einführung in die Chaostheorie</td>
<td></td>
</tr>
<tr>
<td>43900</td>
<td>Einführung in die verteilte künstliche Intelligenz</td>
<td></td>
</tr>
<tr>
<td>33820</td>
<td>Flache Systeme</td>
<td></td>
</tr>
<tr>
<td>51840</td>
<td>Introduction to Adaptive Control</td>
<td></td>
</tr>
<tr>
<td>29470</td>
<td>Machine Learning</td>
<td></td>
</tr>
<tr>
<td>31720</td>
<td>Model Predictive Control</td>
<td></td>
</tr>
<tr>
<td>51850</td>
<td>Networked Control Systems</td>
<td></td>
</tr>
<tr>
<td>18640</td>
<td>Nonlinear Control</td>
<td></td>
</tr>
<tr>
<td>18620</td>
<td>Optimal Control</td>
<td></td>
</tr>
<tr>
<td>48600</td>
<td>Robotics I</td>
<td></td>
</tr>
<tr>
<td>48610</td>
<td>Robotics II</td>
<td></td>
</tr>
<tr>
<td>18630</td>
<td>Robust Control</td>
<td></td>
</tr>
<tr>
<td>43910</td>
<td>Statistische Lernverfahren und stochastische Modellierung</td>
<td></td>
</tr>
<tr>
<td>43890</td>
<td>Synergetik</td>
<td></td>
</tr>
<tr>
<td>48640</td>
<td>Theoretical and Methodological Foundations of Autonomous Systems</td>
<td></td>
</tr>
<tr>
<td>42980</td>
<td>Topics in Autonomous Systems and Control</td>
<td></td>
</tr>
<tr>
<td>2115</td>
<td>Flugführung und Systemtechnik</td>
<td></td>
</tr>
<tr>
<td>2117</td>
<td>Spez.Fach. anerkannt 6LP</td>
<td></td>
</tr>
<tr>
<td>2118</td>
<td>Spez.Fach. anerkannt 6LP</td>
<td></td>
</tr>
<tr>
<td>2119</td>
<td>Spez.Fach. anerkannt 6LP</td>
<td></td>
</tr>
<tr>
<td>44080</td>
<td>Angewandte Luftfahrtsysteme</td>
<td></td>
</tr>
<tr>
<td>44090</td>
<td>Angewandte Luftfahrtsysteme I</td>
<td></td>
</tr>
<tr>
<td>44100</td>
<td>Angewandte Luftfahrtsysteme II</td>
<td></td>
</tr>
<tr>
<td>44140</td>
<td>Autoflight und Air Traffic Management</td>
<td></td>
</tr>
<tr>
<td>36370</td>
<td>Entwicklungsprozess von Luftfahrtsystemen</td>
<td></td>
</tr>
<tr>
<td>40830</td>
<td>Flugmechanik</td>
<td></td>
</tr>
<tr>
<td>44430</td>
<td>Flugmechanik und Flugregelung von Hubschraubern</td>
<td></td>
</tr>
<tr>
<td>44440</td>
<td>Flugmesstechnik</td>
<td></td>
</tr>
<tr>
<td>44450</td>
<td>Flugregelungssysteme</td>
<td></td>
</tr>
<tr>
<td>45230</td>
<td>Integrierte Modulare Avionik</td>
<td></td>
</tr>
<tr>
<td>44060</td>
<td>Integrierte Modulare Avionik und Entwicklungsprozess</td>
<td></td>
</tr>
<tr>
<td>44620</td>
<td>Komplexe Avioniksysteme I</td>
<td></td>
</tr>
<tr>
<td>44630</td>
<td>Komplexe Avioniksysteme II</td>
<td></td>
</tr>
<tr>
<td>44780</td>
<td>Lenkverfahren</td>
<td></td>
</tr>
<tr>
<td>45180</td>
<td>Methoden der Sicherheitsanalyse</td>
<td></td>
</tr>
<tr>
<td>44590</td>
<td>Methoden der Systemmodellierung und Systemanalyse</td>
<td></td>
</tr>
<tr>
<td>44880</td>
<td>Nichtlineare Optimierung</td>
<td></td>
</tr>
<tr>
<td>44960</td>
<td>Optimierung und Optimalsteuerung</td>
<td></td>
</tr>
<tr>
<td>45120</td>
<td>Satellitennavigation</td>
<td></td>
</tr>
<tr>
<td>45140</td>
<td>Schätzverfahren</td>
<td></td>
</tr>
<tr>
<td>45150</td>
<td>Schätzverfahren und Flugmesstechnik</td>
<td></td>
</tr>
<tr>
<td>44360</td>
<td>Spezielle Methoden der Systemtechnik</td>
<td></td>
</tr>
<tr>
<td>2118</td>
<td>Nichtlineare Mechanik</td>
<td></td>
</tr>
<tr>
<td>56670</td>
<td>Discretization Methods</td>
<td></td>
</tr>
<tr>
<td>Modulcode</td>
<td>Modulname</td>
<td></td>
</tr>
<tr>
<td>-----------</td>
<td>-----------</td>
<td></td>
</tr>
<tr>
<td>58270</td>
<td>Dynamik mechanischer Systeme</td>
<td>510</td>
</tr>
<tr>
<td>31690</td>
<td>Experimentelle Modalanalyse</td>
<td>512</td>
</tr>
<tr>
<td>59950</td>
<td>Mechanic nichtlinerar Kontinua</td>
<td>514</td>
</tr>
<tr>
<td>33340</td>
<td>Methode der finiten Elemente in Statik und Dynamik</td>
<td>516</td>
</tr>
<tr>
<td>59990</td>
<td>Nichtglatte Dynamik</td>
<td>518</td>
</tr>
<tr>
<td>58280</td>
<td>Nichtlineare Dynamik mechanischer Systeme</td>
<td>520</td>
</tr>
<tr>
<td>60310</td>
<td>Praktikum Nichtlineare Mechanik</td>
<td>522</td>
</tr>
<tr>
<td>220</td>
<td>Wahlfach Technische Kybernetik</td>
<td>523</td>
</tr>
<tr>
<td>40990</td>
<td>Allgemeine Wirtschaftspolitik</td>
<td>525</td>
</tr>
<tr>
<td>10070</td>
<td>Analysis 3</td>
<td>527</td>
</tr>
<tr>
<td>56970</td>
<td>Analysis and Control of Multi-agent Systems</td>
<td>529</td>
</tr>
<tr>
<td>32770</td>
<td>Angewandte Regelung und Optimierung in der Prozessindustrie</td>
<td>531</td>
</tr>
<tr>
<td>41660</td>
<td>Angewandte Regelungstechnik in Produktionsanlagen</td>
<td>533</td>
</tr>
<tr>
<td>59980</td>
<td>Angewandtes Technologiemanagement</td>
<td>535</td>
</tr>
<tr>
<td>33850</td>
<td>Automatisierungstechnik</td>
<td>536</td>
</tr>
<tr>
<td>11620</td>
<td>Automatisierungstechnik I</td>
<td>538</td>
</tr>
<tr>
<td>12100</td>
<td>BWL II: Rechnungswesen und Finanzierung</td>
<td>540</td>
</tr>
<tr>
<td>48520</td>
<td>Biomedizin für die Technische Kybernetik</td>
<td>542</td>
</tr>
<tr>
<td>33480</td>
<td>Biomedizinische Gerätetechnik</td>
<td>544</td>
</tr>
<tr>
<td>29940</td>
<td>Convex Optimization</td>
<td>546</td>
</tr>
<tr>
<td>29180</td>
<td>Dynamik elektrischer Verbundsysteme</td>
<td>548</td>
</tr>
<tr>
<td>33840</td>
<td>Dynamische Filterverfahren</td>
<td>551</td>
</tr>
<tr>
<td>57680</td>
<td>Einführung in die Chaostheorie</td>
<td>553</td>
</tr>
<tr>
<td>46770</td>
<td>Einführung in die Funktionalen Sicherheit</td>
<td>555</td>
</tr>
<tr>
<td>37800</td>
<td>Einführung in die KFZ-Systemtechnik</td>
<td>557</td>
</tr>
<tr>
<td>43900</td>
<td>Einführung in die verteilte künstliche Intelligenz</td>
<td>558</td>
</tr>
<tr>
<td>36850</td>
<td>Elektrochemische Energiespeicherung in Batterien</td>
<td>561</td>
</tr>
<tr>
<td>32950</td>
<td>Embedded Controller und Datennetze in Fahrzeugen</td>
<td>563</td>
</tr>
<tr>
<td>17500</td>
<td>Energiemärkte und Energiepolitik</td>
<td>566</td>
</tr>
<tr>
<td>30030</td>
<td>Fahrzeugdynamik</td>
<td>569</td>
</tr>
<tr>
<td>33820</td>
<td>Flache Systeme</td>
<td>571</td>
</tr>
<tr>
<td>30040</td>
<td>Flexible Mehrkörpersysteme</td>
<td>573</td>
</tr>
<tr>
<td>40830</td>
<td>Flugmechanik</td>
<td>575</td>
</tr>
<tr>
<td>33360</td>
<td>Fuzzy Methoden</td>
<td>577</td>
</tr>
<tr>
<td>15720</td>
<td>Gestaltung von öffentlichen Verkehrssystemen</td>
<td>579</td>
</tr>
<tr>
<td>41880</td>
<td>Grundlagen der Bionik</td>
<td>581</td>
</tr>
<tr>
<td>38370</td>
<td>Grundlagen der Kraftfahrzeugantriebe</td>
<td>583</td>
</tr>
<tr>
<td>20060</td>
<td>Grundlagen der Theoretischen Philosophie - Nebenfach</td>
<td>584</td>
</tr>
<tr>
<td>38780</td>
<td>Grundlagen der Wirtschaftswissenschaften</td>
<td>586</td>
</tr>
<tr>
<td>50130</td>
<td>Integrated Watershed Modeling</td>
<td>588</td>
</tr>
<tr>
<td>51840</td>
<td>Introduction to Adaptive Control</td>
<td>590</td>
</tr>
<tr>
<td>56130</td>
<td>Konzepte und Methoden in der Wirtschaftskybernetik</td>
<td>592</td>
</tr>
<tr>
<td>13590</td>
<td>Kraftfahrzeuge I + II</td>
<td>594</td>
</tr>
<tr>
<td>44780</td>
<td>Lenkverfahren</td>
<td>596</td>
</tr>
<tr>
<td>29840</td>
<td>Machine Learning</td>
<td>598</td>
</tr>
<tr>
<td>37270</td>
<td>Mechatronische Systeme in der Medizin - Anwendungen aus Orthopädie und Rehabilitation</td>
<td>601</td>
</tr>
<tr>
<td>15040</td>
<td>Mehrphasenmodellierung in porösen Medien</td>
<td>603</td>
</tr>
<tr>
<td>38720</td>
<td>Meteorologie</td>
<td>605</td>
</tr>
<tr>
<td>31440</td>
<td>Methoden der Wirtschaftskybernetik</td>
<td>607</td>
</tr>
<tr>
<td>31720</td>
<td>Model Predictive Control</td>
<td>609</td>
</tr>
<tr>
<td>51850</td>
<td>Networked Control Systems</td>
<td>611</td>
</tr>
<tr>
<td>30100</td>
<td>Nichtlineare Dynamik</td>
<td>613</td>
</tr>
<tr>
<td>44880</td>
<td>Nichtlineare Optimierung</td>
<td>615</td>
</tr>
<tr>
<td>33330</td>
<td>Nichtlineare Schwingungen</td>
<td>617</td>
</tr>
<tr>
<td>44890</td>
<td>Nichtlineare und digitale Regelung</td>
<td>619</td>
</tr>
<tr>
<td>33190</td>
<td>Numerische Methoden der Optimierung und Optimalen Steuerung</td>
<td>620</td>
</tr>
<tr>
<td>15020</td>
<td>Numerische Methoden in der Fluidmechanik</td>
<td>622</td>
</tr>
<tr>
<td>33860</td>
<td>Objektorientierte Modellierung und Simulation</td>
<td>624</td>
</tr>
<tr>
<td>Code</td>
<td>Course Title</td>
<td>Page</td>
</tr>
<tr>
<td>------------</td>
<td>--</td>
<td>------</td>
</tr>
<tr>
<td>18620</td>
<td>Optimal Control</td>
<td>626</td>
</tr>
<tr>
<td>40820</td>
<td>Optimalsteuerung in der Luft- und Raumfahrttechnik</td>
<td>628</td>
</tr>
<tr>
<td>30060</td>
<td>Optimization of Mechanical Systems</td>
<td>629</td>
</tr>
<tr>
<td>39050</td>
<td>Optische Messtechnik</td>
<td>631</td>
</tr>
<tr>
<td>33400</td>
<td>Optische Phänomene in Natur und Alltag</td>
<td>633</td>
</tr>
<tr>
<td>33580</td>
<td>Personalwirtschaft</td>
<td>635</td>
</tr>
<tr>
<td>29190</td>
<td>Planungsmethoden in der Energiewirtschaft</td>
<td>637</td>
</tr>
<tr>
<td>49680</td>
<td>Praktikum Systemdynamik</td>
<td>639</td>
</tr>
<tr>
<td>14390</td>
<td>Programmentwicklung</td>
<td>640</td>
</tr>
<tr>
<td>15680</td>
<td>Rechnergestützte Angebotsplanung</td>
<td>641</td>
</tr>
<tr>
<td>18630</td>
<td>Robust Control</td>
<td>643</td>
</tr>
<tr>
<td>50400</td>
<td>Robust Control</td>
<td>645</td>
</tr>
<tr>
<td>45090</td>
<td>Robuste Regelung</td>
<td>646</td>
</tr>
<tr>
<td>45130</td>
<td>Satellitenregelung</td>
<td>647</td>
</tr>
<tr>
<td>33600</td>
<td>Simultaneous Engineering und Projektmanagement</td>
<td>649</td>
</tr>
<tr>
<td>33320</td>
<td>Smart Structures</td>
<td>651</td>
</tr>
<tr>
<td>11630</td>
<td>Softwaretechnik I</td>
<td>652</td>
</tr>
<tr>
<td>21750</td>
<td>Softwaretechnik II</td>
<td>654</td>
</tr>
<tr>
<td>15230</td>
<td>Spezielle Anwendungen der Wirtschaftskybernetik / Wirtschaftskybernetik III</td>
<td>656</td>
</tr>
<tr>
<td>43890</td>
<td>Synergetik</td>
<td>658</td>
</tr>
<tr>
<td>13330</td>
<td>Technologiemanagement</td>
<td>660</td>
</tr>
<tr>
<td>48700</td>
<td>Thermodynamik biochemischer Netzwerke</td>
<td>662</td>
</tr>
<tr>
<td>37450</td>
<td>Volleyball benotet</td>
<td>664</td>
</tr>
<tr>
<td>32280</td>
<td>Wirtschaftskybernetik I</td>
<td>665</td>
</tr>
<tr>
<td>80530</td>
<td>Masterarbeit Technische Kybernetik</td>
<td>666</td>
</tr>
</tbody>
</table>
Qualifikationsziele

Das Qualifikationsprofil von Absolventen, die den Masterabschluss Technische Kybernetik erworben haben, zeichnet sich durch die folgenden zusätzlichen, über die mit dem Bachelor-Abschluss verbundenen hinausgehenden Attribute aus:

1) Die Absolventen haben die Ausbildungsziele des Bachelor-Studiums in einem längeren fachlichen Reifeprozess weiter verarbeitet und haben eine größere Sicherheit in der Anwendung und Umsetzung der fachlichen und außerauschlichen Kompetenzen erworben.

2) Die Absolventen haben tiefgehende Fachkenntnisse in in den Kernbereichen der Technischen Kybernetik sowie in einem Spezialisierungsfach erworben.

3) Die Absolventen sind fähig, die erworbenen naturwissenschaftlichen, mathematischen und ingenieurwissenschaftlichen Methoden zur Abstraktion, Formulierung und Lösung komplexer Aufgabenstellungen in Forschung und Entwicklung in der Industrie oder in Forschungseinrichtungen erfolgreich einzusetzen, sie kritisch zu hinterfragen und sie bei Bedarf auch weiterzuentwickeln.

5) Die Absolventen sind insbesondere fähig, benötigte Informationen zu identifizieren, zu finden und zu beschaffen. Sie können analytische, modellhafte und experimentelle Untersuchungen planen und durchführen. Dabei bewerten sie Daten kritisch und ziehen daraus die notwendigen Schlussfolgerungen.

6) Die Absolventen verfügen über Tiefe und Breite, um sich sowohl in zukünftige Technologien im eigenen Fachgebiet wie auch in Randgebiete einarbeiten und neue aufkommende Technologien zu untersuchen und zu bewerten.

7) Die Absolventen haben verschiedene technische und soziale Kompetenzen (Abstraktionsvermögen, systemanalytisches Denken, Team- und Kommunikationsfähigkeit, internationale und interkulturelle Erfahrung usw.) erworben, die gut auf Führungsaufgaben vorbereiten.

Masterabsolventen/innen erwerben die wissenschaftliche Qualifikation für eine Promotion.
19 Auflagenmodule des Masters

Zugeordnete Module:

- 11950 Technische Mechanik II + III
- 12040 Einführung in die Regelungstechnik
- 12230 Höhere Mathematik für Physiker, Kybernetiker und Mechatroniker Teil 3
- 12270 Simulationstechnik
- 38780 Systemdynamik
- 38850 Mehrgrößenregelung
Modul: 12040 Einführung in die Regelungstechnik

1. Modulkürzel: 074810010
2. Modul: 12040
3. Moduleinleitung: Einführung in die Regelungstechnik
4. Erster Euro-Master: 1 Semester
5. Praktikum mit Co-Teaching: 1 Semester
6. Modulverantwortlicher: Univ.-Prof. Frank Allgöwer
7. Dozenten: Frank Allgöwer
8. Modulverantwortlicher: Univ.-Prof. Frank Allgöwer
9. Dozenten: Frank Allgöwer
10. Zuordnung zum Curriculum in diesem Studiengang:
 - B.Sc. Technische Kybernetik, PO 2008, 5. Semester
 → Kernmodule
 - B.Sc. Technische Kybernetik, PO 2011, 5. Semester
 → Kernmodule
 - M.Sc. Technische Kybernetik, PO 2011, 5. Semester
 → Auflagenmodule des Masters
11. Empfohlene Voraussetzungen: HM I-III, Grundlagen der Systemdynamik
12. Lernziele: Der Studierende
 • hat umfassende Kenntnisse zur Analyse und Synthese einschleifiger linearer Regelsysteme in Zeit- und Frequenzbereich
 • kann auf Grund theoretischer Überlegungen Regler und Beobachter für dynamische Systeme entwerfen und validieren
 • kann entworfene Regler und Beobachter an praktischen Laborversuchen implementieren
13. Inhalt:
 Vorlesung: Systemtheoretische Konzepte der Regelungstechnik, Stabilität, Beobachtbarkeit, Steuerbarkeit, Robustheit, Reglerentwurfsmethoden im Zeit- und Frequenzbereich, Beobachterentwurf
 Praktikum: Implementierung der in der Vorlesung Einführung in die Regelungstechnik erlernten Reglerentwurfsmethoden an praktischen Laborversuchen
 Projektwettbewerb: Löschen einer konkreten Regelungsaufgabe in einer vorgegebenen Zeit in Gruppen
14. Literatur:
 • Lunze, J.. Regelungstechnik 1. Springer Verlag, 2004
15. Lehrveranstaltungen und -formen:
 • 120401 Vorlesung Einführung in die Regelungstechnik
 • 120402 Gruppenübung Einführung in die Regelungstechnik
 • 120403 Praktikum Einführung in die Regelungstechnik
 • 120404 Projektwettbewerb Einführung in die Regelungstechnik
16. Abschätzung Arbeitsaufwand: Präsenzzeit: 63h
 Selbststudium/ Nacharbeitszeit: 117h
 Gesamt: 180h

Stand: 09. April 2015
17. Prüfungsnummer/n und -name:

• 12041 Einführung in die Regelungstechnik (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0
• 12042 Einführung in die Regelungstechnik - Praktikum: Anwesenheit mit Kurztest (USL), schriftlich, eventuell mündlich, Gewichtung: 1.0
• 12043 Einführung in die Regelungstechnik - Projektwettbewerb: erfolgreiche Teilnahme (USL), schriftlich, eventuell mündlich, Gewichtung: 1.0

18. Grundlage für ...:

12260 Mehrgrößenregelung

19. Medienform:

20. Angeboten von:
Modul: 12230 Höhere Mathematik für Physiker, Kybernetiker und Mechatroniker Teil 3

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>080220502</th>
<th>5. Moduldaurn:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>9.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Apl. Prof. Wolfgang Kimmerle

7. Sprache: Deutsch

8. Modulverantwortlicher: Apl. Prof. Wolfgang Kimmerle

11. Empfohlene Voraussetzungen: HM pke 12

12. Lernziele:
- Die Studierenden verfügen über grundlegende Kenntnisse der komplexen Analysis, der Differentialgleichungen und der Vektoranalysis.
- Sie sind in der Lage, die behandelten Methoden selbständig, sicher, kritisch und kreativ anzuwenden.
- Sie können sich mit Spezialisten über die benutzten mathematischen Methoden verständigen und sich selbstständig weiterführende Literatur erarbeiten.

13. Inhalt:
- Komplexe Analysis
- Differentialgleichungen
- Vektoranalysis

14. Literatur: wird in der Vorlesung bekannt gegeben

15. Lehrveranstaltungen und -formen:
- 122301 Vorlesung Höhere Mathematik für Physiker, Kybernetiker und Elektroingenieure Teil 3
- 122302 Vortragsübung Höhere Mathematik für Physiker, Kybernetiker und Elektroingenieure Teil 3
- 122303 Gruppenübung Höhere Mathematik für Physiker, Kybernetiker und Elektroingenieure Teil 3

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 94,5 h
- Selbststudiumszeit / Nacharbeitszeit: 175,5 h
- Gesamt: 270 h

17. Prüfungsnummer/n und -name:
- 12231 Höhere Mathematik für Physiker, Kybernetiker und Mechatroniker Teil 3 (PL), schriftliche Prüfung, 180 Min., Gewichtung: 1.0, Prüfungsvoraussetzung: Übungsschein HM3
- V Vorleistung (USL-V), schriftlich oder mündlich

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 38850 Mehrgrößenregelung

2. Modulkürzel: 074810020 5. Modulduauer: 1 Semester
4. SWS: 2.0 7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Frank Allgöwer
9. Dozenten: Frank Allgöwer
10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technische Kybernetik, PO 2011, 6. Semester ➔ Kernmodule
 B.Sc. Technische Kybernetik, PO 2011, 6. Semester ➔ Vorgezogene Master-Module
11. Empfohlene Voraussetzungen: Einführung in die Regelungstechnik (oder äquivalente Vorlesung)
12. Lernziele: Der Studierende
 • kann die Konzepte, die in der Vorlesung "Einführung in die Regelungstechnik" vermittelt werden, auf Mehrgrößensysteme anwenden,
 • hat umfassende Kenntnisse zur Analyse und Synthese linearer Regelkreise mit mehreren Ein- und Ausgängen im Zeit- und Frequenzbereich,
 • kann aufgrund theoretischer Überlegungen Regler für dynamische Mehrgrößensysteme entwerfen und validieren.
13. Inhalt:
 Modellierung von Mehrgrößensystemen:
 • Zustandsraumdarstellung,
 • Übertragungsmatrizen.
 Analyse von Mehrgrößensystemen:
 • Ausgewählte mathematische Grundlagen aus der Funktionalanalysis und linearen Algebra,
 • Stabilität, invariante Unterräume,
 • Singulärwerte-Diagramme,
 • Relative Gain Array (RGA).
 Synthese von Mehrgrößensystemen:
 • Reglerentwurf im Frequenzbereich: Verallgemeinertes Nyquist Kriterium, Direct Nyquist Array (DNA) Verfahren,
 • Reglerentwurf im Zeitbereich: Steuerungsinvarianz, Störentkopplung.
14. Literatur:
<table>
<thead>
<tr>
<th>15. Lehrveranstaltungen und -formen:</th>
<th>388501 Vorlesung Mehrgrößenregelung mit Übung</th>
</tr>
</thead>
<tbody>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Präsenzzeit: 28h</td>
</tr>
<tr>
<td></td>
<td>Selbststudiumszeit / Nacharbeitszeit: 62h</td>
</tr>
<tr>
<td></td>
<td>Gesamt: 90h</td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>38851 Mehrgrößenregelung (BSL), schriftlich oder mündlich, Gewichtung: 1.0</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td></td>
</tr>
</tbody>
</table>
Modul: 12270 Simulationstechnik

2. Modulkürzel: 074710002
5. Modulduauer: 1 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 5.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Oliver Sawodny
9. Dozenten: Oliver Sawodny

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technische Kybernetik, PO 2008, 5. Semester ➔ Kernmodule
B.Sc. Technische Kybernetik, PO 2011, 5. Semester ➔ Kernmodule
M.Sc. Technische Kybernetik, PO 2011, 5. Semester ➔ Auflagenmodule des Masters

11. Empfohlene Voraussetzungen:
• Pflichtmodule Mathematik
• Pflichtmodul Systemdynamik bzw. Teil 1 vom Pflichtmodul Regelungs- und Steuerungstechnik

12. Lernziele:
Die Studierenden kennen die grundlegenden Methoden und Werkzeuge zur Simulation von dynamischen Systemen und beherrschen deren Anwendung. Sie setzen geeignete numerische Integrationsverfahren ein und können das Simulationsprogramm in Abstimmung mit der ihnen gegebenen Simulationsaufgabe parametrisieren.

13. Inhalt:
Stationäre und dynamische Analyse von Simulationsmodellen; numerische Lösungen von gewöhnlichen Differentialgleichungen mit Anfangs- oder Randbedingungen; Stückprozesse als Warte-Bedien-Systeme; Simulationswerkzeug Matlab/Simulink und Arena

14. Literatur:
• Vorlesungsdrucke

15. Lehrveranstaltungen und -formen:
• 122701 Vorlesung mit integrierter Übung Simulationstechnik
• 122702 Praktikum Simulationstechnik

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 53 h
Selbststudium / Nacharbeitszeit: 127 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
• 12271 Simulationstechnik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0, Hilfsmittel: Taschenrechner (nicht vernetzt, nicht programmierbar, nicht grafikfähig) sowie alle nicht elektronischen Hilfsmittel
• 12272 Simulationstechnik: Erfolgreiche Teilnahme am Praktikum (USL), schriftlich, eventuell mündlich, Gewichtung: 1.0

18. Grundlage für ...:
12290 Systemanalyse I

Stand: 09. April 2015
19. Medienform: -

20. Angeboten von: Institut für Systemdynamik
Modul: 38780 Systemdynamik

- **2. Modulkürzel:** 074710001
- **3. Leistungspunkte:** 3.0 LP
- **4. SWS:** 3.0
- **8. Modulverantwortlicher:** Univ.-Prof. Oliver Sawodny
- **9. Dozenten:** Oliver Sawodny
- **10. Zuordnung zum Curriculum in diesem Studiengang:**
 - B.Sc. Technische Kybernetik, PO 2011, 4. Semester ➔ Kerndome
 - M.Sc. Technische Kybernetik, PO 2011, 2. Semester ➔ Auflagenmodule des Masters
- **11. Empfohlene Voraussetzungen:** Pflichtmodule Mathematik
- **12. Lernziele:**
 - Der Studierende kann lineare dynamische Systeme analysieren,
 - kann lineare dynamische Systeme auf deren Struktureigenschaften untersuchen
 - kennt den mathematisch-methodischen Hintergrund zur Systemdynamik
- **13. Inhalt:**
 - Einführung mathematischer Modelle, vertiefte Darstellung zur Analyse im Zeitbereich, vertiefte Darstellung zur Analyse im Frequenzbereich/Bildbereich, Integraltransformation
- **14. Literatur:**
 - Vorlesungsumdrucke
 - Unbehauen, R.: Systemtheorie 1, Oldenbourg 2002
- **15. Lehrveranstaltungen und -formen:**
 - 387801 Vorlesung Systemdynamik
 - 387802 Übung Systemdynamik
- **16. Abschätzung Arbeitsaufwand:**
 - Präsenzzeit: 32 h
 - Selbstitdiumszeit/Nachbearbeitungszeit: 58h
 - Gesamt: 90h
- **17. Prüfungsnummer/n und -name:**
 - 38781 Systemdynamik (BSL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0, Hilfsmittel: Taschenrechner (nicht vernetzt, nicht programmierbar, nicht grafikfähig) sowie alle nicht elektronischen Hilfsmittel
- **18. Grundlage für ...:**
- **19. Medienform:**
- **20. Angeboten von:**
 - Institut für Systemdynamik
Modul: 11950 Technische Mechanik II + III

2. Modulkürzel: 072810002
5. Modulduauer: 2 Semester
3. Leistungspunkte: 12.0 LP
6. Turnus: jedes 2. Semester, SoSe
4. SWS: 8.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Peter Eberhard

9. Dozenten:
 • Peter Eberhard
 • Michael Hanss

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technische Kybernetik, PO 2008, 2. Semester ➞ Kernmodule
 B.Sc. Technische Kybernetik, PO 2011, 2. Semester ➞ Kernmodule
 M.Sc. Technische Kybernetik, PO 2011, 2. Semester ➞ Auflagenmodule des Masters

11. Empfohlene Voraussetzungen: Grundlagen in Technischer Mechanik I

12. Lernziele:
 Die Studierenden haben nach erfolgreichem Besuch des Moduls Technische Mechanik II+III ein grundlegendes Verständnis und Kenntnis der wichtigsten Zusammenhänge in der Elasto-Statik und Dynamik. Sie beherrschen selbständig, sicher, kritisch und kreativ einfache Anwendungen der grundlegendsten mechanischen Methoden der Elasto-Statik und Dynamik.

13. Inhalt:
 • Elasto-Statik: Spannungen und Dehnungen, Zug und Druck, Torsion von Wellen, Technische Biegelehre, Überlagerung einfacher Belastungsfälle
 • Kinematik: Punktbewegungen, Relativbewegungen, ebene und räumliche Kinematik des starren Körpers
 • Kinetik: Kinetische Grundbegriffe, kinetische Grundgleichungen, Kinetik der Schwerpunktsbewegungen, Kinetik der Relativbewegungen, Kinetik des starren Körpers, Arbeits- und Energiesatz, Schwingungen
 • Methoden der analytischen Mechanik: Prinzip von d’Alembert, Koordinaten und Zwangsbedingungen, Anwendung des d’Alembertschen Prinzips in der Lagrangeschen Fassung, Lagrangesche Gleichungen

14. Literatur:
 • Vorlesungsmitschrieb
 • Vorlesungs- und Übungsunterlagen
15. Lehrveranstaltungen und -formen:
 - 119501 Vorlesung Technische Mechanik II
 - 119502 Übung Technische Mechanik II
 - 119503 Vorlesung Technische Mechanik III
 - 119504 Übung Technische Mechanik III

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 84 h
 Selbststudiumszeit / Nacharbeitszeit: 276 h
 Gesamt: 360 h

17. Prüfungsnummer/n und -name:
 11951 Technische Mechanik II + III (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:
 - Beamer
 - Tablet-PC/Overhead-Projektor
 - Experimente

20. Angeboten von:
 Institut für Technische und Numerische Mechanik
100 Vertiefungsmodule

Zugeordnete Module:
- 110 Mathematische Methoden der Kybernetik
- 120 Advanced Control
- 140 Modellierung II
- 150 Systemanalyse II
- 18610 Konzepte der Regelungstechnik
- 29900 Dynamik verteilparametrischer Systeme
- 29930 Projektarbeit Regelungstechnik
110 Mathematische Methoden der Kybernetik

Zugeordnete Module:

<table>
<thead>
<tr>
<th>Code</th>
<th>Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>111</td>
<td>Mathematische Methoden der Kybernetik anerkannt</td>
</tr>
<tr>
<td>112</td>
<td>Mathematische Methoden der Kybernetik anerkannt 9LP</td>
</tr>
<tr>
<td>113</td>
<td>Mathematische Methoden der Kybernetik anerkannt 6LP</td>
</tr>
<tr>
<td>115</td>
<td>Numerische Mathematik 1</td>
</tr>
<tr>
<td>1150</td>
<td>Numerische Mathematik 2</td>
</tr>
<tr>
<td>11860</td>
<td>Höhere Analysis</td>
</tr>
<tr>
<td>14720</td>
<td>Dynamische Systeme</td>
</tr>
<tr>
<td>14740</td>
<td>Partielle Differentialgleichungen (Modellierung, Analysis, Simulation)</td>
</tr>
<tr>
<td>14770</td>
<td>Approximation und Geometrische Modellierung</td>
</tr>
<tr>
<td>14880</td>
<td>Modellierung mit Differentialgleichungen</td>
</tr>
<tr>
<td>24840</td>
<td>Mathematische Modellierung mit gewöhnlichen Differentialgleichungen</td>
</tr>
<tr>
<td>24860</td>
<td>Mathematische Modellierung mit partiellen Differentialgleichungen</td>
</tr>
<tr>
<td>29940</td>
<td>Convex Optimization</td>
</tr>
<tr>
<td>33190</td>
<td>Numerische Methoden der Optimierung und Optimalen Steuerung</td>
</tr>
<tr>
<td>33820</td>
<td>Flache Systeme</td>
</tr>
<tr>
<td>34910</td>
<td>Einführung in die Numerik partieller Differentialgleichungen</td>
</tr>
<tr>
<td>35000</td>
<td>Linear Matrix Inequalities in Control</td>
</tr>
<tr>
<td>41120</td>
<td>Mathematisches Seminar für Studenten der technischen Kybernetik</td>
</tr>
<tr>
<td>42370</td>
<td>Höhere Mathematik IV für Kybernetiker</td>
</tr>
</tbody>
</table>
111 Mathematische Methoden der Kybernetik anerkannt
112 Mathematische Methoden der Kybernetik anerkannt 9LP
113 Mathematische Methoden der Kybernetik anerkannt 6LP
Modul: 14770 Approximation und Geometrische Modellierung

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>080500002</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>9.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>6.0</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>unregelmäßig</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Klaus Höllig</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Klaus Höllig</td>
</tr>
</tbody>
</table>
→ Vorgezogene Master-Module
DoubleM.D. Technische Kybernetik, PO 2011, 5. Semester
→ Chalmers -->Outgoing -->Mathematische Methoden der Kybernetik
→ DoubleM.D. Technische Kybernetik, PO 2014, 5. Semester
→ Outgoing -->Wahlpflichtmodule -->Mathematische Methoden der Kybernetik
→ M.Sc. Technische Kybernetik, PO 2011, 5. Semester
→ Vertiefungsmodule -->Mathematische Methoden der Kybernetik |
| 11. Empfohlene Voraussetzungen: | Zulassungsvoraussetzung: Orientierungsprüfung
Inhaltliche Voraussetzung: Numerische Mathematik 2 |
• Kenntnis und Anwendung grundlegender Approximationsmethoden und geometrischer Algorithmen.
• Erwerb von vertieften Fähigkeiten in einem modernen Teilgebiet der Numerik bzw. Geometrie, die als Grundlage des Verständnisses aktueller Forschungsfragen dienen. |
| 13. Inhalt: | Bezir-Form:
• Bernstein-Basis, polynomiale und rationale Bezir-Kurven.
B-Splines:
• Algorithmen, Spline-Funktionen, Interpolation und Fehlerabschätzungen;
Spline-Kurven:
• Kontroll-Polygone, geometrische Approximations-methoden;
Multivariate Splines:
• Typen multivariater B-Splines, Flächenmo-delle, Modellierungstechniken. |
| 15. Lehrveranstaltungen und -formen: | • 147701 Vorlesung Approximation und geometrische Modellierung
• 147702 Übung Approximation und geometrische Modellierung |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 63h |
Selbststudium/Nacharbeitszeit: 187h
Prüfungsvorbereitung: 20h
Gesamt: 270h

<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>14771 Approximation und Geometrische Modellierung (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0, Prüfungsvorleistung: Übungsschein</th>
</tr>
</thead>
</table>

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
Modul: 29940 Convex Optimization

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>074810180</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Christian Ebenbauer</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Christian Ebenbauer</td>
</tr>
</tbody>
</table>

Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>B.Sc. Technische Kybernetik, PO 2011, 7. Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>→ Vorgezogene Master-Module</td>
</tr>
<tr>
<td>→ DoubleM.D. Technische Kybernetik, PO 2011</td>
</tr>
<tr>
<td>→ Chalmers -->Incoming -->Wahlfach Technische Kybernetik</td>
</tr>
<tr>
<td>→ DoubleM.D. Technische Kybernetik, PO 2011</td>
</tr>
<tr>
<td>→ Chalmers -->Outgoing -->Mathematische Methoden der Kybernetik</td>
</tr>
<tr>
<td>→ DoubleM.D. Technische Kybernetik, PO 2011</td>
</tr>
<tr>
<td>→ Chalmers -->Outgoing -->Wahlfach Technische Kybernetik</td>
</tr>
<tr>
<td>→ DoubleM.D. Technische Kybernetik, PO 2011</td>
</tr>
<tr>
<td>→ Incoming -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik</td>
</tr>
<tr>
<td>→ DoubleM.D. Technische Kybernetik, PO 2011</td>
</tr>
<tr>
<td>→ Outgoing -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik</td>
</tr>
<tr>
<td>→ DoubleM.D. Technische Kybernetik, PO 2014</td>
</tr>
<tr>
<td>→ Chalmers -->Incoming -->Wahlfach Technische Kybernetik</td>
</tr>
<tr>
<td>→ DoubleM.D. Technische Kybernetik, PO 2014</td>
</tr>
<tr>
<td>→ Incoming -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik</td>
</tr>
<tr>
<td>→ DoubleM.D. Technische Kybernetik, PO 2014</td>
</tr>
<tr>
<td>→ Outgoing -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik</td>
</tr>
<tr>
<td>→ DoubleM.D. Technische Kybernetik, PO 2014</td>
</tr>
<tr>
<td>→ Outgoing -->Wahlpflichtmodule -->Mathematische Methoden der Kybernetik</td>
</tr>
<tr>
<td>→ DoubleM.D. Technische Kybernetik, PO 2014</td>
</tr>
<tr>
<td>→ Wahlpflichtmodule -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik</td>
</tr>
<tr>
<td>→ M.Sc. Technische Kybernetik, PO 2011</td>
</tr>
<tr>
<td>→ Spezialisierungsmodul -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik</td>
</tr>
<tr>
<td>→ M.Sc. Technische Kybernetik, PO 2011</td>
</tr>
<tr>
<td>→ Spezialisierungsmodul -->Wahlfach Technische Kybernetik</td>
</tr>
</tbody>
</table>
11. Empfohlene Voraussetzungen:

12. Lernziele: The students obtain a solid understanding of convex optimization. In particular, they are able to formulate and assess optimization problems and to apply methods and tools from convex optimization, such as linear and semi-definite programming, duality theory and relaxation techniques, to solve optimization problems in various areas of engineering and sciences.

13. Inhalt:
- Linear programming
- Quadratic programming
- Semidefinite programming
- Linear matrix inequalities
- Duality theory
- Relaxation techniques and polynomial optimization
- Simplex algorithm and interior-point algorithms
- Applications

14. Literatur:
- Vollständiger Tafelanschrieb,
- Handouts,
- Buch: Convex Optimization (S. Boyd, L. Vandenberghe), Nichtlineare Optimierung (R.H. Elster), Lectures on Modern Convex Optimization (A. Ben-Tal, A. Nemirovski)
- Material für (Rechner-)Übungen wird in den Übungen ausgeteilt

15. Lehrveranstaltungen und -formen: 299401 Vorlesung Convex Optimization

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 42 Stunden
- Selbststudium: 138 Stunden
- Summe: 180 Stunden

17. Prüfungsnummer/n und -name: 29941 Convex Optimization (PL), schriftlich oder mündlich, Gewichtung: 1.0, Convex Optimization, 1.0, schriftlich oder mündlich

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
Modul: 14720 Dynamische Systeme

2. Modulkürzel: 080200006
3. Leistungspunkte: 9.0 LP
4. SWS: 6.0
5. Modulduauer: 1 Semester
6. Turnus: unregelmäßig
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Jürgen Pöschel
9. Dozenten: • Peter Lesky
 • Timo Weidl
 • Marcel Griesemer
 • Guido Schneider
10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technische Kybernetik, PO 2008, 5. Semester
 ➔ Ergänzungsmodule -->Grundlagen der Natur- und Ingenieurwissenschaften
 ➔
 B.Sc. Technische Kybernetik, PO 2011, 5. Semester
 ➔ Ergänzungsmodule -->Grundlagen der Natur- und Ingenieurwissenschaften
 ➔
 B.Sc. Technische Kybernetik, PO 2011, 5. Semester
 ➔ Vorgezogene Master-Module
 DoubleM.D. Technische Kybernetik, PO 2014, 5. Semester
 ➔ Outgoing -->Wahlpflichtmodule -->Mathematische Methoden der Kybernetik
 ➔
 M.Sc. Technische Kybernetik, PO 2011, 5. Semester
 ➔ Vertiefungsmodul -->Mathematische Methoden der Kybernetik
 ➔
11. Empfohlene Voraussetzungen: Zulassungsvoraussetzung: Orientierungsprüfung
12. Lernziele:
 • Kenntnis und Umgang mit dynamischen Systemen und ihren Strukturen.
 • Erwerb von vertieften Fähigkeiten in einem modernen Teilgebiet der Analysis, die als Grundlage des Verständnisses aktueller Forschungsfragen dienen.
13. Inhalt:
14. Literatur:
 Wird in der Vorlesung bekannt gegeben.
15. Lehrveranstaltungen und -formen:
 • 147201 Vorlesung Dynamische Systeme
 • 147202 Übung Dynamische Systeme
16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 63h
 Selbststudium/Nacharbeitszeit: 187h
 Prüfungsvorbereitung: 20h
 Gesamt: 270h
17. Prüfungsnummer/n und -name: 14721 Dynamische Systeme (PL), mündliche Prüfung, 30 Min., Gewichtung: 1.0, Prüfungsvorleistung: Übungsschein
18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 34910 Einführung in die Numerik partieller Differentialgleichungen

2. Modulkürzel: 080803801
5. Modulduauer: 1 Semester
3. Leistungspunkte: 9.0 LP
6. Turnus: unregelmäßig
4. SWS: 6.0
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Kunibert Gregor Siebert
9. Dozenten:
10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technische Kybernetik, PO 2011
 → Vorgezogene Master-Module
 DoubleM.D. Technische Kybernetik, PO 2011
 → Chalmers -->Outgoing -->Mathematische Methoden der Kybernetik
 →
 DoubleM.D. Technische Kybernetik, PO 2014
 → Outgoing -->Wahlpflichtmodule -->Mathematische Methoden der Kybernetik
 →
 M.Sc. Technische Kybernetik, PO 2011
 → Vertiefungsmodul -->Mathematische Methoden der Kybernetik
 →
11. Empfohlene Voraussetzungen: keine
12. Lernziele:
 Die Studenten besitzen Kenntnis grundlegender Konzepte, Algorithmen und Methoden zur Lösung von partiellen Differentialgleichungen; sie erwerben die Fähigkeit, mit den erlernten Kenntnissen selbständig Methoden zu entwickeln, zu analysieren und umzusetzen, mit denen anwendungsorientierte Probleme effizient und genau gelöst werden können.
13. Inhalt:
 Partielle Differentialgleichungen und deren numerische Behandlung: Einteilung partieller Differentialgleichungen, Finite Differenzen und Finite Elemente in 2 und 3 Raumdimensionen, Diskretisierung parabolischer Differentialgleichungen, Verfahren für hyperbolische Erhaltungsgleichungen in einer Raumdimension
14. Literatur:
15. Lehrveranstaltungen und -formen:
 • 349101 Vorlesung Einführung in die Numerik partieller Differentialgleichungen
 • 349102 Übung Einführung in die Numerik partieller Differentialgleichungen
16. Abschätzung Arbeitsaufwand:
 Insgesamt 270 h, wie folgt:
 Präsenzzeit: 42 h (V), 21 h (Ü)
 Selbststudium: 207
17. Prüfungsnummer/n und -name:
 • 349111 Einführung in die Numerik partieller Differentialgleichungen (PL), mündliche Prüfung, 30 Min., Gewichtung: 1.0
 • V Vorleistung (USL-V), schriftlich, eventuell mündlich
18. Grundlage für ... :
19. Medienform:
20. Angeboten von:
Modul: 33820 Flache Systeme

2. Modulkürzel: 074710009

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0

5. Modulduer: 1 Semester

7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Oliver Sawodny

9. Dozenten: Michael Zeitz

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technische Kybernetik, PO 2011	Vorgezogene Master-Module
DoubleM.D. Technische Kybernetik, PO 2014	Chalmers -->Incoming -->Wahlfach Technische Kybernetik
DoubleM.D. Technische Kybernetik, PO 2014	Incoming -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
DoubleM.D. Technische Kybernetik, PO 2014	Incoming -->Spezialisierungsfach -->Systemdynamik/Automatisierungstechnik
DoubleM.D. Technische Kybernetik, PO 2014	Outgoing -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
DoubleM.D. Technische Kybernetik, PO 2014	Outgoing -->Spezialisierungsfach -->Systemdynamik/Automatisierungstechnik
DoubleM.D. Technische Kybernetik, PO 2014	Outgoing -->Wahlpflichtmodule -->Mathematische Methoden der Kybernetik
DoubleM.D. Technische Kybernetik, PO 2014	Wahlpflichtmodule -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
DoubleM.D. Technische Kybernetik, PO 2014	Wahlpflichtmodule -->Spezialisierungsfach -->Systemdynamik/Automatisierungstechnik
M.Sc. Technische Kybernetik, PO 2011	Spezialisierungsmodul -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
M.Sc. Technische Kybernetik, PO 2011	Spezialisierungsmodul -->Spezialisierungsfach -->Systemdynamik/Automatisierungstechnik
M.Sc. Technische Kybernetik, PO 2011	Wahlfach Technische Kybernetik
M.Sc. Technische Kybernetik, PO 2011	Spezialisierungsmodul -->Wahlfach Technische Kybernetik
M.Sc. Technische Kybernetik, PO 2011	Spezialisierungsmodul -->Wahlfach Technische Kybernetik

Stand: 09. April 2015
11. Empfohlene Voraussetzungen:

Einführung in die Regelungstechnik mit Grundkenntnissen der Zustandsraummethodik

12. Lernziele:

13. Inhalt:

14. Literatur:

R. Rothfuß: Anwendung der flachheitsbasierten Analyse und Regelung nichtlinearer Mehrgrößensysteme. VDI-Verlag 1997./

Arbeitsblätter, Umdrucke, Literatur-Links und Videos auf der Homepage

15. Lehrveranstaltungen und -formen:

338201 Vorlesung incl. Übungspräsentationen durch die Studierenden Flache Systeme

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 42 Stunden
Selbststudium: 138 Stunden
Summe: 180 Stunden

17. Prüfungsnummer/n und -name:

33821 Flache Systeme (PL), mündliche Prüfung, 40 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:

20. Angeboten von:

Institut für Systemdynamik
Modul: 11860 Höhere Analysis

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>080200004</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>9.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>6.0</td>
</tr>
<tr>
<td>5. Modulduer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher:
Univ.-Prof. Timo Weidl

9. Dozenten:
Dozenten der Mathematik

10. Zuordnung zum Curriculum in diesem Studiengang:
- B.Sc. Technische Kybernetik, PO 2008, 4. Semester
 - Ergänzungsmodule --> Grundlagen der Natur- und Ingenieurwissenschaften
 - Ergänzungsmodule --> Grundlagen der Natur- und Ingenieurwissenschaften
 - Vorgezogene Master-Module

- B.Sc. Technische Kybernetik, PO 2011, 4. Semester
 - Ergänzungsmodule --> Grundlagen der Natur- und Ingenieurwissenschaften
 - Vorgezogene Master-Module

- DoubleM.D. Technische Kybernetik, PO 2011, 4. Semester
 - Chalmers --> Outgoing --> Mathematische Methoden der Kybernetik

- DoubleM.D. Technische Kybernetik, PO 2014, 4. Semester
 - Outgoing --> Wahlpflichtmodule --> Mathematische Methoden der Kybernetik

- M.Sc. Technische Kybernetik, PO 2011, 4. Semester
 - Vertiefungsmodul --> Mathematische Methoden der Kybernetik

11. Empfohlene Voraussetzungen:
Zulassungsvoraussetzung: Orientierungsprüfung

Inhaltsvoraussetzung: Analysis 3

12. Lernziele:
- Kenntnis und Umgang mit den Grundlagen der Integrationstheorie, Integraltransformationen und den Grundlagen der Fourier-Analyse.
- Befähigung zur Spezialisierung in weiterführenden Kursen der Analysis.

13. Inhalt:

Distributionen: Testfunktionen, Eigenschaften von Distributionen, Ableitungen und Stammfunktionen, Tensorprodukte Faltungen, Temperierte Distributionen, Fundamentallösungen für PDE und deren Berechnung mittels Fourier-Transformationen.

14. Literatur:
Wird in der Vorlesung bekannt gegeben

15. Lehrveranstaltungen und -formen:
- 118601 Vorlesung Höhere Analysis
16. Abschätzung Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Betriebsschriftliche Zeit (h)</th>
<th>Selbststudium/Nacharbeitszeit (h)</th>
<th>Prüfungsvorbereitung (h)</th>
<th>Gesamt (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzzeit</td>
<td>63</td>
<td>20</td>
<td>270</td>
</tr>
<tr>
<td>Selbststudium/Nacharbeitszeit</td>
<td>187</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Prüfungsvorbereitung</td>
<td>20</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

17. Prüfungsnummer/n und -name:

- **11861 Höhere Analysis (PL)**, schriftlich, eventuell mündlich, 120 Min., Gewichtung: 1.0, Übungsschein
- **V** Vorleistung (USL-V), schriftlich, eventuell mündlich

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 42370 Höhere Mathematik IV für Kybernetiker

2. Modulkürzel: 080210001 5. Modulduauer: 1 Semester
4. SWS: 4.0 7. Sprache: Deutsch
8. Modulverantwortlicher: PD Wolf-Patrick Düll
9. Dozenten: Dozenten der Mathematik

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technische Kybernetik, PO 2011
 DoubleM.D. Technische Kybernetik, PO 2011
 DoubleM.D. Technische Kybernetik, PO 2014
 M.Sc. Technische Kybernetik, PO 2011

11. Empfohlene Voraussetzungen: Höhere Mathematik I-III

12. Lernziele:
 • Die Studierenden können mit den Grundlagen der Funktionalanalyse und der Differentialgeometrie umgehen und erkennen deren Anwendungsmöglichkeiten in Modellen der Ingenieur- und Naturwissenschaften.
 • Die Studierenden können mathematische Beweise verstehen und auch selber korrekt durchführen.

13. Inhalt:
 • Grundlagen der Funktionalanalyse
 • Grundlagen der Differentialgeometrie
 • Strategien und Techniken für mathematische Beweise

14. Literatur:
 Burg, Haf, Wille, Meister: Partielle Differentialgleichungen und funktionalanalytische Grundlagen, Teil I Funktionalanalyse
 do Carmo: Differentialgeometrie von Kurven und Flächen
 Weitere Literatur wird in der Vorlesung bekannt gegeben.

15. Lehrveranstaltungen und -formen:
 • 423701 Vorlesung Höhere Mathematik IV für Kybernetiker
 • 423702 Übung Höhere Mathematik IV für Kybernetiker

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 28 h (V), 28 h (Ü)
 Selbststudium: 124 h
 Gesamt: 180 h

17. Prüfungsnummer/n und -name:
 • 42371 Höhere Mathematik IV für Kybernetiker (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0
 • V Vorleistung (USL-V), schriftliche Prüfung

18. Grundlage für ... :

19. Medienform:
Modul: 35000 Linear Matrix Inequalities in Control

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>080520803</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Modulsdauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>9.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>6.0</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Carsten Scherer

10. Zuordnung zum Curriculum in diesem Studiengang:

- B.Sc. Technische Kybernetik, PO 2011 ➔ Vorgezogene Master-Module
 - Double M.D. Technische Kybernetik, PO 2011 ➔ Chalmers -->Outgoing -->Mathematische Methoden der Kybernetik
 - Double M.D. Technische Kybernetik, PO 2014 ➔ Outgoing -->Wahlpflichtmodule -->Mathematische Methoden der Kybernetik
- M.Sc. Technische Kybernetik, PO 2011 ➔ Vertiefungsmodule -->Mathematische Methoden der Kybernetik

11. Empfohlene Voraussetzungen: Linear Control Theory, Robust Control

12. Lernziele:
The student is able to reproduce the theory and apply convex optimization in controller analysis and synthesis.

More specifically, the student must be able to:
1. summarize essential ingredients from convex optimization
2. discuss dissipation theory for dynamical system and its implication for performance specifications
4. sketch derivation of generic convexifying transformation for state- and output-feedback controller synthesis
5. master derivation of synthesis inequalities for single- and multi-objective controller design
6. construct LMI regions and understand synthesis with constraints on pole-locations
7. explain quadratic stability and its inherent conservatism
8. apply robust stability tests with parameter-dependent Lyapunov functions
9. describe multiplier relaxation for robust LMI problems and sketch theory of integral quadratic constraints
10. understand the difficulties of robust control design and
11. discuss design of gain-scheduling controllers by linear-parameter-varying controller synthesis

13. Inhalt:

- Brief introduction to optimization theory (convexity, linear matrix inequalities)
- Dissipation theory and nominal performance analysis for various criteria
- From analysis in terms of linear matrix inequalities to controller synthesis: a general procedure
- Design of multi-objective controllers (Youla Parametrization)
- Robustness tests for time-varying parametric uncertainties
• The multiplier approach to robustness analysis and integral quadratic constraints
• Design of robust controllers: state-feedback, estimator design and output-feedback control
• Linear-parametrically-varying systems and the design of linear parametrically-varying controllers

14. Literatur:

• Folien und Skript

15. Lehrveranstaltungen und -formen:

• 350001 Vorlesung Linear Matrix Inequalities in Control
• 350002 Übung Linear Matrix Inequalities in Control

16. Abschätzung Arbeitsaufwand:

Präsentzeit: 63 Stunden
Selbststudium: 207 Stunden
Summe: 270 Stunden

17. Prüfungsnummer/n und -name:

• 35001 Linear Matrix Inequalities in Control (PL), mündliche Prüfung, 30 Min., Gewichtung: 1.0
• V Vorleistung (USL-V), schriftlich, eventuell mündlich

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:

Modul: 24840 Mathematische Modellierung mit gewöhnlichen Differentialgleichungen

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>080310515</th>
<th>5. Moduldaurer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Carsten Scherer</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Christian Rohde
• Guido Schneider
• Bernard Haasdonk
• Carsten Scherer
• Kunibert Gregor Siebert |
→ Vorgezogene Master-Module
DoubleM.D. Technische Kybernetik, PO 2011, 4. Semester
→ Chalmers -->Outgoing -->Mathematische Methoden der Kybernetik
→ DoubleM.D. Technische Kybernetik, PO 2014, 4. Semester
→ Outgoing -->Wahlpflichtmodule -->Mathematische Methoden der Kybernetik
→ M.Sc. Technische Kybernetik, PO 2011, 4. Semester
→ Vertiefungsmodule -->Mathematische Methoden der Kybernetik |
| 11. Empfohlene Voraussetzungen: | Orientierungsprüfung, Analysis 3, Technische Mechanik I |
| 12. Lernziele: | Fundierte Kenntnisse über die Modellierung und Simulation technisch-wissenschaftlicher Prozesse mit gewöhnlichen Differentialgleichungen
Grundkenntnisse der Aspekte der Analysis und Numerik gewöhnlicher Differentialgleichungen |
| 13. Inhalt: | Chemische Reaktionssysteme, molekulardynamische Modelle und Mehrkörpermodellen als Beispiele für Modelle in Form gewöhnlicher Differentialgleichungen
Diskussion der Modelle als dynamische Systeme:
Gleichgewichtslösungen, Orbitlösungen, Stabilität, Bifurkation, Attraktoren, Chaos
• H. Amann.Gewöhnliche Differentialgleichungen. deGruyter, 1995 |
| 15. Lehrveranstaltungen und -formen: | • 248401 Vorlesung Mathematische Modellierung mit gewöhnlichen Differentialgleichungen
• 248402 Übung Mathematische Modellierung mit gewöhnlichen Differentialgleichungen |
| 16. Abschätzung Arbeitsaufwand: | **Insgesamt 180 h,**
Präsenzstunden: 42 h
Vor-/Nachbereitungszeit 118 h
Prüfungsvorbereitung: 20 h |
|---------------------------------|---------------------------------|
| 17. Prüfungsnummer/n und -name: | 24841 Mathematische Modellierung mit gewöhnlichen
Differentialgleichungen (PL), schriftlich oder mündlich,
Gewichtung: 1.0 |
| 18. Grundlage für ... : | |
| 19. Medienform: | |
| 20. Angeboten von: | |
Modul: 24860 Mathematische Modellierung mit partiellen Differentialgleichungen

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>080310516</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Carsten Scherer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>• Christian Rohde</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Carsten Scherer</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Double M.D. Technische Kybernetik, PO 2011, 5. Semester ➔ Chalmers --> Outgoing --> Mathematische Methoden der Kybernetik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Analysis III, Mechanik III, Mathematische Modellierung mit gewöhnlichen Differentialgleichungen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>Fundierte Kenntnisse der mathematischen Modellierung und Simulation technisch-wissenschaftlicher Prozesse mit partiellen Differentialgleichungen Grundkenntnisse über Aspekte der Analysis und Numerik partieller Differentialgleichungen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 248601 Vorlesung Mathematische Modellierung mit partiellen Differentialgleichungen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• 248602 Übung Mathematische Modellierung mit partiellen Differentialgleichungen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Präsenzstunden: 42 h</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vor-/Nachbereitungszeit: 118 h</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Stand: 09. April 2015
<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>24861 Mathematische Modellierung mit partiellen Differentialgleichungen (PL), mündliche Prüfung, Gewichtung: 1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ...:</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Institut für Angewandte Analysis und numerische Simulation</td>
</tr>
</tbody>
</table>
Modul: 41120 Mathematisches Seminar für Studenten der technischen Kybernetik

2. Modulkürzel: 080520804
5. Moduldauer: 1 Semester
3. Leistungspunkte: 3.0 LP
6. Turnus: unregelmäßig
4. SWS: 2.0
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Carsten Scherer
9. Dozenten: Dozenten der Mathematik
10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technische Kybernetik, PO 2011 ➔ Vorgezogene Master-Module
 DoubleM.D. Technische Kybernetik, PO 2011 ➔ Chalmers -->Outgoing -->Mathematische Methoden der Kybernetik
 DoubleM.D. Technische Kybernetik, PO 2014 ➔ Outgoing -->Wahlpflichtmodule -->Mathematische Methoden der Kybernetik
 M.Sc. Technische Kybernetik, PO 2011 ➔ Vertiefungsmodule -->Mathematische Methoden der Kybernetik
13. Inhalt: Aktuelle Forschungsthemen zur Angewandten Mathematik
15. Lehrveranstaltungen und -formen: 411201 Mathematisches Seminar für Studenten der technischen Kybernetik
16. Abschätzung Arbeitsaufwand: Insgesamt 90 Stunden, die sich wie folgt ergeben
 Präsenzzeit: 21 h
 Selbststudium: 69 h
17. Prüfungsnummer/n und -name: 41121 Mathematisches Seminar für Studenten der technischen Kybernetik (BSL), Sonstiges, 90 Min., Gewichtung: 1.0
18. Grundlage für ... :
19. Medienform:
20. Angeboten von:

Stand: 09. April 2015
Modul: 14880 Modellierung mit Differentialgleichungen

2. Modulkürzel: 080200008
5. Modulduauer: 1 Semester
3. Leistungspunkte: 6.0 LP
6. Turnus: unregelmäßig
4. SWS: 4.0
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Guido Schneider
9. Dozenten: • Anna-Margarete Sändig
• Christian Rohde
• Guido Schneider

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technische Kybernetik, PO 2011
➞ Vorgezogene Master-Module
DoubleM.D. Technische Kybernetik, PO 2011, 1. Semester
➞ Chalmers -->Outgoing -->Mathematische Methoden der Kybernetik
➞ DoubleM.D. Technische Kybernetik, PO 2014, 1. Semester
➞ Outgoing -->Wahlpflichtmodule -->Mathematische Methoden der Kybernetik
➞ M.Sc. Technische Kybernetik, PO 2011, 1. Semester
➞ Vertiefungsmodule -->Mathematische Methoden der Kybernetik

11. Empfohlene Voraussetzungen:
Zulassungsvoraussetzung: Orientierungsprüfung
Inhaltliche Voraussetzung: Analysis 3

12. Lernziele:
• Kenntnis elementarer Modellierungsmethoden mit Differentialgleichungen.
• Beurteilung von mathematischen Modellen zur Abbildung der Realität.
• Erweiterung der Wissensbasis in den Bereichen Analysis und Numerik.

13. Inhalt:

14. Literatur:
Wird in der Vorlesung bekannt gegeben.

15. Lehrveranstaltungen und -formen:
• 148801 Vorlesung Modellierung mit Differentialgleichungen
• 148802 Übung Modellierung mit Differentialgleichungen

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42h
Selbststudium/Nacharbeitszeit: 118h
Prüfungsvorbereitung: 20h
Gesamt: 180h

17. Prüfungsnummer/n und -name: 14881 Modellierung mit Differentialgleichungen (PL), schriftlich, eventuell mündlich, Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
Modul: 11820 Numerische Mathematik 1

2. Modulkürzel: 080300002 5. Moduldaurer: 1 Semester
4. SWS: 6.0 7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Christian Rohde
9. Dozenten: Dozenten der Mathematik
10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>Curriculum</th>
<th>Kürzel</th>
<th>Ergänzungsmodule</th>
<th>Grundlagen der Natur- und Ingenieurwissenschaften</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.Sc. Technische Kybernetik, PO 2008</td>
<td></td>
<td>→</td>
<td></td>
</tr>
<tr>
<td>B.Sc. Technische Kybernetik, PO 2011</td>
<td></td>
<td>→</td>
<td></td>
</tr>
<tr>
<td>B.Sc. Technische Kybernetik, PO 2011</td>
<td></td>
<td>→</td>
<td></td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2011</td>
<td>→</td>
<td>Chalmers</td>
<td>Outgoing -->Mathematische Methoden der Kybernetik</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2014</td>
<td>→</td>
<td>Outgoing</td>
<td>Wahlpflichtmodule -->Mathematische Methoden der Kybernetik</td>
</tr>
<tr>
<td>M.Sc. Technische Kybernetik, PO 2011</td>
<td></td>
<td>→</td>
<td>Vertiefungsmodul -->Mathematische Methoden der Kybernetik</td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen: Zulassungsvoraussetzung: Analysis 1, Analysis 2

Inhaltliche Voraussetzung: LAAG 1, LAAG2, Computermathematik

12. Lernziele:

- Analyse, Implementierung und Anwendung numerischer Algorithmen.
- Potenzial und Grenzen numerischer Simulationstechniken.
- Korrektes Formulieren und selbstständiges Lösen mathematischer Probleme.
- Abstraktion und mathematische Argumentation.

13. Inhalt:

Numerische Behandlung der Grundprobleme aus der Analysis:

- Approximation: Polynominterpolation, Splineapproximation, diskrete Fouriertransformation.
- Integration: Quadraturverfahren (Newton-Cotes, Gauß-Quadratur, adaptive Verfahren).
- Nichtlineare Gleichungen: Fixpunkt- und Newtonverfahren.
- Optimierung: Optimierung unter Nebenbedingungen, Ausgleichsprobleme, Abstiegsverfahren.

15. Lehrveranstaltungen und -formen:

- 118201 Vorlesung Numerische Mathematik I
- 118202 Übungen zur Vorlesung Numerische Mathematik I

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 63h
Selbststudium/Nacharbeitszeit: 187h
| 17. Prüfungsnummer/n und -name: | • 11821 Numerische Mathematik 1 (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0
| | • V Vorleistung (USL-V), schriftlich, eventuell mündlich
| | • V Vorleistung (USL-V), schriftlich, eventuell mündlich |

18. Grundlage für ... :	
19. Medienform:	
20. Angeboten von:	
Modul: 11850 Numerische Mathematik 2

2. Modulkürzel: 080300003
5. Modulduer: 1 Semester
3. Leistungspunkte: 9.0 LP
6. Turnus: unregelmäßig
4. SWS: 6.0
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Christian Rohde
9. Dozenten: Dozenten der Mathematik
10. Zuordnung zum Curriculum in diesem Studiengang:

- B.Sc. Technische Kybernetik, PO 2008, 4. Semester
 ➔ Ergänzungsmodul --> Grundlagen der Natur- und Ingenieurwissenschaften
 ➔ B.Sc. Technische Kybernetik, PO 2011, 4. Semester
 ➔ Ergänzungsmodul --> Grundlagen der Natur- und Ingenieurwissenschaften
 ➔ B.Sc. Technische Kybernetik, PO 2011, 4. Semester
 ➔ Vorgezogene Master-Module
 ➔ DoubleM.D. Technische Kybernetik, PO 2011, 4. Semester
 ➔ Chalmers --> Outgoing --> Mathematische Methoden der Kybernetik
 ➔ DoubleM.D. Technische Kybernetik, PO 2014, 4. Semester
 ➔ Outgoing --> Wahlpflichtmodule --> Mathematische Methoden der Kybernetik
 ➔ M.Sc. Technische Kybernetik, PO 2011, 4. Semester
 ➔ Vertiefungsmodul --> Mathematische Methoden der Kybernetik

11. Empfohlene Voraussetzungen: Zulassungsvoraussetzung: Orientierungsprüfung

Inhaltliche Voraussetzung: Analysis 3, Numerische Mathematik 1
12. Lernziele:
- Kenntnis numerischer Algorithmen zur Lösung von Differentialgleichungsproblemen, deren Analyse und praktische Umsetzung auf dem Computer, Möglichkeiten und Grenzen numerischer Simulationstechniken.
- Befähigung zur Spezialisierung in weiterführenden Kursen der Numerik.
13. Inhalt:
Gewöhnliche Anfangswertprobleme (Einschrittverfahren, Mehrschrittverfahren, Konsistenz und Stabilität, adaptive Verfahren, Langzeitverhalten diskreter Evolution),
Gewöhnliche Randwertprobleme (Klassische Lösungstheorie und Finite-Differenzen Verfahren, effiziente Lösung, evtl. schwache Lösungstheorie und Finite Elemente).
14. Literatur:
Wird in der Vorlesung bekannt gegeben.
15. Lehrveranstaltungen und -formen:
- 118501 Vorlesung Numerische Mathematik II
- 118502 Übungen zur Vorlesung Numerische Mathematik II
16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 63h
Selbststudium/Nacharbeitszeit: 187h
17. Prüfungsnummer/n und -name:

• 11851 Numerische Mathematik 2 (PL), mündliche Prüfung, 30 Min., Gewichtung: 1.0, Übungsschein
• V Vorleistung (USL-V), schriftlich, eventuell mündlich

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 33190 Numerische Methoden der Optimierung und Optimalen Steuerung

<table>
<thead>
<tr>
<th>Modulkürzel:</th>
<th>074730001</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>Modul: 33190</td>
<td></td>
</tr>
<tr>
<td>Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>Modulverantwortlicher:</td>
<td>Eckhard Arnold</td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Eckhard Arnold</td>
</tr>
</tbody>
</table>
| Zuordnung zum Curriculum in diesem Studiengang: | B.Sc. Technische Kybernetik, PO 2011
- Vorgezogene Master-Module
- DoubleM.D. Technische Kybernetik, PO 2011
- Chalmers -->Incoming -->Wahlfach Technische Kybernetik
- DoubleM.D. Technische Kybernetik, PO 2011
- Chalmers -->Outgoing -->Mathematische Methoden der Kybernetik
- DoubleM.D. Technische Kybernetik, PO 2011
- Chalmers -->Outgoing -->Wahlfach Technische Kybernetik
- DoubleM.D. Technische Kybernetik, PO 2014
- Chalmers -->Incoming -->Wahlfach Technische Kybernetik
- DoubleM.D. Technische Kybernetik, PO 2014
- Incoming -->Spezialisierungsfach -->Systemdynamik/Automatisierungstechnik
- DoubleM.D. Technische Kybernetik, PO 2014
- Outgoing -->Spezialisierungsfach -->Systemdynamik/Automatisierungstechnik
- DoubleM.D. Technische Kybernetik, PO 2014
- Outgoing -->Wahlpflichtmodule -->Mathematische Methoden der Kybernetik
- DoubleM.D. Technische Kybernetik, PO 2014
- Wahlpflichtmodule -->Spezialisierungsfach -->Systemdynamik/Automatisierungstechnik
- M.Sc. Technische Kybernetik, PO 2011
- Spezialisierungsmodule -->Spezialisierungsfach -->Systemdynamik/Automatisierungstechnik
- M.Sc. Technische Kybernetik, PO 2011
- Spezialisierungsmodule -->Wahlfach Technische Kybernetik
- M.Sc. Technische Kybernetik, PO 2011
- Vertiefungsmodule -->Mathematische Methoden der Kybernetik |
| Empfohlene Voraussetzungen: | Einführung in die Regelungstechnik; Systemdynamik; Grundkenntnisse Matlab/Simulink (z.B. Simulationstechnik) |
12. Lernziele:

Die Studierenden sind in der Lage, Problemstellungen der Analyse und der Steuerung dynamischer Systeme als Optimierungsproblem zu formulieren und die Optimierungsaufgabe zu klassifizieren. Geeignete numerische Verfahren können ausgewählt und eingesetzt werden. Der praktische Umgang mit entsprechenden Softwarewerkzeugen wird anhand von Übungsaufgaben vermittelt.

13. Inhalt:

14. Literatur:

- Vorlesungsumdrucke

15. Lehrveranstaltungen und -formen:

- 331901 Vorlesung Numerische Methoden der Optimierung und Optimalen Steuerung
- 331902 Übung Numerische Methoden der Optimierung und Optimalen Steuerung

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 42 Stunden
Selbststudium: 138 Stunden
Summe: 180 Stunden

17. Prüfungsnummer/n und -name:

33191 Numerische Methoden der Optimierung und Optimalen Steuerung (PL), schriftlich, eventuell mündlich, Gewichtung: 1.0

18. Grundlage für ...:

19. Medienform:

20. Angeboten von:

Institut für Systemdynamik
Modul: 14740 Partielle Differentialgleichungen (Modellierung, Analysis, Simulation)

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>080300006</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Moduldaurer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>9.0 LP</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>unregelmäßig</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>6.0</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Christian Rohde</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Barbara Wohlmuth
| | • Christian Rohde
| | • Barbara Kaltenbacher |
| | ➔ Vorgezogene Master-Module
| | DoubleM.D. Technische Kybernetik, PO 2011, 5. Semester
| | ➔ Chalmers -->Outgoing -->Mathematische Methoden der Kybernetik
| | DoubleM.D. Technische Kybernetik, PO 2014, 5. Semester
| | ➔ Outgoing -->Wahlpflichtmodule -->Mathematische Methoden der Kybernetik
| | M.Sc. Technische Kybernetik, PO 2011, 5. Semester
| | ➔ Vertiefungsmodul -->Mathematische Methoden der Kybernetik
| 11. Empfohlene Voraussetzungen: | Zulassungsvoraussetzung: Orientierungsprüfung
| | Inhaltliche Voraussetzung: Höhere Analysis, Numerische Mathematik 2 |
| 12. Lernziele: | • Grundlagen zur Behandlung von partiellen Differentialgleichungen.
| | • Erwerb von vertieften Fähigkeiten in einem modernen Teilgebiet der Analysis bzw. Numerik, die als Grundlage des Verständnisses aktueller Forschungssthemen dienen. |
| 13. Inhalt: | Modellierung:
| | • Herleitung elementarer Typen aus Anwendungen.
| | Analysis:
| | • Klassifizierung linearer partieller Differentialgleichungen, elementare Lösungstechniken (Fundamentallösungen, Wellen,...), klassische Existenztheorie in Hőlderräumen, schwache Existenztheorie in Sobolevräumen, Asymptotik und qualitatives Verhalten.
| | Numerik:
| 15. Lehrveranstaltungen und -formen: | • 147401 Vorlesung Partielle Differentialgleichungen
| | • 147402 Übungen zur Vorlesung Partielle Differentialgleichungen |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 63h
<p>| | Selbststudium/Nacharbeitszeit: 187h |</p>
<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>14741</th>
<th>Partielle Differentialgleichungen (Modellierung, Analysis, Simulation) (PL), mündliche Prüfung, 30 Min., Gewichtung: 1.0, Prüfungsvorleistung: Übungsschein</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
120 Advanced Control

Zugeordnete Module:
18620 Optimal Control
18630 Robust Control
18640 Nonlinear Control
Modul: 18640 Nonlinear Control

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>074810140</th>
<th>5. Modulduauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Frank Allgöwer</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Frank Allgöwer
• Rainer Blind |

10. Zuordnung zum Curriculum in diesem Studiengang:

- B.Sc. Technische Kybernetik, PO 2011
 - Vorgezogene Master-Module
 - DoubleM.D. Technische Kybernetik, PO 2011
 - Chalmers -->Incoming -->Advanced Control
 - DoubleM.D. Technische Kybernetik, PO 2011
 - Chalmers -->Outgoing -->Advanced Control
 - DoubleM.D. Technische Kybernetik, PO 2011
 - Incoming -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
 - DoubleM.D. Technische Kybernetik, PO 2011
 - Outgoing -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
 - DoubleM.D. Technische Kybernetik, PO 2014
 - Chalmers -->Incoming -->Advanced Control
 - DoubleM.D. Technische Kybernetik, PO 2014
 - Incoming -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
 - DoubleM.D. Technische Kybernetik, PO 2014
 - Outgoing -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
 - DoubleM.D. Technische Kybernetik, PO 2014
 - Wahlpflichtmodule -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
 - M.Sc. Technische Kybernetik, PO 2011
 - Spezialisierungsmodule -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
 - M.Sc. Technische Kybernetik, PO 2011
 - Vertiefungsmodule -->Advanced Control

11. Empfohlene Voraussetzungen:

- Vorlesung: Konzepte der Regelungstechnik

12. Lernziele:

- The student knows the mathematical foundations of nonlinear control
• has an overview of the properties and characteristics of nonlinear control systems,
• is trained in the analysis of nonlinear systems with respect to system-theoretical properties,
• knows modern nonlinear control design principles,
• is able to apply modern control design methods to practical problems,
• has deepened knowledge, enabling him to write a scientific thesis in the area of nonlinear control and systems-theory.

13. Inhalt: Course "Nonlinear Control":
Mathematical foundations of nonlinear systems, properties of nonlinear systems, non-autonomous systems, Lyapunov stability, ISS, Input/Output stability, Control Lyapunov Functions, Backstepping, Dissipativity, Passivity, and Passivity based control design

14. Literatur:

15. Lehrveranstaltungen und -formen:
186401 Vorlesung Nonlinear Control

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42h
Selbststudiumszeit / Nacharbeitszeit: 138h
Gesamt: 180h

17. Prüfungsnummer/n und -name:
18641 Nonlinear Control (PL), schriftlich, eventuell mündlich, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 18620 Optimal Control

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>074810120</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher:
Univ.-Prof. Christian Ebenbauer

9. Dozenten:
Christian Ebenbauer

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>B.Sc. Technische Kybernetik, PO 2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>→ Vorgezogene Master-Module</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2011</td>
</tr>
<tr>
<td>→ Chalmers -->Incoming -->Wahlfach Technische Kybernetik</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2011</td>
</tr>
<tr>
<td>→ Chalmers -->Outgoing -->Wahlfach Technische Kybernetik</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2011</td>
</tr>
<tr>
<td>→ Incoming -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2011</td>
</tr>
<tr>
<td>→ Outgoing -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2014</td>
</tr>
<tr>
<td>→ Chalmers -->Incoming -->Advanced Control</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2014</td>
</tr>
<tr>
<td>→ Chalmers -->Incoming -->Wahlfach Technische Kybernetik</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2014</td>
</tr>
<tr>
<td>→ Incoming -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2014</td>
</tr>
<tr>
<td>→ Outgoing -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2014</td>
</tr>
<tr>
<td>→ Wahlpflichtmodule -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik</td>
</tr>
<tr>
<td>M.Sc. Technische Kybernetik, PO 2011</td>
</tr>
<tr>
<td>→ Spezialisierungsmodule -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik</td>
</tr>
<tr>
<td>M.Sc. Technische Kybernetik, PO 2011</td>
</tr>
<tr>
<td>→ Spezialisierungsmodule -->Wahlfach Technische Kybernetik</td>
</tr>
<tr>
<td>M.Sc. Technische Kybernetik, PO 2011</td>
</tr>
<tr>
<td>→ Vertiefungsmodul -->Advanced Control</td>
</tr>
</tbody>
</table>
11. Empfohlene Voraussetzungen: B.Sc.-Abschluss in Technischer Kybernetik, Maschinenbau, Automatisierungstechnik, Verfahrenstechnik oder einem vergleichbaren Fach sowie Grundkenntnisse der Regelungstechnik (vergleichbar Modul Regelungstechnik)

12. Lernziele: The students learn how to analyze and solve optimal control problems. The course focuses on key ideas and concepts of the underlying theory. The students learn about standard methods for computing and implementing optimal control strategies.

13. Inhalt: The main part of the lecture focuses on methods to solve nonlinear optimal control problems including the following topics:

- Finite-dimensional Optimization, Nonlinear Programming
- Dynamic Programming, Hamilton-Jacobi-Bellman Theory
- Calculus of Variations, Pontryagin Maximum Principle
- Model Predictive Control
- Numerical Algorithms
- Application Examples

The exercises contain student exercises and mini projects in which the students apply their knowledge to solve specific optimal control problem in a predefined time period.

14. Literatur:
D. Liberzon: Calculus of Variations and Optimal Control Theory, Princeton University Press,

A. Brassan and B. Piccoli: Introduction to Mathematical Control Theory, AMS,

I.M. Gelfand and S.V. Fomin: Calculus of Variations, Dover,

D. Bertsekas: Dynamic Programming and Optimal Control, Athena Scientific,

H. Sagan: Introduction to the Calculus of Variations, Dover,

15. Lehrveranstaltungen und -formen: 186201 Vorlesung Optimal Control

16. Abschätzung Arbeitsaufwand: Präsenzzeit: 42 h
Selbststudiumszeit / Nacharbeitszeit: 138 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name: 18621 Optimal Control (PL), schriftlich oder mündlich, Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 18630 Robust Control

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>080520806</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>unregelmäßig</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Carsten Scherer</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Carsten Scherer</td>
</tr>
</tbody>
</table>
→ Vorgezogene Master-Module

DoubleM.D. Technische Kybernetik, PO 2011
→ Chalmers -->Incoming -->Advanced Control
→

DoubleM.D. Technische Kybernetik, PO 2011
→ Chalmers -->Incoming -->Wahlfach Technische Kybernetik
→

DoubleM.D. Technische Kybernetik, PO 2011
→ Chalmers -->Outgoing -->Advanced Control
→

DoubleM.D. Technische Kybernetik, PO 2011
→ Chalmers -->Outgoing -->Wahlfach Technische Kybernetik
→

DoubleM.D. Technische Kybernetik, PO 2011
→ Incoming -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
→

DoubleM.D. Technische Kybernetik, PO 2011
→ Outgoing -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
→

DoubleM.D. Technische Kybernetik, PO 2014
→ Chalmers -->Incoming -->Advanced Control
→

DoubleM.D. Technische Kybernetik, PO 2014
→ Chalmers -->Incoming -->Wahlfach Technische Kybernetik
→

DoubleM.D. Technische Kybernetik, PO 2014
→ Incoming -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
→

DoubleM.D. Technische Kybernetik, PO 2014
→ Outgoing -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
→

DoubleM.D. Technische Kybernetik, PO 2014
→ Wahlpflichtmodule -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
→

M.Sc. Technische Kybernetik, PO 2011
→ Spezialisierungsmodule -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
→

M.Sc. Technische Kybernetik, PO 2011
→
11. Empfohlene Voraussetzungen: Vorlesung Konzepte der Regelungstechnik oder Vorlesung Lineare Kontrolltheorie

12. Lernziele:
The students are able to mathematically describe uncertainties in dynamical systems and are able to analyze stability and performance of uncertain systems. The students are familiar with different modern robust controller design methods for uncertain systems and can apply their knowledge on a specified project.

13. Inhalt:

- *Selected mathematical background for robust control*
- *Introduction to uncertainty descriptions (unstructured uncertainties, structured uncertainties, parametric uncertainties, ...)*
- *The generalized plant framework*
- *Robust stability and performance analysis of uncertain dynamical systems*
- *Structured singular value theory*
- *Theory of optimal H-infinity controller design*
- *Application of modern controller design methods (H-infinity control and μ-synthesis) to concrete examples*

14. Literatur:

- C.W. Scherer, *Theory of Robust Control, Lecture Notes.*

15. Lehrveranstaltungen und -formen: 186301 Vorlesung mit Übung und Miniprojekt Robust Control

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42h
Selbststudiumszeit / Nacharbeitszeit: 138h
Gesamt: 180h

17. Prüfungsnummer/n und -name: 18631 Robust Control (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:

→ Spezialisierungsmodule -->Wahlfach Technische Kybernetik
→ M.Sc. Technische Kybernetik, PO 2011
→ Vertiefungsmodul -->Advanced Control
140 Modellierung II

Zugeordnete Module:

- 15910 Modellierung verfahrenstechnischer Prozesse
- 16720 Dynamik biologischer Systeme
- 16750 Business Dynamics
- 30010 Modellierung und Simulation in der Mechatronik
- 58270 Dynamik mechanischer Systeme
- 58280 Nichtlineare Dynamik mechanischer Systeme
- 59950 Mechanik nichtlinearer Kontinua
- 59990 Nichtglatte Dynamik
Modul: 16750 Business Dynamics

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>075200001</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Moduldoauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Sprache:</td>
<td>Nach Ankuendigung</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Meike Tilebein</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Meike Tilebein</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- B.Sc. Technische Kybernetik, PO 2008, 5. Semester
 - Kernmodule -->Modellierung I

- B.Sc. Technische Kybernetik, PO 2011, 5. Semester
 - Kernmodule -->Modellierung I

- B.Sc. Technische Kybernetik, PO 2011, 5. Semester
 - Vorgezogene Master-Module

- DoubleM.D. Technische Kybernetik, PO 2011, 1. Semester
 - Chalmers -->Outgoing -->Modellierung II

- DoubleM.D. Technische Kybernetik, PO 2011, 1. Semester
 - Incoming -->Spezialisierungsfach -->Wirtschaftskybernetik

- DoubleM.D. Technische Kybernetik, PO 2011, 1. Semester
 - Outgoing -->Spezialisierungsfach -->Wirtschaftskybernetik

- DoubleM.D. Technische Kybernetik, PO 2014, 1. Semester
 - Incoming -->Spezialisierungsfach -->Wirtschaftskybernetik

- DoubleM.D. Technische Kybernetik, PO 2014, 1. Semester
 - Outgoing -->Spezialisierungsfach -->Wirtschaftskybernetik

- DoubleM.D. Technische Kybernetik, PO 2014, 1. Semester
 - Outgoing -->Wahlpflichtmodule -->Modellierung II

- DoubleM.D. Technische Kybernetik, PO 2014, 1. Semester
 - Wahlpflichtmodule -->Spezialisierungsfach -->Wirtschaftskybernetik

- M.Sc. Technische Kybernetik, PO 2011, 1. Semester
 - Spezialisierungsmodul -->Spezialisierungsfach -->Wirtschaftskybernetik

- M.Sc. Technische Kybernetik, PO 2011, 1. Semester
 - Vertiefungsmodul -->Modellierung II

11. Empfohlene Voraussetzungen:

- Pflichtmodule Mathematik, Pflichtmodul Systemdynamik

12. Lernziele:

- Die Studierenden
 - sind in der Lage, komplexe Problemstellungen in sozio-technischen Systemen in Kausaldiagrammen zu modellieren
 - können Kausaldiagramme analysieren und interpretieren
 - kennen grundlegende Arten von Systemverhalten und die zugehörigen Systemstrukturen
• können System-Dynamics-Simulationsmodelle erstellen
• können System-Dynamics-Simulationsmodelle zur Entscheidungsunterstützung in komplexen Problemstellungen anwenden

13. Inhalt:
• Charakteristika von betriebswirtschaftlichen Systemen
• Einführung in die Modellierung mit System Dynamics
• Kausaldiagramme und Systemarchetypen
• Nichtlineares Verhalten, Pfadabhängigkeit, begrenzte Rationalität, Netzwerkeffekte, Innovationsdiffusion und Wertschöpfungsketten
• Planspiele "The Beer Distribution Game" und "Fishbanks"
• Simulation mit Hilfe von Vensim

14. Literatur:
• Vorlesungsunterlagen verfügbar über die Lernplattform ILIAS

15. Lehrveranstaltungen und -formen:
• 167501 Vorlesung Business Dynamics
• 167502 Übung Business Dynamics

16. Abschätzung Arbeitsaufwand:
Arbeitsbelastung von 7 Stunden pro Woche während der Vorlesungszeit (Präsenzzeit und Vor-/Nachbereitungzeit) (insgesamt 14 Wochen), zusätzlich 82 Stunden für die Prüfungsvorbereitung, Summe 180 Stunden

17. Prüfungsnummer/n und -name:
16751 Business Dynamics (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
Institut für Diversity Studies in den Ingenieurwissenschaften
Modul: 16720 Dynamik biologischer Systeme

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>74810230</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modul dauern:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Nicole Radde</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Nicole Radde</td>
</tr>
</tbody>
</table>
→ Kernmodule --> Modellierung I
→ B.Sc. Technische Kybernetik, PO 2011, 5. Semester
→ Kernmodule --> Modellierung I
→ B.Sc. Technische Kybernetik, PO 2011, 5. Semester
→ Vorgezogene Master-Module
→ DoubleM.D. Technische Kybernetik, PO 2011, 5. Semester
→ Chalmers --> Outgoing --> Modellierung II
→ DoubleM.D. Technische Kybernetik, PO 2014, 5. Semester
→ Outgoing --> Wahlpflichtmodule --> Modellierung II
→ M.Sc. Technische Kybernetik, PO 2011, 5. Semester
→ Vertiefungsmodule --> Modellierung II |
| 11. Empfohlene Voraussetzungen: | Grundbegriffe der Theorie von dynamischen Systemen, insbesondere von Differenzialgleichungen |
- Untersuchung von Ruhelagen (hyperbolische und nicht-hyperbolische Fixpunkte und Reduktion auf Zentrumsmannigfaltigkeiten)
- Einführung in die Verzweigungstheorie anhand von biologischen Beispielsystemen
- Nichtlineare dynamische Phänomene
- Analyse von Systemen mit 2 Variablen
- biochemische Oszillatoren |
| 14. Literatur: | Es wird ein Manuskript auf dem Ilias Server bereit gestellt; weiterführende Literatur wird in der Vorlesung bekannt gegeben. |
| 15. Lehrveranstaltungen und -formen: | 167201 Vorlesung und Übung Dynamik biologischer Systeme |
| 16. Abschätzung Arbeitsaufwand: | **Vorlesung und Übung** |
| | Präsenzzeit: 56 Stunden |
| | Selbststudium: 124 Stunden |
| | **Summe: 180 Stunden** |
| 17. Prüfungsnummer/n und -name: | 16721 Dynamik biologischer Systeme (PL), mündliche Prüfung, 40 Min., Gewichtung: 1.0 |
| 18. Grundlage für ... : | |
| 19. Medienform: | |
| 20. Angeboten von: | Institut für Systemtheorie und Regelungstechnik |
Modul: 58270 Dynamik mechanischer Systeme

2. Modulkürzel: 074010730
5. Moduldauer: 1 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Remco Ingmar Leine

9. Dozenten: Remco Ingmar Leine

10. Zuordnung zum Curriculum in diesem Studiengang:

 B.Sc. Technische Kybernetik, PO 2008
 ➔ Ergänzungsmodule -->Grundlagen der Natur- und Ingenieurwissenschaften
 ➔

 B.Sc. Technische Kybernetik, PO 2008
 ➔ Kernmodule -->Modellierung I
 ➔

 B.Sc. Technische Kybernetik, PO 2011
 ➔ Ergänzungsmodule -->Grundlagen der Natur- und Ingenieurwissenschaften
 ➔

 B.Sc. Technische Kybernetik, PO 2011
 ➔ Kernmodule -->Modellierung I
 ➔

 B.Sc. Technische Kybernetik, PO 2011
 ➔ Vorgezogene Master-Module

 DoubleM.D. Technische Kybernetik, PO 2011
 ➔ Chalmers -->Outgoing -->Modellierung II
 ➔

 DoubleM.D. Technische Kybernetik, PO 2014
 ➔ Outgoing -->Wahlpflichtmodule -->Modellierung II
 ➔

 M.Sc. Technische Kybernetik, PO 2011
 ➔ Spezialisierungsmodul -->Spezialisierungsfach -->Nichtlineare Mechanik
 ➔

 M.Sc. Technische Kybernetik, PO 2011
 ➔ Vertiefungsmodul -->Modellierung II
 ➔

11. Empfohlene Voraussetzungen: TM II+III

13. Inhalt:

 Variationsrechnung:
 Brachistochronenproblem; Eulersche Gleichungen der Variationsrechnung für eine und mehrere Variablen, für erste und höhere Ableitungen, für skalar- und vektorwertige Funktionen; natürliche Randbedingungen, freie Ränder und Transversalität; Nebenbedingungen; Hamiltonsches Prinzip der stationären Wirkung

 Lagrangesche Dynamik:
Virtuelle Arbeit; Ideale zweiseitige geometrische Bindung; Prinzip von d'Alembert Lagrange; Lagrangesche Gleichungen 2. Art; Gleichgewichtspunkte, stationäre Lösungen; Linearisierung

Näherungsverfahren kontinuierlicher Systeme:
Analytische Lösung des Euler-Bernoulli-Balkens; Finite-Differenzen-Verfahren; Verfahren der gewichteten Residuen; Ritz-Galerkin-Verfahren und Finite Elemente; Ritz-Verfahren

14. Literatur:
- K. Meyberg und P. Vachenauer, Höhere Mathematik 2, Springer 2005
- H. Bremer, Dynamik und Regelung mechanischer Systeme, Teubner, 1988

15. Lehrveranstaltungen und -formen:
- 582701 Vorlesung Dynamik mechanischer Systeme
- 582702 Übung Dynamik mechanischer Systeme

16. Abschätzung Arbeitsaufwand:
Präsenz: (2 x 1,5 Stunden pro Woche) x 14 Wochen = 42 Stunden
Nacharbeit: (4 Stunden pro Woche) x 14 Wochen = 56 Stunden
Prüfungsvorbereitung: 82 Stunden
Gesamt: **180 Stunden**

17. Prüfungsnummer/n und -name:
58271 Dynamik mechanischer Systeme (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:
Laptop, Beamer, Hellraumprojektor

20. Angeboten von:
Modul: 59950 Mechanik nichtlinearer Kontinua

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>074010910</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Remco Ingmar Leine</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Simon Raphael Eugster</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>TM II+III</td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>Verständnis für das Modellieren nichtlinearer Kontinua.</td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>Tensoranalysis: Multilinear forms and tensors Index notation Tensor product Contraction operations Differentiation rules Integration theorem Nonlinear Continua: Nonlinear deformation Deformation gradient Strain measures Principle of virtual work Stress tensors Balance laws Material laws</td>
</tr>
<tr>
<td>14. Literatur:</td>
<td></td>
</tr>
</tbody>
</table>
15. Lehrveranstaltungen und -formen:
 • 599501 Vorlesung Mechanik nichtlinearer Kontinua
 • 599502 Übung Mechanik nichtlinearer Kontinua

16. Abschätzung Arbeitsaufwand:
 Präsenz: 56 Stunden
 Selbststudium: 124 Stunden
 Gesamt: 180 Stunden

17. Prüfungsnummer/n und -name:
 59951 Mechanik nichtlinearer Kontinua (PL), mündliche Prüfung, 30 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
Modul: 30010 Modellierung und Simulation in der Mechatronik

2. Modulkürzel:	072810006
5. Moduldauer:	1 Semester
3. Leistungspunkte:	6.0 LP
4. SWS:	4.0
7. Sprache:	Deutsch

8. Modulverantwortlicher: Univ.-Prof. Peter Eberhard

9. Dozenten: • Jörg Christoph Fehr • Peter Eberhard

10. Zuordnung zum Curriculum in diesem Studiengang:

- **B.Sc. Technische Kybernetik, PO 2011**
 - → Ergänzungsmodule --→Wahlbereich Anwendungs- fach --→ Mechatronische Probleme
 - → Vorgezogene Master-Module
- **DoubleM.D. Technische Kybernetik, PO 2011**
 - → Incoming --→Spezialisierungsfach --→Technische Dynamik
 - → DoubleM.D. Technische Kybernetik, PO 2014
 - → Incoming --→Spezialisierungsfach --→Technische Dynamik
 - → DoubleM.D. Technische Kybernetik, PO 2014
 - → Outgoing --→Spezialisierungsfach --→Technische Dynamik
 - → DoubleM.D. Technische Kybernetik, PO 2014
 - → Outgoing --→Spezialisierungsfach --→Technische Dynamik
 - → DoubleM.D. Technische Kybernetik, PO 2014
 - → Outgoing --→Wahlpflichtmodule --→Modellierung II
 - → DoubleM.D. Technische Kybernetik, PO 2014
 - → Wahlpflichtmodule --→Spezialisierungsfach --→Technische Dynamik
 - → M.Sc. Technische Kybernetik, PO 2011
 - → Spezialisierungs- module --→Spezialisierungsfach --→Technische Dynamik
 - → M.Sc. Technische Kybernetik, PO 2011
 - → Vertiefungs- module --→Modellierung II

11. Empfohlene Voraussetzungen: Grundlagen in Technischer Mechanik

12. Lernziele: Kenntnis und Verständnis mechatronischer Grundlagen; selbständige, sichere, kritische und kreative Anwendung und Kombination verschiedenster mechatronischer Methoden und Prinzipien

13. Inhalt: • Einführung und Übersicht
 • Grundgleichungen mechanischer Systeme
 • Sensorik, Signalverarbeitung, Aktorik
• Regelungskonzepte
• Numerische Integration
• Signalanalyse
• Ausgewählte Schwingungssysteme, Freie Schwingungen, Erzwungene Schwingungen
• Experimentelle Modalanalyse
• Anwendungen

14. Literatur:

• Vorlesungsmitschrieb
• Vorlesungsunterlagen des ITM

15. Lehrveranstaltungen und -formen:

• 300101 Vorlesung Modellierung und Simulation in der Mechatronik
• 300102 Übung Modellierung und Simulation in der Mechatronik

16. Abschätzung Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Präsenzzeit:</th>
<th>Selbstdstudium:</th>
<th>Summe:</th>
</tr>
</thead>
<tbody>
<tr>
<td>42 Stunden</td>
<td>138 Stunden</td>
<td>180 Stunden</td>
</tr>
</tbody>
</table>

17. Prüfungsnummer/n und -name:

30011 Modellierung und Simulation in der Mechatronik (PL), schriftlich, eventuell mündlich, 90 Min., Gewichtung: 1.0, Modellierung und Simulation in der Mechatronik, 1.0, schriftlich 90 min oder 30 min mündlich, Bekanntgabe in der Vorlesung

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 15910 Modellierung verfahrenstechnischer Prozesse

2. Modulkürzel: 041110010
5. Moduldauer: 1 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Ulrich Nieken

9. Dozenten: Ulrich Nieken

DoubleM.D. Technische Kybernetik, PO 2014, 1. Semester → Outgoing -->Wahlpflichtmodule -->Modellierung II →
M.Sc. Technische Kybernetik, PO 2011, 1. Semester → Vertiefungsmodulle -->Modellierung II →

11. Empfohlene Voraussetzungen: • Vorlesung: Höhere Mathematik I-III
• Übungen: keine

• Stephan, Mayinger. Thermodynamik Band 2, 12.te Auflage, Springer, Berlin

15. Lehrveranstaltungen und -formen: • 159101 Vorlesung Modellierung verfahrenstechnischer Prozesse
• 159102 Übung Modellierung verfahrenstechnischer Prozesse

16. Abschätzung Arbeitsaufwand: Präsenzzeit: 56 h
Selbststudium / Nacharbeitszeit: 124 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name: 15911 Modellierung verfahrenstechnischer Prozesse (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0

18. Grundlage für ...:

19. Medienform: Vorlesung, Übungen: Tafelanschrieb, Beamer

Stand: 09. April 2015
20. Angeboten von: Institut für Chemische Verfahrenstechnik
Modul: 59990 Nichtglatte Dynamik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>074010820</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modulduer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Remco Ingmar Leine</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Remco Ingmar Leine</td>
</tr>
</tbody>
</table>
→ Chalmers -->Outgoing -->Modellierung II
→ DoubleM.D. Technische Kybernetik, PO 2014
→ Outgoing -->Wahlpflichtmodule -->Modellierung II
→ M.Sc. Technische Kybernetik, PO 2011
→ Spezialisierungsmodul -->Spezialisierungsfach -->Nichtlineare Mechanik
→ M.Sc. Technische Kybernetik, PO 2011
→ Vertiefungsmodule -->Modellierung II |
| 11. Empfohlene Voraussetzungen: | TM II+III |
| 13. Inhalt: | Convex analysis:
Normal cone
Subdifferential
Maximal monotonicity
Proximal point functions
Set-valued Force Laws:
Scalar force elements
Potential theory
Contact law in normal direction
Coulomb friction (planar & spatial)
Impact laws in multibody dynamics
Nonsmooth Dynamical Systems:
DAEs
Differential inclusions
Event driven integration method
Measure differential inclusions |
Literature

Lehrveranstaltungen und -formen

- 599901 Vorlesung Nichtglatte Dynamik
- 599902 Übung Nichtglatte Dynamik

Abschätzung Arbeitsaufwand

<table>
<thead>
<tr>
<th>Präsenz</th>
<th>Selbststudium</th>
<th>Gesamt</th>
</tr>
</thead>
<tbody>
<tr>
<td>56 Stunden</td>
<td>124 Stunden</td>
<td>180 Stunden</td>
</tr>
</tbody>
</table>

Prüfungsnummer/n und -name

59991 Nichtglatte Dynamik (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0

Angeboten von:
Modul: 58280 Nichtlineare Dynamik mechanischer Systeme

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>074010800</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modulduer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Remco Ingmar Leine</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Remco Ingmar Leine</td>
</tr>
<tr>
<td></td>
<td>→ Vorgezogene Master-Module</td>
</tr>
</tbody>
</table>
| | DoubleM.D. Technische Kybernetik, PO 2011
| | → Chalmers -->Outgoing -->Modellierung II |
| | DoubleM.D. Technische Kybernetik, PO 2014
| | → Outgoing -->Wahlpflichtmodule -->Modellierung II |
| | M.Sc. Technische Kybernetik, PO 2011
| | → Spezialisierungsmodul -->Spezialisierungsfach -->Nichtlineare Mechanik |
| | M.Sc. Technische Kybernetik, PO 2011
| | → Vertiefungsmodul -->Modellierung II |
| 11. Empfohlene Voraussetzungen: | TM II+III |
| 12. Lernziele: | Verständnis des Verhaltens nichtlinearer mechanischer Systeme |
| | Gleichgewichtspunkte: |
| | Zentrumsmannigfaltigkeit, Reduktion auf der Zentrumsmannigfaltigkeit, Normalformen der Verzweigungen |
| | Fixpunkte: |
| | Linearization, Stabilität, Verzweigungen bei Eigenwert +1, Flip-Bifurkation, Naimark-Sacker-Bifurkation, Logistische Abbildung, Hufeisen-Abbildung |
| | Periodische Lösungen: |
| | Fundamentalmatrix, Poincaré-Abbildung, Verzweigungen |
| | H. Khalil, Nonlinear Systems, Prentice Hall, 2002 |
| 15. Lehrveranstaltungen und -formen: | 582801 Vorlesung Nichtlineare Dynamik mechanischer Systeme |
| | 582802 Übung Nichtlineare Dynamik mechanischer Systeme |
| 16. Abschätzung Arbeitsaufwand: | Präsenz: (2 x 1,5 Stunden pro Woche) x 14 Wochen = 42 Stunden |
Nacharbeit: (4 Stunden pro Woche) x 14 Wochen = 56 Stunden

Prüfungsvorbereitung: 82 Stunden

Gesamt: 180 Stunden

17. Prüfungsnummer/n und -name: 58281 Nichtlineare Dynamik mechanischer Systeme (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
150 Systemanalyse II

Zugeordnete Module:
- 30100 Nichtlineare Dynamik
- 33100 Modellierung und Identifikation dynamischer Systeme
- 33830 Dynamik ereignisdiskreter Systeme
Modul: 33830 Dynamik ereignisdiskreter Systeme

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>074711006</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Cristina Tarin Sauer</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Cristina Tarin Sauer</td>
</tr>
</tbody>
</table>
→ Kernmodule -->Systemanalyse I
→ B.Sc. Technische Kybernetik, PO 2011
→ Kernmodule -->Systemanalyse I
→ B.Sc. Technische Kybernetik, PO 2011
→ Vorgezogene Master-Module
→ DoubleM.D. Technische Kybernetik, PO 2011
→ Chalmers -->Outgoing -->Systemanalyse II
→ DoubleM.D. Technische Kybernetik, PO 2011
→ Incoming -->Spezialisierungsfach -->Systemdynamik/Automatisierungstechnik
→ DoubleM.D. Technische Kybernetik, PO 2011
→ Outgoing -->Spezialisierungsfach -->Systemdynamik/Automatisierungstechnik
→ DoubleM.D. Technische Kybernetik, PO 2014
→ Chalmers -->Outgoing -->Pflichtmodule
→ DoubleM.D. Technische Kybernetik, PO 2014
→ Incoming -->Spezialisierungsfach -->Systemdynamik/Automatisierungstechnik
→ DoubleM.D. Technische Kybernetik, PO 2014
→ Outgoing -->Spezialisierungsfach -->Systemdynamik/Automatisierungstechnik
→ DoubleM.D. Technische Kybernetik, PO 2014
→ Wahlpflichtmodule -->Spezialisierungsfach -->Systemdynamik/Automatisierungstechnik
→ M.Sc. Technische Kybernetik, PO 2011
→ Spezialisierungsmodul -->Spezialisierungsfach -->Systemdynamik/Automatisierungstechnik
→ M.Sc. Technische Kybernetik, PO 2011
→ Vertiefungsmodul -->Systemanalyse II |
| 11. Empfohlene Voraussetzungen: | • Informatik I
• Systemdynamik |
12. Lernziele:
Die Studierenden kennen verschiedene Modellierungsansätze für die mathematische Modellierung dynamischer ereignisdiskreter Systeme, sie beherrschen insbesondere die Modellierung mit Automaten, mit Formalen Sprachen und mit Petri-Netzen, außerdem die optimale Regelung von endlichen Automaten.

13. Inhalt:
In dieser Vorlesung wird zunächst die ereignisdiskrete Denkweise eingeführt und die grundlegenden Eigenschaften diskreter Signale und Systeme diskutiert. Die Automatentheorie (deterministischer und nicht deterministischer Automaten) schafft die Basis für das Verständnis ereignisdiskreter Systeme. Schließlich führen kopplungsorientierte Darstellungsformen auf Petrinetze und Automatennetze.

Überblick:
- Einführung in die Modellierung and Analyse ereignisdiskreter Systeme
- Deterministische Automaten
- Nichteinendeterministische Automaten
- Petrinetze
- Automatennetze

14. Literatur:
- Vorlesungsumdruck
- Übungsblätter
- Weitere Literatur wird in der Vorlesung bekannt gegeben.

15. Lehrveranstaltungen und -formen:
338301 Vorlesung und Übung Dynamik ereignisdiskreter Systeme

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 Stunden
Selbststudium und Nacharbeit: 138 Stunden
Gesamt: 180 Stunden

17. Prüfungsnummer/n und -name:
33831 Dynamik ereignisdiskreter Systeme (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0

18. Grundlage für ...:

19. Medienform:
- Vorlesungsfolien
- Tafelanschrieb
- Übungen
- Rechnerübungen und Rechnerdemos

20. Angeboten von:
Institut für Systemdynamik
Modul: 33100 Modellierung und Identifikation dynamischer Systeme

2. Modulkürzel: 074710010 5. Moduldauer: 1 Semester
4. SWS: 4.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Oliver Sawodny
9. Dozenten: Oliver Sawodny

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technische Kybernetik, PO 2011
 ➔ Vorgezogene Master-Module
 ➔ DoubleM.D. Technische Kybernetik, PO 2011
 ➔ Chalmers -->Outgoing -->Systemanalyse II
 ➔
 ➔ DoubleM.D. Technische Kybernetik, PO 2011
 ➔ Incoming -->Spezialisierungsfach -->Systemdynamik/
 Automatisierungstechnik
 ➔
 ➔ DoubleM.D. Technische Kybernetik, PO 2011
 ➔ Outgoing -->Spezialisierungsfach -->Systemdynamik/
 Automatisierungstechnik
 ➔
 ➔ DoubleM.D. Technische Kybernetik, PO 2014
 ➔ Incoming -->Spezialisierungsfach -->Systemdynamik/
 Automatisierungstechnik
 ➔
 ➔ DoubleM.D. Technische Kybernetik, PO 2014
 ➔ Outgoing -->Spezialisierungsfach -->Systemdynamik/
 Automatisierungstechnik
 ➔
 ➔ DoubleM.D. Technische Kybernetik, PO 2014
 ➔ Wahlpflichtmodule -->Spezialisierungsfach -->Systemdynamik/
 Automatisierungstechnik
 ➔
 ➔ M.Sc. Technische Kybernetik, PO 2011
 ➔ Spezialisierungsmodul -->Spezialisierungsfach --
 >Systemdynamik/Automatisierungstechnik
 ➔
 ➔ M.Sc. Technische Kybernetik, PO 2011
 ➔ Vertiefungsmodul -->Systemanalyse II

11. Empfohlene Voraussetzungen: Einführung in die Regelungstechnik
12. Lernziele: Die Studierenden beherrschen Methoden, mit denen ein unbekanntes
dynamisches System über einen Modellansatz und dessen
Parametrierung charakterisiert werden kann.

13. Inhalt: In der Vorlesung „Modellierung und Identifikation dynamischer Systeme“
werden im ersten Abschnitt der Vorlesung die grundlegenden Verfahren
der theoretischen Modellbildung eingeführt und wichtige Methoden zur
Vereinfachung dynamischer Modelle erläutert. Nach dieser Einführung
wird der überwiegende Teil der Vorlesung sich mit der Identifikation
dynamischer Systeme beschäftigen. Hier werden zunächst Verfahren
zur Identifikation nichtparametrischer Modelle sowie parametrischer
Modelle besprochen. Hierbei werden die klassischen Verfahren
kennwertlinerar Probleme sowie die numerische Optimierung zur Parameterschätzung verallgemeinerter nichtlinearer Probleme diskutiert. Parallel zur Vorlesung werden mittels der Identification Toolbox von Matlab die Inhalte der Vorlesung verdeutlicht.

<table>
<thead>
<tr>
<th>14. Literatur:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Vorlesungsumdrucke</td>
</tr>
<tr>
<td>• Nelles: Nonlinear system identification: from classical approaches to neural networks and fuzzy models, Springer-Verlag, 2001</td>
</tr>
<tr>
<td>• Pentelon/Schoukens: System identification: a frequency domain approach, IEEE, 2001</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15. Lehrveranstaltungen und -formen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 331001 Vorlesung Modellierung und Identifikation dynamischer Systeme</td>
</tr>
<tr>
<td>• 331002 Übung mit integriertem Rechnerpraktikum Modellierung und Identifikation dynamischer Systeme</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16. Abschätzung Arbeitsaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzzeit: 42 Stunden</td>
</tr>
<tr>
<td>Selbststudium: 138 Stunden</td>
</tr>
<tr>
<td>Summe: 180 Stunden</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
</tr>
</thead>
<tbody>
<tr>
<td>33101 Modellierung und Identifikation dynamischer Systeme (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>18. Grundlage für ... :</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>19. Medienform:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>20. Angeboten von:</th>
</tr>
</thead>
</table>

Institut für Systemdynamik
Modul: 30100 Nichtlineare Dynamik

2. Modulkürzel: 074810240 5. Moduldauber: 1 Semester
4. SWS: 6.0 7. Sprache: Englisch

8. Modulverantwortlicher: Univ.-Prof. Christian Ebenbauer
9. Dozenten: Christian Ebenbauer

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technische Kybernetik, PO 2008, 6. Semester
→ Kernmodule --> Systemanalyse I
→

B.Sc. Technische Kybernetik, PO 2011, 6. Semester
→ Kernmodule --> Systemanalyse I
→

B.Sc. Technische Kybernetik, PO 2011, 6. Semester
→ Vorgezogene Master-Module

DoubleM.D. Technische Kybernetik, PO 2011, 6. Semester
→ Chalmers --> Incoming --> Wahlfach Technische Kybernetik
→

DoubleM.D. Technische Kybernetik, PO 2011, 6. Semester
→ Chalmers --> Outgoing --> Systemanalyse II
→

DoubleM.D. Technische Kybernetik, PO 2011, 6. Semester
→ Chalmers --> Outgoing --> Wahlfach Technische Kybernetik
→

DoubleM.D. Technische Kybernetik, PO 2014, 6. Semester
→ Chalmers --> Incoming --> Wahlfach Technische Kybernetik
→

M.Sc. Technische Kybernetik, PO 2011, 6. Semester
→ Spezialisierungsmodule --> Wahlfach Technische Kybernetik
→

M.Sc. Technische Kybernetik, PO 2011, 6. Semester
→ Vertiefungsmodule --> Systemanalyse II
→

11. Empfohlene Voraussetzungen: Systemdynamische Grundlagen der Regelungstechnik

12. Lernziele: This course provides the necessary background for students to understand and solve engineering problems involving nonlinear dynamical systems. The main focus of this course is on differential geometric methods. Applications will include problems from nonlinear control, optimization and mechanics.

13. Inhalt:
• Basic facts about nonlinear differential equations, vector fields, flows
• Stability and bifurcation
• Lie brackets, nonlinear controllability, integrability
• Manifolds, calculus on manifolds, optimization on manifolds
• Extremum seeking
• Advanced stability analysis and center manifolds
• Oscillations and averaging

14. Literatur:
• Arnold: Ordinary Differential Equations
• Moser, Zehnder: Notes on Dynamical Systems
• Bloch: Nonholonomic Mechanics and Control
• Isidori: Nonlinear Control Systems I
<table>
<thead>
<tr>
<th>15. Lehrveranstaltungen und -formen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 301001 Vorlesung Nichtlineare Dynamik</td>
</tr>
<tr>
<td>• 301002 Übung Nichtlineare Dynamik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16. Abschätzung Arbeitsaufwand:</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
</tr>
</thead>
<tbody>
<tr>
<td>30101 Nichtlineare Dynamik (PL), schriftlich, eventuell mündlich, Gewichtung: 1.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>18. Grundlage für ... :</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>19. Medienform:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>20. Angeboten von:</th>
</tr>
</thead>
</table>
Modul: 29900 Dynamik verteiltparametrischer Systeme

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>074710011</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modul:</td>
<td>29900</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Oliver Sawodny</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Oliver Sawodny</td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 299001 Vorlesung Dynamik verteiltparametrischer Systeme • 299002 Übung Dynamik verteiltparametrischer Systeme</td>
</tr>
</tbody>
</table>
16. Abschätzung Arbeitsaufwand: Präsenzzeit: 42 Stunden
Selbststudium: 138 Stunden
Summe: 180 Stunden

17. Prüfungsnummer/n und -name: 29901 Dynamik verteiltparametrischer Systeme (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:

20. Angeboten von: Institut für Systemdynamik
Modul: 18610 Konzepte der Regelungstechnik

2. Modulkürzel: 074810110
5. Modulduer: 1 Semester
3. Leistungspunkte: 6.0 LP
4. SWS: 6.0
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Frank Allgöwer
9. Dozenten: Frank Allgöwer
10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technische Kybernetik, PO 2011
 → Vorgezogene Master-Module
 DoubleM.D. Technische Kybernetik, PO 2011, . Semester
 → Chalmers -->Outgoing
 →
 DoubleM.D. Technische Kybernetik, PO 2014, . Semester
 → Chalmers -->Outgoing -->Pflichtmodule
 →
 M.Sc. Technische Kybernetik, PO 2011
 → Vertiefungsmodule
11. Empfohlene Voraussetzungen: Grundkenntnisse der mathematischen Beschreibung dynamischer Systeme, der Analyse dynamischer Systeme und der Regelungstechnik, wie sie z.B. in den folgenden B.Sc. Modulen an der Universität Stuttgart vermittelt werden:
 • 074710001 Systemdynamik
 • 074810040 Einführung in die Regelungstechnik
12. Lernziele:
 Der Studierende
 • kennt die relevanten Methoden zur Analyse linearer und nichtlinearer dynamischer Systeme und ist in der Lage diese an realen Systemen anzuwenden
 • kann Regler für lineare und nichtlineare Dynamische Systeme entwerfen und validieren
 • kennt und versteht die Grundbegriffe wichtiger Konzepte der Regelungstechnik, insbesondere der nichtlinearen, optimalen und robusten Regelungstechnik
13. Inhalt:
 • Erweiterte Regelkreisstrukturen
 • Struktureigenschaften linearer und nichtlinearer Systeme
 • Lyapunov - Stabilitätstheorie
 • Reglerentwurf für lineare und nichtlineare Systeme
14. Literatur:
15. Lehrveranstaltungen und -formen:
 • 186101 Vorlesung und Übung Konzepte der Regelungstechnik
 • 186102 Gruppenübung Konzepte der Regelungstechnik
16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 63h
 Selbststudiumszeit / Nacharbeitszeit: 117h
 Gesamt: 180h
17. Prüfungsnummer/n und -name: 18611 Konzepte der Regelungstechnik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 29930 Projektarbeit Regelungstechnik

2. Modulkürzel: 074810220
3. Leistungspunkte: 3.0 LP
4. SWS: 2.0
5. Moduldauer: 1 Semester
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Frank Allgöwer
9. Dozenten: Frank Allgöwer
10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technische Kybernetik, PO 2011
 → Vorgezogene Master-Module
 DoubleM.D. Technische Kybernetik, PO 2011
 → Chalmers -->Outgoing
 →
 DoubleM.D. Technische Kybernetik, PO 2014
 → Chalmers -->Outgoing -->Pflichtmodule
 →
 M.Sc. Technische Kybernetik, PO 2011
 → Vertiefungsmodule
11. Empfohlene Voraussetzungen: Besuch der Vorlesung „Konzepte der Regelungstechnik“
13. Inhalt: Beispiel:
15. Lehrveranstaltungen und -formen:
 • 299301 Praktikum Konzepte der Regelungstechnik
 • 299302 Projekt Konzepte der Regelungstechnik
16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 30 Stunden
 Selbststudium: 60 Stunden
 Summe: 90 Stunden
17. Prüfungsnummer/n und -name: 29931 Projektarbeit Regelungstechnik (USL), schriftlich, eventuell mündlich, Gewichtung: 1.0, USL. Art und Umfang der USL werden jeweils zu Beginn des Praktikums und des Projektwettbewerbs bekannt gegeben.
18. Grundlage für ...
19. Medienform:
20. Angeboten von:
200 Spezialisierungsmodule

Zugeordnete Module:
210 Spezialisierungsfach
220 Wahlfach Technische Kybernetik
210 Spezialisierungsfach

<table>
<thead>
<tr>
<th>Zugeordnete Module</th>
<th>Bezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>2101</td>
<td>Optische Systeme</td>
</tr>
<tr>
<td>2102</td>
<td>Technische Dynamik</td>
</tr>
<tr>
<td>2103</td>
<td>Systembiologie</td>
</tr>
<tr>
<td>2104</td>
<td>Automatisierung in der Energietechnik</td>
</tr>
<tr>
<td>2105</td>
<td>Biomedizinische Technik</td>
</tr>
<tr>
<td>2106</td>
<td>Energiesysteme und Energiewirtschaft</td>
</tr>
<tr>
<td>2107</td>
<td>Kraftfahrzeugmechatronik</td>
</tr>
<tr>
<td>2108</td>
<td>Simulation kerntechnischer Anlagen</td>
</tr>
<tr>
<td>2109</td>
<td>Steuerungstechnik</td>
</tr>
<tr>
<td>2110</td>
<td>Verfahrenstechnik</td>
</tr>
<tr>
<td>2111</td>
<td>Verkehr</td>
</tr>
<tr>
<td>2112</td>
<td>Wirtschaftskybernetik</td>
</tr>
<tr>
<td>2113</td>
<td>Systemdynamik/Automatisierungstechnik</td>
</tr>
<tr>
<td>2114</td>
<td>Autonome Systeme und Regelungstechnik</td>
</tr>
<tr>
<td>2115</td>
<td>Flugführung und Systemtechnik</td>
</tr>
<tr>
<td>2116</td>
<td>Nichtlineare Mechanik</td>
</tr>
</tbody>
</table>
2101 Optische Systeme

Zugeordnete Module:

<table>
<thead>
<tr>
<th>Nummer</th>
<th>Modul</th>
</tr>
</thead>
<tbody>
<tr>
<td>14060</td>
<td>Grundlagen der Technischen Optik</td>
</tr>
<tr>
<td>2117</td>
<td>Spez.Fach. anerkannt 6LP</td>
</tr>
<tr>
<td>2118</td>
<td>Spez.Fach. anerkannt 6LP</td>
</tr>
<tr>
<td>2119</td>
<td>Spez.Fach. anerkannt 6LP</td>
</tr>
<tr>
<td>29950</td>
<td>Optische Informationsverarbeitung</td>
</tr>
<tr>
<td>29970</td>
<td>Optik dünner und nanostrukturierter Schichten</td>
</tr>
<tr>
<td>29980</td>
<td>Einführung in das Optik-Design</td>
</tr>
<tr>
<td>29990</td>
<td>Grundlagen der Laserstrahlquellen</td>
</tr>
<tr>
<td>31870</td>
<td>Bildverarbeitungssysteme in der industriellen Anwendung</td>
</tr>
</tbody>
</table>
2117 Spez.Fach. anerkannt 6LP
2118 Spez.Fach. anerkannt 6LP
2119 Spez.Fach. anerkannt 6LP
Modul: 31870 Bildverarbeitungssysteme in der industriellen Anwendung

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>073100008</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>5. Modulstart:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Tobias Haist</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Tobias Haist
• Christian Kohler |
→ Vorgezogene Master-Module
DoubleM.D. Technische Kybernetik, PO 2011
→ Incoming -->Spezialisierungsfach -->Optische Systeme
→
DoubleM.D. Technische Kybernetik, PO 2011
→ Outgoing -->Spezialisierungsfach -->Optische Systeme
→
DoubleM.D. Technische Kybernetik, PO 2014
→ Incoming -->Spezialisierungsfach -->Optische Systeme
→
DoubleM.D. Technische Kybernetik, PO 2014
→ Outgoing -->Spezialisierungsfach -->Optische Systeme
→
DoubleM.D. Technische Kybernetik, PO 2014
→ Wahlpflichtmodule -->Spezialisierungsfach -->Optische Systeme
→
M.Sc. Technische Kybernetik, PO 2011
→ Spezialisierungsmodule -->Spezialisierungsfach -->Optische Systeme
→ |
| 11. Empfohlene Voraussetzungen: | Keine |
| 12. Lernziele: | Die Studierenden sollen
• typische industrielle BV-Systeme spezifizieren,
• auslegen und
• beurteilen können,
• die relevanten Grundlagen der optischen Abbildung kennen
• Parameter zur Beurteilung und Beschreibung von Abbildungs- und Beleuchtungsoptiken kennen,
• gezielt Teilkomponenten aufgabengerecht auswählen können,
• Grundlagen der linearen und nichtlinearen Filterung verstehen,
• Standardverfahren der optischen 2D und 3D Erfassung kennen und in ihren aufgabenspezifischen Vor- und Nachteilen beurteilen können |
| 13. Inhalt: | • Abbildungen, Perspektive, Telezentrie, Hyperzentrie, Auflösung, Tiefenschärfe, Beugung
• Sensoren, Kamerainterfaces, Beurteilungsparameter, Rauschen
• Lineare Systemtheorie, Fourier, Lineare Filter, RangordnungsfILTER, morphologische Filter (Grundprinzip), Punkoperationen
• Typische Bibliotheken
• 2D Erfassungsgeometrien, 3D Messprinzipien
• Spezifikation von Abbildungs- und Beleuchtungsoptiken
• MTF, OTF |

Stand: 09. April 2015
- Abbildungsqualität/Bildfehler
- Komponenten / Katalogarbeit
- Grundlagen Photometrie/Radiometrie und Beleuchtungsquellen
- Beleuchtungsgeometrien
- Farbe, BRDF
- 3D Bildverarbeitung
- Einführung in Zemax

14. Literatur:
Hornberg: Handbook of Machine Vision
Fiete: Modeling the imaging chain of digital camera

15. Lehrveranstaltungen und -formen:
318701 Vorlesung Bildverarbeitungssysteme in der industriellen Anwendung

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 21 Stunden
Selbststudium: 69 Stunden
Summe: 90 Stunden

17. Prüfungsnummer/n und -name:
31871 Bildverarbeitungssysteme in der industriellen Anwendung (BSL), mündliche Prüfung, 20 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:
Tafel, Powerpoint, Laptops

20. Angeboten von:
Technische Optik
Modul: 29980 Einführung in das Optik-Design

2. Modulkürzel: 073100007
5. Modulduer: 1 Semester

3. Leistungspunkte: 3.0 LP

4. SWS: 2.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Christoph Menke

9. Dozenten: • Christoph Menke
• Alois Herkommer

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technische Kybernetik, PO 2011
→ Vorgezogene Master-Module
DoubleM.D. Technische Kybernetik, PO 2011
→ Incoming -->Spezialisierungsfach -->Optische Systeme
DoubleM.D. Technische Kybernetik, PO 2011
→ Outgoing -->Spezialisierungsfach -->Optische Systeme
DoubleM.D. Technische Kybernetik, PO 2014
→ Incoming -->Spezialisierungsfach -->Optische Systeme
DoubleM.D. Technische Kybernetik, PO 2014
→ Outgoing -->Spezialisierungsfach -->Optische Systeme
DoubleM.D. Technische Kybernetik, PO 2014
→ Wahlpflichtmodule -->Spezialisierungsfach -->Optische Systeme
M.Sc. Technische Kybernetik, PO 2011
→ Spezialisierungsmodule -->Spezialisierungsfach -->Optische Systeme

11. Empfohlene Voraussetzungen: empfohlen: Grundlagen der Technischen Optik

12. Lernziele:
Die Studierenden
- kennen die physikalischen Grundlagen der optischen Abbildung und sind mit den
 Konventionen und Bezeichnungen der geometrischen Optik vertraut
- können die Bildgüte von optischen Systemen bewerten
- kennen die Entstehung und die Auswirkung einzelner Abbildungsfehler
- können geeignete Korrektionsmittel zu den einzelnen Abbildungsfehlern benennen und anwenden
- sind in der Lage mit Hilfe des Optik-Design Programms ZEMAX (auf bereitgestellten Rechnern) einfache Optiksysteme zu optimieren

13. Inhalt:
- Grundlagen der geometrischen Optik
- Geometrische und chromatische Aberrationen (Entstehung, Systematik, Auswirkung, Gegenmaßnahmen)
- Bewertung der Abbildungsgüte optischer Systeme
- Verschiedene Typen optischer Systeme (Fotoobjektive, Teleskope, Okulare, Mikroskope, Spiegelsysteme, Zoomsysteme)
- Systementwicklung (Ansatzfindung, Optimierung, Tolerierung, Konstruktion)

14. Literatur:
- Manuskript der Vorlesung
- Gross: Handbook of optical systems Vol. 1-4
- Kingslake: Lens Design Fundamentals
- Smith: Modern Optical Engineering
- Fischer/Tadic-Galeb: Optical System Design
- Shannon: The Art and Science of Optical Design

15. Lehrveranstaltungen und -formen: 299801 Vorlesung Einführung in das Optik-Design

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 21 Stunden
Selbststudium: 69 Stunden
Summe: 90 Stunden

17. Prüfungsnummer/n und -name: 29981 Einführung in das Optik-Design (BSL), schriftlich, eventuell mündlich, 60 Min., Gewichtung: 1.0, abhängig von der Zahl der Prüfungsanmeldungen findet eine ca. 20-minütige mündliche Prüfung oder eine 60-minütige schriftliche Prüfung statt

18. Grundlage für ...

19. Medienform:
Powerpoint-Vortrag
für Studenten bereitgestellte Notebooks mit Zemax-Optik-Design Programm

20. Angeboten von: Technische Optik
Modul: 29990 Grundlagen der Laserstrahlquellen

2. Modulkürzel: 073000002
5. Modulduauer: 1 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Thomas Graf

9. Dozenten: Thomas Graf

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technische Kybernetik, PO 2011, . Semester	Vorgezogene Master-Module
DoubleM.D. Technische Kybernetik, PO 2011, . Semester	Incoming -->Spezialisierungsfach -->Optische Systeme
DoubleM.D. Technische Kybernetik, PO 2011, . Semester	Outgoing -->Spezialisierungsfach -->Optische Systeme
DoubleM.D. Technische Kybernetik, PO 2014, . Semester	Incoming -->Spezialisierungsfach -->Optische Systeme
DoubleM.D. Technische Kybernetik, PO 2014, . Semester	Outgoing -->Spezialisierungsfach -->Optische Systeme
DoubleM.D. Technische Kybernetik, PO 2014, . Semester	Wahlpflichtmodule -->Spezialisierungsfach -->Optische Systeme
M.Sc. Technische Kybernetik, PO 2011, . Semester	Spezialisierungsmodul -->Spezialisierungsfach -->Optische Systeme

11. Empfohlene Voraussetzungen:

13. Inhalt:

• Physikalische Grundlagen der Strahlausbreitung, Strahlerzeugung und Strahlverstärkung
• Laseraktives Medium, Inversionserzeugung, Wechselwirkung der Strahlung mit dem Laseraktiven Medium (Ratengleichungen)
• Laser als Verstärker und Oszillator, Güteschaltung, Modenkopplung, Resonatoren
• technologische Aspekte, insbesondere CO2-, Nd:YAG- Yb:YAG-, Faser- und Diodenlaser

14. Literatur:

Buch:

15. Lehrveranstaltungen und -formen: 299901 Vorlesung (mit integrierten Übungen) Grundlagen der Laserstrahlquellen

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 42 Stunden
 Selbststudium: 138 Stunden
 Summe: 180 Stunden

17. Prüfungsnummer/n und -name: 29991 Grundlagen der Laserstrahlquellen (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:

20. Angeboten von: Institut für Strahlwerkzeuge
Modul: 14060 Grundlagen der Technischen Optik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>073100001</th>
<th>5. Modulduer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. Modulverantwortlicher:</th>
<th>Univ.-Prof. Wolfgang Osten</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>9. Dozenten:</th>
<th>• Wolfgang Osten</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• Christof Pruß</td>
</tr>
<tr>
<td></td>
<td>• Erich Steinbeißer</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>==> Ergänzungsmodule -->Grundlagen der Natur- und Ingenieurwissenschaften</td>
<td></td>
</tr>
<tr>
<td>==> B.Sc. Technische Kybernetik, PO 2011, 6. Semester</td>
<td></td>
</tr>
<tr>
<td>==> Ergänzungsmodule -->Grundlagen der Natur- und Ingenieurwissenschaften</td>
<td></td>
</tr>
<tr>
<td>==> B.Sc. Technische Kybernetik, PO 2011, 6. Semester</td>
<td></td>
</tr>
<tr>
<td>==> Vorgezogene Master-Module</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DoubleM.D. Technische Kybernetik, PO 2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>==> Incoming -->Spezialisierungsfach -->Optische Systeme</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2011</td>
</tr>
<tr>
<td>==> Outgoing -->Spezialisierungsfach -->Optische Systeme</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2014</td>
</tr>
<tr>
<td>==> Incoming -->Spezialisierungsfach -->Optische Systeme</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2014</td>
</tr>
<tr>
<td>==> Outgoing -->Spezialisierungsfach -->Optische Systeme</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2014</td>
</tr>
<tr>
<td>==> Wahlpflichtmodule -->Spezialisierungsfach -->Optische Systeme</td>
</tr>
<tr>
<td>M.Sc. Technische Kybernetik, PO 2011</td>
</tr>
<tr>
<td>==> Spezialisierungsmodul -->Spezialisierungsfach -->Optische Systeme</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11. Empfohlene Voraussetzungen:</th>
<th>HM 1 - HM 3, Experimentalphysik</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>12. Lernziele:</th>
<th>Die Studierenden</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>• erkennen die Möglichkeiten und Grenzen der abbildenden Optik auf Basis des mathematischen Modells der Kollination</td>
</tr>
<tr>
<td></td>
<td>• sind in der Lage, grundlegende optische Systeme zu klassifizieren und im Rahmen der Gaußschen Optik zu berechnen</td>
</tr>
<tr>
<td></td>
<td>• verstehen die Grundzüge der Herleitung der optischen Phänomene „Interferenz“ und „Beugung“ aus den Maxwell-Gleichungen</td>
</tr>
<tr>
<td></td>
<td>• können die Grenzen der optischen Auflösung definieren</td>
</tr>
<tr>
<td></td>
<td>• können grundlegende optische Systeme (wie z.B. Mikroskop, Messfernrohr und Interferometer) einsetzen und bewerten</td>
</tr>
</tbody>
</table>
13. Inhalt:

- optische Grundgesetze der Reflexion, Refraktion und Dispersion;
- Kollineare (Gaußsche) Optik;
- optische Bauelemente und Instrumente;
- Wellenoptik: Grundlagen der Beugung und Auflösung;
- Abbildungsfehler;
- Strahlung und Lichttechnik

Lust auf Praktikum?

14. Literatur:

Manuskript aus Powerpointfolien der Vorlesung; Übungsblätter;
Formelsammlung;
Sammlung von Klausuraufgaben mit ausführlichen Lösungen;

Literatur:

- Haferkorn: Optik, Wiley, 2002
- Hecht: Optik, Oldenbourg, 2014
- Kühlke: Optik, Harri Deutsch, 2011
- Naumann; Schröder; Löffler-Mang: Handbuch Bauelemente der Optik, 2014
- Schröder: Technische Optik, Vogel, 2007

15. Lehrveranstaltungen und -formen:

- 140601 Vorlesung Grundlagen der Technischen Optik
- 140602 Übung Grundlagen der Technischen Optik
- 140603 Praktikum Grundlagen der Technischen Optik

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 42h + Nacharbeitszeit: 138h = 180

17. Prüfungsnummer/n und -name:

14061 Grundlagen der Technischen Optik (PL), schriftlich, eventuell mündlich, 120 Min., Gewichtung: 1.0, bei einer geringen Anzahl an Prüfungsanmeldungen findet die Prüfung mündlich (40 min.) statt

18. Grundlage für...

19. Medienform:

Powerpoint-Vorlesung mit zahlreichen Demonstrations-Versuchen, Übung: Notebook + Beamer, OH-Projektor, Tafel, kleine „Hands-on“ Versuche gehen durch die Reihen

20. Angeboten von:

Technische Optik
Modul: 29970 Optik dünner und nanostrukturierter Schichten

2. Modulkürzel: 073100004
5. Modulduer: 1 Semester
3. Leistungspunkte: 3.0 LP
6. Turnus: jedes 2. Semester, SoSe
4. SWS: 2.0
7. Sprache: Deutsch
8. Modulverantwortlicher: Karsten Frenner
9. Dozenten: Karsten Frenner
10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technische Kybernetik, PO 2011
 → Vorgezogene Master-Module
 DoubleM.D. Technische Kybernetik, PO 2011
 → Incoming -- Spezialisierungsfach -- Optische Systeme
 → Outgoing -- Spezialisierungsfach -- Optische Systeme
 DoubleM.D. Technische Kybernetik, PO 2014
 → Incoming -- Spezialisierungsfach -- Optische Systeme
 → Outgoing -- Spezialisierungsfach -- Optische Systeme
 → Wahlpflichtmodule -- Spezialisierungsfach -- Optische Systeme
 M.Sc. Technische Kybernetik, PO 2011
 → Spezialisierungsmodul -- Spezialisierungsfach -- Optische Systeme

11. Empfohlene Voraussetzungen:
12. Lernziele:
 Die Studierenden
 - verstehen die Grundlagen der Polarisationsoptik
 - beherrschen das Rechnen im Jones-/Müller-Formalismus
 - können das Verhalten von polarisationsoptischen Bauteilen und Messverfahren erklären
 - beschreiben die Grundlagen der Wechselwirkung von Licht mit Nanostrukturen
 - können Simulationsprogramme zur Darstellung der wellenoptischen Wechselwirkung nutzen
13. Inhalt:
 - Polarisation des Lichtes
 - Interferenz und Kohärenz
 - Licht an Grenzflächen
 - Wellenoptik am Computer
 - Dünne Schichten - Herstellung und Anwendung
 - Ellipsometrie dünner Schichten
 - Strukturierte Schichten - Herstellung und Anwendung
 - Mikroskopie und Ellipsometrie strukturierter Schichten
 - Kristalloptik und elektrooptische Komponenten
14. Literatur:
 Manuskript der Vorlesung;
 Übungsblätter;

Stand: 09. April 2015
Hecht: Optik, 3.Aufl., 2014;

<table>
<thead>
<tr>
<th>15. Lehrveranstaltungen und -formen:</th>
<th>299701 Vorlesung Optik dünner und nanostrukturierter Schichten</th>
</tr>
</thead>
</table>
| | Selbststudium: 69 Stunden
| | Summe: 90 Stunden |
| 17. Prüfungsnummer/n und -name: | 29971 Optik dünner und nanostrukturierter Schichten (BSL),
| | mündliche Prüfung, 20 Min., Gewichtung: 1.0 |
| 18. Grundlage für ... : | |
| 19. Medienform: | |
| 20. Angeboten von: | Technische Optik |
Modul: 29950 Optische Informationsverarbeitung

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>073100003</th>
<th>5. Modulduer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Wolfgang Osten

9. Dozenten: • Wolfgang Osten • Karsten Frenner

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>B.Sc. Technische Kybernetik, PO 2011</th>
<th>Vorgezogene Master-Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2011</td>
<td>Incoming -->Spezialisierungsfach -->Optische Systeme</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2011</td>
<td>Outgoing -->Spezialisierungsfach -->Optische Systeme</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2014</td>
<td>Incoming -->Spezialisierungsfach -->Optische Systeme</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2014</td>
<td>Outgoing -->Spezialisierungsfach -->Optische Systeme</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2014</td>
<td>Wahlpflichtmodule -->Spezialisierungsfach -->Optische Systeme</td>
</tr>
<tr>
<td>M.Sc. Technische Kybernetik, PO 2011</td>
<td>Spezialisierungsmodul -->Spezialisierungsfach -->Optische Systeme</td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen:

12. Lernziele:

Die Studierenden
- erkennen die physikalischen Grundlagen der Propagation und Beugung von Licht mittels (skalarer) Wellenoptik
- verstehen die Herleitung der optischen Phänomene „Interferenz“ und „Beugung“ aus den Maxwell-Gleichungen
- kennen die Grundlagen der Fourieroptischen Beschreibung optischer Systeme sowie die mathematischen Grundlagen der Fouriertransformation und wichtiger, sich daraus ergebender Resultate (z.B. Sampling Theorem).
- verstehen kohärente und inkohärente Abbildungen und ihre moderne Beschreibung mittels der optischen Transferfunktion
- kennen typische Aufbauten der optischen Informationsverarbeitung (insbesondere Filterung, Korrelation, Holografie) und sind in der Lage, diese mathematisch zu beschreiben.
- kennen die Grundlagen der Kohärenz
- verstehen den Zusammenhang zwischen digitaler und analog-optischer Bildverarbeitung
- kennen die grundsätzlich eingesetzten Bauelemente für informationsverarbeitende optische Systeme.

13. Inhalt:

Fourier-Theorie der optischen Abbildung
- Fouriertransformation
- Eigenschaften linearer physikalischer Systeme
- Grundlagen der Beugungstheorie
- Kohärenz
- Fouriertransformationseigenschaften einer Linse
- Frequenzanalyse optischer Systeme

Holografie und Speckle

Spektrumanalyse und optische Filterung
- Lichtquellen, Lichtmodulatoren, Detektoren, computergenerierte Hologramme, Optische Prozessoren/Computer, Optische Mustererkennung, Optische Korrelation

Digitale Bildverarbeitung
- Grundbegriffe
- Bildverbesserung
- Bildrestauration, Bildsegmentierung, Bildanalyse
- Anwendungen

14. Literatur:
- Manuskript der Vorlesung
- Lauterborn: Kohärente Optik
- Goodman: Introduction to Fourier Optics

15. Lehrveranstaltungen und -formen:
- 299501 Vorlesung Optische Informationsverarbeitung
- 299502 Übung Optische Informationsverarbeitung

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 42 Stunden
- Selbststudium: 138 Stunden
- Summe: 180 Stunden

17. Prüfungsnummer/n und -name:
- 29951 Optische Informationsverarbeitung (PL), schriftlich, eventuell mündlich, 90 Min., Gewichtung: 1.0, bei einer geringen Anzahl an Prüfungsanmeldungen findet die Prüfung mündlich (40 min.) statt

18. Grundlage für ...:

19. Medienform:

20. Angeboten von: Technische Optik
2102 Technische Dynamik

Zugeordnete Module:

- 2117 Spez.Fach. anerkannt 6LP
- 2118 Spez.Fach. anerkannt 6LP
- 2119 Spez.Fach. anerkannt 6LP
- 30010 Modellierung und Simulation in der Mechatronik
- 30020 Biomechanik
- 30030 Fahrzeugdynamik
- 30040 Flexible Mehrkörpersysteme
- 30060 Optimization of Mechanical Systems
- 30070 Praktikum Technische Dynamik
- 31690 Experimentelle Modalanalyse
- 31700 Ausgewählte Probleme der Dynamik
- 31710 Ausgewählte Probleme der Mechanik
- 33330 Nichtlineare Schwingungen
- 33360 Fuzzy Methoden
- 41080 Nichtlineare Schwingungen und Experimentelle Modalanalyse
- 50270 Modellreduktion in der Mechanik
2117 Spez.Fach. anerkannt 6LP
2118 Spez.Fach. anerkannt 6LP
2119 Spez.Fach. anerkannt 6LP
Modul: 31700 Ausgewählte Probleme der Dynamik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072810021</th>
<th>5. Modulduer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Peter Eberhard
9. Dozenten:
• Peter Eberhard
• Michael Hanss

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technische Kybernetik, PO 2011
→ Vorgezogene Master-Module
DoubleM.D. Technische Kybernetik, PO 2011
→ Incoming -->Spezialisierungsfach --> Technische Dynamik
DoubleM.D. Technische Kybernetik, PO 2011
→ Outgoing -->Spezialisierungsfach --> Technische Dynamik
DoubleM.D. Technische Kybernetik, PO 2014
→ Incoming -->Spezialisierungsfach --> Technische Dynamik
DoubleM.D. Technische Kybernetik, PO 2014
→ Outgoing -->Spezialisierungsfach --> Technische Dynamik
DoubleM.D. Technische Kybernetik, PO 2014
→ Wahlpflichtmodule -->Spezialisierungsfach --> Technische Dynamik
M.Sc. Technische Kybernetik, PO 2011
→ Spezialisierungsmodul -->Spezialisierungsfach --> Technische Dynamik

11. Empfohlene Voraussetzungen: Grundlagen in Technischer Mechanik, Maschinendynamik, Numerik

12. Lernziele:
Kenntnis und Verständnis weitergehender Methoden zur Modellierung, Simulation und Analyse in der Technischen Dynamik; selbständige, sichere, kritische und kreative Anwendung von Lösungsmethoden auf Problemstellungen aus der Technischen Dynamik.

13. Inhalt:

14. Literatur:

15. Lehrveranstaltungen und -formen:
317001 Vorlesung Ausgewählte Probleme der Dynamik

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 Stunden
Selbststudium: 138 Stunden
Summe: 180 Stunden
<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>31701</th>
<th>Ausgewählte Probleme der Dynamik (PL), mündliche Prüfung, 30 Min., Gewichtung: 1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Modul: 31710 Ausgewählte Probleme der Mechanik

2. Modulkürzel:	072810022
3. Leistungspunkte:	3.0 LP
4. SWS:	2.0
5. Moduldauer:	1 Semester
6. Turnus:	jedes Semester
7. Sprache:	Deutsch
8. Modulverantwortlicher:	Univ.-Prof. Peter Eberhard
9. Dozenten:	• Peter Eberhard
• Michael Hanss	
10. Zuordnung zum Curriculum in diesem Studiengang:	

| B.Sc. Technische Kybernetik, PO 2011 |
| → Ergänzungsmodule -->Wahlbereich Anwendungsfach -- |
| >Mechatronische Probleme |
| → Vorgezogene Master-Module |
| DoubleM.D. Technische Kybernetik, PO 2011 |
| → Incoming -->Spezialisierungsfach -->Technische Dynamik |
| → DoubleM.D. Technische Kybernetik, PO 2011 |
| → Outgoing -->Spezialisierungsfach -->Technische Dynamik |
| → DoubleM.D. Technische Kybernetik, PO 2014 |
| → Incoming -->Spezialisierungsfach -->Technische Dynamik |
| → DoubleM.D. Technische Kybernetik, PO 2014 |
| → Outgoing -->Spezialisierungsfach -->Technische Dynamik |
| → DoubleM.D. Technische Kybernetik, PO 2014 |
| → Wahlpflichtmodule -->Spezialisierungsfach -->Technische Dynamik |
| → M.Sc. Technische Kybernetik, PO 2011 |
| → Spezialisierungsmodule -->Spezialisierungsfach -->Technische Dynamik |

| 11. Empfohlene Voraussetzungen: |
| 12. Lernziele: |

Der Studierende ist vertraut mit den Grundlagen von ausgewählten Problemen der Mechanik, ihrer mathematischen Beschreibung, ihrer analytischen bzw. näherungsweisen Lösung sowie ihrer Bedeutung für die ingenieurwissenschaftliche Praxis.

| 13. Inhalt: |

Die Vorlesung vermittelt die Grundlagen ausgewählter Probleme der Mechanik.

| 14. Literatur: |

| 15. Lehrveranstaltungen und -formen: |

| 16. Abschätzung Arbeitsaufwand: |

Präsenzzeit: 28 Stunden
Selbststudium: 62 Stunden
Summe: 90 Stunden

| 17. Prüfungsnummer/n und -name: |

31711 Ausgewählte Probleme der Mechanik (BSL), mündliche Prüfung, 30 Min., Gewichtung: 1.0

| 18. Grundlage für ... : |

Stand: 09. April 2015
Seite 117 von 666
19. Medienform:

20. Angeboten von:
Modul: 30020 Biomechanik

4. SWS: 2.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Peter Eberhard
9. Dozenten: Albrecht Eiber

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technische Kybernetik, PO 2011
 ➔ Vorgezogene Master-Module
 DoubleM.D. Technische Kybernetik, PO 2011
 ➔ Incoming -->Spezialisierungsfach -->Technische Dynamik
 ➔
 DoubleM.D. Technische Kybernetik, PO 2011
 ➔ Outgoing -->Spezialisierungsfach -->Technische Dynamik
 ➔
 DoubleM.D. Technische Kybernetik, PO 2014
 ➔ Incoming -->Spezialisierungsfach -->Technische Dynamik
 ➔
 DoubleM.D. Technische Kybernetik, PO 2014
 ➔ Outgoing -->Spezialisierungsfach -->Technische Dynamik
 ➔
 DoubleM.D. Technische Kybernetik, PO 2014
 ➔ Wahlpflichtmodule -->Spezialisierungsfach -->Technische Dynamik
 ➔
M.Sc. Technische Kybernetik, PO 2011
 ➔ Spezialisierungsmodule -->Spezialisierungsfach -->Technische Dynamik
 ➔

11. Empfohlene Voraussetzungen: Grundlagen in Technischer Mechanik

12. Lernziele:
Kenntnis und Verständnis biomechanischer Grundlagen; selbständige, sichere, kritische und kreative Anwendung mechanischer Methoden in der Biomechanik

13. Inhalt:
O Einführung und Übersicht
O Skelett
O Gelenke
O Knochen
O Weichgewebe
O Biokompatible Werkstoffe
O Muskeln
O Kreislauf
O Beispiele

14. Literatur:
O Vorlesungsmitschrieb
O Vorlesungsunterlagen des ITM

15. Lehrveranstaltungen und -formen: 300201 Vorlesung Biomechanik

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 21 Stunden
<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>30021 Biomechanik (BSL), schriftlich, eventuell mündlich, 60 Min., Gewichtung: 1.0</th>
</tr>
</thead>
</table>

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
Modul: 31690 Experimentelle Modalanalyse

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072810019</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>5. Moduldaurer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Apl. Prof. Michael Hanss</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Pascal Ziegler
• Michael Hanss |
→ Ergänzungsmodule -->Wahlbereich Anwendungsfach --> Mechatronische Probleme
→ B.Sc. Technische Kybernetik, PO 2011
→ Vorgezogene Master-Module
DoubleM.D. Technische Kybernetik, PO 2011
→ Incoming -->Spezialisierungsfach -->Technische Dynamik
→ DoubleM.D. Technische Kybernetik, PO 2011
→ Outgoing -->Spezialisierungsfach -->Technische Dynamik
→ DoubleM.D. Technische Kybernetik, PO 2014
→ Incoming -->Spezialisierungsfach -->Technische Dynamik
→ DoubleM.D. Technische Kybernetik, PO 2014
→ Outgoing -->Spezialisierungsfach -->Technische Dynamik
→ DoubleM.D. Technische Kybernetik, PO 2014
→ Wahlpflichtmodule -->Spezialisierungsfach -->Technische Dynamik
→ M.Sc. Technische Kybernetik, PO 2011
→ Spezialisierungsmodulle -->Spezialisierungsfach -->Nichtlineare Mechanik
→ M.Sc. Technische Kybernetik, PO 2011
→ Spezialisierungsmodulle -->Spezialisierungsfach -->Technische Dynamik |
| 11. Empfohlene Voraussetzungen: | Technische Mechanik II+III oder Technische Schwingungslehre |
| 13. Inhalt: | Die Vorlesung vermittelt die Inhalte in folgender Gliederung:
• Grundlagen und Anwendungen der experimentellen Modalanalyse
• Methoden zur Schwingungsanregung, Messverfahren
• Signalanalyse und -verarbeitung, Zeit- und Frequenzbereichsdarstellung
• Frequenzgang, Übertragungsfunktion und deren modalezerlegung
• Bestimmung modaler Kenngrößen, Modenerkennung und -vergleich |
Es werden zudem Anwendungen auf Problemstellungen der industriellen Praxis demonstriert. Als praktischer Teil werden fachbezogene Versuche zur experimentellen Modalanalyse angeboten.

14. Literatur:
VorlesungsmitSchrieb, Weiterführende Literatur:

15. Lehrveranstaltungen und -formen: 316901 Vorlesung Experimentelle Modalanalyse

Selbststudium: 69 Stunden
Summe: 90 Stunden

17. Prüfungsnummer/n und -name: 31691 Experimentelle Modalanalyse (BSL), schriftlich, eventuell mündlich, 60 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 30030 Fahrzeugdynamik

| 2. Modulkürzel: | 072810009 | 5. Modulduer: | 1 Semester |
| 4. SWS: | 2.0 | 7. Sprache: | Deutsch |

8. Modulverantwortlicher: Univ.-Prof. Peter Eberhard

9. Dozenten:
- Pascal Ziegler
- Peter Eberhard

10. Zuordnung zum Curriculum in diesem Studiengang:

| B.Sc. Technische Kybernetik, PO 2011 |
| Vorgezogene Master-Module |
| DoubleM.D. Technische Kybernetik, PO 2011 |
| Chalmers -->Incoming -->Wahlfach Technische Kybernetik |
| DoubleM.D. Technische Kybernetik, PO 2011 |
| Chalmers -->Outgoing -->Wahlfach Technische Kybernetik |
| DoubleM.D. Technische Kybernetik, PO 2011 |
| Incoming -->Spezialisierungsfach -->Technische Dynamik |
| DoubleM.D. Technische Kybernetik, PO 2011 |
| Outgoing -->Spezialisierungsfach -->Technische Dynamik |
| DoubleM.D. Technische Kybernetik, PO 2014 |
| Chalmers -->Incoming -->Wahlfach Technische Kybernetik |
| DoubleM.D. Technische Kybernetik, PO 2014 |
| Incoming -->Spezialisierungsfach -->Technische Dynamik |
| DoubleM.D. Technische Kybernetik, PO 2014 |
| Outgoing -->Spezialisierungsfach -->Technische Dynamik |
| DoubleM.D. Technische Kybernetik, PO 2014 |
| Wahlpflichtmodule -->Spezialisierungsfach -->Technische Dynamik |
| M.Sc. Technische Kybernetik, PO 2011 |
| Spezialisierungsmodul -->Spezialisierungsfach -->Technische Dynamik |
| M.Sc. Technische Kybernetik, PO 2011 |
| Spezialisierungsmodul -->Wahlfach Technische Kybernetik |

11. Empfohlene Voraussetzungen: Grundlagen in Technischer Mechanik

12. Lernziele:
- Kenntnis und Verständnis fahrzeugdynamischer Grundlagen;
- selbständige, sichere, kritische und kreative Anwendung mechanischer Methoden in der Fahrzeugdynamik

13. Inhalt:
- O Systembeschreibung und Modellbildung
- O Fahrzeugmodelle
- O Modelle für Trag- und Führsysteme
Fahrwegmodelle
Modelle für Fahrzeug-Fahrweg-Systeme
Beurteilungskriterien
Berechnungsmethoden
Longitudinalbewegungen
Lateralbewegungen
Vertikalbewegungen

14. Literatur:
O Vorlesungsmitschrieb
O Vorlesungsunterlagen des ITM

15. Lehrveranstaltungen und -formen:
300301 Vorlesung Fahrzeugdynamik

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 21 Stunden
Selbststudium: 69 Stunden
Summe: 90 Stunden

17. Prüfungsnummer/n und -name:
30031 Fahrzeugdynamik (BSL), mündliche Prüfung, 20 Min., Gewichtung: 1.0

18. Grundlage für ...:

19. Medienform:

20. Angeboten von:
Modul: 30040 Flexible Mehrkörpersysteme

2. Modulkürzel: 072810011
5. Modulduauer: 1 Semester
3. Leistungspunkte: 6.0 LP
6. Turnus: jedes 2. Semester, SoSe
4. SWS: 4.0
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Peter Eberhard
9. Dozenten: • Jörg Christoph Fehr
 • Peter Eberhard

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technische Kybernetik, PO 2011
 ➔ Vorgezogene Master-Module
 DoubleM.D. Technische Kybernetik, PO 2011
 ➔ Chalmers -->Incoming -->Wahlfach Technische Kybernetik
 ➔
 DoubleM.D. Technische Kybernetik, PO 2011
 ➔ Chalmers -->Outgoing -->Wahlfach Technische Kybernetik
 ➔
 DoubleM.D. Technische Kybernetik, PO 2011
 ➔ Incoming -->Spezialisierungsfach -->Technische Dynamik
 ➔
 DoubleM.D. Technische Kybernetik, PO 2011
 ➔ Outgoing -->Spezialisierungsfach -->Technische Dynamik
 ➔
 DoubleM.D. Technische Kybernetik, PO 2014
 ➔ Chalmers -->Incoming -->Wahlfach Technische Kybernetik
 ➔
 DoubleM.D. Technische Kybernetik, PO 2014
 ➔ Incoming -->Spezialisierungsfach -->Technische Dynamik
 ➔
 DoubleM.D. Technische Kybernetik, PO 2014
 ➔ Outgoing -->Spezialisierungsfach -->Technische Dynamik
 ➔
 DoubleM.D. Technische Kybernetik, PO 2014
 ➔ Wahlpflichtmodule -->Spezialisierungsfach -->Technische Dynamik
 ➔
 M.Sc. Technische Kybernetik, PO 2011
 ➔ Spezialisierungsmodul -->Spezialisierungsfach -->Technische Dynamik
 ➔
 M.Sc. Technische Kybernetik, PO 2011
 ➔ Spezialisierungsmodul -->Wahlfach Technische Kybernetik
 ➔

11. Empfohlene Voraussetzungen: Grundlagen in Technischer Mechanik
12. Lernziele:
 Kenntnis und Verständnis der Modellierung, Simulation und Analyse komplexer starrer und flexibler Mehrkörpersysteme; selbständige, sichere, kritische und kreative Anwendung Methoden der Flexiblen Mehrkörperdynamik zur Lösung dynamischer Problemstellungen.
13. Inhalt:
 O Einleitung
O Grundlagen der Mehrkörperdynamik: Grundgleichungen, holonome und nicht-holonome Mehrkörpersysteme in Minimalkoordinaten, Systeme mit kinematischen Schleifen, Differential-Algebraischer Ansatz
O Grundlagen zur Beschreibung eines elastischen Körpers: Grundlagen der Kontinuumsmechanik und linearen Finite Elemente Methode, lineare Modellreduktion
O Ansatz des mitbewegten Referenzsystems für einen elastische Körper: Kinematik, Diskretisierung, Kinetik, Wahl des Referenzsystems, Geometrische Steifigkeiten, Standard Input Data
O Beschreibung flexibler Mehrkörpersysteme: DAE Formulierung, ODE Formulierung, Programmtechnische Umsetzung, Einführung in das MKS-Programm Neweul-M²
O Ansätze zur Regelung starrer und flexibler Mehrkörpersysteme: Inverse Kinmatik und Dynamik, quasi-statische Deformationskompensation, exakte Inversion, Servo-Bindungen
O Kontaktprobleme in Mehrkörpersystemen: kontinuierliche Kontaktmodelle, Mehrskalensimulation, Diskrete-Elemente-Simulation

14. Literatur:
O Vorlesungsmitschrieb
O Vorlesungsunterlagen des ITM

15. Lehrveranstaltungen und -formen:
300401 Vorlesung Flexible Mehrkörpersysteme

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 Stunden
Selbststudium: 138 Stunden
Summe: 180 Stunden

17. Prüfungsnummer/n und -name:
30041 Flexible Mehrkörpersysteme (PL), schriftlich, eventuell mündlich, 90 Min., Gewichtung: 1.0

18. Grundlage für ... :
19. Medienform:
20. Angeboten von:
Modul: 33360 Fuzzy Methoden

2. Modulkürzel: 072810017 5. Modulduauer: 1 Semester
4. SWS: 4.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Apl. Prof. Michael Hanss
9. Dozenten: Michael Hanss

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technische Kybernetik, PO 2011
 ➞ Vorgezogene Master-Module
 DoubleM.D. Technische Kybernetik, PO 2011
 ➞ Chalmers -->Incoming -->Wahlfach Technische Kybernetik
 ➞ DoubleM.D. Technische Kybernetik, PO 2011
 ➞ Chalmers -->Outgoing -->Wahlfach Technische Kybernetik
 ➞ DoubleM.D. Technische Kybernetik, PO 2011
 ➞ Incoming --Spezialisierungsfach --Technische Dynamik
 ➞ DoubleM.D. Technische Kybernetik, PO 2011
 ➞ Outgoing --Spezialisierungsfach --Technische Dynamik
 ➞ DoubleM.D. Technische Kybernetik, PO 2014
 ➞ Chalmers -->Incoming -->Wahlfach Technische Kybernetik
 ➞ DoubleM.D. Technische Kybernetik, PO 2014
 ➞ Incoming --Spezialisierungsfach --Technische Dynamik
 ➞ DoubleM.D. Technische Kybernetik, PO 2014
 ➞ Outgoing --Spezialisierungsfach --Technische Dynamik
 ➞ DoubleM.D. Technische Kybernetik, PO 2014
 ➞ Wahlpflichtmodule --Spezialisierungsfach --Technische Dynamik
 ➞ M.Sc. Technische Kybernetik, PO 2011
 ➞ Spezialisierungsmodule --Spezialisierungsfach --Technische Dynamik
 ➞ M.Sc. Technische Kybernetik, PO 2011
 ➞ Spezialisierungsmodul -->Wahlfach Technische Kybernetik

11. Empfohlene Voraussetzungen: Regelungstechnik 1 und 2
12. Lernziele:
13. Inhalt:

14. Literatur:

15. Lehrveranstaltungen und -formen:
- 333601 Vorlesung + Übungen Fuzzy Methoden

16. Abschätzung Arbeitsaufwand:
- Präsenzzzeit: 42 Stunden
- Selbststudium: 138 Stunden
- Summe: 180 Stunden

17. Prüfungsnummer/n und -name:
- 33361 Fuzzy Methoden (PL), schriftlich, eventuell mündlich, 90 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
- Institut für Technische und Numerische Mechanik
Modul: 30010 Modellierung und Simulation in der Mechatronik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072810006</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Peter Eberhard</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Jörg Christoph Fehr
• Peter Eberhard |
→ Ergänzungsmodule -->Wahlbereich Anwendungsfach --> Mechatronische Probleme
→ B.Sc. Technische Kybernetik, PO 2011
→ Vorgezogene Master-Module
DoubleM.D. Technische Kybernetik, PO 2011
→ Incoming -->Spezialisierungsfach -->Technische Dynamik
→ DoubleM.D. Technische Kybernetik, PO 2011
→ Outgoing -->Spezialisierungsfach -->Technische Dynamik
→ DoubleM.D. Technische Kybernetik, PO 2014
→ Incoming -->Spezialisierungsfach -->Technische Dynamik
→ DoubleM.D. Technische Kybernetik, PO 2014
→ Outgoing -->Spezialisierungsfach -->Technische Dynamik
→ DoubleM.D. Technische Kybernetik, PO 2014
→ Outgoing -->Wahlpflichtmodule -->Modellierung II
→ DoubleM.D. Technische Kybernetik, PO 2014
→ Wahlpflichtmodule -->Spezialisierungsfach -->Technische Dynamik
→ M.Sc. Technische Kybernetik, PO 2011
→ Spezialisierungsmodul -->Spezialisierungsfach -->Technische Dynamik
→ M.Sc. Technische Kybernetik, PO 2011
→ Vertiefungsmodul -->Modellierung II |
| 11. Empfohlene Voraussetzungen: | Grundlagen in Technischer Mechanik |
| 12. Lernziele: | Kenntnis und Verständnis mechatronischer Grundlagen; selbständige, sichere, kritische und kreative Anwendung und Kombination verschiedenster mechatronischer Methoden und Prinzipien |
| 13. Inhalt: | • Einführung und Übersicht
• Grundgleichungen mechanischer Systeme
• Sensorik, Signalverarbeitung, Aktorik |
• Regelungskonzepte
• Numerische Integration
• Signalanalyse
• Ausgewählte Schwingungssysteme, Freie Schwingungen, Erzwungene Schwingungen
• Experimentelle Modalanalyse
• Anwendungen

14. Literatur:
• Vorlesungsmitschrieb
• Vorlesungsunterlagen des ITM

15. Lehrveranstaltungen und -formen:
• 300101 Vorlesung Modellierung und Simulation in der Mechatronik
• 300102 Übung Modellierung und Simulation in der Mechatronik

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 Stunden
Selbststudium: 138 Stunden
Summe: 180 Stunden

17. Prüfungsnummer/n und -name:
30011 Modellierung und Simulation in der Mechatronik (PL), schriftlich, eventuell mündlich, 90 Min., Gewichtung: 1.0, Modellierung und Simulation in der Mechatronik, 1.0, schriftlich 90 min oder 30 min mündlich, Bekanntgabe in der Vorlesung

18. Grundlage für ...:

19. Medienform:

20. Angeboten von:
Modul: 50270 Modellreduktion in der Mechanik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>[pord.modulcode]</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Modulduauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. Modulverantwortlicher:</th>
<th>Univ.-Prof. Peter Eberhard</th>
</tr>
</thead>
<tbody>
<tr>
<td>9. Dozenten:</td>
<td>Jörg Christoph Fehr</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- DoubleM.D. Technische Kybernetik, PO 2011
 - Incoming --> Spezialisierungsfach --> Technische Dynamik
- DoubleM.D. Technische Kybernetik, PO 2011
 - Outgoing --> Spezialisierungsfach --> Technische Dynamik
- DoubleM.D. Technische Kybernetik, PO 2014
 - Incoming --> Spezialisierungsfach --> Technische Dynamik
- DoubleM.D. Technische Kybernetik, PO 2014
 - Outgoing --> Spezialisierungsfach --> Technische Dynamik
- DoubleM.D. Technische Kybernetik, PO 2014
 - Wahlpflichtmodule --> Spezialisierungsfach --> Technische Dynamik
- M.Sc. Technische Kybernetik, PO 2011
 - Spezialisierungsmodule --> Spezialisierungsfach --> Technische Dynamik

11. Empfohlene Voraussetzungen:
basics in applied mechanics and mathematics, numerics

12. Lernziele:
The students know about the different technologies available for model reduction of mechanical systems.

They are able to select the appropriate solution technique according to the given framework.

They have the competence for the first implementation of model reduction algorithms

13. Inhalt:
The course teaches the basics of model reduction of mechanical systems with the following syllabus:

- basic concept and description forms of dynamical system
- mathematical foundations of model reduction
- modal reduction techniques
- SVD-based reduction techniques
- Krylov-based reduction techniques
- numerical analysis
- error analysis
- nonlinear model reduction techniques
14. Literatur: lecture notes
lecture materials of the ITM
additional literature:
W. Schilders; H. van*der Vorst:

15. Lehrveranstaltungen und -formen: 502701 Vorlesung Modellreduktion in der Mechanik

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 28 Stunden
Selbststudium: 62 Stunden
Summe: 90 Stunden

17. Prüfungsnummer/n und -name: 50271 Modellreduktion in der Mechanik (BSL), schriftlich, eventuell mündlich, Gewichtung: 1.0, schriftlich 40 min oder mündlich 20 min, written 40 min or oral 20 min

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 33330 Nichtlineare Schwingungen

2. Modulkürzel: 072810018
5. Modulduer: 1 Semester
3. Leistungspunkte: 3.0 LP
6. Turnus: jedes 2. Semester, SoSe
4. SWS: 2.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Apl. Prof. Michael Hanss
9. Dozenten: Michael Hanss

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technische Kybernetik, PO 2011
 → Ergänzungsmodul → Grundlagen der Natur- und Ingenieurwissenschaften

B.Sc. Technische Kybernetik, PO 2011
 → Ergänzungsmodul → Wahlbereich Anwendungsfach --> Mechatronische Probleme

B.Sc. Technische Kybernetik, PO 2011
 → Vorgezogene Master-Module

DoubleM.D. Technische Kybernetik, PO 2011
 → Chalmers → Incoming → Wahlfach Technische Kybernetik

DoubleM.D. Technische Kybernetik, PO 2011
 → Chalmers → Outgoing → Wahlfach Technische Kybernetik

DoubleM.D. Technische Kybernetik, PO 2011
 → Incoming → Spezialisierungsfach → Technische Dynamik

DoubleM.D. Technische Kybernetik, PO 2011
 → Outgoing → Spezialisierungsfach → Technische Dynamik

DoubleM.D. Technische Kybernetik, PO 2014
 → Chalmers → Incoming → Wahlfach Technische Kybernetik

DoubleM.D. Technische Kybernetik, PO 2014
 → Incoming → Spezialisierungsfach → Technische Dynamik

DoubleM.D. Technische Kybernetik, PO 2014
 → Outgoing → Spezialisierungsfach → Technische Dynamik

DoubleM.D. Technische Kybernetik, PO 2014
 → Wahlpflichtmodule → Spezialisierungsfach → Technische Dynamik

M.Sc. Technische Kybernetik, PO 2011
 → Spezialisierungsmodule → Spezialisierungsfach → Technische Dynamik

M.Sc. Technische Kybernetik, PO 2011
 → Spezialisierungsmodule → Wahlfach Technische Kybernetik

11. Empfohlene Voraussetzungen: Technische Mechanik II+III oder Technische Schwingungslehre

12. Lernziele: Der Studierende ist vertraut mit den Grundlagen von parametererregten und nichtlinearen Schwingungen, ihrer mathematischen Beschreibung,
ihrer analytischen und näherungsweisen Lösung sowie ihrer Bedeutung für die ingenieurwissenschaftliche Praxis.

13. Inhalt:

14. Literatur:

Skript "Höhere Schwingungslehre"

15. Lehrveranstaltungen und -formen:

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Veranstaltung</th>
</tr>
</thead>
<tbody>
<tr>
<td>333301</td>
<td>Vorlesung Nichtlineare Schwingungen</td>
</tr>
</tbody>
</table>

16. Abschätzung Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Komponente</th>
<th>Zeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzzeit</td>
<td>28 Stunden</td>
</tr>
<tr>
<td>Selbststudium</td>
<td>62 Stunden</td>
</tr>
<tr>
<td>Summe</td>
<td>90 Stunden</td>
</tr>
</tbody>
</table>

17. Prüfungsnummer/n und -name:

<table>
<thead>
<tr>
<th>Prüfungsnummer/n</th>
<th>Prüfungsbereich</th>
<th>Form</th>
<th>Dauer</th>
<th>Gewichtung</th>
</tr>
</thead>
<tbody>
<tr>
<td>33331</td>
<td>Nichtlineare Schwingungen (BSL), schriftlich, eventuell mündlich, 90 Min.</td>
<td></td>
<td>90 Min.</td>
<td>1.0</td>
</tr>
</tbody>
</table>

18. Grundlage für ...

19. Medienform:

20. Angeboten von:

<table>
<thead>
<tr>
<th>Angeboten von</th>
</tr>
</thead>
<tbody>
<tr>
<td>Institut für Technische und Numerische Mechanik</td>
</tr>
</tbody>
</table>
Modul: 41080 Nichtlineare Schwingungen und Experimentelle Modalanalyse

2. Modulkürzel: 072810020
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0
5. Modulduer: 2 Semester
7. Sprache: Deutsch
8. Modulverantwortlicher: Apl. Prof. Michael Hanss
9. Dozenten: • Michael Hanss
 • Pascal Ziegler
10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technische Kybernetik, PO 2011
 → Vorgezogene Master-Module

DoubleM.D. Technische Kybernetik, PO 2011
 → Incoming -->Spezialisierungsfach -->Technische Dynamik
 →

DoubleM.D. Technische Kybernetik, PO 2011
 → Outgoing -->Spezialisierungsfach -->Technische Dynamik
 →

DoubleM.D. Technische Kybernetik, PO 2014
 → Incoming -->Spezialisierungsfach -->Technische Dynamik
 →

DoubleM.D. Technische Kybernetik, PO 2014
 → Outgoing -->Spezialisierungsfach -->Technische Dynamik
 →

DoubleM.D. Technische Kybernetik, PO 2014
 → Wahlpflichtmodule -->Spezialisierungsfach -->Technische Dynamik
 →

M.Sc. Technische Kybernetik, PO 2011
 → Spezialisierungsmodule -->Spezialisierungsfach -->Technische Dynamik
 →

11. Empfohlene Voraussetzungen: Technische Mechanik II+III oder Technische Schwingungslehre

12. Lernziele:
Der Studierende ist vertraut mit den Grundlagen von parametererregten und nichtlinearen Schwingungen, ihrer mathematischen Beschreibung, ihrer analytischen und näherungsweisen Lösung sowie ihrer Bedeutung und Anwendung in der ingenieurwissenschaftlichen Praxis.
Der Studierende ist vertraut mit der messtechnischen Erfassung von Strukturschwingungen sowie der Aufbereitung der Messsignale im Frequenzbereich.
Der Studierende ist in der Lage, daraus die modalen Kenngrößen zu identifizieren.

13. Inhalt:
Die Vorlesung „Nichtlineare Schwingungen“ vermittelt die Grundlagen der parametererregten und nichtlinearen Schwingungen in folgender Gliederung:
Parametererregte Schwingungen,
Nichtlineare Schwingungen mit einem Freiheitsgrad:
konservative und gedämpfte Eigenschwingungen, selbsterregte Schwingungen, erzwungene Schwingungen;
Näherungsverfahren und numerische Verfahren zur Behandlung nichtlinearer Schwingungen.
Es werden zudem zahlreiche konkrete Anwendungen gezeigt und Versuche vorgeführt.
Die Vorlesung „Experimentelle Modalanalyse“ vermittelt die Inhalte in folgender Gliederung:

- Grundlagen und Anwendungen der experimentellen Modalanalyse
- Methoden zur Schwingungsanregung, Messverfahren
- Signalanalyse und -verarbeitung, Zeit- und Frequenzbereichsdarstellung
- Frequenzgang, Übertragungsfunktion und deren modale Zerlegung
- Bestimmung modaler Kenngrößen, Modenerkennung und -vergleich

Es werden zudem Anwendungen auf Problemstellungen der industriellen Praxis demonstriert. Als praktischer Teil werden fachbezogene Versuche zur experimentellen Modalanalyse angeboten.

14. Literatur: Vorlesungsskript, und Vorlesungsmitschrieb,

Weiterführende Literatur:

15. Lehrveranstaltungen und -formen:
- 410801 Vorlesung Nichtlineare Schwingungen
- 410802 Vorlesung Experimentelle Modalanalyse

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 42 Stunden
- Selbststudium: 138 Stunden
- Summe: 180 Stunden

17. Prüfungsnummer/n und -name: 41081 Nichtlineare Schwingungen und experimentelle Modalanalyse (PL), schriftlich, eventuell mündlich, 150 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
Modul: 30060 Optimization of Mechanical Systems

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072810007</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Peter Eberhard</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Peter Eberhard</td>
</tr>
</tbody>
</table>
* Vorgezogene Master-Module
 * DoubleM.D. Technische Kybernetik, PO 2011
 * Chalmers -->Incoming -->Wahlfach Technische Kybernetik
 * DoubleM.D. Technische Kybernetik, PO 2011
 * Chalmers -->Outgoing -->Wahlfach Technische Kybernetik
 * DoubleM.D. Technische Kybernetik, PO 2011
 * Incoming -->Spezialisierungsfach -->Technische Dynamik
 * DoubleM.D. Technische Kybernetik, PO 2011
 * Outgoing -->Spezialisierungsfach -->Technische Dynamik
 * DoubleM.D. Technische Kybernetik, PO 2014
 * Chalmers -->Incoming -->Wahlfach Technische Kybernetik
 * DoubleM.D. Technische Kybernetik, PO 2014
 * Incoming -->Spezialisierungsfach -->Technische Dynamik
 * DoubleM.D. Technische Kybernetik, PO 2014
 * Outgoing -->Spezialisierungsfach -->Technische Dynamik
 * DoubleM.D. Technische Kybernetik, PO 2014
 * Wahlpflichtmodule -->Spezialisierungsfach -->Technische Dynamik
 * M.Sc. Technische Kybernetik, PO 2011
 * Spezialisierungsmodul -->Spezialisierungsfach -->Technische Dynamik
 * M.Sc. Technische Kybernetik, PO 2011
 * Spezialisierungsmodul -->Wahlfach Technische Kybernetik |
| 12. Lernziele: | Knowledge of the basics of optimization in engineering systems; Independent, confident, critical and creative application of optimization techniques to mechanical systems |
| 13. Inhalt: | **Formulation of the optimization problem**: optimization criteria, scalar optimization problem, multicriteria optimization
 * **Sensitivity Analysis**: Numerical differentiation, semianalytical methods, automatic differentiation |
O **Unconstrained parameter optimization**: theoretical basics, strategies, Quasi-Newton methods, stochastic methods
O **Constrained parameter optimization**: theoretical basics, strategies, Lagrange-Newton methods

14. Literatur:
- Lecture notes
- Lecture materials of the ITM

15. Lehrveranstaltungen und -formen: 300601 Lecture Optimization of Mechanical Systems

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 21 Stunden
- Selbststudium: 69 Stunden
- Summe: 90 Stunden

17. Prüfungsnummer/n und -name: 30061 Optimization of Mechanical Systems (BSL), schriftlich oder mündlich, Gewichtung: 1.0, schriftlich 90min oder mündlich 20min

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
Modul: 30070 Praktikum Technische Dynamik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072810012</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Peter Eberhard</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Peter Eberhard
• Michael Hanss |
→ Vorgezogene Master-Module
DoubleM.D. Technische Kybernetik, PO 2011
→ Incoming -->Spezialisierungsfach -->Technische Dynamik
→
DoubleM.D. Technische Kybernetik, PO 2011
→ Outgoing -->Spezialisierungsfach -->Technische Dynamik
→
DoubleM.D. Technische Kybernetik, PO 2014
→ Incoming -->Spezialisierungsfach -->Technische Dynamik
→
DoubleM.D. Technische Kybernetik, PO 2014
→ Outgoing -->Spezialisierungsfach -->Technische Dynamik
→
DoubleM.D. Technische Kybernetik, PO 2014
→ Wahlpflichtmodule -->Spezialisierungsfach -->Technische Dynamik
→
M.Sc. Technische Kybernetik, PO 2011
→ Spezialisierungsmodule -->Spezialisierungsfach -->Technische Dynamik
→ |
| 11. Empfohlene Voraussetzungen: | Die Studierenden sind in der Lage Vorlesungsinhalte an praktischen Beispielen umzusetzen |
| 13. Inhalt: | Beispiel Spezialisierungsfachversuche:
• Modellierung und Simulation eines starren 2-Arm-Roboterarms: Erstellen der Bewegungsgleichungen mit der Matlab Symbolic Toolbox, Zeitsimulation des Bewegungsverhaltens unter Eigengewicht in Matlab, Auswertung
• etc.
Nähere Informationen zu den Praktischen Übungen: APMB erhalten Sie zudem unter http://www.uni-stuttgart.de/mabau/msc/msc_mach/linksunddownloads.html |
| 14. Literatur: | Praktikumsunterlagen des ITM |
| 15. Lehrveranstaltungen und -formen: | 300701 Praktikum Technische Dynamik |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 30 Stunden
Selbststudium/Nacharbeitszeit: 60 Stunden
Summe: 90 Stunden |
|----------------------------------|-------------------------|
| 17. Prüfungsnummer/n und -name: | 30071
Praktikum Technische Dynamik (USL), schriftlich, eventuell mündlich, Gewichtung: 1.0, USL. Art und Umfang der USL werden jeweils zu Beginn des Praktikums bekannt gegeben. |
| 18. Grundlage für ... : | |
| 19. Medienform: | |
| 20. Angeboten von: | |
2103 Systembiologie

Zugeordnete Module:

- 2117 Spez.Fach. anerkannt 6LP
- 2118 Spez.Fach. anerkannt 6LP
- 2119 Spez.Fach. anerkannt 6LP
- 30080 Introduction to Systems Biology
- 32220 Grundlagen der Biomedizinischen Technik
- 36610 Metabolic Engineering
- 37240 Prinzipien der Stoffwechselregulation
- 37250 Bioreaktionstechnik
- 37600 Bioinformatik I
- 40230 Industrielle Biotechnologie und Biokatalyse
- 43910 Statistische Lernverfahren und stochastische Modellierung
- 46680 Rechnerübung: Modellierung und Simulation in der Systembiologie
- 46700 Thermodynamik biochemischer Netzwerke
- 50030 Multiskalensimulation biologischer Prozesse
- 51940 Systems Theory in Systems Biology
- 56830 Stoffwechselregulation biotechnisch relevanter Mikroorganismen
2117 Spez.Fach. anerkannt 6LP
2118 Spez.Fach. anerkannt 6LP
2119 Spez.Fach. anerkannt 6LP
Modul: 37600 Bioinformatik I

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>030800930</th>
<th>5. Modulaußer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>3.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

9. Dozenten:

10. Zuordnung zum Curriculum in diesem Studiengang:

- B.Sc. Technische Kybernetik, PO 2011
 → Vorgezogene Master-Module
 DoubleM.D. Technische Kybernetik, PO 2011
 → Incoming --Spezialisierungsfach --Systembiologie
 →
 DoubleM.D. Technische Kybernetik, PO 2014
 → Outgoing --Spezialisierungsfach --Systembiologie
 →
 DoubleM.D. Technische Kybernetik, PO 2014
 → Wahlpflichtmodule --Spezialisierungsfach --Systembiologie
 →
 M.Sc. Technische Kybernetik, PO 2011
 → Spezialisierungsmodul --Spezialisierungsfach --Systembiologie
 →

11. Empfohlene Voraussetzungen:

12. Lernziele:

13. Inhalt: Bioinformatik:

- Sequenz- und Strukturdatabase
- Sequenzvergleich und phylogenetische Analyse
- Patterns, Profile und Domänen
- Visualisierung und Analyse von Proteinstrukturen

14. Literatur:

Semesteraktuelles Skript zur Vorlesung "Biological Sequence Analysis" (Durbin,Eddy,Krogh,Mitchison)

15. Lehrveranstaltungen und -formen:

- 376001 Vorlesung Bioinformatik 1
- 376002 Vorlesung Bioinformatik 2

16. Abschätzung Arbeitsaufwand:

- Präsenzzzeit: 34 Stunden
- Selbststudium: 56 Stunden
- Summe: 90 Stunden

Stand: 09. April 2015
17. Prüfungsnummer/n und -name: 37601 Bioinformatik I (BSL), schriftlich, eventuell mündlich, Gewichtung: 1.0

18. Grundlage für ...:

19. Medienform:

20. Angeboten von:
Modul: 37250 Bioreaktionstechnik

1. Modulkürzel: 041000006
5. Modulldauer: 1 Semester
3. Leistungspunkte: 3.0 LP
6. Turnus: jedes 2. Semester, SoSe
4. SWS: 2.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Ralf Takors

9. Dozenten:
- Matthias Reuß
- Ralf Takors

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technische Kybernetik, PO 2011
 → Vorgezogene Master-Module
 → DoubleM.D. Technische Kybernetik, PO 2011
 → Incoming -->Spezialisierungsfach -->Systembiologie
 → DoubleM.D. Technische Kybernetik, PO 2011
 → Outgoing -->Spezialisierungsfach -->Systembiologie
 → DoubleM.D. Technische Kybernetik, PO 2014
 → Incoming -->Spezialisierungsfach -->Systembiologie
 → DoubleM.D. Technische Kybernetik, PO 2014
 → Outgoing -->Spezialisierungsfach -->Systembiologie
 → DoubleM.D. Technische Kybernetik, PO 2014
 → Wahlpflichtmodule -->Spezialisierungsfach -->Systembiologie
 → M.Sc. Technische Kybernetik, PO 2011
 → Spezialisierungsmodule -->Spezialisierungsfach -->Systembiologie

11. Empfohlene Voraussetzungen: Verfahrenstechnische und biologische Grundlagen des BSc-Grundstudiums

12. Lernziele:

Nach der Vorlesung können die Studenten die grundsätzlichen Ansätze für die jeweilige Modellierungsfragestellung wiedergeben. Sie haben verstanden, welches die Grundgedanken sind und sind in der Lage diese auf einfache, ähnliche Anwendungsbeispiele zu übertragen.

13. Inhalt:
- Gekoppelte Wachstumsmodelle (Mehrsubstratkinetik) für die Auslegung von Bioreaktoren
- Adaptionsansätze zum balanced growth Ansatz
- Populationsdynamiken
- strukturierte Modelle Stoffwechselmodelle
- metabolische Kontrollanalyse (MCA)
- Modellierung der Gentranskription

14. Literatur:
* Vorlesungsfolien
<table>
<thead>
<tr>
<th>15. Lehrveranstaltungen und -formen:</th>
<th>372501 Vorlesung Bioreaktionstechnik</th>
</tr>
</thead>
<tbody>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Präsenzzeit: 28 h</td>
</tr>
<tr>
<td></td>
<td>Selbststudiumszeit / Nacharbeitszeit: 62 h</td>
</tr>
<tr>
<td></td>
<td>Gesamt: 90 h</td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>37251 Bioreaktionstechnik (BSL), schriftlich, eventuell mündlich, Gewichtung: 1.0</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Multimedial: Vorlesungsskript, Übungsunterlagen, kombinierter Einsatz von Tafelanschrieb und Präsentationsfolien</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td></td>
</tr>
</tbody>
</table>
Modul: 32220 Grundlagen der Biomedizinischen Technik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>040900001</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Joachim Nagel</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Johannes Port
• Joachim Nagel |
greSQLogen Master-Module
DoubleM.D. Technische Kybernetik, PO 2011
Incoming -->Spezialisierungsfach -->Biomedizinische Technik
DoubleM.D. Technische Kybernetik, PO 2011
Incoming -->Spezialisierungsfach -->Systembiologie
DoubleM.D. Technische Kybernetik, PO 2011
Incoming -->Spezialisierungsfach -->Biomedizinische Technik
DoubleM.D. Technische Kybernetik, PO 2011
Outgoing -->Spezialisierungsfach -->Biomedizinische Technik
DoubleM.D. Technische Kybernetik, PO 2011
Outgoing -->Spezialisierungsfach -->Systembiologie
DoubleM.D. Technische Kybernetik, PO 2014
Incoming -->Spezialisierungsfach -->Biomedizinische Technik
DoubleM.D. Technische Kybernetik, PO 2014
Incoming -->Spezialisierungsfach -->Systembiologie
DoubleM.D. Technische Kybernetik, PO 2014
Outgoing -->Spezialisierungsfach -->Biomedizinische Technik
DoubleM.D. Technische Kybernetik, PO 2014
Outgoing -->Spezialisierungsfach -->Systembiologie
DoubleM.D. Technische Kybernetik, PO 2014
Wahlpflichtmodule -->Spezialisierungsfach -->Biomedizinische Technik
DoubleM.D. Technische Kybernetik, PO 2014
Wahlpflichtmodule -->Spezialisierungsfach -->Systembiologie
M.Sc. Technische Kybernetik, PO 2011
Spezialisierungsmodule -->Spezialisierungsfach -->Biomedizinische Technik
M.Sc. Technische Kybernetik, PO 2011
Spezialisierungsmodule -->Spezialisierungsfach -->Systembiologie |
| 11. Empfohlene Voraussetzungen: | keine |
| 12. Lernziele: | Die Studierenden |
• besitzen grundlegende Kenntnisse in der biomedizinischen Instrumentierung
• kennen die physikalischen Grundlagen und theoretischen Herleitungen und Annahmen wichtiger biomedizinischer Messverfahren
• haben wesentliche Kenntnisse gängiger bildgebender Verfahren
• besitzen fundamentale Kenntnisse der funktionellen Stimulation und von der Physiologie der zu ersetzenden natürlichen Funktionen
• können die Verfahren bewerten und deren Einsatzmöglichkeiten in der biomedizinischen Technik beurteilen
• verfügen über einen wesentlichen Grundwortschatz biomedizinischer Begriffe
• besitzen sowohl grundlegendes theoretisches und praktisches Fach- und Methodenwissen als auch biologische und medizinische Kenntnisse

13. Inhalt: In dem Modul werden folgende Inhalte vermittelt:

• die besonderen Probleme bei der Messung physiologischer Kenngrößen
• die grundlegenden Eigenschaften biologischer Gewebe
• die Besonderheiten der Elektroden und damit die entsprechenden einzuhaltenen Maßnahmen bei der Ableitung der Signale
• die physikalischen Grundlagen wichtiger mechanoelektrischer, photoelektrischer, elektrochemischer und thermoelektrischer Wandler
• die wesentlichen Prinzipien und die biomedizinisch spezifischen Besonderheiten der Signalerfassung, Signalverarbeitung, Signalverstärkung und Signalübertragung
• allgemeine Eigenschaften des kardiovaskulären und respiratorischen Systems
• Messverfahren kardiovaskulärer Kenngrößen, wie Elektrokardiogramm, Impedanzkardiogramm, Impedanzplethysmogramm, Blutdruckmessung, Blutflussmessung, etc.
• Messverfahren respiratorischer Kenngrößen, wie Impedanzpneumographie, Pneumotachographie, Spirometrie, Ganzkörperplethysmographie, etc.
• Messverfahren biochemischer Kenngrößen, wie pH-Wert-Messung, Ionenkonzentrationsmessung, Sauerstoffmessung, etc.
• Messverfahren neurologischer Kenngrößen, wie das Elektroenzephalogramm, Elektroneurogramm, Evozierte Potentiale, etc.
• Messverfahren visueller Kenngrößen, wie das Elektrookulogramm, das Elektrotretinogramm, etc., - wichtige physikalische, akustische Kenngrößen
• Messverfahren akustischer Kenngrößen, wie das Audiogramm, otoakustisch evozierte Potentiale, Elektrocochleogramm, etc.
• Messverfahren weiterer wichtiger Kenngrößen, wie das Elektromyogramm, Elektronystagmogramm, etc.
• Bildgebende Verfahren, wie die Röntgentechnik, Ultraschall, Magnetresonanztechnik, Endoskopietechnik, Thermographie, etc.
• Beispiele für Implantate und Funktionsersatz, wie das Cochlea-Implantat, Mittelohrprothese, Hörgeräte, Herzschrittmacher, Herzklappenersatz, etc.
• Beispiele aktueller Forschung, wie das Brain-Computer Interface, biohybride Armprothese, etc.

14. Literatur:
• Port, J.: Grundlagen der Biomedizinischen Technik, Vorlesungsskript und Vorlesungsfolien
• Dössel, O.: Bildgebende Verfahren in der Medizin, 2. Auflage, Publicis Corporate Publishing Verlag, 2006
• Pschyrembel, Klinisches Wörterbuch, 261. Auflage, Walter de Gruyter-Verlag, 2007

15. Lehrveranstaltungen und -formen: 322201 Grundlagen der Biomedizinischen Technik

16. Abschätzung Arbeitsaufwand: Präsenzzzeit: 58 Stunden
Selbststudium: 122 Stunden
Summe: 180 Stunden

17. Prüfungsnummer/n und -name: 32221 Grundlagen der Biomedizinischen Technik (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0

18. Grundlage für ... : 33470 Übungen zur Biomedizinischen Technik

19. Medienform: Beamer-Präsentation, Overhead-Projektor, Tafel

20. Angeboten von: Institut für Biomedizinische Technik
Modul: 40230 Industrielle Biotechnologie und Biokatalyse

2. Modulkürzel: 030810916
5. Moduldauer: 1 Semester

3. Leistungspunkte: 3.0 LP

4. SWS: 3.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Bernhard Hauer

9. Dozenten: Bernhard Hauer

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technische Kybernetik, PO 2011
 → Vorgezogene Master-Module
 DoubleM.D. Technische Kybernetik, PO 2011
 → Incoming -->Spezialisierungsfach -->Systembiologie
 →
 DoubleM.D. Technische Kybernetik, PO 2011
 → Outgoing -->Spezialisierungsfach -->Systembiologie
 →
 DoubleM.D. Technische Kybernetik, PO 2014
 → Incoming -->Spezialisierungsfach -->Systembiologie
 →
 DoubleM.D. Technische Kybernetik, PO 2014
 → Outgoing -->Spezialisierungsfach -->Systembiologie
 →
 DoubleM.D. Technische Kybernetik, PO 2014
 → Wahlpflichtmodule -->Spezialisierungsfach -->Systembiologie
 →
M.Sc. Technische Kybernetik, PO 2011
 → Spezialisierungsmodule -->Spezialisierungsfach -->Systembiologie
 →

11. Empfohlene Voraussetzungen: Biologische und biochemische Grundlagen des BSc-Grundstudiums

12. Lernziele:
Die Studierenden
 • verstehen die Grundlagen der Biokatalyse
 • kennen Anwendungen von Enzymen und Mikroorganismen in der Biokatalyse
 • kennen Methoden der Herstellung und Aufarbeitung von Enzymen
 • verstehen die Vor- und Nachteile der Biokatalyse im Vergleich zu homogener und heterogener Katalyse

13. Inhalt:
 • Technisch relevante Umsetzungen unter Verwendung von Enzymen
 • Optimierung von Enzymeigenschaften: rekombinante Enzyme und Protein Engineering
 • Ganzzellsysteme mit optimierten Stoffwechselwegen (synthetische Biologie) für die Biokatalyse
 • Fermentation und Aufreinigung unter Verwendung molekulargenetischer Methoden
• Leistungsvergleich ausgewählter Biokatalyse-Verfahren mit homo- und heterogener Katalyse

14. Literatur:
• Schmid, R.D., Taschenatlas der Biotechnologie
• Bomarius, Riebel: Biocatalysis, Wiley
• K. Faber: Biotransformations in Org. Chemistry Springer

15. Lehrveranstaltungen und -formen:
• 402301 Vorlesung Industrielle Biotechnologie und Biokatalyse
• 402302 Übung Industrielle Biotechnologie und Biokatalyse

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 31,5 h
Selbststudium / Nacharbeitszeit: 33,5 h
Klausur- / Prüfungsvorbereitung: 25,0 h
Gesamt: 90,0 h

17. Prüfungsnummer/n und -name:
40231 Industrielle Biotechnologie und Biokatalyse (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
Modul: 30080 Introduction to Systems Biology

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>074810200</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Nach Ankündigung</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Nicole Radde

9. Dozenten: • Ronny Feuer • Nicole Radde

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th></th>
<th>B.Sc. Technische Kybernetik, PO 2008</th>
<th>→ Erfüllt grundlegende Voraussetzungen</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>→ Ergänzungsmodul -->Wahlbereich Anwendungsfach -- >Biologische Systeme</td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ B.Sc. Technische Kybernetik, PO 2011</td>
<td></td>
</tr>
<tr>
<td></td>
<td>→ Vorgezogene Master-Module</td>
<td></td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2011</td>
<td>→ Incoming -->Spezialisierungsfach -->Systembiologie</td>
<td></td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2014</td>
<td>→ Incoming -->Spezialisierungsfach -->Systembiologie</td>
<td></td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2014</td>
<td>→ Incoming -->Spezialisierungsfach -->Systembiologie</td>
<td></td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2014</td>
<td>→ Incoming -->Spezialisierungsfach -->Systembiologie</td>
<td></td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2014</td>
<td>→ Wahlpflichtmodule -->Spezialisierungsfach -->Systembiologie</td>
<td></td>
</tr>
<tr>
<td>M.Sc. Technische Kybernetik, PO 2011</td>
<td>→ Spezialisierungsmodule -->Spezialisierungsfach -->Systembiologie</td>
<td></td>
</tr>
</tbody>
</table>

13. Inhalt: Die Studenten werden an folgende Themen herangeführt:

- Kinetische Modellierung biochemischer Netzwerke basierend auf chemischer Reaktionskinetik
- Datenbanken und Modellierungstools
- Beschränktheitsbasierte Modellierung
- Stochastische Modellierungsansätze für biochemische Reaktionsnetzwerke
14. Literatur: Skript auf Ilias und weiterführende Literatur, die in der Vorlesung bekannt gegeben wird

15. Lehrveranstaltungen und -formen:
 - 300801 Vorlesung Introduction to Systems Biology
 - 300802 Übung Introduction to Systems Biology

16. Abschätzung Arbeitsaufwand:

 Vorlesung und Übung
 Präsenzzeit: 56 Stunden
 Selbststudium: 124 Stunden
 SUMME: 180 Stunden

17. Prüfungsnummer/n und -name:
 30081 Introduction to Systems Biology (LBP), mündliche Prüfung, 30 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:
 Tafel, Overhead, Beamer

20. Angeboten von:
 Institut für Systemtheorie und Regelungstechnik
Modul: 36610 Metabolic Engineering

2. Modulkürzel: 041000004
5. Moduldauer: 1 Semester
3. Leistungspunkte: 3.0 LP
4. SWS: 2.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Ralf Takors
9. Dozenten:
• Ralf Takors
• Klaus Mauch

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technische Kybernetik, PO 2011
 ➞ Vorgezogene Master-Module
 DoubleM.D. Technische Kybernetik, PO 2011
 ➞ Incoming -->Spezialisierungsfach -->Systembiologie
 ➞
 DoubleM.D. Technische Kybernetik, PO 2011
 ➞ Outgoing -->Spezialisierungsfach -->Systembiologie
 ➞
 DoubleM.D. Technische Kybernetik, PO 2014
 ➞ Incoming -->Spezialisierungsfach -->Systembiologie
 ➞
 DoubleM.D. Technische Kybernetik, PO 2014
 ➞ Outgoing -->Spezialisierungsfach -->Systembiologie
 ➞
 DoubleM.D. Technische Kybernetik, PO 2014
 ➞ Wahlpflichtmodule -->Spezialisierungsfach -->Systembiologie
 ➞
 M.Sc. Technische Kybernetik, PO 2011
 ➞ Spezialisierungsmodule -->Spezialisierungsfach -->Systembiologie
 ➞

11. Empfohlene Voraussetzungen: Verfahrenstechnische und biologische Grundlagen des BSc-Grundstudiums

13. Inhalt:
• Definitionen und Anwendungen des 'Metabolic Engineering'
• Grundzüge des Stoffwechsels aus Sicht des metabolic engineering
• Metabolische Netzwerke (Bilanzierungen von Metaboliten, Freiheitsgrade)
• Topologische Analysen (Flux Balancing', Elementarmoden, optimale Ausbeuten, 'Pathway Design')
• Strategien zur Stammverbesserung auf der Basis von Modellaussagen
• Metabolische Stoffflussanalysen (Prinzipien unter- und überbestimmter Netzwerke, 13-C Stoffflussanalyse)

14. Literatur:
• G. Stephanopoulos et al. Metabolic Engineering, Academic Press
• R. Heinrich, S. Schuster, Regulation of Cellular Systems, Verlag Chapman & Hall
<table>
<thead>
<tr>
<th>15. Lehrveranstaltungen und -formen:</th>
<th>366101 Vorlesung Metabolic Engineering</th>
</tr>
</thead>
<tbody>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Präsenzzeit: 28 h</td>
</tr>
<tr>
<td></td>
<td>Nachbereitungszeit: 62 h</td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>36611 Metabolic Engineering (BSL), mündliche Prüfung, 30 Min., Gewichtung: 1.0</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Multimedial; Vorlesungsskript, Übungsunterlagen, kombinierter Einsatz von Tafelanschrieb und Präsentationsfolien</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td></td>
</tr>
</tbody>
</table>
Modul: 50030 Multiskalensimulation biologischer Prozesse

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>041001022</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>5. Modul:</td>
<td>Multiskalensimulation biologischer Prozesse</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>unregelmäßig</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Holger Perfahl</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Holger Perfahl</td>
</tr>
</tbody>
</table>
 ➔ Vorgezogene Master-Module
 ➔ DoubleM.D. Technische Kybernetik, PO 2011
 ➔ Incoming -->Spezialisierungsfach -->Systembiologie
 ➔ DoubleM.D. Technische Kybernetik, PO 2011
 ➔ Outgoing -->Spezialisierungsfach -->Systembiologie
 ➔ DoubleM.D. Technische Kybernetik, PO 2014
 ➔ Incoming -->Spezialisierungsfach -->Systembiologie
 ➔ DoubleM.D. Technische Kybernetik, PO 2014
 ➔ Outgoing -->Spezialisierungsfach -->Systembiologie
 ➔ DoubleM.D. Technische Kybernetik, PO 2014
 ➔ Wahlpflichtmodule -->Spezialisierungsfach -->Systembiologie
 ➔ M.Sc. Technische Kybernetik, PO 2011
 ➔ Spezialisierungsmodul -->Spezialisierungsfach -->Systembiologie |
| 11. Empfohlene Voraussetzungen: | |
| 12. Lernziele: | |
| 13. Inhalt: | |
| 14. Literatur: | |
| 15. Lehrveranstaltungen und -formen: | |
| 16. Abschätzung Arbeitsaufwand: | |
| 17. Prüfungsnummer/n und -name: | 50031 Multiskalensimulation biologischer Prozesse (BSL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0 |
| 18. Grundlage für ... : | |
| 19. Medienform: | |
| 20. Angeboten von: | |
Modul: 37240 Prinzipien der Stoffwechselregulation

2. Modulkürzel: 041000005
5. Moduldauer: 1 Semester

3. Leistungspunkte: 3.0 LP
6. Turnus: jedes 2. Semester, SoSe

4. SWS: 2.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Ralf Takors
9. Dozenten: Martin Siemann-Herzberg

10. Zuordnung zum Curriculum in diesem Studiengang:

 B.Sc. Technische Kybernetik, PO 2011
 ✓ Vorgezogene Master-Module
 DoubleM.D. Technische Kybernetik, PO 2011
 ✓ Incoming -->Spezialisierungsfach -->Systembiologie

 DoubleM.D. Technische Kybernetik, PO 2011
 ✓ Outgoing -->Spezialisierungsfach -->Systembiologie

 DoubleM.D. Technische Kybernetik, PO 2014
 ✓ Incoming -->Spezialisierungsfach -->Systembiologie

 DoubleM.D. Technische Kybernetik, PO 2014
 ✓ Outgoing -->Spezialisierungsfach -->Systembiologie

 DoubleM.D. Technische Kybernetik, PO 2014
 ✓ Wahlpflichtmodule -->Spezialisierungsfach -->Systembiologie

 M.Sc. Technische Kybernetik, PO 2011
 ✓ Spezialisierungsmodule -->Spezialisierungsfach -->Systembiologie

11. Empfohlene Voraussetzungen:

 Biologische Grundlagen des BSc-Grundstudiums

12. Lernziele:

 Der Studierende soll

 • Wesentliche stoffwechselphysiologische Regulations mechanismen (Schwerpunkt Prokaryonten) beschreiben und benennen

 • Moderne bioanalytischer Verfahren (OMICS) zur wissenschaftlichen Erfassung diese Regulationsmechanismen interpretieren

 • Strategien zur Entwicklung moderner Produktionsstämme auf der Basis des vermittelten biologischen Grundwissens erstellen und überprüfen

 • Prozesstechnische Randbedingungen (Interaktion zwischen dem biologischen System und der umgebene Prozesstechnik) analysieren und kommentieren.

13. Inhalt:

 Allgemeine Einführung / Ziele der Vorlesung Regulationsmechanismen und Beispiele

 • Koordination der Reaktionen im Metabolismus

 Die taktische Anpassung: Regelkreise und Enzymregulation

 • Regulation durch Kontrolle der Genexpression
Die strategische Anpassung: Regulationsprinzipien der Transkription: bakterielle Promotoren; RNA Polymerase; Induktion und Repression; Attenuation; Termination und Antitermination)

• **Individuelle Regulationsmodule**
 - Katabolitrepression (Crp Modulon) und Kontrolle des zentralen Kohlenstoffmetabolismus (Cra Modulon)
 - Stringente Kontrolle (RelA/SpoT Modulon)
 - Osmoregulation (EnvZ/OmpP; externe Stimuli)
 - Stickstoffassimilierung (NtrB/NtrC; interne Stimuli)
 - Regulation des anaeroben und aeroben Stoffwechsels (Fnr/Nar/Arc Kontrollen)

• **Aspekte der globalen Regulation**
 - Interaktion von globalen Regulationsnetzwerken (Crp/Cra/RelA Modulon)
 - globale Regulation der Stress Antwort (Stresskaskaden Modulon/ Regulon/Stimulon)
 - Interaktion von globalen Regulationsnetzwerken: Stofftransport, Stress, Katabolitrepression, stringente Kontrolle und 'Bacterial Movement' und Zell/Zell Kommunikation

• **'Metabolic Engineering'; Synthetische Biologie und System Biologie**
 - Regulative Aspekte der Synthetischen Biologie und 'Metabolic Engineering'

14. Literatur:

15. Lehrveranstaltungen und -formen: 372401 Vorlesung Prinzipien der Stoffwechselregulation

Nachbearbeitungszeit: 28 Stunden
Prüfungsvorbereitung: 34 Stunden
Gesamt: 90 Stunden

17. Prüfungsnummer/n und -name: 37241 Prinzipien der Stoffwechselregulation (BSL), schriftlich, eventuell mündlich, Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:
* Multimedial
* Vorlesungs-skript
* Übungsunterlagen
* kombinierter Einsatz von Tafelanschrieb und Präsentationsfolien

20. Angeboten von:
Modul: 46680 Rechnerübung: Modellierung und Simulation in der Systembiologie

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>074740003</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>unregelmäßig</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Ronny Feuer

9. Dozenten:
- Ronny Feuer
- Nicole Radde
- Dozenten des Instituts

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>B.Sc. Technische Kybernetik, PO 2011</th>
<th>Vorgezogene Master-Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2011</td>
<td>Incoming -->Spezialisierungsfach -->Systembiologie</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2011</td>
<td>Outgoing -->Spezialisierungsfach -->Systembiologie</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2014</td>
<td>Incoming -->Spezialisierungsfach -->Systembiologie</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2014</td>
<td>Outgoing -->Spezialisierungsfach -->Systembiologie</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2014</td>
<td>Wahlpflichtmodule -->Spezialisierungsfach -->Systembiologie</td>
</tr>
<tr>
<td>M.Sc. Technische Kybernetik, PO 2011</td>
<td>Spezialisierungsmodule -->Spezialisierungsfach -->Systembiologie</td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen:

12. Lernziele:
Die Studenten können mit wichtigen Computerprogrammen zur Modellierung, Simulation und Modellanalyse umgehen und können diese selbständig auf gegebene Probleme anwenden, die gefunden Lösungen bewerten, Fehler entdecken und korrigieren.

13. Inhalt:
- Einführung in wichtige Computerwerkzeuge (z.B. Matlab und Toolboxen, Copasi, XPP)
- Selbständiges Lösen von Beispielaufgaben aus der Modellierung und Simulation in der Systembiologie

14. Literatur:
Das Material wird während der Veranstaltung zur Verfügung gestellt.

15. Lehrveranstaltungen und -formen:
- 466801 Vorlesung Einführung in wichtige Computerwerkzeuge
- 466802 Übung Selbständiges Lösen von Beispielaufgaben aus der Modellierung und Simulation in der Systembiologie

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 120 h
• Selbststudium: 60 h
• Summe: 180 h

17. Prüfungsnummer/n und -name: 46681
Rechnerübung: Modellierung und Simulation in der Systembiologie (USL), schriftliche Prüfung, Gewichtung: 1.0

18. Grundlage für ...:

19. Medienform:

20. Angeboten von:
Modul: 43910 Statistische Lernverfahren und stochastische Modellierung

2. Modulkürzel: 074810310 5. Modulduauer: 1 Semester
4. SWS: 4.0 7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Nicole Radde
9. Dozenten: • Christian Ebenbauer
 • Nicole Radde

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technische Kybernetik, PO 2011
 ➔ Vorgezogene Master-Module
 DoubleM.D. Technische Kybernetik, PO 2011
 ➔ Incoming -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik

DoubleM.D. Technische Kybernetik, PO 2011
 ➔ Incoming -->Spezialisierungsfach -->Systembiologie

DoubleM.D. Technische Kybernetik, PO 2011
 ➔ Outgoing -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik

DoubleM.D. Technische Kybernetik, PO 2011
 ➔ Outgoing -->Spezialisierungsfach -->Systembiologie

DoubleM.D. Technische Kybernetik, PO 2014
 ➔ Incoming -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik

DoubleM.D. Technische Kybernetik, PO 2014
 ➔ Incoming -->Spezialisierungsfach -->Systembiologie

DoubleM.D. Technische Kybernetik, PO 2014
 ➔ Outgoing -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik

DoubleM.D. Technische Kybernetik, PO 2014
 ➔ Outgoing -->Spezialisierungsfach -->Systembiologie

DoubleM.D. Technische Kybernetik, PO 2014
 ➔ Wahlpflichtmodule -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik

DoubleM.D. Technische Kybernetik, PO 2014
 ➔ Wahlpflichtmodule -->Spezialisierungsfach -->Systembiologie

M.Sc. Technische Kybernetik, PO 2011
 ➔ Spezialisierungsmodul -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik

M.Sc. Technische Kybernetik, PO 2011
 ➔ Spezialisierungsmodul -->Spezialisierungsfach -->Systembiologie
11. Empfohlene Voraussetzungen: Höhere Mathematik, Grundlagen der Statistik

Die Studenten können mit stochastischen Differenzialgleichungen rechnen und modellieren.

Die Studenten können für exemplarische Beispiele parametrisierter stochastischer Prozesse und gegebene Beobachtungen Likelihood Funktionen aufstellen und den Maximum Likelihood Schätzer bestimmen.

13. Inhalt:
- Stochastische Prozesse (Poisson, Markov und Wiener Prozesse)
- Stochastische Differenzialgleichungen
- Zustandsschätzung
- Likelihood Funktion und Maximum Likelihood Schätzer

14. Literatur:

Weiterführende Literatur wird in der Vorlesung bekannt gegeben.

15. Lehrveranstaltungen und -formen:
- 439101 Vorlesung Statistische Lernverfahren und stochastische Modellierung
- 439102 Übung Statistische Lernverfahren und stochastische Modellierung

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 h
Vor- und Nachbearbeitungszeit: 98 h
Prüfungsvorbereitung: 40 h
Gesamter Arbeitsaufwand: 180 h

17. Prüfungsnummer/n und -name: 43911 Statistische Lernverfahren und stochastische Modellierung (PL), schriftlich oder mündlich, 40 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform: Tafel, Overhead, Beamer

20. Angeboten von: Institut für Systemtheorie und Regelungstechnik
Modul: 56830 Stoffwechselregulation biotechnisch relevanter Mikroorganismen

2. Modulkürzel: - 5. Moduldaurer: 1 Semester
4. SWS: 2.0 7. Sprache: Deutsch
8. Modulverantwortlicher: Dr. Bastian Blombach
9. Dozenten: Bastian Blombach
10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technische Kybernetik, PO 2011
 → Vorgezogene Master-Module
 DoubleM.D. Technische Kybernetik, PO 2011
 → Incoming -->Spezialisierungsfach -->Systembiologie
 →
 DoubleM.D. Technische Kybernetik, PO 2014
 → Outgoing -->Spezialisierungsfach -->Systembiologie
 →
 DoubleM.D. Technische Kybernetik, PO 2014
 → Incoming -->Spezialisierungsfach -->Systembiologie
 →
 DoubleM.D. Technische Kybernetik, PO 2014
 → Outgoing -->Spezialisierungsfach -->Systembiologie
 →
 DoubleM.D. Technische Kybernetik, PO 2014
 → Wahlpflichtmodule -->Spezialisierungsfach -->Systembiologie
 →
 M.Sc. Technische Kybernetik, PO 2011
 → Spezialisierungsmodule -->Spezialisierungsfach -->Systembiologie
 →

11. Empfohlene Voraussetzungen:

13. Inhalt:

 Stoffwechselregulation: u.a. Transkription und Translation; Katabolit-Repression; Attenuationsmechanismen; 2-Komponentensysteme (Redoxkontrolle, Phosphat, Citrat, Quorum Sensing); Eisenhomeostase; Regulatorische RNAs

 Metabolic Engineering: u.a. Promoter und Terminator Engineering; Engineering Translation Initiation; Cofactor Engineering; Metabolic Engineering mit synthetischen sRNAs; Multiplex Genome Engineering; Recombineering; Multivariates Metabolic Engineering

14. Literatur:

15. Lehrveranstaltungen und -formen: 568301 Vorlesung Stoffwechselregulation biotechnisch relevanter Mikroorga-nismen

16. Abschätzung Arbeitsaufwand:

 Präsenzzeit: 28 Stunden
 Selbststudium: 62 Stunden
 Summe: 90 Stunden
<table>
<thead>
<tr>
<th>Prüfungsnummer/n und -name</th>
<th>56831</th>
<th>Stoffwechselregulation biotechnisch relevanter Mikroorganismen (BSL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0</th>
</tr>
</thead>
</table>

18. Grundlage für ...:

19. Medienform:

20. Angeboten von:
Modul: 51940 Systems Theory in Systems Biology

2. Modulkürzel: 074710015 5. Modulldauer: 1 Semester
4. SWS: 4.0 7. Sprache: Nach Ankündigung
8. Modulverantwortlicher: Ronny Feuer
9. Dozenten: • Nicole Radde • Ronny Feuer

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technische Kybernetik, PO 2011
 ➔ Vorgezogene Master-Module
 DoubleM.D. Technische Kybernetik, PO 2011
 ➔ Incoming -->Spezialisierungsfach -->Systembiologie
 ➔
 DoubleM.D. Technische Kybernetik, PO 2011
 ➔ Outgoing -->Spezialisierungsfach -->Systembiologie
 ➔
 DoubleM.D. Technische Kybernetik, PO 2014
 ➔ Incoming -->Spezialisierungsfach -->Systembiologie
 ➔
 DoubleM.D. Technische Kybernetik, PO 2014
 ➔ Outgoing -->Spezialisierungsfach -->Systembiologie
 ➔
 DoubleM.D. Technische Kybernetik, PO 2014
 ➔ Wahlpflichtmodule -->Spezialisierungsfach -->Systembiologie
 ➔
M.Sc. Technische Kybernetik, PO 2011
 ➔ Spezialisierungsmodule -->Spezialisierungsfach -->Systembiologie
 ➔

11. Empfohlene Voraussetzungen:
English: Prerequisites for the module are a basic knowledge in the area of mathematical modeling, simulation and systems analysis, as well as basic theoretical knowledge in the area of molecular biology.

Deutsch: Vorausgesetzt werden Grundlagen in der mathematischen Modellierung, Simulation und Systemanalyse, sowie theoretische Grundkenntnisse aus der Molekularbiologie.

12. Lernziele:
English: After participating in the module, the students are able to name and explain advanced methods for the mathematical modeling and the model analysis of biochemical reaction networks. They are able to apply these methods to predefined systems.

13. Inhalt:
The students learn about the following topics

* Feedback in biochemical (regulatory) networks
* Biological oscillators, switches, and rhythm
* Statistical approaches for parameter and structure identification
* Model reduction
* Boolean and structural modeling

14. Literatur: Skript auf ILIAS und weiterführende Literatur

15. Lehrveranstaltungen und -formen:
 • 519401 Vorlesung Systems Theory in Systems Biology
 • 519402 Übung Systems Theory in Systems Biology
 • 519403 Seminar Systems Theory in Systems Biology

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 56h
 Selbstdstudium: 124 h
 Summe: 180 Stunden

17. Prüfungsnummer/n und -name:
 51941 Systems Theory in Systems Biology (PL), mündliche Prüfung,
 40 Min., Gewichtung: 1.0

18. Grundlage für ...:

19. Medienform:

20. Angeboten von:
Modul: 46700 Thermodynamik biochemischer Netzwerke

2. Modulkürzel: 074740004
5. Moduldauer: 1 Semester

3. Leistungspunkte: 3.0 LP

4. SWS: 2.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Ronny Feuer
9. Dozenten: Ronny Feuer

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technische Kybernetik, PO 2011
→ Vorgezogene Master-Module
DoubleM.D. Technische Kybernetik, PO 2011
→ Incoming --Spezialisierungsfach -->Systembiologie
DoubleM.D. Technische Kybernetik, PO 2011
→ Outgoing --Spezialisierungsfach -->Systembiologie
DoubleM.D. Technische Kybernetik, PO 2014
→ Incoming --Spezialisierungsfach -->Systembiologie
DoubleM.D. Technische Kybernetik, PO 2014
→ Outgoing --Spezialisierungsfach -->Systembiologie
DoubleM.D. Technische Kybernetik, PO 2014
→ Wahlpflichtmodule --Spezialisierungsfach -->Systembiologie
M.Sc. Technische Kybernetik, PO 2011
→ Spezialisierungsmodule --Spezialisierungsfach -->Systembiologie
M.Sc. Technische Kybernetik, PO 2011
→ Spezialisierungsmodule -->Wahlfach Technische Kybernetik

11. Empfohlene Voraussetzungen:
Vorausgesetzt werden Grundlagen in den Bereichen
• Thermodynamik
• Modellierung biochemischer Reaktionsnetzwerke

12. Lernziele:
Nach Besuch dieses Moduls können die Studenten ...
• Grundbegriffe der thermodynamischen Beschreibung von Reaktions-

systemen benennen und erklären.
• die Rolle der thermodynamischen Beschränkungen bei der
Modellierung von biochemischen Netzwerken erklären,
• Methoden, die die Beschränkungen in der mathematischen
Modellierung berücksichtigen, benennen und erklären.

13. Inhalt:
Wichtige biologische Prozesse, wie z.B. Stoffwechsel- und
Signalübertragungs-Prozesse, können als Reaktionsnetzwerke
beschrieben werden. Die mathematische Modellierung und Analyse
solcher Netzwerke ist ein Schwerpunkt der Systembiologie. Große
Reaktionsnetzwerke wie sie in der Systembiologie betrachtet werden,
sind stark durch grundlegende physikalische Gesetze, insbesondere
durch die Thermodynamik, beschränkt. Die Vorlesung wird zuerst
die Grundlagen der Netzwerkthermodynamik besprechen. Die
dazu nötigen Grundlagen der Thermodynamik und irreversiblen
Thermodynamik werden wiederholt. Darauf aufbauend werden einige
Ansätze zur thermodynamischen Analyse und Modellierung von großen Reaktionsnetzwerken besprochen. Die Studenten werden insbesondere an folgende Themen herangeführt:

- Thermodynamische Grundlagen zur Beschreibung von Reaktionssystemen
- Thermodynamische Beschränkungen in dynamischen Modellen (Thermokinetische Modellierung und verwandte Ansätze)
- Thermodynamische Beschränkungen in stationären Modellen

14. Literatur: Skript und weiterführende Literatur auf ILIAS wird während der Vorlesung aktualisiert

15. Lehrveranstaltungen und -formen: 467001 Vorlesung Thermodynamik biochemischer Netzwerke

16. Abschätzung Arbeitsaufwand: Präsenzzeit: 28 h
Selbststudium: 62 h
Summe: 90 Stunden

17. Prüfungsnummer/n und -name: 46701 Thermodynamik biochemischer Netzwerke (BSL), mündliche Prüfung, 30 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
2104 Automatisierung in der Energietechnik

Zugeordnete Module:
- 15440 Firing Systems and Flue Gas Cleaning
- 15960 Kraftwerksanlagen
- 15970 Modellierung und Simulation von Technischen Feuerungsanlagen
- 2117 Spez.Fach. anerkannt 6LP
- 2118 Spez.Fach. anerkannt 6LP
- 2119 Spez.Fach. anerkannt 6LP
- 21760 Elektrische Energienetze II
- 21930 Photovoltaik II
- 28550 Regelung von Kraftwerken und Netzen
- 29180 Dynamik elektrischer Verbundsysteme
- 30610 Regelungstechnik für Kraftwerke
- 36840 Energiewirtschaft in Verbundsystemen
- 37010 Netzintegration von Windenergie
2117 Spez.Fach. anerkannt 6LP
2118 Spez.Fach. anerkannt 6LP
2119 Spez.Fach. anerkannt 6LP
Modul: 29180 Dynamik elektrischer Verbundsysteme

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>042500041</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>10. Zuordnung zum Curriculum in diesem Studiengang:</td>
<td></td>
</tr>
<tr>
<td>B.Sc. Technische Kybernetik, PO 2011</td>
<td></td>
</tr>
<tr>
<td>→ Vorgezogene Master-Module</td>
<td></td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2011</td>
<td></td>
</tr>
<tr>
<td>→ Chalmers -->Incoming -->Wahlfach Technische Kybernetik</td>
<td></td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2011</td>
<td></td>
</tr>
<tr>
<td>→ Chalmers -->Outgoing -->Wahlfach Technische Kybernetik</td>
<td></td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2011</td>
<td></td>
</tr>
<tr>
<td>→ Incoming -->Spezialisierungsfach -->Automatisierung in der Energietechnik</td>
<td></td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2011</td>
<td></td>
</tr>
<tr>
<td>→ Outgoing -->Spezialisierungsfach -->Automatisierung in der Energietechnik</td>
<td></td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2014</td>
<td></td>
</tr>
<tr>
<td>→ Chalmers -->Incoming -->Wahlfach Technische Kybernetik</td>
<td></td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2014</td>
<td></td>
</tr>
<tr>
<td>→ Incoming -->Spezialisierungsfach -->Automatisierung in der Energietechnik</td>
<td></td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2014</td>
<td></td>
</tr>
<tr>
<td>→ Outgoing -->Spezialisierungsfach -->Automatisierung in der Energietechnik</td>
<td></td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2014</td>
<td></td>
</tr>
<tr>
<td>→ Wahlpflichtmodule -->Spezialisierungsfach -->Automatisierung in der Energietechnik</td>
<td></td>
</tr>
<tr>
<td>M.Sc. Technische Kybernetik, PO 2011</td>
<td></td>
</tr>
<tr>
<td>→ Spezialisierungsmodul -->Spezialisierungsfach -->Automatisierung in der Energietechnik</td>
<td></td>
</tr>
<tr>
<td>M.Sc. Technische Kybernetik, PO 2011</td>
<td></td>
</tr>
<tr>
<td>→ Spezialisierungsmodul -->Wahlfach Technische Kybernetik</td>
<td></td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen: Empfohlen: Grundlagen der Elektrotechnik, Grundlagen der Regelungstechnik, Mathematik

12. Lernziele: Absolventen des Moduls verstehen das dynamische Verhalten großer elektrischer Verbundsysteme. Sie haben vertiefte Kenntnisse der Dynamik der beteiligten Komponenten (Generatoren, Kraftwerke, Verbraucher, Regelleinrichtungen, Power System Stabilizer, FACTS,
etc.) sowie deren dynamischen Einflüsse beim Zusammenwirken im Verbundsystem. Sie können Oszillationen im Verbundnetz erkennen, mathematisch beschreiben und bewerten. Sie wissen, wie stabilitätsgefährdende Zustände erkannt und verhindert werden können.

13. Inhalt:

Einführung:
- Bedeutung des Verbundnetzbetriebs
- Teilnehmer im Verbundnetzbetrieb
- Randbedingungen für einen stabilen Netzbetrieb

Grundlegende Zusammenhänge der Netzdynamik
- Leitungs-Frequenzverhalten
- Einfluss der Schwungmassen (Netzanlaufzeit)
- Einfluss des Netzes (Netzselbsregelleffekt)
- Automatisierte Regeleinrichtungen (Primär- und Sekundärregelung)

Dynamik der Betriebsmittel im Verbundnetz
- Zusammenhang der Netzdynamik mit den dyn. Eigenschaften der Betriebsmittel
- Dynamische Eigenschaften aller wesentlichen Betriebsmittel im Verbundnetz, d.h.
- Dynamik konventioneller Kraftwerke inkl. Regeleinrichtungen
- Dynamische Eigenschaften neuer Erzeuger: WKAs, PV-Anlagen, etc.

Netzregelung
- Konzept der Leistungs-Frequenz-Regelung: Primär-, Sekundär- sowie Minuten-Reserve
- Technische Umsetzung der Leistungs-Frequenz-Regelung in Kraftwerken: Primär-, Sekundär- und Tertiär-Regelung sowie Drehzahlregelung
- Richtlinien: Rahmenbedingungen für die Leistungs-Frequenz-Regelung
- Auswirkungen unterschiedlicher Regler-Einstellungen auf das Frequenzverhalten
- Konzept und technische Umsetzung weiterer Regeleinrichtungen (z.B. Spannungsregelung)

Netzstabilität
- Einführung in die Wesentlichen Stabilitätsaspekte in elektrischen Verbundsystemen

Ursachen von Netzpendelungen
- Pendelung des Synchrongenerators am Netz und der Einfluss weiterer Einflussgrößen wie Leitungsimpedanzen, Lastflüsse, Spannung und Generatorenleistung
- Elektromechanische Ausgleichsbewegung (Netzpendelungen) und elektromechanische Wellenausbreitung
- Dämpfung von Netzpendelungen (Power System Stabilizer und Leistungselektronik)

Analyse von Netzpendelungen
- Simulationsbasierte Methoden im Zeit- und Frequenzbereich am Beispiel des Kontinentaleuropäischen Verbundsystems
- Messdatenbasierte Methoden zur Analyse von Netzpendelungen
• Online-Monitoring Systeme

|----------------|--|

<table>
<thead>
<tr>
<th>15. Lehrveranstaltungen und -formen:</th>
<th>291801 Vorlesung Dynamik elektrischer Verbundsysteme</th>
</tr>
</thead>
</table>

| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 28 h
Selbststudium: 62 h
Summe: 90 h |
|---------------------------------|--|

<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>29181 Dynamik elektrischer Verbundsysteme (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>18. Grundlage für ... :</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>19. Medienform:</th>
<th>PPT-Präsentation; Tafelanschrieb</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>20. Angeboten von:</th>
<th>Institut für Feuerungs- und Kraftwerkstechnik</th>
</tr>
</thead>
</table>
Modul: 21760 Elektrische Energienetze II

2. Modulkürzel: 050310022
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0
5. Modulduer: 1 Semester
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Stefan Tenbohlen
9. Dozenten:
 • Ulrich Schärli
 • Krzysztof Rudion
 • Stefan Tenbohlen

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technische Kybernetik, PO 2011
 → Vorgezogene Master-Module
 → DoubleM.D. Technische Kybernetik, PO 2011
 → Incoming --->Spezialisierungsfach -->Automatisierung in der Energietechnik
 → DoubleM.D. Technische Kybernetik, PO 2011
 → Outgoing --->Spezialisierungsfach -->Automatisierung in der Energietechnik
 → DoubleM.D. Technische Kybernetik, PO 2011
 → Incoming --->Spezialisierungsfach -->Automatisierung in der Energietechnik
 → DoubleM.D. Technische Kybernetik, PO 2014
 → Outgoing --->Spezialisierungsfach -->Automatisierung in der Energietechnik
 → DoubleM.D. Technische Kybernetik, PO 2014
 → Wahlpflichtmodule --->Spezialisierungsfach -->Automatisierung in der Energietechnik
 → M.Sc. Technische Kybernetik, PO 2011
 → Spezialisierungsmodul --->Spezialisierungsfach -->Automatisierung in der Energietechnik

11. Empfohlene Voraussetzungen:
 Elektrische Energienetze I oder vergleichbare externe Vorlesung

12. Lernziele:
 Studierende können die Leitungsbeläge von Drehstrom-Freileitungen und -Kabeln bestimmen.

 Unsymmetrische, insbesondere einpolige Kurzschlüsse bzw. Erdschlüsse können sie berechnen und die dabei auftretenden Vorgänge beurteilen.

 Darauf aufbauend können sie Fragen zur elektromagnetischen Kopplung und Beeinflussung durch Freileitungen beantworten.

 Sie können die thermische Belastbarkeit von Kabeln berechnen und kennen wichtige Einflussparameter.

 Sie können die Lastflussberechnung nach Newton-Raphson anwenden und deren Ergebnisse beurteilen.

 Oberschwingungen und Spannungsschwankungen können sie abschätzen.
Sie kennen die aktuellen HGÜ-Techniken und deren Vor- und Nachteile.

13. Inhalt:
- Kennwerte von Drehstrom-Freileitungen und -Kabeln
- Belastbarkeit von Kabeln
- Vorgänge bei Erdschluss und Erdkurzschluss, Sternpunktbehandlung
- Beeinflussung
- Lastflussberechnung
- Zustandserkennung
- Netzzwicklung
- HGÜ-Übertragungstechnik

14. Literatur:
- Oeding, Oswald: Elektrische Kraftwerke und Netze, Springer-Verlag
- Heuck, Dettmann: Elektrische Energieversorgung. Vieweg-Verlag
- Hosemann (Hg.): Hütte Taschenbücher der Technik. Elektrische Energietechnik. Band 3: Netze. Springer-Verlag
- Brakelmann: Belastbarkeiten der Energiekabel. VDE-Verlag

15. Lehrveranstaltungen und -formen:
• 217601 Vorlesung Elektrische Energienetze II
• 217602 Übung Elektrische Energienetze II

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 56 Stunden
Selbststudium: 124 Stunden
Summe: 180 Stunden

17. Prüfungsnr/n und -name:
21761 Elektrische Energienetze II (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:
Overhead, Tafelanschrieb, Powerpointpräsentation

20. Angeboten von:
Institut für Energieübertragung und Hochspannungstechnik
Modul: 36840 Energiewirtschaft in Verbundsystemen

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050310025</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Stefan Tenbohlen</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Ulrich Scherer</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zuordnung zum Curriculum in diesem Studiengang:

- **B.Sc. Technische Kybernetik, PO 2011**
 - Vorgezogene Master-Module
 - DoubleM.D. Technische Kybernetik, PO 2011
 - Incoming --> Spezialisierungsfach --> Automatisierung in der Energietechnik
 - DoubleM.D. Technische Kybernetik, PO 2011
 - Incoming --> Spezialisierungsfach --> Energiesysteme und Energiewirtschaft
 - DoubleM.D. Technische Kybernetik, PO 2011
 - Outgoing --> Spezialisierungsfach --> Automatisierung in der Energietechnik
 - DoubleM.D. Technische Kybernetik, PO 2011
 - Outgoing --> Spezialisierungsfach --> Energiesysteme und Energiewirtschaft
 - DoubleM.D. Technische Kybernetik, PO 2014
 - Incoming --> Spezialisierungsfach --> Automatisierung in der Energietechnik
 - DoubleM.D. Technische Kybernetik, PO 2014
 - Incoming --> Spezialisierungsfach --> Energiesysteme und Energiewirtschaft
 - DoubleM.D. Technische Kybernetik, PO 2014
 - Outgoing --> Spezialisierungsfach --> Automatisierung in der Energietechnik
 - DoubleM.D. Technische Kybernetik, PO 2014
 - Outgoing --> Spezialisierungsfach --> Energiesysteme und Energiewirtschaft
 - DoubleM.D. Technische Kybernetik, PO 2014
 - Wahlpflichtmodule --> Spezialisierungsfach --> Automatisierung in der Energietechnik
 - DoubleM.D. Technische Kybernetik, PO 2014
 - Wahlpflichtmodule --> Spezialisierungsfach --> Energiesysteme und Energiewirtschaft
 - M.Sc. Technische Kybernetik, PO 2011
 - Spezialisierungsmodul --> Spezialisierungsfach --> Automatisierung in der Energietechnik
11. Empfohlene Voraussetzungen:
- Elektrische Energietechnik
- Elektrische Energienetze 1.

12. Lernziele:

13. Inhalt:
- Verbundbetrieb großer Netze
- Besonderheiten bei der Kupplung von Netzen
- Netzführung, Energie-Dispatching und Netztechnik
- Netzregelung in Verbundsystemen
- Elektrizitätswirtschaftliche Verfahren und Kostenfragen
- Stromhandel und Marktliberalisierung
- Energiewirtschaft bei Erdgas

14. Literatur:
Oeding, Oswald: Elektrische Kraftwerke und Netze Springer-Verlag, 6. Aufl., 2004

15. Lehrveranstaltungen und -formen:
368401 Vorlesung Energiewirtschaft in Verbundsystemen

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 28 Stunden
Selbststudium: 52 Stunden
Summe: 90 Stunden

17. Prüfungsnummer/n und -name:
36841 Energiewirtschaft in Verbundsystemen (BSL), schriftlich und mündlich, 60 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
Energieübertragung und Hochspannungstechnik
Modul: 15440 Firing Systems and Flue Gas Cleaning

2. Modulkürzel: 042500003
5. Modulduer: 1 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0
7. Sprache: Englisch

8. Modulverantwortlicher: Univ.-Prof. Günter Scheffknecht

9. Dozenten:
- Günter Scheffknecht
- Günter Baumbach
- Helmut Seifert

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technische Kybernetik, PO 2011
→ Vorgezogene Master-Module
DoubleM.D. Technische Kybernetik, PO 2011, . Semester
→ Incoming -->Spezialisierungsfach -->Automatisierung in der Energietechnik
→
DoubleM.D. Technische Kybernetik, PO 2011, . Semester
→ Outgoing -->Spezialisierungsfach -->Automatisierung in der Energietechnik
→
DoubleM.D. Technische Kybernetik, PO 2014, . Semester
→ Incoming -->Spezialisierungsfach -->Automatisierung in der Energietechnik
→
DoubleM.D. Technische Kybernetik, PO 2014, . Semester
→ Outgoing -->Spezialisierungsfach -->Automatisierung in der Energietechnik
→
DoubleM.D. Technische Kybernetik, PO 2014, . Semester
→ Wahlpflichtmodule -->Spezialisierungsfach -->Automatisierung in der Energietechnik
→
M.Sc. Technische Kybernetik, PO 2011, . Semester
→ Spezialisierungsmodule -->Spezialisierungsfach -->Automatisierung in der Energietechnik
→

12. Lernziele: The students of the module have understood the principles of heat generation with combustion plants and can assess which combustion plants for the different fuels - oil, coal, natural gas, biomass - and for different capacity ranges are best suited, and how furnaces and firing systems need to be designed that a high energy efficiency with low pollutant emissions could be achieved. In addition, they know which flue gas cleaning techniques have to be applied to control the remaining pollutant emissions. Thus, the students acquired the necessary competence for the application and evaluation of air quality control measures in combustion plants for further studies in the fields of Air Quality Control, Energy and Environment and, finally, they got the competence for combustion plants’ manufactures, operators and supervisory authorities.
13. Inhalt:

I: Combustion and Firing Systems I (Scheffknecht):
- Fuels, combustion process, science of flames, burners and furnaces, pollutant formation and reduction in technical combustion processes, gasification, renewable energy fuels.

II: Flue Gas Cleaning at Combustion Plants (Baumbach/Seifert):
- Methods for dust removal, nitrogen oxide reduction (catalytic/ non-catalytic), flue gas desulfurisation (dry and wet), processes for the separation of specific pollutants. Energy use and flue gas cleaning; residues from thermal waste treatment.

14. Literatur:

I:
- Lecture notes „Combustion and Firing Systems“
- Skript

II:
- Text book „Air Quality Control“ (Günter Baumbach, Springer publishers)
- News on topics from internet (for example UBA, LUBW)

III:
- Lecture notes for practical work

15. Lehrveranstaltungen und -formen:

- 154401 Lecture Combustion and Firing Systems I
- 154402 Lecture Flue Gas Cleaning at Combustion Plants

16. Abschätzung Arbeitsaufwand:

Präsenzzeit:	56 h V
Selbststudiumszeit / Nacharbeitszeit:	124 h
Gesamt:	180 h

17. Prüfungsnummer/n und -name:

| 15441 | Firing Systems and Flue Gas Cleaning (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0 |

18. Grundlage für ...:

19. Medienform:
- PowerPoint Presentations, Practical measurements, Black board

20. Angeboten von:
- Institut für Feuerungs- und Kraftwerkstechnik
Modul: 15960 Kraftwerksanlagen

2. Modulkürzel: 042500011 5. Modulduer: 1 Semester
4. SWS: 4.0 7. Sprache: Deutsch
8. Modulverantwortlicher: Apl. Prof. Uwe Schnell
9. Dozenten: • Uwe Schnell • Arnim Wauschkuhn
10. Zuordnung zum Curriculum in diesem Studiengang:
 - B.Sc. Technische Kybernetik, PO 2011
 - DoubleM.D. Technische Kybernetik, PO 2011, 1. Semester
 - Vorgezogene Master-Module
 - DoubleM.D. Technische Kybernetik, PO 2011, 1. Semester
 - Incoming --> Spezialisierungsfach --> Automatisierung in der Energietechnik
 - DoubleM.D. Technische Kybernetik, PO 2011, 1. Semester
 - Outgoing --> Spezialisierungsfach --> Automatisierung in der Energietechnik
 - DoubleM.D. Technische Kybernetik, PO 2014, 1. Semester
 - Incoming --> Spezialisierungsfach --> Automatisierung in der Energietechnik
 - DoubleM.D. Technische Kybernetik, PO 2014, 1. Semester
 - Outgoing --> Spezialisierungsfach --> Automatisierung in der Energietechnik
 - DoubleM.D. Technische Kybernetik, PO 2014, 1. Semester
 - Wahlpflichtmodule --> Spezialisierungsfach --> Automatisierung in der Energietechnik
 - M.Sc. Technische Kybernetik, PO 2011, 1. Semester
 - Spezialisierungsmodule --> Spezialisierungsfach --> Automatisierung in der Energietechnik

11. Empfohlene Voraussetzungen: Ingenieurwissenschaftliche und naturwissenschaftliche Grundlagen, Grundlagen in Maschinenbau, Verfahrenstechnik, Thermodynamik
13. Inhalt: Kraftwerksanlagen I (Schnell):

 Kraftwerksanlagen II (Schnell):

Wirtschaftlichkeitsrechnung in der Kraftwerkstechnik (Wauschkuhn):

• Grundlagen und Methoden der Investitionsrechnung, Investitions- und Betriebskosten von Kraftwerken, Bestimmung der Wirtschaftlichkeit von Kraftwerken und Beispiele zur Anwendung der Wirtschaftlichkeitsrechnung in der Kraftwerkstechnik.

| 14. Literatur: | Vorlesungsmanuskript „Kraftwerksanlagen I“
| | Vorlesungsmanuskript „Kraftwerksanlagen II“
| | Vorlesungsmanuskript „Wirtschaftlichkeitsrechnung in der Kraftwerkstechnik“
| | Weiterführende Literaturhinweise in den Vorlesungen |

| 15. Lehrveranstaltungen und -formen: | 159601 Vorlesung Kraftwerksanlagen I
| | 159602 Vorlesung Kraftwerksanlagen II
| | 159603 Vorlesung Wirtschaftlichkeitsrechnung in der Kraftwerkstechnik |

| 16. Abschätzung Arbeitsaufwand: | Präsenzzzeit: 70 h
| | Selbststudiumszeit / Nacharbeitszeit: 110 h
| | Gesamt: 180 h |

| 17. Prüfungsnummer/n und -name: | 15961 Kraftwerksanlagen (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0, |

| 18. Grundlage für ... : |
| 19. Medienform: | PPT-Präsentationen, Skripte zu den Vorlesungen, Tafelanschrieb |
| 20. Angeboten von: | Institut für Feuerungs- und Kraftwerkstechnik |
Modul: 15970 Modellierung und Simulation von Technischen Feuerungsanlagen

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>042500012</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Nach Ankuendigung</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Apl. Prof. Uwe Schnell</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Uwe Schnell
• Benedetto Risio
• Oliver Thomas Stein |

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technische Kybernetik, PO 2011	Vorgezogene Master-Module
DoubleM.D. Technische Kybernetik, PO 2011, . Semester	Incoming -->Spezialisierungsfach -->Automatisierung in der Energietechnik
DoubleM.D. Technische Kybernetik, PO 2011, . Semester	Outgoing -->Spezialisierungsfach -->Automatisierung in der Energietechnik
DoubleM.D. Technische Kybernetik, PO 2014, . Semester	Incoming -->Spezialisierungsfach -->Automatisierung in der Energietechnik
DoubleM.D. Technische Kybernetik, PO 2014, . Semester	Outgoing -->Spezialisierungsfach -->Automatisierung in der Energietechnik
DoubleM.D. Technische Kybernetik, PO 2014, . Semester	Wahlpflichtmodule -->Spezialisierungsfach -->Automatisierung in der Energietechnik

11. Empfohlene Voraussetzungen:

- Ingenieurwissenschaftliche Grundlagen, fundierte Grundlagen in Mathematik, Physik und Informatik.
- Fundamentals of engineering sciences and profound knowledge of mathematics, physics, and information technology.

12. Lernziele:

Students will learn the principles and the possibilities of modelling and simulation of technical combustion systems. They will study which models and which simulation methods are suitable for different
applications. They will be able to perform simple combustion simulations, and based on this knowledge they will have the prerequisites for applying these fundamentals, e.g. in the frame of a student’s project.

13. Inhalt:

I: Verbrennung und Feuerungen II (Schnell):
- Strömung, Strahlungswärmeaustausch, Brennstoffabbrand und Schadstoffentstehung in Flammen und Feuerräumen: Grundlagen, Berechnung und Modellierung.

II: Simulations- und Optimierungsmethoden für die Feuerungstechnik (Risio):
- Einsatzfelder für technische Flammen in der Energie- und Verfahrenstechnik, Techniken zur Abbildung industrieller Feuerungssysteme, Aufbau und Funktion moderner Höchstleistungsrechner, Algorithmen und Programmiertechnik für die Beschreibung von technischen Flammen auf Höchstleistungsrechnern, Besuch des Virtual-Reality (VR)-Labors des HLRS und Demonstration der VR-Visualisierung für industrielle Feuerungen, Methoden zur Bestimmung der Verlässlichkeit feuerungstechnischer Vorhersagen (Validierung) an Praxis-Beispielen, Optimierung in der Feuerungstechnik: Gradientenverfahren, Evolutionäre Verfahren und Genetische Algorithmen

III: Grundlagen technischer Verbrennungsvorgänge III (Stein):
- Lösung nicht-linearer Gleichungssysteme
- Verfahren zur Zeitdiskretisierung
- Homogene Reaktoren
- Eindimensionale Reaktoren/Flammen

I: Combustion and Firing Systems II (Schnell):
Fundamentals of model descriptions for turbulent reacting fluid flow, radiative heat transfer, combustion of fuels, and pollutant formation in flames and furnaces.

II: Simulation and Optimization Methods for Combustion Systems (Risio):
Applications of technical flames in energy technology and process engineering, techniques for "mapping" of industrial combustion systems on computers, design and operation of state-of-the art super computers at HLRS University of Stuttgart, algorithms and programming paradigms for modelling technical flames on super computers, visit of the Virtual Reality (VR) laboratory at HLRS, demonstration of VR visualization of industrial flames, methods for determining the reliability of predictions ("validation") using exemplary technical flames, and optimization methods (gradient methods, evolutionary methods and genetic algorithms).

III: Fundamentals of Technical Combustion Processes III (Stein):
Solution of non-linear equation systems
Methods for temporal discretization
Homogeneous reactors
One-dimensional reactors/flames

14. Literatur:
- Vorlesungsmanuskript „Verbrennung & Feuerungen II“
- Vorlesungsmanuskript „Simulations- und Optimierungsmethoden für die Feuerungstechnik“
• Vorlesungsfolien „Grundlagen technischer Verbrennungsvorgänge III"

15. Lehrveranstaltungen und -formen:

• 159701 Vorlesung Verbrennung und Feuerungen II
• 159702 Vorlesung Simulations- und Optimierungsmethoden für die Feuerungstechnik
• 159703 Vorlesung Grundlagen technischer Verbrennungsvorgänge III

16. Abschätzung Arbeitsaufwand:

| Präsenzzeit: 62 h |
| Selbststudium: 118 h |
| Gesamt: 180 h |

Time of attendance: 62 hrs
Time outside classes: 118 hrs
Total time: 180 hrs

17. Prüfungsnummer/n und -name: 15971 Modellierung und Simulation von Technischen Feuerungsanlagen (PL), schriftlich oder mündlich, Gewichtung: 1.0

18. Grundlage für ...:

19. Medienform: Tafelanschrieb, PPT-Präsentationen, Skripte zu Vorlesungen und Praktikum, Computeranwendungen

20. Angeboten von:
Modul: 37010 Netzintegration von Windenergie

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050310026</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Stefan Tenbohlen</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Markus Pöller</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>B.Sc. Technische Kybernetik, PO 2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorgezogene Master-Module</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2011</td>
</tr>
<tr>
<td>Incoming --> Spezialisierungsfach --> Automatisierung in der Energietechnik</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2011</td>
</tr>
<tr>
<td>Outgoing --> Spezialisierungsfach --> Automatisierung in der Energietechnik</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2014</td>
</tr>
<tr>
<td>Incoming --> Spezialisierungsfach --> Automatisierung in der Energietechnik</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2014</td>
</tr>
<tr>
<td>Outgoing --> Spezialisierungsfach --> Automatisierung in der Energietechnik</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2014</td>
</tr>
<tr>
<td>Wahlpflichtmodule --> Spezialisierungsfach --> Automatisierung in der Energietechnik</td>
</tr>
<tr>
<td>M.Sc. Technische Kybernetik, PO 2011</td>
</tr>
<tr>
<td>Spezialisierungsmodule --> Spezialisierungsfach --> Automatisierung in der Energietechnik</td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen:

| Elektrische Energienetze 1 |

12. Lernziele:

Der Studierende kann Probleme des Zusammenspiels von Windenergieanlagen und Energieversorgungsnetzen richtig im Zusammenhang einordnen und Ansätze für Problemlösungen identifizieren.

13. Inhalt:

- Physikalische Grundlagen der Windturbine
- Aerodynamische Grundlagen
- Generatorkonzepte
- Netzrückwirkungen
- Betrieb von Netzen mit hohem Windenergieanteil
- Einfluss der Windenergie auf die Netzstabilität
- Fallbeispiele

14. Literatur:

- Heier, Windkraftanlagen - Systemauslegung, Integration und Regelung, 4. Aufl., 2005
- Hormann/Just/Schlabbach, Netzrückwirkungen, 3. Aufl., 2008
<table>
<thead>
<tr>
<th>15. Lehrveranstaltungen und -formen:</th>
<th>370101 Vorlesung Netzintegration von Windenergie</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Selbststudium: 62 Stunden</td>
</tr>
<tr>
<td></td>
<td>Summe: 90 Stunden</td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>37011 Netzintegration von Windenergie (BSL), mündliche Prüfung, 30 Min., Gewichtung: 1.0</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Energieübertragung und Hochspannungsstechnik</td>
</tr>
</tbody>
</table>
Modul: 21930 Photovoltaik II

2. Modulkürzel: 050513020 5. Moduldauler: 1 Semester
4. SWS: 4.0 7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Jürgen Heinz Werner
9. Dozenten: • Jürgen Heinz Werner • Markus Schubert

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technische Kybernetik, PO 2011
→ Vorgezogene Master-Module
DoubleM.D. Technische Kybernetik, PO 2011
→ Incoming --Spezialisierungsfach -->Automatisierung in der Energietechnik
→
DoubleM.D. Technische Kybernetik, PO 2011
→ Outgoing --Spezialisierungsfach -->Automatisierung in der Energietechnik
→
DoubleM.D. Technische Kybernetik, PO 2014
→ Incoming --Spezialisierungsfach -->Automatisierung in der Energietechnik
→
DoubleM.D. Technische Kybernetik, PO 2014
→ Outgoing --Spezialisierungsfach -->Automatisierung in der Energietechnik
→
DoubleM.D. Technische Kybernetik, PO 2014
→ Wahlpflichtmodule --Spezialisierungsfach -->Automatisierung in der Energietechnik
→
M.Sc. Technische Kybernetik, PO 2011
→ Spezialisierungsveranstaltungen --Spezialisierungsfach -->Automatisierung in der Energietechnik
→

11. Empfohlene Voraussetzungen: Photovoltaik I
12. Lernziele:
Kenntnisse über den Aufbau, die Leistungsfähigkeit, Charakterisierung und Wirtschaftlichkeit von Photovoltaikanlagen

13. Inhalt:
1. Solarstrahlung
2. Solarzellen: Alternativen zu konventionellem, kristallinen Silizium
3. Solarmodule: Temperatur, Verschaltung, Schutzdioden
4. Bestandteile von Photovoltaikanlagen
5. Standort und Verschattung
6. Planung und Dimensionierung von Photovoltaikanlagen
7. Montagesysteme
8. Simulationswerkzeug für Photovoltaikanlagen
9. Installation und Inbetriebnahme von Photovoltaikanlagen
10. Betrieb, Wartung, Monitoring
11. Photovoltaische Messtechnik
12. Wirtschaftlichkeit von Photovoltaikanlagen
14. Literatur:
- DGS-Leitfaden, Photovoltaische Anlagen (Deutsche Gesellschaft für Sonnenenergie, Berlin, 2012)

15. Lehrveranstaltungen und -formen:
- 219301 Vorlesung Photovoltaik II
- 219302 Übung Photovoltaik II

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 56 h
Selbststudium: 124 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
21931 Photovoltaik II (PL), schriftlich oder mündlich, 90 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:
Powerpoint, Tafel

20. Angeboten von:
Institut für Photovoltaik
Modul: 28550 Regelung von Kraftwerken und Netzen

2. Modulkürzel: 042500042 5. Modulduauer: 1 Semester
4. SWS: 4.0 7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Günter Scheffknecht
9. Dozenten: Florian Gutekunst
10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technische Kybernetik, PO 2008
 → Wahlbereich Anwendungsfach -->Regelungstechnik in der
elektrischen Energieversorgung -->Pflichtfach Regelungstechnik in
der elektrischen Energieversorgung
 →
 B.Sc. Technische Kybernetik, PO 2011
 → Vorgezogene Master-Module
 B.Sc. Technische Kybernetik, PO 2011
 → Wahlbereich Anwendungsfach -->Regelungstechnik in der
elektrischen Energieversorgung -->Pflichtfach Regelungstechnik in
der elektrischen Energieversorgung
 →
 DoubleM.D. Technische Kybernetik, PO 2011, 5. Semester
 → Incoming -->Spezialisierungsfach -->Automatisierung in der
Energietechnik
 →
 DoubleM.D. Technische Kybernetik, PO 2011, 5. Semester
 → Outgoing -->Spezialisierungsfach -->Automatisierung in der
Energietechnik
 →
 DoubleM.D. Technische Kybernetik, PO 2014, 5. Semester
 → Incoming -->Spezialisierungsfach -->Automatisierung in der
Energietechnik
 →
 DoubleM.D. Technische Kybernetik, PO 2014, 5. Semester
 → Outgoing -->Spezialisierungsfach -->Automatisierung in der
Energietechnik
 →
 DoubleM.D. Technische Kybernetik, PO 2014, 5. Semester
 → Wahlpflichtmodule -->Spezialisierungsfach -->Automatisierung in
der Energietechnik
 →
 M.Sc. Technische Kybernetik, PO 2011, 5. Semester
 → Spezialisationsmodule -->Spezialisierungsfach -->Automatisierung
in der Energietechnik
 →
11. Empfohlene Voraussetzungen: Keine
12. Lernziele: Die Absolventen des Moduls kennen die klassischen kraftwerkssund
netzseitigen Automatisierungs- und Regelungsaufgaben im Bereich
der Stromerzeugung. Sie sind mit den aktuellen nationalen und
internationalen Spezifikationen und Richtlinien für die Standard-
Regelaufgaben in der Stromerzeugung vertraut und können bestehende
Regelungen und ihre Auswirkungen auf das Verbundsystem bewerten.
I.1: Verbundnetzgliederung
I.2: Netzpartner
I.3: Europäisches Verbundnetz und Verbundnetze weltweit
II: Dynamisches Verhalten der Netzpartner
II.1a: fossile Dampfkraftwerke
II.1b: Kernkraftwerke
II.1c: Solarthermische Kraftwerke
II.1d: Wasserkraftwerke
II.1e: Windkraftanlagen
II.1f: weitere dezentrale Erzeuger
II.2: Verbraucher
II.3: Netzbetriebsmittel/Leistungselektronik
III: Netzregelung und Systemführung
III.1: Frequenz-Wirkleistungs-Regelung
III.2: Spannungsregelung
III.3: Dynamisches Netzverhalten
III.4: Monitoring
IV: Aktuelle Herausforderungen
IV.1: Einbindung erneuerbarer Energien
IV.2: Ausweitung des europäischen Stromhandels
IV.3: Erweiterungen des europäischen Verbundnetzes
IV.4: Möglichkeiten zur Minderung von CO2 Emissionen bei der el. Energieerzeugung mittels CCS (Carbon Capture and Storage)
V: Übung
V.1: Fossil befeuerte Kraftwerke
V.2: Kernkraftwerke und Wasserkraftwerke
V.3: Leistungs-Frequenzregelung
V.4: Lastflussrechnung

15. Lehrveranstaltungen und -formen: 285501 Vorlesung Regelung von Kraftwerken und Netzen

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 56 Stunden
Selbststudium: 124 Stunden
Summe: 180 Stunden

17. Prüfungsnummer/n und -name: 28551 Regelung von Kraftwerken und Netzen (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... : 28550 Regelung von Kraftwerken und Netzen

19. Medienform: PPT-Präsentationen, Tafelanschrieb

20. Angeboten von: Institut für Feuerungs- und Kraftwerkstechnik
Modul: 30610 Regelungstechnik für Kraftwerke

2. Modulkürzel: 042500043
5. Moduldauer: 1 Semester
3. Leistungspunkte: 3.0 LP
6. Turnus: jedes 2. Semester, SoSe
4. SWS: 2.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Günter Scheffknecht
9. Dozenten: Lutz Hanel

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technische Kybernetik, PO 2011
⇒ Vorgezogene Master-Module
DoubleM.D. Technische Kybernetik, PO 2011
⇒ Incoming -->Spezialisierungsfach -->Automatisierung in der Energietechnik
⇒
DoubleM.D. Technische Kybernetik, PO 2011
⇒ Outgoing -->Spezialisierungsfach -->Automatisierung in der Energietechnik
⇒
DoubleM.D. Technische Kybernetik, PO 2014
⇒ Incoming -->Spezialisierungsfach -->Automatisierung in der Energietechnik
⇒
DoubleM.D. Technische Kybernetik, PO 2014
⇒ Outgoing -->Spezialisierungsfach -->Automatisierung in der Energietechnik
⇒
DoubleM.D. Technische Kybernetik, PO 2014
⇒ Wahlpflichtmodule -->Spezialisierungsfach -->Automatisierung in der Energietechnik
⇒
M.Sc. Technische Kybernetik, PO 2011
⇒ Spezialisierungsmodule -->Spezialisierungsfach -->Automatisierung in der Energietechnik
⇒

11. Empfohlene Voraussetzungen:
Grundlagen der Thermodynamik, Grundlagen der Regelungstechnik, Mathematik

12. Lernziele:

13. Inhalt:
• Grundlagen der Prozessautomatisierung
• Verschiedene Blockführungskonzepte
• Kraftwerksprozesse: Kohlekraftwerke und kombinierte Gas- und Dampfkraftwerke
• Einsatz klassischer Regelungskonzepte
• Einsatz von Zustandsregelung und -Beobachtung
• Einsatz modellbasierter Steuerungen
• Besuch des Heizkraftwerks der Uni Stuttgart

15. Lehrveranstaltungen und -formen: 306101 Vorlesung Regelungstechnik für Kraftwerke

16. Abschätzung Arbeitsaufwand: Präsenzzeit: 28 h
Selbststudium: 62 h
Summe: 90 h

17. Prüfungsnummer/n und -name: 30611 Regelungstechnik für Kraftwerke (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform: PPT-Präsentationen, Tafelanschrieb, Besuch des Heizkraftwerks

20. Angeboten von: Institut für Feuerungs- und Kraftwerkstechnik
2105 Biomedizinische Technik

Zugeordnete Module:

- 2117 Spez.Fach. anerkannt 6LP
- 2118 Spez.Fach. anerkannt 6LP
- 2119 Spez.Fach. anerkannt 6LP
- 32220 Grundlagen der Biomedizinischen Technik
- 32920 Bildgebende Verfahren und Bildverarbeitung in der Medizin
- 32930 Biologische Informations-, Kommunikations- und Regelsysteme
- 33470 Übungen zur Biomedizinischen Technik
- 33480 Biomedizinische Gerätetechnik
- 33490 Klinische Dosimetrie und Bestrahlungsplanung
- 33500 Grundlagen der medizinischen Strahlentechnik
- 33510 Praktikum Biomedizinischen Technik
- 40810 Strahlenschutz
2117 Spez.Fach. anerkannt 6LP
2118 Spez.Fach. anerkannt 6LP
2119 Spez.Fach. anerkannt 6LP
Modul: 32920 Bildgebende Verfahren und Bildverarbeitung in der Medizin

4. SWS: 4.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Joachim Nagel
9. Dozenten: Joachim Nagel

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technische Kybernetik, PO 2011
 → Vorgezogene Master-Module

DoubleM.D. Technische Kybernetik, PO 2011
 → Incoming --> Spezialisierungsfach --> Biomedizinische Technik
 →

DoubleM.D. Technische Kybernetik, PO 2011
 → Outgoing --> Spezialisierungsfach --> Biomedizinische Technik
 →

DoubleM.D. Technische Kybernetik, PO 2014
 → Incoming --> Spezialisierungsfach --> Biomedizinische Technik
 →

DoubleM.D. Technische Kybernetik, PO 2014
 → Outgoing --> Spezialisierungsfach --> Biomedizinische Technik
 →

DoubleM.D. Technische Kybernetik, PO 2014
 → Wahlpflichtmodule --> Spezialisierungsfach --> Biomedizinische Technik
 →

M.Sc. Technische Kybernetik, PO 2011
 → Spezialisierungsmodule --> Spezialisierungsfach --> Biomedizinische Technik
 →

11. Empfohlene Voraussetzungen: keine

12. Lernziele:

Im Modul Bildgebende Verfahren in der Medizin

- haben die Studenten grundlegende Kenntnisse der bildgebenden Verfahren erworben;
- haben die Studierenden die physikalischen und technischen Prinzipien der bildgebenden Verfahren, Realisierungen der unterschiedlichen Systeme, sowie deren medizinische Anwendungen gelernt;
- haben die Studenten detaillierte Kenntnisse der Computertomographie erworben;
- haben die Studenten grundlegende Kenntnisse der Bildverarbeitung erworben.

Die Studierenden kennen die Verfahren, Realisierungen und Anwendungen von:
- traditionellen Röntgen Abbildungen,
- Röntgen Computer Tomographie,
- Nuklearmedizinische Bildgebungsverfahren,
- Magnet-Resonanz Tomographie,
- Ultraschall Abbildungsverfahren,
- Thermographie,
- Impedanz-Tomographie,
- Abbildung elektrischer Quellen,
- optische Tomographie,
- Endoskopie.

Die Studierenden beherrschen:
- die Grundlagen der Systemtheorie bildgebender Verfahren, und
- Grundlagen der digitalen Bildverarbeitung.

Die Studierenden kennen die biologischen Wirkungen ionisierender Strahlung und die Grundlagen der Dosimetrie.

13. Inhalt:

In dem Modul werden folgende Inhalte vermittelt:

Physikalisch-technische Grundlagen und Realisierungen der Bilderzeugung, sowie Anwendung diagnostischer und therapeutischer Verfahren in der Medizin. Inhalte sind: systemtheoretische Grundlagen der Bilderzeugung und Bildverarbeitung; Wechselwirkungen der in der Medizin genutzten Strahlen und Wellen mit Materie; Bilderzeugung in der Röntgendiagnostik; Grundlagen und Techniken der Computertomographie, Rekonstruktionsverfahren; Röntgen CT; nuklearmedizinische Verfahren (planare Szintigraphie, PET; SPECT); Kernspintomographie; Impedanz-Tomographie; Optische Tomographie, Endoskopie; bildgebende Ultraschallverfahren; Thermographie; Abbildung bioelektrischer Quellen; ausgewählte Anwendungen der Bildverarbeitung. Es werden die Grundlagen der Systemtheorie bildgebender Verfahren und die Grundlagen der digitalen Bildverarbeitung dargelegt. Die biologischen Wirkungen ionisierender Strahlung und die Grundlagen der Dosimetrie werden analysiert.

14. Literatur:

- Nagel, J.: Bildgebende Verfahren in der Medizin. Vorlesungsfolien und Internetquellen
- Morneburg, H.: Bildgebende Systeme für die medizinische Diagnostik, Publicis MCD Verlag, 1995
- Ott, R.: Manuskript zur Vorlesung Digitale Bildverarbeitung, Institut für Physikalische Elektronik, 1996

15. Lehrveranstaltungen und -formen:

329201 Vorlesung Bildgebende Verfahren in der Medizin

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 42 Stunden
Selbststudium: 138 Stunden
Summe: 180 Stunden

17. Prüfungsnummer/n und -name:

32921 Bildgebende Verfahren und Bildverarbeitung in der Medizin (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0

18. Grundlage für ... :
19. Medienform: Beamer-Präsentation mit Animationen und Filmen, Overhead-Projektor und Tafel

20. Angeboten von:
Modul: 32930 Biologische Informations-, Kommunikations- und Regelsysteme

2. Modulkürzel: 040900004
5. Modulduer: 2 Semester
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Joachim Nagel
9. Dozenten: Joachim Nagel

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technische Kybernetik, PO 2011
 → Vorgezogene Master-Module
 DoubleM.D. Technische Kybernetik, PO 2011
 → Incoming --Spezialisierungsfach -->Biomedizinische Technik
 →
 DoubleM.D. Technische Kybernetik, PO 2011
 → Outgoing --Spezialisierungsfach -->Biomedizinische Technik
 →
 DoubleM.D. Technische Kybernetik, PO 2014
 → Incoming --Spezialisierungsfach -->Biomedizinische Technik
 →
 DoubleM.D. Technische Kybernetik, PO 2014
 → Outgoing --Spezialisierungsfach -->Biomedizinische Technik
 →
 DoubleM.D. Technische Kybernetik, PO 2014
 → Wahlpflichtmodule --Spezialisierungsfach -->Biomedizinische Technik
 →
 M.Sc. Technische Kybernetik, PO 2011
 → Spezialisierungsprogramm --Spezialisierungsfach -->Biomedizinische Technik
 →

11. Empfohlene Voraussetzungen: keine

12. Lernziele:

 Im Modul Biologische Informations-, Kommunikations- und Regelsysteme haben die Studenten grundlegende Kenntnisse biologischer Informations-, Kommunikations- und Regelsysteme erworben; haben die Studierenden die biologischen, physikalischen, biochemischen, und elektrobiologischen Prinzipien der Informationsentstehung und Speicherung, der neurologischen Informationsübertragung sowie der Informationsverarbeitung in neuronalen Netzwerken einschließlich des Gehirns erlernt; haben die Studierenden die unterschiedlichen biologischen Regelkreise im menschlichen Körper verstanden; haben die Studierenden eine Vorstellung über die Funktion des menschlichen Gehirns erworben (wie denkt der Mensch?).

 Die Studierenden kennen die Grundlagen der Informationsspeicherung und -verarbeitung in der DNS und RNS, die Studierenden haben ein tiefgreifendes Wissen über die Funktion von Sensoren zur Erfassung von Informationen aus der inneren und äußeren Umwelt erworben, sie kennen die Mechanismen der Übertragung und Verarbeitung von Informationen in einem neuronalen Netzwerk, die Studierenden kennen die Mechanismen eines biologischen Regelkreises, die
Studierenden beherrschen die Grundlagen der Funktionen des Gehirns und können Prozesse wie Informationsspeicherung (Gedächtnis) und Informationsverarbeitung (Denken) erklären, sowie Parallelen zwischen biologischen und technischen Systemen aufzeigen.

Die Studierenden haben grundlegende Kenntnisse über die diagnostischen und therapeutischen Anwendungen von Informations-, Kommunikations- und Regelsystemen erworben.

13. Inhalt:

In dem Modul werden folgende Inhalte vermittelt:

- Kriterien und Elemente lebender Systeme; biologische Informationsspeicherung, genetischer Code, Proteinsynthese;
- physikalische, elektrische und chemische Prozesse an der Zellmembran;
- Reiz- und Informationserzeugung; Übertragung von Information, und Prinzipien der biologischen Informationsverarbeitung; Grundlagen der Neurophysiologie und des menschlichen Denkens; motorisches, sensorisches und autonomes Nervensystem; Reflexe; neuronale und humorale Steuerungs- und Regelprozesse wie kardiovaskulärer Regelkreis und Temperaturegulierung; neuronale Netze, Beispiele biologischer Nachrichtenverarbeitung; diagnostische und therapeutische Anwendungen in der Medizin.

14. Literatur:

- Bear, M.F., B.W. Connors, B.W. und Paradiso, M.A.: Neuroscience, Exploring the Brain, Williams & Wilkins, 1996.

15. Lehrveranstaltungen und -formen:

<table>
<thead>
<tr>
<th>Kursnummer</th>
<th>Vorlesung Biologische Informations-, Kommunikations- und Regelsysteme</th>
</tr>
</thead>
<tbody>
<tr>
<td>329301</td>
<td>Vorlesung Biologische Informations-, Kommunikations- und Regelsysteme</td>
</tr>
</tbody>
</table>

16. Abschätzung Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Form</th>
<th>Zeit</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzzeit</td>
<td>42 Stunden</td>
</tr>
<tr>
<td>Selbststudium</td>
<td>138 Stunden</td>
</tr>
<tr>
<td>Summe</td>
<td>180 Stunden</td>
</tr>
</tbody>
</table>

17. Prüfungsnummer/n und -name:

<table>
<thead>
<tr>
<th>Prüfungsnummer/n</th>
<th>Prüfungsname</th>
</tr>
</thead>
<tbody>
<tr>
<td>32931</td>
<td>Biologische Informations-, Kommunikations- und Regelsysteme (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0</td>
</tr>
</tbody>
</table>

Stand: 09. April 2015
<table>
<thead>
<tr>
<th>18. Grundlage für ...</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>19. Medienform:</td>
<td>Beamer-Präsentation mit Animationen und Filmen, Overhead-Projektor und Tafel</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td></td>
</tr>
</tbody>
</table>
Modul: 33480 Biomedizinische Gerätetechnik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>040900006</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Joachim Nagel</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Joachim Nagel</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- **B.Sc. Technische Kybernetik, PO 2011**
 - Vorgezogene Master-Module
 - DoubleM.D. Technische Kybernetik, PO 2011
 - Chalmers -->Incoming -->Wahlfach Technische Kybernetik
 - DoubleM.D. Technische Kybernetik, PO 2011
 - Chalmers -->Outgoing -->Wahlfach Technische Kybernetik
 - DoubleM.D. Technische Kybernetik, PO 2011
 - Incoming -->Spezialisierungsfach -->Biomedizinische Technik
 - DoubleM.D. Technische Kybernetik, PO 2011
 - Outgoing -->Spezialisierungsfach -->Biomedizinische Technik
 - DoubleM.D. Technische Kybernetik, PO 2014
 - Chalmers -->Incoming -->Wahlfach Technische Kybernetik
 - DoubleM.D. Technische Kybernetik, PO 2014
 - Incoming -->Spezialisierungsfach -->Biomedizinische Technik
 - DoubleM.D. Technische Kybernetik, PO 2014
 - Outgoing -->Spezialisierungsfach -->Biomedizinische Technik
 - DoubleM.D. Technische Kybernetik, PO 2014
 - Wahlpflichtmodule -->Spezialisierungsfach -->Biomedizinische Technik
 - M.Sc. Technische Kybernetik, PO 2011
 - Spezialisierungsmodule -->Spezialisierungsfach -->Biomedizinische Technik
 - M.Sc. Technische Kybernetik, PO 2011
 - Spezialisierungsmodule -->Wahlfach Technische Kybernetik

11. Empfohlene Voraussetzungen:

- keine

12. Lernziele:

- Die Studierenden haben einen Basiswortschatz medizinischer Terminologie erworben,
- sie besitzen grundlegende Kenntnisse der Beatmungs-/Narkosetechnik,
- sowie Kenntnisse zu den wichtigsten Gewebedissektionsverfahren,
- sie kennen das Basisinstrumentarium der minimal invasiven Chirurgie,
- sie haben die theoretischen Grundkenntnisse des Kardiotechnikers erworben,
- sie besitzen Grundkenntnisse medizinisch-interventioneller Robotiksysteme und entsprechender Anforderungen an die Systeme,
- sie haben ein Verständnis von medizintechnischen Entwicklungsschwerpunkten und der notwendigen Komplexität klinischer Medizingeräte erworben.

13. Inhalt:

Erfordernisse technischer Geräte im klinischen Einsatzbereich; Mittel der Ingenieurwissenschaft (mit Schwerpunkt Maschinenbau) werden auf konkrete medizinische Problemstellungen übertragen und angewendet:

- Einführung in die Beatmungs-/Narkosetechnik,
- Grundlagen der Chirurgietechnik, Schwerpunkt minimal invasive Chirurgie, mit Anwendungsbeispielen
- Einführung in das theoretische Basiswissen des Kardiotechnikers mit Anwendungsbeispielen
- Grundlagen der medizinisch-interventionellen Robotertechnik mit Anwendungsbeispielen

14. Literatur:

- Vorlesungsskriptum

15. Lehrveranstaltungen und -formen: 334801 Vorlesung Biomedizinische Gerätetechnik

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 21 Stunden
Selbststudium: 69 Stunden
Summe: 90 Stunden

17. Prüfungsnummer/n und -name: 33481 Biomedizinische Gerätetechnik (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform: Beamer-Präsentation, Overhead-Projektor, Tafel

20. Angeboten von:
Modul: 32220 Grundlagen der Biomedizinischen Technik

2. Modulkürzel:	040900001
3. Leistungspunkte:	6.0 LP
4. SWS:	4.0
5. Moduldauer:	1 Semester
6. Turnus:	jedes Semester
7. Sprache:	Deutsch
8. Modulverantwortlicher:	Univ.-Prof. Joachim Nagel
9. Dozenten:	• Johannes Port
• Joachim Nagel	
10. Zuordnung zum Curriculum in diesem Studiengang:	
B.Sc. Technische Kybernetik, PO 2011	
→ Vorgezogene Master-Module	
DoubleM.D. Technische Kybernetik, PO 2011	
→ Incoming -->Spezialisierungsfach -->Biomedizinische Technik	
DoubleM.D. Technische Kybernetik, PO 2011	
→ Incoming -->Spezialisierungsfach -->Systembiologie	
DoubleM.D. Technische Kybernetik, PO 2011	
→ Outgoing -->Spezialisierungsfach -->Biomedizinische Technik	
DoubleM.D. Technische Kybernetik, PO 2011	
→ Outgoing -->Spezialisierungsfach -->Systembiologie	
DoubleM.D. Technische Kybernetik, PO 2014	
→ Incoming -->Spezialisierungsfach -->Biomedizinische Technik	
DoubleM.D. Technische Kybernetik, PO 2014	
→ Incoming -->Spezialisierungsfach -->Systembiologie	
DoubleM.D. Technische Kybernetik, PO 2014	
→ Outgoing -->Spezialisierungsfach -->Biomedizinische Technik	
DoubleM.D. Technische Kybernetik, PO 2014	
→ Outgoing -->Spezialisierungsfach -->Systembiologie	
DoubleM.D. Technische Kybernetik, PO 2014	
→ Wahlpflichtmodule -->Spezialisierungsfach -->Biomedizinische Technik	
DoubleM.D. Technische Kybernetik, PO 2014	
→ Wahlpflichtmodule -->Spezialisierungsfach -->Systembiologie	
M.Sc. Technische Kybernetik, PO 2011	
→ Spezialisierungsmodulte -->Spezialisierungsfach -->Biomedizinische Technik	
M.Sc. Technische Kybernetik, PO 2011	
→ Spezialisierungsmodulte -->Spezialisierungsfach -->Systembiologie	
11. Empfohlene Voraussetzungen:	keine
12. Lernziele:	Die Studierenden
• besitzen grundlegende Kenntnisse in der biomedizinischen Instrumentierung
• kennen die physikalischen Grundlagen und theoretischen Herleitungen und Annahmen wichtiger biomedizinischer Messverfahren
• haben wesentliche Kenntnisse gängiger bildgebender Verfahren
• besitzen fundamentale Kenntnisse der funktionellen Stimulation und von der Physiologie der zu ersetzenden natürlichen Funktionen
• können die Verfahren bewerten und deren Einsatzmöglichkeiten in der biomedizinischen Technik beurteilen
• verfügen über einen wesentlichen Grundwortschatz biomedizinischer Begriffe
• besitzen sowohl grundlegendes theoretisches und praktisches Fach- und Methodenwissen als auch biologische und medizinische Kenntnisse

13. Inhalt:

In dem Modul werden folgende Inhalte vermittelt:

• die besonderen Probleme bei der Messung physiologischer Kenngrößen
• die grundlegenden Eigenschaften biologischer Gewebe
• die Besonderheiten der Elektroden und damit die entsprechenden einzuhaltenen Maßnahmen bei der Ableitung der Signale
• die physikalischen Grundlagen wichtiger mechanoelektrischer, photoelektrischer, elektrochemischer und thermoelektrischer Wandler
• die wesentlichen Prinzipien und die biomedizinisch spezifischen Besonderheiten der Signalverarbeitung, Signalverstärkung und Signalübertragung
• allgemeine Eigenschaften des kardiovaskulären und respiratorischen Systems
• Messverfahren kardiovaskulärer Kenngrößen, wie Elektrokardiogramm, Impedanzkardiogramm, Impedanzplethysmogramm, Blutdruckmessung, Blutflussmessung, etc.
• Messverfahren respiratorischer Kenngrößen, wie Impedanzpneumographie, Pneumotachographie, Spirometrie, Ganzkörperplethysmographie, etc.
• Messverfahren biochemischer Kenngrößen, wie pH-Wert-Messung, Ionenkonzentrationsmessung, Sauerstoffmessung, etc.
• Messverfahren neurologischer Kenngrößen, wie das Elektroenzephalogramm, Elektroneurogramm, Evozierte Potentiale, etc.
• Messverfahren visueller Kenngrößen, wie das Elektrookulogramm, das Elektrotretinogramm, etc., - wichtige physikalische, akustische Kenngrößen
• Messverfahren akustischer Kenngrößen, wie das Audiogramm, otoakustisch evozierte Potentiale, Elektrocochleogramm, etc.
• Messverfahren weiterer wichtiger Kenngrößen, wie das Elektromyogramm, Elektronystagmogramm, etc.
• Bildgebende Verfahren, wie die Röntgentechnik, Ultraschall, Magnetresonanztchnik, Endoskopietechnik, Thermographie, etc.
• Beispiele für Implantate und Funktionsersatz, wie das Cochlea-Implantat, Mittelohrprothese, Hörgeräte, Herzschrittmacher, Herzklappenersatz, etc.
• Beispiele aktueller Forschung, wie das Brain-Computer Interface, biohybride Armprothese, etc..

14. Literatur:
• Port, J.: Grundlagen der Biomedizinischen Technik, Vorlesungsskript und Vorlesungsfolien
• Pschyrembel, Klinisches Wörterbuch, 261. Auflage, Walter de Gruyter-Verlag, 2007

15. Lehrveranstaltungen und -formen: 322201 Grundlagen der Biomedizinischen Technik

17. Prüfungsnummer/n und -name: 32221 Grundlagen der Biomedizinischen Technik (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0

18. Grundlage für...: 33470 Übungen zur Biomedizinischen Technik

19. Medienform: Beamer-Präsentation, Overhead-Projektor, Tafel

20. Angeboten von: Institut für Biomedizinische Technik
Modul: 33500 Grundlagen der medizinischen Strahlentechnik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>041610008</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Jörg Starflinger</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Talianna Schmidt
• Jörg Starflinger |

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>Curriculum</th>
<th>Spezialisierungsfach</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.Sc. Technische Kybernetik, PO 2011</td>
<td>Biomedizinische Technik</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2011</td>
<td>Biomedizinische Technik</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2011</td>
<td>Biomedizinische Technik</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2014</td>
<td>Biomedizinische Technik</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2014</td>
<td>Biomedizinische Technik</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2014</td>
<td>Biomedizinische Technik</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2014</td>
<td>Biomedizinische Technik</td>
</tr>
<tr>
<td>M.Sc. Technische Kybernetik, PO 2011</td>
<td>Biomedizinische Technik</td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen:

Es wird dringend empfohlen, die Vorlesung "Radioaktivität und Strahlenschutz" vorher belegt zu haben. Die Grundlagen aus dieser Vorlesung werden nicht wiederholt.

12. Lernziele:

Die Studierenden können

- die verschiedenen Arten ionisierender Strahlung benennen und nach ihren Eigenschaften bewerten.
- die Erzeugung von Röntgenstrahlung erklären.
- die Nachschlagewerke für physikalische Eigenschaften von Atomen und Atomkernen benennen und Informationen daraus ablesen.
- moderne Messprinzipien für den Nachweis ionisierender Strahlung in Bezug auf die Anwendung in Diagnose und Therapie bewerten. Sie können insbesondere die Bedeutung verschiedener Detektortechniken in bildgebenden Verfahren bewerten.
- die Einflussfaktoren von Gewebeeigenschaften auf die Absorption von ionisierender Strahlung, insbesondere Röntgen- und Gamma-Strahlung benennen.
- Detektor- und Strahlungseigenschaften in Bezug auf deren Eignung für die Darstellung von Krankheitsbildern in der Diagnose bewerten und erwarteten Krankheitsbildern ein geeignetes Diagnose-Verfahren mit ionisierender Strahlung zuordnen.

- die Einflüsse auf die Bildqualität bei Durchstrahlungsaufnahmen benennen und erläutern.

- die grundlegenden Messprinzipien und Unterschiede von SPECT und PET erläutern und die unterschiedlichen verwendeten Nuklide benennen.

- die der Bestrahlungsplanung zugrundeliegenden Prinzipien benennen und verschiedene Bestrahlungsmethoden im Hinblick auf ihre Anwendung in bestimmten Situationen bewerten. Sie können Beispielbestrahlungseinrichtungen benennen.

- Vor- und Nachteile verschiedener Strahlenarten bei Bestrahlung benennen und bewerten.

- die Herausforderungen bei der Verwendung offener Radioaktivität zur Therapie benennen.

- verschiedene Methoden der Bestrahlung mit offener Radioaktivität benennen und ihre Vor- und Nachteile bewerten.

- grundlegende Methoden der Erzeugung von Nukliden für die Diagnose und Therapie benennen und die notwendigen Geräte beschreiben.

13. Inhalt:
• Anwendungen ionisierender Strahlen in der medizinischen Diagnostik und Therapie
• Vorstellung der technischen Bestrahlungsgeräte
• Physikalische Einflüsse auf die Bildqualität bei diagnostischen Untersuchungen
• Überblick über die Methoden der Strahlentherapie
• Biologische Wirkungen bei kleinen und großen Strahlendosen

14. Literatur:

15. Lehrveranstaltungen und -formen: 335001 Vorlesung Grundlagen der medizinischen Strahlentechnik

16. Abschätzung Arbeitsaufwand:
• Präsenzzeit: 25 h
• Selbststudiumzeit / Nachbearbeitungszeit / Prüfungsvorbereitung: 65 h
• Gesamt: 90 h
<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>33501 Grundlagen der medizinischen Strahlentechnik (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0, (gegebenenfalls mündlich)</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>PPT-Präsentationen, PPT-Skripte zur Vorlesung</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Institut für Kernenergetik und Energiesysteme</td>
</tr>
</tbody>
</table>
Modul: 33490 Klinische Dosimetrie und Bestrahlungsplanung

2. Modulkürzel: 040900007 5. Moduldauer: 1 Semester
4. SWS: 2.0 7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Joachim Nagel
9. Dozenten: Christian Gromoll

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technische Kybernetik, PO 2011
 → Vorgezogene Master-Module
 DoubleM.D. Technische Kybernetik, PO 2011
 → Incoming -->Spezialisierungsfach -->Biomedizinische Technik
 DoubleM.D. Technische Kybernetik, PO 2011
 → Outgoing -->Spezialisierungsfach -->Biomedizinische Technik
 DoubleM.D. Technische Kybernetik, PO 2014
 → Incoming -->Spezialisierungsfach -->Biomedizinische Technik
 DoubleM.D. Technische Kybernetik, PO 2014
 → Outgoing -->Spezialisierungsfach -->Biomedizinische Technik
 DoubleM.D. Technische Kybernetik, PO 2014
 → Wahlpflichtmodule -->Spezialisierungsfach -->Biomedizinische Technik
 →
 M.Sc. Technische Kybernetik, PO 2011
 → Spezialisierungsmodule -->Spezialisierungsfach -->Biomedizinische Technik
 →

11. Empfohlene Voraussetzungen: keine

12. Lernziele: Die Studierenden
 • besitzen grundlegende Kenntnisse in der strahlentherapeutischen Instrumentierung
 • kennen die wichtigsten Geräte zur klinischen Strahlentherapie sowie deren Aufbau und Wirkungsweise
 • besitzen grundlegende Kenntnisse der klinischen Dosimetrie
 • kennen die physikalischen Grundlagen und theoretischen Herleitungen und Annahmen zur Dosimetrie,
 • sind vertraut mit der praktischen Durchführung der Dosimetrie vonPhotonen
 • besitzen grundlegende Kenntnisse der klinischen Bestrahlungsplanung
 • sind vertraut mit dem Ablauf der Bestrahlungsplanung
 • kennen die physikalischen Grundlagen und theoretischen Herleitungen der Algorithmen
 • können die Verfahren bewerten und deren Einsatzmöglichkeiten in der Strahlentherapie beurteilen
 • verfügen über einen wesentlichen Grundwortschatz strahlentherapeutischer Begriffe
 • besitzen sowohl grundlegendes theoretisches und praktisches Fach- und Methodenwissen als auch biologische und medizinische Kenntnisse

13. Inhalt:
In dem Modul werden folgende Inhalte vermittelt:
- Aufbau und Funktion von strahlentherapeutischen Anlagen,
- prinzipieller Aufbau von Elektronenbeschleunigern
- Gerätesicherheit und Strahlenschutz,
- Wechselwirkung ionisierender Strahlung mit Materie,
- physikalische Grundlagen der Messung ionisierender Strahlung,
- Dosimetrie nach der Sondenmethode,
- klinische Dosimetrie nach int. Dosimetrieprotokollen (DIN6800-2, AAPM-TG43),
- die grundlegenden Eigenschaften biologischer Gewebe,
- Bildgebende Verfahren in der Bestrahlungsplanung, wie die Computertomografie, Magnetresonanztechnik, PET,
- Techniken zur Bestrahlungsplanung,
- Beschreibung der wichtigsten Algorithmen zur Bestrahlungsplanung,
- Grundzüge der Strahlenbiologie zum Verständnis der Strahlentherapie,
- Tumorschädigung und Nebenwirkungen,
- Neue Techniken (IMRT, Hadronen, nuklearmedizinische Therapieansätze, etc.)

14. Literatur:
- Gromoll, Ch.: Klinische Dosimetrie und Bestrahlungsplanung, Vorlesungsskript und Vorlesungsfolien

15. Lehrveranstaltungen und -formen: 334901 Vorlesung Klinische Dosimetrie und Bestrahlungsplanung

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 22 Stunden
Selbststudium: 68 Stunden
Summe: 90 Stunden

17. Prüfungsnummer/n und -name:
33491 Klinische Dosimetrie und Bestrahlungsplanung (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Institut für Biomedizinische Technik
Modul: 33510 Praktikum Biomedizinischen Technik

2. Modulkürzel: 040900008 5. Modulduer: 1 Semester
4. SWS: 2.0 7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Joachim Nagel
9. Dozenten: • Joachim Nagel • Johannes Port
10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technische Kybernetik, PO 2011
 ➔ Vorgezogene Master-Module
 DoubleM.D. Technische Kybernetik, PO 2011
 ➔ Incoming -->Spezialisierungsfach -->Biomedizinische Technik
 ➔
 DoubleM.D. Technische Kybernetik, PO 2011
 ➔ Outgoing -->Spezialisierungsfach -->Biomedizinische Technik
 ➔
 DoubleM.D. Technische Kybernetik, PO 2014
 ➔ Incoming -->Spezialisierungsfach -->Biomedizinische Technik
 ➔
 DoubleM.D. Technische Kybernetik, PO 2014
 ➔ Outgoing -->Spezialisierungsfach -->Biomedizinische Technik
 ➔
 DoubleM.D. Technische Kybernetik, PO 2014
 ➔ Wahlpflichtmodule -->Spezialisierungsfach -->Biomedizinische Technik
 ➔
 M.Sc. Technische Kybernetik, PO 2011
 ➔ Spezialisierungsmodule -->Spezialisierungsfach -->Biomedizinische Technik
 ➔
11. Empfohlene Voraussetzungen: Modul 040900001, d.h. die Vorlesung 36478 Grundlagen der Biomedizinischen Technik, 4 SWS
12. Lernziele:
 Die Studierenden sind in der Lage, die in den Vorlesungen erworbenen theoretischen Kenntnisse in der Erfassung biomedizinischer Kenngrößen anzuwenden und in der Praxis umzusetzen. Sie kennen die besonderen Eigenschaften der Messverfahren und können daher deren Anwendbarkeit bewerten.
13. Inhalt:
 Nähere Informationen zu den Praktischen Übungen: APMB erhalten Sie zudem unter http://www.uni-stuttgart.de/mabau/msc/msc_mach/linksunddownloads.html
 In den Praktika werden folgende praktische Inhalte in der Bestimmung biomedizinischer Kenngrößen vermittelt:
 - Grundlagen der klinischen Photometrie,
 - Grundlagen der Magnetresonanztomographie,
 - Grundlagen der Lungenfunktionsdiagnostik,
 - Grundlagen der Biopotentialmessung,
 - Grundlagen der nicht invasiven und der invasiven Blutdruckmessung,
 - Grundlagen des Ultraschalls,
 - Grundlagen der Audiometrie.
14. Literatur:

- Skripten zu den Praktikumsversuchen
- Port, J.: Grundlagen der Biomedizinischen Technik, Vorlesungsskript und Vorlesungsfolien

15. Lehrveranstaltungen und -formen:

- 335101 Spezialisierungs fachversuch 1
- 335102 Spezialisierungsfachversuch 2
- 335103 Spezialisierungsfachversuch 3
- 335104 Spezialisierungsfachversuch 4
- 335105 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 1
- 335106 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 2
- 335107 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 3
- 335108 Praktische Übungen: Allgemeines Praktikum Maschinenbau (APMB) 4

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 21 Stunden
Selbststudium: 69 Stunden
Summe: 90 Stunden

17. Prüfungsnummer/n und -name:

33511 Praktikum Biomedizinischer Technik (USL), schriftlich, eventuell mündlich, Gewichtung: 1.0, USL-Art und Umfang wird zu Beginn des Moduls bekannt gegeben

18. Grundlage für ...:

19. Medienform:

20. Angeboten von:
Modul: 40810 Strahlenschutz

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>041610005</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Jörg Starflinger</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>• Talianna Schmidt • Jörg Starflinger</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- **B.Sc. Technische Kybernetik, PO 2011**
 - Vorgezogene Master-Module
- **DoubleM.D. Technische Kybernetik, PO 2011**
 - Incoming -->Spezialisierungsfach -->Biomedizinische Technik
 - Outgoing -->Spezialisierungsfach -->Biomedizinische Technik
- **DoubleM.D. Technische Kybernetik, PO 2014**
 - Incoming -->Spezialisierungsfach -->Biomedizinische Technik
 - Outgoing -->Spezialisierungsfach -->Biomedizinische Technik
- **DoubleM.D. Technische Kybernetik, PO 2014**
 - Wahlpflichtmodule -->Spezialisierungsfach -->Biomedizinische Technik
- **M.Sc. Technische Kybernetik, PO 2011**
 - Spezialisierungsmodule -->Spezialisierungsfach -->Biomedizinische Technik

11. Empfohlene Voraussetzungen:

- Ingenieurwissenschaftliche Grundlagen, Grundlagen in Mathematik, Physik

12. Lernziele:

Die Studierenden können

- die verschiedenen Arten ionisierender Strahlung benennen und nach ihren Eigenschaften bewerten, insbesondere in Bezug auf Schutzmechanismen und Strahlenschäden.

- die Erzeugung verschiedener Arten ionisierender Strahlung erläutern, die Eigenschaften bestimmter Arten ionisierender Strahlung aus der Erzeugung der Strahlung ableiten.

- die relevanten Größen zu Radioaktivität, ionisierender Strahlung und Strahlenexposition sowie die zugehörigen Einheiten benennen und deren Verwendung erklären. Die Studierenden können die Relevanz einzelner dieser Größen für verschiedene Aspekte des Strahlenschutzes bewerten.

- Quellen und Bedeutung verschiedener natürlicher und künstlicher Quellen von Strahlenexpositionen der Bevölkerung und beruflich strahlenexponierter Personen benennen.

- die Ausbreitungswege von natürlicher sowie in Unfällen ausgetretener Radioaktivität erläutern.

- Wirkmechanismen von ionisierender Strahlung am Menschen benennen und die resultierenden Strahlenschäden bewerten.

- Das Risiko von Strahlenschäden im Kontext anderer schädlicher Einflüsse auf den Menschen bewerten.

Die Studierenden können

- die verschiedenen Arten ionisierender Strahlung benennen und nach ihren Eigenschaften bewerten, insbesondere in Bezug auf Schutzmechanismen und Strahlenschäden.

- die Erzeugung verschiedener Arten ionisierender Strahlung erläutern, die Eigenschaften bestimmter Arten ionisierender Strahlung aus der Erzeugung der Strahlung ableiten.

- die relevanten Größen zu Radioaktivität, ionisierender Strahlung und Strahlenexposition sowie die zugehörigen Einheiten benennen und deren Verwendung erklären. Die Studierenden können die Relevanz einzelner dieser Größen für verschiedene Aspekte des Strahlenschutzes bewerten.

- Quellen und Bedeutung verschiedener natürlicher und künstlicher Quellen von Strahlenexpositionen der Bevölkerung und beruflich strahlenexponierter Personen benennen.

- die Ausbreitungswege von natürlicher sowie in Unfällen ausgetretener Radioaktivität erläutern.

- Wirkmechanismen von ionisierender Strahlung am Menschen benennen und die resultierenden Strahlenschäden bewerten.

- Das Risiko von Strahlenschäden im Kontext anderer schädlicher Einflüsse auf den Menschen bewerten.

13. Inhalt:
- Physikalische Grundlagen zu ionisierender Strahlung
- Strahlenmesstechnik
- Gesetzliche Grundlagen zu Strahlenschutz
- Natürliche und zivilisatorische Strahlenbelastung
- Ausbreitung radioaktiver Stoffe in die Umwelt
- Radiologische Auswirkung von Emissionen
- Biologische Strahlenwirkung

14. Literatur:

15. Lehrveranstaltungen und -formen: 408101 Vorlesung Strahlenschutz

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 21 h
Selbststudiumzeit: 69 h
Gesamt: 90 h

17. Prüfungsnummer/n und -name: 40811 Strahlenschutz (BSL), schriftlich, eventuell mündlich, Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform: PPT-Präsentationen, PPT-Skripte zu Vorlesungen

20. Angeboten von: Institut für Kernenergetik und Energiesysteme
Modul: 33470 Übungen zur Biomedizinischen Technik

2. Modulkürzel: 040900002
5. Modulduauer: 1 Semester
3. Leistungspunkte: 3.0 LP
6. Turnus: jedes Semester
4. SWS: 2.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Johannes Port
9. Dozenten: Johannes Port

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technische Kybernetik, PO 2011
 ➞ Vorgezogene Master-Module
 DoubleM.D. Technische Kybernetik, PO 2011
 ➞ Incoming -->Spezialisierungsfach -->Biomedizinische Technik
 DoubleM.D. Technische Kybernetik, PO 2011
 ➞ Outgoing -->Spezialisierungsfach -->Biomedizinische Technik
 DoubleM.D. Technische Kybernetik, PO 2014
 ➞ Incoming -->Spezialisierungsfach -->Biomedizinische Technik
 DoubleM.D. Technische Kybernetik, PO 2014
 ➞ Outgoing -->Spezialisierungsfach -->Biomedizinische Technik
 DoubleM.D. Technische Kybernetik, PO 2014
 ➞ Wahlpflichtmodule -->Spezialisierungsfach -->Biomedizinische Technik
 M.Sc. Technische Kybernetik, PO 2011
 ➞ Spezialisierungsmodule -->Spezialisierungsfach -->Biomedizinische Technik

11. Empfohlene Voraussetzungen: Teilnahme an der Vorlesung Grundlagen der Biomedizinischen Technik

12. Lernziele:
Die Studierenden

• besitzen grundlegende Kenntnisse in der biomedizinischen Instrumentierung
• kennen die physikalischen Grundlagen und theoretischen Herleitungen und Annahmen wichtiger biomedizinischer Messverfahren
• haben wesentliche Kenntnisse gängiger bildgebender Verfahren
• besitzen fundamentale Kenntnisse der funktionellen Stimulation und von der Physiologie der zu ersetzenden natürlichen Funktionen
• können die Verfahren bewerten und deren Einsatzmöglichkeiten in der biomedizinischen Technik beurteilen
• verfügen über einen wesentlichen Grundwortschatz biomedizinischer Begriffe
• besitzen sowohl grundlegendes theoretisches und praktisches Fach- und Methodenwissen als auch biologische und medizinische Kenntnisse
• sind in der Lage, eine Verbindung zwischen der Medizin und Biologie einerseits und den IngenieurModulhandbuch und Naturwissenschaften andererseits herzustellen sowie neue Kenntnisse von der molekularen Ebene bis hin zu gesamten Organsystemen zu erforschen und neue Materialien, Systeme, Verfahren und Methoden zu entwickeln, mit dem Ziel der Prävention, Diagnose und Therapie von Krankheiten sowie
13. Inhalt: In den Übungen werden folgende Inhalte vermittelt:

- theoretische Grundlagen der Ionenkonzentrationsbestimmung
- Berechnung charakteristischer Kennwerte der Hautimpedanz
- Berechnung charakteristischer Kennwerte von Druckwandlern
- Berechnung charakteristischer Kennwerte von Verstärkern
- Berechnung charakteristischer Kennwerte von Ultraschall
- theoretische Bestimmung der Belastung der Bandscheiben
- umfangreiche praktische Messungen verschiedener physiologischer Kenngrößen sowie Interpretation bzw. Analyse der Ergebnisse und Probleme
- praktische Übungen zur Signalverarbeitung
- ausgewählte Anwendungsbeispiele von biomedizinischer Technik in der klinischen Praxis (Klinikbesuche).

14. Literatur:

- Port, J.: Biomedizinische Technik I + II. Vorlesungsskript und Vorlesungsfolien, Skripten für die theoretischen und praktischen Übungen

15. Lehrveranstaltungen und -formen: 334701 Übungen zur Biomedizinischen Technik

17. Prüfungsnummer/n und -name: 33471 Übungen zur Biomedizinischen Technik (BSL), mündliche Prüfung, 20 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform: Tafel, Beamer-Präsentation, Overhead-Projektor

20. Angeboten von:
2106 Energiesysteme und Energiewirtschaft

Zugeordnete Module:
- 16000 Erneuerbare Energien
- 16020 Brennstoffzellentechnik - Grundlagen, Technik und Systeme
- 17500 Energiemärkte und Energiepolitik
- 2117 Spez.Fach. anerkannt 6LP
- 2118 Spez.Fach. anerkannt 6LP
- 2119 Spez.Fach. anerkannt 6LP
- 29190 Planungsmethoden in der Energiewirtschaft
- 29200 Energiesysteme und effiziente Energieanwendung
- 30800 Kraft-Wärme-Kopplung und Versorgungskonzepte
- 32030 Strategische Unternehmensplanung in der Energiewirtschaft
- 36820 Energie und Umwelt
- 36840 Energiewirtschaft in Verbundsystemen
- 36850 Elektrochemische Energiespeicherung in Batterien
- 45710 Energieeffizienz in der Industrie
2117 Spez.Fach. anerkannt 6LP
2118 Spez.Fach. anerkannt 6LP
2119 Spez.Fach. anerkannt 6LP
Modul: 16020 Brennstoffzellentechnik - Grundlagen, Technik und Systeme

2. Modulkürzel: 042410042
5. Moduldauer: 2 Semester
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Andreas Friedrich
9. Dozenten: Andreas Friedrich

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>Studiengang</th>
<th>Abschluss</th>
<th>Spezialisierungsfach</th>
<th>Wahlpflichtmodule</th>
<th>Spezialisierungs- und Wahlpflichtmodule</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.Sc. Technische Kybernetik, PO 2011</td>
<td>Vorgezogene Master-Module</td>
<td>Energiesysteme und Energiewirtschaft</td>
<td>Spezialisierungsfach</td>
<td>Energiesysteme und Energiewirtschaft</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2011, . Semester</td>
<td>Incoming</td>
<td>Spezialisierungsfach</td>
<td>Energiesysteme und Energiewirtschaft</td>
<td></td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2011, . Semester</td>
<td>Outgoing</td>
<td>Spezialisierungsfach</td>
<td>Energiesysteme und Energiewirtschaft</td>
<td></td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2014, . Semester</td>
<td>Incoming</td>
<td>Spezialisierungsfach</td>
<td>Energiesysteme und Energiewirtschaft</td>
<td></td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2014, . Semester</td>
<td>Outgoing</td>
<td>Spezialisierungsfach</td>
<td>Energiesysteme und Energiewirtschaft</td>
<td></td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2014, . Semester</td>
<td>Wahlpflichtmodule</td>
<td>Spezialisierungsfach</td>
<td>Energiesysteme und Energiewirtschaft</td>
<td></td>
</tr>
<tr>
<td>M.Sc. Technische Kybernetik, PO 2011, . Semester</td>
<td>Spezialisierungs-</td>
<td>Spezialisierungsfach</td>
<td>Energiesysteme und Energiewirtschaft</td>
<td></td>
</tr>
<tr>
<td></td>
<td>und Wahlpflichtmodule</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen: Abgeschlossenes Grundstudium und Grundkenntnisse Ingenieurwesen

13. Inhalt:

- **Einführung in die Energietechnik**, Entwicklung nachhaltiger Energietechnologien, Erscheinungsformen der Energie; Energieumwandlungsketten, Elektrochemische Energieerzeugung: Systematik
- **Thermodynamische Grundlagen** der elektrochemischen Energieumwandlung, Chemische Thermodynamik: Grundlagen und Zusammenhänge, Elektrochemische Potentiale und die freie Enthalpie DeltaG, Wirkungsgrad der elektrochemischen Stromerzeugung, Druckabhängigkeit der elektrochemischen Potentiale / Zellspannungen, Temperaturabhängigkeit der elektrochemischen Potentiale
- **Technischer Wirkungsgrad**, Strom-Spannungskennlinien von Brennstoffzellen; U(i)-Kennlinien, Transporthemmungen und Grenzströme, zweidimensionale Betrachtung der Transporthemmungen, Ohmscher Bereich der Kennlinie, Elektrochemische Überspannungen: Reaktionskinetik und Katalyse, experimentelle Bestimmung einzelner Verlustanteile

Technik und Systeme (SS):

- **Überblick**: Einsatzgebiete von Brennstoffzellensystemen, stationär, mobil, portabel
- **Brennstoffzellensysteme**, Niedertemperaturbrennstoffzellen, Alkalische Brennstoffzellen, Phosphorsaure Brennstoffzellen, Polymerelktrolyt-Brennstoffzellen, Direktmethanol-Brennstoffzellen, Hochtemperaturbrennstoffzellen, Schmelzkarbonat-Brennstoffzellen, Oxidkeramische Brennstoffzellen
- **Einsatzbereiche von Brennstoffzellensystemen**, Verkehr: Automobilsystem, Auxiliary Power Unit (APU), Luftfahrt, stationäre Anwendung: Dezentrale Blockheizkraftwerke, Hausenergieversorgung, Portable Anwendung: Elektronik, Tragbare Stromversorgung, Netzunabhängige Stromversorgung
- **Brenngasbereitstellung und Systemtechnik**, Wasserstoffherstellung: Methoden, Reformierung, Systemtechnik und Wärmebilanzen
- **Ganzheitliche Bilanzierung**, Umwelt, Wirtschaftlichkeit, Perspektiven der Brennstoffzellentechnologien

14. Literatur:

- Vorlesungszusammenfassungen,
- empfohlene Literatur:

15. Lehrveranstaltungen und -formen:

- 160201 Vorlesung Grundlagen Brennstoffzellentechnik
- 160202 Vorlesung Brennstoffzellentechnik, Technik und Systeme

16. Abschätzung Arbeitsaufwand:

<p>| Präsenzzeit: | 56 h |
| Selbststudiumszeit / Nacharbeitszeit: | 124 h |
| Gesamt: | 180 h |</p>
<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>16021</th>
<th>Brennstoffzellentechnik - Grundlagen, Technik und Systeme (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td></td>
<td>Institut für Thermodynamik und Wärmetechnik</td>
</tr>
</tbody>
</table>
Modul: 36850 Elektrochemische Energiespeicherung in Batterien

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>042411045</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Andreas Friedrich</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Andreas Friedrich
• Birger Horstmann |
→ Vorgezogene Master-Module
DoubleM.D. Technische Kybernetik, PO 2011
→ Chalmers -->Incoming -->Wahlfach Technische Kybernetik
→ DoubleM.D. Technische Kybernetik, PO 2011
→ Chalmers -->Outgoing -->Wahlfach Technische Kybernetik
→ DoubleM.D. Technische Kybernetik, PO 2011
→ Incoming -->Spezialisierungsfach -->Energiesysteme und Energiewirtschaft
→ DoubleM.D. Technische Kybernetik, PO 2011
→ Outgoing -->Spezialisierungsfach -->Energiesysteme und Energiewirtschaft
→ DoubleM.D. Technische Kybernetik, PO 2014
→ Chalmers -->Incoming -->Wahlfach Technische Kybernetik
→ DoubleM.D. Technische Kybernetik, PO 2014
→ Incoming -->Spezialisierungsfach -->Energiesysteme und Energiewirtschaft
→ DoubleM.D. Technische Kybernetik, PO 2014
→ Outgoing -->Spezialisierungsfach -->Energiesysteme und Energiewirtschaft
→ DoubleM.D. Technische Kybernetik, PO 2014
→ Wahlpflichtmodule -->Spezialisierungsfach -->Energiesysteme und Energiewirtschaft
→ M.Sc. Technische Kybernetik, PO 2011
→ Spezialisierungsmodul -->Spezialisierungsfach -->Energiesysteme und Energiewirtschaft
→ M.Sc. Technische Kybernetik, PO 2011
→ Spezialisierungsmodul -->Wahlfach Technische Kybernetik
→ |
| 11. Empfohlene Voraussetzungen: | |

Stand: 09. April 2015

13. Inhalt:
- Grundlagen: Elektrochemische Thermodynamik, Elektrolyte, Grenzflächen, elektrochemische Kinetik
- Primärzellen: Alkali-Mangan
- Sekundärzellen: Blei-Säure, Nickel-Metallhydrid, Lithium-Ionen
- Anwendungen: Systemtechnik, Hybridisierung, portable Geräte, Fahrzeugtechnik, regenerative Energien
- Herstellung, Sicherheitstechnik und Entsorgung

14. Literatur:

15. Lehrveranstaltungen und -formen: 368501 Vorlesung Elektrochemische Energiespeicherung in Batterien

16. Abschätzung Arbeitsaufwand:
Präsenzzzeit: 28 h
Vor- / Nachbereitung: 62 h
Gesamtaufwand: 90 h

17. Prüfungsnummer/n und -name: 36851 Elektrochemische Energiespeicherung in Batterien (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:
Tafelanschrieb und Powerpoint-Präsentation

20. Angeboten von:
Modul: 36820 Energie und Umwelt

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>041210003</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>5. Modulduer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Apl. Prof. Rainer Friedrich</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Rainer Friedrich</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:
- B.Sc. Technische Kybernetik, PO 2011
 → Vorgezogene Master-Module
 - DoubleM.D. Technische Kybernetik, PO 2011, . Semester
 → Incoming -->Spezialisierungsfach -->Energiesysteme und Energiewirtschaft
 - DoubleM.D. Technische Kybernetik, PO 2011, . Semester
 → Outgoing -->Spezialisierungsfach -->Energiesysteme und Energiewirtschaft
 - DoubleM.D. Technische Kybernetik, PO 2014, . Semester
 → Incoming -->Spezialisierungsfach -->Energiesysteme und Energiewirtschaft
 - DoubleM.D. Technische Kybernetik, PO 2014, . Semester
 → Outgoing -->Spezialisierungsfach -->Energiesysteme und Energiewirtschaft
 - DoubleM.D. Technische Kybernetik, PO 2014, . Semester
 → Wahlpflichtmodule -->Spezialisierungsfach -->Energiesysteme und Energiewirtschaft
 - M.Sc. Technische Kybernetik, PO 2011, . Semester
 → Spezialisierungsmodule -->Spezialisierungsfach -->Energiesysteme und Energiewirtschaft

11. Empfohlene Voraussetzungen:
- Kenntnisse in Thermodynamik, Chemie, Physik

12. Lernziele:
- Die Teilnehmer können die chemisch-physikalischen Grundlagen der Verbrennung und der Entstehung von Schadstoffen beim Verbrennungsprozess beschreiben und sind in der Lage, die bei der Nutzung von Energie entstehenden Umwelteffekte mit ihren qualitativen und quantitativen Auswirkungen auf Mensch und Umwelt zu beurteilen.

13. Inhalt:
- Auswirkungen von Energiewandlung in allen Umwandlungs- und Verbrauchersektoren auf Umwelt und menschliche Gesundheit:
 - Luftschadstoffbelastung:
 - SO2, NOx, CO, Feinstaub VOC, Ozon, Aerosole, saure Deposition, Stickstoffeintrag
 - Treibhauseffekt
 - radioaktive Strahlung
 - Flächenverbrauch
 - Lärm
 - Abwärme
• elektromagnetische Strahlung.

Empfehlung (fakultativ):

IER- Exkursion „Energiewirtschaft / Energietechnik“

14. Literatur:
- Online-Manuskript
- Borsch, P. Wagner, H.-J. 1997: Energie und Umweltbelastung; Berlin: Springer-Verlag
- Möller, D. 2003: Luft - Chemie, Physik, Biologie, Reinhaltung, Recht; Berlin: de Gruyter
- Roth, E. 1994: Mensch, Umwelt und Energie : die zukünftigen Erfordernisse und Möglichkeiten der Energieversorgung; Düsseldorf: etv

15. Lehrveranstaltungen und -formen: 368201 Vorlesung und OnlineÜbungen Energie und Umwelt

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 28 h
- Online-Übung: 10 h
- Selbststudium: 52 h
- Gesamt: 90 h

17. Prüfungsnummer/n und -name: 36821 Energie und Umwelt (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform: Beamergestützte Vorlesung und teilweise Tafelanschrieb, Lehrfilme, begleitendes Manuskript

20. Angeboten von: Institut für Energiewirtschaft und Rationelle Energieanwendung
Modul: 45710 Energieeffizienz in der Industrie

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>041210026</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Kai Hufendiek

9. Dozenten:
- Kai Hufendiek
- Alois Kessler
- Markus Blesl

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>B.Sc. Technische Kybernetik, PO 2011</th>
<th>Vorgezogene Master-Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2011</td>
<td>Incoming -->Spezialisierungsfach -->Energiesysteme und Energiewirtschaft</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2011</td>
<td>Outgoing -->Spezialisierungsfach -->Energiesysteme und Energiewirtschaft</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2014</td>
<td>Incoming -->Spezialisierungsfach -->Energiesysteme und Energiewirtschaft</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2014</td>
<td>Outgoing -->Spezialisierungsfach -->Energiesysteme und Energiewirtschaft</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2014</td>
<td>Wahlpflichtmodule -->Spezialisierungsfach -->Energiesysteme und Energiewirtschaft</td>
</tr>
<tr>
<td>M.Sc. Technische Kybernetik, PO 2011</td>
<td>Spezialisierungs module -->Spezialisierungsfach -->Energiesysteme und Energiewirtschaft</td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen:
Grundlagen der Energiewirtschaft und Energieversorgung (z.B. Modul „Energiewirtschaft und Energieversorgung“)

12. Lernziele:

Die Studierenden erhalten ein Grundverständnis hinsichtlich der Struktur des Energieverbrauchs und der Verfahrensprozesse in der Industrie. Darauf aufbauend erlernen sie Grundlagen der industriellen Energieeffizienz-Technologien und können die wichtigsten Methoden zu deren Optimierung anwenden.

- Kenntnisse der Methoden mit Anwendungsbeispielen
- Kenntnisse der Einflussfaktoren auf den Energieverbrauch
- Kenntnisse der Potenziale &Hemmnisse für Energieeinsparmaßnahmen in der Industrie
- Kenntnisse zur Implementierung eines Energiemanagementsystems und Fähigkeit zur Durchführung von Energieaudits nach DIN EN ISO 50001
- Fähigkeit zur Übertragung auf andere Branchen oder Prozesse

Stand: 09. April 2015
13. Inhalt: Definition, Begriffe und Methoden im Zusammenhang mit Energieeffizienz. Überblick energieintensive und nicht energieintensive Branchen. Technologische Optionen zur Optimierung von Querschnittstechnologien. Verfahrenstechnische Prozesse in energieintensiven Industriebranchen:
- Metallerzeugung und -verarbeitung
- Chemische Industrie
- Steine und Erden
- Lebensmittelindustrie

Potentiale, Hemmnisse und Möglichkeiten für die Industrie in Deutschland

14. Literatur:

15. Lehrveranstaltungen und -formen: 457101 Vorlesung Energieeffizienz in der Industrie

16. Abschätzung Arbeitsaufwand: Präsenzzeit: 28 h
Selbststudium: 62 h
Gesamtzeit: 90 h

17. Prüfungsnummer/n und -name: 45711 Energieeffizienz in der Industrie (BSL), schriftlich, eventuell mündlich, 60 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform: Beamergestützte Vorlesung und teilweise Tafelanschrieb, begleitendes Manuskript

20. Angeboten von:
Modul: 17500 Energiemärkte und Energiepolitik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>041210006</th>
<th>5. Modulduauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>5.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Kai Hufendiek

9. Dozenten: • Kai Hufendiek
 • Joachim Pfeiffer

10. Zuordnung zum Curriculum in diesem Studiengang:

- B.Sc. Technische Kybernetik, PO 2011
 → Vorgezogene Master-Module

 - DoubleM.D. Technische Kybernetik, PO 2011, . Semester
 → Chalmers -->Incoming -->Wahlfach Technische Kybernetik

 - DoubleM.D. Technische Kybernetik, PO 2011, . Semester
 → Chalmers -->Outgoing -->Wahlfach Technische Kybernetik

 - DoubleM.D. Technische Kybernetik, PO 2011, . Semester
 → Incoming -->Spezialisierungsfach -->Energiesysteme und Energiewirtschaft

 - DoubleM.D. Technische Kybernetik, PO 2011, . Semester
 → Outgoing -->Spezialisierungsfach -->Energiesysteme und Energiewirtschaft

- DoubleM.D. Technische Kybernetik, PO 2014, . Semester
 → Chalmers -->Incoming -->Wahlfach Technische Kybernetik

- DoubleM.D. Technische Kybernetik, PO 2014, . Semester
 → Incoming -->Spezialisierungsfach -->Energiesysteme und Energiewirtschaft

- DoubleM.D. Technische Kybernetik, PO 2014, . Semester
 → Outgoing -->Spezialisierungsfach -->Energiesysteme und Energiewirtschaft

- DoubleM.D. Technische Kybernetik, PO 2014, . Semester
 → Wahlpflichtmodule -->Spezialisierungsfach -->Energiesysteme und Energiewirtschaft

- M.Sc. Technische Kybernetik, PO 2011, . Semester
 → Spezialisierungsmodul -->Spezialisierungsfach -->Energiesysteme und Energiewirtschaft

- M.Sc. Technische Kybernetik, PO 2011, . Semester
 → Spezialisierungsmodul -->Wahlfach Technische Kybernetik

11. Empfohlene Voraussetzungen: Grundkenntnisse der Energiewirtschaft (z.B. Modul "Energiewirtschaft und Energieversorgung")

12. Lernziele: Die Teilnehmer/-innen kennen die Liberalisierung und Regulierung von Energiemärkten. Sie wissen unterschiedliche Handelsprodukte und die Besonderheiten von Elektrizitätsmärkten und können die

13. Inhalt:
• Aufbau und Funktion von Energiemärkten
• Produkte auf Energiemärkten
• Regulierung von Märkten
• Marktmacht von Unternehmen
• Preisprognosen bei Energieprodukten
• Handelsentscheidungen
• Handel mit Emissionsrechten
• Risikomanagement im Handel
• Organisation des Energiehandels
• Investitionsentscheidungen in der Energiewirtschaft
• Grundlagen der Energiepolitik
• Entwicklung der Stromerzeugung in Deutschland und Europa
• EU-Energiepolitik
• Preisbildung in Energiemärkten - vom Monopol zum Wettbewerb
• Klimapolitik - Grundlagen, internationale Dimension und internationale Umsetzung
• Zusammensetzung und Entwicklung des deutschen Strommixes
• Der Wärmemarkt
• Verkehrspolitik als Energiepolitik
• Geopolitische Aspekte der Energieversorgung

Empfehlung (fakultativ): IER-Exkursion Energiewirtschaft / Energietechnik

14. Literatur:
Online-Manuskript
Schiffer, Hans-Wilhelm
Energiemarkt Deutschland, Praxiswissen Energie und Umwelt. 10. überarbeitete Auflage, TÜV Media, 2008
Stoft, S.

15. Lehrveranstaltungen und -formen:
• 175001 Vorlesung Energiemärkte und -handel
• 175002 Vorlesung Energiepolitik im Spannungsfeld von Wettbewerbsfähigkeit, Versorgungssicherheit und Umweltschutz

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 70 h
Selbststudiumszeit / Nacharbeitszeit: 110 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name: 17501 Energiemärkte und Energiepolitik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0,

18. Grundlage für ... :
<table>
<thead>
<tr>
<th>19. Medienform:</th>
<th>Beamergestützte Vorlesung und teilweise Tafelanschrieb, Lehrfilme</th>
</tr>
</thead>
<tbody>
<tr>
<td>20. Angeboten von:</td>
<td>Institut für Energiewirtschaft und Rationelle Energieanwendung</td>
</tr>
</tbody>
</table>
Modul: 29200 Energiesysteme und effiziente Energieanwendung

2. Modulkürzel: 041210010
3. Leistungspunkte: 6.0 LP
4. SWS: 3.0
5. Modulvorschriften: 1 Semester
6. Turnus: jedes 2. Semester, SoSe
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Kai Hufendiek
9. Dozenten: Kai Hufendiek
10. Zuordnung zum Curriculum in diesem Studiengang:

- B.Sc. Technische Kybernetik, PO 2011
 ➔ Vorgezogene Master-Module
 ➔ DoubleM.D. Technische Kybernetik, PO 2011
 ➔ Incoming -->Spezialisierungsfach -->Energiesysteme und Energiewirtschaft
 ➔ DoubleM.D. Technische Kybernetik, PO 2011
 ➔ Outgoing -->Spezialisierungsfach -->Energiesysteme und Energiewirtschaft
 ➔ DoubleM.D. Technische Kybernetik, PO 2014
 ➔ Incoming -->Spezialisierungsfach -->Energiesysteme und Energiewirtschaft
 ➔ DoubleM.D. Technische Kybernetik, PO 2014
 ➔ Outgoing -->Spezialisierungsfach -->Energiesysteme und Energiewirtschaft
 ➔ DoubleM.D. Technische Kybernetik, PO 2014
 ➔ Wahlpflichtmodule -->Spezialisierungsfach -->Energiesysteme und Energiewirtschaft
 ➔ M.Sc. Technische Kybernetik, PO 2011
 ➔ Spezialisierungsmodule -->Spezialisierungsfach -->Energiesysteme und Energiewirtschaft

11. Empfohlene Voraussetzungen: Thermodynamik, Grundlagen der Energiewirtschaft und Energieversorgung (z.B. Modul "Energiewirtschaft und Energieversorgung")
13. Inhalt:
 - Analysemethoden des energetischen Zustandes von Anlagen
 - Exergie-, Pinch-Point-, Prozesskettenanalyse
 - Systemvergleiche von Energieanlagen
 - Systeme mit Kraft-Wärme-Kopplung
 - Abwärmenutzungssysteme
 - Wärmerrückgewinnung
 - neue Energiewandlungstechniken und Sekundärenergieträger
14. Literatur: Online-Manuskript, Daten- und Arbeitsblätter
15. Lehrveranstaltungen und -formen:
- 292001 Vorlesung Techniken der rationellen Energieanwendung
- 292002 Übung Techniken der rationellen Energieanwendung

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 42 h
- Selbststudium und Prüfungsvorbereitung: 138 h
- Gesamt: 180 h

17. Prüfungsnummer/n und -name:
- 29201 Energiesysteme und effiziente Energieanwendung (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

19. Medienform:
- Beamergestützte Vorlesung
- teilweise Tafelanschrieb
- Lehrfilme
- begleitendes Manuskript

20. Angeboten von:
Institut für Energiewirtschaft und Rationelle Energieanwendung
Modul: 36840 Energiewirtschaft in Verbundsystemen

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050310025</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Stefan Tenbohlen</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Ulrich Scherer</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>B.Sc. Technische Kybernetik, PO 2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorgezogene Master-Module</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2011</td>
</tr>
<tr>
<td>→ Incoming -->Spezialisierungsfach -->Automatisierung in der Energietechnik</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2011</td>
</tr>
<tr>
<td>→ Incoming -->Spezialisierungsfach -->Energiesysteme und Energiewirtschaft</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2011</td>
</tr>
<tr>
<td>→ Outgoing -->Spezialisierungsfach -->Automatisierung in der Energietechnik</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2011</td>
</tr>
<tr>
<td>→ Outgoing -->Spezialisierungsfach -->Energiesysteme und Energiewirtschaft</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2014</td>
</tr>
<tr>
<td>→ Incoming -->Spezialisierungsfach -->Automatisierung in der Energietechnik</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2014</td>
</tr>
<tr>
<td>→ Incoming -->Spezialisierungsfach -->Energiesysteme und Energiewirtschaft</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2014</td>
</tr>
<tr>
<td>→ Outgoing -->Spezialisierungsfach -->Automatisierung in der Energietechnik</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2014</td>
</tr>
<tr>
<td>→ Outgoing -->Spezialisierungsfach -->Energiesysteme und Energiewirtschaft</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2014</td>
</tr>
<tr>
<td>→ Wahlpflichtmodule -->Spezialisierungsfach -->Automatisierung in der Energietechnik</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2014</td>
</tr>
<tr>
<td>→ Wahlpflichtmodule -->Spezialisierungsfach -->Energiesysteme und Energiewirtschaft</td>
</tr>
<tr>
<td>M.Sc. Technische Kybernetik, PO 2011</td>
</tr>
<tr>
<td>→ Spezialisierungsmodule -->Spezialisierungsfach -->Automatisierung in der Energietechnik</td>
</tr>
</tbody>
</table>
11. Empfohlene Voraussetzungen:
- Elektrische Energietechnik
- Elektrische Energienetze

12. Lernziele:

13. Inhalt:
- Verbundbetrieb großer Netze
- Besonderheiten bei der Kupplung von Netzen
- Netzführung, Energie-Dispatching und Netzleitechnik
- Netzregelung in Verbundsystemen
- Elektrizitätswirtschaftliche Verfahren und Kostenfragen
- Stromhandel und Marktliberalisierung
- Energiewirtschaft bei Erdgas

14. Literatur:
Oeding, Oswald: Elektrische Kraftwerke und Netze Springer-Verlag, 6. Aufl., 2004

15. Lehrveranstaltungen und -formen:
368401 Vorlesung Energiewirtschaft in Verbundsystemen

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 28 Stunden
Selbststudium: 52 Stunden
Summe: 90 Stunden

17. Prüfungsnummer/n und -name:
36841 Energiewirtschaft in Verbundsystemen (BSL), schriftlich und mündlich, 60 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
Energieübertragung und Hochspannungstechnik
Modul: 16000 Erneuerbare Energien

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>041210008</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>5.0</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Kai Hufendiek</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Kai Hufendiek
• Ludger Eltrop |

→ Ergänzungsmodule --Grundlagen der Natur- und Ingenieurwissenschaften
→
B.Sc. Technische Kybernetik, PO 2011, 5. Semester

→ Ergänzungsmodule --Grundlagen der Natur- und Ingenieurwissenschaften
→
B.Sc. Technische Kybernetik, PO 2011, 5. Semester

→ Vorgezogene Master-Module
→
DoubleM.D. Technische Kybernetik, PO 2011, . Semester

→ Incoming --Spezialisierungsfach -->Energiesysteme und Energiewirtschaft
→
→ Outgoing --Spezialisierungsfach -->Energiesysteme und Energiewirtschaft
→
→ Incoming --Spezialisierungsfach -->Energiesysteme und Energiewirtschaft
→
→ Outgoing --Spezialisierungsfach -->Energiesysteme und Energiewirtschaft
→
→ Incoming --Spezialisierungsfach -->Energiesysteme und Energiewirtschaft
→
→ Outgoing --Spezialisierungsfach -->Energiesysteme und Energiewirtschaft
→
→ Wahlpflichtmodule --Spezialisierungsfach -->Energiesysteme und Energiewirtschaft
→
→ Spezialisierungsmodulspezialisierungsfach -->Energiesysteme und Energiewirtschaft
→ |

11. Empfohlene Voraussetzungen:
Grundkenntnisse der Energiewirtschaft
Ingenieurwissenschaftliche Grundlagen

12. Lernziele:
13. Inhalt:

- Die physikalischen und meteorologische Zusammenhänge der Sonnenenergie und ihre technischen Nutzungsmöglichkeiten
- Wasserangebot und Nutzungstechniken
- Windangebot (räumlich und zeitlich) und technische Nutzung
- Geothermie
- Speichertechnologien
- energetische Nutzung von Biomasse
- Potentielle, Möglichkeiten und Grenzen des Einsatzes erneuerbarer Energieträger in Deutschland.

Empfehlung (fakultativ): IER-Exkursion Energiewirtschaft / Energietechnik

14. Literatur:

- Online-Manuskript

15. Lehrveranstaltungen und -formen:

- 160001 Vorlesung Grundlagen der Nutzung erneuerbarer Energien I
- 160002 Vorlesung Grundlagen der Nutzung erneuerbarer Energien II
- 160003 Seminar Erneuerbare Energien

16. Abschätzung Arbeitsaufwand:

| Präsenzzeit: 70 h |
| Selbststudium: 110 h |
| Gesamt: 180 h |

17. Prüfungsnummer/n und -name:

18. Grundlage für ...

19. Medienform:

- Beamergestützte Vorlesung und teilweise Tafelanschrieb, begleitendes Manuskript
- Primär Powerpoint-Präsentation

20. Angeboten von:

Institut für Energiewirtschaft und Rationelle Energieanwendung
Modul: 30800 Kraft-Wärme-Kopplung und Versorgungskonzepte

4. SWS: 4.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Kai Hufendiek
9. Dozenten: • Kai Hufendiek • Markus Blesl • Eric Jennes

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technische Kybernetik, PO 2011
 ▶ Vorgezogene Master-Module
 DoubleM.D. Technische Kybernetik, PO 2011
 ▶ Incoming -->Spezialisierungsfach -->Energiesysteme und Energiewirtschaft
 ▶
 DoubleM.D. Technische Kybernetik, PO 2011
 ▶ Outgoing -->Spezialisierungsfach -->Energiesysteme und Energiewirtschaft
 ▶
 DoubleM.D. Technische Kybernetik, PO 2014
 ▶ Incoming -->Spezialisierungsfach -->Energiesysteme und Energiewirtschaft
 ▶
 DoubleM.D. Technische Kybernetik, PO 2014
 ▶ Outgoing -->Spezialisierungsfach -->Energiesysteme und Energiewirtschaft
 ▶
 DoubleM.D. Technische Kybernetik, PO 2014
 ▶ Wahlpflichtmodule -->Spezialisierungsfach -->Energiesysteme und Energiewirtschaft
 ▶
 M.Sc. Technische Kybernetik, PO 2011
 ▶ Spezialisierungsmodule -->Spezialisierungsfach -->Energiesysteme und Energiewirtschaft
 ▶

11. Empfohlene Voraussetzungen: Thermodynamik, Ingenieurwissenschaftliche und betriebswirtschaftliche Grundlagen

12. Lernziele:

 Sie kennen unterschiedliche Wärmeversorgungssysteme und -strukturen mit ihren technischen, ökonomischen und ökologischen Parametern und können verschiedene Wärmeversorgungskonzepte technisch-wirtschaftlich vergleichen. Die Teilnehmer haben die Kompetenz, KWK-Anlagen und Wärmeversorgungssysteme zu analysieren und zu konzipieren.

13. Inhalt:
 • Begriffe und Begriffsdefinitionen
• Thermodynamische Grundlagen und Prozesse der Kraft-Wärme-Kopplung (KWK)
• Konfiguration und Systemintegration von KWK-Anlagen anhand praktischer Beispiele
• Wirtschaftlichkeitsrechnungen bei KWK-Anlagen
• Kraft-Wärme-Kopplung in Deutschland
• Begriffliche und methodische Grundlagen der Wärmeversorgung
• Grundlagen, Aufbau und Funktion von Wärmeversorgungssystemen
• Vergleich von Wärmeversorgungssystemen
• Verbindungen zwischen Wärme- und Energieversorgungssystemen
• Wärmeversorgung im Kontext der Energiewende

14. Literatur: Online-Manuskript

15. Lehrveranstaltungen und -formen:
• 308001 Vorlesung Kraft-Wärme-Kopplung: Anlagen und Systeme
• 308002 Vorlesung Wärmeversorgungskonzepte

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 56 h
Selbststudium: 124 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name: 30801 Kraft-Wärme-Kopplung und Versorgungskonzepte (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform: Beamergestützte Vorlesung, begleitendes Manuskript

20. Angeboten von: Institut für Energiewirtschaft und Rationelle Energieanwendung
Modul: 29190 Planungsmethoden in der Energiewirtschaft

2. Modulkürzel: 041210014 5. Modulduauer: 1 Semester
4. SWS: 5.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Kai Hufendiek
9. Dozenten: • Kai Hufendiek • Ulrich Fahl

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technische Kybernetik, PO 2011
 → Vorgezogene Master-Module
 DoubleM.D. Technische Kybernetik, PO 2011
 → Chalmers -->Incoming -->Wahlfach Technische Kybernetik
 DoubleM.D. Technische Kybernetik, PO 2011
 → Chalmers -->Outgoing -->Wahlfach Technische Kybernetik
 DoubleM.D. Technische Kybernetik, PO 2011
 → Incoming -->Spezialisierungsfach -->Energiesysteme und Energiewirtschaft
 →
 DoubleM.D. Technische Kybernetik, PO 2011
 → Outgoing -->Spezialisierungsfach -->Energiesysteme und Energiewirtschaft
 →
 DoubleM.D. Technische Kybernetik, PO 2014
 → Chalmers -->Incoming -->Wahlfach Technische Kybernetik
 →
 DoubleM.D. Technische Kybernetik, PO 2014
 → Incoming -->Spezialisierungsfach -->Energiesysteme und Energiewirtschaft
 →
 DoubleM.D. Technische Kybernetik, PO 2014
 → Outgoing -->Spezialisierungsfach -->Energiesysteme und Energiewirtschaft
 →
 DoubleM.D. Technische Kybernetik, PO 2014
 → Wahlpflichtmodule -->Spezialisierungsfach -->Energiesysteme und Energiewirtschaft
 →
 M.Sc. Technische Kybernetik, PO 2011
 → Spezialisierungsmodule -->Spezialisierungsfach -->Energiesysteme und Energiewirtschaft
 →
 M.Sc. Technische Kybernetik, PO 2011
 → Spezialisierungsmodul -->Wahlfach Technische Kybernetik

11. Empfohlene Voraussetzungen: Grundlagen der Energiewirtschaft und Energieversorgung (z.B. Modul "Energiewirtschaft und Energieversorgung")

12. Lernziele: Die Studierenden können für Problemstellungen in der Energiewirtschaft geeignete Lösungsmethoden identifizieren. Sie sind in der Lage, aus verschiedenen Energiemodellen und mathematischen Verfahren zur
Systemanalyse die geeigneten auszuwählen und diese auf einfache Beispiele anzuwenden. Die Studierenden entwickeln die Fähigkeit die wechselseitigen Abhängigkeiten von Risiken und Nutzen im komplexen System der Energieversorgung abzuwagen.

13. Inhalt:

14. Literatur: Online-Manuskript;
Schiffer, Hans-Wilhelm: Energiemarkt Deutschland, Praxiswissen Energie und Umwelt, TÜV Media, 11. überarbeitete Auflage 2010

15. Lehrveranstaltungen und -formen: • 291901 Vorlesung mit Übung Systemtechnische Planungsmethoden in der Energiewirtschaft
• 291902 Seminar Energiemodelle

16. Abschätzung Arbeitsaufwand: Präsenzzeit: 70 h
Selbststudium 110 h
Gesamt: 180

18. Grundlage für ...:

19. Medienform: Beamergestützte Vorlesung und teilweise Tafelanschrieb, begleitendes Manuskript, PC - Übungen

20. Angeboten von: Institut für Energiewirtschaft und Rationelle Energieanwendung
| Modul: 32030 Strategische Unternehmensplanung in der Energiewirtschaft |
|---|---|---|
| 2. Modulkürzel: | 041210017 | 5. Modulduar: | 1 Semester |
| 4. SWS: | 2.0 | 7. Sprache: | Deutsch |
| 8. Modulverantwortlicher: | Univ.-Prof. Kai Hufendiek |
| 9. Dozenten: | Marcus Mattis |
| | → Vorgezogene Master-Module |
| | DoubleM.D. Technische Kybernetik, PO 2011 |
| | → Incoming -->Spezialisierungsfach -->Energiesysteme und Energiewirtschaft |
| | → DoubleM.D. Technische Kybernetik, PO 2011 |
| | → Outgoing -->Spezialisierungsfach -->Energiesysteme und Energiewirtschaft |
| | → DoubleM.D. Technische Kybernetik, PO 2014 |
| | → Incoming -->Spezialisierungsfach -->Energiesysteme und Energiewirtschaft |
| | → DoubleM.D. Technische Kybernetik, PO 2014 |
| | → Outgoing -->Spezialisierungsfach -->Energiesysteme und Energiewirtschaft |
| | → DoubleM.D. Technische Kybernetik, PO 2014 |
| | → Wahlpflichtmodule -->Spezialisierungsfach -->Energiesysteme und Energiewirtschaft |
| | → M.Sc. Technische Kybernetik, PO 2011 |
| | → Spezialisierungsmoduls -->Spezialisierungsfach -->Energiesysteme und Energiewirtschaft |
| 11. Empfohlene Voraussetzungen: | Grundlagen der Energiewirtschaft und Energieversorgung, z.B. Modul "Energiewirtschaft und Energieversorgung" |
| 13. Inhalt: | • Definition und Aufgaben der strategischen Unternehmensplanung |
| | • Besonderheiten der Energiewirtschaft |
| | • Organisation eines Energieversorgungsunternehmens (EVU) |
| | • Unternehmerisches Handeln eines EVU |
| | • Unternehmensziele eines EVU |
• Weiterentwicklung der Ziele eines EVU
• Strategische Planung im Energieunternehmen

Empfehlung (fakultativ): IER-Exkursion Energiewirtschaft / Energietechnik

14. Literatur: Manuskript

15. Lehrveranstaltungen und -formen: 320301 Vorlesung Strategische Unternehmensplanung in der leitungsgebundenen Energiewirtschaft

16. Abschätzung Arbeitsaufwand: Präsenzzeit: 28 h
Selbststudium und Prüfungsvorbereitung: 62 h
Gesamt: 90 h

17. Prüfungsnummer/n und -name: 32031 Strategische Unternehmensplanung in der Energiewirtschaft (BSL), mündliche Prüfung, 20 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform: Beamergestützte Vorlesung und teilweise Tafelanschrieb, Lehrfilme, begleitendes Manuskript

20. Angeboten von: Institut für Energiewirtschaft und Rationelle Energieanwendung
2107 Kraftfahrzeugmechatronik

Zugeordnete Module:

11390 Grundlagen der Verbrennungsmotoren
13590 Kraftfahrzeuge I + II
14130 Kraftfahrzeugmechatronik I + II
2117 Spez. Fach. anerkannt 6LP
2118 Spez. Fach. anerkannt 6LP
2119 Spez. Fach. anerkannt 6LP
21750 Softwaretechnik II
30920 Elektronikmotor
32950 Embedded Controller und Datennetze in Fahrzeugen
33980 Spezielle Kapitel der KFZ-Mechatronik
2117 Spez.Fach. anerkannt 6LP
2118 Spez.Fach. anerkannt 6LP
2119 Spez.Fach. anerkannt 6LP
Modul: 30920 Elektronikmotor

2. Modulkürzel: 052601024
5. Moduldauer: 1 Semester

3. Leistungspunkte: 6.0 LP
6. Turnus: jedes 2. Semester, SoSe

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Nejila Parspour

9. Dozenten:
• wiss. MA
• Enzo Cardillo

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technische Kybernetik, PO 2011
→ Vorgezogene Master-Module

DoubleM.D. Technische Kybernetik, PO 2011
→ Incoming -->Spezialisierungsfach -->Kraftfahrzeugmechatronik

DoubleM.D. Technische Kybernetik, PO 2011
→ Outgoing -->Spezialisierungsfach -->Kraftfahrzeugmechatronik

DoubleM.D. Technische Kybernetik, PO 2014
→ Incoming -->Spezialisierungsfach -->Kraftfahrzeugmechatronik

DoubleM.D. Technische Kybernetik, PO 2014
→ Outgoing -->Spezialisierungsfach -->Kraftfahrzeugmechatronik

DoubleM.D. Technische Kybernetik, PO 2014
→ Wahlpflichtmodule -->Spezialisierungsfach -->Kraftfahrzeugmechatronik

M.Sc. Technische Kybernetik, PO 2011
→ Spezialisierungsmodule -->Spezialisierungsfach -->Kraftfahrzeugmechatronik

11. Empfohlene Voraussetzungen:

14. Literatur:
• T.J. E. Miller: Brushless Permanent-Magnet and Reluctance Motor Drives, oxford science publications1989
• N. Parspour: Bürstenlose Gleichstrommaschine mit Fuzzy Regelung für ein Herzunterstützungssystem, Shaker Verlag, Aachen, 1996

15. Lehrveranstaltungen und -formen:
309201 Vorlesung Elektronikmotor

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 56 h
Selbststudium: 124 h
Summe: 180 h
<table>
<thead>
<tr>
<th>Frage</th>
<th>Antwort</th>
</tr>
</thead>
<tbody>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>30921 Elektronikmotor (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Beamer, Tafel, ILIAS</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Institut für Elektrische Energiewandlung</td>
</tr>
</tbody>
</table>
Modul: 32950 Embedded Controller und Datennetze in Fahrzeugen

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>070830101</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>2 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>B.Sc. Technische Kybernetik, PO 2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>→ Vorgezogene Master-Module</td>
</tr>
<tr>
<td>→ DoubleM.D. Technische Kybernetik, PO 2011</td>
</tr>
<tr>
<td>→ Chalmers -->Incoming -->Wahlfach Technische Kybernetik</td>
</tr>
<tr>
<td>→ DoubleM.D. Technische Kybernetik, PO 2011</td>
</tr>
<tr>
<td>→ Chalmers -->Outgoing -->Wahlfach Technische Kybernetik</td>
</tr>
<tr>
<td>→ DoubleM.D. Technische Kybernetik, PO 2011</td>
</tr>
<tr>
<td>→ Incoming -->Spezialisierungsfach -->Kraftfahrzeugmechatronik</td>
</tr>
<tr>
<td>→ DoubleM.D. Technische Kybernetik, PO 2011</td>
</tr>
<tr>
<td>→ Outgoing -->Spezialisierungsfach -->Kraftfahrzeugmechatronik</td>
</tr>
<tr>
<td>→ DoubleM.D. Technische Kybernetik, PO 2014</td>
</tr>
<tr>
<td>→ Chalmers -->Incoming -->Wahlfach Technische Kybernetik</td>
</tr>
<tr>
<td>→ DoubleM.D. Technische Kybernetik, PO 2014</td>
</tr>
<tr>
<td>→ Incoming -->Spezialisierungsfach -->Kraftfahrzeugmechatronik</td>
</tr>
<tr>
<td>→ DoubleM.D. Technische Kybernetik, PO 2014</td>
</tr>
<tr>
<td>→ Outgoing -->Spezialisierungsfach -->Kraftfahrzeugmechatronik</td>
</tr>
<tr>
<td>→ DoubleM.D. Technische Kybernetik, PO 2014</td>
</tr>
<tr>
<td>→ Wahlpflichtmodule -->Spezialisierungsfach -->Kraftfahrzeugmechatronik</td>
</tr>
<tr>
<td>→ M.Sc. Technische Kybernetik, PO 2011</td>
</tr>
<tr>
<td>→ Spezialisierungsmodulu -->Spezialisierungsfach -->Kraftfahrzeugmechatronik</td>
</tr>
<tr>
<td>→ M.Sc. Technische Kybernetik, PO 2011</td>
</tr>
<tr>
<td>→ Spezialisierungsmodulu -->Wahlfach Technische Kybernetik</td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen: Kraftfahrzeugmechatronik I/II

Für die Praktikumsversuche bieten wir zum leichteren Einstieg einen Elektronik-Brückenkurs an. Hierbei wird das von Ihnen im Bachelor bereits erworbe Wissen im Bereich der Elektrotechnik nochmals unter Zuhilfenahme von praxisorientierten Übungsaufgaben aufgefrischt. Informationen hierzu finden Sie auf der Internetseite des IVK.

12. Lernziele:

Die Studierenden kennen die Eigenschaften von analogen und digitalen Signalen und können diese erläutern. Sie verstehen Aufbau sowie die Funktion eines Mikrorechners und seiner Komponenten. Die
Studierenden können verschiedene Speicherarten unterscheiden. Außerdem sind sie in der Lage Programme für einen Mikrocontroller zu erstellen.

Ferner kennen die Studierenden verschiedene Bussysteme, die im Kraftfahrzeug eingesetzt werden. Außerdem können sie diese Bussysteme unterscheiden, sowie deren Potential erkennen und bewerten. Wichtige Entwicklungswerkzeuge können sie nutzen.

Außerdem sind die Studierenden in der Lage, theoretische Vorlesungsinhalte anzuwenden und in der Praxis umzusetzen. Die Studierenden
• können selbständig Prüfungen und Tests konzipieren, erstellen und durchführen
• sind in der Lage, die Prüfungen und Tests auszuwerten und die Ergebnisse zu beurteilen.
• kennen Grundlagen von Kommunikation und Diagnose im Kraftfahrzeug
• verstehen die technischen Eigenheiten und Problemfelder moderner Kommunikationssysteme und Bordnetzelektronik
• können elektronische Systeme im Kfz analysieren sowie Fehler identifizieren und beseitigen

13. Inhalt:

Embedded Controller:
• Mikrorechnertechnik: Eigenschaften von analogen und digitalen Signalen
• Struktur Mikrorechner: Aufbau eines Mikrorechners und dessen Komponenten (Speicher, Steuerwerk, Befehlsatz, Schnittstellen, ADC, DAC)
• Embedded Systems, Embedded Controller, Verschiedenen Architekturen (Von Neumann, Harvard, Extended Harvard)
• Übung: Praktische Programmierung von Microcontrollern mit der Programmiersprache C (Taskverwaltung, Ansteuerung eines Schrittmotors, CAN Netzwerk)

Datennetze:
• Netztopologien: ISO-OSI Schichtenmodell, Schnittstellen, Buszugriffsverfahren, Fehlererkennung, Abtiration, Leitungsodes
• Verschiedene Bussysteme (CAN, FlexRay, LIN), Vertiefung der einzelnen Bussysteme (Botschaftsaufbau, Fehlererkennung und Behandlung, Bitcodierung, Eigenschaften, Vor- und Nachteile)
• Übung: Praktische Nutzung eines Entwicklungsprogramms, Aufbau eines CAN-Netzwerkes

Übung:

14. Literatur:
• Vorlesungsumdruck: „Embedded Controller (Reuss)
• Vieweg Verlag: W. Ameling, Digitalrechner Band 1 und 2
• Vieweg Verlag: B. Morgenstern, Elektronik III Digitale Schaltungen und Systeme
• Hanser Verlag: Westerholz, Embedded Controll Architekturen
• Vorlesungsumdruck: „Datennetze im Kraftfahrzeug“ (Reuss)
• Bonfig Feldbus-Systeme, Band 374 Expert Verlag;
• W. Lawrenz CAN Controller Area Network- Grundlagen und Praxis Hüthig Buch Verlag Heidelberg;
• K. Etschberger CAN Controller Area Network- Grundlagen, Protokolle, Bausteine, Anwendungen Carl Hanser Verlag Wien
• M. Rausch Flexray Hanser Verlag

15. Lehrveranstaltungen und -formen:
• 329501 Vorlesung Embeddes Controller
• 329502 Vorlesung Datennetze im Kraftfahrzeug
• 329503 Übung Embedded Controller und Datennetze

16. Abschätzung Arbeitsaufwand:
Präsenzzeit 42 h, Selbststudium und Nachbearbeitung 138 h Gesamt: 180h

17. Prüfungsnummer/n und -name:
32951 Embedded Controller und Datennetze in Fahrzeugen (PL), mündliche Prüfung, 40 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:
Tafelanschrieb, PPT-Präsentationen, Overheadfolien

20. Angeboten von:
Kraftfahrzeugmechatronik
Modul: 11390 Grundlagen der Verbrennungsmotoren

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>070800003</th>
<th>5. Modulduauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

| 8. Modulverantwortlicher: | Univ.-Prof. Michael Bargende |
| 9. Dozenten: | Michael Bargende |

10. Zuordnung zum Curriculum in diesem Studiengang:

- B.Sc. Technische Kybernetik, PO 2008, 5. Semester
 - Ergänzungsmodule -->Wahlbereich Anwendungsfach --
 - Kraftfahrzeugmechatronik (BSc Kyb)
 - B.Sc. Technische Kybernetik, PO 2011, 5. Semester
 - Ergänzungsmodule -->Wahlbereich Anwendungsfach --
 - Kraftfahrzeugmechatronik (BSc Kyb)
 - B.Sc. Technische Kybernetik, PO 2011, 5. Semester
 - Vorgezogene Master-Module
 - DoubleM.D. Technische Kybernetik, PO 2011, . Semester
 - Incoming -->Spezialisierungsfach -->Kraftfahrzeugmechatronik
 - DoubleM.D. Technische Kybernetik, PO 2011, . Semester
 - Incoming -->Spezialisierungsfach -->Kraftfahrzeugmechatronik
 - DoubleM.D. Technische Kybernetik, PO 2011, . Semester
 - Speculativer Endgeräum der M.Sc. Technische Kybernetik, PO 2011, . Semester
 - Incoming -->Spezialisierungsfach -->Kraftfahrzeugmechatronik

11. Empfohlene Voraussetzungen:
Grundkenntnisse aus 1. bis 4. Fachsemester

12. Lernziele:

13. Inhalt:

14. Literatur:
- Vorlesungsmanuskript

<table>
<thead>
<tr>
<th>15. Lehrveranstaltungen und -formen:</th>
<th>113901 Grundlagen der Verbrennungsmotoren</th>
</tr>
</thead>
<tbody>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Präsenzzeit: 42 h</td>
</tr>
<tr>
<td></td>
<td>Selbststudiumszeit / Nacharbeitszeit: 138 h</td>
</tr>
<tr>
<td></td>
<td>Gesamt: 180 h</td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>11391 Grundlagen der Verbrennungsmotoren (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Tafelanschrieb, PPT-Präsentationen, Overheadfolien</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Verbrennungsmotoren</td>
</tr>
</tbody>
</table>
Modul: 13590 Kraftfahrzeuge I + II

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>070800001</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modulduer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Jochen Wiedemann</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Jochen Wiedemann</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10. Zuordnung zum Curriculum in diesem Studiengang:</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.Sc. Technische Kybernetik, PO 2008, 5. Semester</td>
</tr>
<tr>
<td>→ Ergänzungsmodul → Wahlfach Anwendungsfach → Kraftfahrzeugmechatronik (BSc Kyb)</td>
</tr>
<tr>
<td>→ B.Sc. Technische Kybernetik, PO 2011, 5. Semester</td>
</tr>
<tr>
<td>→ Ergänzungsmodul → Wahlfach Anwendungsfach → Kraftfahrzeugmechatronik (BSc Kyb)</td>
</tr>
<tr>
<td>→ B.Sc. Technische Kybernetik, PO 2011, 5. Semester</td>
</tr>
<tr>
<td>→ Vorgezogene Master-Module</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2011, . Semester</td>
</tr>
<tr>
<td>→ Chalmers → Incoming → Wahlfach Technische Kybernetik</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2011, . Semester</td>
</tr>
<tr>
<td>→ Chalmers → Outgoing → Wahlfach Technische Kybernetik</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2011, . Semester</td>
</tr>
<tr>
<td>→ Incoming → Spezialisierungsfach → Kraftfahrzeugmechatronik</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2011, . Semester</td>
</tr>
<tr>
<td>→ Outgoing → Spezialisierungsfach → Kraftfahrzeugmechatronik</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2014, . Semester</td>
</tr>
<tr>
<td>→ Chalmers → Incoming → Wahlfach Technische Kybernetik</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2014, . Semester</td>
</tr>
<tr>
<td>→ Incoming → Spezialisierungsfach → Kraftfahrzeugmechatronik</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2014, . Semester</td>
</tr>
<tr>
<td>→ Outgoing → Spezialisierungsfach → Kraftfahrzeugmechatronik</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2014, . Semester</td>
</tr>
<tr>
<td>→ Wahlpflichtmodule → Spezialisierungsfach → Kraftfahrzeugmechatronik</td>
</tr>
<tr>
<td>M.Sc. Technische Kybernetik, PO 2011, . Semester</td>
</tr>
<tr>
<td>→ Spezialisierungsmodul → Spezialisierungsfach → Kraftfahrzeugmechatronik</td>
</tr>
<tr>
<td>M.Sc. Technische Kybernetik, PO 2011, . Semester</td>
</tr>
<tr>
<td>→ Spezialisierungsmodul → Wahlfach Technische Kybernetik</td>
</tr>
</tbody>
</table>

| 11. Empfohlene Voraussetzungen: | Kenntnisse aus den Fachsemestern 1 bis 4 |

Stand: 09. April 2015 Seite 263 von 666

14. Literatur:
 - Wiedemann, J.: Kraftfahrzeuge I+II, Vorlesungsumdruck,
 - Reimpell, J.: Fahrwerkstechnik: Grundlagen, Vogel-Fachbuchverlag, 2005

15. Lehrveranstaltungen und -formen:
 - 135901 Vorlesung Kraftfahrzeuge I + II
 - 135902 Übung Kraftfahrzeuge I + II

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 42 h
 Selbststudiumszeit / Nacharbeitszeit: 138 h
 Gesamt: 180 h

17. Prüfungsnummer/n und -name: 13591 Kraftfahrzeuge I + II (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... : 13590 Kraftfahrzeuge I + II

19. Medienform: Beamer, Tafel

20. Angeboten von: Kraftfahrwesen
Modul: 14130 Kraftfahrzeugmechatronik I + II

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>Studiengang</th>
<th>Modulverantwortlicher</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>→ Ergänzungsmodule -->Wahlbereich Anwendungsfach --> Kraftfahrzeugmechatronik (BSc Kyb)</td>
<td>→ Ergänzungsmodule -->Wahlbereich Anwendungsfach --> Kraftfahrzeugmechatronik (BSc Kyb)</td>
<td>→ Ergänzungsmodule -->Wahlbereich Anwendungsfach --> Kraftfahrzeugmechatronik (BSc Kyb)</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Studiengang</th>
<th>Modulverantwortlicher</th>
<th>Dozenten</th>
</tr>
</thead>
<tbody>
<tr>
<td>→ Incoming -->Spezialisierungsfach -->Kraftfahrzeugmechatronik</td>
<td>→ Outgoing -->Spezialisierungsfach -->Kraftfahrzeugmechatronik</td>
<td>→ Vorgezogene Master-Module</td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen: Grundkenntnisse aus den Fachsemestern 1 bis 4

12. Lernziele:

Die Studenten kennen mechatronische Komponenten in Automobilen, können Funktionsweisen und Zusammenhänge erklären.

Die Studenten können Entwicklungsmethoden für mechatronische Komponenten im Automobil einordnen und anwenden. Wichtige Entwicklungswerkzeuge können sie nutzen.

13. Inhalt:

VL Kfz-Mech I:

- kraftfahrzeugspezifische Anforderungen an die Elektronik
- Bordnetz (Energiemanagement, Generator, Starter, Batterie, Licht)
- Motorelektronik (Zündung, Einspritzung)
- Getriebeelektronik
- Lenkung
• ABS, ASR, ESP, elektromechanische Bremse, Dämpfungsregelung, Reifendrucküberwachung
• Sicherheitssysteme (Airbag, Gurt, Alarmanlage, Wegfahrsperre)
• Komfortsysteme (Tempomat, Abstandsregelung, Klimaanlage)

VL Kfz-Mech II:

• Grundlagen mechatronischer Systeme (Steuerung/Regelung, diskrete Systeme, Echtzeitsysteme, eingebettete Systeme, vernetzte Systeme)
• Systemarchitektur und Fahrzeugentwicklungsprozesse
• Kernprozess zur Entwicklung von mechatronischen Systemen und Software (Schwerpunkt V-Modell)

Laborübungen Kraftfahrzeugmechatronik

• Rapid Prototyping (Simulink)
• Modellbasierte Funktionsentwicklung mit TargetLink
• Elektronik

14. **Literatur:**

Vorlesungsumdruck: „Kraftfahrzeugmechatronik I“ (Reuss)

15. **Lehrveranstaltungen und -formen:**

• 141301 Vorlesung Kraftfahrzeugmechatronik I
• 141302 Vorlesung Kraftfahrzeugmechatronik II
• 141303 Laborübungen Kraftfahrzeugmechatronik

16. **Abschätzung Arbeitsaufwand:**

Präsenzzeit: 42 h
Selbststudiumszeit / Nacharbeitszeit: 138 h
Gesamt: 180 h

17. **Prüfungsnummer/n und -name:**

14131 Kraftfahrzeugmechatronik I + II (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. **Grundlage für ... :**

19. **Medienform:**

Vorlesung (Beamer), Laborübungen (am PC, betreute Zweiergruppen)

20. **Angeboten von:**

Kraftfahrzeugmechatronik
Modul: 21750 Softwaretechnik II

2. Modulkürzel: 050501006
5. Moduldauer: 1 Semester

3. Leistungspunkte: 6.0 LP
6. Turnus: jedes 2. Semester, SoSe

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Peter Göhner

9. Dozenten: Peter Göhner

10. Zuordnung zum Curriculum in diesem Studiengang:

 B.Sc. Technische Kybernetik, PO 2008, 4. Semester
 ➔ Ergänzungsmodule --> Höhere Informatik

 B.Sc. Technische Kybernetik, PO 2011, 4. Semester
 ➔ Ergänzungsmodule --> Höhere Informatik
 ➔

 B.Sc. Technische Kybernetik, PO 2011, 4. Semester
 ➔ Vorgezogene Master-Module

 DoubleM.D. Technische Kybernetik, PO 2011, 2. Semester
 ➔ Incoming --> Spezialisierungsfach --> Kraftfahrzeugmechatronik
 ➔

 DoubleM.D. Technische Kybernetik, PO 2011, 2. Semester
 ➔ Outgoing --> Spezialisierungsfach --> Kraftfahrzeugmechatronik
 ➔

 DoubleM.D. Technische Kybernetik, PO 2014, 2. Semester
 ➔ Chalmers --> Incoming --> Wahlfach Technische Kybernetik
 ➔

 DoubleM.D. Technische Kybernetik, PO 2014, 2. Semester
 ➔ Incoming --> Spezialisierungsfach --> Kraftfahrzeugmechatronik
 ➔

 DoubleM.D. Technische Kybernetik, PO 2014, 2. Semester
 ➔ Outgoing --> Spezialisierungsfach --> Kraftfahrzeugmechatronik
 ➔

 DoubleM.D. Technische Kybernetik, PO 2014, 2. Semester
 ➔ Wahlpflichtmodule --> Spezialisierungsfach --> Kraftfahrzeugmechatronik
 ➔

 M.Sc. Technische Kybernetik, PO 2011, 2. Semester
 ➔ Spezialisierungsmodule --> Spezialisierungsfach --> Kraftfahrzeugmechatronik
 ➔

 M.Sc. Technische Kybernetik, PO 2011, 2. Semester
 ➔ Spezialisierungsmodule --> Wahlfach Technische Kybernetik
 ➔

11. Empfohlene Voraussetzungen: Softwaretechnik I

12. Lernziele:
 Die Studierenden
 • besitzen vertiefte Kenntnisse über Softwarequalität für technische Systeme
 • wenden Softwaretechniken für bestehende technische Systeme an
 • lernen aktuelle Themen der Softwaretechnik kennen

13. Inhalt:
 • Konfigurationsmanagement
 • Prototyping bei der Softwareentwicklung
• Metriken
• Formale Methoden zur Entwicklung qualitativ hochwertiger Software
• Wartung & Pflege von Software
• Reengineering
• Datenbanksysteme
• Software-Wiederverwendung
• Agentenorientierte Softwareentwicklung
• Agile Softwareentwicklung

14. Literatur:
• Vorlesungsskript
• Balzert, H.: Lehrbuch der Software-Technik, Spektrum Akademischer Verlag, 2000
• Sommerville, I.: Software Engineering, Addison Wesley, 2006
• Eckstein, J.: Agile Softwareentwicklung im Großen, dpunkt-Verlag, 2005
• Andresen, A.: Komponentenbasierte Softwareentwicklung mit MDA, UML2 und XML, Hanser Fachverlag, 2004
• Choren, R; et al.: Software Engineering for Multi-Agent Systems III, Springer-Verlag, 2005
• Vorlesungsportal mit Vorlesungsaufzeichnung auf http://www.ias.uni-stuttgart.de/st2

15. Lehrveranstaltungen und -formen:
• 217501 Vorlesung Softwaretechnik II
• 217502 Übung Softwaretechnik II

16. Abschätzung Arbeitsaufwand:

Präsenzeit:	56 h
Selbststudium:	124 h
Gesamt:	180 h

17. Prüfungsnummer/n und -name:
• 21751 Softwaretechnik II (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für … :

19. Medienform:
• Beamerpräsentation mit Aufzeichnung der Vorlesungen und Übungen

20. Angeboten von:
• Institut für Automatisierungs- und Softwaretechnik
Modul: 33980 Spezielle Kapitel der KFZ-Mechatronik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>070830102</th>
<th>5. Moduldauer:</th>
<th>2 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Thomas Raith
• Armin Müller
• Hans-Christian Reuß
• Gerhard Hettich
• Karl-Ernst Noreikat
• Andreas Friedrich |
→ Vorgezogene Master-Module
DoubleM.D. Technische Kybernetik, PO 2011
→ Incoming -->Spezialisierungsfach -->Kraftfahrzeugmechatronik
→
DoubleM.D. Technische Kybernetik, PO 2011
→ Outgoing -->Spezialisierungsfach -->Kraftfahrzeugmechatronik
→
DoubleM.D. Technische Kybernetik, PO 2014
→ Incoming -->Spezialisierungsfach -->Kraftfahrzeugmechatronik
→
DoubleM.D. Technische Kybernetik, PO 2014
→ Outgoing -->Spezialisierungsfach -->Kraftfahrzeugmechatronik
→
DoubleM.D. Technische Kybernetik, PO 2014
→ Wahlpflichtmodule -->Spezialisierungsfach -->Kraftfahrzeugmechatronik
→
M.Sc. Technische Kybernetik, PO 2011
→ Spezialisierungsmodule -->Spezialisierungsfach -->Kraftfahrzeugmechatronik
→ |
| 11. Empfohlene Voraussetzungen: | Kraftfahrzeugmechatronik I/II |
| 12. Lernziele: | Die Studenten kennen die grundlegenden und vertieften Zusammenhänge, wie auch die komplexen Problemstellungen der verschiedenen Teilbereiche in der Kraftfahrzeugmechatronik, welche sie auf dem aktuellen Stand der Technik vermittelt bekommen. Sie verfügen in diesen Bereichen fundierte Kenntnisse, die sie in die Lage versetzt, gesamtmotorische Zusammenhänge zu verstehen und auf spezielle Fragestellungen anzuwenden. |
| 13. Inhalt: | • Einführung in die KFZ-Systemtechnik: Definition, Historie der Systeme, Sensoren, Aktoren, Steuergeräte, Stecker und Kabelbäume, Bordnetz, Bussysteme, Systemarchitektur, Elektrische Antriebe
• Qualität automobilier Elektroniksysteme: ISO/TS 16949, EFQM-Modell, Qualität von EE-Systemen in Kraftfahrzeugen, V-Modell, Lastenheft, FMEA (failure mode effect analysis), SPC (statistical process control), |
Prozesse und Methoden, Qualitätsbegriffe, Fehlerlandschaft und Treiber, Systemintegration, Erfahrungstransfer

• Elektrochemische Energiespeicherung in Batterien: Grundlagen Elektrochemische Thermodynamik und Kinetik, Primärsysteme (Alkali-Mangan, Zink-Luft), Sekundärsysteme (Blei, Lithium-Ionen), Elektrofahrzeuge, Hybridfahrzeuge, Portable und stationäre Anwendungen, Systemtechnik, Sicherheitstechnik, Herstellung und Entsorgung

• Baukastenmanagement in der modernen Fahrzeugentwicklung: Entwicklungshistorie und Stand der Technik, Zielsetzung und Abgrenzung, Fahrzeugentwicklungsprozess, Fahrzeugdefinition, Fahrzeugkonzeption, -bau- und -test mit den Grundlagen der Konstruktion, Simulation und Bewertung, Ausblick und Entwicklungstrends

14. Literatur:
• Vorlesungsumdrucke und Empfehlung in den einzelnen Vorlesungen
• MIL Handbuch
• DGQ Veröffentlichungen
• Normen
• Braess, Seiffert: Handbuch Kraftfahrzeugtechnik, 5. Auflage, Vieweg-Verlag
• Wallentowitz, Reif: Handbuch Kraftfahrzeugelektronik, Vieweg-Verlag
• Naunin u.a.: Hybrid-, Batterie- und Brennstoffzellen- Elektrofahrzeuge; Expert-Verlag
• Saenger-Zetina: Optimal Control with Kane Mechanics Applied to a Hybrid Power Split Transmission, Dissertation RWTH Aachen, 2009, Sierke Verlag

15. Lehrveranstaltungen und -formen:
• 339801 Vorlesung Einführung in die KFZ-Systemtechnik
• 339802 Vorlesung Qualität automobiler Elektroniksysteme
• 339804 Vorlesung Hybridantriebe
<table>
<thead>
<tr>
<th>Modulhandbuch: Master of Science Technische Kybernetik</th>
</tr>
</thead>
<tbody>
<tr>
<td>339805 Vorlesung Elektrochemische Energiespeicherung in Batterien</td>
</tr>
<tr>
<td>339806 Vorlesung Fahrzeugdiagnose</td>
</tr>
<tr>
<td>339807 Vorlesung Baukastenmanagement in der modernen Fahrzeugentwicklung</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16. Abschätzung Arbeitsaufwand:</th>
<th>Präsenzzeit 42 h, Selbststudium und Nachbearbeitung 138 h Gesamt 180 h</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>33981 Spezielle Kapitel der KFZ-Mechatronik (PL), schriftlich, eventuell mündlich, 40 Min., Gewichtung: 1.0</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>18. Grundlage für ... :</th>
<th></th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>19. Medienform:</th>
<th>Tafelanschrieb, PPT-Präsentationen, Overheadfolien</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>20. Angeboten von:</th>
<th>Kraftfahrzeugmechatronik</th>
</tr>
</thead>
</table>
2108 Simulation kerntechnischer Anlagen

Zugeordnete Module:

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Bezeichnung</th>
</tr>
</thead>
<tbody>
<tr>
<td>14110</td>
<td>Kerntechnische Anlagen zur Energieerzeugung</td>
</tr>
<tr>
<td>2117</td>
<td>Spez.Fach. anerkannt 6LP</td>
</tr>
<tr>
<td>2118</td>
<td>Spez.Fach. anerkannt 6LP</td>
</tr>
<tr>
<td>2119</td>
<td>Spez.Fach. anerkannt 6LP</td>
</tr>
<tr>
<td>30690</td>
<td>Thermofluiddynamik kerntechnischer Anlagen</td>
</tr>
<tr>
<td>30700</td>
<td>Reaktorphysik und -sicherheit</td>
</tr>
<tr>
<td>30730</td>
<td>Praktikum Kernenergietechnik</td>
</tr>
<tr>
<td>31450</td>
<td>Simulation kerntechnischer Anlagen (Anlagendynamik)</td>
</tr>
<tr>
<td>38360</td>
<td>Methoden der Numerischen Strömungssimulation</td>
</tr>
<tr>
<td>51790</td>
<td>Fluid Dynamik der Atmosphäre</td>
</tr>
<tr>
<td>51810</td>
<td>Angewandte Strömungsmesstechnik und Versuchstechnik</td>
</tr>
</tbody>
</table>
2117 Spez.Fach. anerkannt 6LP
2118 Spez.Fach. anerkannt 6LP
2119 Spez.Fach. anerkannt 6LP
Modul: 51810 Angewandte Strömungsmesstechnik und Versuchstechnik

2. Modulkürzel: 41600620
5. Modulsdauer: 1 Semester
3. Leistungspunkte: 3.0 LP
6. Turnus: jedes 2. Semester, SoSe
4. SWS: 2.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Eckart Laurien
9. Dozenten:
 • Eckart Laurien
 • Rainer Mertz
 • Rudi Kulenovic

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technische Kybernetik, PO 2011
 → Vorgezogene Master-Module
 DoubleM.D. Technische Kybernetik, PO 2011
 → Incoming --Spezialisierungsfach -->Simulation kerntechnischer Anlagen
 →
 DoubleM.D. Technische Kybernetik, PO 2011
 → Outgoing --Spezialisierungsfach -->Simulation kerntechnischer Anlagen
 →
 DoubleM.D. Technische Kybernetik, PO 2014
 → Incoming --Spezialisierungsfach -->Simulation kerntechnischer Anlagen
 →
 DoubleM.D. Technische Kybernetik, PO 2014
 → Outgoing --Spezialisierungsfach -->Simulation kerntechnischer Anlagen
 →
 DoubleM.D. Technische Kybernetik, PO 2014
 → Wahlpflichtmodule -->Spezialisierungsfach -->Simulation kerntechnischer Anlagen
 →
 M.Sc. Technische Kybernetik, PO 2011
 → Spezialisierungsmodule -->Spezialisierungsfach -->Simulation kerntechnischer Anlagen

11. Empfohlene Voraussetzungen: Fluidmechanik I, Messtechnik-Praktikum
13. Inhalt: Gliederung
 -- Validierung theoretischer Berechnungsmethoden
 -- Laser-Doppler Anemometrie
 -- Particle-Image Velocimetrie
-- Thermoelemente in Strömungen
-- Fluoreszenzmethode
-- Wärmebildkamera, Hochgeschwindigkeitskamera
-- Ultraschnelle Röntgentomographie
-- Bildgebende Messverfahren
-- Rohrleitungs-Versuchsstände
-- Versuchsstand zur Untersuchung von Siedevorgängen
-- Versuchsstand mit Superkritischem Kohlendioxid

14. Literatur:

15. Lehrveranstaltungen und -formen:
518101 Vorlesung Angewandte Strömungsmesstechnik und Versuchstechnik

16. Abschätzung Arbeitsaufwand:
90 h

17. Prüfungsnummer/n und -name:
51811 Angewandte Strömungsmesstechnik und Versuchstechnik (BSL), mündliche Prüfung, 30 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 51790 Fluid Dynamik der Atmosphäre

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>41600620</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Eckart Laurien</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Eckart Laurien</td>
</tr>
</tbody>
</table>
DoubleM.D. Technische Kybernetik, PO 2011 → Incoming -->Spezialisierungsfach -->Simulation kerntechnischer Anlagen
DoubleM.D. Technische Kybernetik, PO 2011 → Outgoing -->Spezialisierungsfach -->Simulation kerntechnischer Anlagen
DoubleM.D. Technische Kybernetik, PO 2014 → Incoming -->Spezialisierungsfach -->Simulation kerntechnischer Anlagen
DoubleM.D. Technische Kybernetik, PO 2014 → Outgoing -->Spezialisierungsfach -->Simulation kerntechnischer Anlagen
DoubleM.D. Technische Kybernetik, PO 2014 → Wahlpflichtmodule -->Spezialisierungsfach -->Simulation kerntechnischer Anlagen
M.Sc. Technische Kybernetik, PO 2011 → Spezialisierungsmodule -->Spezialisierungsfach -->Simulation kerntechnischer Anlagen |
| 11. Empfohlene Voraussetzungen: | Fluidmechanik I + II |
| 13. Inhalt: | Gliederung
-- Aerostatik der Atmosphäre
-- Potentialtheorie
-- Großräumige Wettersysteme |
-- Instabilitäten und Turbulenz
-- Atmosphärische Grenzschichten
-- Kleinräumige Wettersysteme
-- Stoffausbreitung in der Atmosphäre
-- Simulation / Ausbreitungsrechnung

14. Literatur:
 S.P. Arya: Air Pollution Meteorology and Dispersion, Oxford University Press, 1999

15. Lehrveranstaltungen und -formen:
 517901 Vorlesung Fluid Dynamik der Atmosphäre

16. Abschätzung Arbeitsaufwand:
 3 x 30 h

17. Prüfungsnummer/n und -name:
 51791 Fluid Dynamik der Atmosphäre (BSL), mündliche Prüfung, Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 14110 Kerntechnische Anlagen zur Energieerzeugung

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>041610001</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Nach Ankuendigung</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Jörg Starflinger</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Jörg Starflinger</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>B.Sc. Technische Kybernetik, PO 2008, . Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>→ Ergänzungsmodule -->Wahlbereich Anwendungsfach --</td>
</tr>
<tr>
<td>>Energiesysteme - Energietechnik</td>
</tr>
<tr>
<td>→</td>
</tr>
<tr>
<td>B.Sc. Technische Kybernetik, PO 2008, . Semester</td>
</tr>
<tr>
<td>→ Ergänzungsmodule -->Wahlbereich Anwendungsfach --</td>
</tr>
<tr>
<td>>Kernenergietechnik</td>
</tr>
<tr>
<td>→</td>
</tr>
<tr>
<td>B.Sc. Technische Kybernetik, PO 2011</td>
</tr>
<tr>
<td>→ Ergänzungsmodule -->Wahlbereich Anwendungsfach --</td>
</tr>
<tr>
<td>>Energiesysteme - Energietechnik</td>
</tr>
<tr>
<td>→</td>
</tr>
<tr>
<td>B.Sc. Technische Kybernetik, PO 2011</td>
</tr>
<tr>
<td>→ Ergänzungsmodule -->Wahlbereich Anwendungsfach --</td>
</tr>
<tr>
<td>>Kernenergietechnik</td>
</tr>
<tr>
<td>→</td>
</tr>
<tr>
<td>B.Sc. Technische Kybernetik, PO 2011</td>
</tr>
<tr>
<td>→ Vorgezogene Master-Module</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DoubleM.D. Technische Kybernetik, PO 2011, . Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>→ Incoming -->Spezialisierungsfach -->Simulation kerntechnischer Anlagen</td>
</tr>
<tr>
<td>→</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2011, . Semester</td>
</tr>
<tr>
<td>→ Outgoing -->Spezialisierungsfach -->Simulation kerntechnischer Anlagen</td>
</tr>
<tr>
<td>→</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2014, . Semester</td>
</tr>
<tr>
<td>→ Incoming -->Spezialisierungsfach -->Simulation kerntechnischer Anlagen</td>
</tr>
<tr>
<td>→</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2014, . Semester</td>
</tr>
<tr>
<td>→ Outgoing -->Spezialisierungsfach -->Simulation kerntechnischer Anlagen</td>
</tr>
<tr>
<td>→</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2014, . Semester</td>
</tr>
<tr>
<td>→ Wahlpflichtmodule -->Spezialisierungsfach -->Simulation kerntechnischer Anlagen</td>
</tr>
<tr>
<td>→</td>
</tr>
<tr>
<td>M.Sc. Technische Kybernetik, PO 2011, . Semester</td>
</tr>
<tr>
<td>→ Spezialisierungsmodule -->Spezialisierungsfach -->Simulation kerntechnischer Anlagen</td>
</tr>
<tr>
<td>→</td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen:

Vorlesungen: Experimentalphysik, Thermodynamik, Mathematik, Strömungslehre
12. Lernziele:

Die Studierenden

- können grundsätzlich die Modellvorstellung der Kernspaltung nachvollziehen. Sie kennen die Spaltproduktausbeutekurve, die Energiefreisetzung bei der Spaltung. Sie wissen, was verzögerte Neutronen sind und woher diese stammen.

- wissen, was Wirkungsquerschnitte sind. Sie kennen die 4-Faktoren-Formel und können die einzelnen Termen benennen und erläutern.

- können eine einfache Neutronenbilanzgleichung aufstellen. Sie wissen, was das der Diffusionsansatz ist und können daraus die Reaktorgleichung ableiten. Für ein einfaches Beispiel können sie die kritische Abmessung berechnen.

- verstehen das dynamische verhalten des Reaktors. Sie kennen die Punktkinetik und können Begriffe, wie Reaktivität und Reaktorperiode erläutern. Sie verstehen die Sprungantwort bei einem Reaktivitätseintrag. Sie können das Selbstregelverhalten, insb. die Rückwirkungskoeffizienten (Doppler, Dichte, Void) anschaulich beschreiben.

- können den Aufbau eines Brennelements (DWR/SWR) nachvollziehen und Bauteile am BE identifizieren. Sie verstehen den Brennstabaufbau, die Steuerstäbe und dessen Antriebe. Sie können Unterkanalanalysen nachvollziehen und können die Brennstabtemperaturverteilung erläutern. Sie können DNB und Dryout als Gefahr für das Brennelement identifizieren und erläutern und verstehen Heißkanalfaktoren als Auslegungskriterium.

- können Kühlkreislauf von Druckwasserreaktoranlagen inkl. aller Komponenten schematisch zeichnen und benennen, Kerneinbauten identifizieren, Aufbau des Dampferzeugers reproduzieren, den Druckhalter schematisch zeichnen und dessen Funktion beschreiben, die Kerninstrumentierung und deren Aufgaben beschreiben können sowie den Sekundärkreislauf zeichnen und benennen.

- können Siedewasserreaktoranlagen inkl. aller Komponenten schematisch zeichnen und benennen, Kerneinbauten identifizieren, den Kühlkreislauf zeichnen und benennen und die SWR-Regelung und das Betriebskennfeld verstehen.

- können Hilfs- und Nebenanlagen identifizieren und voneinander unterscheiden, die Aufgaben des Volumenregelsystems verstehen und nachvollziehen, das nukleare Zwischenkühlssystem verstehen und dessen Aufgaben im Normalbetrieb und bei Störungen nachvollziehen, Aufgaben des Zusatzboilersystem beschreiben und die Druckstaffelung in DWR und Inertisierung bei SWR verstehen.
- im Bereich der Reaktorsicherheit Gefährdungspotenziale und Schutzziele in der Kerntechnik verstehen sowie die Definition der zwölf Sicherheitsprinzipien nachvollziehen und mit anschaulichen Beispielen erläutern.

- die Funktion der Sicherheitssysteme für DWR und SWR nachvollziehen und beschreiben. Sie verstehen die Definition des Risikos, den Unterschied zwischen deterministischer und probabilistischer Sicherheitsanalyse und können die Stufen der probabilistischen Sicherheitsanalyse nachvollziehen. Hierbei können sie Ereignisbaum und Fehlerbaum voneinander unterscheiden und können die INES-Skala erläutern.

- können generell die Reaktorentwicklung (Generationen 1-4) nachvollziehen, die Hauptmerkmale fortschrittlicher Reaktorkonzepte benennen und Beispiele von Gen III Reaktoren angeben.

- verstehen die Ziele von Gen IV Reaktoren, können Hauptmerkmale der Gen IV Konzepte mit Vor- und Nachteilen reproduzieren und Beispiele angeben. Sie verstehen das Konzept und die Idee eines ADS-Reaktors als ein mögliches Konzept zur Verringerung der Radiotoxizität des Abfalls.

- Den Brennstoffkreislauf nachvollziehen, kennen Abbaumethoden (konventionelle, unkonventionelle) und können den ungefähren weltweiten Verbrauch pro Jahr benennen.

- den Anreicherungsgrund nachvollziehen, die Rolle von UF6 erläutern und vier Konversionsverfahren benennen.

- können das Aufkommen von Abfall pro Jahr benennen, die Relevanz verschiedener Abfallarten für Zwischen- und Endlagern erläutern, die Klassifizierung von Abfällen nachvollziehen, die Behandlung von festen und flüssigen Betriebsabfällen erläutern, das Schema der Wiederaufarbeitung zeichnen und insbesondere den PUREX Prozess verstehen. Außerdem sollen sie die Rolle von Glaskokillen für hochradioaktive Abfälle verstehen.

- Das tiefengeologische Konzept verstehen, die Möglichkeiten der Einlagerung erläutern und das Multibarrierverkonzept zur Sicherheit von Endlagern erläutern.

13. Inhalt:

Die o.g. Lernziele werden in 6 Themenkomplexen abgehandelt.

- Kernreaktoren in Deutschland, Europa, weltweit
- Kerntechnische Grundlagen, Radioaktivität, Bindungsenergie, Kernspaltung, Nuklidkarte, kritische Anordnungen
- Druck und Siedewasserreaktoren, Brennelemente, Hilfs- und Nebenanlagen
- Sicherheitseinrichtungen, Reaktorsicherheit, Unfälle
- Fortschrittliche Reaktorkonzepte, neue Reaktoren der Generation 4 (im Ausland)

- Brennstoffkreislauf: Versorgung mit Kernbrennstoff, Entsorgung des radioaktiven Abfalls

PDF der Vorlesung ausschließlich über IILIAS

14. Literatur:
 - W. Oldekop: "Druckwasserreaktoren für Kern-Kraftwerke"

15. Lehrveranstaltungen und -formen:
 141101 Vorlesung und Übung Kerntechnische Anlagen zur Energieerzeugung

16. Abschätzung Arbeitsaufwand:
 45 h Präsenzzeit
 45 h Vor-/Nacharbeitungszeit
 90 h Prüfungsvorbereitung und Prüfung

17. Prüfungsnummer/n und -name:
 14111 Kerntechnische Anlagen zur Energieerzeugung (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :
 26000 Kernenergietechnik

19. Medienform:
 - ppt-Präsentation
 - Manuskripte online
 - Tafel + Kreide

20. Angeboten von:
 Institut für Kernenergetik und Energiesysteme
Modul: 38360 Methoden der Numerischen Strömungssimulation

2. Modulkürzel: 041600612
5. Modulduer: 1 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Eckart Laurien

9. Dozenten:

10. Zuordnung zum Curriculum in diesem Studiengang:

 B.Sc. Technische Kybernetik, PO 2011
 → Ergänzungsmodule -->Wahlbereich Anwendungsfach --
 →>Kernenergetechnik
 →

 B.Sc. Technische Kybernetik, PO 2011
 → Vorgezogene Master-Module

 DoubleM.D. Technische Kybernetik, PO 2011
 → Incoming -->Spezialisierungsfach -->Simulation kerntechnischer
 → Anlagen
 →

 DoubleM.D. Technische Kybernetik, PO 2011
 → Outgoing -->Spezialisierungsfach -->Simulation kerntechnischer
 → Anlagen
 →

 DoubleM.D. Technische Kybernetik, PO 2014
 → Incoming -->Spezialisierungsfach -->Simulation kerntechnischer
 → Anlagen
 →

 DoubleM.D. Technische Kybernetik, PO 2014
 → Outgoing -->Spezialisierungsfach -->Simulation kerntechnischer
 → Anlagen
 →

 DoubleM.D. Technische Kybernetik, PO 2014
 → Wahlpflichtmodule -->Spezialisierungsfach -->Simulation
 → kerntechnischer Anlagen
 →

 M.Sc. Technische Kybernetik, PO 2011
 → Spezialisierungsmodul -->Spezialisierungsfach -->Simulation
 → kerntechnischer Anlagen
 →

11. Empfohlene Voraussetzungen: Grundlagen der Numerik, Strömungsmechanik oder Technische Strömungslehre

12. Lernziele:

 Studenten besitzen fundiertes Wissen über die Algorithmen zur
 numerischen Strömungssimulation als Grundlage für problemangepasste
 Simulationsprogramme

13. Inhalt:

 1 Einführung
 1.1 Beispiele für die Anwendung Numerischer Methoden
 1.2 Vorgehensweise der Numerischen Strömungssimulation
 1.3 Eigenschaften von Differentialgleichungen
 1.4 Differenzierverfahren zur Lösung der Poisson-Gleichung
 1.5 Geschichte der Numerischen Strömungssimulation
 2 Simulation eindimensionaler kompressibler Strömungen
 2.1 Beispiel: Stoßausbreitung in einem Rohr
 2.2 Explizites Einschrittverfahren mit zentralen Differenzen
<table>
<thead>
<tr>
<th>2.3 Lax-Wendroff Verfahren</th>
</tr>
</thead>
<tbody>
<tr>
<td>3 Dreidimensionale Grundgleichungen der Strömungsmechanik</td>
</tr>
<tr>
<td>3.1 Ableitung für kompressible Strömungen</td>
</tr>
<tr>
<td>3.2 Randbedingungen</td>
</tr>
<tr>
<td>3.3 Vereinfachungen für inkompressible Strömungen</td>
</tr>
<tr>
<td>3.4 Randbedingungen</td>
</tr>
<tr>
<td>3.5 Beispiel einer Lösungsmethode: DuFort-Frankel Verfahren</td>
</tr>
<tr>
<td>3.6 Semi-Implizite Methode</td>
</tr>
<tr>
<td>4 Grundlagen der Diskretisierung</td>
</tr>
<tr>
<td>4.1 Zeitdiskretisierung</td>
</tr>
<tr>
<td>4.2 Diskretisierungsfehler</td>
</tr>
<tr>
<td>4.3 Rundungsfehler</td>
</tr>
<tr>
<td>4.4 Diskretisierung eindimensionaler Modellgleichungen</td>
</tr>
<tr>
<td>5 Netzgenerierung</td>
</tr>
<tr>
<td>5.1 Numerische Netze</td>
</tr>
<tr>
<td>5.2 Interpolationsmethode</td>
</tr>
<tr>
<td>5.3 Generierung Unstrukturierter Netze</td>
</tr>
<tr>
<td>5.4 Netzadaptation</td>
</tr>
<tr>
<td>6 Finite-Differenzen Methoden</td>
</tr>
<tr>
<td>6.1 Transformation in den Rechenraum</td>
</tr>
<tr>
<td>6.2 Berechnung der Metrik-Koeffizienten</td>
</tr>
<tr>
<td>6.3 MacCormack Verfahren</td>
</tr>
<tr>
<td>7 Finite-Volumen Methoden</td>
</tr>
<tr>
<td>7.1 Finite-Volumen Methode für eine Dgl. 1. Ordnung</td>
</tr>
<tr>
<td>7.2 Finite-Volumen Methode für die Poissongleichung</td>
</tr>
<tr>
<td>7.3 Semi- Implizite Finite-Volumen Methode</td>
</tr>
<tr>
<td>7.4 Runge-Kutta Finite-Volumen Methode</td>
</tr>
</tbody>
</table>

15. Lehrveranstaltungen und -formen:	383601 Vorlesung Methoden der Numerischen Strömungssimulation
16. Abschätzung Arbeitsaufwand:	
17. Prüfungsnummer/n und -name:	38361 Methoden der Numerischen Strömungssimulation (PL), mündliche Prüfung, 30 Min., Gewichtung: 1.0
18. Grundlage für ... :	
19. Medienform:	Tafelanschrieb (80%) und ppt-Präsentation (20%)
20. Angeboten von:	Institut für Kernenergetik und Energiesysteme
Modul: 30730 Praktikum Kernenergietechnik

2. Modulkürzel: 041610007
5. Modulduauer: 1 Semester

3. Leistungspunkte: 3.0 LP
6. Turnus: jedes Semester

4. SWS: 0.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Jörg Starflinger

9. Dozenten:
 • Talianna Schmidt
 • Rudi Kulenovic
 • Jörg Starflinger

10. Zuordnung zum Curriculum in diesem Studiengang:
 - B.Sc. Technische Kybernetik, PO 2011
 → Vorgezogene Master-Module
 → DoubleM.D. Technische Kybernetik, PO 2011
 → Incoming --Spezialisierungsfach -->Simulation kerntechnischer Anlagen
 → DoubleM.D. Technische Kybernetik, PO 2011
 → Outgoing --Spezialisierungsfach -->Simulation kerntechnischer Anlagen
 → DoubleM.D. Technische Kybernetik, PO 2014
 → Incoming --Spezialisierungsfach -->Simulation kerntechnischer Anlagen
 → DoubleM.D. Technische Kybernetik, PO 2014
 → Outgoing --Spezialisierungsfach -->Simulation kerntechnischer Anlagen
 → DoubleM.D. Technische Kybernetik, PO 2014
 → Wahlpflichtmodule --Spezialisierungsfach -->Simulation kerntechnischer Anlagen
 → M.Sc. Technische Kybernetik, PO 2011
 → Spezialisierungsmodul -->Spezialisierungsfach -->Simulation kerntechnischer Anlagen

11. Empfohlene Voraussetzungen:

12. Lernziele:
 Die Studierenden sind in der Lage, theoretische Vorlesungsinhalte anzuwenden und in der Praxis umzusetzen.

13. Inhalt:
 Im Spezialisierungsfach "Kernenergietechnik" sind folgende 4 Spezialisierungsfachversuche am IKE zu belegen:
 - Kernreaktor SUR100: Radioaktivität und Strahlenschutz, Kühlbarkeit von Schüttungen, Alpha- und Gamma-Spektrometrie
 - 4 weitere Versuche sind aus dem Angebot des Allgemeinen Praktikums Maschinenbau (APMB) zu absolvieren:
 - APMB 1 APMB 2 APMB 3 APMB 4
 Die Anmeldung zu den einzelnen Praktika erfolgt über ILIAS. Dort sind auch Kurzbeschreibungen und Vorbereitungsunterlagen verfügbar.
In einem Kolloquium vor dem eigentlichen praktischen Versuch wird überprüft, ob die für den Versuch notwendigen Grundlagen vorhanden sind (Vorbereitungsunterlagen lesen und verstehen!).

Für jeden Praktikumsversuch ist eine Ausarbeitung anzufertigen und bei der Betreuerin bzw. beim Betreuer abzugeben. Erst danach wird das Testat ausgestellt.

Eine Übersicht zu den APMB erhalten Sie zudem unter http://www.uni-stuttgart.de/mabau/msc/msc_mach/linksunddownloads.html

14. Literatur: Praktikumsunterlagen (ILIAS)

15. Lehrveranstaltungen und -formen:
- 307301 Spezialisierungsfachversuch 1
- 307302 Spezialisierungsfachversuch 2
- 307303 Spezialisierungsfachversuch 3
- 307304 Spezialisierungsfachversuch 4
- 307305 Allgemeinen Praktikums Maschinenbau (APMB) 1
- 307306 Allgemeinen Praktikums Maschinenbau (APMB) 2
- 307307 Allgemeinen Praktikums Maschinenbau (APMB) 3
- 307308 Allgemeinen Praktikums Maschinenbau (APMB) 4

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 30 h
- Selbststudiumzeit/Nachbearbeitungszeit: 60 h
- Gesamt: 90 h

17. Prüfungsnummer/n und -name: 30731 Praktikum Kernenergiotechnik (USL), mündliche Prüfung, Gewichtung: 1.0, USL. Art und Umfang der USL werden jeweils zu Beginn des Praktikums bekannt gegeben.

18. Grundlage für ...

19. Medienform:

20. Angeboten von: Institut für Kernenergetik und Energiesysteme
Modul: 30700 Reaktorphysik und -sicherheit

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>041610004</th>
<th>5. Modulduauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Nach Ankuendigung</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Jörg Starflinger

9. Dozenten: • Jörg Starflinger • Michael Buck

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technische Kybernetik, PO 2011 → Vorgezogene Master-Module

M.Sc. Technische Kybernetik, PO 2011 → Spezialisierungsmodul --Spezialisierungsfach --Simulation kerntechnischer Anlagen

11. Empfohlene Voraussetzungen:

Es wird dringend empfohlen, die Vorlesung "Kerntechnische Anlagen zur Energieerzeugung" vorher belegt zu haben. Die Grundlagen aus dieser Vorlesung werden nicht wiederholt.

12. Lernziele:

- können grundsätzlich die Modellvorstellung der Kernspaltung nachvollziehen. Sie kennen die Spaltproduktausbeutekurve, die Energiefreisetzung bei der Spaltung. Sie wissen, was verzögerte Neutronen sind und woher diese stammen.

- wissen, was Wirkungsquerschnitte sind. Sie verstehen die Stoßrate und Neutronenstromdichte. Sie kennen den Verlauf der Wirkungsquerschnitte verschiedener Materialien über der Neutronenergie. Sie verstehen, was Resonanzen sind, können die Breit-Wigner-Formel anwenden und die Näherungen für verschiedene Fälle der Neutronenergie. Sie verstehen den Doppler-Effekt. Sie können die Energieverteilung der Neutronen nachvollziehen, die mittlere und wahrscheinliche Energie und Geschwindigkeit im Maxwell-Spektrum angeben.

- können Stoßgesetze der klassischen Mechanik auf Neutronen anwenden, den maximalen und minimalen Energieverlust pro Stoß herleiten, die Lethargie definieren, sowie das Bremsvermögen und Bremsverhältnis für ausgewählte Stoßpartner angeben.

- verstehen den Transportquerschnitt, können die Neutronenstromdichte durch eine Oberfläche bestimmen und das Fick’sche Gesetz der Diffusion anwenden.
- verstehen die Eingruppen-Neutronen-Diffusionstheorie, können die Reaktorgleichung herleiten und deren Anwendung auf eine ebene Platte. Sie können die Reaktorgleichung in Zylinderkoordinaten nachvollziehen und für verschiedene Geometrien die kleinste kritische Geometrie berechnen.

- verstehen den Einfluss des Neutronenreflektors auf den Neutronenfluss. Sie können die Zwei-Gruppen-Neutronendiffusionstheorie nachvollziehen und ein einfaches ein-dimensionales Beispiel nachrechnen.

- verstehen den Aufbau der Transportgleichung.

- den Einfluss von „Reaktorgiften“ (Sm-149 und Xe-135) auf die Reaktivität nachvollziehen.

Reaktorsicherheit:

- erkennen das Gefährdungspotenzial von Radioaktivität und verstehen den Analyseweg. Sie können die zwölf Sicherheitsprinzipien erläutern.

- verstehen das Prinzip der gestaffelten Sicherheit, können die fünf Sicherheitsebenen und das Barrierenprinzip erklären und gegenüber der gestaffelten Sicherheit abgrenzen können. Sie können Beispiele für Grundsätze und Maßnahmen zur Erhaltung der Barrieren angeben.

- können das Sicherheitssystem des DWR/SWR anschaulich erläutern

- können die Wasserstofferzeugung und -verbrennung im Verlauf eines Kernschmelzunfalls und den Analyseweg bzw. die -methode nachvollziehen. Sie kennen die Kriterien für Flammbeschleunigung und die möglichen Auswirkungen auf Menschen und Umwelt.

- verstehen die Ausbreitung von radioaktiven Schadstoffen im Falle einer Freisetzung, können dazu den Atmosphärenaufbau nachvollziehen und
die Depositionsmechanismen und -pfade bis hin zur Aufnahme in der Körper erläutern.

- verstehen die Ansätze zu Risiko und Sicherheitsanalysen, kennen die INES-Skala

- verstehen die Wirkprinzipien passiver Systeme und können diese anhand von Beispielen erläutern

13. Inhalt:

Die o.g. Lernziele werden in zwei Vorlesungsteilen vermittelt:

I Reaktorphysik
- Grundlagen der Kernspaltung
- Kernreaktionen/Wirkungsquerschnitte
- Neutronenbremsung
- Neutronendiffusion in elementarer Behandlung
- Eingruppen-Näherung
- Transiente Vorgänge
- Langzeitverhalten, Abbrand, Xenondynamik

II Reaktorsicherheit
- Grundzüge der Reaktorsicherheit, Sicherheitsprinzipien, Barrierenprinzip, Defense-in-Depth
- Sicherheitssystem von DWR und SWR inkl. passiver Wirkmechanismen
- Ablauf und physikalische Phänomene bei schweren Störfällen mit Kernschmelzen
- Sicherheitsanalysen: Probabilistische Sicherheitsanalysen, Deterministische Sicherheitsanalysen, Risiko

III Demonstrationsversuch am SUR Nullleistungsreaktor
- Beispiele aus der Neutronenphysik werden bei einem Demonstrationsversuch am SUR-Nullleistungsreaktor anschaulich erläutert.

14. Literatur:

Skript der verwendeten PPT-Materialien zur Vorlesung Reaktorphysik und Reaktorsicherheit

Literatur:

- Emendörfer, Höcker: Theorie der Kernreaktoren. Band -1 der stationäre Reaktor. BI Wissenschaftsverlag
- Smidt: Reaktortechnik. Band 1+2. Verlag Wissenschaft + Technik
- Lederer/Wildberg: Reaktorhandbuch. Hanser-Verlag München Wien
- Ziegler: Lehrbuch der Reaktortechnik Bd 1+2. Springer Verlag
- Henry: Nuclear Reactor Analysis
- Lamarsh: Introduction to Nuclear Engineering. Addison Wesley

15. Lehrveranstaltungen und -formen:

307001 Vorlesung Reaktorphysik und -sicherheit

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 42 h
Selbststudiumzeit: 138 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:

30701 Reaktorphysik und -sicherheit (PL), schriftlich, eventuell mündlich, 120 Min., Gewichtung: 1.0
| 18. Grundlage für ... : |
| 19. Medienform: Tafelanschrieb, PPT-Präsentationen, Skripte zu Vorlesungen, Computeranwendungen mit MATLAB |
| 20. Angeboten von: Institut für Kernenergetik und Energiesysteme |
Modul: 31450 Simulation kerntechnischer Anlagen (Anlagendynamik)

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>041610099</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Jörg Starflinger</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Michael Buck
• Jörg Starflinger |

10. Zuordnung zum Curriculum in diesem Studiengang:

- B.Sc. Technische Kybernetik, PO 2011
 - → Ergänzungsmodule -->Wahlbereich Anwendungsfach --> Kernenergietechnik
 - "Vorgezogene Master-Module"

- Double M.D. Technische Kybernetik, PO 2011
 - → Incoming -->Spezialisierungsfach -->Simulation kerntechnischer Anlagen
 - → Outgoing -->Spezialisierungsfach -->Simulation kerntechnischer Anlagen

- Double M.D. Technische Kybernetik, PO 2014
 - → Incoming -->Spezialisierungsfach -->Simulation kerntechnischer Anlagen
 - → Outgoing -->Spezialisierungsfach -->Simulation kerntechnischer Anlagen

- Double M.D. Technische Kybernetik, PO 2014
 - → Wahlpflichtmodule -->Spezialisierungsfach -->Simulation kerntechnischer Anlagen

- M.Sc. Technische Kybernetik, PO 2011
 - → Spezialisierungsmodul -->Spezialisierungsfach -->Simulation kerntechnischer Anlagen

11. Empfohlene Voraussetzungen:

Ingenieurwissenschaftliche Grundlagen, fundierte Grundlagen in Mathematik, Physik, Informatik.

Es wird empfohlen, die Vorlesung "Kerntechnische Anlagen zur Energieerzeugung" gehört zu haben, da Aufbau und Funktion der simulierten Druckwasserreaktoren bekannt sein sollte.

12. Lernziele:

Die Studierenden des Moduls haben die Prinzipien und Möglichkeiten der Modellierung und Simulation von Kerntechnischen Anlagen, insbesondere der Thermohydraulik sowie der Neutronenkinetik, verstanden. Sie haben Einblick in wesentliche Simulationswerkzeuge, die für Auslegung und Genehmigung von Kernkraftwerken in Deutschland herangezogen werden. Sie können erste einfache Anlagenmodelle realisieren und auf ihrer Grundlage Simulationen zur Anlagendynamik...
durchführen. Sie verfügen damit über die Basis zur vertieften Anwendung der Methoden, z.B. in einer Studien- oder in der Masterarbeit.

13. Inhalt:

I: Vorlesung „Simulation kerntechnischer Anlagen“:

- Aufbau und Funktion von Leichtwasserreaktoren, wesentliche Komponenten
- Grundlagen der Modellierung thermohydraulischer Netzwerke: Massen-, Impuls- und Energiebilanzen, Zweiphasenströmungen, Wärmeübergang mit Phasenwechsel
- Numerische Lösungsmethoden: örtliche und zeitliche Diskretisierung, Löser für (nicht-)lineare Gleichungssysteme, Differentialgleichungen
- Überblick über die international eingesetzten Systemcodes für die kerntechnische Anlagensimulation
- Einführung in die Simulation mit dem deutschen Systemcode ATHLET: Modellierung der Anlagenkomponenten, Modellierung der Neutronenkinetik, Modellierung logischer Komponenten (Steuerung, Reaktorschutzsystem), Durchführung einer Simulation, Visualisierung von Ergebnissen
- Beispiele für Transienten und Störfallszenarien als Auslegungsgrundlage der Sicherheitssysteme von Kernkraftwerken
- Ausblick auf die Simulation schwerer Störfälle: Integralcode ASTEC
- Ansätze zur Simulation mit detaillierteren Methoden für spezielle Fragestellungen (z.B. CFD-Analysen)

II: Praktische Übungen am Computer:

- Erstellung einfacher Simulationsmodelle für Einzelkomponenten mit MATLAB
- Aufbau eines Anlagenmodells für einen Druckwasserreaktor auf Basis des Simulationssystems ATHLET und Visualisierung mit ATLAS
- Untersuchungen zum dynamischen Anlagenverhalten durch Simulation von Transienten und Leckstörfällen mit dem ATHLET-Anlagenmodell

14. Literatur:

I: Vorlesungsmanuskript „Simulation kerntechnischer Anlagen“

15. Lehrveranstaltungen und -formen:

314501 Vorlesung und Übung Simulation kerntechnischer Anlagen

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: ca. 48 h
Selbststudiumzeit/Nachbearbeitungszeit: ca. 132 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:

31451 Simulation kerntechnischer Anlagen (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

Tafelanschrieb, PPT-Präsentationen, Skripte zu Vorlesungen und Übungen, Computeranwendungen

20. Angeboten von:

Institut für Kernenergetik und Energiesysteme
Modul: 30690 Thermofluiddynamik kerntechnischer Anlagen

2. Modulkürzel: 041610003
5. Moduldauer: 1 Semester
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Eckart Laurien
9. Dozenten:
 • Eckart Laurien
 • Rudi Kulenovic
10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technische Kybernetik, PO 2011
 → Vorgezogene Master-Module
 DoubleM.D. Technische Kybernetik, PO 2011
 → Incoming -->Spezialisierungsfach -->Simulation kerntechnischer Anlagen
 →
 DoubleM.D. Technische Kybernetik, PO 2011
 → Outgoing -->Spezialisierungsfach -->Simulation kerntechnischer Anlagen
 →
 DoubleM.D. Technische Kybernetik, PO 2014
 → Incoming -->Spezialisierungsfach -->Simulation kerntechnischer Anlagen
 →
 DoubleM.D. Technische Kybernetik, PO 2014
 → Outgoing -->Spezialisierungsfach -->Simulation kerntechnischer Anlagen
 →
 DoubleM.D. Technische Kybernetik, PO 2014
 → Wahlpflichtmodule -->Spezialisierungsfach -->Simulation kerntechnischer Anlagen
 →
 M.Sc. Technische Kybernetik, PO 2011
 → Spezialisierungsmodul -->Spezialisierungsfach -->Simulation kerntechnischer Anlagen
 →

11. Empfohlene Voraussetzungen:
 Ingenieurwissenschaftliche Grundlagen, fundierte Grundlagen aus Modulen „Kerntechnische Anlagen zur Energieerzeugung“ und „Numerischer Strömungssimulation“

12. Lernziele:

13. Inhalt:
 I Vorlesungsteil Thermohydraulik der Kernreaktoren
 1. Einführung
 1.1 Der Europäische Druckwasserreaktor EPR
 1.2 Aufgaben
 1.3 Modellierung eines Druckwasserreaktors
1.4 Siedewasserreaktoren
1.5 Simulation eines Siedewasserreaktors
2. Primärkreislauf
2.1 Berechnung ein es Kühlkreislaufs
2.2 Systemcodes zur Simulation kerntechnischer Anlagen
2.3 Anwendungsbeispiel: Station Blackout
2.4 Versuchsanlagen: PKL, UPTF, Frecon
2.5 Berechnung von Vorgängen im Kühlkreislauf mit CFD
2.6 Gegengerichtete Schichtenströmung im heißen Strang
2.7 Thermische Ermüdung: Theorie und Experiment
3. Reaktorkern
3.1 Modellierung als poröses Medium
3.2 Strömungsieden: LFD und DNB
3.3 Unterkanalanalyse
3.4 CFD der Strömungsvorgänge im Kern
3.5 Modellierung der Kühlfähigkeit eines fragmentierten Kerns
3.6 Debris-Bed Experiment
4. Sicherheitsbehälter
4.1 Thermohydraulische Phänomene im Sicherheitsbehälter
4.2 Versuchsanlagen: Thal, Panda
4.3 CFD-Anwendung im Sicherheitsbehälter
4.4 Ähnlichkeit und Dimensionsanalyse

II Vorlesungsteil Modellierung von Zweiphasenströmung
1. Einführung
1.1 Charakterisierung von Zweiphasenströmungen
1.2 Mehrdimensionale Modellierung einer Blasenfahne
1.3 Modellierung aufwärts gerichtete Rohrströmung
2. Strömungen mit Wärme- und Stoffübergang
2.1 Beispiele
2.2 Direktkontaktwärme- und -stoffübergang
2.3 Anwendungen
3. Strömungen mit freier Oberfläche
3.1 Mikroskopische Vorgänge in Zweiphasenströmungen
3.2 Schichtenströmungen
4. Theorie
4.1 Modellgleichungen
4.2 Zweiphasen-Turbulenzmodellierung

14. Literatur:
Alle Vorlesungsfolien online verfügbar:
- http://www.ike.uni-stuttgart.de/lehre/TKRindex.html
- http://www.ike.unistuttgart.de/lehre/M2P-index.html

15. Lehrveranstaltungen und -formen: 306901 Vorlesung Thermofluiddynamik kerntechnischer Anlagen
16. Abschätzung Arbeitsaufwand: Präsenzzzeit: 42 h
Selbststudiumzeit: 138 h
Gesamt: 180 h
17. Prüfungsnummer/n und -name: 30691 Thermofluiddynamik kerntechnischer Anlagen (PL), mündliche Prüfung, 40 Min., Gewichtung: 1.0
18. Grundlage für ... :
19. Medienform: Tafelanschrib, PPT-Präsentationen, Skripte zu Vorlesungen und Praktikum, Computeranwendungen
20. Angeboten von:
2109 Steuerungstechnik

Zugeordnete Module:
14230 Steuerungstechnik der Werkzeugmaschinen und Industrieroboter
16250 Steuerungstechnik
17160 Prozessplanung und Leittechnik
2117 Spez.Fach. anerkannt 6LP
2118 Spez.Fach. anerkannt 6LP
2119 Spez.Fach. anerkannt 6LP
32470 Automatisierung in der Montage- und Handhabungstechnik
33430 Anwendungen von Robotersystemen
37270 Mechatronische Systeme in der Medizin - Anwendungen aus Orthopädie und Rehabilitation
37280 Öhydraulik und Pneumatik in der Steuerungstechnik
37320 Steuerungstechnik II
41660 Angewandte Regelungstechnik in Produktionsanlagen
41670 Grundlagen der Prozessrechentechnik und Softwaretechnik
41820 Modellierung, Analyse und Entwurf neuer Roboterkinematiken
41880 Grundlagen der Bionik
43930 Robotersysteme - Anwendungen aus der Servicerobotik
43940 Robotersysteme - Anwendungen aus der Industrierobotik
2117 Spez.Fach. anerkannt 6LP
2118 Spez.Fach. anerkannt 6LP
2119 Spez.Fach. anerkannt 6LP
Modul: 41660 Angewandte Regelungstechnik in Produktionsanlagen

2. Modulkürzel: 072910007
5. Moduldauer: 1 Semester

3. Leistungspunkte: 6.0 LP
6. Turnus: jedes 2. Semester, SoSe

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Alexander Verl

9. Dozenten:
• Armin Lechler
• Alexander Verl

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technische Kybernetik, PO 2011
→ Vorgezogene Master-Module
DoubleM.D. Technische Kybernetik, PO 2011
→ Chalmers -->Incoming -->Wahlfach Technische Kybernetik

DoubleM.D. Technische Kybernetik, PO 2011
→ Chalmers -->Outgoing -->Wahlfach Technische Kybernetik

DoubleM.D. Technische Kybernetik, PO 2011
→ Incoming -->Spezialisierungsfach -->Steuerungstechnik

DoubleM.D. Technische Kybernetik, PO 2011
→ Outgoing -->Spezialisierungsfach -->Steuerungstechnik

DoubleM.D. Technische Kybernetik, PO 2014
→ Incoming -->Spezialisierungsfach -->Steuerungstechnik

DoubleM.D. Technische Kybernetik, PO 2014
→ Outgoing -->Spezialisierungsfach -->Steuerungstechnik

DoubleM.D. Technische Kybernetik, PO 2014
→ Wahlpflichtmodule -->Spezialisierungsfach -->Steuerungstechnik

M.Sc. Technische Kybernetik, PO 2011
→ Spezialisierungsmodul -->Spezialisierungsfach -->Steuerungstechnik

M.Sc. Technische Kybernetik, PO 2011
→ Spezialisierungsmodul -->Wahlfach Technische Kybernetik

11. Empfohlene Voraussetzungen: Grundlagen in Regelungstechnik und Systemtheorie, beispielsweise:

- Übertragungsfunktionen aus einfachen Differentialgleichungen aufstellen können. (→ Laplacetransformation)

- Übertragungsfunktionen einfacher Übertragungsglieder im Bode-Diagramm generieren und interpretieren können.

- Blockschaltbilder aus einfachen Systemgleichungen oder Übertragungsfunktionen erstellen können.

- Systeme/ Systemgleichungen hinsichtlich Stabilität interpretieren können.
- Grundlegende Bestandteile eines Regelkreises benennen und einfache Regelkreise aufstellen können.

- Funktionsweise einfacher Regler (bspw. PID-Regler) erläutern können.

- Unterschied zwischen Regelung und Steuerung benennen können.

12. Lernziele:

- Die Vorschubachse einer Werkzeugmaschine als elektromechanisches System interpretieren, die einzelnen Komponenten (Antriebstechnik, Kommunikation, Mechanik, …) identifizieren und benennen können.

- Elektromechanische Vorschubachsen als Kombination aus PT1- und n PT2-Gliedern modellieren und identifizieren können. Sowie den Einfluss der einzelnen realen Komponenten auf die Systemstruktur und -parameter erläutern und abschätzen können.

- Industriell eingesetzte Reglerstrukturen für eine elektromechanische Vorschubachse entwerfen und implementieren können.

- Das Zusammenspiel zwischen Stell- und Regelgrößen sowie elektrischem Antrieb und mechanischem Maschinenbaufbau erkennen und gegenseitige Beeinflussungen abschätzen können.

13. Inhalt:

- Modellbildung und Identifikation einer elektromechanischen Vorschubachse einer Werkzeugmaschine.

- Regelung der Vorschubachse mit aktuell in der Produktion eingesetzten Regelungsverfahren. Aufbau und Parametrierung der Regler.

ACHTUNG: die Teilnehmerzahl ist auf 20 Studierende beschränkt. Die Modalität zur Anmeldung ist der Institutshomepage zu entnehmen (http://www.isw.uni-stuttgart.de/lehre/lehrveranstaltungen/angewandte-regelungstechnik-in-produktionsanlagen/?L=0Spin-offs)

15. Lehrveranstaltungen und -formen: 416601 Vorlesung mit integriertem Seminar Angewandte Regelungstechnik in Produktionsanlagen

17. Prüfungsnummer/n und -name: 41661 Angewandte Regelungstechnik in Produktionsanlagen (PL), mündliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:

20. Angeboten von: Institut für Steuerungstechnik der Werkzeugmaschinen und Fertigungseinrichtungen
Modul: 33430 Anwendungen von Robotersystemen

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072910093</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>2 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Peter Klemm</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Ralf Koeppel
• Martin Hägele |
arrow Ergänzungsmodule -->Wahlbereich Anwendungsfach -->Anwendungsfach Steuerungstechnik
arrows
B.Sc. Technische Kybernetik, PO 2011
arrow Vorgezogene Master-Module
DoubleM.D. Technische Kybernetik, PO 2011
arrow Incoming -->Spezialisierungsfach -->Steuerungstechnik
arrows
DoubleM.D. Technische Kybernetik, PO 2011
arrow Outgoing -->Spezialisierungsfach -->Steuerungstechnik
arrows
DoubleM.D. Technische Kybernetik, PO 2014
arrow Incoming -->Spezialisierungsfach -->Steuerungstechnik
arrows
DoubleM.D. Technische Kybernetik, PO 2014
arrow Outgoing -->Spezialisierungsfach -->Steuerungstechnik
arrows
DoubleM.D. Technische Kybernetik, PO 2014
arrow Wahlpflichtmodule -->Spezialisierungsfach -->Steuerungstechnik
arrows
M.Sc. Technische Kybernetik, PO 2011
arrow Spezialisierungsmodule -->Spezialisierungsfach -->Steuerungstechnik
arrows |
| 12. Lernziele: | Robotersysteme - Anwendungen aus der Industrie:
• Anwendungen von Robotersystemen in der Automobil- und allgemeinen Industrie
• Roboterbasiertes thermisches Fügen, Fräsen, Biegen, Montieren
• Roboter in der Logistik, Medizin und Weltraumtechnik
• Sensorbasierte Regelung
• Programmieren durch Vormachen
• Steuerung kooperierender und nachgiebig geregelter Robotersysteme
• Robotersysteme - Anwendungen aus der Servicerobotik
• Anhand zahlreicher Produktbeispiele, aktueller Prototypen und Technologieträger erfolgt ein umfassender Überblick über die Schlüsseltechnologien der Servicerobotik. |
• Die vermittelten Grundlagen ermöglichen, ein Servicerobotersystem zu konzipieren und zu entwickeln.
• Schlüsseltechnologien: Steuerungsarchitekturen, Sensoren, mobile Navigation, Handhaben und Greifen, Planung und maschinelles Lernen, Mensch-Maschine-Interaktion.
• Realisierungsbeispiele („Case-Studies“)

14. Literatur: Lernmaterialien werden verteilt

15. Lehrveranstaltungen und -formen:
• 334301 Vorlesung Robotersysteme - Anwendungen aus der Industrie
• 334302 Vorlesung Robotersysteme - Anwendungen aus der Servicerobotik

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 Stunden
Selbststudium: 138 Stunden
Summe: 180 Stunden

17. Prüfungsnummer/n und -name:
• 33431 Robotersysteme - Anwendungen aus der Industrie (PL), mündliche Prüfung, 20 Min., Gewichtung: 1.0
• 33432 Robotersysteme - Anwendungen aus der Servicerobotik (PL), mündliche Prüfung, 20 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:

20. Angeboten von: Institut für Steuerungstechnik der Werkzeugmaschinen und Fertigungseinrichtungen
Modul: 32470 Automatisierung in der Montage- und Handhabungstechnik

2. Modulkürzel: 072910091
3. Leistungspunkte: 3.0 LP
4. SWS: 2.0

5. Moduldauer: 1 Semester
6. Turnus: jedes 2. Semester, SoSe
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Peter Klemm
9. Dozenten: Andreas Wolf

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technische Kybernetik, PO 2008
 → Ergänzungsmodule -->Wahlbereich Anwendungsfach -->Anwendungsfach Steuerungstechnik
 →
B.Sc. Technische Kybernetik, PO 2011
 → Vorgezogene Master-Module
B.Sc. Technische Kybernetik, PO 2011
 → Wahlbereich Anwendungsfach -->Anwendungsfach Steuerungstechnik -->Anwendungsfach Steuerungstechnik, Module SoSe
 →
DoubleM.D. Technische Kybernetik, PO 2011
 → Incoming -->Spezialisierungsfach -->Steuerungstechnik
 →
DoubleM.D. Technische Kybernetik, PO 2011
 → Outgoing -->Spezialisierungsfach -->Steuerungstechnik
 →
DoubleM.D. Technische Kybernetik, PO 2014
 → Incoming -->Spezialisierungsfach -->Steuerungstechnik
 →
DoubleM.D. Technische Kybernetik, PO 2014
 → Outgoing -->Spezialisierungsfach -->Steuerungstechnik
 →
DoubleM.D. Technische Kybernetik, PO 2014
 → Wahlpflichtmodule -->Spezialisierungsfach -->Steuerungstechnik
 →
M.Sc. Technische Kybernetik, PO 2011
 → Spezialisierungsmodul -->Spezialisierungsfach -->Steuerungstechnik
 →

11. Empfohlene Voraussetzungen:

12. Lernziele:

13. Inhalt:
• Überblick über die Möglichkeiten und Grenzen der Automatisierung in der Handhabungs- und Montagetechnik.
• Handhabungsfunktionen, die zugehörige Geräte-technik, deren Verkettung.
• Materialfluss zwischen Fertigungsmitteln und die Automatisierungs-möglichkeiten.
• Montagegerechte Gestaltung von Werkstücken.
• Wirtschaftliche Betrachtung von Automatisierungs- vorhaben.
| 14. Literatur: |
| 15. Lehrveranstaltungen und -formen: | 324701 Vorlesung Automatisierung in der Montage- und Handhabungstechnik |
Selbststudium: 69 Stunden
Summe: 90 Stunden |
| 17. Prüfungsnummer/n und -name: | 32471 Automatisierung in der Montage- und Handhabungstechnik (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0 |
| 18. Grundlage für ... : |
| 19. Medienform: |
| 20. Angeboten von: |
Modul: 41880 Grundlagen der Bionik

2. Modulkürzel: 072910094
5. Modulduauer: 1 Semester
3. Leistungspunkte: 3.0 LP
6. Turnus: jedes 2. Semester, SoSe
4. SWS: 2.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Peter Klemm
9. Dozenten: Oliver Schwarz

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>B.Sc. Technische Kybernetik, PO 2011</th>
<th>Vorgezogene Master-Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2011</td>
<td>Chalmers -->Incoming -->Wahlfach Technische Kybernetik</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2011</td>
<td>Chalmers -->Outgoing -->Wahlfach Technische Kybernetik</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2011</td>
<td>Incoming -->Spezialisierungsfach -->Steuerungstechnik</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2011</td>
<td>Outgoing -->Spezialisierungsfach -->Steuerungstechnik</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2014</td>
<td>Incoming -->Spezialisierungsfach -->Steuerungstechnik</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2014</td>
<td>Outgoing -->Spezialisierungsfach -->Steuerungstechnik</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2014</td>
<td>Wahlpflichtmodule -->Spezialisierungsfach -->Steuerungstechnik</td>
</tr>
<tr>
<td>M.Sc. Technische Kybernetik, PO 2011</td>
<td>Spezialisierungsmodule -->Spezialisierungsfach -->Steuerungstechnik</td>
</tr>
<tr>
<td>M.Sc. Technische Kybernetik, PO 2011</td>
<td>Spezialisierungsmodule -->Wahlfach Technische Kybernetik</td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen: Keine

12. Lernziele:

Die Veranstaltung gibt einen Überblick über die verschiedenen Arbeitsfelder der Bionik und legt einen Schwerpunkt auf Anwendungen in der Biomedizinischen Technik. Die Studierenden lernen die bionische Denkweise kennen und erhalten einen Einblick in das Potential der Bionik für Lösungen zu zentralen technischen Problemen. Sie lernen aber auch die Grenzen des oft überschätzten Hoffnungsträgers Bionik kennen und lernen echte Bionik von Pseudobionik, Technischer Biologie und Bioinspiration zu unterscheiden.

13. Inhalt:

- Geschichte der Bionik
- Evolution und Optimierung in Biologie, und Technik
- Modellbildung, Analogiebildung, Transfer in die Technik
- Bionik als Kreativitätstechnik
• Biologische Materialien und Strukturen
• Formgestaltung und Design
• Konstruktionen und Geräte
• Bau und Klimatisierung
• Robotik und Lokomotion
• Sensoren und neuronale Steuerungen
• Biomedizinische Technik
• System und Organisation

14. Literatur:

Weitere Literatur wird in der Vorlesung bekanntgegeben

15. Lehrveranstaltungen und -formen:
418801 Vorlesung mit integriertem Seminar Bionik

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 28 Stunden
Selbststudium: 52 Stunden
Summe: 90 Stunden

17. Prüfungsnummer/n und -name:
41881 Grundlagen der Bionik (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
Modul: 41670 Grundlagen der Prozessrechentechnik und Softwaretechnik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072910014</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Peter Klemm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Peter Klemm</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>keine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>Die Studierenden</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- verstehen die Grundlagen flexibler Fertigungseinrichtungen und deren Anforderungen an ihre Steuerungssoftware,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- beherrschen die Grundlagen, Denkmuster und Methoden der ingenieurmäßigen Softwareentwicklung und erkennen ihre Notwendigkeit,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- verstehen die Phasen der Softwareentwicklung und die zugehörigen Vorgehensmodelle,</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>- verstehen die Grundlagen der funktionsorientierten und der objektorientierten Softwareentwicklung,</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Der Modul "Grundlagen der Prozessrechentechnik und Softwaretechnik" (Modul-Nr. 41670) besteht aus 3.0 Leistungspunkten (LP) und dauert 1 Semester. Er wird von Peter Klemm unterrichtet und ist in Deutsch angeboten. Die Modulverantwortlichen sind Univ.-Prof. Peter Klemm. Empfohlene Voraussetzungen für das Modul sind keine. Die Lernziele erfordern eine tiefe Verständnis für die Grundlagen flexibler Fertigungseinrichtungen und ihre Anforderungen an die Steuerungssoftware, die Grundlagen, Denkmuster und Methoden der ingenieurmäßigen Softwareentwicklung sowie die Phasen der Softwareentwicklung und die zugehörigen Vorgehensmodelle. Die Grundlagen der funktionsorientierten und der objektorientierten Softwareentwicklung sind ebenfalls zu verstehen.
- können Funktionen von Maschinen und Steuerungen systematisch beschreiben und besitzen damit die Fähigkeit zur interdisziplinären Kommunikation,
- kennen die Struktur der Software Speicherprogrammierbarer Steuerungen (SPS) und sind in der Lage solche Software zu entwickeln.

13. Inhalt:
- Überblick über die Struktur von produzierenden Unternehmen und über flexible Fertigungseinrichtungen,
- Grundlagen und Methoden der Softwaretechnik für Fertigungseinrichtungen,
- Vorgehensmodelle der Softwareentwicklung,
- funktionsorientierte und objektorientierte Softwareentwicklung (inc. UML),
- Beschreibung von Maschinen- und Steuerungsfunktionen,
- Softwaretechnik für Speicherprogrammierbare Steuerungen, insbesondere baukastenbasierte Softwareentwicklung.

14. Literatur:
- Manuskript und Übungsaufgaben,
- Erler, T.: Das Einsteigerseminar UML. bhv Verlag.

15. Lehrveranstaltungen und -formen: 416701 Vorlesung und Übung Grundlagen der Prozessrechentechnik und Softwaretechnik

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 21 Stunden
Selbststudium: 69 Stunden
Summe: 90 Stunden

17. Prüfungsnummer/n und -name: 41671 Grundlagen der Prozessrechentechnik und Softwaretechnik (BSL), schriftlich, eventuell mündlich, 60 Min., Gewichtung: 1.0

18. Grundlage für ... :

20. Angeboten von:
Modul: 37270 Mechatronische Systeme in der Medizin - Anwendungen aus Orthopädie und Rehabilitation

2. Modulkürzel: 072910092
5. Modulduer: 1 Semester

3. Leistungspunkte: 3.0 LP

4. SWS: 2.0
7. Sprache: Deutsch

8. Modulverantwortlicher:

9. Dozenten:

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technische Kybernetik, PO 2011
 ➔ Ergänzungsmodul -->Grundlagen der Natur- und Ingenieurwissenschaften
 ➔
 B.Sc. Technische Kybernetik, PO 2011
 ➔ Vorgezogene Master-Module
 B.Sc. Technische Kybernetik, PO 2011
 ➔ Wahlbereich Anwendungsfach -->Anwendungsfach Steuerungstechnik -->Anwendungsfach Steuerungstechnik, Module WiSe
 ➔
 DoubleM.D. Technische Kybernetik, PO 2011
 ➔ Incoming -->Spezialisierungsfach -->Steuerungstechnik
 ➔
 DoubleM.D. Technische Kybernetik, PO 2011
 ➔ Outgoing -->Spezialisierungsfach -->Steuerungstechnik
 ➔
 DoubleM.D. Technische Kybernetik, PO 2014
 ➔ Incoming -->Spezialisierungsfach -->Steuerungstechnik
 ➔
 DoubleM.D. Technische Kybernetik, PO 2014
 ➔ Outgoing -->Spezialisierungsfach -->Steuerungstechnik
 ➔
 DoubleM.D. Technische Kybernetik, PO 2014
 ➔ Wahlpflichtmodule -->Spezialisierungsfach -->Steuerungstechnik
 ➔
 M.Sc. Technische Kybernetik, PO 2011
 ➔ Spezialisierungsmodul -->Spezialisierungsfach -->Steuerungstechnik
 ➔
 M.Sc. Technische Kybernetik, PO 2011
 ➔ Spezialisierungsmodul -->Wahlfach Technische Kybernetik

11. Empfohlene Voraussetzungen: keine

12. Lernziele:
 Die Studierenden kennen die Grundlagen der medizinischen Orthopädie. Sie können beurteilen, wie mechatronische Systeme (z.B. elektronisches Kniegelenk, Exoskelett) im Bewegungsapparat des Menschen Einsatz finden und wie der menschliche Bewegungsapparat technisch beschrieben werden kann.

13. Inhalt:
 • Einführung in die Orthopädie
• Bewegungserfassung, Bewegungssteuerung und Bewegungserzeugung

• Anwendungen in der Prothetik, Orthetik und Rehabilitation.

14. Literatur:

15. Lehrveranstaltungen und -formen: 372701 Vorlesung Mechatronische Systeme in der Medizin - Anwendungen aus Orthopädie und Rehabilitation

Selbststudium: 69 Stunden
Summe: 90 Stunden

17. Prüfungsnummer/n und -name: 37271 Mechatronische Systeme in der Medizin - Anwendungen aus Orthopädie und Rehabilitation (BSL), schriftlich, eventuell mündlich, Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Steuerungstechnik und Mechatronik für Produktionssysteme
Modul: 41820 Modellierung, Analyse und Entwurf neuer Roboterkinematiken

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072910093</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Andreas Pott

9. Dozenten: Andreas Pott

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technische Kybernetik, PO 2011
→ Vorgezogene Master-Module

DoubleM.D. Technische Kybernetik, PO 2011
→ Incoming -->Spezialisierungsfach -->Steuerungstechnik

DoubleM.D. Technische Kybernetik, PO 2011
→ Outgoing -->Spezialisierungsfach -->Steuerungstechnik

DoubleM.D. Technische Kybernetik, PO 2014
→ Incoming -->Spezialisierungsfach -->Steuerungstechnik

DoubleM.D. Technische Kybernetik, PO 2014
→ Outgoing -->Spezialisierungsfach -->Steuerungstechnik

DoubleM.D. Technische Kybernetik, PO 2014
→ Wahlpflichtmodule -->Spezialisierungsfach -->Steuerungstechnik

M.Sc. Technische Kybernetik, PO 2011
→ Spezialisierungsmodule -->Spezialisierungsfach -->Steuerungstechnik

11. Empfohlene Voraussetzungen: keine

12. Lernziele:

13. Inhalt:

• Modellbildung von Maschinen mit komplexer Kinematik
• Techniken zur Analyse von Eigenschaftsbestimmung
• Kinematische Transformation und Arbeitsraumbestimmung
• Methoden für Entwurf und Auslegung

14. Literatur:

• “Springer Handbook of Robotics“, Springer Verlag, 2008.

15. Lehrveranstaltungen und -formen:

418201 Vorlesung Modellierung, Analyse und Entwurf neuer Roboterkinematiken

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 21 Stunden
Selbststudium: 69 Stunden
Summe: 90 Stunden

17. Prüfungsnummer/n und -name:

41821 Modellierung, Analyse und Entwurf neuer Roboterkinematiken (BSL), mündliche Prüfung, 20 Min., Gewichtung: 1.0

18. Grundlage für ... :
19. Medienform:

20. Angeboten von:
Modul: 17160 Prozessplanung und Leittechnik

4. SWS: 4.8 7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Peter Klemm
9. Dozenten: Peter Klemm

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technische Kybernetik, PO 2011
 ➔ Vorgezogene Master-Module
 DoubleM.D. Technische Kybernetik, PO 2011, 1. Semester
 ➔ Incoming -->Spezialisierungsfach -->Steuerungstechnik
 ➔
 DoubleM.D. Technische Kybernetik, PO 2011, 2. Semester
 ➔ Outgoing -->Spezialisierungsfach -->Steuerungstechnik
 ➔
 DoubleM.D. Technische Kybernetik, PO 2014, 1. Semester
 ➔ Incoming -->Spezialisierungsfach -->Steuerungstechnik
 ➔
 DoubleM.D. Technische Kybernetik, PO 2014, 2. Semester
 ➔ Outgoing -->Spezialisierungsfach -->Steuerungstechnik
 ➔
 DoubleM.D. Technische Kybernetik, PO 2014, 3. Semester
 ➔ Wahlpflichtmodule -->Spezialisierungsfach -->Steuerungstechnik
 ➔
 M.Sc. Technische Kybernetik, PO 2011, 1. Semester
 ➔ Spezialisierungsmodule -->Spezialisierungsfach -->Steuerungstechnik
 ➔

12. Lernziele:
 Die Studierenden
 • verstehen den Aufbau und die Eigenschaften von Flexiblen Fertigungseinrichtungen;
 • können die Struktur, der Aufgabenbereiche und Informationsflüsse in Produktionsunternehmen erkennen und die Aufgaben und Arbeitsschritte der Arbeits- und Prozessplanung erfassen;
 • verstehen die Aufgaben und Funktionen der CAD/NC-Verfahrenskette;
 • verstehen die Struktur und den Inhalt von NC-Programmen für Werkzeugmaschinen sowie Industrieroboter und können NC-Programme erstellen;
 • können den Nutzen der rechnerunterstützten NC-Programmierung erkennen und besitzen die Voraussetzungen für die schnelle Einarbeitung in Softwarewerkzeuge für die NC-Programmierung;
 • können die Grundlagen der objektorientierten Bearbeitungsmodellierung verstehen und bewerten und erwerben einen Überblick über die CAD/NC-Verfahrenskette;
 • verstehen die Aufgaben und Funktionen von Leitsystemen (Manufacturing Execution Systems);
 • verstehen die Aufgaben von Informationssystemen in der Produktion.

Stand: 09. April 2015
13. Inhalt: Aufgaben und Funktionen von:

- Flexiblen Fertigungseinrichtungen,
- Informationsfluss in Produktionsunternehmen,
- CAD/NC-Verfahrenskette,
- Arbeits- und Prozessplanung,
- NC-Programmierung,
- Leittechnik (Manufacturing Execution Systems),
- Informationssystemen in der Produktion.

14. Literatur:

- Manuskript, Übungsaufgaben

15. Lehrveranstaltungen und -formen:

- 171601 Softwaretechnik für Prozessplanung und Leitsysteme I, Vorlesung und Übung
- 171602 Softwaretechnik für Prozessplanung und Leitsysteme II, Vorlesung und Übung

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 42 h
Nacharbeitszeit: 138 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:

17161 Prozessplanung und Leittechnik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

Beamer, Overheadprojektor, Tafel

20. Angeboten von:

Institut für Steuerungstechnik der Werkzeugmaschinen und Fertigungseinrichtungen
Modul: 43940 Robotersysteme - Anwendungen aus der Industrierobotik

2. Modulkürzel: 072910096
5. Modulduauer: 1 Semester

3. Leistungspunkte: 3.0 LP
6. Turnus: jedes 2. Semester, SoSe

4. SWS: 2.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Peter Klemm

9. Dozenten: Ralf Koeppe

→ Vorgezogene Master-Module

DoubleM.D. Technische Kybernetik, PO 2011

→ Incoming -->Spezialisierungsfach -->Steuerungstechnik

DoubleM.D. Technische Kybernetik, PO 2011

→ Outgoing -->Spezialisierungsfach -->Steuerungstechnik

DoubleM.D. Technische Kybernetik, PO 2014

→ Incoming -->Spezialisierungsfach -->Steuerungstechnik

DoubleM.D. Technische Kybernetik, PO 2014

→ Outgoing -->Spezialisierungsfach -->Steuerungstechnik

DoubleM.D. Technische Kybernetik, PO 2014

→ Wahlpflichtmodule -->Spezialisierungsfach -->Steuerungstechnik

M.Sc. Technische Kybernetik, PO 2011

→ Spezialisierungsodule -->Spezialisierungsfach -->Steuerungstechnik

11. Empfohlene Voraussetzungen:

13. Inhalt:

• Anwendungen von Robotersystemen in der Automobil- und allgemeinen Industrie
• Roboterbasiertes thermisches Fügen, Fräsen, Biegen, Montieren
• Roboter in der Logistik, Medizin und Weltraumtechnik
• Sensorbasierte Regelung
• Programmieren durch Vormachen
• Steuerung kooperierender und nachgiebig geregelter Robotersysteme

14. Literatur: Lernmaterialien werden verteilt

15. Lehrveranstaltungen und -formen:

Selbststudium: 69 Stunden

Summe: 90 Stunden

17. Prüfungsnummer/n und -name: 43941 Robotersysteme - Anwendungen aus der Industrierobotik (BSL), mündliche Prüfung, 20 Min., Gewichtung: 0.0

18. Grundlage für ... :
19. Medienform:

20. Angeboten von:
Modul: 43930 Robotersysteme - Anwendungen aus der Servicerobotik

2. Modulkürzel: 072910095 5. Moduldauer: 1 Semester
4. SWS: 2.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Alexander Verl
9. Dozenten: Martin Hägele

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technische Kybernetik, PO 2011
 → Vorgezogene Master-Module
 B.Sc. Technische Kybernetik, PO 2011
 → Wahlbereich Anwendungsfach -->Anwendungsfach
 Steuerungstechnik -->Anwendungsfach Steuerungstechnik, Module
 WiSe
 →
 DoubleM.D. Technische Kybernetik, PO 2011
 → Incoming -->Spezialisierungsfach -->Steuerungstechnik
 →
 DoubleM.D. Technische Kybernetik, PO 2011
 → Outgoing -->Spezialisierungsfach -->Steuerungstechnik
 →
 DoubleM.D. Technische Kybernetik, PO 2014
 → Incoming -->Spezialisierungsfach -->Steuerungstechnik
 →
 DoubleM.D. Technische Kybernetik, PO 2014
 → Outgoing -->Spezialisierungsfach -->Steuerungstechnik
 →
 DoubleM.D. Technische Kybernetik, PO 2014
 → Wahlpflichtmodule -->Spezialisierungsfach -->Steuerungstechnik
 →
 M.Sc. Technische Kybernetik, PO 2011
 → Spezialisierungsmodul -->Spezialisierungsfach -->
 Steuerungstechnik
 →

11. Empfohlene Voraussetzungen:

12. Lernziele: Die Studierenden kennen Anwendungen von Robotersystemen aus
 der Servicerobotik. Sie kennen die Schlüsseltechnologien industrieller
 Robotertechnik und der Servicerobotik. Sie können einschätzen in
 welchen Einsatzfällen welche Robotertechnik geeignet ist.

13. Inhalt:
 • Anhand zahlreicher Produktbeispiele, aktueller Prototypen und
 Technologieträger erfolgt ein umfassender Überblick über die
 Schlüsseltechnologien der Servicerobotik.
 • Die vermittelten Grundlagen ermöglichen, ein Servicerobotersystem zu
 konzipieren und zu entwickeln.
 • Schlüsseltechnologien: Steuerungsarchitekturen, Sensoren, mobile
 Navigation, Handhaben und Greifen, Planung und maschinelles Lernen,
 Mensch-Maschine-Interaktion.
 • Realisierungsbeispiele („Case-Studies“)

14. Literatur:
15. Lehrveranstaltungen und -formen:

Selbststudium: 69 Stunden
Summe: 90 Stunden |
|---------------------------------|--|

<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>43931 Robotersysteme - Anwendungen aus der Servicerobotik (BSL), mündliche Prüfung, 20 Min., Gewichtung: 1.0</th>
</tr>
</thead>
</table>

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 16250 Steuerungstechnik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072910002</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.5</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Peter Klemm</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Peter Klemm
| | • Michael Seyfarth
| | • Armin Lechler |

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>B.Sc. Technische Kybernetik, PO 2008</th>
</tr>
</thead>
<tbody>
<tr>
<td>→ Ergänzungsmodule -- Grundlagen der Natur- und Ingenieurwissenschaften</td>
</tr>
<tr>
<td>→ B.Sc. Technische Kybernetik, PO 2008</td>
</tr>
<tr>
<td>→ Ergänzungsmodule -- Wahlbereich Anwendungsfach -- > Anwendungsfach Steuerungstechnik</td>
</tr>
<tr>
<td>→ B.Sc. Technische Kybernetik, PO 2011</td>
</tr>
<tr>
<td>→ Ergänzungsmodule -- Grundlagen der Natur- und Ingenieurwissenschaften</td>
</tr>
<tr>
<td>→ B.Sc. Technische Kybernetik, PO 2011</td>
</tr>
<tr>
<td>→ Vorgezogene Master-Module</td>
</tr>
<tr>
<td>→ B.Sc. Technische Kybernetik, PO 2011</td>
</tr>
<tr>
<td>→ Wahlbereich Anwendungsfach -- > Anwendungsfach Steuerungstechnik -- > Anwendungsfach Steuerungstechnik, Module WiSe</td>
</tr>
<tr>
<td>→ DoubleM.D. Technische Kybernetik, PO 2011, . Semester</td>
</tr>
<tr>
<td>→ Incoming -- > Spezialisierungsfach -- > Steuerungstechnik</td>
</tr>
<tr>
<td>→ DoubleM.D. Technische Kybernetik, PO 2011, . Semester</td>
</tr>
<tr>
<td>→ Outgoing -- > Spezialisierungsfach -- > Steuerungstechnik</td>
</tr>
<tr>
<td>→ DoubleM.D. Technische Kybernetik, PO 2014, . Semester</td>
</tr>
<tr>
<td>→ Incoming -- > Spezialisierungsfach -- > Steuerungstechnik</td>
</tr>
<tr>
<td>→ DoubleM.D. Technische Kybernetik, PO 2014, . Semester</td>
</tr>
<tr>
<td>→ Outgoing -- > Spezialisierungsfach -- > Steuerungstechnik</td>
</tr>
<tr>
<td>→ DoubleM.D. Technische Kybernetik, PO 2014, . Semester</td>
</tr>
<tr>
<td>→ Wahlpflichtmodule -- > Spezialisierungsfach -- > Steuerungstechnik</td>
</tr>
<tr>
<td>→ M.Sc. Technische Kybernetik, PO 2011, . Semester</td>
</tr>
<tr>
<td>→ Spezialisierungsmodule -- > Spezialisierungsfach -- > Steuerungstechnik</td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen: Keine besonderen Vorkenntnisse

12. Lernziele:

Die Studierenden kennen und verstehen den Aufbau, die Architekturen und die Funktionsweisen unterschiedlicher Steuerungsarten, wie mechanische Steuerungen, fluidische Steuerungen, Kontaktsteuerungen,
Speicherprogrammierbare Steuerungen und bewegungserzeugende Steuerungen. Sie können beurteilen welche Steuerungsart welche Aufgabenbereiche abdeckt und wann welche Steuerungsart eingesetzt werden kann. Sie kennen die Programmierweisen und Programmiersprachen für die unterschiedlichen Steuerungsarten und können steuerungstechnische Problemstellungen methodisch lösen. Weiter beherrschen die Studierenden die Grundlagen der in der Automatisierungstechnik vorwiegend verwendeten Antriebssysteme (elektrisch, fluidisch) und können deren Einsatzbereiche und Einsatzgrenzen bestimmen.

13. Inhalt:
- Steuerungsarten (mechanisch, fluidisch, Kontaktsteuerung, SPS, Motion Control, Numerische Steuerung, Robotersteuerung, Leitsteuerung): Aufbau, Architektur, Funktionsweise, Programmierung.
- Darstellung und Lösung steuerungstechnischer Problemstellungen.
- Grundlagen der in der Automatisierungstechnik verwendeten Antriebssysteme (Elektromotoren, fluidische Antriebe).
- Typische praxisrelevante Anwendungsbeispiele.
- Praktikumsversuche zur Programmierung der verschiedenen Steuerungsarten.

14. Literatur:
- Pritschow, G.: Einführung in die Steuerungstechnik, Carl Hanser Verlag, München, 2006

15. Lehrveranstaltungen und -formen:
- 162501 Vorlesung Steuerungstechnik mit Antriebstechnik
- 162502 Übung Steuerungstechnik
- 162503 Praktikum Steuerungstechnik

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 48 h
- Selbstdstudiumszeit / Nacharbeitszeit: 132 h
- Gesamt: 180 h

17. Prüfungsnummer/n und -name:
- 16251 Steuerungstechnik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0.
- 16252 Steuerungstechnik Praktikum (USL), schriftlich, eventuell mündlich, 0 Min., Gewichtung: 1.0

18. Grundlage für ...:
- 14230 Steuerungstechnik der Werkzeugmaschinen und Industrieroboter

19. Medienform:
- Beamer, Overhead, Tafelanschrieb

20. Angeboten von:
- Institut für Steuerungstechnik der Werkzeugmaschinen und Fertigungseinrichtungen
Modul: 37320 Steuerungstechnik II

2. Modulkürzel: 072910005
3. Leistungspunkte: 3.0 LP
4. SWS: 2.0
5. Modulcode: 072910005
6. Modulname: Steuerungstechnik II
7. Turnus: jedes 2. Semester, WiSe
8. Sprache: Deutsch
9. Modulverantwortlicher: Univ.-Prof. Peter Klemm
10. Dozenten: • Peter Klemm • Armin Lechler

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technische Kybernetik, PO 2011
→ Ergänzungsmodul --> Grundlagen der Natur- und Ingenieurwissenschaften

B.Sc. Technische Kybernetik, PO 2011
→ Vorgezogene Master-Module

B.Sc. Technische Kybernetik, PO 2011
→ Wahlbereich Anwendungsfach --> Anwendungsfach Steuerungstechnik --> Anwendungsfach Steuerungstechnik, Module WiSe

→ DoubleM.D. Technische Kybernetik, PO 2011
→ Incoming --> Spezialisierungsfach --> Steuerungstechnik

→ DoubleM.D. Technische Kybernetik, PO 2011
→ Outgoing --> Spezialisierungsfach --> Steuerungstechnik

→ DoubleM.D. Technische Kybernetik, PO 2014
→ Incoming --> Spezialisierungsfach --> Steuerungstechnik

→ DoubleM.D. Technische Kybernetik, PO 2014
→ Outgoing --> Spezialisierungsfach --> Steuerungstechnik

→ DoubleM.D. Technische Kybernetik, PO 2014
→ Wahlpflichtmodule --> Spezialisierungsfach --> Steuerungstechnik

→ M.Sc. Technische Kybernetik, PO 2011
→ Spezialisierungsmodul --> Spezialisierungsfach --> Steuerungstechnik

11. Empfohlene Voraussetzungen: keine

13. Inhalt:
• Grundtypen von Hardwarerealisierungen / Hardwarearchitekturen
• Grundtypen von Steuerungssystemen / Softwarearchitekturen
• Echtzeitbetriebssysteme
• Funktionsorientierte Aufteilung der Steuerungsaufgaben / Softwareimplementierungen
• Kommunikationstechnik
• Sicherheitstechnik in der Steuerungstechnik
• Open Source Automatisierung
• Kennenlernen der wesentlichen Hersteller von Steuerungskomponenten: BECKHOFF / BOSCH-Rexroth / ELAU / ISG / SIEMENS

14. Literatur:

15. Lehrveranstaltungen und -formen: 373201 Vorlesung Steuerungstechnik II

Selbststudium: 69 Stunden
Summe: 90 Stunden

17. Prüfungsnummer/n und -name: 37321 Steuerungstechnik II (BSL), schriftlich, eventuell mündlich, Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
Modul: 14230 Steuerungstechnik der Werkzeugmaschinen und Industrieroboter

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072910003</th>
<th>5. Moduldaauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Andreas Pott</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Armin Lechler
• Andreas Pott | |
→ Ergänzungsmodule -->Wahlbereich Anwendungsfach -->Anwendungsfach Steuerungstechnik
→ B.Sc. Technische Kybernetik, PO 2011, 5. Semester
→ Vorgezogene Master-Module
→ B.Sc. Technische Kybernetik, PO 2011, 5. Semester
→ Wahlbereich Anwendungsfach -->Anwendungsfach Steuerungstechnik -->Anwendungsfach Steuerungstechnik, Module SoSe
→ DoubleM.D. Technische Kybernetik, PO 2011, . Semester
→ Incoming -->Spezialisierungsfach -->Steuerungstechnik
→ DoubleM.D. Technische Kybernetik, PO 2011, . Semester
→ Outgoing -->Spezialisierungsfach -->Steuerungstechnik
→ DoubleM.D. Technische Kybernetik, PO 2014, . Semester
→ Incoming -->Spezialisierungsfach -->Steuerungstechnik
→ DoubleM.D. Technische Kybernetik, PO 2014, . Semester
→ Outgoing -->Spezialisierungsfach -->Steuerungstechnik
→ DoubleM.D. Technische Kybernetik, PO 2014, . Semester
→ Wahlpflichtmodule -->Spezialisierungsfach -->Steuerungstechnik
→ M.Sc. Technische Kybernetik, PO 2011, . Semester
→ Spezialisierungsmodule -->Spezialisierungsfach -->Steuerungstechnik |
| 11. Empfohlene Voraussetzungen: | Vorlesung „Steuerungstechnik mit Antriebstechnik“ (Modul Regelungs- und Steuerungstechnik) |
und die zugehörigen Problemstellungen der Regelungs- und Messtechnik verstehen, bewerten und Lösungen erarbeiten.

Die Studierenden können erkennen, wie die Kinematik und Dynamik von Robotern und Parallelkinematiken beschrieben, gelöst und steuerungstechnisch integriert werden kann.

13. Inhalt:
• Steuerungsarten (mechanisch, fluidisch, Numerische Steuerung, Robotersteuerung): Aufbau, Architektur, Funktionsweise.
• Mess-, Antriebs-, Regelungstechnik für Werkzeugmaschinen und Industrieroboter
• Kinematische und Dynamische Modellierung von Robotern und Parallelkinematiken.
• Praktikum zur Inbetriebnahme von Antriebssystemen und Regelungstechnischer Einstellung.

14. Literatur:
Pritschow, G.: Einführung in die Steuerungstechnik, Carl Hanser Verlag, München, 2006

15. Lehrveranstaltungen und -formen:
• 142301 Vorlesung Steuerungstechnik der Werkzeugmaschinen und Industrieroboter
• 142302 Übung Steuerungstechnik der Werkzeugmaschinen und Industrieroboter

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42h
Nacharbeitszeit: 138h
Gesamt: 180h

17. Prüfungsnummer/n und -name:
14231 Steuerungstechnik der Werkzeugmaschinen und Industrieroboter (PL), schriftlich, eventuell mündlich, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:
Beamer, Overhead, Tafel

20. Angeboten von:
Institut für Steuerungstechnik der Werkzeugmaschinen und Fertigungseinrichtungen
Modul: 37280 Ölhdydraulik und Pneumatik in der Steuerungstechnik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072910031</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>5. Modul:</td>
<td>Ölhydraulik und Pneumatik in der Steuerungstechnik</td>
</tr>
<tr>
<td>6. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>8. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>9. Modulverantwortlicher:</td>
<td>Michael Seyfarth</td>
</tr>
<tr>
<td>10. Dozenten:</td>
<td>Michael Seyfarth</td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen: keine

12. Lernziele:
Die Studierenden kennen die Gesetzmäßigkeiten und Elemente hydraulischer und pneumatischer Systeme. Sie können diese in fluidischen Schaltplänen erkennen und eigene fluidische Schaltungen entwerfen.

13. Inhalt:
- Grundlagen fluidischer Systeme.
- Elemente fluidischer Systeme (Pumpen, Motoren, Ventile).
- Schaltungen fluidischer Systeme.

14. Literatur:
- Matthies: Einführung in die Ölhydraulik, Teubner, Wiesbaden, 2006
15. Lehrveranstaltungen und -formen: 372801 Vorlesung Ölhydraulik und Pneumatik in der Steuerungstechnik

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 21 Stunden
Selbststudium: 69 Stunden
Summe: 90 Stunden

17. Prüfungsnummer/n und -name: 37281 Ölhydraulik und Pneumatik in der Steuerungstechnik (BSL), schriftlich, eventuell mündlich, Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
2110 Verfahrenstechnik

Zugeordnete Module:
15570 Chemische Reaktionstechnik II
15580 Membranotechnik und Elektromembran-Anwendungen
15930 Prozess- und Anlagentechnik
18260 Polymer-Reaktionstechnik
2117 Spez.Fach. anerkannt 6LP
2118 Spez.Fach. anerkannt 6LP
2119 Spez.Fach. anerkannt 6LP
2117 Spez.Fach. anerkannt 6LP
2118 Spez.Fach. anerkannt 6LP
2119 Spez.Fach. anerkannt 6LP
Modul: 15570 Chemische Reaktionstechnik II

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>041110011</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Ulrich Nieken</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Ulrich Nieken</td>
</tr>
</tbody>
</table>
 → Vorgezogene Master-Module
 → DoubleM.D. Technische Kybernetik, PO 2011, . Semester
 → Incoming -->Spezialisierungsfach -->Verfahrenstechnik
 → DoubleM.D. Technische Kybernetik, PO 2011, . Semester
 → Outgoing -->Spezialisierungsfach -->Verfahrenstechnik
 → DoubleM.D. Technische Kybernetik, PO 2014, . Semester
 → Incoming -->Spezialisierungsfach -->Verfahrenstechnik
 → DoubleM.D. Technische Kybernetik, PO 2014, . Semester
 → Outgoing -->Spezialisierungsfach -->Verfahrenstechnik
 → DoubleM.D. Technische Kybernetik, PO 2014, . Semester
 → Wahlpflichtmodule -->Spezialisierungsfach -->Verfahrenstechnik
 → M.Sc. Technische Kybernetik, PO 2011, . Semester
 → Spezialisierungsmodul -->Spezialisierungsfach -->Verfahrenstechnik
| 11. Empfohlene Voraussetzungen: | Chemische Reaktionstechnik I |
| 13. Inhalt: | Modellbildung und Betriebsverhalten von Mehrphasenreaktoren; Molekulare Vorgänge an Oberflächen; Heterogen-katalytische Gasreaktionen; Charakterisierung poröser Feststoffe; Effektive Beschreibung des Wärme- und Stofftransports in porösen Feststoffen; Einzelkornmodelle und Zweiphasenmodell des Festbettreaktors; Stofftransport und Reaktion in Gas-Flüssigkeitsreaktoren; Hydrodynamik von Gas-Flüssigkeits-Reaktoren; |

15. Lehrveranstaltungen und -formen:

- 155701 Vorlesung Chemische Reaktionstechnik II
- 155702 Übung Chemische Reaktionstechnik II

16. Abschätzung Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Aktivität</th>
<th>Dauer</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenz</td>
<td>56 h</td>
</tr>
<tr>
<td>Vor- und Nachbereitung</td>
<td>35 h</td>
</tr>
<tr>
<td>Prüfungsvorbereitung und Prüfung</td>
<td>89 h</td>
</tr>
<tr>
<td>Summe</td>
<td>180 h</td>
</tr>
</tbody>
</table>

17. Prüfungsnummer/n und -name:

15571 Chemische Reaktionstechnik II (PL), mündliche Prüfung, 30 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:

Vorlesung: Tafelanschrieb, Beamer

Übungen: Rechnerübungen

20. Angeboten von:

Institut für Chemische Verfahrenstechnik
Modul: 15580 Membrantechnik und Elektromembran-Anwendungen

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>041110012</th>
<th>5. Modulduauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>B.Sc. Technische Kybernetik, PO 2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorgezogene Master-Module</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2011, . Semester</td>
</tr>
<tr>
<td>→ Incoming -->Spezialisierungsfach -->Verfahrenstechnik</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2011, . Semester</td>
</tr>
<tr>
<td>→ Outgoing -->Spezialisierungsfach -->Verfahrenstechnik</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2014, . Semester</td>
</tr>
<tr>
<td>→ Incoming -->Spezialisierungsfach -->Verfahrenstechnik</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2014, . Semester</td>
</tr>
<tr>
<td>→ Outgoing -->Spezialisierungsfach -->Verfahrenstechnik</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2014, . Semester</td>
</tr>
<tr>
<td>→ Wahlpflichtmodule -->Spezialisierungsfach -->Verfahrenstechnik</td>
</tr>
<tr>
<td>M.Sc. Technische Kybernetik, PO 2011, . Semester</td>
</tr>
<tr>
<td>→ Spezialisierungsmodulle -->Spezialisierungsfach -->Verfahrenstechnik</td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen:

Vorlesung: Thermodynamik

Grundlagen der Makromolekularen Chemie
Grundlagen der Anorganischen Chemie
Grundlagen der Physikalischen Chemie
Übungen: keine

12. Lernziele:

Die Studierenden

- verstehen die komplexen physikochemischen Grundlagen (insbesondere Thermodynamik und Kinetik) von membranotechnologischen Prozessen (molekulaire Grundlagen des Transports von Permeanden durch eine Membranmatrix und molekulaire Grundlagen der Wechselwirkung zwischen Permeanden und Membranmatrix)

- verstehen, wie eine Separation zwischen verschiedenen Komponenten einer Stoffmischung mittels des jeweiligen Membranprozesses erreicht werden kann (Separationsmechanismus, ggf. Kopplung verschiedener Mechanismen)

- verstehen die materialwissenschaftlichen Grundlagen des nanoskopischen, mikroskopischen und makroskopischen Aufbaus und
der Herstellung der unterschiedlichen Membrantypen (für organische Polymermembranen ist vertieftes polymerwissenschaftliches Verständnis erforderlich, für anorganische Membranen Verständnis der anorganischen und elementorganischen Chemie, z. b. das Sol-Gel-Prinzip)

- sind in der Lage, für ein bestehendes Separationsproblem den dafür geeigneten Membrantenprozess, ggf. auch eine Kombination verschiedener Membranverfahren, anzuwenden, - können grundlegende Berechnungen von Membrantenprozessen durchführen (Permeationsfluß, Permeation und Permeationskoeffizient, Diffusion und Diffusionskoeffizient, Löslichkeit und Löslichkeitskoeffizient, Trennfaktor, Selektivität, Abschätzung der Wirtschaftlichkeit von Membrantenprozessen)

13. Inhalt:
- Physikochemische Grundlagen der Membrantechnologie, einschließlich Grundlagen der Elektrochemie
- Grundlagen und Anwendungsfelder der wichtigsten Membrantenprozesse (Mikrofiltration, Ultrafiltration, Nanofiltration, Umkehrosmose, Elektrodialyse, Dialyse, Gastrennung, Pervaporation, Perstraktion)
- Grundlagen von Elektrolyse, Brennstoffzellen und Batterien, einschließlich der in diesen Prozessen zur Verwendung kommenden Materialien
- Grundlagen der Membranbildung (z. B. Phaseninversionsprozeß)
- Klassifizierung der unterschiedlichen Membrantypen nach verschiedenen Kriterien (z. B. poröse Membranen - dichte Membranen, oder geladene Membranen (Ionenaustauschermembranen) - ungeladene Membranen oder organische Membranen - mixed-matrix-Membranen - anorganische Membranen)
- Herstellprozesse für die und Aufbau der unterschiedlichen Membrantypen
- Charakterisierungsmethoden für Membranen und Membrantenprozesse

14. Literatur:
- Kerres, J.: Vorlesungsschulien und weitere Materialien
- H. Strathmann und E. Drioli: An Introduction to Membrane Science and Technology
- M. Mulder: Basic Principles of Membrane Technology
- Hamann-Vielstich: Elektrochemie

15. Lehrveranstaltungen und -formen:
- 155801 Vorlesung Membrantechnik und Elektromembran-Anwendungen

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 56 h
- Selbststudiumszeit / Nacharbeitszeit: 124 h
- Gesamt: 180 h

17. Prüfungsnummer/n und -name:
- 15581 Membrantechnik und Elektromembran-Anwendungen (PL), mündliche Prüfung, 30 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:
- kombinierter Einsatz von Tafelanschrieb und Beamer,
Ausstellung der Präsentationsfolien

20. Angeboten von: Institut für Chemische Verfahrenstechnik
Modul: 18260 Polymer-Reaktionstechnik

2. Modulkürzel: 041110013
5. Modulduauer: 2 Semester

3. Leistungspunkte: 6.0 LP
6. Turnus: jedes 2. Semester, SoSe

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Ulrich Nieken

9. Dozenten: • Ulrich Nieken
 • Jochen Kerres

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technische Kybernetik, PO 2011
→ Vorgezogene Master-Module
 → DoubleM.D. Technische Kybernetik, PO 2011, . Semester
 → Incoming -->Spezialisierungsfach -->Verfahrenstechnik
 → DoubleM.D. Technische Kybernetik, PO 2011, . Semester
 → Outgoing -->Spezialisierungsfach -->Verfahrenstechnik
 → DoubleM.D. Technische Kybernetik, PO 2014, . Semester
 → Incoming -->Spezialisierungsfach -->Verfahrenstechnik
 → DoubleM.D. Technische Kybernetik, PO 2014, . Semester
 → Outgoing -->Spezialisierungsfach -->Verfahrenstechnik
 → DoubleM.D. Technische Kybernetik, PO 2014, . Semester
 → Wahlpflichtmodule -->Spezialisierungsfach -->Verfahrenstechnik
 → M.Sc. Technische Kybernetik, PO 2011, . Semester
 → Spezialisierungsmodul -->Spezialisierungsfach -->Verfahrenstechnik

11. Empfohlene Voraussetzungen:

• Chemische Reaktionstechnik I
• Grundlagen der Chemie

12. Lernziele:

Vorlesungsteil Grundlagen der Polymerchemie (Theorie und Praxis):
- die Studierenden kennen und verstehen die grundlegenden chemischen Mechanismen der Polyreaktionen Stufenwachstumsreaktionen (Polykondensation, Polyaddition) und Kettenwachstumsreaktion (Radikalische Polymerisation, ionische Polymerisation, koordinative Polymerisation)
- die Studierenden können Einflußfaktoren auf Polyreaktionen wie Monomerstruktur, Initiator/Katalysator, Temperatur, Lösungsmittel und (bei Stufenwachstumsreaktionen sowie bei Copolymerisationen) Monomerverhältnis beschreiben, vergleichend analysieren, bewerten und auf konkrete Polymerisationssysteme anwenden
- die Studierenden kennen und verstehen die Grundlagen der Kinetik von Polyreaktionen (Homo- und Copolymerisationen) und sind in der Lage dazu, die Unterschiede und die gemeinsamen Merkmale der Kinetik unterschiedlicher Polyreaktionen zu erfassen, zu analysieren und miteinander zu vergleichen.
- die Studierenden kennen die wichtigsten technischen Polymere und ihre Herstellung und sind in der Lage aus der Polymerzusammensetzung
und -struktur, zu bewerten und zu entscheiden, für welche technische Anwendung welche(s) Polymer(e) geeignet ist (sind)
- die Studierenden kennen die wichtigsten chemischen Reaktionen zur Modifizierung von Polymeren (polymeranaloge Reaktionen) und sind in der Lage dazu, zu analysieren, für welches Polymer welches chemisches Modifizierungsverfahren anwendbar ist, sowie können die Reaktivität unterschiedlicher Polymertypen für ein bestimmtes Modifizierungsregenzen miteinander vergleichen und bewerten
- die Studierenden kennen und verstehen die grundlegenden Mechanismen von Polymerdegradation (Polymerabbau, Polymeralterung) und können beurteilen, was die Faktoren sind, die unterschiedliche Polymere für Polymerdegradation mehr oder weniger anfällig machen
- Die Studierenden sind in der Lage, im Vorlesungsteil „Übungen/Praktikum“ grundlegende Polymerisationen im Labormaßstab durchzuführen und die damit hergestellten Polymere zu charakterisieren:
- die Studierenden können im Labor wichtige Polyreaktionen selbst vorbereiten und durchführen (Polykondensation, radikalische Polymerisation, anionische Polymerisation, und charakterisieren.
- die Studierenden sind in der Lage, den Polymerisationsprozess im Hinblick auf Erzielung bestimmter Umsätze und Molmassen zu steuern.
- die Studierenden sind in der Lage, zu analysieren, wie die Polymerisationsbedingungen gewählt werden müssen (z. B. Reinheit Lösungsmittel und Monomere, Reaktionstemperatur, Reaktionsdauer), um ein möglichst hohes Molekulargewicht der synthetisierten Polymere zu erzielen, und daraus die Bedingungen so einzustellen, dass das Polymerisationsergebnis optimal ist.

Vorlesungsteil Berechnungsmethoden in der Polymerreaktionstechnik:

- Die Studierenden lernen, Umsatz- und Molmassenverlauf einer Polymerisation in verschiedenen Reaktoren zu berechnen und die Reaktionen gezielt zu beeinflussen.
- Die Studierenden lernen die Anwendung der Momentenmethode in MATLAB sowie die Berechnung der vollständigen Molekulargewichtsverteilung in Predici und können die numerischen Grundlagen unterscheiden.

13. Inhalt:

Polymerreaktionstechnik verschiedener Polyreaktionstypen:
- Kettenwachstumsreaktion (radikalische, ionische, koordinative Polymerisation)
- Stufenwachstumsreaktion (Polykondensation, Polyaddition)
- Copolymerisation
- Emulsionspolymerisation, Lösungspolymerisation
- Polymeranaloge Reaktionen
- Markov-Ketten
- Monte-Carlo-Simulation bei Polymerisationen
- Einfluss der Reaktionsführung auf die Polymereigenschaften

14. Literatur:

Skript
Bernd Tieke: „Makromolekulare Chemie: Eine Einführung“
H. G. Elias: "Makromoleküle"
P. J. Flory: "Principles of Polymer Chemistry"
15. Lehrveranstaltungen und -formen:

- 182601 Vorlesung Polymer-Reaktionstechnik
- 182602 Übung Polymer-Reaktionstechnik

16. Abschätzung Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Aktivität</th>
<th>Zeit (h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenz</td>
<td>42</td>
</tr>
<tr>
<td>Vor- und Nachbereitung</td>
<td>42</td>
</tr>
<tr>
<td>Prüfungsvorbereitung und Prüfung</td>
<td>96</td>
</tr>
<tr>
<td>Summe</td>
<td>180</td>
</tr>
</tbody>
</table>

17. Prüfungsnummer/n und -name:

18261 Polymer-Reaktionstechnik (PL), mündliche Prüfung, 40 Min., Gewichtung: 1.0

19. Medienform:

Tafelschrieb, Beamer
Praktische Übungen (Versuche) zur Polymerherstellung und -charakterisierung im Labor
Rechnerübungen (MATLAB, Predici)

20. Angeboten von:

Institut für Chemische Verfahrenstechnik
Modul: 15930 Prozess- und Anlagentechnik

2. Modulkürzel: 04111015 5. Modulduauer: 1 Semester
4. SWS: 4.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Clemens Merten
9. Dozenten: Clemens Merten

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technische Kybernetik, PO 2011
 → Vorgezogene Master-Module
 DoubleM.D. Technische Kybernetik, PO 2011, . Semester
 → Incoming -->Spezialisierungsfach -->Verfahrenstechnik
 →
 DoubleM.D. Technische Kybernetik, PO 2011, . Semester
 → Outgoing -->Spezialisierungsfach -->Verfahrenstechnik
 →
 DoubleM.D. Technische Kybernetik, PO 2014, . Semester
 → Incoming -->Spezialisierungsfach -->Verfahrenstechnik
 →
 DoubleM.D. Technische Kybernetik, PO 2014, . Semester
 → Outgoing -->Spezialisierungsfach -->Verfahrenstechnik
 →
 DoubleM.D. Technische Kybernetik, PO 2014, . Semester
 → Wahlpflichtmodule -->Spezialisierungsfach -->Verfahrenstechnik
 →
 M.Sc. Technische Kybernetik, PO 2011, . Semester
 → Spezialisierungsmodule -->Spezialisierungsfach -->Verfahrenstechnik

11. Empfohlene Voraussetzungen: Verfahrenstechnisches Grundwissen (Chemische Reaktionstechnik, Mechanische und Thermische Verfahrenstechnik)

12. Lernziele:

 Die Studierenden
 - können die Aufgaben des Bereiches „Prozess- und Anlagentechnik“ in Unternehmen definieren, identifizieren und analysieren,
 - verstehen und erkennen die Ablaufphasen und Methoden bei der Entwicklung und Planung verfahrenstechnischer Prozesse und Anlagen,
 - verstehen die Grundlagen des Managements für die Abwicklung eines Anlagenprojektes und können diese anwenden,
 - können die Hauptvorgänge (Machbarkeitsstudie, Ermittlung der Grundlagen, Vor-, Entwurfs- und Detailplanung) der Anlagenplanung anwenden,
 - verstehen die grundlegenden Wirkungsweisen verfahrenstechnischer (mechanischer, thermischer und reaktionstechnischer) Prozessstufen oder Apparate und können das Wissen anwenden, um Verfahren oder Anlagen in ihrer Komplexität zu analysieren, zu synthetisieren und zu bewerten,
 - können Stoff-, Energie- und Informationsflüsse im technischen System Anlage grundlegend beschreiben, bestimmen, kombinieren und beurteilen,
 - sind mit wichtigen Methoden der Anlagenplanung vertraut und können diese in Projekten zielführend anwenden,
• können verfahrenstechnische Planungsaufgaben definieren, analysieren, lösen und dokumentieren,
• können wichtige Entwicklungsmethoden in kooperativen Lernsituationen (in Gruppenarbeit) anwenden und ihre Entwicklungsergebnisse beurteilen, präsentieren und zusammenfügen,
• können die Life Cycle Engineering Software COMOS für die Lösung und Dokumentation einer komplexen Planungsaufgabe anwenden.

13. Inhalt:

Systematische Übersicht zur Prozesstechnik:

- Wirkprinzipien, Auslegung und anwendungsbezogene Auswahl von Prozessen, Apparaten und Maschinen
- Prozessanalyse und -synthese

Aufgaben und Ablauf der Anlagenplanung:

- Aufgaben der Anlagentechnik,
- Ablaufphasen der Anlagenplanung,
- Projektmanagement, Methodik der Projektführung,
- Kommunikation und Technische Dokumentation in der Anlagenplanung (Verfahrensbeschreibung, Fließbilder),
- Auswahl und Einbindung von Prozessen und Ausrüstungen in eine Anlage,
- Auslegung von Pumpen- und Verdichteranlagen, Rohrleitungen und Armaturen,
- Räumliche Gestaltung: Bauweise, Lageplan, Aufstellungsplan, Rohrleitungsplanung,

Behandlung von Planungsbeispielen ausgewählter Anlagen:

- thematische Übungsaufgaben,
- komplexe Planungsaufgabe mit Anwendung der Life Cycle Engineering Software COMOS

14. Literatur:

- Merten, C.: Skript zur Vorlesung, Übungsunterlagen
- Nutzerhandbuch COMOS

Ergänzende Lehrbücher:

- Bernecker, G.: Planung und Bau verfahrenstechnischer Anlagen. Springer-Verlag

15. Lehrveranstaltungen und -formen:

- 159301 Vorlesung Prozess- und Anlagentechnik
- 159302 Übung Prozess- und Anlagentechnik
- 159303 Exkursion Prozess- und Anlagentechnik

16. Abschätzung Arbeitsaufwand:

Präsenzzeit:	56 h
Selbststudiumszeit / Nacharbeitszeit:	124 h
Gesamt:	180 h

17. Prüfungsnummer/n und -name:

- 15931 Prozess- und Anlagentechnik schriftlich (PL), schriftliche Prüfung, 120 Min., Gewichtung: 75.0
<table>
<thead>
<tr>
<th>18. Grundlage für ...</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>19. Medienform:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Vorlesungsskript</td>
</tr>
<tr>
<td>• Übungsunterlagen</td>
</tr>
<tr>
<td>• kombinierter Einsatz von Tafelanschrieb und Präsentationsfolien</td>
</tr>
</tbody>
</table>

| 20. Angeboten von: |
2111 Verkehr

Zugeordnete Module:

- 15660 Verkehrsplanung und Verkehrsmodelle
- 15670 Verkehrstechnik und Verkehrsleittechnik
- 15680 Rechnergestützte Angebotsplanung
- 15700 Verkehrsflussmodelle
- 15720 Gestaltung von öffentlichen Verkehrssystemen
- 15730 Infrastrukturen im öffentlichen Verkehr
- 15740 Projektstudie zur Gestaltung von öffentlichen Verkehrssystemen
- 15750 Verkehrssicherung
- 2117 Spez.Fach. anerkannt 6LP
- 2118 Spez.Fach. anerkannt 6LP
- 2119 Spez.Fach. anerkannt 6LP
- 25030 Prozessgestaltung im öffentlichen Verkehr
- 34100 Verkehrserhebungen
- 46270 Verkehr in der Praxis
2117 Spez.Fach. anerkannt 6LP
2118 Spez.Fach. anerkannt 6LP
2119 Spez.Fach. anerkannt 6LP
Modul: 15720 Gestaltung von öffentlichen Verkehrssystemen

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>020400721</th>
<th>5. Modulduauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.3</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Ullrich Martin

9. Dozenten: • Stefan Tritschler • Carlo Molo

10. Zuordnung zum Curriculum in diesem Studiengang:

- B.Sc. Technische Kybernetik, PO 2011 → Vorgezogene Master-Module
 - DoubleM.D. Technische Kybernetik, PO 2011, . Semester → Incoming -->Spezialisierungsfach -->Verkehr
 → DoubleM.D. Technische Kybernetik, PO 2011, . Semester → Outgoing -->Spezialisierungsfach -->Verkehr
 → DoubleM.D. Technische Kybernetik, PO 2014, . Semester → Incoming -->Spezialisierungsfach -->Verkehr
 → DoubleM.D. Technische Kybernetik, PO 2014, . Semester → Outgoing -->Spezialisierungsfach -->Verkehr
 → DoubleM.D. Technische Kybernetik, PO 2014, . Semester → Wahlpflichtmodule -->Spezialisierungsfach -->Verkehr

- M.Sc. Technische Kybernetik, PO 2011, . Semester → Spezialisierungsmodul -->Spezialisierungsfach -->Verkehr

11. Empfohlene Voraussetzungen: Inhaltlich: keine

Vorgängermodule: Grundlagen der Schienenverkehrssysteme

12. Lernziele: Die Hörer können:

- den Stellenwert öffentlicher Verkehrssysteme im Rahmen einer bedarfsgerichteten Verkehrsgestaltung erkennen,
- die Zusammenhänge bei der Planung von öffentliche Verkehrssystemen verstehen,
- grundlegende Entscheidungen zum Netzaufbau und zur Ausgestaltung öffentlicher Verkehrssysteme treffen,
- anhand der Charakteristika der unterschiedlichen Nahverkehrsmittel der optimalen Einsatzbereiche bestimmen,
- einschätzen, welche Infrastruktur für unterschiedliche öffentliche Verkehrssysteme notwendig ist und
- grundlegende Berechnungen zur Linienführung und Haltestellengestaltung durchführen.

• Grundlagen der Nahverkehrsplanung
• Netzplanung
• Nahverkehrsmittel und deren Einsatzbereiche
• Haltestellen- und Verknüpfungspunkte
• Infrastruktur für den ÖPNV

Ergänzend zur Vorlesung werden in der "Übung zu Planung und Entwurf öffentlicher Verkehrssysteme" die Inhalte der Lehrveranstaltung anhand von aufeinander aufbauenden Übungen vertieft. Dabei werden folgende Themen aufgegriffen:

• Verkehrsnachfrage und -angebot
• Streckenbelastungen
• Erschließungskonzept
• Trassierung und Gestaltung eines Verknüpfungspunkts
• Fahrzeitenrechnung

14. Literatur:
• Skript zur Lehrveranstaltung „Planung und Entwurf öffentlicher Verkehrssysteme"
• Eisenbahn-Bau- und Betriebsordnung (EBO)
• Straßenbahn-Bau- und Betriebsordnung (BOStrab)

15. Lehrveranstaltungen und -formen:
• 157201 Vorlesung Planung und Entwurf öffentlicher Verkehrssysteme
• 157202 Übung Planung, Entwurf und Bewertung öffentlicher Verkehrssysteme
• 157203 Exkursion Planung, Entwurf und Bewertung öffentlicher Verkehrssysteme

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 50 h
Selbststudiumzeit: 130 h
Gesamt: 180h

17. Prüfungsnummer/n und -name:
15721 Gestaltung von öffentlichen Verkehrssystemen (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0, Prüfungsvorleistung: erfolgreiche Teilnahme an der Belegarbeit (Übung) zur Lehrveranstaltung "Planung und Entwurf öffentlicher Verkehrssysteme"

18. Grundlage für ...

19. Medienform:
Entwicklung der Grundlagen als Präsentation; Tafelanschrieb zur Vorlesung, Webbasierter Unterlagen zum vertiefenden Selbststudium

20. Angeboten von:
Institut für Eisenbahn- und Verkehrswesen
Modul: 15730 Infrastrukturen im öffentlichen Verkehr

<table>
<thead>
<tr>
<th>Modulkürzel:</th>
<th>020400723</th>
<th>Modul:</th>
<th>Infrastrukturen im öffentlichen Verkehr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leistungspunkte:</td>
<td>6.0 LP</td>
<td>Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>SWS:</td>
<td>4.6</td>
<td>Turnus:</td>
<td>jedes 2. Semester, WiSe</td>
</tr>
<tr>
<td>Sprache:</td>
<td>Deutsch</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Ullrich Martin

9. Dozenten:
- Ullrich Martin
- Georg Fundel
- Harry Dobeschinsky
- Di Liu

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technische Kybernetik, PO 2011
- Vorgezogene Master-Module
- DoubleM.D. Technische Kybernetik, PO 2011, . Semester
 - Incoming -->Spezialisierungsfach -->Verkehr
- DoubleM.D. Technische Kybernetik, PO 2014, . Semester
 - Outgoing -->Spezialisierungsfach -->Verkehr
- DoubleM.D. Technische Kybernetik, PO 2011, . Semester
 - Incoming -->Spezialisierungsfach -->Verkehr
- DoubleM.D. Technische Kybernetik, PO 2014, . Semester
 - Outgoing -->Spezialisierungsfach -->Verkehr
- DoubleM.D. Technische Kybernetik, PO 2014, . Semester
 - Wahlpflichtmodule -->Spezialisierungsfach -->Verkehr
- M.Sc. Technische Kybernetik, PO 2011, . Semester
 - Spezialisierungsmodule -->Spezialisierungsfach -->Verkehr

12. Lernziele:

Die Hörer der Lehrveranstaltung "Infrastrukturgestaltung" verstehen Zusammenhänge der Dimensionierung und Bewertung von Eisenbahnbetriebsanlagen und können:

- die Infrastrukturplanung und die Ziele der Infrastrukturgestaltung erklären,
- die Einflüsse auf die Dimensionierung von Eisenbahnbetriebsanlagen erläutern,
- das analytische Verfahren zur Planung und Bewertung von Eisenbahnbetriebsanlagen beschreiben sowie
das Simulationsverfahren zur Planung und Bewertung von Eisenbahnbetriebsanlagen anwenden,
- die verschiedenen Varianten der Infrastrukturgestaltung mit Leistungsuntersuchungen bewerten.

Die Hörer der Lehrveranstaltung "Gestaltung von Flughafenanlagen" können:

- die Entwicklung des Luftverkehrs und der Flugzeuge nachvollziehen,
13. Inhalt: Die Veranstaltung "**Infrastrukturgestaltung**" umfasst folgende Themengebiete:

- Grundlagen der Planung von Eisenbahninfrastruktur anlagen
- Dimensionierung von Eisenbahnbetriebsanlagen
- Übung: vertiefter Bahnhofsentwurf
- Bewertung der Infrastruktur mit Leistungsuntersuchungen: Analytische Verfahren und Simulationsverfahren
- praktische Anwendung der Leistungsuntersuchung mit Simulationsverfahren

In der Vorlesung "**Gestaltung von Flughafenanlagen**" wird eine Übersicht mit technischem Schwerpunkt zur Geschichte und über das Gesamtsystem des Luftverkehrs gegeben:

- Entwicklung des Luftverkehrs und der Flugzeuge,
- Administrativ-organisatorische Strukturen,
- Angebot und Nachfrage im Luftverkehr,
- Prozesse des Luftverkehrs,
- Gestaltung von Flughafen anlagen,
- Betrieb von Flughafen anlagen,
- Leistungsfähigkeit und Kapazitätsbemessung von Flughafen anlagen.

14. Literatur:

- Skriptum zu den Lehrveranstaltungen "Infrastruktur gestaltung" und "Luftverkehr und Flughafenanlagen"
- Eisenbahn-Bau- und Betriebsordnung (EBO)
- Pachl, J.: Systemtechnik des Schienenverkehrs, Teubner Verlag Stuttgart, neueste Auflage
- Luftverkehrsgesetz (LuftVG)

15. Lehrveranstaltungen und -formen:

- 157301 Vorlesung Infrastrukturgestaltung
- 157302 Übung Infrastrukturgestaltung
- 157303 Hausarbeit Infrastrukturgestaltung
- 157304 Vorlesung und Übung Gestaltung von Flughafenanlagen

16. Abschätzung Arbeitsaufwand:

| Präsenzzeit: 50 h |
| Selbststudium: 130 h |
| **Gesamt: 180 h** |

17. Prüfungsnummer/n und -name:

| 15731 Infrastrukturen im öffentlichen Verkehr (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0 |

18. Grundlage für ...

19. Medienform:

Entwicklung der Grundlagen als Präsentation sowie Tafelanschrieb zur Vorlesung, Webbasierte Unterlagen zum vertiefenden Selbststudium

20. Angeboten von:

Institut für Eisenbahn- und Verkehrswesen
Modul: 15740 Projektstudie zur Gestaltung von öffentlichen Verkehrssystemen

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>020400722</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.5</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Ullrich Martin</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>• Stefan Tritschler</td>
<td>• Carlo Molo</td>
<td></td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>B.Sc. Technische Kybernetik, PO 2011</th>
<th>Vorgezogene Master-Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2011, . Semester</td>
<td>→ Incoming -->Spezialisierungsfach -->Verkehr</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2011, . Semester</td>
<td>→ Outgoing -->Spezialisierungsfach -->Verkehr</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2014, . Semester</td>
<td>→ Incoming -->Spezialisierungsfach -->Verkehr</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2014, . Semester</td>
<td>→ Outgoing -->Spezialisierungsfach -->Verkehr</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2014, . Semester</td>
<td>→ Wahlpflichtmodule -->Spezialisierungsfach -->Verkehr</td>
</tr>
<tr>
<td>M.Sc. Technische Kybernetik, PO 2011, . Semester</td>
<td>→ Spezialisierungsmodule -->Spezialisierungsfach -->Verkehr</td>
</tr>
</tbody>
</table>

12. Lernziele:

Die Hörer können:

- den Stellenwert öffentlicher Verkehrssysteme im Rahmen einer bedarfsgerechten Verkehrsgestaltung einordnen,
- anwendungsbezogene Zusammenhänge bei der Planung- und dem Betreiben von Verkehrssystemen erkennen,
- die Prozesse des laufenden Betriebs im Normal- und Störungsfall unterscheiden,
- Verkehrsinfrastrukturechnungen verstehen und bewerten,
- Grundkenntnisse der wirtschaftlichen Bewertung von Verkehrssystemen anwenden sowie
- die Finanzierungsströme für Investitionen und laufenden Betrieb im ÖPNV analysieren.
13. Inhalt:

In der Lehrveranstaltung “Betrieb, Bewertung und Finanzierung öffentlicher Verkehrssysteme” werden die betrieblich-wirtschaftlichen Aspekte von öffentlichen Verkehrssystemen mit Schwerpunkt ÖPNV vermittelt:

- Grundlagen der Betriebssplanung
- Fahr-, Umlauf- und Dienstplan
- Laufender Betrieb im öffentlichen Verkehr
- Einführung in die Verkehrswirtschaft und Verkehrsinfrastrukturrechnung
- Bewertung von Verkehrsinfrastruktur
- Methodik der Standardisierten Bewertung
- Verkehrsfinanzierung

Ergänzend zur Vorlesung werden in der “Projektstudie zu Betrieb, Bewertung und Finanzierung öffentlicher Verkehrssysteme” die Inhalte der Lehrveranstaltung anhand von aufeinander aufbauenden Übungen vertieft. Dabei werden folgende Themen aufgegriffen:

- Betriebskonzept
- Umlaufplanung Stadtbahn
- Verkehrsangebot
- Standardisierte Bewertung
- Folgekostenrechnung

14. Literatur:

- Skript zu den Lehrveranstaltungen "Betrieb, Bewertung und Finanzierung öffentlicher Verkehrssysteme“ und "Angewandte Verkehrswirtschaft"
- Eisenbahn-Bau- und Betriebsordnung (EBO)
- Straßenbahn-Bau- und Betriebsordnung (BOStrab)
- Aberle, G.: Transportwirtschaft, Wolls Lehr- und Handbücher der Wirtschafts- und Sozialwissenschaften München, neueste Auflage

15. Lehrveranstaltungen und -formen:

- 157401 Vorlesung Betrieb, Bewertung und Finanzierung öffentlicher Verkehrssysteme
- 157402 Übung Betrieb, Bewertung und Finanzierung öffentlicher Verkehrssysteme

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 50 h
Selbststudium: 130 h
Summe 180 h

17. Prüfungsnummer/n und -name: 15741 Projektstudie zur Gestaltung von öffentlichen Verkehrssystemen (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0, Prüfungsvorleistung: Erfolgreiche Teilnahme an der Belegarbeit (Übung mit Vortrag und Bericht) zur Lehrveranstaltung "Betrieb, Bewertung und Finanzierung öffentlicher Verkehrssysteme"
18. Grundlage für ...

<table>
<thead>
<tr>
<th>19. Medienform:</th>
<th>Entwicklung der Grundlagen als Präsentation sowie Tafelanschrieb zur Vorlesung und Übung, Web-basierte Unterlagen zum vertiefenden Selbststudium</th>
</tr>
</thead>
<tbody>
<tr>
<td>20. Angeboten von:</td>
<td>Institut für Eisenbahn- und Verkehrswesen</td>
</tr>
</tbody>
</table>

Modul: 25030 Prozessgestaltung im öffentlichen Verkehr

2. Modulkürzel: 020400731
3. Leistungspunkte: 6.0 LP
4. SWS: 4.3
5. Modulduauer: 1 Semester
6. Turnus: jedes 2. Semester, SoSe
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Ullrich Martin
9. Dozenten:
 • Ullrich Martin
 • Yong Cui
 • Fabian Hantsch
 • Di Liu
10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technische Kybernetik, PO 2011
 ➔ Vorgezogene Master-Module
 DoubleM.D. Technische Kybernetik, PO 2011
 ➔ Incoming -->Spezialisierungsfach -->Verkehr
 ➔
 DoubleM.D. Technische Kybernetik, PO 2011
 ➔ Outgoing -->Spezialisierungsfach -->Verkehr
 ➔
 DoubleM.D. Technische Kybernetik, PO 2014
 ➔ Incoming -->Spezialisierungsfach -->Verkehr
 ➔
 DoubleM.D. Technische Kybernetik, PO 2014
 ➔ Outgoing -->Spezialisierungsfach -->Verkehr
 ➔
 DoubleM.D. Technische Kybernetik, PO 2014
 ➔ Wahlpflichtmodule -->Spezialisierungsfach -->Verkehr
 ➔
 M.Sc. Technische Kybernetik, PO 2011
 ➔ Spezialisierungsmodul -->Spezialisierungsfach -->Verkehr
 ➔
11. Empfohlene Voraussetzungen:
 Vorgängermodule: Grundlagen der Schienenverkehrssysteme
12. Lernziele:
 Die Hörer der Lehrveranstaltung "Betriebsplanung im öffentlichen Verkehr" können:
 • überschaubare Fahrpläne für die prozessvorbereitende Betriebsplanung bedarfsgerecht erstellen und optimieren,
 • verschiedene Varianten der Betriebsangebote mit Leistungsuntersuchungen bewerten,
 • den Fahrzeugumlauf für einen vorgegebenen Fahrplan berechnen und daraus den Personaleinsatz ableiten sowie
 • eine prozessbegleitende Betriebsplanung und einschließlich dispositiver Maßnahmen nachvollziehen.
 Mit der Teilnahme an der Lehrveranstaltung "Transportlogistik/OR im Verkehr" ist der Hörer in der Lage:
 • Grundlagen der Bedienungstheorie in Anwendung bei Leistungsuntersuchungen zu erklären,
 • Methoden zur Leistungsuntersuchung von Eisenbahn-Betriebsanlagen zu formulieren und zu verstehen,
 • mittels verschiedener Verfahren konkrete Fragestellungen der Leistungsuntersuchung eigenständig zu beantworten,
• lineare Optimierungsprobleme im Zusammenhang mit Dispositionsproblemen qualifiziert zu formulieren und zu verstehen und
• lineare Optimierungsprobleme anwendungsorientiert zu lösen.

Die Hörer der Lehrveranstaltung "Softwaregestützte Verkehrssystemgestaltung" können:
• Grundzüge des computergestützten Arbeitens im Verkehrswesen eigenständig darlegen,
• Modellierung und Simulation an Anwendungsbeispielen umfassend beschreiben,
• Funktion, Ablauf und Bedienung von Betriebsplanungs-, Leistungsuntersuchungs- und Simulationsprogramme beschreiben,
• Funktionsweise von rechnergestützten Informationssystemen im Verkehr qualifiziert erklären,
• EDV-Anwendungen im Bereich des öffentlichen Verkehrs erläutern sowie

13. Inhalt:

In der Veranstaltung "Betriebsplanung im öffentlichen Verkehr" werden die folgenden Themen dargelegt:
• Planung und Optimierung von Betriebsprogrammen,
• Bewertung des Betriebsangebotes mit Leistungsuntersuchungen,
• Planung des Fahrzeug- und Personalbedarfs sowie
• Betriebsführung und Disposition.

In der Veranstaltung "Transportlogistik/OR im Verkehr" werden diese Inhalte behandelt:
• grundlegende Methodik für Leistungsuntersuchungen von Eisenbahn-Betriebsanlagen,
• Methoden der Bedienungstheorie mit Anwendung im Eisenbahnwesen,
• Methoden zur Bewertung von Zugfahrten bei der Disposition auf Grundlage der linearen Optimierung sowie
• Entwurf von Zielfunktionen für die lineare Optimierung.

In der Veranstaltung "Softwaregestützte Verkehrssystemgestaltung" werden diese Themen erörtert:
• Grundzüge des computergestützten Arbeitens im Verkehrswesen,
• Modellierung und Simulation im öffentlichen Verkehr,
• Einblick in rechnergestützte Informationssysteme im Verkehr und
• Betriebsplanungs- und Leistungsuntersuchungsprogramme.

14. Literatur:
• Skript zu den Lehrveranstaltungen "Betriebsplanung im öffentlichen Verkehr", "Transportlogistik/OR im Verkehr" und "Softwaregestützte Verkehrssystemgestaltung"
• Eisenbahn-Bau- und Betriebsordnung (EBO)
• Pachl, J.: Systemtechnik des Schienenverkehrs, Teubner Verlag Stuttgart, neueste Auflage

15. Lehrveranstaltungen und -formen:
• 250301 Vorlesung Betriebsplanung im öffentlichen Verkehr
• 250302 Übung Betriebsplanung im öffentlichen Verkehr
• 250303 Hausübung Betriebsplanung im öffentlichen Verkehr
• 250304 Vorlesung Transportlogistik/OR im Verkehr
• 250305 Übung Transportlogistik/OR im Verkehr
• 250306 Vorlesung Softwaregestützte Verkehrssystemgestaltung
• 250307 Übung Softwaregestützte Verkehrssystemgestaltung

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 50 h
Selbststudium: 130 h
<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>25031 Prozessgestaltung im öffentlichen Verkehr (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Entwicklung der Grundlagen als Präsentation sowie Tafelanschrieb zur Vorlesung, Webbasierte Unterlagen zum vertiefenden Selbststudium</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Institut für Eisenbahn- und Verkehrswesen</td>
</tr>
</tbody>
</table>
Modul: 15680 Rechnergestützte Angebotsplanung

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>02130004</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

| 8. Modulverantwortlicher: | Univ.-Prof. Markus Friedrich |
| 9. Dozenten: | Markus Friedrich |

10. Zuordnung zum Curriculum in diesem Studiengang:

- B.Sc. Technische Kybernetik, PO 2011
 - Vorgezogene Master-Module
 - DoubleM.D. Technische Kybernetik, PO 2011, . Semester
 - Incoming -->Spezialisierungsfach -->Verkehr

 - DoubleM.D. Technische Kybernetik, PO 2011, . Semester
 - Outgoing -->Spezialisierungsfach -->Verkehr

 - DoubleM.D. Technische Kybernetik, PO 2014, . Semester
 - Incoming -->Spezialisierungsfach -->Verkehr

 - DoubleM.D. Technische Kybernetik, PO 2014, . Semester
 - Outgoing -->Spezialisierungsfach -->Verkehr

 - DoubleM.D. Technische Kybernetik, PO 2014, . Semester
 - Wahlpflichtmodule -->Spezialisierungsfach -->Verkehr

- M.Sc. Technische Kybernetik, PO 2011, . Semester
 - Spezialisierungsmodule -->Spezialisierungsfach -->Verkehr

- M.Sc. Technische Kybernetik, PO 2011, . Semester
 - Spezialisierungsmodul -->Wahlfach Technische Kybernetik

11. Empfohlene Voraussetzungen:

- Modul Verkehrsplanung und Verkehrsmodellierung

12. Lernziele:

13. Inhalt:

In der Vorlesung und den zugehörigen Übungen werden folgende Themen behandelt:

- Planungsprozess, Verkehrsplanungsoftware
- Excel, Access und VBA/COM
- Vorbereitung, Durchführung und Auswertung einer rechnergestützten Befragung mit Wegetagebüchern.
- VISUM-COM Funktionen
- Beispiel einer Steuerung von VISUM mit VBA aus Excel
- Analyse von Netzzuständen mit VBA und Excel,
- Szenariomanagement
- Verkehrsnachfrageberechnung mit VISEM
- Routensuchverfahren
- Bestwegsuche nach Dijkstra
- Bewertung der Angebotsqualität eines Verkehrsangebotes
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>156801 Vorlesung mit Übung Rechnergestützte Angebotsplanung</td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Präsenzzeit: 25 h</td>
</tr>
<tr>
<td></td>
<td>Selbststudiumszeit / Nacharbeitszeit: 65 h</td>
</tr>
<tr>
<td></td>
<td>Gesamt: 90 h</td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>15681 Rechnergestützte Angebotsplanung (BSL), mündliche Prüfung, 30 Min., Gewichtung: 1.0</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Verkehrsplanung und Verkehrsleittechnik</td>
</tr>
</tbody>
</table>
Modul: 46270 Verkehr in der Praxis

2. Modulkürzel: 020400732
3. Leistungspunkte: 6.0 LP
4. SWS: 4.6
5. Modul: 46270 Verkehr in der Praxis
6. Moduldauer: 1 Semester
7. Modulverantwortlicher: Univ.-Prof. Ullrich Martin
8. Modulverantwortlicher: Univ.-Prof. Ullrich Martin
9. Dozenten: • Volkhard Malik
• Peter Schütz
• Georg Fundel
• Ulrich Rentschler
10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technische Kybernetik, PO 2011
 ➔ Vorgezogene Master-Module
 DoubleM.D. Technische Kybernetik, PO 2011
 ➔ Incoming -->Spezialisierungsfach -->Verkehr
 ➔ DoubleM.D. Technische Kybernetik, PO 2011
 ➔ Outgoing -->Spezialisierungsfach -->Verkehr
 ➔ DoubleM.D. Technische Kybernetik, PO 2014
 ➔ Incoming -->Spezialisierungsfach -->Verkehr
 ➔ DoubleM.D. Technische Kybernetik, PO 2014
 ➔ Outgoing -->Spezialisierungsfach -->Verkehr
 ➔ DoubleM.D. Technische Kybernetik, PO 2014
 ➔ Wahlpflichtmodule -->Spezialisierungsfach -->Verkehr
 ➔ M.Sc. Technische Kybernetik, PO 2011
 ➔ Spezialisierungsmodul -->Spezialisierungsfach -->Verkehr
11. Empfohlene Voraussetzungen: keine
12. Lernziele: Die Hörer der Lehrveranstaltung "Speditionswesen und Güterverkehr" wissen:
 • nach welchen Kriterien eine Transportkette im Güterverkehr zusammengestellt wird,
 • welche Vor- und Nachteile die einzelnen Verkehrsträger im Gütertransport aufweisen und
 • kennen die wesentlichen Akteure und die rechtlichen Rahmenbedingungen im Speditionswesen.

 Die Hörer der Lehrveranstaltung "Verkehrspolitik" können:
 • verkehrspolitische Entscheidungen, die in der Praxis getätigt werden, qualifiziert einschätzen und
 • im Rahmen von Verkehrsprojekten verkehrspolitische Zusammenhänge nutzbringend anwenden.

 Mit der Teilnahme an der Lehrveranstaltung "Luftverkehr und Flughafenmanagement" vermögen die Hörer:
• Zusammenhänge des Luftverkehrs, der Flughafenanlagen und des Flughafenbetriebes zu verstehen und,
• kann durch sein erworbenes Wissen Managemententscheidungen von Airlines und Airports qualifiziert einschätzen.

Die Hörer der Lehrveranstaltung "Verkehrsplanungsrecht" können:

• Verfahren raumordnerischer und planfeststellungsrelevanter europäischer sowie nationaler Rechtsgrundlagen für Vorhaben im Bereich des öffentlichen Verkehrs in Planungsaufgaben einbeziehen sowie
• die planungsrechtliche Wirkung von baulichen und betrieblichen Maßnahmen abschätzen.

13. Inhalt:

In der Vorlesung "Speditionswesen und Güterverkehr" werden die Eigenschaften verschiedener Verkehrsträger in Bezug auf den Gütertransport betrachtet sowie die organisatorischen Abläufe im Güterverkehr beleuchtet.

• Güterverkehr im Allgemeinen,
• Spezifika der Verkehrsträger im Güterverkehr,
• Kombinierter Verkehr,
• Speditionswesen,
• Exkursionen zum Rangierbahnhof Kornwestheim und zu einem Logistik-Zentrum.

Die Vorlesung "Verkehrspolitik" befasst sich mit:

• Grundlagen der Verkehrspolitik,
• wesentliche Rahmenbedingungen für die Gestaltung von Verkehrssystemen und somit auch das Verkehrsangebot,
• Verantwortung der Politik sowie Möglichkeiten politischer Einflussnahme, um Verkehrsleistungen in guter Qualität zuangemessenen Preisen im fairen Wettbewerb anzubieten,
• Verbindungen mit anderen Politikfeldern,
• Rolle der Europäischen Verkehrspolitik.

Die folgenden Zusammenhänge werden in der Vorlesung "Luftverkehr und Flughafennmanagement" dargestellt:

• Ausprägungen des Luftverkehrs und Flughafenbetriebs in allen für das Management relevanten Fragen,
• Rechtsgrundlagen für den Flugbetrieb,
• Fragen der Flugsicherung,
• Umweltschutzmanagement an Flughäfen,
• Ausgestaltung von Flughafenanlagen.

In der Vorlesung "Verkehrsplanungsrecht" werden folgende verkehrsrechtlichen Grundlagen vermittelt:

• verkehrliche Rechtsgrundlagen auf europäischer Ebene,
• verkehrliche Rechtsgrundlagen auf nationaler Ebene,
• verkehrliches Planungsrecht,
• verkehrliches Umweltrecht.

14. Literatur:

• Skript zu den Lehrveranstaltungen "Luftverkehr und Flughafennmanagement", "Speditionswesen und Güterverkehr", "Verkehrspolitik" und "Verkehrsplanungsrecht"
• Suckale, M.: Taschenbuch der Eisenbahngesetze, Hestra-Verlag Darmstadt, neueste Auflage
15. Lehrveranstaltungen und -formen:

- 462701 Vorlesung Speditionsweisen und Güterverkehr
- 462702 Exkursion Speditionsweisen und Güterverkehr
- 462703 Vorlesung Verkehrspolitik
- 462704 Vorlesung Luftverkehr und Flughafенmanagement
- 462705 Vorlesung Verkehrsplanungsrecht

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 45 h
Selbststudium: 135 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:

46271 Verkehr in der Praxis (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ...:

19. Medienform:

Entwicklung der Grundlagen als Präsentation sowie Tafelanschrieb zur Vorlesung, Webbasierte Unterlagen zum vertiefenden Selbststudium

20. Angeboten von:

Institut für Eisenbahn- und Verkehrswesen
Modul: 34100 Verkehrserhebungen

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>021320006</th>
<th>5. Modulduer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. Modulverantwortlicher:</th>
<th>Manfred Wacker</th>
</tr>
</thead>
<tbody>
<tr>
<td>9. Dozenten:</td>
<td>Manfred Wacker</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>10. Zuordnung zum Curriculum in diesem Studiengang:</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.Sc. Technische Kybernetik, PO 2011</td>
</tr>
<tr>
<td>➔ Vorgezogene Master-Module</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2011</td>
</tr>
<tr>
<td>➔ Incoming -->Spezialisierungsfach -->Verkehr</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2011</td>
</tr>
<tr>
<td>➔ Outgoing -->Spezialisierungsfach -->Verkehr</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2014</td>
</tr>
<tr>
<td>➔ Incoming -->Spezialisierungsfach -->Verkehr</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2014</td>
</tr>
<tr>
<td>➔ Outgoing -->Spezialisierungsfach -->Verkehr</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2014</td>
</tr>
<tr>
<td>➔ Wahlpflichtmodule -->Spezialisierungsfach -->Verkehr</td>
</tr>
<tr>
<td>M.Sc. Technische Kybernetik, PO 2011</td>
</tr>
<tr>
<td>➔ Spezialisierungsmodul -->Spezialisierungsfach -->Verkehr</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>11. Empfohlene Voraussetzungen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Grundkenntnisse der Verkehrsplanung und der Verkehrstechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>12. Lernziele:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>13. Inhalt:</th>
</tr>
</thead>
<tbody>
<tr>
<td>In der Vorlesung und in den zugehörigen Übungen werden theoretisch und an Beispielen folgende Themen behandelt:</td>
</tr>
<tr>
<td>• Zählungen (manuell, automatisch)</td>
</tr>
<tr>
<td>• Stromerhebungen (manuell, automatisch)</td>
</tr>
<tr>
<td>• Befragungen (mündlich, schriftlich, telefonisch)</td>
</tr>
<tr>
<td>• Spezielle Erhebungen im Ruhenden Verkehr (manuell, automatisch)</td>
</tr>
<tr>
<td>• Spezielle Erhebungen im Güterverkehr</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>14. Literatur:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>15. Lehrveranstaltungen und -formen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>341001 Vorlesung mit Praktikum Verkehrserhebungen</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16. Abschätzung Arbeitsaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzzeit: 25 h</td>
</tr>
</tbody>
</table>

Stand: 09. April 2015
Auswertung von im Rahmen der Übungen durchgeführten Verkehrserhebungen: 20 h
Selbststudium: 45 h

| 17. Prüfungsnummer/n und -name: | 34101 Verkehrserhebungen (BSL), schriftlich, eventuell mündlich, Gewichtung: 1.0 |

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
Modul: 15700 Verkehrsflussmodelle

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>02130005</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Markus Friedrich</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Wolfram Ressel
• Markus Friedrich |

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>B.Sc. Technische Kybernetik, PO 2011</th>
<th>Vorgezogene Master-Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2011, . Semester</td>
<td>Incoming -->Spezialisierungsfach -->Verkehr</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2011, . Semester</td>
<td>Outgoing -->Spezialisierungsfach -->Verkehr</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2014, . Semester</td>
<td>Incoming -->Spezialisierungsfach -->Verkehr</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2014, . Semester</td>
<td>Outgoing -->Spezialisierungsfach -->Verkehr</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2014, . Semester</td>
<td>Wahlpflichtmodule -->Spezialisierungsfach -->Verkehr</td>
</tr>
<tr>
<td>M.Sc. Technische Kybernetik, PO 2011, . Semester</td>
<td>Spezialisierungsmodule -->Spezialisierungsfach -->Verkehr</td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen: Grundkenntnisse der Verkehrsplanung und der Verkehrstechnik

12. Lernziele: Studierende/r kennt die wesentlichen Eigenschaften makroskopischer und mikroskopischer Verkehrsflussmodelle und kann die Modelle für den Einsatz in der Praxis einsetzen. Er/Sie kann mit Simulationsoftware typische Verkehrsanlagen (freie Strecke, Knotenpunkte) simulieren und verkehrsabhängige Steuerungen integrieren.

13. Inhalt: In der Vorlesung und den zugehörigen Übungen werden folgende Themen behandelt:

- Zustandsgleichung, Kontinuitätsgleichung und Bewegungsgleichung des Verkehrs
- makroskopische Verkehrsflussmodelle (LW-Modell, Modelle 2. Ordnung)
- mikroskopische Verkehrsflussmodelle (Zellulärer Automat, psychophysisches Fahrzeugfolgmodell)
- Dynamische Umlegung
- Computerübungen zu Verkehrsfluss auf der freien Strecke, Knotenpunkt mit LSA-Festzeitsteuerung, Vorfahrtsgeregelter Knotenpunkt, Knotenpunkt mit Verkehrsabhängiger Steuerung, Grüne Welle

14. Literatur: Friedrich, M., Ressel, W.: Skript Verkehrsflussmodelle
- Leutzbach, W.: Einführung in die Theorie des Verkehrsflusses, 1972

15. Lehrveranstaltungen und -formen: 157001 Vorlesung mit Übung Verkehrsflussmodelle

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 25 h
Selbststudium: 65 h
Gesamt: 90 h

17. Prüfungsnummer/n und -name: 15701 Verkehrsflussmodelle (BSL), mündliche Prüfung, 30 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:

20. Angeboten von: Institut für Straßen- und Verkehrswesen
Modul: 15660 Verkehrsplanung und Verkehrsmodelle

2. Modulkürzel: 021320002
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0
5. Modul dauer: 1 Semester
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Markus Friedrich
9. Dozenten: Markus Friedrich

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technische Kybernetik, PO 2011
 ➔ Vorgezogene Master-Module
 DoubleM.D. Technische Kybernetik, PO 2011, . Semester
 ➔ Incoming --Spezialisierungsfach --Verkehr
 ➔
 DoubleM.D. Technische Kybernetik, PO 2011, . Semester
 ➔ Outgoing --Spezialisierungsfach --Verkehr
 ➔
 DoubleM.D. Technische Kybernetik, PO 2014, . Semester
 ➔ Incoming --Spezialisierungsfach --Verkehr
 ➔
 DoubleM.D. Technische Kybernetik, PO 2014, . Semester
 ➔ Outgoing --Spezialisierungsfach --Verkehr
 ➔
 DoubleM.D. Technische Kybernetik, PO 2014, . Semester
 ➔ Wahlpflichtmodule --Spezialisierungsfach --Verkehr
 ➔
 M.Sc. Technische Kybernetik, PO 2011, . Semester
 ➔ Spezialisierungs module --Spezialisierungsfach --Verkehr
 ➔

11. Empfohlene Voraussetzungen:
 Grundlagen der Verkehrsplanung (Planungsprozess, Kenngrößen von Angebot und Nachfrage, Netzplanung Straße und ÖV) und der Verkehrsmodellierung (4-Stufenmodell)

12. Lernziele:
 Die Studierenden kennen die wesentlichen Methoden der strategischen Angebotsplanung. Sie verstehen die Modelle zur Analyse und Prognose der Wirkungen des heute vorhandenen und des geplanten Verkehrsangebotes. Sie können Modelle kalibrieren und mit Verkehrsplanungsprogrammen umgehen.

13. Inhalt:
 In der Vorlesung und den zugehörigen Übungen werden folgende Themen behandelt:
 • Zukunft des Verkehrs: Ziele und Lösungsansätze
 • Verkehrserhebungen (Zählungen, Befragungen, Stated Preference)
 • Typisierung von Verkehrsmustern
 • Netzmodelle
 • Entscheidungsmodelle
 • Nachfragemodelle
 • Umlegungsmodelle IV und ÖV
 • Integrierte Angebotsplanung (Kategorisierung und Bewertung von Netzen; Verknüpfungspunkte, Bundesverkehrswegeplanung)
 • Angebotsplanung Straßenverkehr (Netzgestaltung, Verkehrssicherheit, Road Pricing, Wirtschaftlichkeitsuntersuchungen nach EWS)
• Angebotsplanung Öffentlicher Verkehr (Netzgestaltung, Fahrplanung, Umlaufplanung, Dienstplanung, Bedarfsgesteuerte Bussysteme, Linienleistungs- und erlösrechnung)
• Güterverkehrsplanung (Eigenschaften des Güterverkehrs, Konzepte und Modelle)

In der Projektstudie wird eine Planungsaufgabe mit Hilfe des Verkehrsplanungsprogramms VISUM bearbeitet. Die Aufgabe umfasst die Schritte Nachfrageermittlung, Mängelanalyse, Maßnahmenentwicklung- und -bewertung für Straße und ÖV.

14. Literatur:

15. Lehrveranstaltungen und -formen:
• 156601 Vorlesung Verkehrsplanung & -modellierung
• 156602 Übung Verkehrsplanung & -modellierung
• 156603 Projektstudie Verkehrsplanung, Übung und Projekt

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 45 h
Projektstudie: 40 h
Selbststudium: 95 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
• 15661 Verkehrsplanung und Verkehrsmodelle (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0, Prüfungsvoraussetzung: Abgabe und Vortrag Projektstudie
• V Vorleistung (USL-V), schriftlich, eventuell mündlich

18. Grundlage für ...:
15680 Rechnergestützte Angebotsplanung

19. Medienform:

20. Angeboten von:
Verkehrsplanung und Verkehrstechnik
Modul: 15750 Verkehrssicherung

2. Modulkürzel: 020400751 5. Modulduauer: 1 Semester
4. SWS: 4.4 7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Ullrich Martin
9. Dozenten: • Ullrich Martin • Jiajian Liang

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technische Kybernetik, PO 2011
→ Vorgezogene Master-Module
DoubleM.D. Technische Kybernetik, PO 2011, . Semester
→ Incoming -->Spezialisierungsfach -->Verkehr
→
DoubleM.D. Technische Kybernetik, PO 2011, . Semester
→ Outgoing -->Spezialisierungsfach -->Verkehr
→
DoubleM.D. Technische Kybernetik, PO 2014, . Semester
→ Incoming -->Spezialisierungsfach -->Verkehr
→
DoubleM.D. Technische Kybernetik, PO 2014, . Semester
→ Outgoing -->Spezialisierungsfach -->Verkehr
→
DoubleM.D. Technische Kybernetik, PO 2014, . Semester
→ Wahlpflichtmodule -->Spezialisierungsfach -->Verkehr
→
M.Sc. Technische Kybernetik, PO 2011, . Semester
→ Spezialisierungsmodul -->Spezialisierungsfach -->Verkehr
→

11. Empfohlene Voraussetzungen: Grundlagen der Elektrotechnik

12. Lernziele: Die Hörer der Lehrveranstaltung "Verkehrssicherung I" (Theorie der Sicherheit) können:

• die Grundlagen der Verkehrssicherheit erläutern,
• im Gesamtkontext der Verkehrssicherheit die Sachverhalte Zuverlässigkeit und Systemsicherheit selbstständig einordnen und erklären sowie
• Sicherheitsmethoden beschreiben und selbst erstellen.

Mit der Teilnahme an der Lehrveranstaltung "Verkehrssicherung II" (Sicherungssysteme im spurgeführten Verkehr) kann der Hörer:

• die Funktionsweise von technischen Komponenten einschließlich Bahnübergängen in ihrem Zusammenwirken eigenständig erklären,
• die Regelung der Zugfolge und die Fahrwegsicherung beschreiben sowie
• die Sicherung und die Beeinflussung von Zügen im Zusammenhang mit der Fahrwegsicherung erläutern.

13. Inhalt: In der Veranstaltung "Verkehrssicherung I" wird die Theorie der Sicherheit am Beispiel des Verkehrsträgers Eisenbahn veranschaulicht. Dies wird auf folgende Themengebiete begrenzt:
• Verkehrssicherheit (Begriffe, psychologische, rechtliche und technische Grundlagen),
• Zuverlässigkeit und Systemsicherheit,
• Sicherungsmethoden, Sicherheitsmaßnahmen gegen Fehler, Ausfälle, Gefahren, Schäden) sowie
• Wirtschaftliche Sicherheitsbewertung.

In der Veranstaltung "Verkehrssicherung II" wird die technische Umsetzung eines sicheren Eisenbahnbetriebes veranschaulicht. Dies umfasst folgende Themengebiete:

• technische Systemelemente,
• Regelung der Zugfolge,
• Fahrwagensicherung,
• Zugbeeinflussung und Sicherung,
• Bahnanlagen sowie
• Betriebsleittechnik.

14. Literatur:
• Skript zu den Lehrveranstaltungen Verkehrssicherung I (Theorie der Sicherheit) und Verkehrssicherung II (Sicherungssysteme im spurgeführten Verkehr)
• Pachl, J.: Systemtechnik des Schienenverkehrs, Teubner Verlag Stuttgart, neueste Auflage

15. Lehrveranstaltungen und -formen:
• 157501 Vorlesung Verkehrssicherung I (Theorie der Sicherheit)
• 157502 Hausübung Verkehrssicherung I (Theorie der Sicherheit)
• 157503 Vorlesung Verkehrssicherung II (Sicherungssysteme im spurgeführten Verkehr)
• 157504 Laborübung Verkehrssicherung II (Sicherungssysteme im spurgeführten Verkehr)
• 157505 Exkursion Verkehrssicherung II (Sicherungssysteme im spurgeführten Verkehr)

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 50 h
Selbststudium: 130 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
15751 Verkehrssicherung (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:
Entwicklung der Grundlagen als Präsentation sowie Tafelanschrieb zur Vorlesung und Übung, Web-basierte Unterlagen zum vertiefenden Selbststudium

20. Angeboten von:
Institut für Eisenbahn- und Verkehrswesen
Modul: 15670 Verkehrstechnik und Verkehrsleittechnik

2. Modulkürzel: 021320003
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0
5. Modulverantwortlicher: Univ.-Prof. Markus Friedrich
6. Turnus: jedes 2. Semester, SoSe
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Markus Friedrich
9. Dozenten:
 • Markus Friedrich
 • Manfred Wacker
10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technische Kybernetik, PO 2011
 ➔ Vorgezogene Master-Module
 DoubleM.D. Technische Kybernetik, PO 2011, . Semester
 ➔ Incoming -->Spezialisierungsfach -->Verkehr
 ➔ DoubleM.D. Technische Kybernetik, PO 2011, . Semester
 ➔ Outgoing -->Spezialisierungsfach -->Verkehr
 ➔ DoubleM.D. Technische Kybernetik, PO 2014, . Semester
 ➔ Incoming -->Spezialisierungsfach -->Verkehr
 ➔ DoubleM.D. Technische Kybernetik, PO 2014, . Semester
 ➔ Outgoing -->Spezialisierungsfach -->Verkehr
 ➔ DoubleM.D. Technische Kybernetik, PO 2014, . Semester
 ➔ Wahlpflichtmodule -->Spezialisierungsfach -->Verkehr
 ➔ M.Sc. Technische Kybernetik, PO 2011, . Semester
 ➔ Spezialisierungsmodul -->Spezialisierungsfach -->Verkehr

11. Empfohlene Voraussetzungen:
 Grundlagen der Verkehrsplanung und Verkehrstechnik

12. Lernziele:

13. Inhalt:
 In der Vorlesung und den zugehörigen Übungen werden folgende Themen behandelt:
 • Einführung Verkehrstechnik & Verkehrsleittechnik
 • Lichtsignalanlagen (Theorie der Bemessung, Wartezeiten, Grüne Welle, Versatzzeitoptimierung, Verkehrsabhängige Steuerung)
 • Verkehrsdatenerfassung
 • Datenaufbereitung & Datenvervollständigung
 • Prognose des Verkehrsablaufs
 • Verkehrsbeeinflussungssysteme für Autobahnen
• Parkleitsysteme
• Rechnergestützte Betriebsleitsysteme im ÖV
• Verkehrsmanagement innerorts und außerorts
• Exkursion Kommunale Verkehrssteuerung im IV
• Exkursion Betriebsleitzentrale ÖV

In der Projektstudie wird eine Lichtsignalsteuerung mit Hilfe des Programms LISA+ erstellt. Projektstudie umfasst:
• Einführung Projektstudie / Ortsbesichtigung
• Einführung in das Programm LISA+
• Beispiel Grüne Welle
• Beispiel ÖV Priorisierung
• Bearbeitung einer Planungsaufgabe (verkehrsabhängige Koordinierung eines Straßenzugs)

14. Literatur:
• Friedrich, M., Ressel, W.: Skript Verkehrstechnik und Verkehrsleittechnik
• Forschungsgesellschaft für Straßen- und Verkehrswesen: Richtlinien für Lichtsignalanlagen (RiLSA), Köln, 1992.
• Schnabel, W.: Grundlagen der Straßenverkehrssteuerung und Verkehrsplanung, Band 1 Straßenverkehrssteuerung, Verlag für Bauwesen, Berlin, 1997

15. Lehrveranstaltungen und -formen:
• 156701 Vorlesung Verkehrstechnik & -leittechnik
• 156702 Projektstudie Verkehrstechnik, Übung und Projekt

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 55 h
Selbststudiumszeit / Nacharbeitszeit: 125 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:
• 15671 Verkehrstechnik und Verkehrsleitungstechnik (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0.
• V Vorleistung (USL-V), schriftlich, eventuell mündlich

18. Grundlage für ...:

19. Medienform:

20. Angeboten von:
Verkehrsplanung und Verkehrsleitungstechnik
2112 Wirtschaftskybernetik

Zugeordnete Module:
15230 Spezielle Anwendungen der Wirtschaftskybernetik / Wirtschaftskybernetik III
16750 Business Dynamics
2117 Spez.Fach. anerkannt 6LP
2118 Spez.Fach. anerkannt 6LP
2119 Spez.Fach. anerkannt 6LP
31420 Wahlmodule Wirtschaftskybernetik
31430 Seminar "Wirtschaftskybernetik"
31440 Methoden der Wirtschaftskybernetik
56130 Konzepte und Methoden in der Wirtschaftskybernetik
2117 Spez.Fach. anerkannt 6LP
2118 Spez.Fach. anerkannt 6LP
2119 Spez.Fach. anerkannt 6LP
Modul: 16750 Business Dynamics

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>075200001</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Nach Ankuendigung</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Meike Tilebein</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Meike Tilebein</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- B.Sc. Technische Kybernetik, PO 2008, 5. Semester
 → Kernmodule -->Modellierung I

- B.Sc. Technische Kybernetik, PO 2011, 5. Semester
 → Kernmodule -->Modellierung I

- B.Sc. Technische Kybernetik, PO 2011, 5. Semester
 → Vorgezogene Master-Module

- DoubleM.D. Technische Kybernetik, PO 2011, 1. Semester
 → Chalmers -->Outgoing -->Modellierung II

- DoubleM.D. Technische Kybernetik, PO 2011, 1. Semester
 → Incoming -->Spezialisierungsfach -->Wirtschaftskybernetik

- DoubleM.D. Technische Kybernetik, PO 2011, 1. Semester
 → Outgoing -->Spezialisierungsfach -->Wirtschaftskybernetik

- DoubleM.D. Technische Kybernetik, PO 2014, 1. Semester
 → Incoming -->Spezialisierungsfach -->Wirtschaftskybernetik

- DoubleM.D. Technische Kybernetik, PO 2014, 1. Semester
 → Outgoing -->Spezialisierungsfach -->Wirtschaftskybernetik

- DoubleM.D. Technische Kybernetik, PO 2014, 1. Semester
 → Outgoing -->Wahlpflichtmodule -->Modellierung II

- DoubleM.D. Technische Kybernetik, PO 2014, 1. Semester
 → Wahlpflichtmodule -->Spezialisierungsfach -->Wirtschaftskybernetik

- M.Sc. Technische Kybernetik, PO 2011, 1. Semester
 → Spezialisierungsmodul -->Spezialisierungsfach -->Wirtschaftskybernetik

- M.Sc. Technische Kybernetik, PO 2011, 1. Semester
 → Vertiefungsmodul -->Modellierung II

11. Empfohlene Voraussetzungen:

Pflichtmodule Mathematik, Pflichtmodul Systemdynamik

12. Lernziele:

- Die Studierenden sind in der Lage, komplexe Problemstellungen in sozio-technischen Systemen in Kausaldiagrammen zu modellieren.
- Sie können Kausaldiagramme analysieren und interpretieren.
- Sie kennen grundlegende Arten von Systemverhalten und die zugehörigen Systemstrukturen.
13. Inhalt:

- können System-Dynamics-Simulationsmodelle erstellen
- können System-Dynamics-Simulationsmodelle zur Entscheidungsunterstützung in komplexen Problemstellungen anwenden

14. Literatur:

- Vorlesungsunterlagen verfügbar über die Lernplattform ILIAS

15. Lehrveranstaltungen und -formen:

- 167501 Vorlesung Business Dynamics
- 167502 Übung Business Dynamics

16. Abschätzung Arbeitsaufwand:

Arbeitsbelastung von 7 Stunden pro Woche während der Vorlesungszeit (Präsenzzeit und Vor-/Nachbereitungzeit) (insgesamt 14 Wochen), zusätzlich 82 Stunden für die Prüfungsvorbereitung, Summe 180 Stunden

17. Prüfungsnummer/n und -name:

16751 Business Dynamics (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:

Institut für Diversity Studies in den Ingenieurwissenschaften
Modul: 56130 Konzepte und Methoden in der Wirtschaftskybernetik

2. Modulkürzel: 075200107 5. Modulduauer: 1 Semester
4. SWS: 2.0 7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Meike Tilebein
9. Dozenten: • Meike Tilebein • Sven-Volker Rehm

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technische Kybernetik, PO 2011
 → Vorgezogene Master-Module
 DoubleM.D. Technische Kybernetik, PO 2011, . Semester
 → Chalmers -->Incoming -->Wahlfach Technische Kybernetik
 DoubleM.D. Technische Kybernetik, PO 2011, . Semester
 → Chalmers -->Outgoing -->Wahlfach Technische Kybernetik
 DoubleM.D. Technische Kybernetik, PO 2011, . Semester
 → Incoming -->Spezialisierungsfach -->Wirtschaftskybernetik
 DoubleM.D. Technische Kybernetik, PO 2011, . Semester
 → Outgoing -->Spezialisierungsfach -->Wirtschaftskybernetik
 DoubleM.D. Technische Kybernetik, PO 2014, . Semester
 → Incoming -->Spezialisierungsfach -->Wirtschaftskybernetik
 DoubleM.D. Technische Kybernetik, PO 2014, . Semester
 → Outgoing -->Spezialisierungsfach -->Wirtschaftskybernetik
 DoubleM.D. Technische Kybernetik, PO 2014, . Semester
 → Wahlpflichtmodule -->Spezialisierungsfach -->Wirtschaftskybernetik
 M.Sc. Technische Kybernetik, PO 2011, . Semester
 → Spezialisierungsmodule -->Spezialisierungsfach -->Wirtschaftskybernetik
 M.Sc. Technische Kybernetik, PO 2011, . Semester
 → Spezialisierungsmodule -->Wahlfach Technische Kybernetik

11. Empfohlene Voraussetzungen: Keine
14. Literatur: Die zugehörigen Lernmaterialien werden in den einzelnen Veranstaltungen bekannt gegeben

15. Lehrveranstaltungen und -formen: 561301 Vorlesung Konzepte und Methoden in der Wirtschaftskybernetik

16. Abschätzung Arbeitsaufwand: Arbeitsbelastung 90 Stunden:
 • Präsenzzeit 21h
 • Nacharbeit und Selbststudium 69 h

17. Prüfungsnummer/n und -name: 56131 Konzepte und Methoden in der Wirtschaftskybernetik (BSL), schriftlich, eventuell mündlich, Gewichtung: 1.0, Mehrere Lehrveranstaltungsbegleitende Prüfungsleistungen

18. Grundlage für ... :

20. Angeboten von:
Modul: 31440 Methoden der Wirtschaftskybernetik

| 4. SWS: | 4.0 | 7. Sprache: | Deutsch |

8. Modulverantwortlicher: Univ.-Prof. Meike Tilebein

9. Dozenten:
- Meike Tilebein
- Sven-Volker Rehm

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technische Kybernetik, PO 2011
 → Vorgezogene Master-Module
 DoubleM.D. Technische Kybernetik, PO 2011
 → Chalmers -->Incoming -->Wahlfach Technische Kybernetik
 →
 DoubleM.D. Technische Kybernetik, PO 2011
 → Chalmers -->Outgoing -->Wahlfach Technische Kybernetik
 →
 DoubleM.D. Technische Kybernetik, PO 2011
 → Incoming -->Spezialisierungsfach -->Wirtschaftskybernetik
 →
 DoubleM.D. Technische Kybernetik, PO 2011
 → Outgoing -->Spezialisierungsfach -->Wirtschaftskybernetik
 →
 DoubleM.D. Technische Kybernetik, PO 2014
 → Chalmers -->Incoming -->Wahlfach Technische Kybernetik
 →
 DoubleM.D. Technische Kybernetik, PO 2014
 → Incoming -->Spezialisierungsfach -->Wirtschaftskybernetik
 →
 DoubleM.D. Technische Kybernetik, PO 2014
 → Outgoing -->Spezialisierungsfach -->Wirtschaftskybernetik
 →
 DoubleM.D. Technische Kybernetik, PO 2014
 → Wahlpflichtmodule -->Spezialisierungsfach -->Wirtschaftskybernetik
 →
 M.Sc. Technische Kybernetik, PO 2011
 → Spezialisierungsmodul -->Spezialisierungsfach -->Wirtschaftskybernetik
 →
 M.Sc. Technische Kybernetik, PO 2011
 → Spezialisierungsmodul -->Wahlfach Technische Kybernetik
 →

11. Empfohlene Voraussetzungen: keine

12. Lernziele:
Die Studierenden besitzen vertiefte Kenntnisse über Forschungs- und Modellierungsmethoden für wirtschaftswissenschaftliche Systeme und Prozesse

13. Inhalt:

 Alternative 1:

 Modellierung und Optimierung wissensintensiver Geschäftsprozesse (nächste Vorlesung im SoSe 2015) sowie Konzepte und Methoden in der Wirtschaftskybernetik (nur SoSe)
Konzepte und Methoden zur Bearbeitung für interdisziplinarer Fragestellungen an der Schnittstelle zwischen Ingenieur- und Wirtschaftswissenschaften

- Unternehmensnetzwerke als komplexe adaptive Systeme
- Multi-Level-Systeme und Koordination
- Kybernetische Managementkonzepte
- Modellierung, Analyse und Optimierung von wissensintensiven Geschäftsprozessen
- Anwendung industrierelevanter Tools (z.B. ARIS)

Alternative 2:

Business Dynamics (nur WiSe)

- Charakteristika von betriebswirtschaftlichen Systemen
- Einführung in die Modellierung mit System Dynamics
- Kausaldiagramme und Systemarchetypen
- Nonlinear Behaviour, Path Dependence, Bounded Rationality, Network Effects, Innovation Diffusion, Supply Chains
- Planspiel „Beer Game“ Simulation mit Hilfe von Vensim + Matlab

Alternative 2 kann nur einmal im Studium der Technischen Kybernetik (BSc., MSc.) gewählt werden. Weitere Details zu Inhalten und Lernzielen siehe Modul 16750.

14. Literatur: Die zugehörigen Lernmaterialien werden in den einzelnen Veranstaltungen bekannt gegeben

15. Lehrveranstaltungen und -formen: • 314401 Vorlesung Modellierung und Optimierung wissensintensiver Geschäftsprozesse
• 314403 Vorlesung Business Dynamics
• 314404 Übung Business Dynamics
• 314405 Vorlesung Konzepte und Methoden in der Wirtschaftszybernetik

16. Abschätzung Arbeitsaufwand: Arbeitsbelastung 180 Stunden:

- Präsenzzeit 42 h
- Nacharbeit und Selbststudium 138 h

17. Prüfungsnummer/n und -name: 31441 Methoden der Wirtschaftszybernetik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Diversity Studies in den Ingenieurwissenschaften
Modul: 31430 Seminar "Wirtschaftskybernetik"

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>075200106</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>1.0</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Meike Tilebein</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Meike Tilebein</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:
- B.Sc. Technische Kybernetik, PO 2011
 - Vorgezogene Master-Module
- DoubleM.D. Technische Kybernetik, PO 2011
 - Incoming -->Spezialisierungsfach -->Wirtschaftskybernetik
 - Outgoing -->Spezialisierungsfach -->Wirtschaftskybernetik
- DoubleM.D. Technische Kybernetik, PO 2014
 - Incoming -->Spezialisierungsfach -->Wirtschaftskybernetik
 - Outgoing -->Spezialisierungsfach -->Wirtschaftskybernetik
 - Wahlpflichtmodule -->Spezialisierungsfach -->Wirtschaftskybernetik
- M.Sc. Technische Kybernetik, PO 2011
 - Spezialisierungsmodule -->Spezialisierungsfach -->Wirtschaftskybernetik

11. Empfohlene Voraussetzungen:
- mindestens eine absolvierte Modulprüfung im Spezialisierungsfach "Wirtschaftskybernetik"

12. Lernziele:
- Die Studierenden können eine weiterführende Problemstellung aus dem Bereich des Spezialisierungsfachs weitgehend selbständig bearbeiten und Lösungsvorschläge erarbeiten.
- Die Studierenden können die Ergebnisse in einer wissenschaftlichen Seminararbeit zusammenfassen und
- können ihre Arbeit in einem Vortrag präsentieren und verteidigen

13. Inhalt:
- Je Semester wechselnde Generalthemen aus dem Bereich des Spezialisierungsfachs, dazu
 - Blockveranstaltung zur Einführung in das Generalthema
 - Selbständige Einarbeitung der Studierenden in ihre Problemstellungen
 - Selbständige Bearbeitung der Problemstellung mit regelmäßigem Feedback durch Seminarbetreuung
 - Anfertigung einer schriftlichen Arbeit
 - Präsentation der Ergebnisse

14. Literatur:
- Grundlagenliteratur zum jeweiligen Seminarthema wird angegeben,
eigene Literaturrecherche der Studierenden ist Teil der Aufgabenstellung

15. Lehrveranstaltungen und -formen:
- 31430 Seminar Wirtschaftskybernetik
16. Abschätzung Arbeitsaufwand: Arbeitsbelastung 90 Stunden:
 • 5 Stunden pro Woche über 14 Wochen (Einführungsveranstaltung und Erstellen der schriftlichen Arbeit),
 • zusätzlich 20 Stunden für Vorbereitung und Durchführung des Vortrags.

17. Prüfungsnummer/n und -name: 31431 Seminar "Wirtschafts-kybernetik" (BSL), Sonstiges, Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Institut für Diversity Studies in den Ingenieurwissenschaften
Modul: 15230 Spezielle Anwendungen der Wirtschaftskybernetik / Wirtschaftskybernetik III

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>075200102</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Modulduauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Meike Tilebein</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Meike Tilebein</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- B.Sc. Technische Kybernetik, PO 2011
 - Vorgezogene Master-Module
- DoubleM.D. Technische Kybernetik, PO 2011
 - Chalmers --> Incoming --> Wahlfach Technische Kybernetik
 - DoubleM.D. Technische Kybernetik, PO 2011
 - Chalmers --> Outgoing --> Wahlfach Technische Kybernetik
- DoubleM.D. Technische Kybernetik, PO 2011
 - Incoming --> Spezialisierungsfach --> Wirtschaftskybernetik
 - DoubleM.D. Technische Kybernetik, PO 2011
 - Outgoing --> Spezialisierungsfach --> Wirtschaftskybernetik
- DoubleM.D. Technische Kybernetik, PO 2014
 - Chalmers --> Incoming --> Wahlfach Technische Kybernetik
 - DoubleM.D. Technische Kybernetik, PO 2014
 - Incoming --> Spezialisierungsfach --> Wirtschaftskybernetik
 - DoubleM.D. Technische Kybernetik, PO 2014
 - Outgoing --> Spezialisierungsfach --> Wirtschaftskybernetik
 - DoubleM.D. Technische Kybernetik, PO 2014
 - Wahlpflichtmodule --> Spezialisierungsfach --> Wirtschaftskybernetik
- M.Sc. Technische Kybernetik, PO 2011
 - Spezialisierungsmodul --> Spezialisierungsfach --> Wirtschaftskybernetik
 - M.Sc. Technische Kybernetik, PO 2011
 - Spezialisierungsmodul --> Wahlfach Technische Kybernetik

11. Empfohlene Voraussetzungen:

Basikenntnisse der Betriebswirtschaftslehre

12. Lernziele:

Die Studierenden

- kennen Anwendungsfelder der ingenieurwissenschaftlichen Systemperspektive in Wertschöpfungs- und Managementprozessen
- besitzen vertiefte Kenntnisse über Konzepte, Methoden und Werkzeuge der systemorientierten Gestaltung von Prozessen und Strukturen in speziellen Problembereichen der Wertschöpfung und des Managements
• können diese Konzepte, Methoden und Werkzeuge problemdüquat anwenden

13. Inhalt:
• Modelltypen und Modellierungsmethoden fürwirtschaftswissenschaftliche Systeme und Prozesse
• Betrachtung betriebswirtschaftlicher Fragestellungen aus kybernetischer Perspektive
• Ausgewählte Theorieperspektiven zu Fragestellungen von Wertschöpfungs- und Managementsystemen
• Konzepte, Methoden und Werkzeuge für spezielle Fragestellungen der Wertschöpfung und des Managements

14. Literatur: Lernmaterialien werden in der Veranstaltung bekannt gegeben

15. Lehrveranstaltungen und -formen: 152301 Vorlesung Wirtschaftskybernetik III

16. Abschätzung Arbeitsaufwand:
Arbeitsbelastung 180 Stunden:
• Präsenzzeit 42 h
• Nacharbeit und Selbststudium 138 h

17. Prüfungsnummer/n und -name: 15231 Spezielle Anwendungen der Wirtschaftskybernetik / Wirtschaftskybernetik III (PL), mündliche Prüfung, 40 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:

20. Angeboten von: Institut für Diversity Studies in den Ingenieurwissenschaften
Modul: 31420 Wahlmodule Wirtschaftskybernetik

3. Leistungspunkte: 3.0 LP 6. Turnus: jedes Semester
4. SWS: 1.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Meike Tilebein
9. Dozenten: Meike Tilebein

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>PO 2011</th>
<th>PO 2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.Sc. Technische Kybernetik</td>
<td>M.Sc. Technische Kybernetik</td>
</tr>
<tr>
<td>Vorgezogene Master-Module</td>
<td>Spezialisierungsmodul</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2011</td>
<td>Wahlpflichtmodul</td>
</tr>
<tr>
<td>Incoming -->Spezialisierungsfach -->Wirtschaftskybernetik</td>
<td>-->Spezialisierungsfach --Wirtschaftskybernetik</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2014</td>
<td>Spezialisierungsmodul</td>
</tr>
<tr>
<td>Incoming -->Spezialisierungsfach -->Wirtschaftskybernetik</td>
<td>-->Spezialisierungsfach</td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen: Keine

12. Lernziele:

- kennen aktuelle wissenschaftliche Problemstellungen und Lösungswege im Spezialisierungsfach
- können verschiedene Stadien im Prozess des wissenschaftlichen Arbeitens unterscheiden
- können wissenschaftliche Fachvorträge aus dem Spezialisierungsfach rezipieren und diskutieren

13. Inhalt:

Wechselnde Inhalte aus dem Bereich der Forschung im Spezialisierungsfach

14. Literatur:

Ggf. Vortragsunterlagen

15. Lehrveranstaltungen und -formen:

314201 Forschungskolloquium Wirtschaftskybernetik

16. Abschätzung Arbeitsaufwand:

Arbeitsbelastung 90 Stunden:

- Präsenzzeit 21 h über 2 Semester verteilt
- Nacharbeitszeit/Selbststudiumszeit 69 h

17. Prüfungsnummer/n und -name:

31421 Forschungskolloquium Wirtschaftskybernetik (USL), Sonstiges, Gewichtung: 1.0
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ...</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Institut für Diversity Studies in den Ingenieurwissenschaften</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Institut für Diversity Studies in den Ingenieurwissenschaften</td>
</tr>
</tbody>
</table>
2113 Systemdynamik/Automatisierungstechnik

<table>
<thead>
<tr>
<th>Zugeordnete Module</th>
<th>2117 Spez.Fach. anerkannt 6LP</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2118 Spez.Fach. anerkannt 6LP</td>
</tr>
<tr>
<td></td>
<td>2119 Spez.Fach. anerkannt 6LP</td>
</tr>
<tr>
<td></td>
<td>33100 Modellierung und Identifikation dynamischer Systeme</td>
</tr>
<tr>
<td></td>
<td>33190 Numerische Methoden der Optimierung und Optimalen Steuerung</td>
</tr>
<tr>
<td></td>
<td>33820 Flache Systeme</td>
</tr>
<tr>
<td></td>
<td>33830 Dynamik ereignisdiskreter Systeme</td>
</tr>
<tr>
<td></td>
<td>33840 Dynamische Filterverfahren</td>
</tr>
<tr>
<td></td>
<td>33850 Automatisierungstechnik</td>
</tr>
<tr>
<td></td>
<td>33860 Objektorientierte Modellierung und Simulation</td>
</tr>
<tr>
<td></td>
<td>33880 Praktikum Systemdynamik</td>
</tr>
<tr>
<td></td>
<td>37000 Prozessführung und Production IT in der Verfahrenstechnik</td>
</tr>
<tr>
<td></td>
<td>46770 Einführung in die Funktionale Sicherheit</td>
</tr>
</tbody>
</table>
2117 Spez.Fach. anerkannt 6LP
2118 Spez.Fach. anerkannt 6LP
2119 Spez.Fach. anerkannt 6LP
Modul: 33850 Automatisierungstechnik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>074711005</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>5. Moduldaauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Cristina Tarin Sauer</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Cristina Tarin Sauer</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- B.Sc. Technische Kybernetik, PO 2011
 - Vorgezogene Master-Module
 - DoubleM.D. Technische Kybernetik, PO 2011
 - Chalmers -->Incoming -->Wahlfach Technische Kybernetik
 - DoubleM.D. Technische Kybernetik, PO 2011
 - Chalmers -->Outgoing -->Wahlfach Technische Kybernetik
 - DoubleM.D. Technische Kybernetik, PO 2011
 - Incoming -->Spezialisierungsfach -->Systemdynamik/Automatisierungstechnik
 - DoubleM.D. Technische Kybernetik, PO 2011
 - Outgoing -->Spezialisierungsfach -->Systemdynamik/Automatisierungstechnik
 - DoubleM.D. Technische Kybernetik, PO 2014
 - Chalmers -->Incoming -->Wahlfach Technische Kybernetik
 - DoubleM.D. Technische Kybernetik, PO 2014
 - Incoming -->Spezialisierungsfach -->Systemdynamik/Automatisierungstechnik
 - DoubleM.D. Technische Kybernetik, PO 2014
 - Outgoing -->Spezialisierungsfach -->Systemdynamik/Automatisierungstechnik
 - DoubleM.D. Technische Kybernetik, PO 2014
 - Wahlpflichtmodule -->Spezialisierungsfach -->Systemdynamik/Automatisierungstechnik
 - M.Sc. Technische Kybernetik, PO 2011
 - Spezialisierungsmodul -->Spezialisierungsfach -->Systemdynamik/Automatisierungstechnik
 - M.Sc. Technische Kybernetik, PO 2011
 - Spezialisierungsmodul -->Wahlfach Technische Kybernetik

11. Empfohlene Voraussetzungen:

- Modul Messtechnik I
- Einführung in die Regelungstechnik

12. Lernziele:

Die Studierenden kennen einige wichtige ausgewählte Gebiete der modernen Messtechnik aus den Bereichen der Automatisierungstechnik, sie beherrschen deren Theorie, sie beherrschen deren Methoden, und
sie können diese Methoden auf praktische Probleme anwenden. Der Schwerpunkt liegt auf den der Sensorsignalverarbeitung, wobei spezieller Augenmerk auf die Sensorfusion gelegt wird. Es werden aktuelle Methoden zur Sensorfusion vorgestellt und an praktischen Beispielen werden sie für verschiedene Anwendungen getestet.

13. Inhalt:

Überblick:
• Sensoren: Sinnesorgane der Technik
• Modellierung von Rauschprozessen
 • Rauschmechanismen
 • Sensoren
• Sensorfusion
 • Bayessche Sensorfusion
 • Neuronale Netze
 • Ausgewählte Beispiele

14. Literatur:
• Vorlesungsfolien, Übungsblätter
• "Sensoren für die Prozess- und Fabrikautomation" von Stefan Hesse und Gerhard Schnell, Vieweg&Teubner 2009

15. Lehrveranstaltungen und -formen:
338501 Vorlesung Automatisierungstechnik

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 21 Stunden
Selbststudium: 69 Stunden.
Gesamt: 90 Stunden

17. Prüfungsnummer/n und -name:
33851 Automatisierungstechnik (BSL), schriftlich, eventuell mündlich, 60 Min., Gewichtung: 1.0

18. Grundlage für ... :
33840 Dynamische Filterverfahren

19. Medienform:
• Folien bzw. Vorlesungsumdruck
• Tafelanschrieb
• Übungsblätter
• Rechnerübungen und Rechnerdemos

20. Angeboten von:
Institut für Systemdynamik
Modul: 33830 Dynamik ereignisdiskreter Systeme

2. Modulkürzel: 074711006 5. Moduldaurer: 1 Semester
4. SWS: 4.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Cristina Tarin Sauer
9. Dozenten: Cristina Tarin Sauer

10. Zuordnung zum Curriculum in diesem Studiengang:

 B.Sc. Technische Kybernetik, PO 2008
 ➔ Kernmodule --> Systemanalyse I
 ➔
 B.Sc. Technische Kybernetik, PO 2011
 ➔ Kernmodule --> Systemanalyse I
 ➔
 B.Sc. Technische Kybernetik, PO 2011
 ➔ Vorgezogene Master-Module
 DoubleM.D. Technische Kybernetik, PO 2011
 ➔ Chalmers --> Outgoing --> Systemanalyse II
 ➔
 DoubleM.D. Technische Kybernetik, PO 2011
 ➔ Incoming --> Spezialisierungsfach --> Systemdynamik/Automatisierungstechnik
 ➔
 DoubleM.D. Technische Kybernetik, PO 2011
 ➔ Outgoing --> Spezialisierungsfach --> Systemdynamik/Automatisierungstechnik
 ➔
 DoubleM.D. Technische Kybernetik, PO 2014
 ➔ Chalmers --> Outgoing --> Pflichtmodule
 ➔
 DoubleM.D. Technische Kybernetik, PO 2014
 ➔ Incoming --> Spezialisierungsfach --> Systemdynamik/Automatisierungstechnik
 ➔
 DoubleM.D. Technische Kybernetik, PO 2014
 ➔ Outgoing --> Spezialisierungsfach --> Systemdynamik/Automatisierungstechnik
 ➔
 DoubleM.D. Technische Kybernetik, PO 2014
 ➔ Wahlpflichtmodule --> Spezialisierungsfach --> Systemdynamik/Automatisierungstechnik
 ➔
 M.Sc. Technische Kybernetik, PO 2011
 ➔ Spezialisierungsmodul --> Spezialisierungsfach --> Systemdynamik/Automatisierungstechnik
 ➔
 M.Sc. Technische Kybernetik, PO 2011
 ➔ Vertiefungsmodul --> Systemanalyse II
 ➔

11. Empfohlene Voraussetzungen:
 • Informatik I
 • Systemdynamik

Überblick:

- Einführung in die Modellierung and Analyse ereignisdiskreter Systeme
- Deterministische Automaten
- Nichtdeterministische Automaten
- Petrinetze
- Automatennetze

14. Literatur:
- Vorlesungsumdruck
- Übungsblätter
- Weitere Literatur wird in der Vorlesung bekannt gegeben.

15. Lehrveranstaltungen und -formen: 338301 Vorlesung und Übung Dynamik ereignisdiskreter Systeme

16. Abschätzung Arbeitsaufwand:

- Präsenzzeit: 42 Stunden
- Selbststudium und Nacharbeit: 138 Stunden
- Gesamt: 180 Stunden

17. Prüfungsnummer/n und -name: 33831 Dynamik ereignisdiskreter Systeme (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:
- Vorlesungsfolien
- Tafelanschrieb
- Übungen
- Rechnerübungen und Rechnerdemos

20. Angeboten von: Institut für Systemdynamik
Modul: 33840 Dynamische Filterverfahren

2. Modulkürzel: 07471007 5. Modulduer: 1 Semester
4. SWS: 4.0 7. Sprache: Englisch

8. Modulverantwortlicher: Univ.-Prof. Cristina Tarin Sauer
9. Dozenten: Cristina Tarin Sauer

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technische Kybernetik, PO 2011
→ Vorgezogene Master-Module
M.Sc. Technische Kybernetik, PO 2011
→ Spezialisierungsmodule --> Spezialisierungsfach -->
 Systemdynamik/Automatisierungstechnik
M.Sc. Technische Kybernetik, PO 2011
→ Spezialisierungsmodule --> Wahlfach Technische Kybernetik

11. Empfohlene Voraussetzungen: Modul Einführung in die Elektrotechnik, Elektrische Signalverarbeitung, Echtzeitdatenverarbeitung

12. Lernziele:

13. Inhalt:
• Einführung zur adaptiven Filterung
• Stochastische Prozesse and Modell
• Fourier-Analyse von stationären Zufallssignalen
• Wiener Filter
• Lineare Prädiktion
• Least-Mean-Square adaptive Filterung
• Kalman Filter

14. Literatur:
• Vorlesungsumdruck (Vorlesungsfolien)
• Übungsblätter
• Aus der Bibliothek:
 - Oppenheim and Schafer: Discrete-Time Signal Processing
 - Haykin: Adaptive Filter Theory
• Weitere Literatur wird in der Vorlesung bekannt gegeben

15. Lehrveranstaltungen und -formen: 338401 Vorlesung (inkl. Übungen) Dynamische Filterverfahren

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 Stunden
Selbststudium: 138 Stunden.
Summe: 180 Stunden
4 SWS gegliedert in 2 VL und 2 Ü
<table>
<thead>
<tr>
<th>Nr.</th>
<th>Beschriftung</th>
<th>Detailinformation</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.</td>
<td>Prüfungsnummer/n und -name:</td>
<td>33841 Dynamische Filterverfahren (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0</td>
</tr>
<tr>
<td>18.</td>
<td>Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19.</td>
<td>Medienform:</td>
<td>Beamer-Präsentation, Tafelanschrieb</td>
</tr>
<tr>
<td>20.</td>
<td>Angeboten von:</td>
<td>Institut für Systemdynamik</td>
</tr>
</tbody>
</table>
Modul: 46770 Einführung in die Funktionale Sicherheit

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Modulkürzel:</td>
<td>074710014</td>
<td>5. Moduldauer:</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
<td>7. Sprache:</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Oliver Sawodny</td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Oliver Kust</td>
<td></td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- **B.Sc. Technische Kybernetik, PO 2011**
 - Vorgezogene Master-Module
 - DoubleM.D. Technische Kybernetik, PO 2011
 - Incoming -->Spezialisierungsfach -->Systemdynamik/Automatisierungstechnik
 - DoubleM.D. Technische Kybernetik, PO 2011
 - Outgoing -->Spezialisierungsfach -->Systemdynamik/Automatisierungstechnik
 - DoubleM.D. Technische Kybernetik, PO 2014
 - Incoming -->Spezialisierungsfach -->Systemdynamik/Automatisierungstechnik
 - DoubleM.D. Technische Kybernetik, PO 2014
 - Outgoing -->Spezialisierungsfach -->Systemdynamik/Automatisierungstechnik
 - DoubleM.D. Technische Kybernetik, PO 2014
 - Wahlpflichtmodule -->Spezialisierungsfach -->Systemdynamik/Automatisierungstechnik
 - M.Sc. Technische Kybernetik, PO 2011
 - Spezialisierungsvariable -->Spezialisierungsfach -->Systemdynamik/Automatisierungstechnik
 - M.Sc. Technische Kybernetik, PO 2011
 - Wahlfach Technische Kybernetik

11. Empfohlene Voraussetzungen:

- Systemdynamische Grundlagen der Regelungstechnik Einführung in die Regelungstechnik

12. Lernziele:

Die Studierenden kennen die Grundzüge der Funktionalen Sicherheit als integralen Bestandteil der Produktentwicklung und können Vorgehen und Methoden auf Systeme unterschiedlicher Anwendungsbereiche übertragen und anwenden.

13. Inhalt:

Rechtlicher Hintergrund; Fehler und Zuverlässigkeitskenngrößen; Sicherheitslebenszyklus; Gefährdungsanalyse und Risikobewertung; Methoden und Maßnahmen in System-, Software- und Hardwareentwicklung; Analyseverfahren; Management der funktionalen Sicherheit; Überblick und Aufbau relevanter Normen. Anhand von Beispielen werden die wesentlichen Aspekte diskutiert.

14. Literatur:

- Skript („Tafelanschrieb“): Umdrucke.
 - Literatur wird in der Vorlesung bekannt gegeben
<table>
<thead>
<tr>
<th>15. Lehrveranstaltungen und -formen:</th>
<th>467701 Vorlesung Einführung in die Funktionale Sicherheit</th>
</tr>
</thead>
<tbody>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Präsenzzeit: 21 h</td>
</tr>
<tr>
<td></td>
<td>Nacharbeitszeit: 34 h</td>
</tr>
<tr>
<td></td>
<td>Prüfungsvorbereitung: 35 h</td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>46771 Einführung in die Funktionale Sicherheit (BSL), mündliche Prüfung, 30 Min., Gewichtung: 1.0</td>
</tr>
<tr>
<td>18. Grundlage für … :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Institut für Systemdynamik</td>
</tr>
</tbody>
</table>
Modul: 33820 Flache Systeme

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>074710009</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Oliver Sawodny

9. Dozenten: Michael Zeitz

10. Zuordnung zum Curriculum in diesem Studiengang:

- **B.Sc. Technische Kybernetik, PO 2011**
 - Vorgezogene Master-Module
 - DoubleM.D. Technische Kybernetik, PO 2014
 - Chalmers -->Incoming -->Wahlfach Technische Kybernetik
 - DoubleM.D. Technische Kybernetik, PO 2014
 - Incoming -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
 - DoubleM.D. Technische Kybernetik, PO 2014
 - Incoming -->Spezialisierungsfach -->Systemdynamik/Automatisierungstechnik
 - DoubleM.D. Technische Kybernetik, PO 2014
 - Outgoing -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
 - DoubleM.D. Technische Kybernetik, PO 2014
 - Outgoing -->Spezialisierungsfach -->Systemdynamik/Automatisierungstechnik
 - DoubleM.D. Technische Kybernetik, PO 2014
 - Outgoing -->Wahlpflichtmodule -->Mathematische Methoden der Kybernetik
 - DoubleM.D. Technische Kybernetik, PO 2014
 - Wahlpflichtmodule -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
 - DoubleM.D. Technische Kybernetik, PO 2014
 - Wahlpflichtmodule -->Spezialisierungsfach -->Systemdynamik/Automatisierungstechnik
 - M.Sc. Technische Kybernetik, PO 2011
 - Spezialisierungsmodul -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
 - M.Sc. Technische Kybernetik, PO 2011
 - Spezialisierungsmodul -->Spezialisierungsfach -- >Systemdynamik/Automatisierungstechnik
 - M.Sc. Technische Kybernetik, PO 2011
 - Spezialisierungsmodul -->Wahlfach Technische Kybernetik
 - M.Sc. Technische Kybernetik, PO 2011
Vertiefungsmodule --> Mathematische Methoden der Kybernetik

11. Empfohlene Voraussetzungen: Einführung in die Regelungstechnik mit Grundkenntnissen der Zustandsraummethodik

Arbeitsblätter, Umdrucke, Literatur-Links und Videos auf der Homepage

15. Lehrveranstaltungen und -formen: 338201 Vorlesung incl. Übungspräsentationen durch die Studierenden Flache Systeme

17. Prüfungsnummer/n und -name: 33821 Flache Systeme (PL), mündliche Prüfung, 40 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Institut für Systemdynamik
Modul: 33100 Modellierung und Identifikation dynamischer Systeme

2. Modulkürzel: 074710010
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0

5. Moduldar: 1 Semester
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Oliver Sawodny
9. Dozenten: Oliver Sawodny

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technische Kybernetik, PO 2011
→ Vorgezogene Master-Module

DoubleM.D. Technische Kybernetik, PO 2011
→ Chalmers -->Outgoing -->Systemanalyse II

DoubleM.D. Technische Kybernetik, PO 2011
→ Incoming -->Spezialisierungsfach -->Systemdynamik/ Automatisierungstechnik

DoubleM.D. Technische Kybernetik, PO 2011
→ Outgoing -->Spezialisierungsfach -->Systemdynamik/ Automatisierungstechnik

DoubleM.D. Technische Kybernetik, PO 2014
→ Incoming -->Spezialisierungsfach -->Systemdynamik/ Automatisierungstechnik

DoubleM.D. Technische Kybernetik, PO 2014
→ Outgoing -->Spezialisierungsfach -->Systemdynamik/ Automatisierungstechnik

DoubleM.D. Technische Kybernetik, PO 2014
→ Wahlpflichtmodule -->Spezialisierungsfach -->Systemdynamik/ Automatisierungstechnik

M.Sc. Technische Kybernetik, PO 2011
→ Spezialisierungsmodul -->Spezialisierungsfach --> Systemdynamik/Automatisierungstechnik

M.Sc. Technische Kybernetik, PO 2011
→ Vertiefungsmodul -->Systemanalyse II

11. Empfohlene Voraussetzungen: Einführung in die Regelungstechnik

12. Lernziele:
Die Studierenden beherrschen Methoden, mit denen ein unbekanntes dynamisches System über einen Modellansatz und dessen Parametrisierung charakterisiert werden kann.

13. Inhalt:
In der Vorlesung „Modellierung und Identifikation dynamischer Systeme“ werden im ersten Abschnitt der Vorlesung die grundlegenden Verfahren der theoretischen Modellbildung eingeführt und wichtige Methoden zur Vereinfachung dynamischer Modelle erläutert. Nach dieser Einführung wird der überwiegende Teil der Vorlesung sich mit der Identifikation dynamischer Systeme beschäftigen. Hier werden zunächst Verfahren zur Identifikation nichtparametrischer Modelle sowie parametrischer Modelle besprochen. Hierbei werden die klassischen Verfahren...
kennwortlinearer Probleme sowie die numerische Optimierung zur Parameterschätzung verallgemeinerter nichtlinearer Probleme diskutiert. Parallel zur Vorlesung werden mittels der Identification Toolbox von Matlab die Inhalte der Vorlesung verdeutlicht.

<table>
<thead>
<tr>
<th>14. Literatur:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Vorlesungsumdrucke</td>
</tr>
<tr>
<td>• Nelles: Nonlinear system identification: from classical approaches to neural networks and fuzzy models, Springer-Verlag, 2001</td>
</tr>
<tr>
<td>• Pentelon/Schoukens: System identification: a frequency domain approach, IEEE, 2001</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>15. Lehrveranstaltungen und -formen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 331001 Vorlesung Modellierung und Identifikation dynamischer Systeme</td>
</tr>
<tr>
<td>• 331002 Übung mit integriertem Rechnerpraktikum Modellierung und Identifikation dynamischer Systeme</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16. Abschätzung Arbeitsaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzzeit: 42 Stunden</td>
</tr>
<tr>
<td>Selbststudium: 138 Stunden</td>
</tr>
<tr>
<td>Summe: 180 Stunden</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
</tr>
</thead>
<tbody>
<tr>
<td>33101 Modellierung und Identifikation dynamischer Systeme (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>18. Grundlage für ... :</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>19. Medienform:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>20. Angeboten von:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Institut für Systemdynamik</td>
</tr>
</tbody>
</table>
Modul: 33190 Numerische Methoden der Optimierung und Optimalen Steuerung

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>074730001</th>
<th>5. Moduldaurer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Eckhard Arnold</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Eckhard Arnold</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>B.Sc. Technische Kybernetik, PO 2011</th>
<th>Vorgezogene Master-Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2011</td>
<td>Chalmers --> Incoming --> Wahlfach Technische Kybernetik</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2011</td>
<td>Chalmers --> Outgoing --> Mathematische Methoden der Kybernetik</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2011</td>
<td>Chalmers --> Outgoing --> Wahlfach Technische Kybernetik</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2014</td>
<td>Chalmers --> Incoming --> Wahlfach Technische Kybernetik</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2014</td>
<td>Incoming --> Spezialisierungsfach --> Systemdynamik / Automatisierungstechnik</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2014</td>
<td>Outgoing --> Spezialisierungsfach --> Systemdynamik / Automatisierungstechnik</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2014</td>
<td>Outgoing --> Wahlpflichtmodule --> Mathematische Methoden der Kybernetik</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2014</td>
<td>Wahlpflichtmodule --> Spezialisierungsfach --> Systemdynamik / Automatisierungstechnik</td>
</tr>
<tr>
<td>M.Sc. Technische Kybernetik, PO 2011</td>
<td>Spezialisierungsmodul --> Spezialisierungsfach --> Systemdynamik/Automatisierungstechnik</td>
</tr>
<tr>
<td>M.Sc. Technische Kybernetik, PO 2011</td>
<td>Spezialisierungsmodul --> Wahlfach Technische Kybernetik</td>
</tr>
<tr>
<td>M.Sc. Technische Kybernetik, PO 2011</td>
<td>Vertiefungsmodule --> Mathematische Methoden der Kybernetik</td>
</tr>
</tbody>
</table>

Empfohlene Voraussetzungen:

Einführung in die Regelungstechnik; Systemdynamik; Grundkenntnisse Matlab/Simulink (z.B. Simulationstechnik)

15. Lehrveranstaltungen und -formen: • 331901 Vorlesung Numerische Methoden der Optimierung und Optimalen Steuerung • 331902 Übung Numerische Methoden der Optimierung und Optimalen Steuerung

17. Prüfungsnummer/n und -name: 33191 Numerische Methoden der Optimierung und Optimalen Steuerung (PL), schriftlich, eventuell mündlich, Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Institut für Systemdynamik
Modul: 33860 Objektorientierte Modellierung und Simulation

2. Modulkürzel: 074730002
5. Modulduauer: 1 Semester
3. Leistungspunkte: 3.0 LP
4. SWS: 2.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Eckhard Arnold
9. Dozenten: Eckhard Arnold

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technische Kybernetik, PO 2011
 → Vorgezogene Master-Module
 DoubleM.D. Technische Kybernetik, PO 2011
 → Incoming --> Spezialisierungsfach --> Systemdynamik/ Automatisierungstechnik
 DoubleM.D. Technische Kybernetik, PO 2011
 → Outgoing --> Spezialisierungsfach --> Systemdynamik/ Automatisierungstechnik
 DoubleM.D. Technische Kybernetik, PO 2014
 → Chalmers --> Incoming --> Wahlfach Technische Kybernetik
 DoubleM.D. Technische Kybernetik, PO 2014
 → Incoming --> Spezialisierungsfach --> Systemdynamik/ Automatisierungstechnik
 DoubleM.D. Technische Kybernetik, PO 2014
 → Outgoing --> Spezialisierungsfach --> Systemdynamik/ Automatisierungstechnik
 DoubleM.D. Technische Kybernetik, PO 2014
 → Wahlpflichtmodule --> Spezialisierungsfach --> Systemdynamik/ Automatisierungstechnik
 M.Sc. Technische Kybernetik, PO 2011
 → Spezialisierungsmodule --> Spezialisierungsfach --> Systemdynamik/Automatisierungstechnik
 M.Sc. Technische Kybernetik, PO 2011
 → Spezialisierungsmodule --> Wahlfach Technische Kybernetik

11. Empfohlene Voraussetzungen:
 Einführung in die Regelungstechnik; Systemdynamik; Simulationstechnik

12. Lernziele:
 Die Studierenden sind in der Lage, Grundprinzipien der objektorientierten Modellierung anzuwenden und physikalische Systeme mittels Potential- und Flussvariablen in Objektdiagrammen zu beschreiben. Der praktische Umgang mit entsprechenden Softwarewerkzeugen wird anhand von Übungsaufgaben vermittelt.

13. Inhalt:
 Inhalt der Vorlesung sind Ansätze und Verfahren zur physikalischen objektorientierten Modellierung und multidisziplinären Systemsimulation. Wesentliche Softwarepakete werden vorgestellt und an Beispielen deren Anwendung demonstriert.

14. Literatur:
 • Vorlesungsumdrucke

15. Lehrveranstaltungen und -formen: 338601 Vorlesung Objektorientierte Modellierung und Simulation

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 21 Stunden
Selbststudium: 69 Stunden
Summe: 90 Stunden

17. Prüfungsnummer/n und -name: 33861 Objektorientierte Modellierung und Simulation (BSL), schriftlich, eventuell mündlich, Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Institut für Systemdynamik
Modul: 33880 Praktikum Systemdynamik

2. Modulkürzel: 074711004 5. Modulduauer: 1 Semester
4. SWS: 2.0 7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Cristina Tarin Sauer
9. Dozenten: Cristina Tarin Sauer

10. Zuordnung zum Curriculum in diesem Studiengang:

- B.Sc. Technische Kybernetik, PO 2011
 → Vorgezogene Master-Module
- DoubleM.D. Technische Kybernetik, PO 2011
 → Incoming --→ Spezialisierungsfach --→ Systemdynamik/
 Automatisierungstechnik
 →
- DoubleM.D. Technische Kybernetik, PO 2011
 → Outgoing --→ Spezialisierungsfach --→ Systemdynamik/
 Automatisierungstechnik
 →
- DoubleM.D. Technische Kybernetik, PO 2014
 → Incoming --→ Spezialisierungsfach --→ Systemdynamik/
 Automatisierungstechnik
 →
- DoubleM.D. Technische Kybernetik, PO 2014
 → Outgoing --→ Spezialisierungsfach --→ Systemdynamik/
 Automatisierungstechnik
 →
- DoubleM.D. Technische Kybernetik, PO 2014
 → Wahlpflichtmodule --→ Spezialisierungsfach --→ Systemdynamik/
 Automatisierungstechnik
 →
- M.Sc. Technische Kybernetik, PO 2011
 → Spezialisierungsmodul --→ Spezialisierungsfach --
 > Systemdynamik/Automatisierungstechnik
 →

11. Empfohlene Voraussetzungen:
- Einführung in die Regelungstechnik
- Messtechnik in der Automatisierungstechnik
- Systemdynamik

12. Lernziele:
Die Studierenden sind in der Lage, die theoretischen Vorlesungsinhalte
aus den Vorlesungen Systemdynamik, Einführung in die
Regelungstechnik und Messtechnik in der Automatisierungstechnik
anzuwenden und in der Praxis umzusetzen. Es werden verschiedene
Anwendungen analysiert und bearbeitet.

13. Inhalt:
Nähere Informationen zu den Praktischen Übungen: APMB erhalten Sie
zudem unter
http://www.uni-stuttgart.de/mabau/msc/msc_mach/
linksunddownloads.html

In verschiedenen Versuchen werden beispielhafte Regelungsaufgaben
automatisierungstechnisch von der Verwendung von geeigneten
Sensoren und Aktoren bis hin zur Implementierung der Regelalgorithmen in einer geeigneten Hard- und Softwareumgebung gezeigt:

- Filter- und Kommunikationstechnik
- Der bionische Handabungsassistent (BHA)
- Ball auf Platte

| 14. Literatur: | • Ausführliche Praktikumsskripte mit vorbereitenden Aufgaben
| | • Datenblätter |

| 15. Lehrveranstaltungen und -formen: | 338801 Praktikum Automatisierungstechnik |

| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 30 h
| | Selbststudiums-/Nacharbeitszeit: 60 h
| | Gesamt: 90 h |

| 17. Prüfungsnummer/n und -name: | 33881 Praktikum Systemdynamik (USL), schriftlich, eventuell mündlich, Gewichtung: 1.0 |

| 18. Grundlage für ... : |

| 19. Medienform: | Praktikumsskripte und Versuchsaufbauten |

| 20. Angeboten von: | Institut für Systemdynamik |
Modul: 37000 Prozessführung und Production IT in der Verfahrenstechnik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>074710012</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>5. Moduldaurer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Oliver Sawodny</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Joachim Birk</td>
</tr>
</tbody>
</table>
→ Vorgezogene Master-Module
→ DoubleM.D. Technische Kybernetik, PO 2011
→ Incoming -->Spezialisierungsfach -->Systemdynamik/ Automatisierungstechnik
→ DoubleM.D. Technische Kybernetik, PO 2011
→ Outgoing -->Spezialisierungsfach -->Systemdynamik/ Automatisierungstechnik
→ DoubleM.D. Technische Kybernetik, PO 2014
→ Incoming -->Spezialisierungsfach -->Systemdynamik/ Automatisierungstechnik
→ DoubleM.D. Technische Kybernetik, PO 2014
→ Outgoing -->Spezialisierungsfach -->Systemdynamik/ Automatisierungstechnik
→ DoubleM.D. Technische Kybernetik, PO 2014
→ Wahlpflichtmodule -->Spezialisierungsfach -->Systemdynamik/ Automatisierungstechnik
→ M.Sc. Technische Kybernetik, PO 2011
→ Spezialisierungsmodule -->Spezialisierungsfach -->Systemdynamik/Automatisierungstechnik |
| 11. Empfohlene Voraussetzungen: | Einführung in die Regelungstechnik; Systemdynamik bzw. Systemdynamische Grundlagen der Regelungstechnik |

13. Inhalt:

In dieser Vorlesung werden die spezifischen Methoden für die Prozess- und Betriebsführung in der Verfahrenstechnik behandelt: Herausforderungen für Automatisierungstechnik in der Verfahrenstechnik, Strukturierung der Automatisierungstechnik, Basisautomatisierung, Prozessführungskonzepte für Destillationskolonnen und chemische Reaktoren, Strukturen und Beispiele für „Advanced Process Control“, Modellgestützte Prozessführung, Optimierung der Betriebsführung durch MES (Manufacturing Execution Systems), Beiträge der Automatisierungstechnik im Lebenszyklus der Anlagen.
<table>
<thead>
<tr>
<th>14. Literatur:</th>
<th>Manuskript</th>
</tr>
</thead>
<tbody>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>370001 Prozessführung und Production IT in der Verfahrenstechnik</td>
</tr>
</tbody>
</table>
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 21 h
Nacharbeitszeit: 34 h
Prüfungsvorbereitung: 35 h
Gesamt: 90 h |
| 17. Prüfungsnummer/n und -name: | 37001 Prozessführung und Production IT in der Verfahrenstechnik (BSL), mündliche Prüfung, 30 Min., Gewichtung: 1.0 |
| 18. Grundlage für ... : | |
| 19. Medienform: | |
| 20. Angeboten von: | Institut für Systemdynamik |
2114 Autonome Systeme und Regelungstechnik

Zugeordnete Module:

<table>
<thead>
<tr>
<th>Code</th>
<th>Module Name</th>
</tr>
</thead>
<tbody>
<tr>
<td>18620</td>
<td>Optimal Control</td>
</tr>
<tr>
<td>18630</td>
<td>Robust Control</td>
</tr>
<tr>
<td>18640</td>
<td>Nonlinear Control</td>
</tr>
<tr>
<td>2117</td>
<td>Spez.Fach. anerkannt 6LP</td>
</tr>
<tr>
<td>2118</td>
<td>Spez.Fach. anerkannt 6LP</td>
</tr>
<tr>
<td>2119</td>
<td>Spez.Fach. anerkannt 6LP</td>
</tr>
<tr>
<td>29470</td>
<td>Machine Learning</td>
</tr>
<tr>
<td>29940</td>
<td>Convex Optimization</td>
</tr>
<tr>
<td>31720</td>
<td>Model Predictive Control</td>
</tr>
<tr>
<td>32770</td>
<td>Angewandte Regelung und Optimierung in der Prozessindustrie</td>
</tr>
<tr>
<td>33820</td>
<td>Flache Systeme</td>
</tr>
<tr>
<td>42980</td>
<td>Topics in Autonomous Systems and Control</td>
</tr>
<tr>
<td>43890</td>
<td>Synergetik</td>
</tr>
<tr>
<td>43900</td>
<td>Einführung in die verteilte künstliche Intelligenz</td>
</tr>
<tr>
<td>43910</td>
<td>Statistische Lernverfahren und stochastische Modellierung</td>
</tr>
<tr>
<td>48600</td>
<td>Robotics I</td>
</tr>
<tr>
<td>48610</td>
<td>Robotics II</td>
</tr>
<tr>
<td>48640</td>
<td>Theoretical and Methodological Foundations of Autonomous Systems</td>
</tr>
<tr>
<td>51840</td>
<td>Introduction to Adaptive Control</td>
</tr>
<tr>
<td>51850</td>
<td>Networked Control Systems</td>
</tr>
<tr>
<td>56970</td>
<td>Analysis and Control of Multi-agent Systems</td>
</tr>
<tr>
<td>57680</td>
<td>Einführung in die Chaostheorie</td>
</tr>
<tr>
<td>57860</td>
<td>Advanced Methods in Systems and Control Theory</td>
</tr>
<tr>
<td>59940</td>
<td>Dynamik Nichtglatter Systeme</td>
</tr>
</tbody>
</table>
2117 Spez.Fach. anerkannt 6LP
2118 Spez.Fach. anerkannt 6LP
2119 Spez.Fach. anerkannt 6LP
Modul: 57860 Advanced Methods in Systems and Control Theory

2. Modulkürzel:	074810370	5. Moduldauer:	1 Semester
3. Leistungspunkte:	3.0 LP	6. Turnus:	unregelmäßig
4. SWS:	2.0	7. Sprache:	Englisch

8. Modulverantwortlicher: Univ.-Prof. Frank Allgöwer

11. Empfohlene Voraussetzungen: Konzepte der Regelungstechnik or equivalent lectures

12. Lernziele: The student obtains knowledge of advanced methods in systems or control theory.

13. Inhalt: The course contains short courses taught by varying control experts of international renown covering advanced methods in systems or control theory.

15. Lehrveranstaltungen und -formen: 578601 Vorlesung Advanced Methods in Systems and Control Theory

Selbststudium: 69 Stunden
Summe: 90 Stunden

17. Prüfungsnummer/n und -name: 57861 Advanced Methods in Systems and Control Theory (BSL), Sonstiges, 30 Min., Gewichtung: 1.0
Modul: 56970 Analysis and Control of Multi-agent Systems

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>074810340</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>unregelmäßigkeit</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Frank Allgöwer</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Daniel Zelazo</td>
</tr>
<tr>
<td></td>
<td>DoubleM.D. Technische Kybernetik, PO 2011 → Incoming → Spezialisierungsfach → Autonome Systeme und Regelungstechnik</td>
</tr>
<tr>
<td></td>
<td>→ DoubleM.D. Technische Kybernetik, PO 2011 → Outgoing → Spezialisierungsfach → Autonome Systeme und Regelungstechnik</td>
</tr>
<tr>
<td></td>
<td>→ DoubleM.D. Technische Kybernetik, PO 2014 → Incoming → Spezialisierungsfach → Autonome Systeme und Regelungstechnik</td>
</tr>
<tr>
<td></td>
<td>→ DoubleM.D. Technische Kybernetik, PO 2014 → Outgoing → Spezialisierungsfach → Autonome Systeme und Regelungstechnik</td>
</tr>
<tr>
<td></td>
<td>→ DoubleM.D. Technische Kybernetik, PO 2014 → Wahlpflichtmodule → Spezialisierungsfach → Autonome Systeme und Regelungstechnik</td>
</tr>
<tr>
<td></td>
<td>→ M.Sc. Technische Kybernetik, PO 2011 → Spezialisierungsmodule → Spezialisierungsfach → Autonome Systeme und Regelungstechnik</td>
</tr>
<tr>
<td></td>
<td>→ M.Sc. Technische Kybernetik, PO 2011 → Spezialisierungsmodule → Wahlfach Technische Kybernetik</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Linear systems theory, multi-variable control, non-linear control theory, Lyapunov and ISS stability, linear algebra; e.g. courses „Systemdynamische Grundlagen der Regelungstechnik“, „Einführung in die Regelungstechnik“</td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>Students will be able to model multi-agent systems using tools from graph theory and dynamical systems theory. Dynamical systems properties such as stability, convergence, performance, and controllability will be related to graph-theoretic concepts such as connectivity, graph cycles, and graph symmetry. Students will be able to analyze and synthesize controllers for formation control problems using concepts from rigidity theory.</td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>• Introduction to graph theory</td>
</tr>
<tr>
<td></td>
<td>• The consensus protocol and its variations</td>
</tr>
<tr>
<td></td>
<td>• Formation control and rigidity theory</td>
</tr>
<tr>
<td></td>
<td>• Performance and Design of multi-agent systems</td>
</tr>
</tbody>
</table>

15. Lehrveranstaltungen und -formen: 569701 Vorlesung und Übung Analysis and Control of Multi-agent Systems

16. Abschätzung Arbeitsaufwand: Präsenzzeit: 28 h
Selbststudiumszeit / Nacharbeitszeit: 62 h
Summe: 90 h

17. Prüfungsnummer/n und -name: 56971 Analysis and Control of Multi-agent Systems (BSL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 32770 Angewandte Regelung und Optimierung in der Prozessindustrie

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>074810190</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Moduldaurer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Frank Allgöwer</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Alexander Horch</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- B.Sc. Technische Kybernetik, PO 2011
 → Vorgezogene Master-Module
- DoubleM.D. Technische Kybernetik, PO 2011
 → Incoming -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
 →
- DoubleM.D. Technische Kybernetik, PO 2011
 → Outgoing -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
 →
- DoubleM.D. Technische Kybernetik, PO 2014
 → Incoming -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
 →
- DoubleM.D. Technische Kybernetik, PO 2014
 → Outgoing -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
 →
- DoubleM.D. Technische Kybernetik, PO 2014
 → Wahlpflichtmodule -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
 →
- M.Sc. Technische Kybernetik, PO 2011
 → Spezialisierungsmodelle -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
 →
- M.Sc. Technische Kybernetik, PO 2011
 → Spezialisierungsmodule -->Wahlfach Technische Kybernetik

12. Lernziele:

13. Inhalt:

Anwendung einiger Regelungs- und Optimierungsverfahren:

- Zustandsüberwachung von Regelkreisen
• Anlagenweite Störungüberwachung
• Lineare, Nichtlineare, Hybride modellprädiktive Regelung / Optimierung
• Modellbasierte gehobene PID Regelung
• Mixed Integer (Non)Linear programming
• ‘Large-scale’ modell-basierte Optimierung

Grundlagen einiger Aspekte der Automatisierungstechnik

• Prozessleittechnik
• Wirtschaftlichkeitsrechung; Automatisierungprojektierung
• Modellierung mit Modelica

Einblick in einige Industriebereiche:

• (Petro-)Chemie
• Kraftwerke
• Metallherstellung und -verarbeitung
• Ölförderung
• Wassernetze
• Leistungselektronik
• Papier und Zellstoffindustrie

14. Literatur:
- + zahlreiche Zeitschriftenveröffentlichungen, die jeweils referenziert werden, da das Material bisher in Büchern kaum veröffentlicht ist.

15. Lehrveranstaltungen und -formen:
327701 Vorlesung Angewandte Regelung und Optimierung in der Prozessindustrie

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 21 Stunden
Selbststudium: 69 Stunden
Summe: 90 Stunden

17. Prüfungsnummer/n und -name:
32771 Angewandte Regelung und Optimierung in der Prozessindustrie (BSL), mündliche Prüfung, 20 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:
Beamer-Präsentation, Tafel

20. Angeboten von:
<table>
<thead>
<tr>
<th>Modulkürzel:</th>
<th>074810180</th>
<th>5. Modulduauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
<tr>
<td>Modulverantwortlicher:</td>
<td>Univ.-Prof. Christian Ebenbauer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dozenten:</td>
<td>Christian Ebenbauer</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| Zuordnung zum Curriculum in diesem Studiengang: | B.Sc. Technische Kybernetik, PO 2011, 7. Semester
→ Vorgezogene Master-Module
DoubleM.D. Technische Kybernetik, PO 2011
→ Chalmers -->Incoming -->Wahlfach Technische Kybernetik
→
DoubleM.D. Technische Kybernetik, PO 2011
→ Chalmers -->Outgoing -->Mathematische Methoden der Kybernetik
→
DoubleM.D. Technische Kybernetik, PO 2011
→ Chalmers -->Outgoing -->Wahlfach Technische Kybernetik
→
DoubleM.D. Technische Kybernetik, PO 2011
→ Incoming -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
→
DoubleM.D. Technische Kybernetik, PO 2011
→ Outgoing -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
→
DoubleM.D. Technische Kybernetik, PO 2014
→ Chalmers -->Incoming -->Wahlfach Technische Kybernetik
→
DoubleM.D. Technische Kybernetik, PO 2014
→ Incoming -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
→
DoubleM.D. Technische Kybernetik, PO 2014
→ Outgoing -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
→
DoubleM.D. Technische Kybernetik, PO 2014
→ Outgoing -->Wahlpflichtmodule -->Mathematische Methoden der Kybernetik
→
DoubleM.D. Technische Kybernetik, PO 2014
→ Wahlpflichtmodule -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
→
M.Sc. Technische Kybernetik, PO 2011
→ Spezialisierungsmodulle -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
→
M.Sc. Technische Kybernetik, PO 2011
→ Spezialisierungsmodulle -->Wahlfach Technische Kybernetik
→
11. Empfohlene Voraussetzungen:

12. Lernziele: The students obtain a solid understanding of convex optimization. In particular, they are able to formulate and assess optimization problems and to apply methods and tools from convex optimization, such as linear and semi-definite programming, duality theory and relaxation techniques, to solve optimization problems in various areas of engineering and sciences.

13. Inhalt:

- Linear programming
- Quadratic programming
- Semidefinite programming
- Linear matrix inequalities
- Duality theory
- Relaxation techniques and polynomial optimization
- Simplex algorithm and interior-point algorithms
- Applications

14. Literatur:

- Vollständiger Tafelanschrieb,
- Handouts,
- Buch: Convex Optimization (S. Boyd, L. Vandenberghe), Nichtlineare Optimierung (R.H. Elster), Lectures on Modern Convex Optimization (A. Ben-Tal, A. Nemirovski)
- Material für (Rechner-)Übungen wird in den Übungen ausgeteilt

15. Lehrveranstaltungen und -formen: 299401 Vorlesung Convex Optimization

16. Abschätzung Arbeitsaufwand:

Präsenzzeit:	42 Stunden
Selbststudium:	138 Stunden
Summe:	180 Stunden

17. Prüfungsnummer/n und -name: 29941 Convex Optimization (PL), schriftlich oder mündlich, Gewichtung: 1,0, Convex Optimization, 1,0, schriftlich oder mündlich

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 59940 Dynamik Nichtglatter Systeme

2. Modulkürzel: 074810380 5. Moduldauer: 1 Semester
4. SWS: 2.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Frank Allgöwer
9. Dozenten: Viktor Avrutin

10. Zuordnung zum Curriculum in diesem Studiengang:
 M.Sc. Technische Kybernetik, PO 2011
 → Spezialisierungsmodule -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik

12. Lernziele: Die Studierenden
 • verstehen die Gründe, die zur Entstehung der stückweise glatten Modelle führen;
 • kennen verschiedenen Typen der stückweise glatten Systeme und ihre Eigenschaften;
 • verstehen, wie sich stückweise glatte Systeme von glatten Systemen unterscheiden, und wie diese Unterschiede zum Auftreten bestimmter Arten der Dynamik führen;
 • kennen charakteristische Bifurkationsphänome in stückweise glatten Systemen und können diese analysieren.

 Qualitative Theorie stückweise glatter Systeme: (piecewise smooth maps, piecewise smooth ODEs, Filippov systems, hybrid systems).

14. Literatur:
 Mario di Bernardo, Chris Budd, Alan Champneys, and Piotr Kowalczyk. Piecewise-smooth dynamical systems: theory and applications.

15. Lehrveranstaltungen und -formen: 599401 Vorlesung Dynamik Nichtglatter Systeme

16. Abschätzung Arbeitsaufwand: Präsenzzeit: 28 h; Selbststudium: 62 h

17. Prüfungsnummer/n und -name: 59941 Dynamik Nichtglatter Systeme (BSL), mündliche Prüfung, 30 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 57680 Einführung in die Chaostheorie

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>074810350</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Frank Allgöwer</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Viktor Avrutin</td>
</tr>
<tr>
<td></td>
<td>M.Sc. Technische Kybernetik, PO 2011 → Spezialisierungsmodul -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik</td>
</tr>
<tr>
<td></td>
<td>M.Sc. Technische Kybernetik, PO 2011 → Spezialisierungsmodul -->Wahlfach Technische Kybernetik</td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>1. Problemstellungen und Grundbegriffe</td>
</tr>
<tr>
<td></td>
<td>2. Qualitative Analyse: Attraktoren (periodische, aperiodische, chaotische Trajektorien), Bifurkationen (lokale und globale Bifurkationen, Bifurkationen in stückweise-glatten Systemen), Bifurkations-szenarien (in glatten und stückweise-glatten Systemen)</td>
</tr>
</tbody>
</table>

Stand: 09. April 2015 Seite 425 von 666
3. Quantitative Analyse: Lyapunov Exponenten, fraktale Dimensionen, weitere Maße. Symbolische Dynamik

4. Fraktale

14. Literatur:

Skript

15. Lehrveranstaltungen und -formen:
| Vorlesung Einführung in die Chaostheorie |

16. Abschätzung Arbeitsaufwand:
| Präsenzzeit: 42; Selbststudium: 138 |

17. Prüfungsnummer/n und -name:
| Prüfung: Einführung in die Chaostheorie (PL), mündliche Prüfung, 30 Min., Gewichtung: 1.0 |

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
Modul: 43900 Einführung in die verteilte künstliche Intelligenz

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>051220901</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>5. Modulduer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Michael Schanz</td>
</tr>
</tbody>
</table>
| | → Ergänzungs module --> Grundlagen der Natur- und Ingenieurwissenschaften
| | → B.Sc. Technische Kybernetik, PO 2011
| | → Vorgezogene Master-Module
| | → Double M.D. Technische Kybernetik, PO 2011
| | → Chalmers --> Incoming --> Wahlfach Technische Kybernetik
| | → Double M.D. Technische Kybernetik, PO 2011
| | → Chalmers --> Outgoing --> Wahlfach Technische Kybernetik
| | → Double M.D. Technische Kybernetik, PO 2011
| | → Incoming --> Spezialisierungsfach --> Autonome Systeme und Regelungstechnik
| | → Double M.D. Technische Kybernetik, PO 2011
| | → Outgoing --> Spezialisierungsfach --> Autonome Systeme und Regelungstechnik
| | → Double M.D. Technische Kybernetik, PO 2011
| | → Incoming --> Spezialisierungsfach --> Autonome Systeme und Regelungstechnik
| | → Double M.D. Technische Kybernetik, PO 2014
| | → Outgoing --> Spezialisierungsfach --> Autonome Systeme und Regelungstechnik
| | → Double M.D. Technische Kybernetik, PO 2014
| | → Wahlpflichtmodule --> Spezialisierungsfach --> Autonome Systeme und Regelungstechnik
| | → M.Sc. Technische Kybernetik, PO 2011
| | → Spezialisierungsmodul --> Spezialisierungsfach --> Autonome Systeme und Regelungstechnik
| | → M.Sc. Technische Kybernetik, PO 2011
| | → Spezialisierungsmodul --> Wahlfach Technische Kybernetik |

| 11. Empfohlene Voraussetzungen: | keine |
| 12. Lernziele: | Die Teilnehmer erlernen die grundlegenden Begriffe sowie die grundlegenden Konzepte der verteilten künstlichen Intelligenz. Die Studierenden |

Stand: 09. April 2015

14. Literatur:
- Skriptum zur Vorlesung, 2012
- G.F. Luger and W.A. Stubblefield, Artificial Intelligence, Benjamin Cummings, 2. Ed., 1993
- J. Müller (Editor), Verteilte Künstliche Intelligenz, BI Wissenschaftsverlag, 1993
- R. Pfeifer and Ch. Scheier, Understanding Intelligence, MIT Press, 1999

15. Lehrveranstaltungen und -formen: 439001 Vorlesung Einführung in die verteilte künstliche Intelligenz
17. Prüfungsnummer/n und -name: 43901 Einführung in die verteilte künstliche Intelligenz (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0
18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 33820 Flache Systeme

<p>| | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>2. Modulkürzel:</td>
<td>074710009</td>
<td>5. Moduldauer:</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Oliver Sawodny</td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Michael Zeitz</td>
<td></td>
</tr>
</tbody>
</table>

Zuordnung zum Curriculum in diesem Studiengang:

- **B.Sc. Technische Kybernetik, PO 2011**
 - Vorgezogene Master-Module
 - **DoubleM.D. Technische Kybernetik, PO 2014**
 - Chalmers -->Incoming -->Wahlfach Technische Kybernetik
 - **DoubleM.D. Technische Kybernetik, PO 2014**
 - Incoming -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
 - **DoubleM.D. Technische Kybernetik, PO 2014**
 - Incoming -->Spezialisierungsfach -->Systemdynamik/Automatisierungstechnik
 - **DoubleM.D. Technische Kybernetik, PO 2014**
 - Outgoing -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
 - **DoubleM.D. Technische Kybernetik, PO 2014**
 - Outgoing -->Spezialisierungsfach -->Systemdynamik/Automatisierungstechnik
 - **DoubleM.D. Technische Kybernetik, PO 2014**
 - Outgoing -->Wahlpflichtmodule -->Mathematische Methoden der Kybernetik
 - **DoubleM.D. Technische Kybernetik, PO 2014**
 - Wahlpflichtmodule -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
 - **DoubleM.D. Technische Kybernetik, PO 2014**
 - Wahlpflichtmodule -->Spezialisierungsfach -->Systemdynamik/Automatisierungstechnik
 - **M.Sc. Technische Kybernetik, PO 2011**
 - Spezialisierungsmodul -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
 - **M.Sc. Technische Kybernetik, PO 2011**
 - Spezialisierungsmodul -->Spezialisierungsfach -->Systemdynamik/Automatisierungstechnik
 - **M.Sc. Technische Kybernetik, PO 2011**
 - Spezialisierungsmodul -->Wahlfach Technische Kybernetik
 - **M.Sc. Technische Kybernetik, PO 2011**
Vertiefungsmodule --> Mathematische Methoden der Kybernetik

11. Empfohlene Voraussetzungen: Einführung in die Regelungstechnik mit Grundkenntnissen der Zustandsraummethodik

R. Rothfuß: Anwendung der flachheitsbasierten Analyse und Regelung nichtlinearer Mehrgrößensysteme. VDI-Verlag 1997./

Arbeitsblätter, Umdrucke, Literatur-Links und Videos auf der Homepage

15. Lehrveranstaltungen und -formen: 338201 Vorlesung incl. Übungspräsentationen durch die Studierenden Flache Systeme

16. Abschätzung Arbeitsaufwand: Präsenzzeit: 42 Stunden
Selbststudium: 138 Stunden
Summe: 180 Stunden

17. Prüfungsnummer/n und -name: 33821 Flache Systeme (PL), mündliche Prüfung, 40 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:

20. Angeboten von: Institut für Systemdynamik
Modul: 51840 Introduction to Adaptive Control

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>074810320</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Frank Allgöwer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Dieter Schwarzmann</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Course „Einführung in die Regelungstechnik“ or equivalent lecture</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>The student</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• knows the mathematical foundations of adaptive control</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• has an overview of the properties and characteristics of adaptive systems</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• is able to apply model-reference adaptive control to state-feedback and output-feedback of relative degree less than three.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• is able to prove stability of these adaptive control methods</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
13. Inhalt:

Course „Introduction to Adaptive Control“

Overview of adaptive control approaches. Focus on design of model-reference adaptive control of LTI systems.

Mathematical foundations necessary for adaptive control: Review of Lyapunov stability, positive real functions, application of Kalman-Yakubovich Lemma.

Design of state-feedback adaptive control (model-reference) and stability.

Design of output-feedback adaptive control (relative degree of one and two).

Extensions of robust adaptive control (modifications of the adaptive law).

14. Literatur:

Narendra and Annaswamy: Stable Adaptive Systems, Dover, 2005

15. Lehrveranstaltungen und -formen:

518401 Vorlesung Introduction to Adaptive Control

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 21h
Selbststudiumszeit / Nacharbeitszeit: 69 h
Gesamt: 90h

17. Prüfungsnummer/n und -name:

51841 Introduction to Adaptive Control (BSL), schriftlich oder mündlich, Gewichtung: 1.0

18. Grundlage für ...:

19. Medienform:

20. Angeboten von:
Modul: 29470 Machine Learning

2. Modulkürzel: 051200112

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0

5. Modulduer: 1 Semester

6. Turnus: jedes 2. Semester, SoSe

7. Sprache: Englisch

8. Modulverantwortlicher: Univ.-Prof. Marc Toussaint

9. Dozenten: Marc Toussaint

10. Zuordnung zum Curriculum in diesem Studiengang:

 B.Sc. Technische Kybernetik, PO 2011, 6. Semester
 → Ergänzungsmodule -->Wahlbereich Anwendungsfach -->Kognitive Robotik
 →

 B.Sc. Technische Kybernetik, PO 2011, 6. Semester
 → Vorgezogene Master-Module

 DoubleM.D. Technische Kybernetik, PO 2011, 2. Semester
 → Chalmers -->Incoming -->Wahlfach Technische Kybernetik
 →

 DoubleM.D. Technische Kybernetik, PO 2011, 2. Semester
 → Chalmers -->Outgoing -->Wahlfach Technische Kybernetik
 →

 DoubleM.D. Technische Kybernetik, PO 2011, 2. Semester
 → Incoming -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
 →

 DoubleM.D. Technische Kybernetik, PO 2011, 2. Semester
 → Outgoing -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
 →

 DoubleM.D. Technische Kybernetik, PO 2014, 2. Semester
 → Chalmers -->Incoming -->Wahlfach Technische Kybernetik
 →

 DoubleM.D. Technische Kybernetik, PO 2014, 2. Semester
 → Incoming -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
 →

 DoubleM.D. Technische Kybernetik, PO 2014, 2. Semester
 → Outgoing -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
 →

 DoubleM.D. Technische Kybernetik, PO 2014, 2. Semester
 → Wahlpflichtmodule -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
 →

 M.Sc. Technische Kybernetik, PO 2011, 2. Semester
 → Spezialisierungsmodul -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
 →

 M.Sc. Technische Kybernetik, PO 2011, 2. Semester
 → Spezialisierungsmodul -->Wahlfach Technische Kybernetik
 →

 Fluency in at least one programming language.
12. Lernziele: Students will acquire an in depth understanding of Machine Learning methods. The concepts and formalisms of Machine Learning are understood as generic approach to a variety of disciplines, including image processing, robotics, computational linguistics and software engineering. This course will enable students to formalize problems from such disciplines in terms of probabilistic models and the derive respective learning and inference algorithms.

13. Inhalt: Exploiting large-scale data is a central challenge of our time. Machine Learning is the core discipline to address this challenge, aiming to extract useful models and structure from data. Studying Machine Learning is motivated in multiple ways: 1) as the basis of commercial data mining (Google, Amazon, Picasa, etc), 2) a core methodological tool for data analysis in all sciences (vision, linguistics, software engineering, but also biology, physics, neuroscience, etc) and finally, 3) as a core foundation of autonomous intelligent systems (which is my personal motivation for research in Machine Learning).

This lecture introduces to modern methods in Machine Learning, including discriminative as well as probabilistic generative models. A preliminary outline of topics is:

• motivation and history
• probabilistic modeling and inference
• regression and classification methods (kernel methods, Gaussian Processes, Bayesian kernel logistic regression, relations)
• discriminative learning (logistic regression, Conditional Random Fields)
• feature selection
• boosting and ensemble learning
• representation learning and embedding (kernel PCA and derivatives, deep learning)
• graphical models
• inference in graphical models (MCMC, message passing, variational)
• learning in graphical models
• structure learning and model selection
• relational learning

Please also refer to the course web page: http://ipvs.informatik.uni-stuttgart.de/mlr/marc/teaching/13-MachineLearning/

14. Literatur:

(recommended: read introductory chapter)
online: http://research.microsoft.com/en-us/um/people/cmbishop/prml/
(especially chapter 8, which is fully online)

15. Lehrveranstaltungen und -formen:

• 294701 Lecture Machine Learning
• 294702 Exercise Machine Learning

16. Abschätzung Arbeitsaufwand:

Presence time: 42 hours
Self study: 138 hours
Sum: 180 hours
17. Prüfungsnummer/n und -name:
- 29471 Machine Learning (PL), schriftlich, eventuell mündlich, 180 Min., Gewichtung: 1.0
- V Vorleistung (USL-V), schriftlich, eventuell mündlich

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Institut für Parallele und Verteilte Systeme
Modul: 31720 Model Predictive Control

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>074810260</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Frank Allgöwer</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Frank Allgöwer
| | • Matthias Müller |

10. Zuordnung zum Curriculum in diesem Studiengang:
- **B.Sc. Technische Kybernetik, PO 2011**
 - Vorgezogene Master-Module
- **DoubleM.D. Technische Kybernetik, PO 2011**
 - Chalmers -->Incoming -->Wahlfach Technische Kybernetik
 - DoubleM.D. Technische Kybernetik, PO 2011
 - Chalmers -->Outgoing -->Wahlfach Technische Kybernetik
 - DoubleM.D. Technische Kybernetik, PO 2011
 - Incoming -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
 - DoubleM.D. Technische Kybernetik, PO 2011
 - Outgoing -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
 - DoubleM.D. Technische Kybernetik, PO 2014
 - Chalmers -->Incoming -->Wahlfach Technische Kybernetik
 - DoubleM.D. Technische Kybernetik, PO 2014
 - Incoming -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
 - DoubleM.D. Technische Kybernetik, PO 2014
 - Outgoing -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
 - DoubleM.D. Technische Kybernetik, PO 2014
 - Wahlpflichtmodule -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
 - M.Sc. Technische Kybernetik, PO 2011
 - Spezialisierungsmodul -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
 - M.Sc. Technische Kybernetik, PO 2011
 - Spezialisierungsmodul -->Wahlfach Technische Kybernetik

11. Empfohlene Voraussetzungen:
- Linear systems theory, non-linear control theory, Lyapunov stability
- e.g. courses „Systemdynamische Grundlagen der Regelungstechnik“, „Einführung in die Regelungstechnik“ and „Konzepte der Regelungstechnik“
12. Lernziele: The students are able to analyze and synthesize various types of model predictive controllers, and can apply various proof techniques used in the context of stability and robustness analysis. The students have insight into current research topics in the field of model predictive control, which enables them to do their own first research projects in this area.

13. Inhalt: • Basic concepts of MPC
• Stability of MPC
• Robust MPC
• Economic MPC
• Distributed MPC

15. Lehrveranstaltungen und -formen: 317201 Vorlesung Model Predictive Control

16. Abschätzung Arbeitsaufwand: Präsenzzeit: 40 h
Selbststudiumszeit / Nacharbeitszeit: 140 h
Summe: 180 h

17. Prüfungsnummer/n und -name: 31721 Model Predictive Control (PL), schriftlich, eventuell mündlich, Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 51850 Networked Control Systems

2. Modulkürzel: 074810330
5. Modulduer: 1 Semester
3. Leistungspunkte: 6.0 LP
6. Turnus: jedes 2. Semester, SoSe
4. SWS: 4.0
7. Sprache: Englisch

8. Modulverantwortlicher: Univ.-Prof. Frank Allgöwer
9. Dozenten: • Daniel Zelazo
• Mathias Bürger

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technische Kybernetik, PO 2011
→ Vorgezogene Master-Module
DoubleM.D. Technische Kybernetik, PO 2011
→ Chalmers -->Incoming -->Wahlfach Technische Kybernetik
→
DoubleM.D. Technische Kybernetik, PO 2011
→ Chalmers -->Outgoing -->Wahlfach Technische Kybernetik
→
DoubleM.D. Technische Kybernetik, PO 2011
→ Incoming -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
→
DoubleM.D. Technische Kybernetik, PO 2011
→ Outgoing -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
→
DoubleM.D. Technische Kybernetik, PO 2014
→ Incoming -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
→
DoubleM.D. Technische Kybernetik, PO 2014
→ Outgoing -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
→
DoubleM.D. Technische Kybernetik, PO 2014
→ Wahlpflichtmodule -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
→
M.Sc. Technische Kybernetik, PO 2011
→ Spezialisierungsmodul -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
→
M.Sc. Technische Kybernetik, PO 2011
→ Spezialisierungsmodul -->Wahlfach Technische Kybernetik
→

11. Empfohlene Voraussetzungen:
Einführung in die Regelungstechnik.
Konzepte der Regelungstechnik.

12. Lernziele:
The students know a formalism and a set of tools for the analysis and synthesis of networked dynamical systems, based on rigorous mathematical principles. They are able to analyze and construct networked dynamical systems in a systematic way. Furthermore, they can understand, evaluate, and present scientific literature.

15. Lehrveranstaltungen und -formen: 518501 Vorlesung und Übung Networked Control Systems

17. Prüfungsnummer/n und -name: 51851 Networked Control Systems (PL), schriftlich oder mündlich, Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 18640 Nonlinear Control

2. Modulkürzel: 074810140
5. Moduldauer: 1 Semester

3. Leistungspunkte: 6.0 LP
6. Turnus: jedes 2. Semester, SoSe

4. SWS: 4.0
7. Sprache: Englisch

8. Modulverantwortlicher: Univ.-Prof. Frank Allgöwer

9. Dozenten:
 • Frank Allgöwer
 • Rainer Blind

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technische Kybernetik, PO 2011
 → Vorgezogene Master-Module
 DoubleM.D. Technische Kybernetik, PO 2011
 → Chalmers --> Incoming --> Advanced Control

DoubleM.D. Technische Kybernetik, PO 2011
 → Chalmers --> Outgoing --> Advanced Control

DoubleM.D. Technische Kybernetik, PO 2011
 → Incoming --> Spezialisierungsfach --> Autonome Systeme und Regelungstechnik

DoubleM.D. Technische Kybernetik, PO 2011
 → Outgoing --> Spezialisierungsfach --> Autonome Systeme und Regelungstechnik

DoubleM.D. Technische Kybernetik, PO 2014
 → Chalmers --> Incoming --> Advanced Control

DoubleM.D. Technische Kybernetik, PO 2014
 → Incoming --> Spezialisierungsfach --> Autonome Systeme und Regelungstechnik

DoubleM.D. Technische Kybernetik, PO 2014
 → Outgoing --> Spezialisierungsfach --> Autonome Systeme und Regelungstechnik

DoubleM.D. Technische Kybernetik, PO 2014
 → Wahlpflichtmodule --> Spezialisierungsfach --> Autonome Systeme und Regelungstechnik

M.Sc. Technische Kybernetik, PO 2011
 → Spezialisierungsmodule --> Spezialisierungsfach --> Autonome Systeme und Regelungstechnik

M.Sc. Technische Kybernetik, PO 2011
 → Vertiefungsmodul --> Advanced Control

11. Empfohlene Voraussetzungen:
 Vorlesung: Konzepte der Regelungstechnik

12. Lernziele:
 The student
 • knows the mathematical foundations of nonlinear control
• has an overview of the properties and characteristics of nonlinear control systems,
• is trained in the analysis of nonlinear systems with respect to system-theoretical properties,
• knows modern nonlinear control design principles,
• is able to apply modern control design methods to practical problems,
• has deepened knowledge, enabling him to write a scientific thesis in the area of nonlinear control and systems-theory.

13. Inhalt:

Course "Nonlinear Control":

Mathematical foundations of nonlinear systems, properties of nonlinear systems, non-autonomous systems, Lyapunov stability, ISS, Input/Output stability, Control Lyapunov Functions, Backstepping, Dissipativity, Passivity, and Passivity based control design

14. Literatur:

15. Lehrveranstaltungen und -formen:

186401 Vorlesung Nonlinear Control

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 42h
Selbststudiumszeit / Nacharbeitszeit: 138h
Gesamt: 180h

17. Prüfungsnummer/n und -name:

18641 Nonlinear Control (PL), schriftlich, eventuell mündlich, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 18620 Optimal Control

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>074810120</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Modul dauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher:
Univ.-Prof. Christian Ebenbauer

9. Dozenten:
Christian Ebenbauer

10. Zuordnung zum Curriculum in diesem Studiengang:

- **B.Sc. Technische Kybernetik, PO 2011**
 - Vorgezogene Master-Module

- **DoubleM.D. Technische Kybernetik, PO 2011**
 - Chalmers --> Incoming --> Wahlfach Technische Kybernetik

- **DoubleM.D. Technische Kybernetik, PO 2011**
 - Chalmers --> Outgoing --> Wahlfach Technische Kybernetik

- **DoubleM.D. Technische Kybernetik, PO 2011**
 - Incoming --> Spezialisierungsfach --> Autonome Systeme und Regelungstechnik

- **DoubleM.D. Technische Kybernetik, PO 2011**
 - Outgoing --> Spezialisierungsfach --> Autonome Systeme und Regelungstechnik

- **DoubleM.D. Technische Kybernetik, PO 2014**
 - Chalmers --> Incoming --> Advanced Control

- **DoubleM.D. Technische Kybernetik, PO 2014**
 - Chalmers --> Incoming --> Wahlfach Technische Kybernetik

- **DoubleM.D. Technische Kybernetik, PO 2014**
 - Incoming --> Spezialisierungsfach --> Autonome Systeme und Regelungstechnik

- **DoubleM.D. Technische Kybernetik, PO 2014**
 - Outgoing --> Spezialisierungsfach --> Autonome Systeme und Regelungstechnik

- **DoubleM.D. Technische Kybernetik, PO 2014**
 - Wahlpflichtmodule --> Spezialisierungsfach --> Autonome Systeme und Regelungstechnik

- **M.Sc. Technische Kybernetik, PO 2011**
 - Spezialisierungsmodul --> Spezialisierungsfach --> Autonome Systeme und Regelungstechnik

- **M.Sc. Technische Kybernetik, PO 2011**
 - Spezialisierungsmodul --> Wahlfach Technische Kybernetik

- **M.Sc. Technische Kybernetik, PO 2011**
 - Vertiefungsmodul --> Advanced Control
11. Empfohlene Voraussetzungen: B.Sc.-Abschluss in Technischer Kybernetik, Maschinenbau, Automatisierungstechnik, Verfahrenstechnik oder einem vergleichbaren Fach sowie Grundkenntnisse der Regelungstechnik (vergleichbar Modul Regelungstechnik)

12. Lernziele: The students learn how to analyze and solve optimal control problems. The course focuses on key ideas and concepts of the underlying theory. The students learn about standard methods for computing and implementing optimal control strategies.

13. Inhalt: The main part of the lecture focuses on methods to solve nonlinear optimal control problems including the following topics:

 • Finite-dimensional Optimization, Nonlinear Programming
 • Dynamic Programming, Hamilton-Jacobi-Bellman Theory
 • Calculus of Variations, Pontryagin Maximum Principle
 • Model Predictive Control
 • Numerical Algorithms
 • Application Examples

 The exercises contain student exercises and mini projects in which the students apply their knowledge to solve specific optimal control problem in a predefined time period.

14. Literatur:

 D. Liberzon: Calculus of Variations and Optimal Control Theory, Princeton University Press,

 A. Brassan and B. Piccoli: Introduction to Mathematical Control Theory, AMS,

 I.M. Gelfand and S.V. Fomin: Calculus of Variations, Dover

 D. Bertsekas: Dynamic Programming and Optimal Control, Athena Scientific,

 H. Sagan: Introduction to the Calculus of Variations, Dover

15. Lehrveranstaltungen und -formen: 186201 Vorlesung Optimal Control

16. Abschätzung Arbeitsaufwand:

 Präsenzzeit: 42 h

 Selbststudiumszeit / Nacharbeitszeit: 138 h

 Gesamt: 180 h

17. Prüfungsnummer/n und -name: 18621 Optimal Control (PL), schriftlich oder mündlich, Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
Modul: 48600 Robotics I

2. Modulkürzel: 051200999

5. Moduldauer: 1 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0

7. Sprache: Englisch

8. Modulverantwortlicher: Univ.-Prof. Marc Toussaint

9. Dozenten: Marc Toussaint

→ Ergänzungsmodule -->Wahlbereich Anwendungsfach -->Kognitive Robotik

→

B.Sc. Technische Kybernetik, PO 2011

→ Vorgezogene Master-Module

DoubleM.D. Technische Kybernetik, PO 2011

→ Incoming -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik

→

DoubleM.D. Technische Kybernetik, PO 2011

→ Outgoing -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik

→

DoubleM.D. Technische Kybernetik, PO 2014

→ Incoming -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik

→

DoubleM.D. Technische Kybernetik, PO 2014

→ Outgoing -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik

→

DoubleM.D. Technische Kybernetik, PO 2014

→ Wahlpflichtmodule -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik

→

M.Sc. Technische Kybernetik, PO 2011

→ Spezialisierungsmodul -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik

→

11. Empfohlene Voraussetzungen: Solid knowledge in linear algebra, probability theory and optimization. Fluency in at least one programming language.

12. Lernziele: Students will acquire the basic methodologies to model, control and navigate robots, including trajectory planning, control of dynamic systems and object manipulation.

13. Inhalt: The lecture will give an introduction to robotics, focusing on essential theoretical foundations of planning and controlling motion, state estimation and eventually object manipulation. Exercises in simulations and on a real robot are a core element of this lecture to gain practical experience.

• motivation and history
• (inverse) kinematics
• path finding and trajectory optimization
• (non-)holonomic systems
• mobile robots
• sensor processing (vision, range sensors)
• simulation of robots and environments
• object grasping and manipulation

<table>
<thead>
<tr>
<th>14. Literature:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>15. Lehrveranstaltungen und -formen:</th>
</tr>
</thead>
<tbody>
<tr>
<td>• 486001 Lecture Robotics I</td>
</tr>
<tr>
<td>• 486002 Exercise Robotics I</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>16. Abschätzung Arbeitsaufwand:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzzeit: 42 Stunden</td>
</tr>
<tr>
<td>Selbststudium: 138 Stunden</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
</tr>
</thead>
<tbody>
<tr>
<td>48601 Robotics I (PL), schriftlich oder mündlich, 120 Min., Gewichtung: 1.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>18. Grundlage für ... :</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>19. Medienform:</th>
</tr>
</thead>
</table>

<table>
<thead>
<tr>
<th>20. Angeboten von:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Institut für Parallele und Verteilte Systeme</td>
</tr>
</tbody>
</table>
Modul: 48610 Robotics II

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>051200888</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>unregelmäßig</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Marc Toussaint</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Vien Ngo</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>B.Sc. Technische Kybernetik, PO 2011</th>
<th>Vorgezogene Master-Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2011</td>
<td>Incoming --> Spezialisierungsfach --> Autonome Systeme und Regelungstechnik</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2011</td>
<td>Outgoing --> Spezialisierungsfach --> Autonome Systeme und Regelungstechnik</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2014</td>
<td>Incoming --> Spezialisierungsfach --> Autonome Systeme und Regelungstechnik</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2014</td>
<td>Outgoing --> Spezialisierungsfach --> Autonome Systeme und Regelungstechnik</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2014</td>
<td>Wahlpflichtmodule --> Spezialisierungsfach --> Autonome Systeme und Regelungstechnik</td>
</tr>
<tr>
<td>M.Sc. Technische Kybernetik, PO 2011</td>
<td>Spezialisierungsmodul --> Spezialisierungsfach --> Autonome Systeme und Regelungstechnik</td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen: Course Robotics I

12. Lernziele: Students will acquire indepth knowledge of advanced theoretical topics in robotics as well as the state-of-the-art in autonomous robotics, in particular object manipulation, application of Machine Learning in robotics and control theory on modern (compliant) actuators.

13. Inhalt: This course combines the foundations of Reinforcement Learning with robotics and control theory and explores in depth advanced topics at the state-of-the-art in autonomous robotics. The course will focus on core topics such as analytical dynamics, stochastic control theory, and machine learning approaches to data-driven robotics. At the end of the course you will be equipped to read and understand relevant research papers to develop beyond this material on your own.

Topics:
- Analytical dynamics (Lagrange, Hamilton, Gauss formulations; contact analysis)
- Stochastic optimal control (focus on nonlinear systems)
- Inverse optimal control (maximum margin and maximum entropy)
- Imitation learning (inverse reinforcement learning)
- Policy search (model based and model free)
- Model learning (forward and inverse models)

14. Literatur:

15. Lehrveranstaltungen und -formen:
 • 486101 Lecture Robotics II
 • 486102 Exercise Robotics II

16. Abschätzung Arbeitsaufwand:
 Präsenzzzeit: 42 Stunden
 Selbststudium: 138 Stunden

17. Prüfungsnummer/n und -name:
 48611 Robotics II (PL), schriftlich oder mündlich, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 18630 Robust Control

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>080520806</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>unregelmäßig</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Carsten Scherer</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Carsten Scherer</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- **B.Sc. Technische Kybernetik, PO 2011**
- **DoubleM.D. Technische Kybernetik, PO 2011**
- **Chalmers --> Incoming --> Advanced Control**
- **DoubleM.D. Technische Kybernetik, PO 2011**
- **Chalmers --> Incoming --> Wahlfach Technische Kybernetik**
- **DoubleM.D. Technische Kybernetik, PO 2011**
- **Chalmers --> Outgoing --> Advanced Control**
- **DoubleM.D. Technische Kybernetik, PO 2011**
- **Chalmers --> Outgoing --> Wahlfach Technische Kybernetik**
- **DoubleM.D. Technische Kybernetik, PO 2011**
- **Incoming --> Spezialisierungsfach --> Autonome Systeme und Regelungstechnik**
- **DoubleM.D. Technische Kybernetik, PO 2011**
- **Outgoing --> Spezialisierungsfach --> Autonome Systeme und Regelungstechnik**
- **DoubleM.D. Technische Kybernetik, PO 2014**
- **Chalmers --> Incoming --> Advanced Control**
- **DoubleM.D. Technische Kybernetik, PO 2014**
- **Chalmers --> Incoming --> Wahlfach Technische Kybernetik**
- **DoubleM.D. Technische Kybernetik, PO 2014**
- **Incoming --> Spezialisierungsfach --> Autonome Systeme und Regelungstechnik**
- **DoubleM.D. Technische Kybernetik, PO 2014**
- **Outgoing --> Spezialisierungsfach --> Autonome Systeme und Regelungstechnik**
- **DoubleM.D. Technische Kybernetik, PO 2014**
- **Wahlpflichtmodule --> Spezialisierungsfach --> Autonome Systeme und Regelungstechnik**
- **M.Sc. Technische Kybernetik, PO 2011**
- **Spezialisierungsmodul --> Spezialisierungsfach --> Autonome Systeme und Regelungstechnik**
- **M.Sc. Technische Kybernetik, PO 2011**
11. Empfohlene Voraussetzungen: Vorlesung Konzepte der Regelungstechnik oder Vorlesung Lineare Kontrolltheorie

12. Lernziele: The students are able to mathematically describe uncertainties in dynamical systems and are able to analyze stability and performance of uncertain systems. The students are familiar with different modern robust controller design methods for uncertain systems and can apply their knowledge on a specified project.

13. Inhalt:
 • Selected mathematical background for robust control
 • Introduction to uncertainty descriptions (unstructured uncertainties, structured uncertainties, parametric uncertainties, ...)
 • The generalized plant framework
 • Robust stability and performance analysis of uncertain dynamical systems
 • Structured singular value theory
 • Theory of optimal H-infinity controller design
 • Application of modern controller design methods (H-infinity control and mu-synthesis) to concrete examples

14. Literatur:
 • C.W. Scherer, Theory of Robust Control, Lecture Notes.

15. Lehrveranstaltungen und -formen: 186301 Vorlesung mit Übung und Miniprojekt Robust Control

16. Abschätzung Arbeitsaufwand: Präsenzzeit: 42h
 Selbststudiumszeit / Nacharbeitszeit: 138h
 Gesamt: 180h

17. Prüfungsnummer/n und -name: 18631 Robust Control (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
Modul: 43910 Statistische Lernverfahren und stochastische Modellierung

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>074810310</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Nicole Radde</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Christian Ebenbauer
• Nicole Radde |
| 10. Zuordnung zum Curriculum in diesem Studiengang: |

B.Sc. Technische Kybernetik, PO 2011
→ Vorgezogene Master-Module

DoubleM.D. Technische Kybernetik, PO 2011
→ Incoming -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
→

DoubleM.D. Technische Kybernetik, PO 2011
→ Incoming -->Spezialisierungsfach -->Systembiologie
→

DoubleM.D. Technische Kybernetik, PO 2011
→ Outgoing -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
→

DoubleM.D. Technische Kybernetik, PO 2011
→ Outgoing -->Spezialisierungsfach -->Systembiologie
→

DoubleM.D. Technische Kybernetik, PO 2014
→ Incoming -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
→

DoubleM.D. Technische Kybernetik, PO 2014
→ Incoming -->Spezialisierungsfach -->Systembiologie
→

DoubleM.D. Technische Kybernetik, PO 2014
→ Outgoing -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
→

DoubleM.D. Technische Kybernetik, PO 2014
→ Outgoing -->Spezialisierungsfach -->Systembiologie
→

DoubleM.D. Technische Kybernetik, PO 2014
→ Wahlpflichtmodule -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
→

DoubleM.D. Technische Kybernetik, PO 2014
→ Wahlpflichtmodule -->Spezialisierungsfach -->Systembiologie
→

M.Sc. Technische Kybernetik, PO 2011
→ Spezialisierungsmodul -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
→

M.Sc. Technische Kybernetik, PO 2011
→ Spezialisierungsmodul -->Spezialisierungsfach -->Systembiologie
11. Empfohlene Voraussetzungen:
Höhere Mathematik, Grundlagen der Statistik

12. Lernziele:

Die Studenten erlernen die Grundlagen der stochastischen Modellierung sowie Methoden für Parameter- und Zustandsschätzung in stochastischen Prozessen.

Die Studenten können folgende stochastische Modellierungsansätze benennen und deren Prinzip erklären: Poisson-Prozesse, zeitdiskrete und zeit-stetige Markovketten und deren Konvergenzverhalten, stochastische Differenzialgleichungen, insbesondere der Wiener Prozess und die Brown’sche Bewegung.

Die Studenten können mit stochastischen Differenzialgleichungen rechnen und modellieren.

Die Studenten können für exemplarische Beispiele parametrisierter stochastischer Prozesse und gegebene Beobachtungen Likelihood Funktionen aufstellen und den Maximum Likelihood Schätzer bestimmen.

13. Inhalt:

- Stochastische Prozesse (Poisson, Markov und Wiener Prozesse)
- Stochastische Differenzialgleichungen
- Zustandsschätzung
- Likelihood Funktion und Maximum Likelihood Schätzer

14. Literatur:

Weiterführende Literatur wird in der Vorlesung bekannt gegeben.

15. Lehrveranstaltungen und -formen:

- 439101 Vorlesung Statistische Lernverfahren und stochastische Modellierung
- 439102 Übung Statistische Lernverfahren und stochastische Modellierung

16. Abschätzung Arbeitsaufwand:

- Präsenzzeit: 42 h
- Vor- und Nachbearbeitungszeit: 98 h
- Prüfungsvorbereitung: 40h
- Gesamter Arbeitsaufwand: 180h

17. Prüfungsnummer/n und -name:

- 43911 Statistische Lernverfahren und stochastische Modellierung (PL), schriftlich oder mündlich, 40 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:

Tafel, Overhead, Beamer

20. Angeboten von:

Institut für Systemtheorie und Regelungstechnik
Modul: 43890 Synergetik

2. Modulkürzel: 051220900 5. Modulduer: 1 Semester
4. SWS: 2.0 7. Sprache: Deutsch

9. Dozenten: Michael Schanz

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technische Kybernetik, PO 2011
→ Ergänzungsmodule -->Grundlagen der Natur- und Ingenieurwissenschaften
→
B.Sc. Technische Kybernetik, PO 2011
→ Vorgezogene Master-Module
DoubleM.D. Technische Kybernetik, PO 2011
→ Chalmers -->Incoming -->Wahlfach Technische Kybernetik
→
DoubleM.D. Technische Kybernetik, PO 2011
→ Chalmers -->Outgoing -->Wahlfach Technische Kybernetik
→
DoubleM.D. Technische Kybernetik, PO 2011
→ Incoming -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
→
DoubleM.D. Technische Kybernetik, PO 2011
→ Outgoing -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
→
DoubleM.D. Technische Kybernetik, PO 2014
→ Incoming -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
→
DoubleM.D. Technische Kybernetik, PO 2014
→ Outgoing -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
→
DoubleM.D. Technische Kybernetik, PO 2014
→ Wahlpflichtmodule -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
→
M.Sc. Technische Kybernetik, PO 2011
→ Spezialisierungsmodul -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
→
M.Sc. Technische Kybernetik, PO 2011
→ Spezialisierungsmodul -->Wahlfach Technische Kybernetik
→

11. Empfohlene Voraussetzungen: keine
12. Lernziele:
Die Studierenden erlernen die für das Verständnis notwendigen Begriffe aus der Nichtlinearen Dynamik. Dazu gehören verschiedene Attraktor- und Bifurkationstypen. Sie sind vertraut mit den Begriffen Zeitskalentrennung, linear stabile und instabile Moden,
Ordnungsparameter, Zentrums-Mannigfaltigkeit sowie zirkuläre
Kausalität. Sie lernen die Methoden der adiabatischen und exakten
Elimination. Außerdem erlernen sie die Funktionsweise von Selektions-
und gekoppelten Selektionsgleichungen und deren Anwendungen.

13. Inhalt: Diese Vorlesung befasst sich mit Selbstorganisationsphänomen,
wobei Wert darauf gelegt wird einen möglichst umfassenden
Überblick über die zum Teil sehr verschiedenen Ausprägungen
von Selbstorganisationsphänomenen zu geben. Ein Hauptziel der
Vorlesung ist es die mathematische Theorie der Selbstorganisation - die
Synergetik - vorzustellen und anhand einiger ausgewählter Beispiele
zu veranschaulichen. Dabei sind viele Grundlagen aus der Theorie der
Nichtlinearen Dynamik notwendig die in der Vorlesung alle vorgestellt
und ausführlich erklärt werden.

14. Literatur:
 • Hermann Haken, Synergetics, Introduction and Advanced Topics,
 Springer-Verlag, 2004
 • Vorlesungsbergleitende Maple-Worksheets

15. Lehrveranstaltungen und -formen: 438901 Vorlesung Synergetik

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 21 Stunden
 Selbststudium: 69 Stunden
 Summe: 90 Stunden

17. Prüfungsnummer/n und -name: 43891 Synergetik (BSL), mündliche Prüfung, 30 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 48640 Theoretical and Methodological Foundations of Autonomous Systems

2. Modulkürzel: 051200987
5. Moduldauer: 1 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0
7. Sprache: Englisch

8. Modulverantwortlicher: Univ.-Prof. Marc Toussaint
9. Dozenten: Marc Toussaint

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technische Kybernetik, PO 2011
→ Vorgezogene Master-Module

DoubleM.D. Technische Kybernetik, PO 2011
→ Incoming -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik

DoubleM.D. Technische Kybernetik, PO 2011
→ Outgoing -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik

DoubleM.D. Technische Kybernetik, PO 2014
→ Incoming -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik

DoubleM.D. Technische Kybernetik, PO 2014
→ Outgoing -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik

DoubleM.D. Technische Kybernetik, PO 2014
→ Wahlpflichtmodule -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik

M.Sc. Technische Kybernetik, PO 2011
→ Spezialisierungsmodule -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik

11. Empfohlene Voraussetzungen: Solid knowledge in linear algebra, probability theory and optimization. Fluency in at least one programming language.

12. Lernziele: Students will acquire a conceptual overview of the challenges and research in intelligent autonomous systems. The course will emphasize the necessity of combining theory with integrated systems, namely the theoretical and computational foundations modeling and solving decision and behavioral problems and the integration in real-world autonomous systems that integrate perception, action and (on-board) computation. The course reflects the conceptual structure of the Major in Autonomous Systems by addressing the methodological foundations of (i) Computational Intelligence and Learning, (ii) Perception and Action, and (iii) System Integration.

13. Inhalt: This course discusses the challenges and research in intelligent autonomous systems. It introduces to the basic foundations in the relevant disciplines to enable a holistic view on autonomous systems.
This is done using a coherent formalization for concepts which are usually introduced separately.

- motivation and history
- challenges in autonomous systems
- frameworks for modeling decision and behavioral problems
- computational methods for solving such problems: planning, decision making
- system integration
- classical Artificial Intelligence and modern probabilistic AI
- perception and image processing
- learning from data (basic regression and classification)
- learning applied in autonomous systems (Reinforcement Learning, adaptive control, system identification)

14. Literatur:

15. Lehrveranstaltungen und -formen:
 - 486401 Lecture Theoretical and Methodological Foundations of Autonomous Systems
 - 486402 Exercise Theoretical and Methodological Foundations of Autonomous Systems

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 42 Stunden
 Selbststudium: 138 Stunden

17. Prüfungsnummer/n und -name:
 48641 Theoretical and Methodological Foundations of Autonomous Systems (PL), schriftlich oder mündlich, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Institut für Parallele und Verteilte Systeme
Modul: 42980 Topics in Autonomous Systems and Control

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>074810300</th>
<th>5. Modulduer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Frank Allgöwer

9. Dozenten: Frank Allgöwer

10. Zuordnung zum Curriculum in diesem Studiengang:

- B.Sc. Technische Kybernetik, PO 2011
 → Vorgezogene Master-Module
- DoubleM.D. Technische Kybernetik, PO 2011
 → Incoming -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
 →
- DoubleM.D. Technische Kybernetik, PO 2011
 → Outgoing -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
 →
- DoubleM.D. Technische Kybernetik, PO 2014
 → Incoming -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
 →
- DoubleM.D. Technische Kybernetik, PO 2014
 → Outgoing -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
 →
- DoubleM.D. Technische Kybernetik, PO 2014
 → Wahlpflichtmodule -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
 →
- M.Sc. Technische Kybernetik, PO 2011
 → Spezialisierungsmodul -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
 →

11. Empfohlene Voraussetzungen: Konzepte der Regelungstechnik

12. Lernziele: The student

 • obtains specialized knowledge in a particular modern field of autonomous systems and control theory,
 • is enabled to write a scientific thesis in the area of systems and control theory.

13. Inhalt: The course "Topics in autonomous systems and control" consists of lectures covering varying topics from the field of autonomous systems and control.

14. Literatur:

15. Lehrveranstaltungen und -formen: 429801 Vorlesung Topics in autonomous systems and control

16. Abschätzung Arbeitsaufwand: Präsenzzeit: 42 Stunden

Selbststudium: 138 Stunden

Summe: 180 Stunden
17. Prüfungsnummer/n und -name: 42981 Topics in autonomous systems and control (PL), schriftlich oder mündlich, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
2115 Flugführung und Systemtechnik

<table>
<thead>
<tr>
<th>Zugeordnete Module</th>
<th>LP</th>
</tr>
</thead>
<tbody>
<tr>
<td>2117 Spez.Fach. anerkannt 6LP</td>
<td>6LP</td>
</tr>
<tr>
<td>2118 Spez.Fach. anerkannt 6LP</td>
<td>6LP</td>
</tr>
<tr>
<td>2119 Spez.Fach. anerkannt 6LP</td>
<td>6LP</td>
</tr>
<tr>
<td>36370 Entwicklungsprozeß von Luftfahrtsystemen</td>
<td></td>
</tr>
<tr>
<td>40830 Flugmechanik</td>
<td></td>
</tr>
<tr>
<td>44060 Integrierte Modulare Avionik und Entwicklungsprozeß</td>
<td></td>
</tr>
<tr>
<td>44080 Angewandte Luftfahrtsysteme</td>
<td></td>
</tr>
<tr>
<td>44090 Angewandte Luftfahrtsysteme I</td>
<td></td>
</tr>
<tr>
<td>44100 Angewandte Luftfahrtsysteme II</td>
<td></td>
</tr>
<tr>
<td>44140 Autoflight und Air Traffic Management</td>
<td></td>
</tr>
<tr>
<td>44360 Spezielle Methoden der Systemtechnik</td>
<td></td>
</tr>
<tr>
<td>44430 Flugmechanik und Flugregelung von Hubschraubern</td>
<td></td>
</tr>
<tr>
<td>44440 Flugmesstechnik</td>
<td></td>
</tr>
<tr>
<td>44450 Flugregelungssysteme</td>
<td></td>
</tr>
<tr>
<td>44590 Methoden der Systemmodellierung und Systemanalyse</td>
<td></td>
</tr>
<tr>
<td>44620 Komplexe Avioniksysteme I</td>
<td></td>
</tr>
<tr>
<td>44630 Komplexe Avioniksysteme II</td>
<td></td>
</tr>
<tr>
<td>44780 Lenkverfahren</td>
<td></td>
</tr>
<tr>
<td>44880 Nichtlineare Optimierung</td>
<td></td>
</tr>
<tr>
<td>44960 Optimierung und Optimalsteuerung</td>
<td></td>
</tr>
<tr>
<td>45120 Satellitennavigation</td>
<td></td>
</tr>
<tr>
<td>45140 Schätzverfahren</td>
<td></td>
</tr>
<tr>
<td>45150 Schätzverfahren und Flugmesstechnik</td>
<td></td>
</tr>
<tr>
<td>45180 Methoden der Sicherheitsanalyse</td>
<td></td>
</tr>
<tr>
<td>45230 Integrierte Modulare Avionik</td>
<td></td>
</tr>
</tbody>
</table>
2117 Spez.Fach. anerkannt 6LP
2118 Spez.Fach. anerkannt 6LP
2119 Spez.Fach. anerkannt 6LP
Modul: 44080 Angewandte Luftfahrtsysteme

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>060900112</th>
<th>5. Modulduer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- **B.Sc. Technische Kybernetik, PO 2011**
 - Vorgezogene Master-Module
 - DoubleM.D. Technische Kybernetik, PO 2011
 - Incoming --> Spezialisierungsfach --> Flugführung und Systemtechnik
 - DoubleM.D. Technische Kybernetik, PO 2011
 - Outgoing --> Spezialisierungsfach --> Flugführung und Systemtechnik
 - DoubleM.D. Technische Kybernetik, PO 2014
 - Incoming --> Spezialisierungsfach --> Flugführung und Systemtechnik
 - DoubleM.D. Technische Kybernetik, PO 2014
 - Outgoing --> Spezialisierungsfach --> Flugführung und Systemtechnik
 - DoubleM.D. Technische Kybernetik, PO 2014
 - Wahlpflichtmodule --> Spezialisierungsfach --> Flugführung und Systemtechnik
 - **M.Sc. Technische Kybernetik, PO 2011**
 - Spezialisierungsstunden --> Spezialisierungsfach --> Flugführung und Systemtechnik

11. Empfohlene Voraussetzungen:

- Die Studierenden kennen Anforderungen, Funktion, Aufbau realer Luftfahrtsysteme von Verkehrsluftzeugen, Militärflugzeugen, Hubschrauber.

12. Lernziele:

- Primäres Flugsteuerungssystem (Verkehrsluftzeugen)
- Hochauftriebsystem (Verkehrsluftzeugen)
- Autopilot und Flight Director (Verkehrsluftzeugen)
- Flugmanagementsystem (Verkehrsluftzeugen)
- Überblick über integrierte Navigations- und Transpondersysteme (Verkehrsluftzeugen)
- Auswahl aus „Utility Systeme“ (Verkehrsluftzeugen)
- Cabin Management System (Verkehrsluftzeugen)
- Flugsteuerungssysteme (Militärflugzeugen)
- Flugsteuerungssysteme (Hubschrauber)

14. Literatur:

15. Lehrveranstaltungen und -formen:
• 440801 Vorlesung Angewandte Luftfahrtsysteme I
• 440802 Vorlesung Angewandte Luftfahrtsysteme II

16. Abschätzung Arbeitsaufwand:
Angewandte Luftfahrtsysteme I: 90 h (Präsenzzeit 28 h, Selbststudium 62 h)
Angewandte Luftfahrtsysteme II: 90 h (Präsenzzeit 28 h, Selbststudium 62 h)
Gesamt: 180h (Präsenzzeit: 56h, Selbststudium: 124h)

17. Prüfungsnummer/n und -name:
44081 Angewandte Luftfahrtsysteme (PL), mündliche Prüfung, 40 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 44090 Angewandte Luftfahrtsysteme I

2. Modulkürzel: 060900117 5. Moduldauer: 1 Semester
4. SWS: 2.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Reinhard Reichel
9. Dozenten: Reinhard Reichel

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technische Kybernetik, PO 2011
→ Vorgezogene Master-Module

DoubleM.D. Technische Kybernetik, PO 2011
→ Incoming -->Spezialisierungsfach -->Flugführung und Systemtechnik
→

DoubleM.D. Technische Kybernetik, PO 2011
→ Outgoing -->Spezialisierungsfach -->Flugführung und Systemtechnik
→

DoubleM.D. Technische Kybernetik, PO 2014
→ Incoming -->Spezialisierungsfach -->Flugführung und Systemtechnik
→

DoubleM.D. Technische Kybernetik, PO 2014
→ Outgoing -->Spezialisierungsfach -->Flugführung und Systemtechnik
→

DoubleM.D. Technische Kybernetik, PO 2014
→ Wahlpflichtmodule -->Spezialisierungsfach -->Flugführung und Systemtechnik
→

M.Sc. Technische Kybernetik, PO 2011
→ Spezialisierungsmodule -->Spezialisierungsfach -->Flugführung und Systemtechnik
→

11. Empfohlene Voraussetzungen:

13. Inhalt:
Primäres Flugsteuerungssystem
Hochauftriebssystem
Autopilot und Flight Director
Flugmanagementsystem
Überblick über integrierte Navigations- und Transpondersysteme

14. Literatur:

15. Lehrveranstaltungen und -formen: 440901 Vorlesung Angewandte Luftfahrtsysteme I
<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>90 h (Präsenzzeit 28 h, Selbststudium 62 h)</td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>44091 Angewandte Luftfahrtsysteme I (BSL), mündliche Prüfung, 20 Min., Gewichtung: 1.0</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td></td>
</tr>
</tbody>
</table>
Modul: 44100 Angewandte Luftfahrtsysteme II

<table>
<thead>
<tr>
<th>2. Modulkürzel: 060900118</th>
<th>5. Moduldauer: 1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS: 2.0</td>
<td>7. Sprache: Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Reinhard Reichel

9. Dozenten: Reinhard Reichel

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>B.Sc. Technische Kybernetik, PO 2011</th>
<th>Vorgezogene Master-Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2011</td>
<td>Incoming -->Spezialisierungsfach -->Flugführung und Systemtechnik</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2011</td>
<td>Outgoing -->Spezialisierungsfach -->Flugführung und Systemtechnik</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2014</td>
<td>Incoming -->Spezialisierungsfach -->Flugführung und Systemtechnik</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2014</td>
<td>Outgoing -->Spezialisierungsfach -->Flugführung und Systemtechnik</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2014</td>
<td>Wahlpflichtmodule -->Spezialisierungsfach -->Flugführung und Systemtechnik</td>
</tr>
<tr>
<td>M.Sc. Technische Kybernetik, PO 2011</td>
<td>Spezialisierungsmodul -->Spezialisierungsfach -->Flugführung und Systemtechnik</td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen:

13. Inhalt:

| Auswahl aus „Utility“ Systemen in Verkehrsflugzeugen (Tanksystem, Elektrisches Energiesystem, Fahrwerksystem, ...) |
| Cabin Management System |
| Flugsteuerungssysteme in Militärflugzeugen |
| Flugsteuerungssysteme in Hubschraubern |

14. Literatur:

<table>
<thead>
<tr>
<th>15. Lehrveranstaltungen und -formen:</th>
<th>441001 Vorlesung Angewandte Luftfahrtsysteme II</th>
</tr>
</thead>
<tbody>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>90 h (Präsenzzeit 28 h, Selbststudium: 62 h)</td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>44101 Angewandte Luftfahrtsysteme II (BSL), mündliche Prüfung, 20 Min., Gewichtung: 1.0</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td></td>
</tr>
</tbody>
</table>
Modul: 44140 Autoflight und Air Traffic Management

2. Modulkürzel: 060900115
5. Modulduauer: 1 Semester

3. Leistungspunkte: 3.0 LP

4. SWS: 2.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Reinhard Reichel

9. Dozenten: Arne Altmann

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technische Kybernetik, PO 2011
→ Vorgezogene Master-Module

DoubleM.D. Technische Kybernetik, PO 2011
→ Incoming -->Spezialisierungsfach -->Flugführung und Systemtechnik
→

DoubleM.D. Technische Kybernetik, PO 2011
→ Outgoing -->Spezialisierungsfach -->Flugführung und Systemtechnik
→

DoubleM.D. Technische Kybernetik, PO 2014
→ Incoming -->Spezialisierungsfach -->Flugführung und Systemtechnik
→

DoubleM.D. Technische Kybernetik, PO 2014
→ Outgoing -->Spezialisierungsfach -->Flugführung und Systemtechnik
→

DoubleM.D. Technische Kybernetik, PO 2014
→ Wahlpflichtmodule -->Spezialisierungsfach -->Flugführung und Systemtechnik
→

M.Sc. Technische Kybernetik, PO 2011
→ Spezialisierungsmodule -->Spezialisierungsfach -->Flugführung und Systemtechnik
→

11. Empfohlene Voraussetzungen:

12. Lernziele:

Studierende kennen
• Funktion und Aufbau eines realen Autoflight- und Displaysystems eines modernen Verkehrsflugzeugs,
• Grundlagen zu Air Traffic Management,
• Grundlagen zur Flugplanung.

13. Inhalt:

Allgemeine Grundlagen zu

• Air Traffic Management,
• Systemen wie Autopilot, Flight Director, Flight Management, Navigation,
• Situations Awareness neuer Displaykonzepte,
• Flugplanung, Take-Off-Performance.

Praktische Einführung/Grundlagen zum Airbus-Autoflight-Simulator mit Sichtsystem am ILS.

Durchführen von Übungen am Simulator.

15. Lehrveranstaltungen und -formen:
- 441401 Seminar Autoflight und Air Traffic Management
- 441402 Freie Übungen am Simulator

16. Abschätzung Arbeitsaufwand: 90 h, (Präsenzzeit 28 h, Selbststudium 62 h)

17. Prüfungsnummer/n und -name: 44141 Autoflight und Air Traffic Management (BSL), mündliche Prüfung, 20 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
Modul: 36370 Entwicklungsprozess von Luftfahrtsystemen

2. Modulkürzel: 060900121
3. Leistungspunkte: 3.0 LP
4. SWS: 2.0
5. Modulduer: 1 Semester
6. Turnus: jedes 2. Semester, SoSe
7. Sprache: Deutsch
8. Modulverantwortlicher: Matthias Lehmann
9. Dozenten: Matthias Lehmann
10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technische Kybernetik, PO 2011
 → Vorgezogene Master-Module
 DoubleM.D. Technische Kybernetik, PO 2011
 → Incoming -->Spezialisierungsfach -->Flugführung und Systemtechnik
 DoubleM.D. Technische Kybernetik, PO 2011
 → Outgoing -->Spezialisierungsfach -->Flugführung und Systemtechnik
 DoubleM.D. Technische Kybernetik, PO 2014
 → Incoming -->Spezialisierungsfach -->Flugführung und Systemtechnik
 DoubleM.D. Technische Kybernetik, PO 2014
 → Outgoing -->Spezialisierungsfach -->Flugführung und Systemtechnik
 DoubleM.D. Technische Kybernetik, PO 2014
 → Wahlpflichtmodule -->Spezialisierungsfach -->Flugführung und Systemtechnik
 M.Sc. Technische Kybernetik, PO 2011
 → Spezialisierungsmodule -->Spezialisierungsfach -->Flugführung und Systemtechnik

11. Empfohlene Voraussetzungen:

13. Inhalt:
 • Entwicklungsstandards am Beispiel der Do178 und der ARP 4754
 • Lesen und interpretieren der Standards am Beispiel der Do178
 • Grundlagen verschiedener Beschreibungsformen
 • Grundlagen des Requirements Based Engineering
 • Anwendung der Grundlagen an einem Beispiel mit gängigen Tools

14. Literatur:

15. Lehrveranstaltungen und -formen: 363701 Vorlesung Entwicklungsprozess von Luftfahrtsystemen

16. Abschätzung Arbeitenaufwand: 90h: (Präsenszeit: 28 h, Selbststudium: 62 h)

17. Prüfungsnummer/n und -name: 36371 Entwicklungsprozess von Luftfahrtsystemen (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0
18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 40830 Flugmechanik

2. Modulkürzel: 060200003
3. Leistungspunkte: 3.0 LP
4. SWS: 2.0
5. Modulduauer: 1 Semester
6. Turnus: jedes Semester
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Walter Fichter
9. Dozenten: Walter Fichter
10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technische Kybernetik, PO 2011, . Semester
 → Ergänzungsmodul -->Wahlbereich Anwendungsfach -->Luft- und Raumfährttechnik
 →
 B.Sc. Technische Kybernetik, PO 2011, . Semester
 → Vorgezogene Master-Module
DoubleM.D. Technische Kybernetik, PO 2011
 → Chalmers -->Incoming -->Wahlfach Technische Kybernetik
 →
DoubleM.D. Technische Kybernetik, PO 2011
 → Chalmers -->Outgoing -->Wahlfach Technische Kybernetik
 →
DoubleM.D. Technische Kybernetik, PO 2011
 → Incoming -->Spezialisierungsfach -->Flugführung und Systemtechnik
 →
DoubleM.D. Technische Kybernetik, PO 2011
 → Outgoing -->Spezialisierungsfach -->Flugführung und Systemtechnik
 →
DoubleM.D. Technische Kybernetik, PO 2014
 → Incoming -->Spezialisierungsfach -->Flugführung und Systemtechnik
 →
DoubleM.D. Technische Kybernetik, PO 2014
 → Outgoing -->Spezialisierungsfach -->Flugführung und Systemtechnik
 →
DoubleM.D. Technische Kybernetik, PO 2014
 → Wahlpflichtmodule -->Spezialisierungsfach -->Flugführung und Systemtechnik
 →
M.Sc. Technische Kybernetik, PO 2011, . Semester
 → Spezialisierungsmodul -->Spezialisierungsfach -->Flugführung und Systemtechnik
 →
M.Sc. Technische Kybernetik, PO 2011, . Semester
 → Spezialisierungsmodul -->Wahlfach Technische Kybernetik

11. Empfohlene Voraussetzungen: keine
12. Lernziele:
 Die Studierenden sind in der Lage,
 • Modelle der Flugzeugbewegung zu bilden mit der Komplexität, die der jeweiligen Anwendung angemessen ist,
das Bewegungsverhalten bzgl. Stabilität, Eigendynamik usw. zu analysieren,
Flugsimulationsprogrammen zu verstehen, entwerfen und zu modifizieren.

13. Inhalt:
Koordinatensysteme und Transformationen Herleitung verschiedener Bewegungsmodelle (nichtlinear, 6 Freiheitsgrade und 3 Freiheitsgrade) und Kriterien für deren Einsatz Aufbau von Flugsimulationen, Initialisierung und Parametrisierung Berechnung von stationären Flugzuständen Linearisierung der Bewegungsmodelle mit 6 Freiheitsgraden Analyseverfahren und Analyse der Bewegungsgleichungen im Zeitbereich

14. Literatur:
Vortragsfolien, Vortragsübungen und Matlab-Files im Netz

15. Lehrveranstaltungen und -formen:
• 408301 Vorlesung Flugmechanik
• 408302 Übung Flugmechanik

16. Abschätzung Arbeitsaufwand:
Flugmechanik, Vorlesung: 10 h Präsenzzeit, 35 Stunden Selbststudium Übung (Pflicht): 5 h Präsenzzeit, 18 h Selbststudium Tutorium (freiwillig): 5 h Präsenzzeit, 17 h Selbststudium

17. Prüfungsnummer/n und -name:
40831 Flugmechanik (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:
Zuhilfenahme von Projektor und Beamer, elektronische Unterlagen im Netz, Vorführung von Flugsimulationen

20. Angeboten von:
Modul: Flugmechanik und Flugregelung von Hubschraubern

2. Modulkürzel: 060200114
5. Modulduer: 1 Semester
3. Leistungspunkte: 3.0 LP
6. Turnus: jedes 2. Semester, WiSe
4. SWS: 2.0
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Walter Fichter
9. Dozenten: Ulrich Butter

10. Zuordnung zum Curriculum in diesem Studiengang:

- **B.Sc. Technische Kybernetik, PO 2011**
 → Vorgezogene Master-Module
 → DoubleM.D. Technische Kybernetik, PO 2011
 → Incoming -->Spezialisierungsfach -->Flugführung und Systemtechnik
 → DoubleM.D. Technische Kybernetik, PO 2011
 → Outgoing -->Spezialisierungsfach -->Flugführung und Systemtechnik
 → DoubleM.D. Technische Kybernetik, PO 2014
 → Incoming -->Spezialisierungsfach -->Flugführung und Systemtechnik
 → DoubleM.D. Technische Kybernetik, PO 2014
 → Outgoing -->Spezialisierungsfach -->Flugführung und Systemtechnik
 → DoubleM.D. Technische Kybernetik, PO 2014
 → Wahlpflichtmodule -->Spezialisierungsfach -->Flugführung und Systemtechnik
 → M.Sc. Technische Kybernetik, PO 2011
 → Spezialisierungsmodule -->Spezialisierungsfach -->Flugführung und Systemtechnik

11. Empfohlene Voraussetzungen:

- Die Studierenden verstehen die Wirkungsmechanismen des Rotors und kennen die Besonderheiten der Rotordynamik.
- Die Studierenden sind in der Lage, nichtlineare und lineare dynamische Modelle der Hubschrauberbewegung zu erstellen.
- Die Studierenden haben einen Überblick über die Ziele, die Besonderheiten, die Struktur und die gängigsten Elemente der Hubschrauber-Regelung.

12. Lernziele:

- Modellierung des Schubes mit Strahltheorie und Blattelemententheorie
- Eigenschaften und physikalischer Hintergrund der Rotordynamik
- Aufstellung der nichtlinearen Bewegungsgleichungen, Trimmzustand, Linearisierung und Charakterisierung typischer Eigenbewegungen
- Flugeigenschaftskriterien für den Reglerentwurf
- stabilitätserhöhende Rückführungen und Autopiloten

13. Inhalt:

- Die Studierenden verstehen die Wirkungsmechanismen des Rotors und kennen die Besonderheiten der Rotordynamik.
- Die Studierenden sind in der Lage, nichtlineare und lineare dynamische Modelle der Hubschrauberbewegung zu erstellen.
- Die Studierenden haben einen Überblick über die Ziele, die Besonderheiten, die Struktur und die gängigsten Elemente der Hubschrauber-Regelung.

14. Literatur:

- U. Butter, Hubschrauber-Flugmechanik und -Flugregelung, Skript
- W. Bittner, Flugmechanik der Hubschrauber, Springer
- R.W. Prouty, Helicopter Aerodynamics, PJS Publications
<table>
<thead>
<tr>
<th>15. Lehrveranstaltungen und -formen:</th>
<th>444301 Vorlesung Flugmechanik und Flugregelung von Hubschraubern</th>
</tr>
</thead>
<tbody>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>90 h (Präsenzzeit 28 h, Selbststudium 62 h)</td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>44431 Flugmechanik und Flugregelung von Hubschraubern (BSL), mündliche Prüfung, 20 Min., Gewichtung: 1.0</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td></td>
</tr>
</tbody>
</table>
Modul: 44440 Flugmesstechnik

2. Modulkürzel: 060900116
5. Modulduauer: 1 Semester
3. Leistungspunkte: 3.0 LP
6. Turnus: jedes 2. Semester, SoSe
4. SWS: 2.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Reinhard Reichel

9. Dozenten: Arne Altmann

10. Zuordnung zum Curriculum in diesem Studiengang:

 B.Sc. Technische Kybernetik, PO 2011
 → Vorgezogene Master-Module
 DoubleM.D. Technische Kybernetik, PO 2011
 → Incoming -->Spezialisierungsfach -->Flugführung und Systemtechnik
 →
 DoubleM.D. Technische Kybernetik, PO 2011
 → Outgoing -->Spezialisierungsfach -->Flugführung und Systemtechnik
 →
 DoubleM.D. Technische Kybernetik, PO 2014
 → Incoming -->Spezialisierungsfach -->Flugführung und Systemtechnik
 →
 DoubleM.D. Technische Kybernetik, PO 2014
 → Outgoing -->Spezialisierungsfach -->Flugführung und Systemtechnik
 →
 DoubleM.D. Technische Kybernetik, PO 2014
 → Wahlpflichtmodule -->Spezialisierungsfach -->Flugführung und Systemtechnik
 →
 M.Sc. Technische Kybernetik, PO 2011
 → Spezialisierungsmodule -->Spezialisierungsfach -->Flugführung und Systemtechnik
 →

11. Empfohlene Voraussetzungen:

12. Lernziele:
Die Studierenden sind in der Lage, einen Flugversuch für ein Flugzeug der Allgemeinen Luftfahrt (General Aviation) zu planen, durchzuführen und auszuwerten. Außerdem sollen sie ihre Ergebnisse in einem schriftlichen Bericht und in einem Vortrag übersichtlich und aussagekräftig darstellen können.

13. Inhalt:
• Grundlagen: Hintergründe zu den Messflügen, Erfassung von Messgrößen, Instrumentierung eines Flugzeugs, Flugleistungen.
• Einführung in das Experimentallflugzeug: Systeme, Flugleistung, Instrumentierung mit zentraler Datenerfassungsplattform.
• Vorbereiten und Durchführen eines Messfluges: Erstellen eines individuellen Messprogramms, Ausarbeitung der zugehörigen FlightCards, Durchführung der Flugmesskampagne mit Piloten, Messdatenauswertung und Erstellen eines Ergebnisberichtes.

14. Literatur:
• Skript zur Vorlesung
• European Aviation Safety Agency: „Certification Specifications for Normal, Utility, Aerobatic, and Commuter Category Aeroplanes CS-23“
• Edward A. Haering, Jr.: "Airdata Measurement and Calibration"
<table>
<thead>
<tr>
<th>15. Lehrveranstaltungen und -formen:</th>
<th>444401 Seminar Flugmesstechnik</th>
</tr>
</thead>
<tbody>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>90 h (Präsenzzeit 28 h, Selbststudium 62 h)</td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>44441 Flugmesstechnik (BSL), Sonstiges, Gewichtung: 1.0, (schriftliche Ausarbeitung (lehrveranstaltungsbegleitend), Präsentation und mündliche Prüfung, 20 min)</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td></td>
</tr>
</tbody>
</table>
Modul: 44450 Flugregelungssysteme

2. Modulkürzel: 060900110
5. Modulduauer: 1 Semester
3. Leistungspunkte: 6.0 LP
6. Turnus: jedes 2. Semester, SoSe
4. SWS: 5.0
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Reinhard Reichel
9. Dozenten: • Werner Grimm
• Walter Fichter
• Reinhard Reichel
10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technische Kybernetik, PO 2011
➞ Vorgezogene Master-Module

DoubleM.D. Technische Kybernetik, PO 2011
➞ Incoming -->Spezialisierungsfach -->Flugführung und Systemtechnik

DoubleM.D. Technische Kybernetik, PO 2011
➞ Outgoing -->Spezialisierungsfach -->Flugführung und Systemtechnik

DoubleM.D. Technische Kybernetik, PO 2014
➞ Incoming -->Spezialisierungsfach -->Flugführung und Systemtechnik

DoubleM.D. Technische Kybernetik, PO 2014
➞ Outgoing -->Spezialisierungsfach -->Flugführung und Systemtechnik

DoubleM.D. Technische Kybernetik, PO 2014
➞ Wahlpflichtmodule -->Spezialisierungsfach -->Flugführung und Systemtechnik

M.Sc. Technische Kybernetik, PO 2011
➞ Spezialisierungsmodul -->Spezialisierungsfach -->Flugführung und Systemtechnik

11. Empfohlene Voraussetzungen: 54180 Regelung und Systementwurf
12. Lernziele:

Flugregelungsentwurf:
• Die Studierenden kennen die geforderten Eigenschaften eines geregelt Flugzeugs.
• Die Studierenden kennen die Regelziele und verschiedene Varianten stabilitätserhöhender Rückführungen.
• Die Studierenden kennen die Regelziele und die Struktur der wichtigsten Autopiloten.

Systementwurf:
• Vertiefung der Kenntnisse im Bereich Systementwurf durch praktikumsorientierte Anwendung der Systementwurfsgrundlagen aus der Vorlesung "Systementwurf I"
13. Inhalt:

Flugregelungsentwurf:
• Flugeigenschaftskriterien für die Längs- und Seitenbewegung
• stabilitätserhöhende Rückführungen in der Längs- und
 Seitenbewegung
• Autopiloten der Längs- und Seitenbewegung (Höhen- und
 Geschwindigkeitshaltung, Azimutregler, automatische Landung usw.)

Systementwurf:
Auslegung, Umsetzung und Verifikation eines redundanten Systems zur
Steuerung von Flugzeugen:

• Analyse anwendungsorientierter Systemvorgaben
• Auslegung der Management-Funktionen zum Betrieb eines
 redundanten Avioniksystems/Rechnersystems
• Auslegung der Management-Funktionen zum Betrieb redundanter
 Sensorik und Aktuatorik
• Umsetzung zentraler Funktionen in Software
• Integration der Software in einen Systemdemonstrator
• Systemverifikation anhand spezifischer Testfälle

Die Bearbeitung erfolgt selbständig und gruppenweise unter der
Anleitung von
Betreuern.

14. Literatur:
U. Butter, Flugregelung, Skript
R. Brockhaus, Flugregelung, Springer
B.L. Stevens und F.L. Lewis, Aircraft Control and Simulation, Wiley
Reichel, R.: Systementwurf I, Skript
Hesse, S.: Systementwurf II, Präsentationsfoliensatz

15. Lehrveranstaltungen und -formen:
• 444501 Flugregelungsentwurf
• 444502 Systementwurf II

16. Abschätzung Arbeitsaufwand:
Flugregelungsentwurf, Vorlesung: 90 h (Präsenzzeit 28 h, Selbststudium
62 h)
Systementwurf Praktikum: 90 h (Präsenzzeit 42 h, Selbststudium 48 h)
Gesamt: 180h (70h Präsenzzeit, 110h Selbststudium)

17. Prüfungsnummer/n und -name:
44451 Flugregelungssysteme (PL), mündliche Prüfung,
Gewichtung: 1.0, (Flugregelung, 20min, Gewichtung: 0.5;
Systementwurf, 20min, Gewichtung: 0.5)

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
Modul: 45230 Integrierte Modulare Avionik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>060900013</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>3.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:
- B.Sc. Technische Kybernetik, PO 2011
 → Vorgezogene Master-Module
 - DoubleM.D. Technische Kybernetik, PO 2011
 → Incoming -->Spezialisierungsfach -->Flugführung und Systemtechnik
 - DoubleM.D. Technische Kybernetik, PO 2011
 → Outgoing -->Spezialisierungsfach -->Flugführung und Systemtechnik
 - DoubleM.D. Technische Kybernetik, PO 2014
 → Incoming -->Spezialisierungsfach -->Flugführung und Systemtechnik
 - DoubleM.D. Technische Kybernetik, PO 2014
 → Outgoing -->Spezialisierungsfach -->Flugführung und Systemtechnik
 - DoubleM.D. Technische Kybernetik, PO 2014
 → Wahlpflichtmodule -->Spezialisierungsfach -->Flugführung und Systemtechnik
- M.Sc. Technische Kybernetik, PO 2011
 → Spezialisierungsmodule -->Spezialisierungsfach -->Flugführung und Systemtechnik

11. Empfohlene Voraussetzungen:

12. Lernziele:
Studierende können Luftfahrtsysteme auf Basis der IMA-Technologie entwickeln und umsetzen.

13. Inhalt:
- Grundlagen IMA spezifischer Technologien im Hinblick auf
- Echtzeitverarbeitung, Operating-System, ARINC-API
- Entwicklungsumgebung
- Signalverarbeitung und Buskommunikation.
- Entwicklung und Realisierung einer Kabinendrucksystemsteuerung
- Auslegen einer (Anwender-)funktion für eine Kabinendrucksystemsteuerung und Kabinendruckregelung
- Umsetzen der Steuerung/Regelung mit IMA-Elementen
- Verifikation der Kabinendrucksystemsteuerung und Kabinendruckregelung

14. Literatur:
- Skript zum Praktikum
 Civil Avionics Systems (AIAA Education Series) von I. Moir, Sirona G. Knight, Ian Moir

15. Lehrveranstaltungen und -formen:
- 452301 Praktikum Integrierte Modulare Avionik
<table>
<thead>
<tr>
<th>Nr.</th>
<th>Inhalt</th>
</tr>
</thead>
<tbody>
<tr>
<td>16.</td>
<td>Abschätzung Arbeitsaufwand: 90h: (Präsenzzeit 42 h, Selbststudium 48 h)</td>
</tr>
<tr>
<td>17.</td>
<td>prüfungsnummer/n und -name: 45231 Integrierte Modulare Avionik (BSL), Sonstiges, 30 Min., Gewichtung: 1.0, (Präsentation mit mündlicher Prüfung)</td>
</tr>
<tr>
<td>18.</td>
<td>Grundlage für ... :</td>
</tr>
<tr>
<td>19.</td>
<td>Medienform:</td>
</tr>
<tr>
<td>20.</td>
<td>Angeboten von:</td>
</tr>
</tbody>
</table>
Modul: 44060 Integrierte Modulare Avionik und Entwicklungsprozess

2. Modulkürzel: 060900111
5. Modul: 1 Semester
3. Leistungspunkte: 6.0 LP
6. Turnus: jedes 2. Semester, SoSe
4. SWS: 5.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Matthias Lehmann
9. Dozenten: Matthias Lehmann

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technische Kybernetik, PO 2011
 ➔ Vorgezogene Master-Module
 DoubleM.D. Technische Kybernetik, PO 2011
 ➔ Incoming -->Spezialisierungsfach -->Flugführung und Systemtechnik
 ➔
 DoubleM.D. Technische Kybernetik, PO 2011
 ➔ Outgoing -->Spezialisierungsfach -->Flugführung und Systemtechnik
 ➔
 DoubleM.D. Technische Kybernetik, PO 2014
 ➔ Incoming -->Spezialisierungsfach -->Flugführung und Systemtechnik
 ➔
 DoubleM.D. Technische Kybernetik, PO 2014
 ➔ Outgoing -->Spezialisierungsfach -->Flugführung und Systemtechnik
 ➔
 DoubleM.D. Technische Kybernetik, PO 2014
 ➔ Wahlpflichtmodule -->Spezialisierungsfach -->Flugführung und Systemtechnik
 ➔
 M.Sc. Technische Kybernetik, PO 2011
 ➔ Spezialisierungsmodul -->Spezialisierungsfach -->Flugführung und Systemtechnik
 ➔

11. Empfohlene Voraussetzungen:

12. Lernziele:
Integrierte Modulare Avionik (IMA):

Studierende haben vertiefte Kenntnisse in der IMA-Technologie. Sie können Luftfahrtsysteme auf Basis von IMA auslegen und realisieren.

Entwicklungsprozess:

Studierenden haben detaillierte Kenntnis vom Entwicklungsprozess software-dominator Luftfahrtsysteme. Sie können solche Prozesse definieren und bewerten.

13. Inhalt:
Integrierte Modulare Avionik:

Grundlagen IMA spezifischer Technologien im Hinblick auf

• Echtzeitverarbeitung, Operating-System, ARINC-API
• Entwicklungsumgebung
• Signalverarbeitung und Buskommunikation.
• Analyse verschiedener Avioniktechnologien und Avionikstrukturen in Passagierflugzeugen
• Spezielle Aspekte der Datenverarbeitung mit Segregation/Partitioning
• Kommunikationsnetzwerke in der Avionik

Entwicklung und Realisierung einer Kabinendrucksystemsteuerung
• Auslegen einer (Anwender-)funktion für eine Kabinendruckregelung
• Umsetzen von Anwenderverfunktion mit IMA-Elementen
• Verifikation der realisierten Kabinendruckregelung

Entwicklungsprozess von Luftfahrtsystemen
• Entwicklungsstandards am Beispiel der Do178 und der ARP 4754
• Lesen und Interpretieren der Standards am Beispiel der Do178
• Grundlagen verschiedener Beschreibungsformen
• Grundlagen des Requirements Based Engineering
• Anwendung der Grundlagen an einem Beispiel mit gängigen Tools

14. Literatur:
• Entwicklungsprozess: Skript
• Integrierte Modulare Avionik: Skript
• Civil Avionics Systems (AIAA Education Series)von I. Moir, Sirona G. Knight, Ian Moir
• Die Technik des modernen Verkehrsluftzeuges von Klaus Hünecke

15. Lehrveranstaltungen und -formen:
• 440601 Praktikum Integrierte Modulare Avionik
• 440602 Vorlesung Entwicklungsprozess von Luftfahrtsystemen

16. Abschätzung Arbeitsaufwand:
Integrierte Modulare Avionik, Praktikum: 90h (Präsenzzeit 42 h, Selbststudium 48 h)
Entwicklungsprozess von Luftfahrtsystemen, Vorlesung: 90h (Präsenzzeit 28 h, Selbststudium 62 h)
Gesamt: 180h (70h Präsenzzeit, 110h Selbststudium)

17. Prüfungsnummer/n und -name:
44061 Integrierte Modulare Avionik und Entwicklungsprozess (Prüfung) (PL), Sonstiges, Gewichtung: 1.0, (Integrierte Modulare Avionik, Präsentation mit mündlicher Prüfung, 30 min., Gewichtung: 0.5; Entwicklungsprozess von Luftfahrtsystemen, schriftliche Prüfung, 60 min., Gewichtung 0.5)

18. Grundlage für ... :

19. Medienform:
PPT, Tafel, Programmanwendungen, IMA-Laboreinrichtung

20. Angeboten von:
Institut für Luftfahrtsysteme
Modul: 44620 Komplexe Avioniksysteme I

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>060900119</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>5. Modulduer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Reinhard Reichel

9. Dozenten: Reinhard Reichel

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>B.Sc. Technische Kybernetik, PO 2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorgezogene Master-Module</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2011</td>
</tr>
<tr>
<td>→ Incoming -->Spezialisierungsfach -->Flugführung und Systemtechnik</td>
</tr>
<tr>
<td>→</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2011</td>
</tr>
<tr>
<td>→ Outgoing -->Spezialisierungsfach -->Flugführung und Systemtechnik</td>
</tr>
<tr>
<td>→</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2014</td>
</tr>
<tr>
<td>→ Incoming -->Spezialisierungsfach -->Flugführung und Systemtechnik</td>
</tr>
<tr>
<td>→</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2014</td>
</tr>
<tr>
<td>→ Outgoing -->Spezialisierungsfach -->Flugführung und Systemtechnik</td>
</tr>
<tr>
<td>→</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2014</td>
</tr>
<tr>
<td>→ Wahlpflichtmodule -->Spezialisierungsfach -->Flugführung und Systemtechnik</td>
</tr>
<tr>
<td>→</td>
</tr>
<tr>
<td>M.Sc. Technische Kybernetik, PO 2011</td>
</tr>
<tr>
<td>→ Spezialisierungsmodul -->Spezialisierungsfach -->Flugführung und Systemtechnik</td>
</tr>
<tr>
<td>→</td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen:

12. Lernziele:

Die Studierenden lernen die Grundlagen komplexer fehler tolerant Avioniksysteme kennen und können derartige Systeme entwerfen.

13. Inhalt:

Grundlagen fehler tolerant, „nicht zeitsynchroner“ verteilter Avioniksysteme:

- Erweiterung von Agreement, Reliable Broadcast, Consensus
- Grundlegende Mechanismen zum Betrieb solcher Systeme

Herleitung verteilter Systemarchitekturen.

Herleitung einer Software-Architektur.

14. Literatur:

15. Lehrveranstaltungen und -formen:

| 446201 Vorlesung Komplexe Avioniksysteme I |

Stand: 09. April 2015
<table>
<thead>
<tr>
<th>16. Abschätzung Arbeitsaufwand:</th>
<th>90 h (Präsenzzeit 28 h, Selbststudium 62 h)</th>
</tr>
</thead>
<tbody>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>44621 Komplexe Avioniksysteme I (BSL), mündliche Prüfung, 20 Min., Gewichtung: 1.0</td>
</tr>
<tr>
<td>18. Grundlage für … :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td></td>
</tr>
</tbody>
</table>
Modul: 44630 Komplexe Avioniksysteme II

2. Modulkürzel: 060900120
3. Leistungspunkte: 3.0 LP
4. SWS: 2.0
5. Modulduauer: 1 Semester
7. Sprache: Deutsch
8. Modulverantwortlicher: Matthias Lehmann
9. Dozenten:
 • Matthias Lehmann
 • Mohamed Elmahdi
10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technische Kybernetik, PO 2011
 → Vorgezogene Master-Module
 DoubleM.D. Technische Kybernetik, PO 2011
 → Incoming -->Spezialisierungsfach -->Flugführung und Systemtechnik
 →
 DoubleM.D. Technische Kybernetik, PO 2011
 → Outgoing -->Spezialisierungsfach -->Flugführung und Systemtechnik
 →
 DoubleM.D. Technische Kybernetik, PO 2014
 → Incoming -->Spezialisierungsfach -->Flugführung und Systemtechnik
 →
 DoubleM.D. Technische Kybernetik, PO 2014
 → Outgoing -->Spezialisierungsfach -->Flugführung und Systemtechnik
 →
 DoubleM.D. Technische Kybernetik, PO 2014
 → Wahlpflichtmodule -->Spezialisierungsfach -->Flugführung und Systemtechnik
 →
 M.Sc. Technische Kybernetik, PO 2011
 → Spezialisierungsmodule -->Spezialisierungsfach -->Flugführung und Systemtechnik
 →
11. Empfohlene Voraussetzungen: 060900119 Komplexe Avioniksysteme I
12. Lernziele:
 Die Studierenden vertiefen die Kenntnisse aus der Lehrveranstaltung „Komplexe Avioniksysteme I“ in Form eines Praktikums.
13. Inhalt:
 • Auslegung eines vereinfachten Fly-by-Wire Systems auf Basis einer verteilten Avionikstruktur.
 • Einarbeitung in ein teilautomatisiertes System-/Software-Entwicklungsverfahren.
 • Systemrealisierung mittels des o.a. System-/Software-Entwicklungsverfahrens.
 • System-Verifizierung/Validierung.
14. Literatur:

<table>
<thead>
<tr>
<th>15. Lehrveranstaltungen und -formen:</th>
<th>446301 Praktikum Komplexe Avioniksysteme II</th>
</tr>
</thead>
<tbody>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>90h (Präsenzzeit 28 h, Selbststudium 62 h)</td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>44631 Komplexe Avioniksysteme II (BSL), Sonstiges, 20 Min., Gewichtung: 1.0, (Präsentation)</td>
</tr>
</tbody>
</table>

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
Modul: 44780 Lenkverfahren

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>060200113</th>
<th>5. Modulduauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Werner Grimm

9. Dozenten: • Werner Grimm • Thomas Kuhn

10. Zuordnung zum Curriculum in diesem Studiengang:

 - B.Sc. Technische Kybernetik, PO 2011
 - Vorgezogene Master-Module
 - DoubleM.D. Technische Kybernetik, PO 2011
 - Chalmers -->Incoming -->Wahlfach Technische Kybernetik
 - DoubleM.D. Technische Kybernetik, PO 2011
 - Chalmers -->Outgoing -->Wahlfach Technische Kybernetik
 - DoubleM.D. Technische Kybernetik, PO 2011
 - Incoming -->Spezialisierungsfach -->Flugführung und Systemtechnik
 - DoubleM.D. Technische Kybernetik, PO 2011
 - Outgoing -->Spezialisierungsfach -->Flugführung und Systemtechnik
 - DoubleM.D. Technische Kybernetik, PO 2014
 - Incoming -->Spezialisierungsfach -->Flugführung und Systemtechnik
 - DoubleM.D. Technische Kybernetik, PO 2014
 - Outgoing -->Spezialisierungsfach -->Flugführung und Systemtechnik
 - DoubleM.D. Technische Kybernetik, PO 2014
 - Wahlpflichtmodule -->Spezialisierungsfach -->Flugführung und Systemtechnik
 - M.Sc. Technische Kybernetik, PO 2011
 - Spezialisierungsmodule -->Spezialisierungsfach -->Flugführung und Systemtechnik
 - M.Sc. Technische Kybernetik, PO 2011
 - Spezialisierungsmodul -->Wahlfach Technische Kybernetik

11. Empfohlene Voraussetzungen:

12. Lernziele:

 • Die Studierenden kennen die wichtigsten Grundbegriffe und Definitionen der Lenkung.
 • Die Studierenden kennen die Schnittstellen der Lenkung mit den übrigen Komponenten des Flugkörpersystems, insbesondere mit der Regelung und Navigation.
 • Die Studierenden kennen die wichtigsten Verfahren zur Messung und Schätzung der Zielbewegung.
• Die Studierenden kennen die wichtigsten Verfahren der autonomen und der kommandierten Lenkung.
• Die Studierenden kennen die regelungstechnischen Varianten zur Umsetzung des Lenkkommandos.
• Die Studierenden sind in der Lage, die Lenkverfahren in einfacher Form zu simulieren.

13. Inhalt:
• Klassifizierung von Szenarien und Lenkwaffentypen
• Flugkörperlenkung (Proportionalnavigation, Zieldeckungslenkung u.a.)
• Einbettung der Lenkung in das System Flugkörper
• Methoden zur Messung und Schätzung der Zielbewegung
• regelungstechnische Umsetzung des Lenkkommandos
• einfache Simulationsmodelle

14. Literatur:
• W. Grimm, T. Kuhn: Lenkverfahren, Skript
• G.M. Siouris: Missile Guidance and Control Systems, Springer
• J.H. Blakelock: Automatic Control of Aircraft and Missiles, Wiley
• R.H. Battin: Astronautical Guidance, McGraw-Hill
• Vortragsübungen im Netz

15. Lehrveranstaltungen und -formen:
• 447801 Vorlesung Lenkverfahren
• 447802 Übung Lenkverfahren

16. Abschätzung Arbeitsaufwand:
Lenkverfahren, Vorlesung: 45 h (Präsenzzeit 14 h, Selbststudium 31 h)
Lenkverfahren, Übung: 45 h (Präsenzzeit 14 h, Selbststudium 31 h)
Gesamt: 90 h (Präsenzzeit 28 h, Selbststudium 62 h)

17. Prüfungsnummer/n und -name:
44781 Lenkverfahren (BSL), mündliche Prüfung, 20 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:
Zuhilfenahme von Projektor und Beamer, elektronische Unterlagen im Netz

20. Angeboten von:
Institut für Flugmechanik und Flugregelung
Modul: 45180 Methoden der Sicherheitsanalyse

2. Modulkürzel: 060900122
5. Modulduer: 1 Semester

3. Leistungspunkte: 3.0 LP

4. SWS: 2.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Reinhard Reichel

9. Dozenten: Philipp Luithardt

 → Vorgezogene Master-Module
 DoubleM.D. Technische Kybernetik, PO 2011
 → Incoming -->Spezialisierungsfach -->Flugführung und Systemtechnik
 →
 DoubleM.D. Technische Kybernetik, PO 2011
 → Outgoing -->Spezialisierungsfach -->Flugführung und Systemtechnik
 →
 DoubleM.D. Technische Kybernetik, PO 2014
 → Incoming -->Spezialisierungsfach -->Flugführung und Systemtechnik
 →
 DoubleM.D. Technische Kybernetik, PO 2014
 → Outgoing -->Spezialisierungsfach -->Flugführung und Systemtechnik
 →
 DoubleM.D. Technische Kybernetik, PO 2014
 → Wahlpflichtmodule -->Spezialisierungsfach -->Flugführung und Systemtechnik
 →
 M.Sc. Technische Kybernetik, PO 2011
 → Spezialisierungsmodule -->Spezialisierungsfach -->Flugführung und Systemtechnik
 →

11. Empfohlene Voraussetzungen:

13. Inhalt: Spezielle Kapitel der Wahrscheinlichkeitsrechnung
 Markov Analyse
 Dependability Analyse
 Fehlerbaumanalyse
 FMEA-Prozess (Fehler-Mode & -Effekt Analyse)
 Anwendungsbeispiele

<table>
<thead>
<tr>
<th>15. Lehrveranstaltungen und -formen:</th>
<th>451801 Vorlesung Methoden der Sicherheitsanalyse</th>
</tr>
</thead>
<tbody>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>90h (Präsenzzeit: 28 h, Selbststudium: 62 h)</td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>45181 Methoden der Sicherheitsanalyse (BSL), mündliche Prüfung, 20 Min., Gewichtung: 1.0</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>18. Grundlage für ... :</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>19. Medienform:</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td></td>
</tr>
</tbody>
</table>
Modul: 44590 Methoden der Systemmodellierung und Systemanalyse

2. Modulkürzel: 060900114 5. Moduldauer: 1 Semester
4. SWS: 2.0 7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Reinhard Reichel
9. Dozenten: Reinhard Reichel

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technische Kybernetik, PO 2011
 → Vorgezogene Master-Module
 DoubleM.D. Technische Kybernetik, PO 2011
 → Incoming -->Spezialisierungsfach -->Flugführung und Systemtechnik
 →
 DoubleM.D. Technische Kybernetik, PO 2011
 → Outgoing -->Spezialisierungsfach -->Flugführung und Systemtechnik
 →
 DoubleM.D. Technische Kybernetik, PO 2014
 → Incoming -->Spezialisierungsfach -->Flugführung und Systemtechnik
 →
 DoubleM.D. Technische Kybernetik, PO 2014
 → Outgoing -->Spezialisierungsfach -->Flugführung und Systemtechnik
 →
 DoubleM.D. Technische Kybernetik, PO 2014
 → Wahlpflichtmodule -->Spezialisierungsfach -->Flugführung und Systemtechnik
 →
 M.Sc. Technische Kybernetik, PO 2011
 → Spezialisierungsmodule -->Spezialisierungsfach -->Flugführung und Systemtechnik
 →

11. Empfohlene Voraussetzungen:

13. Inhalt: Systemmodellierung und -analyse mittels
 • Aussagenlogik
 • SysML, UML
 • regelbasiertem Ansätze

14. Literatur: Skript zur Vorlesung

15. Lehrveranstaltungen und -formen: 445901 Seminar Methoden der Systemmodellierung und Systemanalyse

16. Abschätzung Arbeitsaufwand: 90 h (Präsenzzeit 28 h, Selbststudium 62 h)

17. Prüfungsnummer/n und -name: 44591 Methoden der Systemmodellierung und Systemanalyse (BSL), mündliche Prüfung, 20 Min., Gewichtung: 1.0

18. Grundlage für ... :

Stand: 09. April 2015 Seite 493 von 666
19. Medienform:

20. Angeboten von:
Modul: 44880 Nichtlineare Optimierung

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>060200111</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>3.0</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Werner Grimm</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Werner Grimm</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- **B.Sc. Technische Kybernetik, PO 2011**
 - Vorgezogene Master-Module
 - DoubleM.D. Technische Kybernetik, PO 2011
 - Chalmers -->Incoming -->Wahlfach Technische Kybernetik
 - DoubleM.D. Technische Kybernetik, PO 2011
 - Chalmers -->Outgoing -->Wahlfach Technische Kybernetik
 - DoubleM.D. Technische Kybernetik, PO 2011
 - Incoming -->Spezialisierungsfach -->Flugführung und Systemtechnik
 - DoubleM.D. Technische Kybernetik, PO 2011
 - Outgoing -->Spezialisierungsfach -->Flugführung und Systemtechnik
 - DoubleM.D. Technische Kybernetik, PO 2014
 - Incoming -->Spezialisierungsfach -->Flugführung und Systemtechnik
 - DoubleM.D. Technische Kybernetik, PO 2014
 - Outgoing -->Spezialisierungsfach -->Flugführung und Systemtechnik
 - DoubleM.D. Technische Kybernetik, PO 2014
 - Wahlpflichtmodule -->Spezialisierungsfach -->Flugführung und Systemtechnik
 - **M.Sc. Technische Kybernetik, PO 2011**
 - Spezialisierungsmodul -->Spezialisierungsfach -->Flugführung und Systemtechnik
 - **M.Sc. Technische Kybernetik, PO 2011**
 - Spezialisierungsmodul -->Wahlfach Technische Kybernetik

11. Empfohlene Voraussetzungen:

- Die Studierenden sind in der Lage, praktische Optimierungsprobleme in die Standardform eines nichtlinearen Parameteroptimierungsproblems zu überführen und die notwendigen und hinreichenden Bedingungen für die Lösung aufzustellen.
- Die Studierenden haben einen Überblick über gradientenbasierte numerische Lösungsverfahren für nichtlineare Parameteroptimierungsprobleme. Zu jedem Verfahren sind die
zugrunde liegende Entwurfsидеe und die praktischen Vor- und Nachteile bekannt.

13. Inhalt:
- das nichtlineare Parameteroptimierungsproblem: Aufgabenstellung und Beispiele
- notwendige und hinreichende Bedingungen für ein lokales Minimum
- Gradientenbasierte numerische Verfahren für unbeschränkte Probleme (Gradientenverfahren, Newton- und Quasi-Newton-Verfahren usw.)
- Gradientenbasierte numerische Verfahren für beschränkte Probleme (SQP-Verfahren usw.)

14. Literatur:
- W. Grimm, K.H. Well: Nichtlineare Optimierung, Skript
- R. Fletcher, Practical Methods of Optimization, Wiley
- Vortragsübungen im Netz

15. Lehrveranstaltungen und -formen:
- 448801 Vorlesung Nichtlineare Optimierung
- 448802 Übung Nichtlineare Optimierung

16. Abschätzung Arbeitsaufwand:
- Nichtlineare Optimierung, Vorlesung: 58 h (Präsenzzeit 28 h, Selbststudium 30 h)
- Nichtlineare Optimierung, Übung: 32 h (Präsenzzeit 14 h, Selbststudium 18 h)
Gesamt: 90 h (Präsenzzeit 42 h, Selbststudium 48 h)

17. Prüfungsnummer/n und -name:
- 44881 Nichtlineare Optimierung (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0, mit Hilfsmitteln

18. Grundlage für ... :

19. Medienform:
Zuhilfenahme von Projektor und Beamer, elektronische Unterlagen im Netz

20. Angeboten von:
Institut für Flugmechanik und Flugregelung
Modul: 44960 Optimierung und Optimalsteuerung

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>060200120</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>5.0</td>
</tr>
<tr>
<td>5. Modulduer:</td>
<td>2 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Werner Grimm</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Werner Grimm</td>
</tr>
<tr>
<td></td>
<td>→ Vorgezogene Master-Module</td>
</tr>
<tr>
<td></td>
<td>DoubleM.D. Technische Kybernetik, PO 2011</td>
</tr>
<tr>
<td></td>
<td>→ Incoming -->Spezialisierungsfach -->Flugführung und Systemtechnik</td>
</tr>
<tr>
<td></td>
<td>DoubleM.D. Technische Kybernetik, PO 2011</td>
</tr>
<tr>
<td></td>
<td>→ Outgoing -->Spezialisierungsfach -->Flugführung und Systemtechnik</td>
</tr>
<tr>
<td></td>
<td>DoubleM.D. Technische Kybernetik, PO 2014</td>
</tr>
<tr>
<td></td>
<td>→ Incoming -->Spezialisierungsfach -->Flugführung und Systemtechnik</td>
</tr>
<tr>
<td></td>
<td>DoubleM.D. Technische Kybernetik, PO 2014</td>
</tr>
<tr>
<td></td>
<td>→ Outgoing -->Spezialisierungsfach -->Flugführung und Systemtechnik</td>
</tr>
<tr>
<td></td>
<td>DoubleM.D. Technische Kybernetik, PO 2014</td>
</tr>
<tr>
<td></td>
<td>→ Wahlpflichtmodule -->Spezialisierungsfach -->Flugführung und Systemtechnik</td>
</tr>
<tr>
<td></td>
<td>M.Sc. Technische Kybernetik, PO 2011</td>
</tr>
<tr>
<td></td>
<td>→ Spezialisierungsmodul -->Spezialisierungsfach -->Flugführung und Systemtechnik</td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen:

12. Lernziele:

- Die Studierenden sind in der Lage, praktische Optimierungsprobleme in die Standardform eines nichtlinearen Parameteroptimierungsproblems zu überführen und die notwendigen und hinreichenden Bedingungen für die Lösung aufzustellen.
- Die Studierenden haben einen Überblick über die numerischen Lösungsverfahren für nichtlineare Parameteroptimierungsprobleme. Das betrifft insbesondere die einem Verfahren zugrunde liegende Entwurfsidee und die praktischen Vor- und Nachteile.
- Die Studierenden sind mit der Aufgabenstellung der optimalen Steuerung vertraut und kennen typische Beispiele aus der Luft- und Raumfahrt.
- Die Studierenden sind in der Lage, die notwendigen Bedingungen für die Lösung eines Optimalsteuerungsproblems aufzustellen und daraus ein Randwertproblem abzuleiten.
- Die Studierenden kennen die Arbeitsweise und Eigenschaften so genannter direkter Verfahren zur Lösung von Optimalsteuerungsproblemen.
13. Inhalt:

- das nichtlineare Parameteroptimierungsproblem: Aufgabenstellung und Beispiele
- notwendige und hinreichende Bedingungen für ein lokales Minimum
- numerische Verfahren für unbeschränkte Probleme (Gradientenverfahren, Newton- und Quasi-Newton-Verfahren usw.)
- numerische Verfahren für beschränkte Probleme (SQP-Verfahren usw.)
- Optimalsteuerungsproblem: allgemeine Aufgabenstellung in verschiedenen Ausbaustufen, spezielle Aufgabenstellungen in der Luft- und Raumfahrt
- notwendige Bedingungen für die Lösung eines Optimalsteuerungsproblems, akademische und praktische Anwendungsbeispiele, auf den notwendigen Bedingungen aufbauende numerische Lösungsverfahren (indirektes Mehrzielverfahren)
- direkte Methoden zur Lösung eines Optimalsteuerungsproblems (direktes Mehrzielverfahren, direkte Kollokation)
- Rechnerübungen zum Kennenlernen professioneller Bahnoptimierungsprogramme

14. Literatur:

- W. Grimm, K.H. Well: Nichtlineare Optimierung, Skript
- W. Grimm: Bahnoptimierung für Luft- und Raumfahrzeuge, Skript
- R. Fletcher, Practical Methods of Optimization, Wiley
- B.A. Conway (ed.): Spacecraft Trajectory Optimization, Cambridge U. Press
- Vortragsübungen zu Nichtlinearer Optimierung im Netz

15. Lehrveranstaltungen und -formen:

- 449601 Vorlesung Nichtlineare Optimierung
- 449602 Übung Nichtlineare Optimierung
- 449603 Vorlesung Optimalsteuerung

16. Abschätzung Arbeitsaufwand:

- Nichtlineare Optimierung, Vorlesung: 48 h (Präsenzzeit 28 h, Selbststudium 40 h)
- Nichtlineare Optimierung, Übung: 44 h (Präsenzzeit 14 h, Selbststudium 30 h)
- Optimalsteuerung, Vorlesung: 68 h (Präsenzzeit 28 h, Selbststudium 40 h)
- Gesamt: 180 h (Präsenzzeit 70 h, Selbststudium 110 h)

17. Prüfungsnummer/n und -name:

- 44961 Optimierung und Optimalsteuerung (PL), mündliche Prüfung, 30 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

- Zuhilfenahme von Projektor und Beamer, elektronische Unterlagen im Netz

20. Angeboten von:

- Institut für Flugmechanik und Flugregelung
Modul: 45120 Satellitennavigation

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>062100001</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Alfred Kleusberg
9. Dozenten: Alfred Kleusberg

Zuordnung zum Curriculum in diesem Studiengang:

- **B.Sc. Technische Kybernetik, PO 2011**
 - Vorgezogene Master-Module
 - DoubleM.D. Technische Kybernetik, PO 2011
 - Incoming --> Spezialisierungsfach --> Flugführung und Systemtechnik
 - DoubleM.D. Technische Kybernetik, PO 2011
 - Outgoing --> Spezialisierungsfach --> Flugführung und Systemtechnik
 - DoubleM.D. Technische Kybernetik, PO 2014
 - Incoming --> Spezialisierungsfach --> Flugführung und Systemtechnik
 - DoubleM.D. Technische Kybernetik, PO 2014
 - Outgoing --> Spezialisierungsfach --> Flugführung und Systemtechnik
 - DoubleM.D. Technische Kybernetik, PO 2014
 - Wahlpflichtmodule --> Spezialisierungsfach --> Flugführung und Systemtechnik
 - M.Sc. Technische Kybernetik, PO 2011
 - Spezialisierungsmodul --> Spezialisierungsfach --> Flugführung und Systemtechnik

Empfohlene Voraussetzungen:

11. Die Studierenden kennen die grundlegenden Methoden der Satellitennavigation. Sie können Fehlerquellen bei der Satellitenavigation benennen, deren Größenordnung abschätzen und wissen, mit welchen Methoden sie verringert oder eliminiert werden können.

12. Funktionsprinzip des Satellitenavigationssystems GPS umfasst: zugehörige Bezugssysteme (WGS84, ITRFxx), Zeitsysteme, Satellitenbahnen - Erweiterung der ungestörten Keplerbewegung auf gestörte Keplerbewegung (oscillierende Keplerelemente, Störeinflüsse (Art und Größe)), Berechnung der Satellitenposition, Darstellung und Übertragung der Orbitparameter (Broadcast-Ephemeriden, Almanach), Präzise Ephemeriden, Konstellation, Signalaufbau: Träger, Codes, Message, zur Wahl der Wellenlänge des Trägers, Modulation, Generierung und Eigenschaften von PRN-Codes, Korrelationsverhalten der Codes, Ausbreitung der GPS-Signale (Maxwells Gleichungen, Refraktivität,

14. Literatur: Online-Skript, IS-GPS-200D
15. Lehrveranstaltungen und -formen: 451201 Vorlesung Satellitenavigation
16. Abschätzung Arbeitsaufwand: 90 h (Präsenszeit 28 h, Selbststudium 62 h)
17. Prüfungsnummer/n und -name: 45121 Satellitenavigation (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0
18. Grundlage für ... :
19. Medienform: Tafel, PPT-Präsentation
20. Angeboten von: Navigation
Modul: 45140 Schätzverfahren

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>060200117</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Walter Fichter</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Walter Fichter</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- B.Sc. Technische Kybernetik, PO 2011
 - Vorgezogene Master-Module
- DoubleM.D. Technische Kybernetik, PO 2011
 - Incoming --> Spezialisierungsfach --> Flugführung und Systemtechnik
- DoubleM.D. Technische Kybernetik, PO 2011
 - Outgoing --> Spezialisierungsfach --> Flugführung und Systemtechnik
- DoubleM.D. Technische Kybernetik, PO 2014
 - Incoming --> Spezialisierungsfach --> Flugführung und Systemtechnik
- DoubleM.D. Technische Kybernetik, PO 2014
 - Outgoing --> Spezialisierungsfach --> Flugführung und Systemtechnik
- DoubleM.D. Technische Kybernetik, PO 2014
 - Wahlpflichtmodule --> Spezialisierungsfach --> Flugführung und Systemtechnik
- M.Sc. Technische Kybernetik, PO 2011
 - Spezialisierungs module --> Spezialisierungsfach --> Flugführung und Systemtechnik

11. Empfohlene Voraussetzungen:

12. Lernziele:

- Die Studierenden haben einen Überblick, welche praxisrelevanten Probleme auf Schätzungsaufgaben führen.
- Die Studierenden beherrschen die Grundbegriffe der Wahrscheinlichkeitstheorie und Statistik.
- Die Studierenden beherrschen die Grundbegriffe der stochastischen Prozesse. Die Studierenden kennen die Eigenschaften von Systemen mit Eingängen in Form stochastischer Prozesse.
- Die Studierenden kennen die wichtigsten linearen Parameterschätzverfahren und deren statistische Eigenschaften.
- Die Studierenden sind in der Lage, Schätzprobleme mithilfe von Matlab zu lösen.
- Die Studierenden kennen die fachlichen Querverbindungen zu linearen Filterverfahren und numerischer Parameteroptimierung.

13. Inhalt:

- praktische Anwendungsbeispiele für Schätzungsaufgaben
- Grundbegriffe der Wahrscheinlichkeitstheorie und Statistik
- Grundbegriffe der stochastischen Prozesse und ihr Zusammenspiel mit linearen Systemen
• lineare Parameterschätzverfahren (Verfahren der kleinsten Quadrate und der minimalen Varianz, Maximum Likelihood Methode)
• Umsetzung von Schätzverfahren mit Matlab

14. Literatur:

15. Lehrveranstaltungen und -formen:
• 451401 Seminar Schätzverfahren

16. Abschätzung Arbeitsaufwand:
• 90 h (Präsenzzeit 28 h, Selbststudium 62 h)

17. Prüfungsnummer/n und -name:
• 45141 Schätzverfahren (BSL), Sonstiges, Gewichtung: 1.0, schriftliche Ausarbeitung mit Präsentation über ein spezielles Thema aus den Schätzverfahren

18. Grundlage für ...

19. Medienform:
• Zuhilfenahme von Projektor und Beamer, elektronische Unterlagen im Netz

20. Angeboten von:
• Institut für Flugmechanik und Flugregelung
Modul: 45150 Schätzverfahren und Flugmesstechnik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>060200119</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Walter Fichter</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Walter Fichter
• Arne Altmann |

10. Zuordnung zum Curriculum in diesem Studiengang:

- B.Sc. Technische Kybernetik, PO 2011
 - Vorgezogene Master-Module
- DoubleM.D. Technische Kybernetik, PO 2011
 - Incoming -->Spezialisierungsfach -->Flugführung und Systemtechnik
- DoubleM.D. Technische Kybernetik, PO 2011
 - Outgoing -->Spezialisierungsfach -->Flugführung und Systemtechnik
- DoubleM.D. Technische Kybernetik, PO 2014
 - Incoming -->Spezialisierungsfach -->Flugführung und Systemtechnik
- DoubleM.D. Technische Kybernetik, PO 2014
 - Outgoing -->Spezialisierungsfach -->Flugführung und Systemtechnik
- DoubleM.D. Technische Kybernetik, PO 2014
 - Wahlpflichtmodule -->Spezialisierungsfach -->Flugführung und Systemtechnik
- M.Sc. Technische Kybernetik, PO 2011
 - Spezialisierungsmodul -->Spezialisierungsfach -->Flugführung und Systemtechnik

11. Empfohlene Voraussetzungen:

12. Lernziele:

Schätzverfahren
- Die Studierenden haben einen Überblick, welche praxisrelevanten Problemstellungen auf Schätzauflgaben führen.
- Die Studierenden beherrschen die Grundbegriffe der Wahrscheinlichkeitstheorie und Statistik.
- Die Studierenden beherrschen die Grundbegriffe der stochastischen Prozesse. Die Studierenden kennen die Eigenschaften von Systemen mit Eingängen in Form stochastischer Prozesse.
- Die Studierenden kennen die wichtigsten linearen Parameterschätzverfahren und deren statistische Eigenschaften.
- Die Studierenden sind in der Lage, Schätzauflagen mithilfe von Matlab zu lösen.
- Die Studierenden kennen die fachlichen Querverbindungen zu linearen Filterverfahren und numerischer Parameteroptimierung.

Flugmesstechnik
Die Studierenden sind in der Lage, einen Flugversuch für ein Flugzeug der Allgemeinen Luftfahrt (General Aviation) zu planen, durchzuführen und auszuwerten. Außerdem sollen sie ihre Ergebnisse in einem schriftlichen Bericht und in einem Vortrag übersichtlich und aussagekräftig darstellen können.

13. Inhalt: Schätzverfahren

- praktische Anwendungsbeispiele für Schätzaufgaben
- Grundbegriffe der Wahrscheinlichkeitsrechnung und Statistik
- Grundbegriffe der stochastischen Prozesse und ihr Zusammenspiel mit linearen Systemen
- lineare Parameterschätzverfahren (Verfahren der kleinsten Quadrate und der minimalen Varianz, Maximum Likelihood Methode)
- Umsetzung von Schätzverfahren mit Matlab

Flugmesstechnik

- Vorbereiten und Durchführen eines Messfluges: Erstellen eines individuellen Messprogramms, Ausarbeitung der zugehörigen FlightCards, Durchführung der Flugmesskampagne mit Piloten, Messdatenauswertung und Erstellen eines Ergebnisberichtes.

14. Literatur:

- Skript zur Vorlesung
- European Aviation Safety Agency: "Certification Specifications for Normal, Utility, Aerobatic, and Commuter Category Aeroplanes CS-23"
- Edward A. Haering, Jr.: "Airdata Measurement and Calibration"

15. Lehrveranstaltungen und -formen:

- 451501 Seminar Schätzverfahren
- 451502 Seminar Flugmesstechnik

16. Abschätzung Arbeitsaufwand:

- Schätzverfahren: 90 h (Präsenzzeit: 28 h, Selbststudium: 62 h)
- Flugmesstechnik: 90 h (Präsenzzeit: 28 h, Selbststudium: 62 h)
- Gesamt: 180 h (Präsenzzeit: 56 h, Selbststudium: 124 h)

17. Prüfungsnummer/n und -name:

- 45151 Schätzverfahren und Flugmesstechnik (PL), schriftlich und mündlich, 40 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

- Schätzverfahren: Zuhilfenahme von Projektor und Beamer, elektronische Unterlagen im Netz
- Flugmesstechnik: PowerPoint-Präsentation, Tafel, Experimentalflugzeug

20. Angeboten von:

Institut für Flugmechanik und Flugregelung
Modul: 44360 Spezielle Methoden der Systemtechnik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>060900123</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modulduer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Reinhard Reichel</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Reinhard Reichel, Philipp Luithardt</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- B.Sc. Technische Kybernetik, PO 2011
 - Vorgezogene Master-Module
 - DoubleM.D. Technische Kybernetik, PO 2011
 - Incoming -->Spezialisierungsfach -->Flugführung und Systemtechnik
 - DoubleM.D. Technische Kybernetik, PO 2011
 - Outgoing -->Spezialisierungsfach -->Flugführung und Systemtechnik
 - DoubleM.D. Technische Kybernetik, PO 2014
 - Incoming -->Spezialisierungsfach -->Flugführung und Systemtechnik
 - DoubleM.D. Technische Kybernetik, PO 2014
 - Outgoing -->Spezialisierungsfach -->Flugführung und Systemtechnik
 - DoubleM.D. Technische Kybernetik, PO 2014
 - Wahlpflichtmodule -->Spezialisierungsfach -->Flugführung und Systemtechnik
 - M.Sc. Technische Kybernetik, PO 2011
 - Spezialisierungsmodul -->Spezialisierungsfach -->Flugführung und Systemtechnik

11. Empfohlene Voraussetzungen:

Die Studierenden haben detaillierte Kenntnisse in den Bereichen

- Grundlegende Methoden zur angewandten Sicherheitsanalyse von Luftfahrtsystemen,

12. Lernziele:

Methoden der Sicherheitsanalyse

- Spezielle Themen der Wahrscheinlichkeitsrechnung
- Markov Analyse
- Dependability Analyse
- Fehlerbaumanalyse
- Systembezogener FMEA-Prozess (Fehler-Mode & -Effekt Analyse)
- Anwendungsbeispiele

Methoden der Systemmodellierung und Systemanalyse:
Systemmodellierung und -analyse mittels
14. Literatur:

- Skript zur Vorlesung
- Übungen zur Vorlesung

15. Lehrveranstaltungen und -formen:

- 443601 Seminar Methoden der Systemmodellierung und Systemanalyse
- 443602 Vorlesung Methoden der Sicherheitsanalyse

16. Abschätzung Arbeitsaufwand:

Gesamt: 180 h (Präsenzzeit 56 h, Selbststudium 124 h)

17. Prüfungsnummer/n und -name:

44361 Spezielle Methoden der Systemtechnik (PL), mündliche Prüfung, Gewichtung: 1.0, (Methoden der Systemmodellierung, 20 min., Gewichtung: 0.5; Methoden der Sicherheitsanalyse, 20 min., Gewichtung 0.5)

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
2116 Nichtlineare Mechanik

Zugeordnete Module:
- **31690** Experimentelle Modalanalyse
- **33340** Methode der finiten Elemente in Statik und Dynamik
- **56670** Discretization Methods
- **58270** Dynamik mechanischer Systeme
- **58280** Nichtlineare Dynamik mechanischer Systeme
- **59950** Mechanik nichtlinearer Kontinua
- **59990** Nichtglatte Dynamik
- **60310** Praktikum Nichtlineare Mechanik
Modul: 56670 Discretization Methods

2. Modulkürzel: 074040610
3. Leistungspunkte: 3.0 LP
4. SWS: 2.0
5. Modulduer: 1 Semester
7. Sprache: Englisch
8. Modulverantwortlicher: Andre Schmidt
9. Dozenten: Andre Schmidt
 ➞ Spezialisierungsmodule --> Spezialisierungsfach --> Nichtlineare Mechanik
11. Empfohlene Voraussetzungen: B.Sc degree in Civil Engineering, in Mechanical Engineering, in Environmental Engineering or in related subject, as well as knowledge of basic concepts in differential and integral calculus, vector analysis and matrix algebra, and knowledge of basic concepts in applied mechanics and thermodynamics.
12. Lernziele: The students understand different concepts how partial differential equations in time and in space can be solved numerically. They are familiar with the strengths and weaknesses of the different methods and have a deeper understanding of selected aspects.
13. Inhalt: The lecture deals with the numerical treatment of differential equations which arise from different mechanical and thermodynamical problems. Contents are:

 Deduction of differential equations based on the principles of mechanics and thermodynamics and their classification

 The Finite Difference Method

 The method of weighted residuals: method of subdomains, collocation method, least squares, and Galerkin's method

 The Finite Element Method

 Different time integration schemes

 Convergence and stability

14. Literatur: Complete lecture notes, notes on blackboard, exercise material will be handed out in the exercise, all the examples in the lecture notes and exercises will be provided online as Matlab-Files, additional literature will be indicated in the lecture notes.

15. Lehrveranstaltungen und -formen: • 566701 Vorlesung Discretization Methods
 • 566702 Übung Discretization Methods

16. Abschätzung Arbeitsaufwand: Time of Attendance: 21h
 Private Study: 69h

17. Prüfungsnummer/n und -name: • 56671 Discretization Methods (BSL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0
 • V Vorleistung (USL-V), Sonstiges, Teilnahme an einer Übung

18. Grundlage für ... :
19. Medienform:

20. Angeboten von:
Modul: 58270 Dynamik mechanischer Systeme

2. Modulkürzel: 074010730 5. Moduldauer: 1 Semester
4. SWS: 4.0 7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Remco Ingmar Leine
9. Dozenten: Remco Ingmar Leine

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technische Kybernetik, PO 2011	B.Sc. Technische Kybernetik, PO 2011
B.Sc. Technische Kybernetik, PO 2011	B.Sc. Technische Kybernetik, PO 2011
DoubleM.D. Technische Kybernetik, PO 2011	DoubleM.D. Technische Kybernetik, PO 2014

11. Empfohlene Voraussetzungen: TM II+III
13. Inhalt: Variationsrechnung:

Brachistochronesproblem; Euler'sche Gleichungen der Variationsrechnung für eine und mehrere Variablen, für erste und höhere Ableitungen, für skalare und vektorwertige Funktionen; natürliche Randbedingungen, freie Ränder und Transversalität; Nebenbedingungen; Hamiltonsches Prinzip der stationären Wirkung

Lagrangesche Dynamik:
Virtuelle Arbeit; Ideale zweiseitige geometrische Bindung; Prinzip von d'Alembert Lagrange; Lagrangesche Gleichungen 2. Art; Gleichgewichtspunkte, stationäre Lösungen; Linearisierung

Näherungsverfahren kontinuierlicher Systeme:
Analytische Lösung des Euler-Bernoulli-Balkens; Finite-Differenzen-Verfahren; Verfahren der gewichteten Residuen; Ritz-Galerkin-Verfahren und Finite Elemente; Ritz-Verfahren

14. Literatur:
• K. Meyberg und P. Vachenauer, Höhere Mathematik 2, Springer 2005
• H. Bremer, Dynamik und Regelung mechanischer Systeme, Teubner, 1988

15. Lehrveranstaltungen und -formen:
• 582701 Vorlesung Dynamik mechanischer Systeme
• 582702 Übung Dynamik mechanischer Systeme

16. Abschätzung Arbeitsaufwand:
Präsenz: (2 x 1,5 Stunden pro Woche) x 14 Wochen = 42 Stunden
Nacharbeit: (4 Stunden pro Woche) x 14 Wochen = 56 Stunden
Prüfungsvorbereitung: 82 Stunden
Gesamt: 180 Stunden

17. Prüfungsnummer/n und -name:
58271 Dynamik mechanischer Systeme (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:
Laptop, Beamer, Hellraumprojektor

20. Angeboten von:
Modul: 31690 Experimentelle Modalanalyse

2. Modulkürzel: 072810019
5. Modulduauer: 1 Semester

3. Leistungspunkte: 3.0 LP

4. SWS: 2.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Apl. Prof. Michael Hanss

9. Dozenten:
• Pascal Ziegler
• Michael Hanss

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technische Kybernetik, PO 2011
→ Ergänzungsmodule -->Wahlbereich Anwendungsfach --
 >Mechatronische Probleme

B.Sc. Technische Kybernetik, PO 2011
→ Vorgezogene Master-Module

DoubleM.D. Technische Kybernetik, PO 2011
→ Incoming -->Spezialisierungsfach -->Technische Dynamik

DoubleM.D. Technische Kybernetik, PO 2011
→ Outgoing -->Spezialisierungsfach -->Technische Dynamik

DoubleM.D. Technische Kybernetik, PO 2014
→ Incoming -->Spezialisierungsfach -->Technische Dynamik

DoubleM.D. Technische Kybernetik, PO 2014
→ Outgoing -->Spezialisierungsfach -->Technische Dynamik

DoubleM.D. Technische Kybernetik, PO 2014
→ Wahlpflichtmodule -->Spezialisierungsfach -->Technische Dynamik

M.Sc. Technische Kybernetik, PO 2011
→ Spezialisierungsmodule -->Spezialisierungsfach -->Nichtlineare Mechanik

M.Sc. Technische Kybernetik, PO 2011
→ Spezialisierungsmodule -->Spezialisierungsfach -->Technische Dynamik

11. Empfohlene Voraussetzungen: Technische Mechanik II+III oder Technische Schwingungslehre

12. Lernziele:
Der Studierende ist vertraut mit der messtechnischen Erfassung von Strukturschwingungen sowie der Aufbereitung der Messsignale im Frequenzbereich.
Der Studierende ist in der Lage, daraus die modalen Kenngrößen zu identifizieren.

13. Inhalt:
Die Vorlesung vermittelt die Inhalte in folgender Gliederung:

• Grundlagen und Anwendungen der experimentellen Modalanalyse
• Methoden zur Schwingungsanregung, Messverfahren
• Signalanalyse und -verarbeitung, Zeit- und Frequenzbereichsdarstellung
• Frequenzgang, Übertragungsfunktion und deren modale Zerlegung
• Bestimmung modaler Kenngrößen, Modenerkennung und -vergleich
Es werden zudem Anwendungen auf Problemstellungen der industriellen Praxis demonstriert. Als praktischer Teil werden fachbezogene Versuche zur experimentellen Modalanalyse angeboten.

14. Literatur: Vorlesungsmitschrieb, Weiterführende Literatur:

15. Lehrveranstaltungen und -formen: 316901 Vorlesung Experimentelle Modalanalyse

 Selbststudium: 69 Stunden
 Summe: 90 Stunden

17. Prüfungsnummer/n und -name: 31691 Experimentelle Modalanalyse (BSL), schriftlich, eventuell mündlich, 60 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 59950 Mechanik nichtlinearer Kontinua

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>074010910</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Remco Ingmar Leine</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Simon Raphael Eugster</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- DoubleM.D. Technische Kybernetik, PO 2011
 - Chalmers -->Outgoing -->Modellierung II
- DoubleM.D. Technische Kybernetik, PO 2014
 - Outgoing -->Wahlpflichtmodule -->Modellierung II
- M.Sc. Technische Kybernetik, PO 2011
 - Spezialisierungsmodul -->Spezialisierungsfach -->Nichtlineare Mechanik
- M.Sc. Technische Kybernetik, PO 2011
 - Vertiefungsmodul -->Modellierung II

11. Empfohlene Voraussetzungen:

- TM II+III

12. Lernziele:

Verständnis für das Modellieren nichtlinearer Kontinua.

13. Inhalt:

- Tensoranalysis:
 - Multilinear forms and tensors
 - Index notation
 - Tensor product
 - Contraction operations
 - Differentiation rules
- Integration theorem
- Nonlinear Continua:
 - Nonlinear deformation
 - Deformation gradient
 - Strain measures
 - Principle of virtual work
 - Stress tensors
 - Balance laws
 - Material laws

14. Literatur:
15. Lehrveranstaltungen und -formen:
- 599501 Vorlesung Mechanik nichtlinearer Kontinua
- 599502 Übung Mechanik nichtlinearer Kontinua

16. Abschätzung Arbeitsaufwand:
Präsenz: 56 Stunden
Selbststudium: 124 Stunden
Gesamt: 180 Stunden

17. Prüfungsnummer/n und -name:
59951 Mechanik nichtlinearer Kontinua (PL), mündliche Prüfung, 30 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 33340 Methode der finiten Elemente in Statik und Dynamik

2. Modulkürzel: 070410740
3. Leistungspunkte: 6.0 LP
4. SWS: 4.0
5. Modulduauer: 1 Semester
6. Turnus: jedes 2. Semester, SoSe
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Remco Ingmar Leine
9. Dozenten: Andre Schmidt
10. Zuordnung zum Curriculum in diesem Studiengang:
 - B.Sc. Technische Kybernetik, PO 2008, 5. Semester
 - B.Sc. Technische Kybernetik, PO 2011, 5. Semester
 - Vorgezogene Master-Module
 - M.Sc. Technische Kybernetik, PO 2011
 - Spezialisierungsmodul -->Spezialisierungsfach -->Nichtlineare Mechanik
11. Empfohlene Voraussetzungen: TM 1-4
12. Lernziele: Die Studierenden sind vertraut mit den theoretischen Grundlagen der Methode der Finiten Elemente (FEM), ihrer rechentechnischen Umsetzung sowie ihrer Anwendung zur Lösung von Aufgabenstellungen aus Statik und Dynamik.
13. Inhalt:
 - Einführung, Grundlagen der Tensorrechnung und der Kontinuumsmechanik (1d, 2d, 3d), Materialgesetze.
 - Direkte Methode, Methode der gewichteten Residuen, Prinzip der virtuellen Verschiebungen: Herleitung der FEM.
 - Numerische Umsetzung: Quadratur-Verfahren zur Integration der Elementmatrizen, Lösung des linearen Gleichungssystems, Lösung von Eigenwertproblemen, Zeitschrittintegration
14. Literatur:
 - Manuskript zur Vorlesung
15. Lehrveranstaltungen und -formen:
 - 333401 Vorlesung Methode der finiten Elemente in Statik und Dynamik
 - 333402 Übung Methode der finiten Elemente in Statik und Dynamik
16. Abschätzung Arbeitsaufwand:
 - Präsenzzeit: 42 Stunden
 - Selbststudium: 138 Stunden
 - Summe: 180 Stunden
17. Prüfungsnummer/n und -name: 33341 Methode der finiten Elemente in Statik und Dynamik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

Stand: 09. April 2015
Seite 516 von 666
<table>
<thead>
<tr>
<th>18. Grundlage für ... :</th>
</tr>
</thead>
<tbody>
<tr>
<td>19. Medienform:</td>
</tr>
<tr>
<td>Overhead, Tafel, Beamer</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
</tr>
</tbody>
</table>
Modul: 59990 Nichtglatte Dynamik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>074010820</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Moduldaurer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Remco Ingmar Leine</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Remco Ingmar Leine</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- DoubleM.D. Technische Kybernetik, PO 2011
 - Chalmers -->Outgoing -->Modellierung II
- DoubleM.D. Technische Kybernetik, PO 2014
 - Outgoing -->Wahlpflichtmodule -->Modellierung II
- M.Sc. Technische Kybernetik, PO 2011
 - Spezialisierungsmodul -->Spezialisierungsfach -->Nichtlineare Mechanik
- M.Sc. Technische Kybernetik, PO 2011
 - Vertiefungsmodule -->Modellierung II

11. Empfohlene Voraussetzungen:

- TM II+III

12. Lernziele:

- Verständnis des Verhaltens mechanischer Systeme mit einseitigen Bindungen.

13. Inhalt:

- Convex analysis:
 - Normal cone
 - Subdifferential
 - Maximal monotonicity
 - Proximal point functions
- Set-valued Force Laws:
 - Scalar force elements
 - Potential theory
 - Contact law in normal direction
 - Coulomb friction (planar & spatial)
 - Impact laws in multibody dynamics
- Nonsmooth Dynamical Systems:
 - DAEs
 - Differential inclusions
 - Event driven integration method
 - Measure differential inclusions

15. Lehrveranstaltungen und -formen: • 599901 Vorlesung Nichtglatte Dynamik • 599902 Übung Nichtglatte Dynamik

17. Prüfungsnummer/n und -name: 59991 Nichtglatte Dynamik (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0

18. Grundlage für...

19. Medienform:

20. Angeboten von:
Modul: 58280 Nichtlineare Dynamik mechanischer Systeme

2. Modulkürzel: 074010800
5. Modulduer: 1 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Remco Ingmar Leine

9. Dozenten: Remco Ingmar Leine

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technische Kybernetik, PO 2011
 ➔ Vorgezogene Master-Module
 DoubleM.D. Technische Kybernetik, PO 2011
 ➔ Chalmers -->Outgoing -->Modellierung II
 ➔
 DoubleM.D. Technische Kybernetik, PO 2014
 ➔ Outgoing -->Wahlpflichtmodule -->Modellierung II
 ➔
M.Sc. Technische Kybernetik, PO 2011
 ➔ Spezialisierungsmodul -->Spezialisierungsfach -->Nichtlineare Mechanik
 ➔
M.Sc. Technische Kybernetik, PO 2011
 ➔ Vertiefungsmodul -->Modellierung II
 ➔

11. Empfohlene Voraussetzungen: TM II+III

12. Lernziele:
Verständnis des Verhaltens nichtlinearer mechanischer Systeme

13. Inhalt:
Dynamische Systeme: Zustandsraum, autonome und nichtautonome Systeme, zeitkontinuierliche und diskrete Systeme, Lyapunov Stabilität

Gleichgewichtspunkte:
Zentrumsmannigfaltigkeit, Reduktion auf der Zentrumsmannigfaltigkeit, Normalformen der Verzweigungen

Fixpunkte:
Linearization, Stabilität, Verzweigungen bei Eigenwert +1, Flip-Bifurkation, Naimark-Sacker-Bifurkation, Logistische Abbildung, Hufeisen-Abbildung

Periodische Lösungen:
Fundamentalmatrix, Poincaré-Abbildung, Verzweigungen

14. Literatur:
H. Khalil, Nonlinear Systems, Prentice Hall, 2002

15. Lehrveranstaltungen und -formen:
• 582801 Vorlesung Nichtlineare Dynamik mechanischer Systeme
• 582802 Übung Nichtlineare Dynamik mechanischer Systeme

16. Abschätzung Arbeitsaufwand:
Präsenz: (2 x 1,5 Stunden pro Woche) x 14 Wochen = 42 Stunden
Nacharbeit: (4 Stunden pro Woche) x 14 Wochen = 56 Stunden

Prüfungsvorbereitung: 82 Stunden

Gesamt: 180 Stunden

<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>58281 Nichtlineare Dynamik mechanischer Systeme (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0</th>
</tr>
</thead>
</table>

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
Modul: 60310 Praktikum Nichtlineare Mechanik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>074010810</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Remco Ingmar Leine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Remco Ingmar Leine</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
M.Sc. Technische Kybernetik, PO 2011 → Spezialisierungsmodule →Spezialisierungsfach →Nichtlineare Mechanik |
| 14. Literatur: | Praktikums-Unterlagen |
| 15. Lehrveranstaltungen und -formen: | 603101 Praktikum Nichtlineare Mechanik |
Selbststudiumszeit/ Nacharbeitszeit: 62 Stunden
Gesamt: 90 Stunden |
| 17. Prüfungsnummer/n und -name: | 60311 Praktikum Nichtlineare Mechanik (USL), Sonstiges, Gewichtung: 1.0 |

18. Grundlage für ... :
19. Medienform:
20. Angeboten von:
220 Wahlfach Technische Kybernetik

Zugeordnete Module:

<table>
<thead>
<tr>
<th>Modulnummer</th>
<th>Modulname</th>
</tr>
</thead>
<tbody>
<tr>
<td>10070</td>
<td>Analysis 3</td>
</tr>
<tr>
<td>11620</td>
<td>Automatisierungstechnik I</td>
</tr>
<tr>
<td>11630</td>
<td>Softwaretechnik I</td>
</tr>
<tr>
<td>12100</td>
<td>BWL II: Rechnungswesen und Finanzierung</td>
</tr>
<tr>
<td>13330</td>
<td>Technologiemanagement</td>
</tr>
<tr>
<td>13590</td>
<td>Kraftfahrzeuge I + II</td>
</tr>
<tr>
<td>14390</td>
<td>Programmierung</td>
</tr>
<tr>
<td>15020</td>
<td>Numerische Methoden in der Fluidmechanik</td>
</tr>
<tr>
<td>15040</td>
<td>Mehrphasenmodellierung in porösen Medien</td>
</tr>
<tr>
<td>15230</td>
<td>Spezielle Anwendungen der Wirtschaftskybernetik / Wirtschaftskybernetik III</td>
</tr>
<tr>
<td>15680</td>
<td>Rechnergestützte Angebotsplanung</td>
</tr>
<tr>
<td>15720</td>
<td>Gestaltung von öffentlichen Verkehrssystemen</td>
</tr>
<tr>
<td>17500</td>
<td>Energiemärkte und Energiepolitik</td>
</tr>
<tr>
<td>18620</td>
<td>Optimal Control</td>
</tr>
<tr>
<td>18630</td>
<td>Robust Control</td>
</tr>
<tr>
<td>20060</td>
<td>Grundlagen der Theoretischen Philosophie - Nebenfach</td>
</tr>
<tr>
<td>21750</td>
<td>Softwaretechnik II</td>
</tr>
<tr>
<td>29180</td>
<td>Dynamik elektrischer Verbundsysteme</td>
</tr>
<tr>
<td>29190</td>
<td>Planungsmethoden in der Energiewirtschaft</td>
</tr>
<tr>
<td>29470</td>
<td>Machine Learning</td>
</tr>
<tr>
<td>29940</td>
<td>Convex Optimization</td>
</tr>
<tr>
<td>30030</td>
<td>Fahrzeugdynamik</td>
</tr>
<tr>
<td>30040</td>
<td>Flexible Mehrkörpersysteme</td>
</tr>
<tr>
<td>30060</td>
<td>Optimization of Mechanical Systems</td>
</tr>
<tr>
<td>30100</td>
<td>Nichtlineare Dynamik</td>
</tr>
<tr>
<td>31440</td>
<td>Methoden der Wirtschaftskybernetik</td>
</tr>
<tr>
<td>31720</td>
<td>Model Predictive Control</td>
</tr>
<tr>
<td>32280</td>
<td>Wirtschaftskybernetik I</td>
</tr>
<tr>
<td>32770</td>
<td>Angewandte Regelung und Optimierung in der Prozessindustrie</td>
</tr>
<tr>
<td>32950</td>
<td>Embedded Controller und Datennetze in Fahrzeugen</td>
</tr>
<tr>
<td>33190</td>
<td>Numerische Methoden der Optimierung und Optimalen Steuerung</td>
</tr>
<tr>
<td>33320</td>
<td>Smart Structures</td>
</tr>
<tr>
<td>33330</td>
<td>Nichtlineare Schwingungen</td>
</tr>
<tr>
<td>33360</td>
<td>Fuzzy Methoden</td>
</tr>
<tr>
<td>33400</td>
<td>Optische Phänomene in Natur und Alltag</td>
</tr>
<tr>
<td>33480</td>
<td>Biomedizinische Geräteotechnik</td>
</tr>
<tr>
<td>33580</td>
<td>Personalwirtschaft</td>
</tr>
<tr>
<td>33600</td>
<td>Simultaneous Engineering und Projektmanagement</td>
</tr>
<tr>
<td>33820</td>
<td>Flache Systeme</td>
</tr>
<tr>
<td>33840</td>
<td>Dynamische Filterverfahren</td>
</tr>
<tr>
<td>33850</td>
<td>Automatisierungstechnik</td>
</tr>
<tr>
<td>33860</td>
<td>Objektorientierte Modellierung und Simulation</td>
</tr>
<tr>
<td>36850</td>
<td>Elektrochemische Energiespeicherung in Batterien</td>
</tr>
<tr>
<td>37270</td>
<td>Mechatronische Systeme in der Medizin - Anwendungen aus Orthopädie und Rehabilitation</td>
</tr>
<tr>
<td>37450</td>
<td>Volleyball benotet</td>
</tr>
<tr>
<td>37800</td>
<td>Einführung in die KFZ-Systemtechnik</td>
</tr>
<tr>
<td>38370</td>
<td>Grundlagen der Kraftfahrzeugantriebe</td>
</tr>
<tr>
<td>38720</td>
<td>Meteorologie</td>
</tr>
<tr>
<td>38790</td>
<td>Grundlagen der Wirtschaftswissenschaften</td>
</tr>
<tr>
<td>39050</td>
<td>Optische Messtechnik</td>
</tr>
<tr>
<td>40820</td>
<td>Optimalsteuerung in der Luft- und Raumfahrttechnik</td>
</tr>
<tr>
<td>40830</td>
<td>Flugmechanik</td>
</tr>
<tr>
<td>40990</td>
<td>Allgemeine Wirtschaftspolitik</td>
</tr>
<tr>
<td>Code</td>
<td>Module Name</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
</tr>
<tr>
<td>41660</td>
<td>Angewandte Regelungstechnik in Produktionsanlagen</td>
</tr>
<tr>
<td>41880</td>
<td>Grundlagen der Bionik</td>
</tr>
<tr>
<td>43890</td>
<td>Synergetik</td>
</tr>
<tr>
<td>43900</td>
<td>Einführung in die verteilte künstliche Intelligenz</td>
</tr>
<tr>
<td>44780</td>
<td>Lenkverfahren</td>
</tr>
<tr>
<td>44880</td>
<td>Nichtlineare Optimierung</td>
</tr>
<tr>
<td>44890</td>
<td>Nichtlineare und digitale Regelung</td>
</tr>
<tr>
<td>45090</td>
<td>Robuste Regelung</td>
</tr>
<tr>
<td>45130</td>
<td>Satellitenregelung</td>
</tr>
<tr>
<td>46700</td>
<td>Thermodynamik biochemischer Netzwerke</td>
</tr>
<tr>
<td>46770</td>
<td>Einführung in die Funktionale Sicherheit</td>
</tr>
<tr>
<td>48520</td>
<td>Biomedizin für die Technische Kybernetik</td>
</tr>
<tr>
<td>49680</td>
<td>Praktikum Systemdynamik</td>
</tr>
<tr>
<td>50130</td>
<td>Integrated Watershed Modeling</td>
</tr>
<tr>
<td>50400</td>
<td>Robust Control</td>
</tr>
<tr>
<td>51840</td>
<td>Introduction to Adaptive Control</td>
</tr>
<tr>
<td>51850</td>
<td>Networked Control Systems</td>
</tr>
<tr>
<td>56130</td>
<td>Konzepte und Methoden in der Wirtschaftskybernetik</td>
</tr>
<tr>
<td>56970</td>
<td>Analysis and Control of Multi-agent Systems</td>
</tr>
<tr>
<td>57680</td>
<td>Einführung in die Chaostheorie</td>
</tr>
<tr>
<td>59980</td>
<td>Angewandtes Technologiemanagement</td>
</tr>
</tbody>
</table>
Modul: 40990 Allgemeine Wirtschaftspolitik

2. Modulkürzel: 100410006
5. Modulduer: 1 Semester
3. Leistungspunkte: 3.0 LP
6. Turnus: jedes 2. Semester, SoSe
4. SWS: 3.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Susanne Becker
9. Dozenten: Susanne Becker

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technische Kybernetik, PO 2011
→ Vorgezogene Master-Module
M.Sc. Technische Kybernetik, PO 2011
→ Spezialisierungsmodul -->Wahlfach Technische Kybernetik

11. Empfohlene Voraussetzungen: Grundlagen der VWL, Mikroökonomik, Makroökonomik

12. Lernziele:
Die Studierenden sind nach Abschluss des Moduls in der Lage,
• wirtschaftspolitische Eingriffe des Staates zu begründen,
• aktuelle wirtschaftspolitische Diskussionen in den Gesamtzusammenhang einzuordnen und auf der Basis der zentralen wirtschaftspolitischen Begriffe zu argumentieren,
• wirtschaftspolitische Maßnahmen zu beurteilen.

13. Inhalt:

14. Literatur:
Ergänzende Folien und Übungsaufgaben stehen zum Download zur Verfügung. Die Basisliteratur umfasst die folgenden Werke:
• Zimmermann, H. u.a.: Finanzwissenschaft, 11. Aufl., München 2012

15. Lehrveranstaltungen und -formen:
• 409901 Vorlesung Allgemeine Wirtschaftspolitik
• 409902 Übung Allgemeine Wirtschaftspolitik

16. Abschätzung Arbeitsaufwand:
Vorlesung Allgemeine Wirtschaftspolitik
Präsenzzeit: 28 h
Selfstudiumszeit: 62h

Übung Allgemeine Wirtschaftspolitik
Präsenzzeit: 14 h
Selbststudiumszeit: 16h

Gesamtzeitaufwand: 90h

17. Prüfungsnummer/n und -name: 40991 Allgemeine Wirtschaftspolitik (BSL), schriftlich oder mündlich, Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Volkswirtschaftslehre
Modul: 10070 Analysis 3

2. Modulkürzel: 080200003 5. Modulduauer: 1 Semester
4. SWS: 6.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Timo Weidl
9. Dozenten: Peter Lesky

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technische Kybernetik, PO 2011
 → Vorgezogene Master-Module
 Double M.D. Technische Kybernetik, PO 2011, 3. Semester
 → Chalmers -->Incoming -->Wahlfach Technische Kybernetik
 →
 Double M.D. Technische Kybernetik, PO 2011, 3. Semester
 → Chalmers -->Outgoing -->Wahlfach Technische Kybernetik
 →
 Double M.D. Technische Kybernetik, PO 2014, 3. Semester
 → Chalmers -->Incoming -->Wahlfach Technische Kybernetik
 →
 M.Sc. Technische Kybernetik, PO 2011, 3. Semester
 → Spezialisierungsmodul -->Wahlfach Technische Kybernetik
 →

11. Empfohlene Voraussetzungen:
 Zulassungsvoraussetzung: Analysis 1, Analysis 2
 Inhaltsliche Voraussetzung: LAAG 1 und LAAG 2 (Lineare Algebra und Analytische Geometrie)

12. Lernziele:
 • Kenntnis und Umgang mit Differentialgleichungen und Vektoranalysis. Grundkenntnisse der Maßtheorie.
 • Korrektes Formulieren und selbständiges Lösen von mathematischen Problemen.
 • Abstraktion und mathematische Argumentation.
 • Studierende erkennen die Bedeutung der Analysis als Grundlage der Modellierung in Natur- und Technikwissenschaften.

13. Inhalt:
 Vektoranalysis: Mannigfaltigkeiten, Differentialformen, Kurven- und Oberflächenintegrale, Integralsätze.

14. Literatur:
 • Walter Rudin, Analysis
 • G. M. Fichtenholz, Differential- und Integralrechnung, Band 1
 • G. M. Fichtenholz, Differential- und Integralrechnung, Band 2
15. Lehrveranstaltungen und -formen:

- 100701 Vorlesung Analysis 3
- 100702 Übung Analysis 3

16. Abschätzung Arbeitsaufwand:

Insgesamt 270 h, die sich wie folgt ergeben:
- Präsenzstunden: 63 h
- Vor-/Nachbereitungszeit: 187 h
- Prüfungsvorbereitung: 20 h

17. Prüfungsnummer/n und -name:

- 10071 Analysis 3 (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0
- V Vorleistung (USL-V), schriftlich, eventuell mündlich

18. Grundlage für ... :

- 11820 Numerische Mathematik 1
- 11830 Wahrscheinlichkeitstheorie
- 11840 Geometrie
- 11860 Höhere Analysis

19. Medienform:

20. Angeboten von:
Modul: 56970 Analysis and Control of Multi-agent Systems

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>074810340</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
<td>6. Turnus:</td>
<td>unregelmäßig</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Frank Allgöwer

9. Dozenten: Daniel Zelazo

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technische Kybernetik, PO 2011
→ Vorgezogene Master-Module
DoubleM.D. Technische Kybernetik, PO 2011
→ Incoming -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
→
DoubleM.D. Technische Kybernetik, PO 2011
→ Outgoing -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
→
DoubleM.D. Technische Kybernetik, PO 2014
→ Incoming -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
→
DoubleM.D. Technische Kybernetik, PO 2014
→ Outgoing -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
→
DoubleM.D. Technische Kybernetik, PO 2014
→ Wahlpflichtmodule -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
→
M.Sc. Technische Kybernetik, PO 2011
→ Spezialisierungsmodul -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
→
M.Sc. Technische Kybernetik, PO 2011
→ Spezialisierungsmodul -->Wahlfach Technische Kybernetik
→

11. Empfohlene Voraussetzungen:
Linear systems theory, multi-variable control, non-linear control theory, Lyapunov and ISS stability, linear algebra;
e.g. courses „Systemdynamische Grundlagen der Regelungstechnik“, „Einfuehrung in die Regelungstechnik“

12. Lernziele:
Students will be able to model multi-agent systems using tools from graph theory and dynamical systems theory. Dynamical systems properties such as stability, convergence, performance, and controllability will be related to graph-theoretic concepts such as connectivity, graph cycles, and graph symmetry. Students will be able to analyze and synthesize controllers for formation control problems using concepts from rigidity theory.

13. Inhalt:
• Introduction to graph theory
• The consensus protocol and its variations
• Formation control and rigidity theory
• Performance and Design of multi-agent systems
14. Literatur:

15. Lehrveranstaltungen und -formen:
569701 Vorlesung und Übung Analysis and Control of Multi-agent Systems

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 28 h
Selbststudiumszeit / Nacharbeitszeit: 62 h
Summe: 90 h

17. Prüfungsnummer/n und -name:
56971 Analysis and Control of Multi-agent Systems (BSL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 32770 Angewandte Regelung und Optimierung in der Prozessindustrie

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>074810190</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

| 8. Modulverantwortlicher: | Univ.-Prof. Frank Allgöwer |
| 9. Dozenten: | Alexander Horch |

10. Zuordnung zum Curriculum in diesem Studiengang:
- **B.Sc. Technische Kybernetik, PO 2011**
 - Vorgezogene Master-Module
 - DoubleM.D. Technische Kybernetik, PO 2011
 - Incoming -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
 - DoubleM.D. Technische Kybernetik, PO 2011
 - Outgoing -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
- **DoubleM.D. Technische Kybernetik, PO 2014**
 - Incoming -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
 - DoubleM.D. Technische Kybernetik, PO 2014
 - Outgoing -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
- **DoubleM.D. Technische Kybernetik, PO 2014**
 - Wahlpflichtmodule -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
 - M.Sc. Technische Kybernetik, PO 2011
 - Spezialisierungsmodul -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
- **M.Sc. Technische Kybernetik, PO 2011**
 - Spezialisierungsmodul -->Wahlfach Technische Kybernetik

11. Empfohlene Voraussetzungen:
Ingenieurwissenschaftliche Grundlagen (Thermodynamik, Elektrotechnik, Informatik), höhere Mathematik, Regelungstechnik 1, Grundlagen der Signalverarbeitung.

12. Lernziele:

13. Inhalt:
Anwendung einiger Regelungs- und Optimierungsverfahren:
- Zustandsüberwachung von Regelkreisen
• Anlagenweite Störungüberwachung
• Lineare, Nichtlineare, Hybride modellprädiktive Regelung / Optimierung
• Modellbasierte gehobene PID Regelung
• Mixed Integer (Non)Linear programming
• 'Large-scale' modell-basierte Optimierung

Grundlagen einiger Aspekte der Automatisierungstechnik

• Prozessleittechnik
• Wirtschaftlichkeitsrechnung; Automatisierungsprojektierung
• Modellierung mit Modelica

Einblick in einige Industriebereiche:

• (Petro-)Chemie
• Kraftwerke
• Metallherstellung und -verarbeitung
• Ölförderung
• Wassernetze
• Leistungselektronik
• Papier und Zellstoffindustrie

14. Literatur:
- + zahlreiche Zeitschriftenveröffentlichungen, die jeweils referenziert werden, da das Material bisher in Büchern kaum veröffentlicht ist.

15. Lehrveranstaltungen und -formen: 327701 Vorlesung Angewandte Regelung und Optimierung in der Prozessindustrie

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 21 Stunden
Selbststudium: 69 Stunden
Summe: 90 Stunden

17. Prüfungsnummer/n und -name: 32771 Angewandte Regelung und Optimierung in der Prozessindustrie (BSL), mündliche Prüfung, 20 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform: Beamer-Präsentation, Tafel

20. Angeboten von:
Modul: 41660 Angewandte Regelungstechnik in Produktionsanlagen

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072910007</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Alexander Verl</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>• Armin Lechler
• Alexander Verl</td>
</tr>
</tbody>
</table>
→ Vorgezogene Master-Module |
DoubleM.D. Technische Kybernetik, PO 2011
→ Chalmers -->Incoming -->Wahlfach Technische Kybernetik --> |
DoubleM.D. Technische Kybernetik, PO 2011
→ Chalmers -->Outgoing -->Wahlfach Technische Kybernetik --> |
DoubleM.D. Technische Kybernetik, PO 2011
→ Incoming -->Spezialisierungsfach -->Steuerungstechnik --> |
DoubleM.D. Technische Kybernetik, PO 2011
→ Outgoing -->Spezialisierungsfach -->Steuerungstechnik --> |
DoubleM.D. Technische Kybernetik, PO 2014
→ Incoming -->Spezialisierungsfach -->Steuerungstechnik --> |
DoubleM.D. Technische Kybernetik, PO 2014
→ Outgoing -->Spezialisierungsfach -->Steuerungstechnik --> |
DoubleM.D. Technische Kybernetik, PO 2014
→ Wahlpflichtmodule -->Spezialisierungsfach -->Steuerungstechnik --> |
M.Sc. Technische Kybernetik, PO 2011
→ Spezialisierungsmodul -->Spezialisierungsfach -->Steuerungstechnik --> |
M.Sc. Technische Kybernetik, PO 2011
→ Spezialisierungsmodul -->Wahlfach Technische Kybernetik --> |

11. Empfohlene Voraussetzungen:
Grundlagen in Regelungstechnik und Systemtheorie, beispielsweise:
- Übertragungsfunktionen aus einfachen Differentialgleichungen aufstellen können. (→ Laplacetransformation)
- Übertragungsfunktionen einfacher Übertragungsglieder im Bode-Diagramm generieren und interpretieren können.
- Blockschaaltbilder aus einfachen Systemgleichungen oder Übertragungsfunktionen erstellen können.
- Systeme/ Systemgleichungen hinsichtlich Stabilität interpretieren können.
- Grundlegende Bestandteile eines Regelkreises benennen und einfache Regelkreise aufstellen können.

- Funktionsweise einfacher Regler (bspw. PID-Regler) erläutern können.

- Unterschied zwischen Regelung und Steuerung benennen können.

12. Lernziele:

 - Die Vorschubachse einer Werkzeugmaschine als elektromechanisches System interpretieren, die einzelnen Komponenten (Antriebstechnik, Kommunikation, Mechanik, ...) identifizieren und benennen können.

 - Elektromechanische Vorschubachsen als Kombination aus PT1- und n PT2-Gliedern modellieren und identifizieren können. Sowie den Einfluss der einzelnen realen Komponenten auf die Systemstruktur und -parameter erläutern und abschätzen können.

 - Industriell eingesetzte Reglerstrukturen für eine elektromechanische Vorschubachse entwerfen und implementieren können.

 - Das Zusammenspiel zwischen Stell- und Regelgrößen sowie elektrischem Antrieb und mechanischem Maschinenaufbau erkennen und gegenseitige Beeinflussungen abschätzen können.

13. Inhalt:

 - Modellbildung und Identifikation einer elektromechanischen Vorschubachse einer Werkzeugmaschine.

 - Regelung der Vorschubachse mit aktuell in der Produktion eingesetzten Regelungsverfahren. Aufbau und Parametrierung der Regler.

 ACHTUNG: die Teilnehmerzahl ist auf 20 Studierende beschränkt. Die Modalität zur Anmeldung ist der Institutshomepage zu entnehmen (http://www.isw.uni-stuttgart.de/lehre/lehrveranstaltungen/angewandte-regelungstechnik-in-produktionsanlagen/?L=0Spin-offs)

14. Literatur:

 Lernmaterialien und Literaturlisten für Sekundärliteratur werden verteilt.

15. Lehrveranstaltungen und -formen:

 416601 Vorlesung mit integriertem Seminar Angewandte Regelungstechnik in Produktionsanlagen

16. Abschätzung Arbeitsaufwand:

 Präsenzzeit: 42 Stunden
 Selbststudium: 138 Stunden
 Summe: 180 Stunden

17. Prüfungsnummer/n und -name:

 41661 Angewandte Regelungstechnik in Produktionsanlagen (PL), mündliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:

 Institut für Steuerungstechnik der Werkzeugmaschinen und Fertigungseinrichtungen
Modul: 59980 Angewandtes Technologiemanagement

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072010020</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>
M.Sc. Technische Kybernetik, PO 2011 → Spezialisierungsmodul → Wahlfach Technische Kybernetik |
| 12. Lernziele: | Die Studierenden sind nach der Vorlesung in der Lage, folgende Methoden für verschiedene Aufgaben nach Vor- und Nachteilen auszuwählen und anzuwenden:
- Szenariotechnik
- Marktportfolio / Technologieportfolio
- Kano-Methode
- Geschäftsfieldbildung / Geschäftsfeldstrategie
- Roadmapping zur Strategieumsetzung |
| 15. Lehrveranstaltungen und -formen: | 599801 Vorlesung Angewandtes Technologiemanagement |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit 28 h
Selbststudium 62 h
Summe: 90 Stunden |
| 17. Prüfungsnummer/n und -name: | 59981 Angewandtes Technologiemanagement (BSL), mündliche Prüfung, 20 Min., Gewichtung: 1.0 |
| 18. Grundlage für ... : | |
| 19. Medienform: | |
| 20. Angeboten von: | |
Modul: 33850 Automatisierungstechnik

2. Modulkürzel: 074711005
5. Moduldauer: 1 Semester

3. Leistungspunkte: 3.0 LP
6. Turnus: jedes 2. Semester, SoSe

4. SWS: 2.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Cristina Tarin Sauer

9. Dozenten: Cristina Tarin Sauer

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technische Kybernetik, PO 2011
 → Vorgezogene Master-Module
 DoubleM.D. Technische Kybernetik, PO 2011
 → Chalmers -->Incoming -->Wahlfach Technische Kybernetik
 →
DoubleM.D. Technische Kybernetik, PO 2011
 → Chalmers -->Outgoing -->Wahlfach Technische Kybernetik
 →
DoubleM.D. Technische Kybernetik, PO 2011
 → Incoming -->Spezialisierungsfach -->Systemdynamik/
 Automatisierungstechnik
 →
DoubleM.D. Technische Kybernetik, PO 2011
 → Outgoing -->Spezialisierungsfach -->Systemdynamik/
 Automatisierungstechnik
 →
DoubleM.D. Technische Kybernetik, PO 2014
 → Chalmers -->Incoming -->Wahlfach Technische Kybernetik
 →
DoubleM.D. Technische Kybernetik, PO 2014
 → Incoming -->Spezialisierungsfach -->Systemdynamik/
 Automatisierungstechnik
 →
DoubleM.D. Technische Kybernetik, PO 2014
 → Outgoing -->Spezialisierungsfach -->Systemdynamik/
 Automatisierungstechnik
 →
DoubleM.D. Technische Kybernetik, PO 2014
 → Wahlpflichtmodule -->Spezialisierungsfach -->Systemdynamik/
 Automatisierungstechnik
 →
M.Sc. Technische Kybernetik, PO 2011
 → Spezialisierungsmodul -->Spezialisierungsfach --
 >Systemdynamik/Automatisierungstechnik
 →
M.Sc. Technische Kybernetik, PO 2011
 → Spezialisierungsmodul -->Wahlfach Technische Kybernetik
 →

11. Empfohlene Voraussetzungen: Modul Messtechnik I

Einführung in die Regelungstechnik

12. Lernziele:

Die Studierenden kennen einige wichtige ausgewählte Gebiete der modernen Messtechnik aus den Bereichen der Automatisierungstechnik, sie beherrschen deren Theorie, sie beherrschen deren Methoden, und
sie können diese Methoden auf praktische Probleme anwenden. Der Schwerpunkt liegt auf den der Sensorsignalverarbeitung, wobei spezieller Augenmerk auf die Sensorfusion gelegt wird. Es werden aktuelle Methoden zur Sensorfusion vorgestellt und an praktischen Beispielen werden sie für verschiedene Anwendungen getestet.

Überblick:
- Sensoren: Sinnesorgane der Technik
- Modellierung von Rauschprozessen
 - Rauschmechanismen
 - Sensoren
- Sensorfusion
 - Bayessche Sensorfusion
 - Neuronale Netze
 - Ausgewählte Beispiele

14. Literatur:
- Vorlesungsfolien, Übungsblätter
- "Sensoren für die Prozess- und Fabrikautomation" von Stefan Hesse und Gerhard Schnell, Vieweg&Teubner 2009

15. Lehrveranstaltungen und -formen: 338501 Vorlesung Automatisierungstechnik

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 21 Stunden
- Selbststudium: 69 Stunden
- Gesamt: 90 Stunden

17. Prüfungsnummer/n und -name: 33851 Automatisierungstechnik (BSL), schriftlich, eventuell mündlich, 60 Min., Gewichtung: 1.0

18. Grundlage für ...:
33840 Dynamische Filterverfahren

19. Medienform:
- Folien bzw. Vorlesungsumdruck
- Tafelanschrieb
- Übungsblätter
- Rechnerübungen und Rechnerdemos

20. Angeboten von: Institut für Systemdynamik
Modul: 11620 Automatisierungstechnik I

4. SWS: 4.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Michael Weyrich
9. Dozenten: Michael Weyrich

10. Zuordnung zum Curriculum in diesem Studiengang:

 B.Sc. Technische Kybernetik, PO 2008, . Semester
 → Ergänzungsmodul --> Grundlagen der Natur- und Ingenieurwissenschaften
 →

 B.Sc. Technische Kybernetik, PO 2011, . Semester
 → Ergänzungsmodul --> Grundlagen der Natur- und Ingenieurwissenschaften
 →

 B.Sc. Technische Kybernetik, PO 2011, . Semester
 → Vorgezogene Master-Module

 DoubleM.D. Technische Kybernetik, PO 2011, 2. Semester
 → Chalmers --> Incoming --> Wahlfach Technische Kybernetik
 →

 DoubleM.D. Technische Kybernetik, PO 2011, 2. Semester
 → Chalmers --> Outgoing --> Wahlfach Technische Kybernetik
 →

 DoubleM.D. Technische Kybernetik, PO 2014, 2. Semester
 → Chalmers --> Incoming --> Wahlfach Technische Kybernetik
 →

 M.Sc. Technische Kybernetik, PO 2011, 2. Semester
 → Spezialisierungsmodul --> Wahlfach Technische Kybernetik
 →

11. Empfohlene Voraussetzungen:

 • Grundlagen der Elektrotechnik, Informatik und Mathematik

12. Lernziele:

 Die Studierenden
 • besitzen grundlegende Kenntnisse über rechnerbasierte Automatisierungssysteme
 • setzen sich mit Kommunikationssystemen der Automatisierungstechnik auseinander
 • wenden grundlegende Methoden und Verfahren der Echtzeit-Programmierung an
 • lernen spezifische Programmiersprachen der Automatisierungstechnik kennen

13. Inhalt:

 • Grundlegende Begriffe der Prozessautomatisierung
 • Automatisierungs-Geräte- und -strukturen
 • Prozessperipherie - Schnittstellen zwischen dem Automatisierungscomputersystem und dem technischen Prozess
 • Grundlagen zu Feldbussystemen
 • Echtzeitprogrammierung (synchrone und asynchrone Programmierung, Scheduling-Algorithmen, Synchronisationskonzepte)
 • Echtzeitbetriebssysteme, Entwicklung eines Mini-Echtzeit-Betriebssystems
 • Programmiersprachen für die Prozessautomatisierung (SPS-Programmierung)
14. Literatur:
- Vorlesungsskript
- Lauber, Göhner: Prozessautomatisierung Band 1 (3. Auflage), Springer, 1999
- Früh, Maier: Handbuch der Prozessautomatisierung (3. Auflage) Oldenbourg Industrieverlag, 2004
- Wellenreuther Automatisieren mit SPS (3. Auflage), Vieweg, 2005
- Vorlesungsportal mit Vorlesungsaufzeichnung auf http://www.ias.uni-stuttgart.de/at1/

15. Lehrveranstaltungen und -formen:
- 116201 Vorlesung Automatisierungstechnik I
- 116202 Übung Automatisierungstechnik I

16. Abschätzung Arbeitsaufwand:
| Präsenzzeit: 56 h |
| Selbststudium: 124 h |
| Gesamt: 180 h |

17. Prüfungsnummer/n und -name:
- 11621 Automatisierungstechnik I (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ...:
- 21730 Automatisierungstechnik II

19. Medienform:
- Beamerpräsentation mit Aufzeichnung der Vorlesungen und Übungen

20. Angeboten von:
- Institut für Automatisierungs- und Softwaretechnik
Modul: 12100 BWL II: Rechnungswesen und Finanzierung

2. Modulkürzel: 100150001
5. Modulduauer: 1 Semester
3. Leistungspunkte: 9.0 LP
6. Turnus: jedes 2. Semester, SoSe
4. SWS: 8.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Burkhard Pedell
9. Dozenten: • Henry Schäfer
 • Burkhard Pedell

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technische Kybernetik, PO 2011
 → Vorgezogene Master-Module
 DoubleM.D. Technische Kybernetik, PO 2011
 → Chalmers -->Incoming -->Wahlfach Technische Kybernetik
 →
 DoubleM.D. Technische Kybernetik, PO 2011
 → Chalmers -->Outgoing -->Wahlfach Technische Kybernetik
 →
 DoubleM.D. Technische Kybernetik, PO 2014
 → Chalmers -->Incoming -->Wahlfach Technische Kybernetik
 →
M.Sc. Technische Kybernetik, PO 2011
 → Spezialisierungsmodule -->Wahlfach Technische Kybernetik
 →

11. Empfohlene Voraussetzungen: Grundlagen der BWL

12. Lernziele:
Die Studierenden beherrschen die Terminologie und das Basiswissen der Kostenrechnung, des externen Rechnungswesens sowie der entscheidungsorientierten Investitions- und Finanzierungstheorie.

Die Studierenden können grundlegende Problemstellungen der Kostenrechnung, des externen Rechnungswesens sowie der Bereiche Investition und Finanzierung lösen und sich in weiterführende Problemstellungen selbständig einarbeiten.

13. Inhalt:
Einordnung, Aufgaben, Teilbereiche und Grundbegriffe der Kostenrechnung, Kostenträgerrechnung, Kostenstellenrechnung, Kostenartenrechnung, Erfolgsrechnung, Entscheidungsunterstützung durch die Kosten- und Erlösrechnung, Fallbeispiele aus der Unternehmenspraxis.

Grundlagen von Investitions-/Finanzierungsprozessen, Investitionsentscheidungen - Grundlagemethoden bei sicheren Erwartungen, Finanzierungsempfehlungen bei gegebenen Erwartungen, Entscheidungen bei Unsicherheit und Risiko, kapitalmarkttheoretische Basismodelle zur Bewertung, CAPM, Grundlagen von Optionen, Forwards/Futures; Bewertung von Optionen/Forwards.

14. Literatur: • Skript Internes und Externes Rechnungswesen
• Skript Investition und Finanzierung

15. Lehrveranstaltungen und -formen:
- 121001 Vorlesung BWL II: Investition und Finanzierung
- 121002 Übung BWL II: Investition und Finanzierung
- 121003 Vorlesung BWL II: Internes und externes Rechnungswesen
- 121004 Übung BWL II: Internes und externes Rechnungswesen

16. Abschätzung Arbeitsaufwand:
Gesamtzeitaufwand: 270 h

Internes und Externes Rechnungswesen
Präsenzzeit: 56 h
Selbststudium: 79 h

Investition und Finanzierung
Präsenzzeit: 56 h
Selbststudium: 79 h

17. Prüfungsnummer/n und -name: 12101 BWL II: Rechnungswesen und Finanzierung (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :
- 13210 Controlling
- 13220 Investitions- und Finanzmanagement

19. Medienform: Beamer-Präsentation, Overhead-Projektion

20. Angeboten von: Betriebswirtschaftliches Institut
Modul: 48520 Biomedizin für die Technische Kybernetik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>040900006</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Roland Kontermann</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Roland Kontermann
| | • Dafne Müller |

10. Zuordnung zum Curriculum in diesem Studiengang:
 - B.Sc. Technische Kybernetik, PO 2011
 → Ergänzungsmodule -->Wahlbereich Anwendungsfach
 → Biologische Systeme
 →
 - B.Sc. Technische Kybernetik, PO 2011
 → Vorgezogene Master-Module
 - M.Sc. Technische Kybernetik, PO 2011
 → Spezialisierungsmodule -->Wahlfach Technische Kybernetik

11. Empfohlene Voraussetzungen:

12. Lernziele:
 - Die Studierenden
 - kennen die Grundlagen der Biopharmazie und Pharmakologie und können diese auf Proteintherapeutika übertragen und anwenden
 - besitzen einen Überblick über biotechnologische Proteintherapeutika und können ihre Wirkweise und Anwendung erklären und beurteilen

13. Inhalt:
 - Das Modul vermittelt:
 - Grundlagen der Proteinchemie und Biopharmazie
 - Herstellung und Anwendung therapeutischer Proteine
 - Beispiele: Hormone, Wachstum-, Gerinnungsfaktoren, Antikörper, Enzyme
 und erlaubt so das Wiedergeben relevanter proteintherapeutischer Ansätze sowie die Bewertung, Interpretation und Einordnung dieser Strategien

14. Literatur:
 - Script Ilias, Dingermann: "Gentechnik, Biotechnik" Wissenschaftliche Verlagsgesellschaft, 2010

15. Lehrveranstaltungen und -formen:
 - 485201 Vorlesung Biomedizin für Technische Kybernetik
 - 485202 Übung Biomedizin für Technische Kybernetik

16. Abschätzung Arbeitsaufwand:
 - Vorlesung (2 SWS)
 - Präsenzzeit 28 Stunden
 - Selbstdstudium: 32 Stunden
 - Summe 60 Stunden
 - Seminar (1 SWS)
 - Präsenzzeit 14 Stunden
Selbststudium: 20 Stunden
Summe 34 Stunden
SUMME: 94 Stunden

17. Prüfungsnummer/n und -name: 48521 Biomedizin für die Technische Kybernetik (BSL), mündliche Prüfung, 30 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
Modul: 33480 Biomedizinische Gerätetechnik

2. Modulkürzel: 040900006
5. Moduldauer: 1 Semester

3. Leistungspunkte: 3.0 LP
6. Turnus: jedes 2. Semester, SoSe

4. SWS: 2.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Joachim Nagel

9. Dozenten: • Joachim Nagel

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technische Kybernetik, PO 2011 → Vorgezogene Master-Module
 DoubleM.D. Technische Kybernetik, PO 2011 → Chalmers -->Incoming -->Wahlfach Technische Kybernetik →
 DoubleM.D. Technische Kybernetik, PO 2011 → Chalmers -->Outgoing -->Wahlfach Technische Kybernetik →
 DoubleM.D. Technische Kybernetik, PO 2011 → Incoming -->Spezialisierungsfach -->Biomedizinische Technik →
 DoubleM.D. Technische Kybernetik, PO 2011 → Outgoing -->Spezialisierungsfach -->Biomedizinische Technik →
 DoubleM.D. Technische Kybernetik, PO 2014 → Chalmers -->Incoming -->Wahlfach Technische Kybernetik →
 DoubleM.D. Technische Kybernetik, PO 2014 → Incoming -->Spezialisierungsfach -->Biomedizinische Technik →
 DoubleM.D. Technische Kybernetik, PO 2014 → Outgoing -->Spezialisierungsfach -->Biomedizinische Technik →
 DoubleM.D. Technische Kybernetik, PO 2014 → Wahlpflichtmodule -->Spezialisierungsfach -->Biomedizinische Technik →
 M.Sc. Technische Kybernetik, PO 2011 → Spezialisierungsmodule -->Spezialisierungsfach -->Biomedizinische Technik →
 M.Sc. Technische Kybernetik, PO 2011 → Spezialisierungsmodule -->Wahlfach Technische Kybernetik →

11. Empfohlene Voraussetzungen: keine

12. Lernziele:

 Lernziele sind:

 • Die Studierenden haben einen Basiswortschatz medizinischer Terminologie erworben,
 • sie besitzen grundlegende Kenntnisse der Beatmungs-/Narkosetechnik,
 • sowie Kenntnisse zu den wichtigsten Gewebedissektionsverfahren,
 • sie kennen das Basisinstrumentarium der minimal invasiven Chirurgie,
• sie haben die theoretischen Grundkenntnisse des Kardiotechnikers erworben,
• sie besitzen Grundkenntnisse medizinisch-interventioneller Robotiksysteme und entsprechender Anforderungen an die Systeme,
• sie haben ein Verständnis von medizintechnischen Entwicklungsschwerpunkten und der notwendigen Komplexität klinischer Medizingeräte erworben.

13. Inhalt:
Erfordernisse technischer Geräte im klinischen Einsatzbereich; Mittel der Ingenieurwissenschaft (mit Schwerpunkt Maschinenbau) werden auf konkrete medizinische Problemstellungen übertragen und angewendet:
- Einführung in die Beatmungs-/Narkosetechnik,
- Grundlagen der Chirurgietechnik, Schwerpunkt minimal invasive Chirurgie, mit Anwendungsbeispielen
- Einführung in das theoretische Basiswissen des Kardiotechnikers mit Anwendungsbeispielen
- Grundlagen der medizinisch-interventionellen Robotertechnik mit Anwendungsbeispielen

14. Literatur:
- Vorlesungsskriptum

15. Lehrveranstaltungen und -formen: 334801 Vorlesung Biomedizinische Gerätetechnik

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 21 Stunden
Selbststudium: 69 Stunden
Summe: 90 Stunden

17. Prüfungsnummer/n und -name: 33481 Biomedizinische Gerätetechnik (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:
Beamer-Präsentation, Overhead-Projektor, Tafel

20. Angeboten von:
Modul: 29940 Convex Optimization

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>074810180</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Modulduer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher:
Univ.-Prof. Christian Ebenbauer

9. Dozenten:
Christian Ebenbauer

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>B.Sc. Technische Kybernetik, PO 2011, 7. Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Vorgezogene Master-Module</td>
</tr>
<tr>
<td>Double M.D. Technische Kybernetik, PO 2011</td>
</tr>
<tr>
<td>Chalmers -->Incoming -->Wahlfach Technische Kybernetik</td>
</tr>
<tr>
<td>Double M.D. Technische Kybernetik, PO 2011</td>
</tr>
<tr>
<td>Chalmers -->Outgoing -->Mathematische Methoden der Kybernetik</td>
</tr>
<tr>
<td>Double M.D. Technische Kybernetik, PO 2011</td>
</tr>
<tr>
<td>Chalmers -->Outgoing -->Wahlfach Technische Kybernetik</td>
</tr>
<tr>
<td>Double M.D. Technische Kybernetik, PO 2011</td>
</tr>
<tr>
<td>Incoming -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik</td>
</tr>
<tr>
<td>Double M.D. Technische Kybernetik, PO 2011</td>
</tr>
<tr>
<td>Outgoing -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik</td>
</tr>
<tr>
<td>Double M.D. Technische Kybernetik, PO 2014</td>
</tr>
<tr>
<td>Chalmers -->Incoming -->Wahlfach Technische Kybernetik</td>
</tr>
<tr>
<td>Double M.D. Technische Kybernetik, PO 2014</td>
</tr>
<tr>
<td>Incoming -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik</td>
</tr>
<tr>
<td>Double M.D. Technische Kybernetik, PO 2014</td>
</tr>
<tr>
<td>Outgoing -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik</td>
</tr>
<tr>
<td>Double M.D. Technische Kybernetik, PO 2014</td>
</tr>
<tr>
<td>Outgoing -->Wahlpflichtmodule -->Mathematische Methoden der Kybernetik</td>
</tr>
<tr>
<td>Double M.D. Technische Kybernetik, PO 2014</td>
</tr>
<tr>
<td>Wahlpflichtmodule -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik</td>
</tr>
<tr>
<td>M.Sc. Technische Kybernetik, PO 2011</td>
</tr>
<tr>
<td>Spezialisierungsmodule -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik</td>
</tr>
<tr>
<td>M.Sc. Technische Kybernetik, PO 2011</td>
</tr>
<tr>
<td>Spezialisierungsmodule -->Wahlfach Technische Kybernetik</td>
</tr>
</tbody>
</table>
11. Empfohlene Voraussetzungen:

12. Lernziele: The students obtain a solid understanding of convex optimization. In particular, they are able to formulate and assess optimization problems and to apply methods and tools from convex optimization, such as linear and semi-definite programming, duality theory and relaxation techniques, to solve optimization problems in various areas of engineering and sciences.

13. Inhalt:
- Linear programming
- Quadratic programming
- Semidefinite programming
- Linear matrix inequalities
- Duality theory
- Relaxation techniques and polynomial optimization
- Simplex algorithm and interior-point algorithms
- Applications

14. Literatur:
- Vollständiger Tafelanschrieb,
- Handouts,
- Buch: Convex Optimization (S. Boyd, L. Vandenberghe), Nichtlineare Optimierung (R.H. Elster), Lectures on Modern Convex Optimization (A. Ben-Tal, A. Nemirovski)
- Material für (Rechner-)Übungen wird in den Übungen ausgeteilt

15. Lehrveranstaltungen und -formen: 299401 Vorlesung Convex Optimization

17. Prüfungsnummer/n und -name: 29941 Convex Optimization (PL), schriftlich oder mündlich, Gewichtung: 1,0, Convex Optimization, 1,0, schriftlich oder mündlich

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
Modul: 29180 Dynamik elektrischer Verbundsysteme

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>042500041</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Günter Scheffknecht</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Florian Gutekunst</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- B.Sc. Technische Kybernetik, PO 2011
 → Vorgezogene Master-Module
 → Chalmers -->Incoming -->Wahlfach Technische Kybernetik
 →

- DoubleM.D. Technische Kybernetik, PO 2011
 → Chalmers -->Incoming -->Wahlfach Technische Kybernetik
 →

- DoubleM.D. Technische Kybernetik, PO 2011
 → Chalmers -->Incoming -->Wahlfach Technische Kybernetik
 →

- DoubleM.D. Technische Kybernetik, PO 2011
 →Incoming -->Spezialisierungsfach -->Automatisierung in der Energietechnik
 →

- DoubleM.D. Technische Kybernetik, PO 2011
 →Outgoing -->Spezialisierungsfach -->Automatisierung in der Energietechnik
 →

- DoubleM.D. Technische Kybernetik, PO 2014
 → Chalmers -->Incoming -->Wahlfach Technische Kybernetik
 →

- DoubleM.D. Technische Kybernetik, PO 2014
 →Incoming -->Spezialisierungsfach -->Automatisierung in der Energietechnik
 →

- DoubleM.D. Technische Kybernetik, PO 2014
 →Outgoing -->Spezialisierungsfach -->Automatisierung in der Energietechnik
 →

- DoubleM.D. Technische Kybernetik, PO 2014
 →Wahlpflichtmodule -->Spezialisierungsfach -->Automatisierung in der Energietechnik
 →

- M.Sc. Technische Kybernetik, PO 2011
 →Spezialisierungsmodul -->Spezialisierungsfach -->Automatisierung in der Energietechnik
 →

- M.Sc. Technische Kybernetik, PO 2011
 →Spezialisierungsmodul -->Spezialisierungsfach -->Automatisierung in der Energietechnik
 →

11. Empfohlene Voraussetzungen:
Empfohlen: Grundlagen der Elektrotechnik, Grundlagen der Regelungstechnik, Mathematik

12. Lernziele:
Absolventen des Moduls verstehen das dynamische Verhalten großer elektrischer Verbundsysteme. Sie haben vertiefte Kenntnisse der Dynamik der beteiligten Komponenten (Generatoren, Kraftwerke, Verbraucher, Regeleinrichtungen, Power System Stabilizer, FACTS,
etc.) sowie deren dynamischen Einflüsse beim Zusammenwirken im Verbundsystem. Sie können Oszillationen im Verbundnetz erkennen, mathematisch beschreiben und bewerten. Sie wissen, wie stabilitätsgefährdende Zustände erkannt und verhindert werden können.

13. Inhalt:

Einführung:
• Bedeutung des Verbundnetzbetriebs
• Teilnehmer im Verbundnetzbetrieb
• Randbedingungen für einen stabilen Netzbetrieb

Grundlegende Zusammenhänge der Netzdynamik
• Leitungs-Frequenzverhalten
• Einfluss der Schwungmassen (Netzanlaufzeit)
• Einfluss des Netzes (Netzelbsregeleffekt)
• Automatisierte Regeleinrichtungen (Primär- und Sekundärregelung)

Dynamik der Betriebsmittel im Verbundnetz
• Zusammenhang der Netzdynamik mit den dyn. Eigenschaften der Betriebsmittel
• Dynamische Eigenschaften aller wesentlichen Betriebsmittel im Verbundnetz, d.h.
• Dynamik konventioneller Kraftwerke inkl. Regeleinrichtungen
• Dynamische Eigenschaften neuer Erzeuger: WKAs, PV-Anlagen, etc.

Netzregelung
• Konzept der Leistungs-Frequenz-Regelung: Primär-, Sekundär- sowie Minuten-Reserve
• Technische Umsetzung der Leistungs-Frequenz-Regelung in Kraftwerken: Primär-, Sekundär- und Tertiär-Regelung sowie Drehzahlregelung
• Richtlinien: Rahmenbedingungen für die Leistungs-Frequenz-Regelung
• Auswirkungen unterschiedlicher Regler-Einstellungen auf das Frequenzverhalten
• Konzept und technische Umsetzung weiterer Regeleinrichtungen (z.B. Spannungsregelung)

Netzstabilität
• Einführung in die Wesentlichen Stabilitätsaspekte in elektrischen Verbundsystemen

Ursachen von Netzpendelungen
• Pendelung des Synchrongenerators am Netz und der Einfluss weiterer Einflussgrößen wie Leitungsimpedanzen, Lastflüsse, Spannung und Generatorleistung
• Elektromechanische Ausgleichsbewegung (Netzpendelungen) und elektromechanische Wellenausbreitung
• Dämpfung von Netzpendelungen (Power System Stabilizer und Leistungselektronik)

Analyse von Netzpendelungen
• Simulationsbasierte Methoden im Zeit- und Frequenzbereich am Beispiel des Kontinentaleuropäischen Verbundsystems
• Messdatenbasierte Methoden zur Analyse von Netzpendelungen

15. Lehrveranstaltungen und -formen: 291801 Vorlesung Dynamik elektrischer Verbundsysteme

16. Abschätzung Arbeitsaufwand: Präsenzzeit: 28 h
Selbststudium: 62 h
Summe: 90 h

17. Prüfungsnummer/n und -name: 29181 Dynamik elektrischer Verbundsysteme (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform: PPT-Präsentation; Tafelanschrieb

20. Angeboten von: Institut für Feuerungs- und Kraftwerkstechnik
Modul: 33840 Dynamische Filterverfahren

2. Modulkürzel: 074711007
5. Modulduauer: 1 Semester

3. Leistungspunkte: 6.0 LP
6. Turnus: jedes 2. Semester, SoSe

4. SWS: 4.0
7. Sprache: Englisch

8. Modulverantwortlicher: Univ.-Prof. Cristina Tarin Sauer

9. Dozenten: Cristina Tarin Sauer

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technische Kybernetik, PO 2011
→ Vorgezogene Master-Module

M.Sc. Technische Kybernetik, PO 2011
→ Spezialisierungsmodul --> Spezialisierungsfach --> Systemdynamik/Automatisierungstechnik

M.Sc. Technische Kybernetik, PO 2011
→ Spezialisierungsmodul --> Wahlfach Technische Kybernetik

11. Empfohlene Voraussetzungen: Modul Einführung in die Elektrotechnik, Elektrische Signalverarbeitung, Echtzeidadatenverarbeitung

12. Lernziele:

13. Inhalt:

- Einführung zur adaptiven Filterung
- Stochastische Prozesse and Modell
- Fourier-Analyse von stationären Zufallssignalen
- Wiener Filter
- Lineare Prädiktion
- Least-Mean-Square adaptive Filterung
- Kalman Filter

14. Literatur:

- Vorlesungsumdruck (Vorlesungsfolien)
- Übungsblätter
- Aus der Bibliothek:
 - Oppenheim and Schafer: Discrete-Time Signal Processing
 - Haykin: Adaptive Filter Theory
- Weitere Literatur wird in der Vorlesung bekannt gegeben

15. Lehrveranstaltungen und -formen: 338401 Vorlesung (inkl. Übungen) Dynamische Filterverfahren

16. Abschätzung Arbeitsaufwand:

- Präsenzzeit: 42 Stunden
- Selbststudium: 138 Stunden.
- Summe: 180 Stunden

4 SWS gegliedert in 2 VL und 2 Ü
<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>33841</th>
<th>Dynamische Filterverfahren (PL), schriftliche Prüfung, 90 Min., Gewichtung: 1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Beamer-Präsentation, Tafelanschrieb</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Institut für Systemdynamik</td>
<td></td>
</tr>
</tbody>
</table>
Modul: 57680 Einführung in die Chaostheorie

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>074810350</th>
<th>5. Modulduauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

| 8. Modulverantwortlicher: | Univ.-Prof. Frank Allgöwer |
| 9. Dozenten: | Viktor Avrutin |

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>B.Sc. Technische Kybernetik, PO 2011</th>
<th>Vorgezogene Master-Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>M.Sc. Technische Kybernetik, PO 2011</td>
<td>Spezialisierungsmodul -->Spezialisierungs Fach -->Autonome Systeme und Regelungstechnik</td>
</tr>
<tr>
<td>M.Sc. Technische Kybernetik, PO 2011</td>
<td>Spezialisierungsmodul -->Wahlfach Technische Kybernetik</td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen:

12. Lernziele:

13. Inhalt:

1. Problemstellungen und Grundbegriffe

2. Qualitative Analyse: Attraktoren (periodische, aperiodische, chaotische Trajektorien), Bifurkationen (lokale und globale Bifurkationen, Bifurkationen in stückweise-glatten Systemen); Bifurkations-szenarien (in glatten und stückweise-glatten Systemen)
3. Quantitative Analyse: Lyapunov Exponenten, fraktale Dimensionen, weitere Maße. Symbolische Dynamik

4. Fraktale

15. Lehrveranstaltungen und -formen: 576801 Vorlesung Einführung in die Chaostheorie

16. Abschätzung Arbeitsaufwand: Präsenzzeit: 42;
Selbststudium: 138

17. Prüfungsnummer/n und -name: 57681 Einführung in die Chaostheorie (PL), mündliche Prüfung, 30 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
Modul: 46770 Einführung in die Funktionale Sicherheit

2. Modulkürzel: 074710014
5. Modulduer: 1 Semester
3. Leistungspunkte: 3.0 LP
6. Turnus: jedes 2. Semester, SoSe
4. SWS: 2.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Oliver Sawodny
9. Dozenten: Oliver Kust

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technische Kybernetik, PO 2011
→ Vorgezogene Master-Module
 DoubleM.D. Technische Kybernetik, PO 2011
 → Incoming -->Spezialisierungsfach -->Systemdynamik/Automatisierungstechnik

 →

→ DoubleM.D. Technische Kybernetik, PO 2011
 → Outgoing -->Spezialisierungsfach -->Systemdynamik/Automatisierungstechnik

 →

→ DoubleM.D. Technische Kybernetik, PO 2014
 → Incoming -->Spezialisierungsfach -->Systemdynamik/Automatisierungstechnik

 →

→ DoubleM.D. Technische Kybernetik, PO 2014
 → Outgoing -->Spezialisierungsfach -->Systemdynamik/Automatisierungstechnik

 →

→ DoubleM.D. Technische Kybernetik, PO 2014
 → Wahlpflichtmodule -->Spezialisierungsfach -->Systemdynamik/Automatisierungstechnik

 →

M.Sc. Technische Kybernetik, PO 2011
→ Spezialisierungsmodul -->Spezialisierungsfach -->Systemdynamik/Automatisierungstechnik

 →

→ M.Sc. Technische Kybernetik, PO 2011
→ Spezialisierungsmodul -->Wahlfach Technische Kybernetik

11. Empfohlene Voraussetzungen:
Systemdynamische Grundlagen der Regelungstechnik Einführung in die Regelungstechnik

12. Lernziele:
Die Studierenden kennen die Grundzüge der Funktionale Sicherheit als integralen Bestandteil der Produktentwicklung und können Vorgehen und Methoden auf Systeme unterschiedlicher Anwendungsbereiche übertragen und anwenden.

13. Inhalt:
Rechtlicher Hintergrund; Fehler und Zuverlässigkeitskenngroßen; Sicherheitslebenszyklus; Gefährdungsanalyse und Risikobewertung; Methoden und Maßnahmen in System-, Software- und Hardwareentwicklung; Analyseverfahren; Management der funktionalen Sicherheit; Überblick und Aufbau relevanter Normen. Anhand von Beispielen werden die wesentlichen Aspekte diskutiert.

14. Literatur:
Skrift („Tafelanschrieb“); Umdrucke.
Literatur wird in der Vorlesung bekannt gegeben.
<table>
<thead>
<tr>
<th>15. Lehrveranstaltungen und -formen:</th>
<th>467701 Vorlesung Einführung in die Funktionale Sicherheit</th>
</tr>
</thead>
</table>
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 21 h
Nacharbeitszeit: 34 h
Prüfungsvorbereitung: 35 h |
| 17. Prüfungsnr/n und -name: | 46771 Einführung in die Funktionale Sicherheit (BSL), mündliche Prüfung, 30 Min., Gewichtung: 1.0 |
| 18. Grundlage für ... : | |
| 19. Medienform: | |
| 20. Angeboten von: | Institut für Systemdynamik |
Modul: 37800 Einführung in die KFZ-Systemtechnik

2. Modulkürzel: 070830103
5. Moduldaauer: 1 Semester

3. Leistungspunkte: 3.0 LP

4. SWS: 2.0
7. Sprache: Deutsch

9. Dozenten: Gerhard Hettich

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technische Kybernetik, PO 2011
➞ Vorgezogene Master-Module
M.Sc. Technische Kybernetik, PO 2011
➞ Spezialisierungsmodule --> Wahlfach Technische Kybernetik

11. Empfohlene Voraussetzungen: Kraftfahrzeugmechatronik I/II

12. Lernziele:
Die Studierenden kennen im Kraftfahrzeug verwendete elektronische Komponenten.
Sie verstehen außerdem Entwicklungs- und Designprozesse beim Aufbau einer Fahrzeugarchitektur.

13. Inhalt:
1. EE-Systeme im Kraftfahrzeug
 Definition
 Historie der Systeme
 Sensoren
 Aktoren
 Steuergeräte
 Stecker und Kabelbäume
 Bordnetz
 Bussysteme
 Systemarchitektur
 Elektrische Antriebe

14. Literatur:
 • Vorlesungsskript

15. Lehrveranstaltungen und -formen: 378001 Vorlesung Einführung in die KFZ-Systemtechnik

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit 21 h,
 Selbststudium und Nachbearbeitung 69 h
 Gesamt 90 h

17. Prüfungsnummer/n und -name: 37801 Einführung in die KFZ-Systemtechnik (BSL), mündliche Prüfung, 20 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform: Tafelanschrieb, PPT-Präsentationen, Overheadfolien

20. Angeboten von:
Modul: 43900 Einführung in die verteilte künstliche Intelligenz

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>051220901</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Michael Schanz</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
 ➔ Ergänzungsmodule -->Grundlagen der Natur- und Ingenieurwissenschaften
 ➔ B.Sc. Technische Kybernetik, PO 2011
 ➔ Vorgezogene Master-Module
 ➔ DoubleM.D. Technische Kybernetik, PO 2011
 ➔ Chalmers -->Incoming -->Wahlfach Technische Kybernetik
 ➔ DoubleM.D. Technische Kybernetik, PO 2011
 ➔ Chalmers -->Outgoing -->Wahlfach Technische Kybernetik
 ➔ DoubleM.D. Technische Kybernetik, PO 2011
 ➔ Incoming -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
 ➔ ➔ DoubleM.D. Technische Kybernetik, PO 2011
 ➔ Outgoing -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
 ➔ DoubleM.D. Technische Kybernetik, PO 2014
 ➔ Incoming -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
 ➔ ➔ DoubleM.D. Technische Kybernetik, PO 2014
 ➔ Outgoing -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
 ➔ DoubleM.D. Technische Kybernetik, PO 2014
 ➔ Wahlpflichtmodule -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
 ➔ ➔ M.Sc. Technische Kybernetik, PO 2011
 ➔ Spezialisierungsmodul -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
 ➔ ➔ M.Sc. Technische Kybernetik, PO 2011
 ➔ Spezialisierungsmodul -->Wahlfach Technische Kybernetik |

11. Empfohlene Voraussetzungen: | keine |
12. Lernziele: | Die Teilnehmer erlernen die grundlegenden Begriffe sowie die grundlegenden Konzepte der verteilten künstlichen Intelligenz. Die Studierenden |

13. Inhalt:

14. Literatur:
• Skriptum zur Vorlesung, 2012
• G.F. Luger and W.A. Stubblefield, Artificial Intelligence, Benjamin Cummings, 2. Ed., 1993
• J. Müller (Editor), Verteilte Künstliche Intelligenz, BI Wissenschaftsverlag, 1993
• K. Mainzer, Gehirn, Computer, Komplexität, Springer-Verlag, 1997
• R. Pfeifer and Ch. Scheier, Understanding Intelligence, MIT Press, 1999

15. Lehrveranstaltungen und -formen: 439001 Vorlesung Einführung in die verteilte künstliche Intelligenz

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 21 Stunden
Selbststudium: 69 Stunden
Summe: 90 Stunden

17. Prüfungsnummer/n und -name:
43901 Einführung in die verteilte künstliche Intelligenz (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0
18. Grundlage für ...

19. Medienform:

20. Angeboten von:
Modul: 36850 Elektrochemische Energiespeicherung in Batterien

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>042411045</th>
<th>5. Modulduer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Andreas Friedrich</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Andreas Friedrich
• Birger Horstmann |
→ Vorgezogene Master-Module
DoubleM.D. Technische Kybernetik, PO 2011
→ Chalmers -->Incoming -->Wahlfach Technische Kybernetik
→
DoubleM.D. Technische Kybernetik, PO 2011
→ Chalmers -->Outgoing -->Wahlfach Technische Kybernetik
→
DoubleM.D. Technische Kybernetik, PO 2011
→ Incoming -->Spezialisierungsfach -->Energiesysteme und Energiewirtschaft
→
DoubleM.D. Technische Kybernetik, PO 2011
→ Outgoing -->Spezialisierungsfach -->Energiesysteme und Energiewirtschaft
→
DoubleM.D. Technische Kybernetik, PO 2014
→ Chalmers -->Incoming -->Wahlfach Technische Kybernetik
→
DoubleM.D. Technische Kybernetik, PO 2014
→ Incoming -->Spezialisierungsfach -->Energiesysteme und Energiewirtschaft
→
DoubleM.D. Technische Kybernetik, PO 2014
→ Outgoing -->Spezialisierungsfach -->Energiesysteme und Energiewirtschaft
→
DoubleM.D. Technische Kybernetik, PO 2014
→ Wahlpflichtmodule -->Spezialisierungsfach -->Energiesysteme und Energiewirtschaft
→
M.Sc. Technische Kybernetik, PO 2011
→ Spezialisierungsmodul -->Spezialisierungsfach -->Energiesysteme und Energiewirtschaft
→
M.Sc. Technische Kybernetik, PO 2011
→ Spezialisierungsmodul -->Wahlfach Technische Kybernetik
→ |
| 12. Lernziele: | |

13. Inhalt:
- Grundlagen: Elektrochemische Thermodynamik, Elektrolyte, Grenzflächen, elektrochemische Kinetik
- Primärzellen: Alkali-Mangan
- Sekundärzellen: Blei-Säure, Nickel-Metallhydrid, Lithium-Ionen
- Anwendungen: Systemtechnik, Hybridisierung, portable Geräte, Fahrzeugtechnik, regenerative Energien
- Herstellung, Sicherheitstechnik und Entsorgung

14. Literatur:

15. Lehrveranstaltungen und -formen:
368501 Vorlesung Elektrochemische Energiespeicherung in Batterien

16. Abschätzung Arbeitsaufwand:
Präsenzzzeit: 28 h
Vor- / Nachbereitung: 62 h
Gesamtaufwand: 90 h

17. Prüfungsnummer/n und -name:
36851 Elektrochemische Energiespeicherung in Batterien (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:
Tafelanschrieb und Powerpoint-Präsentation

20. Angeboten von:
Modul: 32950 Embedded Controller und Datennetze in Fahrzeugen

2. Modulkürzel: 070830101
5. Modulduer: 2 Semester
3. Leistungspunkte: 6.0 LP
6. Turnus: jedes Semester
4. SWS: 4.0
7. Sprache: Deutsch

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technische Kybernetik, PO 2011
- Vorgezogene Master-Module
 - DoubleM.D. Technische Kybernetik, PO 2011
 - Chalmers -->Incoming -->Wahlfach Technische Kybernetik
 - DoubleM.D. Technische Kybernetik, PO 2011
 - Chalmers -->Outgoing -->Wahlfach Technische Kybernetik
 - DoubleM.D. Technische Kybernetik, PO 2011
 - Incoming -->Spezialisierungsfach -->Kraftfahrzeugmechatronik
 - DoubleM.D. Technische Kybernetik, PO 2011
 - Outgoing -->Spezialisierungsfach -->Kraftfahrzeugmechatronik
 - DoubleM.D. Technische Kybernetik, PO 2014
 - Chalmers -->Incoming -->Wahlfach Technische Kybernetik
 - DoubleM.D. Technische Kybernetik, PO 2014
 - Incoming -->Spezialisierungsfach -->Kraftfahrzeugmechatronik
 - DoubleM.D. Technische Kybernetik, PO 2014
 - Outgoing -->Spezialisierungsfach -->Kraftfahrzeugmechatronik
 - DoubleM.D. Technische Kybernetik, PO 2014
 - Wahlpflichtmodule -->Spezialisierungsfach -->Kraftfahrzeugmechatronik
 - M.Sc. Technische Kybernetik, PO 2011
 - Spezialisierungsmodul -->Spezialisierungsfach -->Kraftfahrzeugmechatronik
 - M.Sc. Technische Kybernetik, PO 2011
 - Spezialisierungsmodul -->Wahlfach Technische Kybernetik

11. Empfohlene Voraussetzungen:

Kraftfahrzeugmechatronik I/II

Für die Praktikumsversuche bieten wir zum leichteren Einstieg einen Elektronik-Brückenkurs an. Hierbei wird das von Ihnen im Bachelor bereits erworbbene Wissen im Bereich der Elektrotechnik nochmals unter Zuhilfenahme von praxisorientierten Übungsaufgaben aufgefrischt. Informationen hierzu finden Sie auf der Internetseite des IVK.

12. Lernziele:

Die Studierenden kennen die Eigenschaften von analogen und digitalen Signalen und können diese erläutern. Sie verstehen Aufbau sowie die Funktion eines Mikrechiners und seiner Komponenten. Die
Studierenden können verschiedene Speicherarten unterscheiden. Außerdem sind sie in der Lage Programme für einen Mikrocontroller zu erstellen.

Ferner kennen die Studierenden verschiedene Bussysteme, die im Kraftfahrzeug eingesetzt werden. Außerdem können sie diese Bussysteme unterscheiden, sowie deren Potential erkennen und bewerten. Wichtige Entwicklungswerkzeuge können sie nutzen.

Außerdem sind die Studierenden in der Lage, theoretische Vorlesungsinhalte anzuwenden und in der Praxis umzusetzen. Die Studierenden
• können selbständig Prüfungen und Tests konzipieren, erstellen und durchführen
• sind in der Lage, die Prüfungen und Tests auszuwerten und die Ergebnisse zu beurteilen.
• kennen Grundlagen von Kommunikation und Diagnose im Kraftfahrzeug
• verstehen die technischen Eigenheiten und Problemfelder moderner Kommunikationssysteme und Bordnetzelektronik
• können elektronische Systeme im Kfz analysieren sowie Fehler identifizieren und beseitigen

13. Inhalt:

Embedded Controller:
• Mikrorechnertechnik: Eigenschaften von analogen und digitalen Signalen
• Struktur Mikrorechner: Aufbau eines Mikrorechners und dessen Komponenten (Speicher, Steuerwerk, Befehlsatz, Schnittstellen, ADC, DAC)
• Embedded Systems, Embedded Controller, Verschiedenen Architekturen (Von Neumann, Harvard, Extended Harvard)
• Übung: Praktische Programmierung von Mikrocontrollern mit der Programmiersprache C (Taskverwaltung, Ansteuerung eines Schrittmotors, CAN Netzwerk)

Datennetze:
• Netztopologien: ISO-OSI Schichtenmodell, Schnittstellen, Buszugriffsverfahren, Fehlererkennung, Abitation, Leitungscodes
• Verschiedene Bussysteme (CAN, FlexRay, LIN), Vertiefung der einzelnen Bussysteme (Botschaftsaufbau, Fehlererkennung und Behandlung, Bitcodierung, Eigenschaften, Vor- und Nachteile)
• Übung: Praktische Nutzung eines Entwicklungsprogramms, Aufbau eines CAN-Netzwerkes

Übung:

14. Literatur:
• Vorlesungsumdruck: „Embedded Controller (Reuss)
• Vieweg Verlag: W. Ameling, Digitalrechner Band 1 und 2
• Vieweg Verlag: B. Morgenstern, Elektronik III Digitale Schaltungen und Systeme
• Hanser Verlag; Westerholz, Embedded Control Architekturen
• Vorlesungsumdruck: „Datennetze im Kraftfahrzeug“ (Reuss)
• Bonfig Feldbus-Systeme, Band 374 Expert Verlag;
• W. Lawrenz CAN Controller Area Network- Grundlagen und Praxis Hüthig Buch Verlag Heidelberg;
• K. Etschberger CAN Controller Area Network- Grundlagen, Protokolle, Bausteine, Anwendungen Carl Hanser Verlag Wien
• M. Rausch Flexray Hanser Verlag

15. Lehrveranstaltungen und -formen:
• 329501 Vorlesung Embeddes Controller
• 329502 Vorlesung Datennetze im Kraftfahrzeug
• 329503 Übung Embedded Controller und Datennetze

16. Abschätzung Arbeitsaufwand:
Präsenzzeit 42 h,
Selbststudium und Nachbearbeitung 138 h
Gesamt: 180h

17. Prüfungsnummer/n und -name:
32951 Embedded Controller und Datennetze in Fahrzeugen (PL),
mündliche Prüfung, 40 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:
Tafelanschrieb, PPT-Präsentationen, Overheadfolien

20. Angeboten von:
Kraftfahrzeugmechatronik
Modul: 17500 Energiemärkte und Energiepolitik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>041210006</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>5.0</td>
</tr>
<tr>
<td>5. Modulsdauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Kai Hufendiek</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Kai Hufendiek
• Joachim Pfeiffer |
| 10. Zuordnung zum Curriculum in diesem Studiengang: |
| B.Sc. Technische Kybernetik, PO 2011 | Vorgezogene Master-Module |
| DoubleM.D. Technische Kybernetik, PO 2011, . Semester | Chalmers -->Incoming -->Wahlfach Technische Kybernetik |
| DoubleM.D. Technische Kybernetik, PO 2011, . Semester | Chalmers -->Outgoing -->Wahlfach Technische Kybernetik |
| DoubleM.D. Technische Kybernetik, PO 2011, . Semester | Incoming -->Spezialisierungsfach -->Energiesysteme und Energiewirtschaft |
| DoubleM.D. Technische Kybernetik, PO 2011, . Semester | Outgoing -->Spezialisierungsfach -->Energiesysteme und Energiewirtschaft |
| DoubleM.D. Technische Kybernetik, PO 2014, . Semester | Chalmers -->Incoming -->Wahlfach Technische Kybernetik |
| DoubleM.D. Technische Kybernetik, PO 2014, . Semester | Incoming -->Spezialisierungsfach -->Energiesysteme und Energiewirtschaft |
| DoubleM.D. Technische Kybernetik, PO 2014, . Semester | Outgoing -->Spezialisierungsfach -->Energiesysteme und Energiewirtschaft |
| DoubleM.D. Technische Kybernetik, PO 2014, . Semester | Wahlpflichtmodule -->Spezialisierungsfach -->Energiesysteme und Energiewirtschaft |
| M.Sc. Technische Kybernetik, PO 2011, . Semester | Spezialisierungsmodul -->Spezialisierungsfach -->Energiesysteme und Energiewirtschaft |
| M.Sc. Technische Kybernetik, PO 2011, . Semester | Spezialisierungsmodul -->Wahlfach Technische Kybernetik |
| 11. Empfohlene Voraussetzungen: | Grundkenntnisse der Energiewirtschaft (z.B. Modul "Energiewirtschaft und Energieversorgung") |
| 12. Lernziele: | Die Teilnehmer/-innen kennen die Liberalisierung und Regulierung von Energiemärkten. Sie wissen unterschiedliche Handelsprodukte und die Besonderheiten von Elektrizitätsmärkten und können die |

13. Inhalt:

- Aufbau und Funktion von Energiemärkten
- Produkte auf Energiemärkten
- Regulierung von Märkten
- Marktmacht von Unternehmen
- Preisprognosen bei Energieprodukten
- Handelsentscheidungen
- Handel mit Emissionsrechten
- Risikomanagement im Handel
- Organisation des Energiehandels
- Investitionsentscheidungen in der Energiewirtschaft
- Grundlagen der Energiepolitik
- Entwicklung der Stromerzeugung in Deutschland und Europa
- EU-Energiepolitik
- Preisbildung in Energiemärkten - vom Monopol zum Wettbewerb
- Klimapolitik - Grundlagen, internationale Dimension und internationale Umsetzung
- Zusammensetzung und Entwicklung des deutschen Strommixes
- Der Wärmemarkt
- Verkehrspolitik als Energiepolitik
- Geopolitische Aspekte der Energieversorgung

Empfehlung (fakultativ): IER-Exkursion Energiewirtschaft / Energietechnik

14. Literatur:

Online-Manuskript

Schiffer, Hans-Wilhelm
Energiemarkt Deutschland, Praxiswissen Energie und Umwelt. 10. überarbeitete Auflage, TÜV Media, 2008

Stoft, S.

15. Lehrveranstaltungen und -formen:

- 175001 Vorlesung Energiemärkte und -handel
- 175002 Vorlesung Energiepolitik im Spannungsfeld von Wettbewerbsfähigkeit, Versorgungssicherheit und Umweltschutz

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 70 h
Selbststudiumszeit / Nacharbeitszeit: 110 h
Gesamt: 180 h

17. Prüfungsnummer/n und -name:

17501 Energiemärkte und Energiepolitik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0.

18. Grundlage für ...:
<table>
<thead>
<tr>
<th>19. Medienform:</th>
<th>Beamergestützte Vorlesung und teilweise Tafelanschrieb, Lehrfilme</th>
</tr>
</thead>
<tbody>
<tr>
<td>20. Angeboten von:</td>
<td>Institut für Energiewirtschaft und Rationelle Energieanwendung</td>
</tr>
</tbody>
</table>
Modul: 30030 Fahrzeugdynamik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072810009</th>
<th>5. Modulsdauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. Modulverantwortlicher:</th>
<th>Univ.-Prof. Peter Eberhard</th>
</tr>
</thead>
</table>
| 9. Dozenten: | • Pascal Ziegler
• Peter Eberhard |

→ Vorgezogene Master-Module
DoubleM.D. Technische Kybernetik, PO 2011
→ Chalmers -->Incoming -->Wahlfach Technische Kybernetik
→
DoubleM.D. Technische Kybernetik, PO 2011
→ Chalmers -->Outgoing -->Wahlfach Technische Kybernetik
→
DoubleM.D. Technische Kybernetik, PO 2011
→ Incoming -->Spezialisierungsfach -->Technische Dynamik
→
DoubleM.D. Technische Kybernetik, PO 2011
→ Outgoing -->Spezialisierungsfach -->Technische Dynamik
→
DoubleM.D. Technische Kybernetik, PO 2014
→ Chalmers -->Incoming -->Wahlfach Technische Kybernetik
→
DoubleM.D. Technische Kybernetik, PO 2014
→ Incoming -->Spezialisierungsfach -->Technische Dynamik
→
DoubleM.D. Technische Kybernetik, PO 2014
→ Outgoing -->Spezialisierungsfach -->Technische Dynamik
→
DoubleM.D. Technische Kybernetik, PO 2014
→ Wahlpflichtmodule -->Spezialisierungsfach -->Technische Dynamik
→
M.Sc. Technische Kybernetik, PO 2011
→ Spezialisierungsmodul -->Spezialisierungsfach -->Technische Dynamik
→
M.Sc. Technische Kybernetik, PO 2011
→ Spezialisierungsmodul -->Wahlfach Technische Kybernetik
→ |

<table>
<thead>
<tr>
<th>11. Empfohlene Voraussetzungen:</th>
<th>Grundlagen in Technischer Mechanik</th>
</tr>
</thead>
</table>
| 12. Lernziele: | Kenntnis und Verständnis fahrzeugdynamischer Grundlagen;
selbständige, sichere, kritische und kreative Anwendung mechanischer Methoden in der Fahrzeugdynamik |
| 13. Inhalt: | O Systembeschreibung und Modellbildung
O Fahrzeugmodelle
O Modelle für Trag- und Führsysteme |
O Fahrwegmodelle
O Modelle für Fahrzeug-Fahrweg-Systeme
O Beurteilungskriterien
O Berechnungsmethoden
O Longitudinalbewegungen
O Lateralbewegungen
O Vertikalbewegungen

14. Literatur:
O Vorlesungsmitschrieb
O Vorlesungsunterlagen des ITM

15. Lehrveranstaltungen und -formen: 300301 Vorlesung Fahrzeugdynamik

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 21 Stunden
Selbststudium: 69 Stunden
Summe: 90 Stunden

17. Prüfungsnummer/n und -name: 30031 Fahrzeugdynamik (BSL), mündliche Prüfung, 20 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
Modul: 33820 Flache Systeme

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>074710009</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modulduer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Oliver Sawodny</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Michael Zeitz</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- **B.Sc. Technische Kybernetik, PO 2011**
 - Vorgezogene Master-Module
 - DoubleM.D. Technische Kybernetik, PO 2014
 - Chalmers -->Incoming -->Wahlfach Technische Kybernetik
 - DoubleM.D. Technische Kybernetik, PO 2014
 - Incoming -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
 - DoubleM.D. Technische Kybernetik, PO 2014
 - Incoming -->Spezialisierungsfach -->Systemdynamik/Automatisierungstechnik
 - DoubleM.D. Technische Kybernetik, PO 2014
 - Outgoing -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
 - DoubleM.D. Technische Kybernetik, PO 2014
 - Outgoing -->Spezialisierungsfach -->Systemdynamik/Automatisierungstechnik
 - DoubleM.D. Technische Kybernetik, PO 2014
 - Outgoing -->Wahlpflichtmodule -->Mathematische Methoden der Kybernetik
 - DoubleM.D. Technische Kybernetik, PO 2014
 - Wahlpflichtmodule -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
 - DoubleM.D. Technische Kybernetik, PO 2014
 - Wahlpflichtmodule -->Spezialisierungsfach -->Systemdynamik/Automatisierungstechnik

- **M.Sc. Technische Kybernetik, PO 2011**
 - Spezialisierungsmodule -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik

- **M.Sc. Technische Kybernetik, PO 2011**
 - Spezialisierungsmodule -->Spezialisierungsfach -->Systemdynamik/Automatisierungstechnik

- **M.Sc. Technische Kybernetik, PO 2011**
 - Spezialisierungsmodule -->Wahlfach Technische Kybernetik

- **M.Sc. Technische Kybernetik, PO 2011**
11. Empfohlene Voraussetzungen: Einführung in die Regelungstechnik mit Grundkenntnissen der Zustandsraummethodik

Arbeitsblätter, Umdrucke, Literatur-Links und Videos auf der Homepage

15. Lehrveranstaltungen und -formen: 338201 Vorlesung incl. Übungspräsentationen durch die Studierenden Flache Systeme

17. Prüfungsnummer/n und -name: 33821 Flache Systeme (PL), mündliche Prüfung, 40 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Institut für Systemdynamik
Modul: 30040 Flexible Mehrkörpersysteme

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072810011</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modulduer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Peter Eberhard</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Jörg Christoph Fehr
| | • Peter Eberhard |

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>B.Sc. Technische Kybernetik, PO 2011</th>
<th>Vorgezogene Master-Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2011</td>
<td>Chalmers -->Incoming -->Wahlfach Technische Kybernetik</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2011</td>
<td>Chalmers -->Outgoing -->Wahlfach Technische Kybernetik</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2011</td>
<td>Incoming -->Spezialisierungsfach -->Technische Dynamik</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2011</td>
<td>Outgoing -->Spezialisierungsfach -->Technische Dynamik</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2014</td>
<td>Chalmers -->Incoming -->Wahlfach Technische Kybernetik</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2014</td>
<td>Incoming -->Spezialisierungsfach -->Technische Dynamik</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2014</td>
<td>Outgoing -->Spezialisierungsfach -->Technische Dynamik</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2014</td>
<td>Wahlpflichtmodule -->Spezialisierungsfach -->Technische Dynamik</td>
</tr>
<tr>
<td>M.Sc. Technische Kybernetik, PO 2011</td>
<td>Spezialisierungsmodul -->Spezialisierungsfach -->Technische Dynamik</td>
</tr>
<tr>
<td>M.Sc. Technische Kybernetik, PO 2011</td>
<td>Spezialisierungsmodul -->Wahlfach Technische Kybernetik</td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen:
Grundlagen in Technischer Mechanik

12. Lernziele:
Kenntnis und Verständnis der Modellierung, Simulation und Analyse komplexer starrer und flexibler Mehrkörpersysteme; selbständige, sichere, kritische und kreative Anwendung Methoden der Flexiblen Mehrkörperrdynamik zur Lösung dynamischer Problemstellungen.

13. Inhalt:
O Einleitung
O Grundlagen der Mehrkörperdynamik: Grundgleichungen, holonome und nicht-holonome Mehrkörpersysteme in Minimalkoordinaten, Systeme mit kinematischen Schleifen, Differential-Algebraischer Ansatz
O Grundlagen zur Beschreibung eines elastischen Körpers: Grundlagen der Kontinuumsmechanik und linearen Finiten Elemente Methode, lineare Modellreduktion
O Ansatz des mitbewegten Referenzsystems für einen elastischen Körper: Kinematik, Diskretisierung, Kinetik, Wahl des Referenzsystems, Geometrische Steifigkeiten, Standard Input Data
O Beschreibung flexibler Mehrkörpersysteme: DAE Formulierung, ODE Formulierung, Programmtechnische Umsetzung, Einführung in das MKS-Programm Neweul-M²
O Ansätze zur Regelung starrer und flexibler Mehrkörpersysteme: Inverse Kinmatik und Dynamik, quasi-statische Deformations-kompensation, exakte Inversion, Servo-Bindungen
O Kontaktprobleme in Mehrkörpersystemen: kontinuierliche Kontaktmodelle, Mehrskalensimulation, Diskrete-Elemente-Simulation

14. Literatur:
O Vorlesungsveranstaltung
O Vorlesungsunterlagen des ITM

15. Lehrveranstaltungen und -formen: 300401 Vorlesung Flexible Mehrkörpersysteme

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 Stunden
Selbststudium: 138 Stunden
Summe: 180 Stunden

17. Prüfungsnummer/n und -name: 30041 Flexible Mehrkörpersysteme (PL), schriftlich, eventuell mündlich, 90 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 40830 Flugmechanik

2. Modulkürzel: 060200003
5. Moduldauler: 1 Semester
3. Leistungspunkte: 3.0 LP
6. Turnus: jedes Semester
4. SWS: 2.0
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Walter Fichter
9. Dozenten: Walter Fichter
10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technische Kybernetik, PO 2011, . Semester
→ Ergänzungsmodule -->Wahlbereich Anwendungsfach -->Luft- und Raumfahrttechnik
→
B.Sc. Technische Kybernetik, PO 2011, . Semester
→ Vorgezogene Master-Module
DoubleM.D. Technische Kybernetik, PO 2011
→ Chalmers -->Incoming -->Wahlfach Technische Kybernetik
→
DoubleM.D. Technische Kybernetik, PO 2011
→ Chalmers -->Outgoing -->Wahlfach Technische Kybernetik
→
DoubleM.D. Technische Kybernetik, PO 2011
→ Incoming -->Spezialisierungsfach -->Flugführung und Systemtechnik
→
DoubleM.D. Technische Kybernetik, PO 2011
→ Outgoing -->Spezialisierungsfach -->Flugführung und Systemtechnik
→
DoubleM.D. Technische Kybernetik, PO 2014
→ Incoming -->Spezialisierungsfach -->Flugführung und Systemtechnik
→
DoubleM.D. Technische Kybernetik, PO 2014
→ Outgoing -->Spezialisierungsfach -->Flugführung und Systemtechnik
→
DoubleM.D. Technische Kybernetik, PO 2014
→ Wahlpflichtmodule -->Spezialisierungsfach -->Flugführung und Systemtechnik
→
M.Sc. Technische Kybernetik, PO 2011, . Semester
→ Spezialisierungsmodul -->Spezialisierungsfach -->Flugführung und Systemtechnik
→
M.Sc. Technische Kybernetik, PO 2011, . Semester
→ Spezialisierungsmodul -->Wahlfach Technische Kybernetik
→

11. Empfohlene Voraussetzungen: keine
12. Lernziele: Die Studierenden sind in der Lage,

- Modelle der Flugzeugbewegung zu bilden mit der Komplexität, die der jeweiligen Anwendung angemessen ist,
• das Bewegungsverhalten bzgl. Stabilität, Eigendynamik usw. zu analysieren,
• Flugsimulationsprogrammen zu verstehen, entwerfen und zu modifizieren.

13. Inhalt:

 Koordinatensysteme und Transformationen
 Herleitung verschiedener Bewegungsmodelle (nichtlinear, 6 Freiheitsgrade
 und 3 Freiheitsgrade) und Kriterien für deren Einsatz
 Aufbau von Flugsimulationen, Initialisierung und Parametrisierung
 Berechnung von stationären Flugzuständen
 Linearisierung der Bewegungsmodelle mit 6 Freiheitsgraden
 Analyseverfahren und Analyse der Bewegungsgleichungen im Zeitbereich

14. Literatur:

 • Stevens, B.L., Lewis, F.L.: Aircraft Control and Simulation. 2nd edition,

Vortragsfolien, Vortragsübungen und Matlab-Files im Netz

15. Lehrveranstaltungen und -formen:

 • 408301 Vorlesung Flugmechanik
 • 408302 Übung Flugmechanik

16. Abschätzung Arbeitsaufwand:

 Flugmechanik, Vorlesung: 10 h Präsenzzeit, 35 Stunden Selbststudium
 Übung (Pflicht): 5 h Präsenzzeit, 18 h Selbststudium
 Tutorium (freiwillig): 5 h Präsenzzeit, 17 h Selbststudium

17. Prüfungsnummer/n und -name:

 40831 Flugmechanik (BSL), schriftliche Prüfung, 60 Min.,
 Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

 Zuhilfenahme von Projektor und Beamer,
 elektronische Unterlagen im Netz,
 Vorführung von Flugsimulationen

20. Angeboten von:
Modul: 33360 Fuzzy Methoden

2. Modulkürzel: 072810017 5. Modulsdauer: 1 Semester
4. SWS: 4.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Apl. Prof. Michael Hanss
9. Dozenten: Michael Hanss

10. Zuordnung zum Curriculum in diesem Studiengang:

- B.Sc. Technische Kybernetik, PO 2011
 → Vorgezogene Master-Module
 - DoubleM.D. Technische Kybernetik, PO 2011
 → Chalmers -->Incoming -->Wahlfach Technische Kybernetik
 - DoubleM.D. Technische Kybernetik, PO 2011
 → Chalmers -->Outgoing -->Wahlfach Technische Kybernetik
 - DoubleM.D. Technische Kybernetik, PO 2011
 → Incoming -->Spezialisierungsfach -->Technische Dynamik
 - DoubleM.D. Technische Kybernetik, PO 2011
 → Outgoing -->Spezialisierungsfach -->Technische Dynamik
 - DoubleM.D. Technische Kybernetik, PO 2014
 → Chalmers -->Incoming -->Wahlfach Technische Kybernetik
 - DoubleM.D. Technische Kybernetik, PO 2014
 → Incoming -->Spezialisierungsfach -->Technische Dynamik
 - DoubleM.D. Technische Kybernetik, PO 2014
 → Outgoing -->Spezialisierungsfach -->Technische Dynamik
 - DoubleM.D. Technische Kybernetik, PO 2014
 → Wahlpflichtmodule -->Spezialisierungsfach -->Technische Dynamik
 - M.Sc. Technische Kybernetik, PO 2011
 → Spezialisierungsmodul -->Spezialisierungsfach -->Technische Dynamik
 - M.Sc. Technische Kybernetik, PO 2011
 → Spezialisierungsmodul -->Wahlfach Technische Kybernetik

11. Empfohlene Voraussetzungen: Regelungstechnik 1 und 2

12. Lernziele:

13. Inhalt:

14. Literatur:

15. Lehrveranstaltungen und -formen:
333601 Vorlesung + Übungen Fuzzy Methoden

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 Stunden
Selbststudium: 138 Stunden
Summe: 180 Stunden

17. Prüfungsnummer/n und -name:
33361 Fuzzy Methoden (PL), schriftlich, eventuell mündlich, 90 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:

20. Angeboten von: Institut für Technische und Numerische Mechanik
Modul: 15720 Gestaltung von öffentlichen Verkehrssystemen

2. Modulkürzel: 020400721
3. Leistungspunkte: 6.0 LP
4. SWS: 4.3
5. Modulduauer: 1 Semester
7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Ullrich Martin
9. Dozenten: • Stefan Tritschler • Carlo Molo

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technische Kybernetik, PO 2011
 → Vorgezogene Master-Module
 DoubleM.D. Technische Kybernetik, PO 2011, . Semester
 → Incoming -->Spezialisierungsfach -->Verkehr
 DoubleM.D. Technische Kybernetik, PO 2011, . Semester
 → Outgoing -->Spezialisierungsfach -->Verkehr
 →
 DoubleM.D. Technische Kybernetik, PO 2014, . Semester
 → Incoming -->Spezialisierungsfach -->Verkehr
 →
 DoubleM.D. Technische Kybernetik, PO 2014, . Semester
 → Outgoing -->Spezialisierungsfach -->Verkehr
 →
 DoubleM.D. Technische Kybernetik, PO 2014, . Semester
 → Wahlpflichtmodule -->Spezialisierungsfach -->Verkehr
 →
 M.Sc. Technische Kybernetik, PO 2011, . Semester
 → Spezialisierungsmodule -->Spezialisierungsfach -->Verkehr
 →
 M.Sc. Technische Kybernetik, PO 2011, . Semester
 → Spezialisierungsmodule -->Wahlfach Technische Kybernetik
 →

11. Empfohlene Voraussetzungen: Inhaltlich: keine
Vorgängermodule: Grundlagen der Schienenverkehrssysteme

12. Lernziele:
Die Hörer können:
• den Stellenwert öffentlicher Verkehrssysteme im Rahmen einer bedarfsgerechten Verkehrsgestaltung erkennen,
• die Zusammenhänge bei der Planung von öffentliche Verkehrssystemen verstehen,
• grundlegende Entscheidungen zum Netzaufbau und zur Ausgestaltung öffentlicher Verkehrssysteme treffen,
• anhand der Charakteristika der unterschiedlichen Nahverkehrsmittel, deren optimale Einsatzbereiche bestimmen,
• einschätzen, welche Infrastruktur für unterschiedliche öffentliche Verkehrssysteme notwendig ist und
• grundlegende Berechnungen zur Linienführung und Haltestellengestaltung durchführen.

13. Inhalt:
In der Lehrveranstaltung "Planung und Entwurf öffentlicher Verkehrssysteme" werden die technischen-planerischen Aspekte von öffentlichen Verkehrssystemen mit Schwerpunkt ÖPNV vermittelt.
• Grundlagen der Nahverkehrsplanung
• Netzplanung
• Nahverkehrsmittel und deren Einsatzbereiche
• Haltestellen- und Verknüpfungspunkte
• Infrastruktur für den ÖPNV

Ergänzend zur Vorlesung werden in der „Übung zu Planung und Entwurf öffentlicher Verkehrssysteme“ die Inhalte der Lehrveranstaltung anhand von aufeinander aufbauenden Übungen vertieft. Dabei werden folgende Themen aufgegriffen:

• Verkehrsnachfrage und -angebot
• Streckenbelastungen
• Erschließungskonzept
• Trassierung und Gestaltung eines Verknüpfungspunkts
• Fahrzeitenrechnung

14. Literatur:
• Skript zur Lehrveranstaltung „Planung und Entwurf öffentlicher Verkehrssysteme“
• Eisenbahn-Bau- und Betriebsordnung (EBO)
• Straßenbahn-Bau- und Betriebsordnung (BOStrab)

15. Lehrveranstaltungen und -formen:
• 157201 Vorlesung Planung und Entwurf öffentlicher Verkehrssysteme
• 157202 Übung Planung, Entwurf und Bewertung öffentlicher Verkehrssysteme
• 157203 Exkursion Planung, Entwurf und Bewertung öffentlicher Verkehrssysteme

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 50 h
Selbststudiumzeit: 130 h
Gesamt: 180h

17. Prüfungsnummer/n und -name:
15721 Gestaltung von öffentlichen Verkehrssystemen (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0, Prüfungsvorleistung: erfolgreiche Teilnahme an der Belegarbeit (Übung) zur Lehrveranstaltung "Planung und Entwurf öffentlicher Verkehrssysteme"

18. Grundlage für ... :

19. Medienform:
Entwicklung der Grundlagen als Präsentation; Tafelanschrieb zur Vorlesung, Webbasierte Unterlagen zum vertiefenden Selbststudium

20. Angeboten von: Institut für Eisenbahn- und Verkehrswesen
Modul: 41880 Grundlagen der Bionik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072910094</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Peter Klemm</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Oliver Schwarz</td>
</tr>
</tbody>
</table>
DoubleM.D. Technische Kybernetik, PO 2011 → Chalmers -->Incoming -->Wahlfach Technische Kybernetik
DoubleM.D. Technische Kybernetik, PO 2011 → Chalmers -->Outgoing -->Wahlfach Technische Kybernetik
DoubleM.D. Technische Kybernetik, PO 2011 → Incoming -->Spezialisierungsfach -->Steuerungstechnik
DoubleM.D. Technische Kybernetik, PO 2011 → Outgoing -->Spezialisierungsfach -->Steuerungstechnik
DoubleM.D. Technische Kybernetik, PO 2014 → Incoming -->Spezialisierungsfach -->Steuerungstechnik
DoubleM.D. Technische Kybernetik, PO 2014 → Outgoing -->Spezialisierungsfach -->Steuerungstechnik
DoubleM.D. Technische Kybernetik, PO 2014 → Wahlpflichtmodule -->Spezialisierungsfach -->Steuerungstechnik
M.Sc. Technische Kybernetik, PO 2011 → Spezialisierungsmodul -->Spezialisierungsfach -->Steuerungstechnik
M.Sc. Technische Kybernetik, PO 2011 → Spezialisierungsmodul -->Wahlfach Technische Kybernetik |

11. Empfohlene Voraussetzungen: Keine

12. Lernziele:

Die Veranstaltung gibt einen Überblick über die verschiedenen Arbeitsfelder der Bionik und legt einen Schwerpunkt auf Anwendungen in der Biomedizinischen Technik. Die Studierenden lernen die bionische Denkweise kennen und erhalten einen Einblick in das Potential der Bionik für Lösungen zu zentralen technischen Problemen. Sie lernen aber auch die Grenzen des oft überschätzten Hoffnungsträgers Bionik kennen und lernen echte Bionik von Pseudobionik, Technischer Biologie und Bioinspiration zu unterscheiden.

13. Inhalt:

- Geschichte der Bionik
- Evolution und Optimierung in Biologie, und Technik
- Modellbildung, Analogiebildung, Transfer in die Technik
- Bionik als Kreativitätstechnik
• Biologische Materialien und Strukturen
• Formgestaltung und Design
• Konstruktionen und Geräte
• Bau und Klimatisierung
• Robotik und Lokomotion
• Sensoren und neuronale Steuerungen
• Biomedizinische Technik
• System und Organisation

14. Literatur:

Weitere Literatur wird in der Vorlesung bekanntgegeben

15. Lehrveranstaltungen und -formen:
418801 Vorlesung mit integriertem Seminar Bionik

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 28 Stunden
Selbststudium: 52 Stunden
Summe: 90 Stunden

17. Prüfungsnummer/n und -name:
41881 Grundlagen der Bionik (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 38370 Grundlagen der Kraftfahrzeugantriebe

2. Modulkürzel: 070810108

5. Modul dauer: 1 Semester

3. Leistungspunkte: 6.0 LP

4. SWS: 4.0

7. Sprache: Deutsch

8. Modulverantwortlicher: Hubert Fußhoeller

9. Dozenten: Hubert Fußhoeller

10. Zuordnung zum Curriculum in diesem Studiengang:

 B.Sc. Technische Kybernetik, PO 2011 ➔ Vorgezogene Master-Module
 M.Sc. Technische Kybernetik, PO 2011 ➔ Spezialisierungsmodule --> Wahlfach Technische Kybernetik

11. Empfohlene Voraussetzungen: Keine

12. Lernziele:

 Die Studenten kennen Entwicklungen und Design von Otto- und Dieselmotoren vor dem Hintergrund der Gemischbildung, Verbrennung, Schadstoffbildung, etc. Sie können Kennfelder verschiedenster Art interpretieren, Bauteilbelastung und Schadstoffbelastung bzw. deren Vermeidung bestimmen.

13. Inhalt:

14. Literatur:

 • Vorlesungsumdruck

15. Lehrveranstaltungen und -formen:

 383701 Vorlesung Grundlagen der Kraftfahrzeugantriebe

16. Abschätzung Arbeitsaufwand:

 Präsenzzeit 56 h, Selbststudium 112 h, Gesamt 168 h

17. Prüfungsnummer/n und -name:

 38371 Grundlagen der Kraftfahrzeugantriebe (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:

 Vorlesung (Beamer, Folien, Tafelanschrieb)

20. Angeboten von:
Modul: 20060 Grundlagen der Theoretischen Philosophie - Nebenfach

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>091320005</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Catrin Misselhorn</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>• Ulrike Ramming</td>
<td>• Tillmann Pross</td>
<td>• Gerhard Ernst</td>
</tr>
<tr>
<td></td>
<td>M.Sc. Technische Kybernetik, PO 2011, 2. Semester → Spezialisierungsmodule -->Wahlfach Technische Kybernetik</td>
<td></td>
<td></td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>Keine</td>
<td></td>
<td></td>
</tr>
<tr>
<td>12. Lernziele:</td>
<td>Vertieftes Grundwissen auf dem Gebiet der Theoretischen Philosophie. Darunter ist im Einzelnen zu verstehen:</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Vertrautheit mit dem Zusammenhang zwischen den zentralen Begründungsansätzen der abendländischen Metaphysik und Ontologie.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Vertiefte Kenntnisse in den Bereichen der Erkenntnistheorie und Wissenschaftstheorie</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Methodische Kompetenz in der historischen wie systematischen Einordnung der zentralen Konzepte sowie deren Vergleich im Hinblick auf implizite Ansprüche, Leistungen und Grenzen.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Entwickeltes methodisches Problembewusstsein sowie Fähigkeit zur selbständigen Analyse und Interpretation von Schlüsseltexten.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>Das Modul gibt einen inhaltlich-systematischen Überblick über die zentralen Themen abendländischer Metaphysik und Erkenntnistheorie sowie ihrer Kritik bis hin zur Ausprägung moderner Ontologien.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Es werden an Tradition stiftenden Schlüsseltexten Kompetenzen zum analytischen, interpretierenden und kritisch-reflektierenden Umgang eingeübt.</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Aus dem in der Vorlesung entwickelten Horizont der Ansätze werden im Seminar Schlüsseltexte erarbeitet.</td>
<td></td>
<td></td>
</tr>
<tr>
<td>14. Literatur:</td>
<td>Literaturauswahl (exemplarisch):</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>1) Aristoteles: Metaphysik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>2) Descartes: Meditationen</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>3) Kant: Kritik der reinen Vernunft</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>5) Heidegger, Martin: Einführung in die Metaphysik</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>6) Putnam: Reason, Truth and History</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>7) Quine, W.V.O.: Ontological Relativity</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

15. Lehrveranstaltungen und -formen:
• 200601 Vorlesung Metaphysik und Erkenntnistheorie
• 200602 Seminar zu einem oder mehreren klassischen Werken der theoretischen Philosophie

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 42 h
Selbststudium: 228 h
Summe: 270 h

17. Prüfungsnummer/n und -name:
• 20061 Grundlagen der theoretischen Philosophie - Klausur oder mündl. Prüfung (LBP), schriftlich oder mündlich, Gewichtung: 3.0, schriftlich, 90 min oder mündlich, 20 min
• 20062 Grundlagen der Theoretischen Philosophie - Hausarbeit (LBP), schriftliche Prüfung, Gewichtung: 7.0, Prüfungsvorleistung: Referat inkl. Thesenpapier
• V Vorleistung (USL-V), schriftlich, eventuell mündlich

19. Medienform:
Scripte/Reader, Thesenpapiere, Tafelbilder, Power-Point, Protokolle, Literatur zur Lektüre

20. Angeboten von:
Modul: 38790 Grundlagen der Wirtschaftswissenschaften

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>100410003</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>3.0</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Frank Clemens Englmann</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Frank Clemens Englmann
• Susanne Becker |
→ Vorgezogene Master-Module
M.Sc. Technische Kybernetik, PO 2011
→ Spezialisierungsmodule -->Wahlfach Technische Kybernetik |
| 11. Empfohlene Voraussetzungen: | Keine |
| 14. Literatur: | Ergänzende Folien
Die Basisliteratur umfasst die folgenden Werke:
• N.G. Mankiw und M.P. Taylor: Grundzüge der Volkswirtschaftslehre, Schäffer-Poeschel, neueste Auflage
• H.-D. Hardes und A. Uhly: Grundzüge der Volkswirtschaftslehre, Oldenburg, neueste Auflage
• F.C. Englmann: Makroökonomik, Kohlhammer, neueste Auflage
• B. Woeckener: Volkswirtschaftslehre, Springer, neueste Auflage |
| 15. Lehrveranstaltungen und -formen: | 387901 Vorlesung Grundlagen der Wirtschaftswissenschaften
387902 Übung Grundlagen der Wirtschaftswissenschaften |
| 16. Abschätzung Arbeitsaufwand: | Vorlesung
Präsenzzeit: 28 h |
Selbststudium / Nacharbeitszeit: 32 h

Übung
Präsenzzeit: 14 h
Selbststudium / Nacharbeitszeit: 16 h

Gesamtzeitaufwand: 90 h

17. Prüfungsnummer/n und -name: 38791 Grundlagen der Wirtschaftswissenschaften (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Volkswirtschaftslehre
Modul: 50130 Integrated Watershed Modeling

2. Modulkürzel: 021430009 5. Modulduer: 1 Semester
4. SWS: 4.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Andras Bardossy
9. Dozenten: • Johannes Riegger • Andras Bardossy

M.Sc. Technische Kybernetik, PO 2011 → Spezialisierungsmodulle →>Wahlfach Technische Kybernetik →

11. Empfohlene Voraussetzungen: Recommended background knowledge: Basic knowledge of hydrology and geohydrology
Prerequisite module: none

12. Lernziele:
Hydrological Modeling:
Construction of models for each part in the runoff process and how these models are used and integrated in different environment management systems.

Integrated model systems for the groundwater management:
Design of hydrogeological databases, visualization of data, GIS-Operations for the groundwater and hydrological modeling, Geostatistic, stochastic modeling, Monte Carlo Methods.

13. Inhalt:
Hydrological Modeling:
What happens to the rain? This is the basic question that needs to be addressed in order to predict the amount of discharge at a certain location in a river system at a given time. Which parts of the fate of rainfall can be determined on a physical basis, and which are still left to empirical searching? Beside the qualitative determination of e.g. the processes of evapotranspiration, infiltration, interflow etc. we also need to describe the quantities of these processes to be able to forecast e.g. flood events.

Hydrological watershed modelling is fundamental to integrated water management. There are complex interactions between the elements of the environmental continuum. In order to predict future behaviour and to quantify effects of management changes, quantitative mathematical descriptions are needed. A number of advanced hydrological watershed models have been developed in the last 30 years. A few of them will be reviewed in terms of their data needs and there predictive power. The participants are encouraged to form groups and to use their selected models for the same catchment so that the different approaches are compared.

Integrated model systems for the groundwater management:
Modern integrated model systems require techniques for the efficient construction of ground water models and their integration in “Decision Support Systems” as well as strategies for the handling of uncertainties. The course will discuss the specific “GIS-Methods” that are important for the integrations of databases, the visualization of data and the calculation of spatial data like ground water recharge. Special focus is laid on GIS supported hydrological modeling of the ground water recharge and the
runoff parameters as well as adequate choice of the hydrological model concepts for the calculation of the local water balance in different data situations. To handle the model uncertainties, geostatistic methods and associated stochastic modeling attempts like the “Monte Carlo Simulation” will be mentioned.

14. Literatur:

15. Lehrveranstaltungen und -formen:
- 501301 Lecture and exercise Hydrological Modeling
- 501302 Lecture and exercise Integrated model systems for the groundwater management

16. Abschätzung Arbeitsaufwand: Sum: 180h

17. Prüfungsnummer/n und -name: 50131 Integrated Watershed Modeling (PL), schriftliche Prüfung, 150 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
Modul: 51840 Introduction to Adaptive Control

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>074810320</th>
<th>5. Modulduer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Frank Allgöwer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Dieter Schwarzmann</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>B.Sc. Technische Kybernetik, PO 2011</th>
<th>Vorgezogene Master-Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2011</td>
<td>Chalmers -->Incoming -->Wahlfach Technische Kybernetik</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2011</td>
<td>Chalmers -->Outgoing -->Wahlfach Technische Kybernetik</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2011</td>
<td>Incoming -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2011</td>
<td>Outgoing -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2014</td>
<td>Incoming -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2014</td>
<td>Outgoing -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2014</td>
<td>Wahlpflichtmodule -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik</td>
</tr>
<tr>
<td>M.Sc. Technische Kybernetik, PO 2011</td>
<td>Spezialisierungsmodule -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik</td>
</tr>
<tr>
<td>M.Sc. Technische Kybernetik, PO 2011</td>
<td>Spezialisierungsmodule -->Wahlfach Technische Kybernetik</td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen: Course „Einführung in die Regelungstechnik“ or equivalent lecture

12. Lernziele:

- knows the mathematical foundations of adaptive control
- has an overview of the properties and characteristics of adaptive systems
- is able to apply model-reference adaptive control to state-feedback and output-feedback of relative degree less than three.
- is able to prove stability of these adaptive control methods
• knows extensions of robust adaptive control
• knows advantages and disadvantages of adaptive control compared to
other control design methods

13. Inhalt:

Course „Introduction to Adaptive Control“

Overview of adaptive control approaches. Focus on design of model-
reference adaptive control of LTI systems.

Mathematical foundations necessary for adaptive control: Review
of Lyapunov stability, positive real functions, application of Kalman-
Yakubovich Lemma.

Design of state-feedback adaptive control (model-reference) and stability.

Design of output-feedback adaptive control (relative degree of one and
two).

Extensions of robust adaptive control (modifications of the adaptive law).

14. Literatur:
Narendra and Annaswamy: Stable Adaptive Systems, Dover, 2005

15. Lehrveranstaltungen und -formen:
518401 Vorlesung Introduction to Adaptive Control

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 21h
Selbststudiumszeit / Nacharbeitszeit: 69 h
Gesamt: 90h

17. Prüfungsnummer/n und -name:
51841 Introduction to Adaptive Control (BSL), schriftlich oder
mündlich, Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 56130 Konzepte und Methoden in der Wirtschaftskybernetik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>075200107</th>
<th>5. Modulduer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. Modulverantwortlicher:</th>
<th>Univ.-Prof. Meike Tilebein</th>
</tr>
</thead>
</table>
| 9. Dozenten: | • Meike Tilebein
• Sven-Volker Rehm |

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technische Kybernetik, PO 2011

→ Vorgezogene Master-Module

DoubleM.D. Technische Kybernetik, PO 2011, . Semester

→ Chalmers -->Incoming -->Wahlfach Technische Kybernetik

→

DoubleM.D. Technische Kybernetik, PO 2011, . Semester

→ Chalmers -->Outgoing -->Wahlfach Technische Kybernetik

→

DoubleM.D. Technische Kybernetik, PO 2011, . Semester

→ Incoming -->Spezialisierungsfach -->Wirtschaftskybernetik

→

DoubleM.D. Technische Kybernetik, PO 2011, . Semester

→ Outgoing -->Spezialisierungsfach -->Wirtschaftskybernetik

→

DoubleM.D. Technische Kybernetik, PO 2014, . Semester

→ Incoming -->Spezialisierungsfach -->Wirtschaftskybernetik

→

DoubleM.D. Technische Kybernetik, PO 2014, . Semester

→ Outgoing -->Spezialisierungsfach -->Wirtschaftskybernetik

→

DoubleM.D. Technische Kybernetik, PO 2014, . Semester

→ Wahlpflichtmodule -->Spezialisierungsfach -->Wirtschaftskybernetik

→

M.Sc. Technische Kybernetik, PO 2011, . Semester

→ Spezialisierungsmodul -->Spezialisierungsfach -->Wirtschaftskybernetik

→

M.Sc. Technische Kybernetik, PO 2011, . Semester

→ Spezialisierungsmodul -->Wahlfach Technische Kybernetik

→

11. Empfohlene Voraussetzungen: Keine

15. Lehrveranstaltungen und -formen: 561301 Vorlesung Konzepte und Methoden in der Wirtschafts kybernetik

16. Abschätzung Arbeitsaufwand: Arbeitsbelastung 90 Stunden:
 - Präsenzzeit 21 h
 - Nacharbeit und Selbststudium 69 h

17. Prüfungsnummer/n und -name: 56131 Konzepte und Methoden in der Wirtschafts kybernetik (BSL), schriftlich, eventuell mündlich, Gewichtung: 1.0, Mehrere Lehrveranstaltungs begleitende Prüfungsleistungen

18. Grundlage für ... :

20. Angeboten von:
Modul: 13590 Kraftfahrzeuge I + II

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>070800001</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Jochen Wiedemann</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Jochen Wiedemann</td>
</tr>
</tbody>
</table>

| 11. Empfohlene Voraussetzungen: | Kenntnisse aus den Fachsemestern 1 bis 4 |

Stand: 09. April 2015

Seite 594 von 666

14. Literatur:
 - Wiedemann, J.: Kraftfahrzeuge I+II, Vorlesungsumdruck,
 - Reimpell, J.: Fahrwerkstechnik: Grundlagen, Vogel-Fachbuchverlag, 2005

15. Lehrveranstaltungen und -formen:
 - 135901 Vorlesung Kraftfahrzeuge I + II
 - 135902 Übung Kraftfahrzeuge I + II

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 42 h
 Selbststudiumszeit / Nacharbeitszeit: 138 h
 Gesamt: 180 h

17. Prüfungsnummer/n und -name: 13591 Kraftfahrzeuge I + II (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... : 13590 Kraftfahrzeuge I + II

19. Medienform: Beamer, Tafel

20. Angeboten von: Kraftfahrwesen
Modul: 44780 Lenkverfahren

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>060200113</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Werner Grimm
9. Dozenten: • Werner Grimm • Thomas Kuhn

10. Zuordnung zum Curriculum in diesem Studiengang:

- B.Sc. Technische Kybernetik, PO 2011
 → Vorgezogene Master-Module

- DoubleM.D. Technische Kybernetik, PO 2011
 → Chalmers -->Incoming -->Wahlfach Technische Kybernetik

- DoubleM.D. Technische Kybernetik, PO 2011
 → Chalmers -->Outgoing -->Wahlfach Technische Kybernetik

- DoubleM.D. Technische Kybernetik, PO 2011
 → Incoming -->Spezialisierungsfach -->Flugführung und Systemtechnik

- DoubleM.D. Technische Kybernetik, PO 2011
 → Outgoing -->Spezialisierungsfach -->Flugführung und Systemtechnik

- DoubleM.D. Technische Kybernetik, PO 2014
 → Incoming -->Spezialisierungsfach -->Flugführung und Systemtechnik

- DoubleM.D. Technische Kybernetik, PO 2014
 → Outgoing -->Spezialisierungsfach -->Flugführung und Systemtechnik

- DoubleM.D. Technische Kybernetik, PO 2014
 → Wahlpflichtmodule -->Spezialisierungsfach -->Flugführung und Systemtechnik

- M.Sc. Technische Kybernetik, PO 2011
 → Spezialisierungsmodul -->Spezialisierungsfach -->Flugführung und Systemtechnik

- M.Sc. Technische Kybernetik, PO 2011
 → Spezialisierungsmodul -->Wahlfach Technische Kybernetik

11. Empfohlene Voraussetzungen:

12. Lernziele:

- Die Studierenden kennen die wichtigsten Grundbegriffe und Definitionen der Lenkung.
- Die Studierenden kennen die wichtigsten Verfahren zur Messung und Schätzung der Zielbewegung.
• Die Studierenden kennen die wichtigsten Verfahren der autonomen und der kommandierten Lenkung.
• Die Studierenden kennen die regelungstechnischen Varianten zur Umsetzung des Lenkkommandos.
• Die Studierenden sind in der Lage, die Lenkverfahren in einfacher Form zu simulieren.

13. Inhalt:
• Klassifizierung von Szenarien und Lenkwaffentypen
• Flugkörperlenkung (Proportionalnavigation, Zieldeckungslenkung u.a.)
• Einbettung der Lenkung in das System Flugkörper
• Methoden zur Messung und Schätzung der Zielbewegung
• regelungstechnische Umsetzung des Lenkkommandos
• einfache Simulationsmodelle

14. Literatur:
• W. Grimm, T. Kuhn: Lenkverfahren, Skript
• G.M. Siouris: Missile Guidance and Control Systems, Springer
• J.H. Blakelock: Automatic Control of Aircraft and Missiles, Wiley
• R.H. Battin: Astronautical Guidance, McGraw-Hill
• Vortragsübungen im Netz

15. Lehrveranstaltungen und -formen:
• 447801 Vorlesung Lenkverfahren
• 447802 Übung Lenkverfahren

16. Abschätzung Arbeitsaufwand:
Lenkverfahren, Vorlesung: 45 h (Präsenzzeit 14 h, Selbststudium 31 h)
Lenkverfahren, Übung: 45 h (Präsenzzeit 14 h, Selbststudium 31 h)
Gesamt: 90 h (Präsenzzeit 28 h, Selbststudium 62 h)

17. Prüfungsnummer/n und -name:
44781 Lenkverfahren (BSL), mündliche Prüfung, 20 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:
Zuhilfenahme von Projektor und Beamer, elektronische Unterlagen im Netz

20. Angeboten von:
Institut für Flugmechanik und Flugregelung
Modul: 29470 Machine Learning

2. Modulkürzel:	051200112	5. Moduldauer:	1 Semester
4. SWS:	4.0	7. Sprache:	Englisch
8. Modulverantwortlicher:	Univ.-Prof. Marc Toussaint		
9. Dozenten:	Marc Toussaint		

Zuordnung zum Curriculum in diesem Studiengang:

- B.Sc. Technische Kybernetik, PO 2011, 6. Semester
 - Ergänzungsmodule --> Wahlbereich Anwendungsfach --> Kognitive Robotik
 - Vorgezogene Master-Module
- DoubleM.D. Technische Kybernetik, PO 2011, 2. Semester
 - Chalmers --> Incoming --> Wahlfach Technische Kybernetik
- DoubleM.D. Technische Kybernetik, PO 2011, 2. Semester
 - Chalmers --> Outgoing --> Wahlfach Technische Kybernetik
- DoubleM.D. Technische Kybernetik, PO 2011, 2. Semester
 - Incoming --> Spezialisierungsfach --> Autonome Systeme und Regelungstechnik
- DoubleM.D. Technische Kybernetik, PO 2011, 2. Semester
 - Outgoing --> Spezialisierungsfach --> Autonome Systeme und Regelungstechnik
- DoubleM.D. Technische Kybernetik, PO 2014, 2. Semester
 - Chalmers --> Incoming --> Wahlfach Technische Kybernetik
- DoubleM.D. Technische Kybernetik, PO 2014, 2. Semester
 - Incoming --> Spezialisierungsfach --> Autonome Systeme und Regelungstechnik
- DoubleM.D. Technische Kybernetik, PO 2014, 2. Semester
 - Outgoing --> Spezialisierungsfach --> Autonome Systeme und Regelungstechnik
- DoubleM.D. Technische Kybernetik, PO 2014, 2. Semester
 - Wahlpflichtmodule --> Spezialisierungsfach --> Autonome Systeme und Regelungstechnik
- M.Sc. Technische Kybernetik, PO 2011, 2. Semester
 - Spezialisierungsmodul --> Spezialisierungsfach --> Autonome Systeme und Regelungstechnik
- M.Sc. Technische Kybernetik, PO 2011, 2. Semester
 - Spezialisierungsmodul --> Wahlfach Technische Kybernetik

Empfohlene Voraussetzungen:

Solid knowledge in Linear Algebra, probability theory and optimization. Fluency in at least one programming language.
12. Lernziele: Students will acquire an in depth understanding of Machine Learning methods. The concepts and formalisms of Machine Learning are understood as generic approach to a variety of disciplines, including image processing, robotics, computational linguistics and software engineering. This course will enable students to formalize problems from such disciplines in terms of probabilistic models and the derive respective learning and inference algorithms.

13. Inhalt: Exploiting large-scale data is a central challenge of our time. Machine Learning is the core discipline to address this challenge, aiming to extract useful models and structure from data. Studying Machine Learning is motivated in multiple ways: 1) as the basis of commercial data mining (Google, Amazon, Picasa, etc), 2) a core methodological tool for data analysis in all sciences (vision, linguistics, software engineering, but also biology, physics, neuroscience, etc) and finally, 3) as a core foundation of autonomous intelligent systems (which is my personal motivation for research in Machine Learning).

This lecture introduces to modern methods in Machine Learning, including discriminative as well as probabilistic generative models. A preliminary outline of topics is:

- motivation and history
- probabilistic modeling and inference
- regression and classification methods (kernel methods, Gaussian Processes, Bayesian kernel logistic regression, relations)
- discriminative learning (logistic regression, Conditional Random Fields)
- feature selection
- boosting and ensemble learning
- representation learning and embedding (kernel PCA and derivatives, deep learning)
- graphical models
- inference in graphical models (MCMC, message passing, variational)
- learning in graphical models
- structure learning and model selection
- relational learning

Please also refer to the course web page: http://ipvs.informatik.uni-stuttgart.de/mlr/marc/teaching/13-MachineLearning/

14. Literatur:
[2] Pattern Recognition and Machine Learning by Bishop, C. M.. Springer 2006. online: http://research.microsoft.com/en-us/um/people/cmbishop/prml/ (especially chapter 8, which is fully online)

15. Lehrveranstaltungen und -formen:
- 294701 Lecture Machine Learning
- 294702 Exercise Machine Learning

16. Abschätzung Arbeitsaufwand:
- Presence time: 42 hours
- Self study: 138 hours
- Sum: 180 hours
<table>
<thead>
<tr>
<th>Nr.</th>
<th>Beschreibung</th>
<th>Art der Prüfung</th>
<th>Dauer</th>
<th>Gewichtung</th>
</tr>
</thead>
<tbody>
<tr>
<td>17</td>
<td>29471 Machine Learning (PL), schriftlich, eventuell mündlich</td>
<td>180 Min.</td>
<td>1.0</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>V Vorleistung (USL-V), schriftlich, eventuell mündlich</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

18. Grundlage für ...:

19. Medienform:

20. Angeboten von: Institut für Parallele und Verteilte Systeme
Modul: 37270 Mechatronische Systeme in der Medizin - Anwendungen aus Orthopädie und Rehabilitation

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072910092</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>5. Modulldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Peter Klemm</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Urs Schneider</td>
</tr>
</tbody>
</table>
→ B.Sc. Technische Kybernetik, PO 2011 → Vorgezogene Master-Module
→ B.Sc. Technische Kybernetik, PO 2011 → Wahlbereich Anwendungsfach -->Anwendungsfach Steuerungstechnik -->Anwendungsfach Steuerungstechnik, Module WiSe
→ DoubleM.D. Technische Kybernetik, PO 2011 → Incoming -->Spezialisierungsfach -->Steuerungstechnik
→ DoubleM.D. Technische Kybernetik, PO 2011 → Outgoing -->Spezialisierungsfach -->Steuerungstechnik
→ DoubleM.D. Technische Kybernetik, PO 2014 → Incoming -->Spezialisierungsfach -->Steuerungstechnik
→ DoubleM.D. Technische Kybernetik, PO 2014 → Outgoing -->Spezialisierungsfach -->Steuerungstechnik
→ DoubleM.D. Technische Kybernetik, PO 2014 → Wahlpflichtmodule -->Spezialisierungsfach -->Steuerungstechnik
→ M.Sc. Technische Kybernetik, PO 2011 → Spezialisierungsmodul -->Spezialisierungsfach -->Steuerungstechnik
→ M.Sc. Technische Kybernetik, PO 2011 → Spezialisierungsmodul -->Wahlfach Technische Kybernetik |
| 11. Empfohlene Voraussetzungen: | keine |
| 13. Inhalt: | • Einführung in die Orthopädie |
• Bewegungserfassung, Bewegungssteuerung und Bewegungserzeugung
• Anwendungen in der Prothetik, Orthetik und Rehabilitation.

14. Literatur:

15. Lehrveranstaltungen und -formen: 372701 Vorlesung Mechatronische Systeme in der Medizin - Anwendungen aus Orthopädie und Rehabilitation

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 21 Stunden
Selbststudium: 69 Stunden
Summe: 90 Stunden

17. Prüfungsnummer/n und -name: 37271 Mechatronische Systeme in der Medizin - Anwendungen aus Orthopädie und Rehabilitation (BSL), schriftlich, eventuell mündlich, Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Steuerungstechnik und Mechatronik für Produktionssysteme
Modul: 15040 Mehrphasenmodellierung in porösen Medien

2. Modulkürzel: 021420005
5. Moduldaurer: 1 Semester
3. Leistungspunkte: 6.0 LP
4. SWS: 5.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Apl. Prof. Holger Class

9. Dozenten:
• Holger Class
• Rainer Helmig

11. Empfohlene Voraussetzungen: Theorie der Mehrphasensystem in porösen Medien:
• Phasen / Komponenten
• Kapilldruck
• Relative Permeabilität

12. Lernziele:
Die Studierenden besitzen die theoretischen und numerischen Grundlagen zur Modellierung von Mehrphasensystemen in porösen Medien.

13. Inhalt:
Die Verwendung komplexer Modelle in der Ingenieurspraxis verlangt ein fundiertes Wissen über die Eigenschaften von Diskretisierungsverfahren, die Möglichkeiten und Grenzen numerischer Modelle unter Berücksichtigung der jeweils implementierten Konzepte und zugrunde liegenden Modellannahmen. Inhalte sind:

Theorie der Mehrphasenströmungen in porösen Medien
• Herleitung der Differentialgleichungen
• konstitutive Beziehungen

Numerische Lösung der Mehrphasenströmungsgleichung
• Box-Verfahren
• Linearisierung
• Zeit-Diskretisierung

Mehrkomponenten-Systeme
• Thermodynamische Grundlagen und nichtisotherme Prozesse

Anwendungsbeispiele:
• Thermische Sanierungsverfahren
• CO₂-Speicherung in geologischen Formationen
• Wasser-/ Sauerstofftransport in Gasdiffusionsschichten von Brennstoffzellen
• Süßwasser / Salzwasser Interaktion

14. Literatur:
Skript zur Vorlesung
15. Lehrveranstaltungen und -formen:

- 150401 Vorlesung Mehrphasenmodellierung in Porösen Medien
- 150402 Übung Mehrphasenmodellierung in Porösen Medien

16. Abschätzung Arbeitsaufwand:

Präsenzzeit:	55 h
Selbststudium:	125 h
Gesamt:	180 h

17. Prüfungsnummer/n und -name:

15041 Mehrphasenmodellierung in porösen Medien (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:

20. Angeboten von:

Institut für Wasser- und Umweltsystemmodellierung
Modul: 38720 Meteorologie

2. Modulkürzel: 042500051
3. Leistungspunkte: 3.0 LP
4. SWS: 2.0
5. Moduldauer: 1 Semester
7. Sprache: Deutsch
10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technische Kybernetik, PO 2011
 Vorgezogene Master-Module
 M.Sc. Technische Kybernetik, PO 2011
 Spezialisierungsmodul --> Wahlfach Technische Kybernetik
11. Empfohlene Voraussetzungen: Keine
12. Lernziele: Die Studenten haben die Grundkenntnisse der Meteorologie und der atmosphärischen Prozesse erworben, die zum Verständnis des Verhaltens von Luftverunreinigungen und der Niederschläge in der Atmosphäre, die auch auf andere Bereiche der Umwelt (Wasser, Vegetation) wirken, erforderlich sind.
13. Inhalt: In der Vorlesung „Meteorologie“ werden die folgenden Themen behandelt:
 • Strahlung und Strahlungsbilanz,
 • Meteorologische Elemente (Luftdichte, Luftdruck, Lufttemperatur, Luftfeuchtigkeit, Wind) und ihre Messung,
 • allgemeine Gesetze,
 • Aufbau der Erdatmosphäre,
 • klein- und großräumige Zirkulationssysteme in der Atmosphäre,
 • Wetterkarte und Wettervorhersage,
 • Ausbreitung von Schadstoffen in der Atmosphäre,
 • Stadtklimatologie,
 • Globale Klimaveränderungen und ihre Auswirkungen, „Ozonloch“.
14. Literatur:
 • Vorlesungsmanuskript
15. Lehrveranstaltungen und -formen: 387201 Vorlesung Meteorologie
16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 28 h
 Selbststudium / Nacharbeitszeit: 62 h
 Gesamt: 90 h
17. Prüfungsnummer/n und -name: 38721 Meteorologie (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0
18. Grundlage für ...

19. Medienform:
 • Tafelanschrieb
 • PPT-Präsentationen

20. Angeboten von: Institut für Feuerungs- und Kraftwerkstechnik
Modul: 31440 Methoden der Wirtschaftskybernetik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>075200101</th>
<th>5. Moduldauer:</th>
<th>2 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>8. Modulverantwortlicher:</th>
<th>Univ.-Prof. Meike Tilebein</th>
</tr>
</thead>
</table>
| 9. Dozenten: | • Meike Tilebein
• Sven-Volker Rehm |

→ Vorgezogene Master-Module
DoubleM.D. Technische Kybernetik, PO 2011
→ Chalmers -->Incoming -->Wahlfach Technische Kybernetik
→ DoubleM.D. Technische Kybernetik, PO 2011
→ Chalmers -->Outgoing -->Wahlfach Technische Kybernetik
→ DoubleM.D. Technische Kybernetik, PO 2011
→ Incoming -->Spezialisierungsfach -->Wirtschaftskybernetik
→ DoubleM.D. Technische Kybernetik, PO 2011
→ Outgoing -->Spezialisierungsfach -->Wirtschaftskybernetik
→ DoubleM.D. Technische Kybernetik, PO 2014
→ Chalmers -->Incoming -->Wahlfach Technische Kybernetik
→ DoubleM.D. Technische Kybernetik, PO 2014
→ Incoming -->Spezialisierungsfach -->Wirtschaftskybernetik
→ DoubleM.D. Technische Kybernetik, PO 2014
→ Outgoing -->Spezialisierungsfach -->Wirtschaftskybernetik
→ DoubleM.D. Technische Kybernetik, PO 2014
→ Wahlpflichtmodule -->Spezialisierungsfach -->Wirtschaftskybernetik
→ M.Sc. Technische Kybernetik, PO 2011
→ Spezialisierungsmodul -->Spezialisierungsfach -->Wirtschaftskybernetik
→ M.Sc. Technische Kybernetik, PO 2011
→ Spezialisierungsmodul -->Wahlfach Technische Kybernetik
→ |

| 11. Empfohlene Voraussetzungen: | keine |

| 12. Lernziele: | Die Studierenden besitzen vertiefte Kenntnisse über Forschungs- und Modellierungsmethoden für wirtschaftswissenschaftliche Systeme und Prozesse |

| 13. Inhalt: | Alternative 1:
Modellierung und Optimierung wissensintensiver Geschäftsprozesse (nächste Vorlesung im SoSe 2015) sowie Konzepte und Methoden in der Wirtschaftskybernetik (nur SoSe) |
Konzepte und Methoden zur Bearbeitung für interdisziplinärer Fragestellungen an der Schnittstelle zwischen Ingenieur- und Wirtschaftswissenschaften

- Unternehmensnetzwerke als komplexe adaptive Systeme
- Multi-Level-Systeme und Koordination
- Kybernetische Managementkonzepte
- Modellierung, Analyse und Optimierung von wissensintensiven Geschäftsprozessen
- Anwendung industrierelevanter Tools (z.B. ARIS)

Alternative 2:

Business Dynamics (nur WiSe)

- Charakteristika von betriebswirtschaftlichen Systemen
- Einführung in die Modellierung mit System Dynamics
- Kausaldiagramme und Systemarchetypen
- Nonlinear Behaviour, Path Dependence, Bounded Rationality, Network Effects, Innovation Diffusion, Supply Chains
- Planspiel „Beer Game“ Simulation mit Hilfe von Vensim + Matlab

Alternative 2 kann nur einmal im Studium der Technischen Kybernetik (BSc., MSc.) gewählt werden. Weitere Details zu Inhalten und Lernzielen siehe Modul 16750.

14. Literatur: Die zugehörigen Lernmaterialien werden in den einzelnen Veranstaltungen bekannt gegeben

15. Lehrveranstaltungen und -formen: 314401 Vorlesung Modellierung und Optimierung wissensintensiver Geschäftsprozesse
- 314403 Vorlesung Business Dynamics
- 314404 Übung Business Dynamics
- 314405 Vorlesung Konzepte und Methoden in der Wirtschaftskybernetik

16. Abschätzung Arbeitsaufwand: Arbeitsbelastung 180 Stunden:
- Präsenzzeit 42 h
- Nacharbeit und Selbststudium 138 h

17. Prüfungsnummer/n und -name: 31441 Methoden der Wirtschaftskybernetik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Diversity Studies in den Ingenieurwissenschaften
Modul: 31720 Model Predictive Control

2. Modulkürzel: 074810260 5. Modulduauer: 1 Semester
4. SWS: 4.0 7. Sprache: Englisch

8. Modulverantwortlicher: Univ.-Prof. Frank Allgöwer
9. Dozenten: • Frank Allgöwer
 • Matthias Müller

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technische Kybernetik, PO 2011
 → Vorgezogene Master-Module
 DoubleM.D. Technische Kybernetik, PO 2011
 → Chalmers -->Incoming -->Wahlfach Technische Kybernetik
 →
 DoubleM.D. Technische Kybernetik, PO 2011
 → Chalmers -->Outgoing -->Wahlfach Technische Kybernetik
 →
 DoubleM.D. Technische Kybernetik, PO 2011
 → Incoming -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
 →
 DoubleM.D. Technische Kybernetik, PO 2011
 → Outgoing -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
 →
 DoubleM.D. Technische Kybernetik, PO 2014
 → Chalmers -->Incoming -->Wahlfach Technische Kybernetik
 →
 DoubleM.D. Technische Kybernetik, PO 2014
 → Incoming -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
 →
 DoubleM.D. Technische Kybernetik, PO 2014
 → Outgoing -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
 →
 DoubleM.D. Technische Kybernetik, PO 2014
 → Wahlpflichtmodule -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
 →
 M.Sc. Technische Kybernetik, PO 2011
 → Spezialisierungsmodul -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
 →
 M.Sc. Technische Kybernetik, PO 2011
 → Spezialisierungsmodul -->Wahlfach Technische Kybernetik
 →

11. Empfohlene Voraussetzungen: Linear systems theory, non-linear control theory, Lyapunov stability
e.g. courses „Systemdynamische Grundlagen der Regelungstechnik“, „Einführung in die Regelungstechnik“ and „Konzepte der Regelungstechnik“
12. Lernziele: The students are able to analyze and synthesize various types of model predictive controllers, and can apply various proof techniques used in the context of stability and robustness analysis. The students have insight into current research topics in the field of model predictive control, which enables them to do their own first research projects in this area.

13. Inhalt:

- Basic concepts of MPC
- Stability of MPC
- Robust MPC
- Economic MPC
- Distributed MPC

14. Literatur:

15. Lehrveranstaltungen und -formen:
317201 Vorlesung Model Predictive Control

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 40 h
Selbststudiumszeit / Nacharbeitszeit: 140 h
Summe: 180 h

17. Prüfungsnummer/n und -name:
31721 Model Predictive Control (PL), schriftlich, eventuell mündlich, Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 51850 Networked Control Systems

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>074810330</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modulduer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
</tbody>
</table>

| 8. Modulverantwortlicher: | Univ.-Prof. Frank Allgöwer |

| 9. Dozenten: | • Daniel Zelazo |
| | • Mathias Bürger |

10. Zuordnung zum Curriculum in diesem Studiengang:

- B.Sc. Technische Kybernetik, PO 2011
 - Vorgezogene Master-Module
 - DoubleM.D. Technische Kybernetik, PO 2011
 - Chalmers -->Incoming -->Wahlfach Technische Kybernetik
 - DoubleM.D. Technische Kybernetik, PO 2011
 - Chalmers -->Outgoing -->Wahlfach Technische Kybernetik
 - DoubleM.D. Technische Kybernetik, PO 2011
 - Incoming -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
 - DoubleM.D. Technische Kybernetik, PO 2011
 - Outgoing -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
 - DoubleM.D. Technische Kybernetik, PO 2014
 - Incoming -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
 - DoubleM.D. Technische Kybernetik, PO 2014
 - Outgoing -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
 - DoubleM.D. Technische Kybernetik, PO 2014
 - Wahlpflichtmodule -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
 - M.Sc. Technische Kybernetik, PO 2011
 - Spezialisierungsmodul -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
 - M.Sc. Technische Kybernetik, PO 2011
 - Spezialisierungsmodul -->Wahlfach Technische Kybernetik

11. Empfohlene Voraussetzungen: Einführung in die Regelungstechnik.

| 12. Lernziele: | The students know a formalism and a set of tools for the analysis and synthesis of networked dynamical systems, based on rigorous mathematical principles. They are able to analyze and construct networked dynamical systems in a systematic way. Furthermore, they can understand, evaluate, and present scientific literature. |

15. Lehrveranstaltungen und -formen: 518501 Vorlesung und Übung Networked Control Systems

16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 42 Stunden
 Selbststudium: 138 Stunden
 Summe: 180 Stunden

17. Prüfungsnummer/n und -name: 51851 Networked Control Systems (PL), schriftlich oder mündlich, Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von:
Modul: 30100 Nichtlineare Dynamik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>074810240</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Modulduer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>6.0</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Christian Ebenbauer

9. Dozenten: Christian Ebenbauer

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technische Kybernetik, PO 2008, 6. Semester

- Kernmodule --> Systemanalyse I

B.Sc. Technische Kybernetik, PO 2011, 6. Semester

- Kernmodule --> Systemanalyse I

B.Sc. Technische Kybernetik, PO 2011, 6. Semester

- Vorgezogene Master-Module

DoubleM.D. Technische Kybernetik, PO 2011, 6. Semester

- Chalmers --> Incoming --> Wahlfach Technische Kybernetik

DoubleM.D. Technische Kybernetik, PO 2011, 6. Semester

- Chalmers --> Outgoing --> Systemanalyse II

DoubleM.D. Technische Kybernetik, PO 2011, 6. Semester

- Chalmers --> Outgoing --> Wahlfach Technische Kybernetik

DoubleM.D. Technische Kybernetik, PO 2014, 6. Semester

- Chalmers --> Incoming --> Wahlfach Technische Kybernetik

M.Sc. Technische Kybernetik, PO 2011, 6. Semester

- Spezialisierungsmodul --> Wahlfach Technische Kybernetik

M.Sc. Technische Kybernetik, PO 2011, 6. Semester

- Vertiefungsmodul --> Systemanalyse II

11. Empfohlene Voraussetzungen: Systemdynamische Grundlagen der Regelungstechnik

12. Lernziele:

This course provides the necessary background for students to understand and solve engineering problems involving nonlinear dynamical systems. The main focus of this course is on differential geometric methods. Applications will include problems from nonlinear control, optimization and mechanics.

13. Inhalt:

- Basic facts about nonlinear differential equations, vector fields, flows
- Stability and bifurcation
- Lie brackets, nonlinear controllability, integrability
- Manifolds, calculus on manifolds, optimization on manifolds
- Extremum seeking
- Advanced stability analysis and center manifolds
- Oscillations and averaging

14. Literatur:

- Arnol'd: Ordinary Differential Equations
- Moser, Zehnder: Notes on Dynamical Systems
- Bloch: Nonholonomic Mechanics and Control
- Isidori: Nonlinear Control Systems I
• Guckenheimer, Holmes: Nonlinear Oscillations, dynamical systems, and bifurcations

15. Lehrveranstaltungen und -formen:
 • 301001 Vorlesung Nichtlineare Dynamik
 • 301002 Übung Nichtlineare Dynamik

16. Abschätzung Arbeitsaufwand:

17. Prüfungsnummer/n und -name:
 30101 Nichtlineare Dynamik (PL), schriftlich, eventuell mündlich,
 Gewichtung: 1.0

18. Grundlage für...

19. Medienform:

20. Angeboten von:
Modul: 44880 Nichtlineare Optimierung

2. Modulkürzel: 060200111
5. Modulldauer: 1 Semester

3. Leistungspunkte: 3.0 LP
6. Turnus: jedes 2. Semester, SoSe

4. SWS: 3.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Werner Grimm

9. Dozenten: Werner Grimm

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technische Kybernetik, PO 2011
 ➔ Vorgezogene Master-Module
 DoubleM.D. Technische Kybernetik, PO 2011
 ➔ Chalmers -->Incoming -->Wahlfach Technische Kybernetik
 ➔
 DoubleM.D. Technische Kybernetik, PO 2011
 ➔ Chalmers -->Outgoing -->Wahlfach Technische Kybernetik
 ➔
 DoubleM.D. Technische Kybernetik, PO 2011
 ➔ Incoming -->Spezialisierungsfach -->Flugführung und Systemtechnik
 ➔
 DoubleM.D. Technische Kybernetik, PO 2011
 ➔ Outgoing -->Spezialisierungsfach -->Flugführung und Systemtechnik
 ➔
 DoubleM.D. Technische Kybernetik, PO 2014
 ➔ Incoming -->Spezialisierungsfach -->Flugführung und Systemtechnik
 ➔
 DoubleM.D. Technische Kybernetik, PO 2014
 ➔ Outgoing -->Spezialisierungsfach -->Flugführung und Systemtechnik
 ➔
 DoubleM.D. Technische Kybernetik, PO 2014
 ➔ Wahlpflichtmodule -->Spezialisierungsfach -->Flugführung und Systemtechnik
 ➔
 M.Sc. Technische Kybernetik, PO 2011
 ➔ Spezialisierungsmodulles -->Spezialisierungsfach -->Flugführung und Systemtechnik
 ➔
 M.Sc. Technische Kybernetik, PO 2011
 ➔ Spezialisierungsmodulles -->Wahlfach Technische Kybernetik
 ➔

11. Empfohlene Voraussetzungen:

12. Lernziele:

• Die Studierenden sind in der Lage, praktische Optimierungsprobleme in die Standardform eines nichtlinearen Parameteroptimierungsproblems zu überführen und die notwendigen und hinreichenden Bedingungen für die Lösung aufzustellen.

• Die Studierenden haben einen Überblick über gradientenbasierte numerische Lösungsverfahren für nichtlineare Parameteroptimierungsprobleme. Zu jedem Verfahren sind die
zugrunde liegende Entwurfsидеe und die praktischen Vor- und Nachteile bekannt.

13. Inhalt:

- das nichtlineare Parameteroptimierungsproblem: Aufgabenstellung und Beispiele
- notwendige und hinreichende Bedingungen für ein lokales Minimum
- gradientenbasierte numerische Verfahren für unbeschränkte Probleme (Gradientenverfahren, Newton- und Quasi-Newton-Verfahren usw.)
- gradientenbasierte numerische Verfahren für beschränkte Probleme (SQP-Verfahren usw.)

14. Literatur:

- W. Grimm, K.H. Well: Nichtlineare Optimierung, Skript
- R. Fletcher, Practical Methods of Optimization, Wiley
- Vortragsübungen im Netz

15. Lehrveranstaltungen und -formen:

- 448801 Vorlesung Nichtlineare Optimierung
- 448802 Übung Nichtlineare Optimierung

16. Abschätzung Arbeitsaufwand:

Nichtlineare Optimierung, Vorlesung: 58 h (Präsenzzeit 28 h, Selbststudium 30 h)
Nichtlineare Optimierung, Übung: 32 h (Präsenzzeit 14 h, Selbststudium 18 h)
Gesamt: 90 h (Präsenzzeit 42 h, Selbststudium 48 h)

17. Prüfungsnummer/n und -name:

44881 Nichtlineare Optimierung (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0, mit Hilfsmitteln

18. Grundlage für ...

19. Medienform:

Zuhilfenahme von Projektor und Beamer, elektronische Unterlagen im Netz

20. Angeboten von:

Institut für Flugmechanik und Flugregelung
Modul: 33330 Nichtlineare Schwingungen

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>072810018</th>
<th>5. Modulduauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Apl. Prof. Michael Hanss

9. Dozenten: Michael Hanss

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>B.Sc. Technische Kybernetik, PO 2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>→ Ergänzungsmodul -->Grundlagen der Natur- und Ingenieurwissenschaften</td>
</tr>
<tr>
<td>→ B.Sc. Technische Kybernetik, PO 2011</td>
</tr>
<tr>
<td>→ Ergänzungsmodul -->Wahlbereich Anwendungsfach --> Mechatronische Probleme</td>
</tr>
<tr>
<td>→ B.Sc. Technische Kybernetik, PO 2011</td>
</tr>
<tr>
<td>→ Vorleistungsmodule -->Grundlagen der Natur- und Ingenieurwissenschaften</td>
</tr>
<tr>
<td>→ DoubleM.D. Technische Kybernetik, PO 2011</td>
</tr>
<tr>
<td>→ Chalmers -->Incoming -->Wahlfach Technische Kybernetik</td>
</tr>
<tr>
<td>→ DoubleM.D. Technische Kybernetik, PO 2011</td>
</tr>
<tr>
<td>→ Chalmers -->Outgoing -->Wahlfach Technische Kybernetik</td>
</tr>
<tr>
<td>→ DoubleM.D. Technische Kybernetik, PO 2011</td>
</tr>
<tr>
<td>→ Incoming -->Spezialisierungsfach -->Technische Dynamik</td>
</tr>
<tr>
<td>→ DoubleM.D. Technische Kybernetik, PO 2011</td>
</tr>
<tr>
<td>→ Outgoing -->Spezialisierungsfach -->Technische Dynamik</td>
</tr>
<tr>
<td>→ DoubleM.D. Technische Kybernetik, PO 2011</td>
</tr>
<tr>
<td>→ Chalmers -->Incoming -->Wahlfach Technische Kybernetik</td>
</tr>
<tr>
<td>→ DoubleM.D. Technische Kybernetik, PO 2014</td>
</tr>
<tr>
<td>→ Incoming -->Spezialisierungsfach -->Technische Dynamik</td>
</tr>
<tr>
<td>→ DoubleM.D. Technische Kybernetik, PO 2014</td>
</tr>
<tr>
<td>→ Outgoing -->Spezialisierungsfach -->Technische Dynamik</td>
</tr>
<tr>
<td>→ DoubleM.D. Technische Kybernetik, PO 2014</td>
</tr>
<tr>
<td>→ Wahlpflichtmodule -->Spezialisierungsfach -->Technische Dynamik</td>
</tr>
<tr>
<td>→ M.Sc. Technische Kybernetik, PO 2011</td>
</tr>
<tr>
<td>→ Spezialisierungsmodule -->Spezialisierungsfach -->Technische Dynamik</td>
</tr>
<tr>
<td>→ M.Sc. Technische Kybernetik, PO 2011</td>
</tr>
<tr>
<td>→ Spezialisierungsmodul -->Wahlfach Technische Kybernetik</td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen: Technische Mechanik II+III oder Technische Schwingungslehre

12. Lernziele:

Der Studierende ist vertraut mit den Grundlagen von parametererregten und nichtlinearen Schwingungen, ihrer mathematischen Beschreibung,
ihrer analytischen und näherungsweisen Lösung sowie ihrer Bedeutung für die ingenieurwissenschaftliche Praxis.

14. Literatur: Skript "Höhere Schwingungslehre"

15. Lehrveranstaltungen und -formen: 333301 Vorlesung Nichtlineare Schwingungen

17. Prüfungsnummer/n und -name: 33331 Nichtlineare Schwingungen (BSL), schriftlich, eventuell mündlich, 90 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Institut für Technische und Numerische Mechanik
Modul: 44890 Nichtlineare und digitale Regelung

2. Modulkürzel: 060200116
5. Modulduer: 1 Semester
3. Leistungspunkte: 3.0 LP
4. SWS: 2.0
7. Sprache: Deutsch
8. Modulverantwortlicher: Werner Grimm
9. Dozenten: Werner Grimm
10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technische Kybernetik, PO 2011
 ➔ Vorgezogene Master-Module
 M.Sc. Technische Kybernetik, PO 2011
 ➔ Spezialisierungsmodul -->Wahlfach Technische Kybernetik
11. Empfohlene Voraussetzungen: Regelung, Navigation und Systementwurf, Modul 060200100
12. Lernziele:
 • Die Studierenden beherrschen die Stabilitätsbegriffe und -kriterien für nichtlineare Systeme. Die Studierenden sind in der Lage, ausgewählte Methoden der nichtlinearen Regelung anzuwenden.
 • Die Studierenden sind in der Lage, digitale Regelkreise zu modellieren und zu entwerfen.
13. Inhalt:
 • nichtlineare Regelung: Stabilitätsbegriffe und -kriterien, Kennfeldregelung, nichtlineare Vorsteuerung, Ein/Ausgangs-Linearisierung, praktische Berechnung von Arbeitspunkten, Eigenschaften nichtlinearer Systeme mit linearem Regler
 • digitale Regelung: diskretes Streckenmodell im Zeit- und Frequenzbereich, Shannon-Theorem, Berücksichtigung der Diskretisierung im kontinuierlichen Entwurf, diskrete Entwurfsmethoden für lineare Ein- und Mehrgrößensysteme
14. Literatur:
 • W. Grimm: Nichtlineare Regelung, Skript
 • W. Grimm: Digitale Regelung, Skript
 • J. Lunze: Regelungstechnik 2, Springer
 • H. P. Geering: Regelungstechnik, Springer
 • S. Engell: Entwurf nichtlinearer Regelungen, Oldenbourg
 • J.-J. E. Slotine: Applied Nonlinear Control, Prentice Hall
 • Vortragsfolien und Vortragsübungen im Netz
15. Lehrveranstaltungen und -formen: 448901 Vorlesung Nichtlineare und digitale Regelung
16. Abschätzung Arbeitsaufwand:
 Nichtlineare und digitale Regelung, Vorlesung: 45 h (Präsenzzeit 14 h, Selbststudium 31 h)
 Nichtlineare und digitale Regelung, Übung: 45 h (Präsenzzeit 14 h, Selbststudium 31 h)
 Gesamt: 90 h (Präsenzzeit 28 h, Selbststudium 62 h)
17. Prüfungsnummer/n und -name: 44891 Nichtlineare und digitale Regelung (BSL), mündliche Prüfung, 20 Min., Gewichtung: 1.0
18. Grundlage für ...
19. Medienform: Zuhilfenahme von Projektor und Beamer, elektronische Unterlagen im Netz
20. Angeboten von: Institut für Flugmechanik und Flugregelung

Stand: 09. April 2015
Modul: 33190 Numerische Methoden der Optimierung und Optimalen Steuerung

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>074730001</th>
</tr>
</thead>
<tbody>
<tr>
<td>5. Moduldauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Eckhard Arnold
9. Dozenten: Eckhard Arnold

10. Zuordnung zum Curriculum in diesem Studiengang:

- B.Sc. Technische Kybernetik, PO 2011
 - Vorgezogene Master-Module
- DoubleM.D. Technische Kybernetik, PO 2011
 - Chalmers -->Incoming --> Wahlfach Technische Kybernetik
- DoubleM.D. Technische Kybernetik, PO 2011
 - Chalmers -->Outgoing --> Mathematische Methoden der Kybernetik
- DoubleM.D. Technische Kybernetik, PO 2014
 - Chalmers -->Incoming --> Wahlfach Technische Kybernetik
- DoubleM.D. Technische Kybernetik, PO 2014
 - Incoming --> Spezialisierungsfach --> Systemdynamik/ Automatisierungstechnik
- DoubleM.D. Technische Kybernetik, PO 2014
 - Outgoing --> Spezialisierungsfach --> Systemdynamik/ Automatisierungstechnik
- DoubleM.D. Technische Kybernetik, PO 2014
 - Outgoing --> Wahlpflichtmodule --> Mathematische Methoden der Kybernetik
- DoubleM.D. Technische Kybernetik, PO 2014
 - Wahlpflichtmodule --> Spezialisierungsfach --> Systemdynamik/ Automatisierungstechnik
- M.Sc. Technische Kybernetik, PO 2011
 - Spezialisierungsmodul --> Spezialisierungsfach --> Systemdynamik/Automatisierungstechnik
- M.Sc. Technische Kybernetik, PO 2011
 - Spezialisierungsmodul --> Wahlfach Technische Kybernetik
- M.Sc. Technische Kybernetik, PO 2011
 - Vertiefungsmodule --> Mathematische Methoden der Kybernetik

11. Empfohlene Voraussetzungen:

- Einführung in die Regelungstechnik; Systemdynamik; Grundkenntnisse Matlab/Simulink (z.B. Simulationstechnik)

14. Literatur:
- Vorlesungsumdrucke

15. Lehrveranstaltungen und -formen:
- 331901 Vorlesung Numerische Methoden der Optimierung und Optimalen Steuerung
- 331902 Übung Numerische Methoden der Optimierung und Optimalen Steuerung

17. Prüfungsnummer/n und -name: 33191 Numerische Methoden der Optimierung und Optimalen Steuerung (PL), schriftlich, eventuell mündlich, Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: Institut für Systemdynamik
Modul: 15020 Numerische Methoden in der Fluidmechanik

2. Modulkürzel: 021420003
3. Leistungspunkte: 6.0 LP
4. SWS: 5.0
5. Modulduauer: 1 Semester
7. Sprache: Deutsch
8. Modulverantwortlicher: Bernd Flemisch
9. Dozenten:
 • Bernd Flemisch
 • Rainer Helmig
 • Nicolas Schwenck
10. Zuordnung zum Curriculum in diesem Studiengang:
 M.Sc. Technische Kybernetik, PO 2011
 Spezialisierungsmodule --> Wahlfach Technische Kybernetik

11. Empfohlene Voraussetzungen:
 Höhere Mathematik:
 • Partielle Differentialgleichungen
 • Numerische Integration
 Grundlagen der Fluidmechanik:
 • Erhaltungsgleichungen für Masse, Impuls, Energie
 • Mathematische Beschreibung von Strömungs- und Transportprozessen

12. Lernziele:
 Die Studierenden können geeignete numerische Methoden für die Lösung von Fragestellungen aus der Fluidmechanik auswählen und besitzen grundlegende Kenntnisse über die Implementierung eines numerischen Modells in C.

13. Inhalt:
 Diskretisierungsmethoden:
 • Kenntnis der gängigen Methoden (Finite Differenzen, Finite Elemente, Finite Volumen) und ihrer Unterschiede
 • Vor- und Nachteile und damit verbunden deren Einsetzbarkeit
 • Herleitung der verschiedenen Methoden
 • Verwendung und Wahl der richtigen Randbedingungen bei den unterschiedlichen Methoden

 Zeitdiskretisierung:
 • Kenntnis der verschiedenen Möglichkeiten
 • Beurteilung nach Stabilität, Rechenaufwand, Genauigkeit
 • Courantzahl, CFL-Kriterium

 Transportgleichung:
 • verschiedene Diskretisierungsmöglichkeiten
 • physikalischer Hintergrund
 • Stabilitätskriterien der Methoden (Pecletzahl)

 Einführung in Stabilitätsanalyse, Konvergenz
 Begriffsklärungen: Modell, Simulation
 Umsetzung der stationären Grundwassergleichung mit Hilfe der Finiten Elemente Methode
Erarbeitung eines Simulationsprogramms zur Grundwassermodellierung:
- Anforderungen an das Programm
- Programmieren einzelner Routinen

Grundlagen des Programmierens in C
- Kontrollstrukturen
- Funktionen
- Felder
- Debugging

Visualisierung der Simulationsergebnisse

14. Literatur:
- Skript: Einführung in die Numerischen Methoden der Hydromechanik

15. Lehrveranstaltungen und -formen:
- 150201 Vorlesung Grundlagen zu Numerische Methoden der Fluidmechanik
- 150202 Übung Grundlagen zu Numerische Methoden der Fluidmechanik
- 150203 Vorlesung Anwendungen zu Numerische Methoden der Fluidmechanik
- 150204 Übung Anwendungen zu Numerische Methoden der Fluidmechanik

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 55 h
- Selbststudium: 125 h
- Gesamt: 180 h

17. Prüfungsnummer/n und -name:
- 15021 Numerische Methoden in der Fluidmechanik (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :
- 14980 Ausbreitungs- und Transportprozesse in Strömungen
- 15040 Mehrphasenmodellierung in porösen Medien

19. Medienform:
- Entwicklung der Grundlagen als Tafelanschrieb, Übungen in Gruppen zur Festigung der erarbeiteten theoretischen Grundlagen. Praxisnahe Umsetzung von Fragestellungen am Rechner. Unterstützung der Studierenden mittels Lehrer-Schüler-Steuerung im Multi Media Lab des IWS

20. Angeboten von:
- Institut für Wasser- und Umweltystemmodellierung
Modul: 33860 Objektorientierte Modellierung und Simulation

2. Modulkürzel: 074730002 5. Moduldaurer: 1 Semester
4. SWS: 2.0 7. Sprache: Deutsch

8. Modulverantwortlicher: Eckhard Arnold
9. Dozenten: Eckhard Arnold
10. Zuordnung zum Curriculum in diesem Studiengang:

 B.Sc. Technische Kybernetik, PO 2011
 → Vorgezogene Master-Module
 DoubleM.D. Technische Kybernetik, PO 2011
 → Incoming -->Spezialisierungsfach -->Systemdynamik/
 Automatisierungstechnik
 →
 DoubleM.D. Technische Kybernetik, PO 2011
 → Outgoing -->Spezialisierungsfach -->Systemdynamik/
 Automatisierungstechnik
 →
 DoubleM.D. Technische Kybernetik, PO 2014
 → Chalmers -->Incoming -->Wahlfach Technische Kybernetik
 →
 DoubleM.D. Technische Kybernetik, PO 2014
 → Incoming -->Spezialisierungsfach -->Systemdynamik/
 Automatisierungstechnik
 →
 DoubleM.D. Technische Kybernetik, PO 2014
 → Outgoing -->Spezialisierungsfach -->Systemdynamik/
 Automatisierungstechnik
 →
 DoubleM.D. Technische Kybernetik, PO 2014
 → Wahlpflichtmodule -->Spezialisierungsfach -->Systemdynamik/
 Automatisierungstechnik
 →
 M.Sc. Technische Kybernetik, PO 2011
 → Spezialisierungsmodul -->Spezialisierungsfach -->
 Systemdynamik/Automatisierungstechnik
 →
 M.Sc. Technische Kybernetik, PO 2011
 → Spezialisierungsmodul -->Wahlfach Technische Kybernetik
 →

11. Empfohlene Voraussetzungen: Einführung in die Regelungstechnik; Systemdynamik; Simulationstechnik

14. Literatur:
 • Vorlesungsumdrucke

<table>
<thead>
<tr>
<th>15. Lehrveranstaltungen und -formen:</th>
<th>338601 Vorlesung Objektorientierte Modellierung und Simulation</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Selbststudium: 69 Stunden</td>
</tr>
<tr>
<td></td>
<td>Summe: 90 Stunden</td>
</tr>
</tbody>
</table>

| 17. Prüfungsnummer/n und -name: | 33861 Objektorientierte Modellierung und Simulation (BSL), |
| | schriftlich, eventuell mündlich, Gewichtung: 1.0 |

18. Grundlage für ... :	
19. Medienform:	
20. Angeboten von:	Institut für Systemdynamik
Modul: 18620 Optimal Control

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>074810120</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Christian Ebenbauer</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Christian Ebenbauer</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technische Kybernetik, PO 2011
- Vorgezogene Master-Module
- DoubleM.D. Technische Kybernetik, PO 2011
 - Chalmers -->Incoming -->Wahlfach Technische Kybernetik
- DoubleM.D. Technische Kybernetik, PO 2011
 - Chalmers -->Outgoing -->Wahlfach Technische Kybernetik
- DoubleM.D. Technische Kybernetik, PO 2011
 - Incoming -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
- DoubleM.D. Technische Kybernetik, PO 2011
 - Outgoing -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
- DoubleM.D. Technische Kybernetik, PO 2014
 - Chalmers -->Incoming -->Advanced Control
- DoubleM.D. Technische Kybernetik, PO 2014
 - Chalmers -->Incoming -->Wahlfach Technische Kybernetik
- DoubleM.D. Technische Kybernetik, PO 2014
 - Incoming -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
- DoubleM.D. Technische Kybernetik, PO 2014
 - Outgoing -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
- DoubleM.D. Technische Kybernetik, PO 2014
 - Wahlpflichtmodule -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
- M.Sc. Technische Kybernetik, PO 2011
 - Spezialisierungsmodul -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik
- M.Sc. Technische Kybernetik, PO 2011
 - Spezialisierungsmodul -->Wahlfach Technische Kybernetik
- M.Sc. Technische Kybernetik, PO 2011
 - Vertiefungsmodul -->Advanced Control
11. Empfohlene Voraussetzungen: B.Sc.-Abschluss in Technischer Kybernetik, Maschinenbau, Automatisierungstechnik, Verfahrenstechnik oder einem vergleichbaren Fach sowie Grundkenntnisse der Regelungstechnik (vergleichbar Modul Regelungstechnik)

12. Lernziele: The students learn how to analyze and solve optimal control problems. The course focuses on key ideas and concepts of the underlying theory. The students learn about standard methods for computing and implementing optimal control strategies.

13. Inhalt: The main part of the lecture focuses on methods to solve nonlinear optimal control problems including the following topics:

- Finite-dimensional Optimization, Nonlinear Programming
- Dynamic Programming, Hamilton-Jacobi-Bellman Theory
- Calculus of Variations, Pontryagin Maximum Principle
- Model Predictive Control
- Numerical Algorithms
- Application Examples

The exercises contain student exerciseses and mini projects in which the students apply their knowledge to solve specific optimal control problem in a predefined time period.

14. Literatur:
D. Liberzon: Calculus of Variations and Optimal Control Theory, Princeton University Press,
A. Brassan and B. Piccoli: Introduction to Mathematical Control Theory, AMS,
I.M. Gelfand and S.V. Fomin: Calculus of Variations, Dover,
D. Bertsekas: Dynamic Programming and Optimal Control, Athena Scientific,
H. Sagan: Introduction to the Calculus of Variations, Dover,

15. Lehrveranstaltungen und -formen: 186201 Vorlesung Optimal Control

16. Abschätzung Arbeitsaufwand:

Präsenzzeit:	42 h
Selbststudiumszeit / Nacharbeitszeit:	138 h
Gesamt:	180 h

17. Prüfungsnummer/n und -name: 18621 Optimal Control (PL), schriftlich oder mündlich, Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
Modulhandbuch: Master of Science Technische Kybernetik

Modul: 40820 Optimalsteuerung in der Luft- und Raumfahrttechnik

2. Modulkürzel: 060200007
5. Moduldauer: 1 Semester
3. Leistungspunkte: 3.0 LP
4. SWS: 2.0
7. Sprache: Deutsch
8. Modulverantwortlicher: Werner Grimm
9. Dozenten: Werner Grimm
 → Ergänzungs module --> Wahlbereich Anwendungs fach --> Luft- und Raum fahrttechnik
 B.Sc. Technische Kybernetik, PO 2011
 → Vorgezogene Master-Module
 M.Sc. Technische Kybernetik, PO 2011
 → Spezialisierungs module --> Wahlfach Technische Kybernetik

11. Empfohlene Voraussetzungen: Nichtlineare Optimierung, Modul 060200006
 Flugmechanik, Modul 060200003

13. Inhalt: Optimalsteuerungsproblem: allgemeine Aufgabenstellung in verschiedenen Ausbaustufen, spezielle Aufgabenstellungen in der Luft- und Raumfahrt notwendige Bedingungen für die Lösung eines Optimalsteuerungsproblems, akademische und praktische Anwendungsbeispiele, auf den notwendigen Bedingungen aufbauende numerische Lösungsverfahren (indirektes Mehrzielverfahren) direkte Methoden zur Lösung eines Optimalsteuerungsproblems (direktes Mehrzielverfahren, direkte Kollokation), Rechnerübungen zum Kennenlernen professioneller Bahnoptimierungsprogramme

15. Lehrveranstaltungen und -formen: 408201 Vorlesung Optimalsteuerung in der Luft- und Raumfahrttechnik

17. Prüfungsnummer/n und -name: 40821 Optimalsteuerung in der Luft- und Raumfahrttechnik (BSL), mündliche Prüfung, 20 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform: Zuhilfenahme von Projektor und Beamer, elektronische Unterlagen im Netz

20. Angeboten von:
Modul: 30060 Optimization of Mechanical Systems

2. Modulkürzel: 072810007 5. Moduldauer: 1 Semester
4. SWS: 2.0 7. Sprache: Englisch

8. Modulverantwortlicher: Univ.-Prof. Peter Eberhard
9. Dozenten: Peter Eberhard

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>B.Sc. Technische Kybernetik, PO 2011</th>
<th>Vorgezogene Master-Module</th>
</tr>
</thead>
<tbody>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2011</td>
<td>Chalmers --> Incoming --> Wahlfach Technische Kybernetik</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2011</td>
<td>Chalmers --> Outgoing --> Wahlfach Technische Kybernetik</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2011</td>
<td>Incoming --> Spezialisierungsfach --> Technische Dynamik</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2011</td>
<td>Outgoing --> Spezialisierungsfach --> Technische Dynamik</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2014</td>
<td>Chalmers --> Incoming --> Wahlfach Technische Kybernetik</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2014</td>
<td>Incoming --> Spezialisierungsfach --> Technische Dynamik</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2014</td>
<td>Outgoing --> Spezialisierungsfach --> Technische Dynamik</td>
</tr>
<tr>
<td>DoubleM.D. Technische Kybernetik, PO 2014</td>
<td>Wahlpflichtmodule --> Spezialisierungsfach --> Technische Dynamik</td>
</tr>
<tr>
<td>M.Sc. Technische Kybernetik, PO 2011</td>
<td>Spezialisierungsmodul --> Spezialisierungsfach --> Technische Dynamik</td>
</tr>
<tr>
<td>M.Sc. Technische Kybernetik, PO 2011</td>
<td>Spezialisierungsmodul --> Wahlfach Technische Kybernetik</td>
</tr>
</tbody>
</table>

12. Lernziele:
Knowledge of the basics of optimization in engineering systems; Independent, confident, critical and creative application of optimization techniques to mechanical systems

13. Inhalt:
- **Formulation of the optimization problem**: optimization criteria, scalar optimization problem, multicriteria optimization
- **Sensitivity Analysis**: Numerical differentiation, semianalytical methods, automatic differentiation
14. Literatur:
- Lecture notes
- Lecture materials of the ITM

15. Lehrveranstaltungen und -formen:
- 300601 Lecture Optimization of Mechanical Systems

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 21 Stunden
- Selbststudium: 69 Stunden
- Summe: 90 Stunden

17. Prüfungsnummer/n und -name:
- 30061 Optimization of Mechanical Systems (BSL), schriftlich oder mündlich, Gewichtung: 1.0, schriftlich 90min oder mündlich 20min

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
Modul: 39050 Optische Messtechnik

2. Modulkürzel: 073100 009 5. Moduldauer: 1 Semester
4. SWS: 2.0 7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Wolfgang Osten
9. Dozenten: • Wolfgang Osten
 • Klaus Körner
 • Erich Steinbeißer

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technische Kybernetik, PO 2011, 4. Semester
 → Ergänzungsmodule -->Grundlagen der Natur- und Ingenieurwissenschaften
 →
B.Sc. Technische Kybernetik, PO 2011, 4. Semester
 → Kernmodule -->Messtechnik II
 →
B.Sc. Technische Kybernetik, PO 2011, 4. Semester
 → Vorgezogene Master-Module
 →
DoubleM.D. Technische Kybernetik, PO 2011, 4. Semester
 → Chalmers -->Incoming -->Wahlfach Technische Kybernetik
 →
DoubleM.D. Technische Kybernetik, PO 2011, 4. Semester
 → Chalmers -->Outgoing -->Wahlfach Technische Kybernetik
 →
DoubleM.D. Technische Kybernetik, PO 2014, 4. Semester
 → Chalmers -->Incoming -->Wahlfach Technische Kybernetik
 →
M.Sc. Technische Kybernetik, PO 2011, 4. Semester
 → Spezialisierungsmodule -->Wahlfach Technische Kybernetik
 →

11. Empfohlene Voraussetzungen:

12. Lernziele:
Die Studierenden kennen wichtige Verfahren und Anwendungen der modernen optischen Messtechnik, sie verstehen die Grundlagen der geometrischen Optik und der Wellenoptik, sie beherrschen deren Methoden und können diese Methoden auf praktische Messprobleme anwenden.

13. Inhalt:
Geometrisch- und wellenoptische Grundlagen, Verfahren und Sensoren auf Grundlage geometrisch- und wellenoptischer Prinzipien.

14. Literatur:
Vorlesungsumdrucke und Übungsaufgaben.

Ergänzende Literatur:
• Malacara: Optical shop testing. 2007.
• Hecht: Optik. 2014.

15. Lehrveranstaltungen und -formen: 390501 Vorlesung: Optische Messtechnik

16. Abschätzung Arbeitsaufwand:
Präsenzzeit: 21 Stunden
Selbststudium: 69 Stunden
<table>
<thead>
<tr>
<th>Nr.</th>
<th>Inhalt</th>
<th>Aktualisierungsdatum</th>
</tr>
</thead>
<tbody>
<tr>
<td>17.</td>
<td>Prüfungsnummer/n und -name:</td>
<td>39051 Optische Messtechnik (BSL), schriftlich, eventuell mündlich, 60 Min., Gewichtung: 1.0</td>
</tr>
<tr>
<td>18.</td>
<td>Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19.</td>
<td>Medienform:</td>
<td></td>
</tr>
<tr>
<td>20.</td>
<td>Angeboten von:</td>
<td>Technische Optik</td>
</tr>
</tbody>
</table>
Modul: 33400 Optische Phänomene in Natur und Alltag

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>073100005</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
<td>6. Turnus:</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Tobias Haist
9. Dozenten: Tobias Haist

10. Zuordnung zum Curriculum in diesem Studiengang:
- B.Sc. Technische Kybernetik, PO 2011 → Vorgezogene Master-Module
- M.Sc. Technische Kybernetik, PO 2011 → Spezialisierungsmodule -->Wahlfach Technische Kybernetik

11. Empfohlene Voraussetzungen:

12. Lernziele:

Die Studierenden
- verstehen die optischen Grundgesetze
- erlangen einen Einblick in die Problematik der Frage „Was ist Licht“ und lernen übliche Lichtmodelle und die Beschreibung von „Licht“ kennen
- können die klassischen, mit unbewaffnetem Auge erfassbaren optischen Phänomene erkennen und erklären
- verstehen die Grundzüge des menschlichen Sehvorgangs
- kennen die Möglichkeiten der Lichtentstehung
- erkennen die Bedeutung des Lichts im Rahmen des physikalischen Weltbilds

13. Inhalt:

- Wechselwirkungsmodelle von Licht mit Materie (insbesondere: Streuung, Brechung, Absorption, Reflexion, Beugung)
- Physiologie (Mensch und Tier) des Sehsystems
- Optische Täuschungen
- Atmosphärische Optik (Regenbogen, Halos, Luftspiegelungen, Himmelsfärbungen, Glorien, Korona, Irisierung)
- Schattenphänomene
- Farbe (u.a. Farbmischung, Farbentstehung, Physiologie)
- Optische Phänomene an Alltagsgegenständen (viele verschiedene)
- Polarisation
- Kurzüberblick: Photonen (Quanteneffekte, Quantenkryptographie, Quantencomputer)
- Kurzüberblick: Licht in der Relativitätstheorie (u.a. Lichtuhr, Dopplereffekt, Gravitationslinsen, schwarze Löcher)

14. Literatur:

- www.optipina.de dort ausführliches eBook mit vielen weiteren Literaturhinweisen

15. Lehrveranstaltungen und -formen: 334001 Vorlesung Optische Phänomene in Natur und Alltag

16. Abschätzung Arbeitsaufwand:

Präsenzzzeit:	21 Stunden
Selbststudium:	69 Stunden
Summe:	90 Stunden

Stand: 09. April 2015 Seite 633 von 666
17. Prüfungsnummer/n und -name: 33401 Optische Phänomene in Natur und Alltag (BSL), mündliche Prüfung, 20 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform: Powerpoint-Vorlesung mit zahlreichen Demonstrations-Versuchen

20. Angeboten von:
Modul: 33580 Personalwirtschaft

2. Modulkürzel: 072010016
5. Modulduer: 1 Semester

3. Leistungspunkte: 3.0 LP
6. Turnus: jedes 2. Semester, SoSe

4. SWS: 2.0
7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dieter Spath

9. Dozenten: Susanne Buck

10. Zuordnung zum Curriculum in diesem Studiengang:
B.Sc. Technische Kybernetik, PO 2011
→ Vorgezogene Master-Module
M.Sc. Technische Kybernetik, PO 2011
→ Spezialisierungsmodule --> Wahlfach Technische Kybernetik

11. Empfohlene Voraussetzungen:

12. Lernziele:
Die Studierenden bekommen ein Verständnis für die Bedeutung der unterschiedlichen personalwirtschaftlichen Themenfelder. Sie kennen einzelne Ansätze und Methoden der Personalwirtschaft und können diese anwenden.

Die Studierenden können die Chancen und Risiken unterschiedlicher Führungsansätze beurteilen. Zudem bilden sie ein Verständnis von welchen Faktoren die Motivation und Arbeitszufriedenheit der Mitarbeiter anhängt und mit welchen Führungsinstrumenten auf diese eingewirkt werden kann.

13. Inhalt:

Unter der Überschrift Personalführung und Mitarbeitermotivation werden verschiedene Forschungsansätze zur Personalführung, Führungsmodelle und -instrumente, der Unternehmenskultur sowie die Inhalts- und Prozesstheorien der Motivation und Arbeitszufriedenheit subsummiert.

Den Abschluss der Vorlesungseinheit bildet die Erläuterung der Teilsysteme und Komponenten der Personalplanung, Personalbeschaffung, Personalauswahl und Personalbeurteilung.
14. Literatur:
- Buck, S.: Skript zur Vorlesung Personalwirtschaft

Vertiefend:

15. Lehrveranstaltungen und -formen:
| Lehrveranstaltung | 335801 Vorlesung Personalwirtschaft |

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 21 Stunden
- Selbststudium: 69 Stunden
- Summe: 90 Stunden

17. Prüfungsnummer/n und -name:
| Prüfungsnummer/n und -name | 33581 Personalwirtschaft (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0 |

18. Grundlage für ... :

19. Medienform:
- Beamer-Präsentation

20. Angeboten von:
- Institut für Arbeitswissenschaft und Technologiemanagement
Modul: 29190 Planungsmethoden in der Energiewirtschaft

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>041210014</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>5.0</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Kai Hufendiek</td>
</tr>
</tbody>
</table>
| 9. Dozenten: | • Kai Hufendiek
• Ulrich Fahl |
→ Vorgezogene Master-Module
DoubleM.D. Technische Kybernetik, PO 2011
→ Chalmers -->Incoming -->Wahlfach Technische Kybernetik
→ DoubleM.D. Technische Kybernetik, PO 2011
→ Chalmers -->Outgoing -->Wahlfach Technische Kybernetik
→ DoubleM.D. Technische Kybernetik, PO 2011
→ Incoming -->Spezialisierungsfach -->Energiesysteme und Energiewirtschaft
→ DoubleM.D. Technische Kybernetik, PO 2011
→ Outgoing -->Spezialisierungsfach -->Energiesysteme und Energiewirtschaft
→ DoubleM.D. Technische Kybernetik, PO 2014
→ Chalmers -->Incoming -->Wahlfach Technische Kybernetik
→ DoubleM.D. Technische Kybernetik, PO 2014
→ Incoming -->Spezialisierungsfach -->Energiesysteme und Energiewirtschaft
→ DoubleM.D. Technische Kybernetik, PO 2014
→ Outgoing -->Spezialisierungsfach -->Energiesysteme und Energiewirtschaft
→ DoubleM.D. Technische Kybernetik, PO 2014
→ Wahlpflichtmodule -->Spezialisierungsfach -->Energiesysteme und Energiewirtschaft
→ M.Sc. Technische Kybernetik, PO 2011
→ Spezialisierungsmodul -->Spezialisierungsfach -->Energiesysteme und Energiewirtschaft
→ M.Sc. Technische Kybernetik, PO 2011
→ Spezialisierungsmodul -->Wahlfach Technische Kybernetik |

11. Empfohlene Voraussetzungen: Grundlagen der Energiewirtschaft und Energieversorgung (z.B. Modul "Energiewirtschaft und Energieversorgung")

12. Lernziele: Die Studierenden können für Problemstellungen in der Energiewirtschaft geeignete Lösungsmethoden identifizieren. Sie sind in der Lage, aus verschiedenen Energiemodellen und mathematischen Verfahren zur
Systemanalyse die geeigneten auszuwählen und diese auf einfache Beispiele anzuwenden. Die Studierenden entwickeln die Fähigkeit die wechselseitigen Abhängigkeiten von Risiken und Nutzen im komplexen System der Energieversorgung abzuwägen.

13. Inhalt:

14. Literatur:

15. Lehrveranstaltungen und -formen:

16. Abschätzung Arbeitsaufwand:

17. Prüfungsnummer/n und -name:

18. Grundlage für ...:

19. Medienform:

20. Angeboten von:
Modul: 49680 Praktikum Systemdynamik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>074711004</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Cristina Tarin Sauer</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Cristina Tarin Sauer</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
M.Sc. Technische Kybernetik, PO 2011 → Spezialisierungsmodule → Wahlfach Technische Kybernetik |
| 11. Empfohlene Voraussetzungen: | Einführung in die Regelungstechnik
Messtechnik in der Automatisierungstechnik
Systemdynamik |
In verschiedenen Versuchen werden beispielhafte Regelungsaufgaben automatisierungstechnisch von der Verwendung von geeigneten Sensoren und Aktoren bis hin zur Implementierung der Regelalgorithmen in einer geeigneten Hard- und Softwareumgebung gezeigt:
• Filter- und Kommunikationstechnik
• Der bionische Handabungsassistent (BHA)
• Ball auf Platte |
| 14. Literatur: | • Ausführliche Praktikumsskripte mit vorbereitenden Aufgaben
• Datenblätter |
| 15. Lehrveranstaltungen und -formen: | 496801 Praktikum Automatisierungstechnik |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 30 h
Selbststudiums-/Nacharbeitszeit: 60 h
Gesamt: 90 h |
| 17. Prüfungsnummer/n und -name: | 49681 Praktikum Systemdynamik (BSL), schriftlich, eventuell mündlich, Gewichtung: 1.0 |
| 18. Grundlage für ...: | |
| 19. Medienform: | Praktikumsskripte, Kruzpräsentationen, Versuchsaufbauten |
| 20. Angeboten von: | Institut für Systemdynamik |
Modul: 14390 Programmentwicklung

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>051520120</th>
<th>5. Modul dauert:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>• Stefan Wagner</td>
<td>• Jan-Peter Ostberg</td>
<td></td>
</tr>
<tr>
<td>13. Inhalt:</td>
<td>• Grundlagen der objektorientierten Programmierung</td>
<td>• Spezifikation und Entwurf objektorientierter Programme mit UML</td>
<td></td>
</tr>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>• 143901 Vorlesung Programmentwicklung</td>
<td>17. Prüfungsnummer/n und -name:</td>
<td>14391 Programmentwicklung (PL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0, Klausur 60 min, keine Vorleistungen.</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td>19. Medienform:</td>
<td>• Folien am Beamer unterstützt durch Tafel und Overhead</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Software-Engineering</td>
<td>• Dokumente, Links und Diskussionsforen in ILIAS</td>
<td></td>
</tr>
</tbody>
</table>
Modul: 15680 Rechnergestützte Angebotsplanung

2. Modulkürzel: 02130004

3. Leistungspunkte: 3.0 LP

4. SWS: 2.0

5. Modulduauer: 1 Semester

7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Markus Friedrich

9. Dozentin: Markus Friedrich

10. Zuordnung zum Curriculum in diesem Studiengang:

 B.Sc. Technische Kybernetik, PO 2011
 → Vorgezogene Master-Module

 DoubleM.D. Technische Kybernetik, PO 2011, . Semester
 → Incoming -->Spezialisierungsfach -->Verkehr
 →

 DoubleM.D. Technische Kybernetik, PO 2011, . Semester
 → Outgoing -->Spezialisierungsfach -->Verkehr
 →

 DoubleM.D. Technische Kybernetik, PO 2014, . Semester
 → Incoming -->Spezialisierungsfach -->Verkehr
 →

 DoubleM.D. Technische Kybernetik, PO 2014, . Semester
 → Outgoing -->Spezialisierungsfach -->Verkehr
 →

 DoubleM.D. Technische Kybernetik, PO 2014, . Semester
 → Wahlpflichtmodule -->Spezialisierungsfach -->Verkehr
 →

 M.Sc. Technische Kybernetik, PO 2011, . Semester
 → Spezialisierungsmodule -->Spezialisierungsfach -->Verkehr
 →

 M.Sc. Technische Kybernetik, PO 2011, . Semester
 → Spezialisierungsmodule -->Wahlfach Technische Kybernetik
 →

11. Empfohlene Voraussetzungen: Modul Verkehrsplanung und Verkehrsmodellierung

12. Lernziele:

13. Inhalt:

In der Vorlesung und den zugehörigen Übungen werden folgende Themen behandelt:

• Planungsprozess, Verkehrsplanungsssoftware
• Excel, Access und VBA/COM
• Vorbereitung, Durchführung und Auswertung einer rechnergestützten Befragung mit Wegetagebüchern.
• VISUM-COM Funktionen
• Beispiel einer Steuerung von VISUM mit VBA aus Excel
• Analyse von Netzzuständen mit VBA und Excel,
• Szenariomanagement
• Verkehnschadensberechnung mit VISEM
• Routensuchverfahren
• Bestwegsuche nach Dijkstra
• Bewertung der Angebotsqualität eines Verkehrsangebotes
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>15. Lehrveranstaltungen und -formen:</td>
<td>156801 Vorlesung mit Übung Rechnergestützte Angebotsplanung</td>
</tr>
<tr>
<td>16. Abschätzung Arbeitsaufwand:</td>
<td>Präsenzzeit: 25 h</td>
</tr>
<tr>
<td></td>
<td>Selbstitindszeit / Nacharbeitszeit: 65 h</td>
</tr>
<tr>
<td></td>
<td>Gesamt: 90 h</td>
</tr>
<tr>
<td>17. Prüfungsnummer/n und -name:</td>
<td>15681 Rechnergestützte Angebotsplanung (BSL), mündliche</td>
</tr>
<tr>
<td></td>
<td>Prüfung, 30 Min., Gewichtung: 1.0</td>
</tr>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td></td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Verkehrsplanung und Verkehrstechnik</td>
</tr>
</tbody>
</table>
Modul: 18630 Robust Control

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>080520806</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modulsdauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>6. Turnus:</td>
<td>unregelmäßig</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Englisch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Carsten Scherer</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Carsten Scherer</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technische Kybernetik, PO 2011
- Vorgezogene Master-Module
- DoubleM.D. Technische Kybernetik, PO 2011
 - Chalmers --> Incoming --> Advanced Control
- DoubleM.D. Technische Kybernetik, PO 2011
 - Chalmers --> Incoming --> Wahlfach Technische Kybernetik

- Chalmers --> Outgoing --> Advanced Control
- DoubleM.D. Technische Kybernetik, PO 2011
 - Chalmers --> Outgoing --> Wahlfach Technische Kybernetik
- DoubleM.D. Technische Kybernetik, PO 2011
 - Incoming --> Spezialisierungsfach --> Autonome Systeme und Regelungstechnik

- Chalmers --> Outgoing --> Spezialisierungsfach --> Autonome Systeme und Regelungstechnik
- DoubleM.D. Technische Kybernetik, PO 2014
 - Chalmers --> Incoming --> Advanced Control
- DoubleM.D. Technische Kybernetik, PO 2014
 - Chalmers --> Incoming --> Wahlfach Technische Kybernetik

- Chalmers --> Incoming --> Spezialisierungsfach --> Autonome Systeme und Regelungstechnik
- DoubleM.D. Technische Kybernetik, PO 2014
 - Outgoing --> Spezialisierungsfach --> Autonome Systeme und Regelungstechnik

- Chalmers --> Outgoing --> Spezialisierungsfach --> Autonome Systeme und Regelungstechnik
- DoubleM.D. Technische Kybernetik, PO 2014
 - Wahlpflichtmodule --> Spezialisierungsfach --> Autonome Systeme und Regelungstechnik

- M.Sc. Technische Kybernetik, PO 2011
 - Spezialisierungsmodule --> Spezialisierungsfach --> Autonome Systeme und Regelungstechnik

- M.Sc. Technische Kybernetik, PO 2011
Spezialisierungsmodule --> Wahlfach Technische Kybernetik

M.Sc. Technische Kybernetik, PO 2011

Vertiefungsmodule --> Advanced Control

11. Empfohlene Voraussetzungen:

Vorlesung Konzepte der Regelungstechnik oder Vorlesung Lineare Kontrolltheorie

12. Lernziele:

The students are able to mathematically describe uncertainties in dynamical systems and are able to analyze stability and performance of uncertain systems. The students are familiar with different modern robust controller design methods for uncertain systems and can apply their knowledge on a specified project.

13. Inhalt:

- Selected mathematical background for robust control
- Introduction to uncertainty descriptions (unstructured uncertainties, structured uncertainties, parametric uncertainties, ...)
- The generalized plant framework
- Robust stability and performance analysis of uncertain dynamical systems
- Structured singular value theory
- Theory of optimal H-infinity controller design
- Application of modern controller design methods (H-infinity control and mu-synthesis) to concrete examples

14. Literatur:

- C.W. Scherer, Theory of Robust Control, Lecture Notes.

15. Lehrveranstaltungen und -formen:

186301 Vorlesung mit Übung und Miniprojekt Robust Control

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 42h
Selbststudiumszeit / Nacharbeitszeit: 138h
Gesamt: 180h

17. Prüfungsnummer/n und -name:

18631 Robust Control (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
Modul: 50400 Robust Control

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>080520805</th>
<th>5. Modulduer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>6.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

| 8. Modulverantwortlicher: | Univ.-Prof. Carsten Scherer |
| 9. Dozenten: | Carsten Scherer |

<table>
<thead>
<tr>
<th>10. Zuordnung zum Curriculum in diesem Studiengang:</th>
</tr>
</thead>
<tbody>
<tr>
<td>B.Sc. Technische Kybernetik, PO 2011 → Vorgezogene Master-Module</td>
</tr>
<tr>
<td>M.Sc. Technische Kybernetik, PO 2011 → Spezialisierungsmodule → Wahlfach Technische Kybernetik</td>
</tr>
</tbody>
</table>

| 11. Empfohlene Voraussetzungen: |
| Vorlesung: Lineare Kontrolltheorie |

| 12. Lernziele: |
| The students are able to mathematically describe uncertainties in dynamical systems and to analyze stability and performance of uncertain systems. The students are familiar with different modern robust controller design methods for uncertain systems and can apply their knowledge to a specified project. |

| 13. Inhalt: |
| Selected mathematical background for robust control |
| Introduction to uncertainty descriptions (unstructured uncertainties, structured uncertainties and uncertainties, ...) |
| The generalized plant framework |
| Robust stability and performance analysis of uncertain dynamical systems |
| Structured singular value theory |
| Theory of optimal H-infinity controller design |
| Application of modern controller design methods (H-infinity control and μ-synthesis) to concrete examples |
| Algebraic approach to robust control |
| Youla parameterization |
| Structured controller synthesis |

| 14. Literatur: |
| wird in der Vorlesung bekannt gegeben |

| 15. Lehrveranstaltungen und -formen: |
| 504001 Vorlesung Robust Control |
| 504002 Übung Robust Control |

| 16. Abschätzung Arbeitsaufwand: |
| Präsenzzeit: 63 h |
| Selbststudiumsszeit / Nacharbeitszeit: 207 h |
| Summe: 270 h |

| 17. Prüfungsnummer/n und -name: |
| 50401 Robust Control (PL), schriftlich oder mündlich, 120 Min., Gewichtung: 1.0 |

| 18. Grundlage für ... |

| 19. Medienform: |

| 20. Angeboten von: |
Modul: 45090 Robuste Regelung

2. Modulkürzel: 060200115

3. Leistungspunkte: 3.0 LP

4. SWS: 2.0

5. Modul dauer: 1 Semester

6. Turnus: jedes 2. Semester, SoSe

7. Sprache: Deutsch

8. Modulverantwortlicher: Werner Grimm

9. Dozenten: Werner Grimm

10. Zuordnung zum Curriculum in diesem Studiengang:
 - B.Sc. Technische Kybernetik, PO 2011 ➔ Vorgezogene Master-Module
 - M.Sc. Technische Kybernetik, PO 2011 ➔ Spezialisierungsmodule ➔ Wahlfach Technische Kybernetik ➔

11. Empfohlene Voraussetzungen:
 Regelung, Navigation und Systementwurf, Modul 060200100

12. Lernziele:
 • Die Studierenden sind in der Lage, anhand des Frequenzgangs die Eigenschaften eines Regelkreises zu beurteilen.
 • Die Studierenden sind in der Lage, die Unsicherheiten des Streckenmodells systematisch zu beschreiben.
 • Die Studierenden sind in der Lage, Regelkreise auf robuster Stabilität und robuster Regelqualität hin zu prüfen und robuste Regler zu entwerfen.

13. Inhalt:
 • Störeinflüsse und Übertragungsfunktionen im Regelkreis, Beurteilung eines Regelkreises anhand des Frequenzgangs
 • Analyse linearer Mehrgrößensysteme mithilfe von Singulärwertdiagrammen
 • Beschreibung strukturierter und unstrukturierter Modellunsicherheiten, Kriterien für robuste Stabilität und robuste Regelqualität
 • H-Unendlich-Regelung
 • mue-Analyse

14. Literatur:
 • W. Grimm: Regelungstechnik 3, Skript
 • K. Mülle: Entwurf robuster Regelungen, Teubner
 • J. Raisch: Mehrgrößenregelung im Frequenzbereich, Oldenbourg
 • Skogestad, S. und I. Postlethwaite: Multivariable Feedback Control, Analysis and Design, Wiley
 • Vortragsfolien und Vortragsübungen im Netz

15. Lehrveranstaltungen und -formen:
 • 450901 Vorlesung Robuste Regelung
 • 450902 Übung Robuste Regelung

16. Abschätzung Arbeitsaufwand:
 Robuste Regelung, Vorlesung: 45 h (Präsenzzeit 14 h, Selbststudium 31 h)
 Robuste Regelung, Übung: 45 h (Präsenzzeit 14 h, Selbststudium 31 h)
 Gesamt: 90 h (Präsenzzeit 28 h, Selbststudium 62 h)

17. Prüfungsnummer/n und -name:
 45091 Robuste Regelung (BSL), mündliche Prüfung, 20 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:
 Zuhilfenahme von Projektor und Beamer, elektronische Unterlagen im Netz

20. Angeboten von:
 Institut für Flugmechanik und Flugregelung
Modul: 45130 Satellitenregelung

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>060200118</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>3.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>2.0</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Walter Fichter</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Walter Fichter</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>-</td>
</tr>
</tbody>
</table>
| 12. Lernziele: | • Die Studierenden kennen die wichtigsten Regelungssysteme für Satelliten.
• Die Studierenden sind in der Lage, das Regelungssystem in den systemtechnischen Rahmen einzuordnen, der durch den Satellitenentwurf und die Missionsaufgabe gegeben ist.
| 13. Inhalt: | • Systemtechnische Grundlagen: Missionsbeispiele, Entwurfsprozess, Störungen, Systemtypen, Hardware-Komponenten, Regeln für den Systementwurf
• Satellitenmodell: Bahn- und Lagebewegung eines Starrkörper-Satelliten, Gyrostat, Drall, Drallradmodelle, Gravitationseffekte
• Verfahren zur Lagebestimmung und Drehratenvestimmung
• Spinstabilisierung: Modelle und Regelung
• 3-achsige Lagestabilisierung: Vorgehen mit internen und externen Stellgrößen, nichtlineare Lageregelungsverfahren, lineare Lageregelungsverfahren, Regelung des Gesamtdrralls und des Raddralls
• Bahnbestimmung mit GPS: Messprinzip und Rohdatenerzeugung, Bestimmung der Position und Zeit, Bestimmung der Geschwindigkeit und Uhrendrift |
J. Wertz, Spacecraft Attitude Determination and Control, Kluwer
B. Wie, Space Vehicle Dynamics and Control, AIAA Series
M. Kaplan, Modern Spacecraft Dynamics and Control, Wiley
M. Sidi, Spacecraft Dynamics and Control, Cambridge |
<p>| 15. Lehrveranstaltungen und -formen: | 451301 Vorlesung Satellitenregelung |</p>
<table>
<thead>
<tr>
<th>17. Prüfungsnummer/n und -name:</th>
<th>45131 Satelliteinegulierung (BSL), mündliche Prüfung, 20 Min., Gewichtung: 1.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>18. Grundlage für ... :</td>
<td></td>
</tr>
<tr>
<td>19. Medienform:</td>
<td>Zuhilfenahme von Projektor und Beamer, elektronische Unterlagen im Netz</td>
</tr>
<tr>
<td>20. Angeboten von:</td>
<td>Institut für Flugmechanik und Flugregelung</td>
</tr>
</tbody>
</table>
Modul: 33600 Simultaneous Engineering und Projektmanagement

2. Modulkürzel: 072010017

5. Moduldauer: 1 Semester

3. Leistungspunkte: 3.0 LP

4. SWS: 2.0

7. Sprache: Deutsch

8. Modulverantwortlicher: Univ.-Prof. Dieter Spath

9. Dozenten: Peter Ohlhausen

M.Sc. Technische Kybernetik, PO 2011 ➔ Spezialisierungsmodule --> Wahlfach Technische Kybernetik

11. Empfohlene Voraussetzungen:

12. Lernziele:

Die Studierenden haben ein Verständnis für die Bedeutung der unterschiedlichen Methoden des Projektmanagements im Rahmen des Simultaneous Engineerings. Sie kennen Methoden zur effizienten Analyse, Gestaltung und Planung von umfassenden Aufgaben innerhalb von Unternehmen auf Grundlage des Projektmanagements. Die Studierenden können selbständig die Anwendungsfelder des Projektmanagements ermitteln und gezielt die notwendigen Methoden des Projektmanagements zur Lösung der Problemstellungen anwenden.

13. Inhalt:

Erarbeitung der Anwendungsfelder des Projektmanagements: Produktentwicklung, Fabrikplanung, integrierte Auftragsabwicklung.

Den Schwerpunkt bilden dabei Praxiskonzepte des Simultaneous Engineering, die darauf abzielen, durch weitgehende Parallelisierung von Aufgaben und Prozessen, Durchlaufzeiten zu verkürzen und die Wertschöpfungskette zu optimieren.

14. Literatur:

• Ohlhausen, P.: Skript zur Vorlesung
• Schelle, H.; Ottmann, R.; Pfeiffer, A.: ProjektManager, Nürnberg: GPM - Deutsche Gesellschaft für Projektmanagement, 2005

15. Lehrveranstaltungen und -formen: 336001 Vorlesung Simultaneous Engineering und Projektmanagement

16. Abschätzung Arbeitsaufwand:

Präsenzzeit: 21 Stunden
Selbststudium: 69 Stunden
Summe: 90 Stunden

17. Prüfungsnummer/n und -name: 33601 Simultaneous Engineering und Projektmanagement (BSL), schriftliche Prüfung, 60 Min., Gewichtung: 1.0

18. Grundlage für ... :
<table>
<thead>
<tr>
<th>19. Medienform:</th>
<th>Beamer-Präsentation</th>
</tr>
</thead>
<tbody>
<tr>
<td>20. Angeboten von:</td>
<td>Institut für Arbeitswissenschaft und Technologiemanagement</td>
</tr>
</tbody>
</table>
Modul: 33320 Smart Structures

2. Modulkürzel: 074010710
5. Moduldauer: 1 Semester
3. Leistungspunkte: 6.0 LP
6. Turnus: jedes 2. Semester, SoSe
4. SWS: 4.0
7. Sprache: Deutsch
8. Modulverantwortlicher: Prof. Lothar Gaul
9. Dozenten: Helge Sprenger
10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technische Kybernetik, PO 2008, 5. Semester
 → Ergänzungsmodule -->Wahlbereich Anwendungsfach -->Adaptive Strukturen
 →
 B.Sc. Technische Kybernetik, PO 2011, 5. Semester
 → Vorgezogene Master-Module
 M.Sc. Technische Kybernetik, PO 2011
 → Spezialisierungsmodule -->Wahlfach Technische Kybernetik

11. Empfohlene Voraussetzungen: Regelungstechnik I
12. Lernziele:
 Die Studierenden kennen die mechanischen und regelungstechnischen Grundlagen von adaptiven Strukturen, Wirkprinzipien der typischen Aktuatoren und Sensoren, sowie Anwendungen von adaptiven Strukturen
13. Inhalt:
 • Dynamik intelligenter Strukturen (Modellierungsmethoden, Wellenausbreitung, Schwingungen)
 • Materialgesetze intelligenter Materialien(elektrostriktive, magnetostriktive, piezoelektrische Materialien, etc.)
 • Messtechnik und Sensoren
 • Signalverarbeitung
 • Regelungskonzepte
 • Anwendungen
14. Literatur: Skript
15. Lehrveranstaltungen und -formen:
 • 333201 Vorlesung Smart Structures
 • 333202 Übung Smart Structures
16. Abschätzung Arbeitsaufwand:
 Präsenzzeit: 42 Stunden
 Selbststudium: 138 Stunden
 Summe: 180 Stunden
17. Prüfungsnummer/n und -name:
 33321 Smart Structures (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0
18. Grundlage für ...
19. Medienform:
20. Angeboten von:
Modul: 11630 Softwaretechnik I

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>050501002</th>
<th>5. Modulduauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Michael Weyrich</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Michael Weyrich</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- B.Sc. Technische Kybernetik, PO 2008, 5. Semester
 - Ergänzungsmodule --> Grundlagen der Natur- und Ingenieurwissenschaften
 - Ergänzungsmodule --> Höhere Informatik
- B.Sc. Technische Kybernetik, PO 2011, 5. Semester
 - Ergänzungsmodule --> Grundlagen der Natur- und Ingenieurwissenschaften
 - Ergänzungsmodule --> Höhere Informatik
- B.Sc. Technische Kybernetik, PO 2011, 5. Semester
 - Vorgezogene Master-Module
- DoubleM.D. Technische Kybernetik, PO 2011, 1. Semester
 - Chalmers --> Incoming --> Wahlfach Technische Kybernetik
- DoubleM.D. Technische Kybernetik, PO 2014, 1. Semester
 - Chalmers --> Outgoing --> Wahlfach Technische Kybernetik
- M.Sc. Technische Kybernetik, PO 2011, 1. Semester
 - Spezialisierungsmodulle --> Wahlfach Technische Kybernetik

11. Empfohlene Voraussetzungen:

- Grundlagen der Softwaretechnik

12. Lernziele:

- besitzen grundlegende Kenntnisse über Anforderungsanalyse
- hinterfragen Systemanalysen
- erstellen Softwareentwürfe
- wenden grundlegende Softwaretestverfahren an
- praktizieren grundlegende Projektplanung und nutzen Softwareentwicklungswerkzeuge

13. Inhalt:

- Grundbegriffe der Softwaretechnik
- Softwareentwicklungsprozesse und Vorgehensmodelle
- Requirements Engineering
- Systemanalyse
- Softwareentwurf
- Implementierung
- Softwareprüfung
14. Literatur:
- Vorlesungsskript

15. Lehrveranstaltungen und -formen:
- 116301 Vorlesung Softwaretechnik I
- 116302 Übung Softwaretechnik I

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 56 h
- Selbststudium: 124 h
- Gesamt: 180 h

17. Prüfungsnummer/n und -name:
- 11631 Softwaretechnik I (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ...
- 21750 Softwaretechnik II

19. Medienform:
- Beamerpräsentation mit Aufzeichnung der Vorlesungen und Übungen

20. Angeboten von:
- Institut für Automatisierungs- und Softwaretechnik
Modul: 21750 Softwaretechnik II

2. Modulkürzel: 050501006 5. Moduldauer: 1 Semester
4. SWS: 4.0 7. Sprache: Deutsch
8. Modulverantwortlicher: Univ.-Prof. Peter Göhner
9. Dozenten: Peter Göhner

10. Zuordnung zum Curriculum in diesem Studiengang:

B.Sc. Technische Kybernetik, PO 2008, 4. Semester
 → Ergänzungsmodule -->Höhere Informatik

B.Sc. Technische Kybernetik, PO 2011, 4. Semester
 → Ergänzungsmodule -->Höhere Informatik
 → Vorgezogene Master-Module

DoubleM.D. Technische Kybernetik, PO 2011, 2. Semester
 → Incoming -->Spezialisierungsfach -->Kraftfahrzeugmechatronik

DoubleM.D. Technische Kybernetik, PO 2011, 2. Semester
 → Outgoing -->Spezialisierungsfach -->Kraftfahrzeugmechatronik

DoubleM.D. Technische Kybernetik, PO 2014, 2. Semester
 → Chalmers -->Incoming -->Wahlfach Technische Kybernetik

DoubleM.D. Technische Kybernetik, PO 2014, 2. Semester
 → Incoming -->Spezialisierungsfach -->Kraftfahrzeugmechatronik

DoubleM.D. Technische Kybernetik, PO 2014, 2. Semester
 → Outgoing -->Spezialisierungsfach -->Kraftfahrzeugmechatronik

DoubleM.D. Technische Kybernetik, PO 2014, 2. Semester
 → Wahlpflichtmodule -->Spezialisierungsfach -->Kraftfahrzeugmechatronik

M.Sc. Technische Kybernetik, PO 2011, 2. Semester
 → Spezialisierungsmodul -->Spezialisierungsfach -->Kraftfahrzeugmechatronik

M.Sc. Technische Kybernetik, PO 2011, 2. Semester
 → Spezialisierungsmodul -->Wahlfach Technische Kybernetik

11. Empfohlene Voraussetzungen: Softwaretechnik I

12. Lernziele:

Die Studierenden

• besitzen vertiefte Kenntnisse über Softwarequalität für technische Systeme
• wenden Softwaretechniken für bestehende technische Systeme an
• lernen aktuelle Themen der Softwaretechnik kennen

13. Inhalt:

• Konfigurationsmanagement
• Prototyping bei der Softwareentwicklung
• Metriken
• Formale Methoden zur Entwicklung qualitativ hochwertiger Software
• Wartung & Pflege von Software
• Reengineering
• Datenbanksysteme
• Software-Wiederverwendung
• Agentenorientierte Softwareentwicklung
• Agile Softwareentwicklung

14. Literatur:
• Vorlesungsskript
• Balzert, H.: Lehrbuch der Software-Technik, Spektrum Akademischer Verlag, 2000
• Sommerville, I.: Software Engineering, Addison Wesley, 2006
• Eckstein, J.: Agile Softwareentwicklung im Großen, dpunkt-Verlag, 2005
• Andresen, A.: Komponentenbasierte Softwareentwicklung mit MDA, UML2 und XML, Hanser Fachverlag, 2004
• Choren, R; et al.: Software Engineering for Multi-Agent Systems III, Springer-Verlag, 2005
• Vorlesungsportal mit Vorlesungsaufzeichnung auf http://www.ias.uni-stuttgart.de/st2

15. Lehrveranstaltungen und -formen:
• 217501 Vorlesung Softwaretechnik II
• 217502 Übung Softwaretechnik II

16. Abschätzung Arbeitsaufwand:

Präsenzzeit:	56 h
Selbststudium:	124 h
Gesamt:	180 h

17. Prüfungsnummer/n und -name:
21751 Softwaretechnik II (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ...:

19. Medienform:
Beamerpräsentation mit Aufzeichnung der Vorlesungen und Übungen

20. Angeboten von:
Institut für Automatisierungs- und Softwaretechnik
Modul: 15230 Spezielle Anwendungen der Wirtschaftskybernetik / Wirtschaftskybernetik III

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>075200102</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modulduer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Meike Tilebein</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Meike Tilebein</td>
</tr>
</tbody>
</table>

10. Zuordnung zum Curriculum in diesem Studiengang:

- B.Sc. Technische Kybernetik, PO 2011
 - Vorgezogene Master-Module
 - DoubleM.D. Technische Kybernetik, PO 2011
 - Chalmers -->Incoming -->Wahlfach Technische Kybernetik
 - DoubleM.D. Technische Kybernetik, PO 2011
 - Chalmers -->Outgoing -->Wahlfach Technische Kybernetik
 - DoubleM.D. Technische Kybernetik, PO 2011
 - Incoming -->Spezialisierungsfach -->Wirtschaftskybernetik
 - DoubleM.D. Technische Kybernetik, PO 2011
 - Outgoing -->Spezialisierungsfach -->Wirtschaftskybernetik
 - DoubleM.D. Technische Kybernetik, PO 2014
 - Chalmers -->Incoming -->Wahlfach Technische Kybernetik
 - DoubleM.D. Technische Kybernetik, PO 2014
 - Incoming -->Spezialisierungsfach -->Wirtschaftskybernetik
 - DoubleM.D. Technische Kybernetik, PO 2014
 - Outgoing -->Spezialisierungsfach -->Wirtschaftskybernetik
 - DoubleM.D. Technische Kybernetik, PO 2014
 - Wahlpflichtmodule -->Spezialisierungsfach -->Wirtschaftskybernetik
 - M.Sc. Technische Kybernetik, PO 2011
 - Spezialisierungsmodul -->Spezialisierungsfach -- >Wirtschaftskybernetik
 - M.Sc. Technische Kybernetik, PO 2011
 - Spezialisierungsmodul -->Wahlfach Technische Kybernetik

11. Empfohlene Voraussetzungen:

- Basiskenntnisse der Betriebswirtschaftslehre

12. Lernziele:

- Die Studierenden
 - kennen Anwendungsfelder der ingenieurwissenschaftlichen Systemperspektive in Wertschöpfungs- und Managementprozessen
 - besitzen vertiefte Kenntnisse über Konzepte, Methoden und Werkzeuge der systemorientierten Gestaltung von Prozessen und Strukturen in speziellen Problembereichen der Wertschöpfung und des Managements

Stand: 09. April 2015
• können diese Konzepte, Methoden und Werkzeuge problemadäquat anwenden

13. Inhalt:

<table>
<thead>
<tr>
<th>Konzepte, Methoden und Werkzeuge</th>
<th>Modelltypen und Modellierungsmethoden für wirtschaftswissenschaftliche Systeme und Prozesse</th>
</tr>
</thead>
<tbody>
<tr>
<td>Betrachtung betriebswirtschaftlicher Fragestellungen aus kybernetischer Perspektive</td>
<td></td>
</tr>
<tr>
<td>Ausgewählte Theorieperspektiven zu Fragestellungen von Wertschöpfungs- und Managementsystemen</td>
<td></td>
</tr>
<tr>
<td>Konzepte, Methoden und Werkzeuge für spezielle Fragestellungen der Wertschöpfung und des Managements</td>
<td></td>
</tr>
</tbody>
</table>

14. Literatur:

| Lernmaterialien werden in der Veranstaltung bekannt gegeben |

15. Lehrveranstaltungen und -formen:

| 152301 Vorlesung Wirtschaftskybernetik III |

16. Abschätzung Arbeitsaufwand:

<table>
<thead>
<tr>
<th>Arbeitsbelastung 180 Stunden:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Präsenzzeit 42 h</td>
</tr>
<tr>
<td>Nacharbeit und Selbststudium 138 h</td>
</tr>
</tbody>
</table>

17. Prüfungsnummer/n und -name:

| 15231 Spezielle Anwendungen der Wirtschaftskybernetik / Wirtschaftskybernetik III (PL), mündliche Prüfung, 40 Min., Gewichtung: 1.0 |

18. Grundlage für ... :

| |

19. Medienform:

| |

20. Angeboten von:

| Institut für Diversity Studies in den Ingenieurwissenschaften |
Modul: 43890 Synergetik

<table>
<thead>
<tr>
<th>Modulkürzel:</th>
<th>051220900</th>
<th>5. Moduldauer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leistungspunkte:</td>
<td>3.0 LP</td>
<td>6. Turnus:</td>
<td>jedes 2. Semester, SoSe</td>
</tr>
<tr>
<td>SWS:</td>
<td>2.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

9. Dozenten: Michael Schanz

10. Zuordnung zum Curriculum in diesem Studiengang:

<table>
<thead>
<tr>
<th>B.Sc. Technische Kybernetik, PO 2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>→ Ergänzungsmodule -->Grundlagen der Natur- und Ingenieurwissenschaften</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>B.Sc. Technische Kybernetik, PO 2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>→ Vorgezogene Master-Module</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DoubleM.D. Technische Kybernetik, PO 2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>→ Chalmers -->Incoming -->Wahlfach Technische Kybernetik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DoubleM.D. Technische Kybernetik, PO 2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>→ Chalmers -->Outgoing -->Wahlfach Technische Kybernetik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DoubleM.D. Technische Kybernetik, PO 2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>→ Incoming -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DoubleM.D. Technische Kybernetik, PO 2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>→ Outgoing -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DoubleM.D. Technische Kybernetik, PO 2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>→ Incoming -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DoubleM.D. Technische Kybernetik, PO 2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>→ Outgoing -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DoubleM.D. Technische Kybernetik, PO 2014</th>
</tr>
</thead>
<tbody>
<tr>
<td>→ Wahlpflichtmodule -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M.Sc. Technische Kybernetik, PO 2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>→ Spezialisierungsmodul -->Spezialisierungsfach -->Autonome Systeme und Regelungstechnik</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>M.Sc. Technische Kybernetik, PO 2011</th>
</tr>
</thead>
<tbody>
<tr>
<td>→ Spezialisierungsmodul -->Wahlfach Technische Kybernetik</td>
</tr>
</tbody>
</table>

11. Empfohlene Voraussetzungen: keine

12. Lernziele:

Die Studierenden erlernen die für das Verständnis notwendigen Begriffe aus der Nichtlinearen Dynamik. Dazu gehören verschiedene Attraktor- und Bifurkationstypen. Sie sind vertraut mit den Begriffen Zeitskalentrennung, linear stabile und instabile Moden,

13. Inhalt:

14. Literatur:
- Hermann Haken, Synergetics, Introduction and Advanced Topics, Springer-Verlag, 2004
- Vorlesungsbergleitende Maple-Worksheets

15. Lehrveranstaltungen und -formen:
438901 Vorlesung Synergetik

16. Abschätzung Arbeitsaufwand:
Präsenzzzeit: 21 Stunden
Selbststudium: 69 Stunden
Summe: 90 Stunden

17. Prüfungsnummer/n und -name:
43891 Synergetik (BSL), mündliche Prüfung, 30 Min., Gewichtung: 1.0

18. Grundlage für ...:

19. Medienform:

20. Angeboten von:
Modul: 13330 Technologiemanagement

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: Univ.-Prof. Dieter Spath

9. Dozenten:
- Wilhelm Bauer
- Betina Weber

10. Zuordnung zum Curriculum in diesem Studiengang:
- B.Sc. Technische Kybernetik, PO 2011
 ➔ Vorgezogene Master-Module
- M.Sc. Technische Kybernetik, PO 2011
 ➔ Spezialisierungsmodule -->Wahlfach Technische Kybernetik

11. Empfohlene Voraussetzungen: keine

12. Lernziele:
Die Studierenden haben Kenntnis von den theoretischen Ansätzen des Technologiemanagements in Unternehmen und können normatives, strategisches und operatives Technologiemanagement unterscheiden.

Sie Grenzen die Begriffe Technologiemanagement, Forschungs- und Entwicklungsmanagement und Innovationsmanagement gegeneinander ab und kennen die Bedeutung von Technologien.

Sie kennen klassische Aufbauorganisationen in Unternehmen sowie die Bedeutung der Ablauforganisation. Sie verstehen, wie Technologien in Unternehmen strategisch geplant und sinnvoll eingesetzt werden und wie sich der Einsatz neuer Technologien auswirkt.

Erworbene Kompetenzen: Die Studierenden
- können die Bedeutung des Technologiemanagements im Unternehmen einordnen
- kennen die wesentlichen Ansätze und Aufgaben des normativen, strategischen und operativen Technologiemanagements
- verstehen die Handlungsalternativen des Technologiemanagements
- kennen die Phasen eines methodischen Vorgehens im Technologiemanagement
- sind mit den wichtigsten Methoden zur Technologieplanung und -strategie vertraut und können diese zielführend anwenden

13. Inhalt:
Die Vorlesung vermittelt die Grundlagen und das Anwendungswissen zum Technologiemanagement.

Im Einzelnen werden folgende Themen behandelt:
- Umfeld des Technologiemanagements,
- Begriffsklärungen,
Organisationsmanagement, Integriertes Technologiemanagement, Normatives Technologiemanagement, Strategisches Technologiemanagement:

- Technologiefrühaufklärung
- Lebenszykluskonzepte
- Portfoliomethodik
- Erfahrungskurvenkonzept
- Technologiestrategien

Fallstudien zum strategischen Technologiemanagement, Operatives Technologiemanagement:

- Innovationsmanagement
- Projektmanagement
- Instrumente des Technologie- und Innovationsmanagements

Fallstudie Netzplantechnik

14. Literatur:
- Bauer, W.; Weber, B.: Skript zur Vorlesung Technologiemanagement

15. Lehrveranstaltungen und -formen:
- 133301 Vorlesung Technologiemanagement I
- 133302 Vorlesung Technologiemanagement II

16. Abschätzung Arbeitsaufwand:
- Präsenzzeit: 46 Stunden
- Selbststudium: 134 Stunden
- Summe: 180 Stunden

17. Prüfungsnummer/n und -name:
- 13331 Technologiemanagement (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:
- Beamer-Präsentation, Videos, Animationen, Praktikum

20. Angeboten von:
Modul: 46700 Thermodynamik biochemischer Netzwerke

2. Modulkürzel: 074740004

3. Leistungspunkte: 3.0 LP

4. SWS: 2.0

5. Modulduauer: 1 Semester

7. Sprache: Deutsch

8. Modulverantwortlicher: Ronny Feuer

9. Dozenten: Ronny Feuer

10. Zuordnung zum Curriculum in diesem Studiengang:
 B.Sc. Technische Kybernetik, PO 2011
 ➔ Vorgezogene Master-Module
 DoubleM.D. Technische Kybernetik, PO 2011
 ➔ Incoming -->Spezialisierungsfach -->Systembiologie
 ➔
 DoubleM.D. Technische Kybernetik, PO 2011
 ➔ Outgoing -->Spezialisierungsfach -->Systembiologie
 ➔
 DoubleM.D. Technische Kybernetik, PO 2014
 ➔ Incoming -->Spezialisierungsfach -->Systembiologie
 ➔
 DoubleM.D. Technische Kybernetik, PO 2014
 ➔ Outgoing -->Spezialisierungsfach -->Systembiologie
 ➔
 DoubleM.D. Technische Kybernetik, PO 2014
 ➔ Wahlpflichtmodule -->Spezialisierungsfach -->Systembiologie
 ➔
 M.Sc. Technische Kybernetik, PO 2011
 ➔ Spezialisierungsmodule -->Spezialisierungsfach -->Systembiologie
 ➔
 M.Sc. Technische Kybernetik, PO 2011
 ➔ Spezialisierungsmodule -->Wahlfach Technische Kybernetik

11. Empfohlene Voraussetzungen:
 Vorausgesetzt werden Grundlagen in den Bereichen
 • Thermodynamik
 • Modellierung biochemischer Reaktionsnetzwerke

12. Lernziele:
 Nach Besuch dieses Moduls können die Studenten ...
 • Grundbegriffe der thermodynamischen Beschreibung von Reaktions-
 systemen benennen und erklären.
 • die Rolle der thermodynamischen Beschränkungen bei der
 Modellierung von biochemischen Netzwerken erklären,
 • Methoden, die die Beschränkungen in der mathematischen
 Modellierung berücksichtigen, benennen und erklären.

13. Inhalt:
 Wichtige biologische Prozesse, wie z.B. Stoffwechsel- und
 Signalübertragungs-Prozesse, können als Reaktionsnetzwerke
 beschrieben werden. Die mathematische Modellierung und Analyse
 solcher Netzwerke ist ein Schwerpunkt der Systembiologie. Große
 Reaktionsnetzwerke wie sie in der Systembiologie betrachtet werden,
 sind stark durch grundlegende physikalische Gesetze, insbesondere
 durch die Thermodynamik, beschränkt. Die Vorlesung wird zuerst
 die Grundlagen der Netzwerkthermodynamik besprechen. Die
 dazu nötigen Grundlagen der Thermodynamik und irreversible
 Thermodynamik werden wiederholt. Darauf aufbauend werden einige
Ansätze zur thermodynamischen Analyse und Modellierung von großen Reaktionsnetzwerken besprochen. Die Studenten werden insbesondere an folgende Themen herangeführt:

- Thermodynamische Grundlagen zur Beschreibung von Reaktionsystemen
- Thermodynamische Beschränkungen in dynamischen Modellen (Thermokinetiche Modellierung und verwandte Ansätze)
- Thermodynamische Beschränkungen in stationären Modellen

14. Literatur: Skript und weiterführende Literatur auf ILIAS wird während der Vorlesung aktualisiert

15. Lehrveranstaltungen und -formen: 467001 Vorlesung Thermodynamik biochemischer Netzwerke

16. Abschätzung Arbeitsaufwand: Präsenzzzeit: 28 h
Selbststudium: 62 h
Summe: 90 Stunden

17. Prüfungsnummer/n und -name: 46701 Thermodynamik biochemischer Netzwerke (BSL), mündliche Prüfung, 30 Min., Gewichtung: 1.0

18. Grundlage für ...

19. Medienform:

20. Angeboten von:
Modul: 37450 Volleyball benotet

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>100300331</th>
<th>5. Modulduer:</th>
<th>1 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>4. SWS:</td>
<td>3.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
</tbody>
</table>

8. Modulverantwortlicher: PD Rolf Brack

9. Dozenten: • Udo Grabowiecki • Uwe Gomolinsky

10. Zuordnung zum Curriculum in diesem Studiengang:

 B.Sc. Technische Kybernetik, PO 2011
 ➔ Vorgezogene Master-Module
 M.Sc. Technische Kybernetik, PO 2011, 1. Semester
 ➔ Spezialisierungsmodul --> Wahlfach Technische Kybernetik

11. Empfohlene Voraussetzungen:

12. Lernziele:

 • Die Studierenden kennen didaktisch orientierte Vermittlungskonzepte und sie verfügen über eine grundlegende sportmotorische Performanz.
 • Die Studierenden können unterschiedliche fachdidaktische Konzepte in Theorie und Praxis kritisch bewerten.
 • Die Studierenden sind in der Lage, sportartspezifische Lern- und Trainingsformen zu analysieren, wiederzugeben und diese fachlich zu kommentieren.
 • Die Studierenden sind in der Lage, sich selbständig in ihrem Können zu vervollkommnen und ihr eigenes fachdidaktisches Handeln zu begründen.

13. Inhalt:

14. Literatur:

 und ergänzende Liste des aktuellen Semesters.

15. Lehrveranstaltungen und -formen: 374501 Übung Volleyball

16. Abschätzung Arbeitsaufwand: Gesamtaufwand 90 h

17. Prüfungsnr/n und -name: 37451 Volleyball benotet (LBP), schriftlich, eventuell mündlich, Gewichtung: 1.0

18. Grundlage für ... :

19. Medienform:

 ILIAS Lernplattform, Powerpoint-Präsentation, Texte

20. Angeboten von:
Modul: 32280 Wirtschaftskybernetik I

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>075200002</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>6.0 LP</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>4.0</td>
</tr>
<tr>
<td>5. Modulduauer:</td>
<td>1 Semester</td>
</tr>
<tr>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Meike Tilebein</td>
</tr>
<tr>
<td>9. Dozenten:</td>
<td>Meike Tilebein</td>
</tr>
<tr>
<td>11. Empfohlene Voraussetzungen:</td>
<td>keine</td>
</tr>
</tbody>
</table>
| 12. Lernziele: | • kennt den Aufbau und die Funktionen des Systems „Unternehmen“ sowie die Strukturen der Unternehmensführung
• kennt Methoden und Werkzeuge der operativen Planung und Kontrolle von Wertschöpfungsprozessen
• kann aufgrund von wirtschaftswissenschaftlichem Basiswissen zur Gestaltung von Wertschöpfungssystemen und Geschäftsmodellen aus ingenieurwissenschaftlicher Sicht beitragen |
| 13. Inhalt: | • Das Unternehmen als dynamisches kybernetisches System und seine Funktionen - Grundlegende Elemente der Betriebswirtschaft aus Sicht der Kybernetik
• Ausgewählte betriebswirtschaftliche Methoden der Unternehmensführung
• Kybernetische Methoden für die Planung und Kontrolle operativer Prozesse in Unternehmen und zwischen denselben in Wertschöpfungsnetzwerken
• Unternehmensplanspiel INTOP als Übung |
• Vorlesungsunterlagen
• Handbuch zum Planspiel INTOP |
| 15. Lehrveranstaltungen und -formen: | • 322801 Vorlesung Wirtschaftskybernetik I
• 322802 Übung Wirtschaftskybernetik I |
| 16. Abschätzung Arbeitsaufwand: | Präsenzzeit: 42h
Selbststudiumszeit / Nacharbeitszeit: 138 h
Gesamt: 180 h |
| 17. Prüfungsnummer/n und -name: | 32281 Wirtschaftskybernetik I (PL), schriftliche Prüfung, 120 Min., Gewichtung: 1.0 |
| 18. Grundlage für ... : |
| 19. Medienform: |
| 20. Angeboten von: | Institut für Diversity Studies in den Ingenieurwissenschaften |
Modul: 80530 Masterarbeit Technische Kybernetik

<table>
<thead>
<tr>
<th>2. Modulkürzel:</th>
<th>-</th>
<th>5. Moduldauer:</th>
<th>2 Semester</th>
</tr>
</thead>
<tbody>
<tr>
<td>3. Leistungspunkte:</td>
<td>30.0 LP</td>
<td>6. Turnus:</td>
<td>jedes Semester</td>
</tr>
<tr>
<td>4. SWS:</td>
<td>0.0</td>
<td>7. Sprache:</td>
<td>Deutsch</td>
</tr>
<tr>
<td>8. Modulverantwortlicher:</td>
<td>Univ.-Prof. Frank Allgöwer</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

9. Dozenten:

10. Zuordnung zum Curriculum in diesem Studiengang:
 - DoubleM.D. Technische Kybernetik, PO 2011
 → Chalmers --> Incoming
 - DoubleM.D. Technische Kybernetik, PO 2014
 → Chalmers --> Incoming
 - M.Sc. Technische Kybernetik, PO 2011

11. Empfohlene Voraussetzungen:
 Das Thema der Masterarbeit kann frühestens nach Erwerb von 72 Leistungspunkten ausgegeben werden.

12. Lernziele:
 Die Masterarbeit soll zeigen, dass die zu prüfende Person in der Lage ist, innerhalb einer vorgegebenen Frist eine aktuelle Aufgabenstellung aus dem Bereich der technischen Kybernetik selbständig nach wissenschaftlichen Methoden zu bearbeiten und die Ergebnisse sachgerecht darzustellen.

13. Inhalt:
 Innerhalb der Bearbeitungsfrist von 6 Monaten ist die fertige Masterarbeit in schriftlicher Form anzufertigen. Des Weiteren werden die Ergebnisse der Masterarbeit in einem abschließenden Vortrag präsentiert.

14. Literatur:
 Die Literatur richtet sich individuell nach dem zu bearbeitenden Thema.

15. Lehrveranstaltungen und -formen:

16. Abschätzung Arbeitsaufwand: 900 h

17. Prüfungsnummer/n und -name:

18. Grundlage für ... :

19. Medienform:

20. Angeboten von: